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Abstract. Software Defined Networking (SDN) is an evolving network
paradigm which promises greater interoperability, more innovation, flex-
ible and effective solutions. Although SDN on the surface provides a
simple framework for network programmability and monitoring, few has
been said about security measures to make it resilient to hitherto secu-
rity flaws in traditional network and the new threats the architecture is
ushering in. One of the security weaknesses the architecture is ushering
in due to separation of control and data plane is Denial of Service (DoS)
attack. The main goal of this attack is to make network resources unavail-
able to legitimate users or introduce large delays. In this paper, the effect
of DoS attack on SDN is presented using Mininet, OpenDaylight (ODL)
controller and network performance testing tools such as iperf and ping.
Internet Control Message Protocol (ICMP) flood attack is performed on
a Transmission Control Protocol (TCP) server and a User Datagram Pro-
tocol (UDP) server which are both connected to OpenFlow switches. The
simulation results reveal a drop in network throughput from 233 Mbps
to 87.4 Mbps and the introduction of large jitter between 0.003 ms and
0.789 ms during DoS attack.
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1 Introduction

Computer networks have become part of our everyday lives from government to
commercial enterprises to individuals [1]. These networks are built from large
number of devices such as routers, switches and middle boxes with complex pro-
tocols running on them. Network administrators are saddled with the responsi-
bility of configuring these vendor-specific devices and configuration policies are
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implemented on them. As a result, network management and dynamic response
to events and applications are arduous and prone to error.

In addition to the complexity of configuration, operators have little options
or mechanisms to respond to difficulties and enforce the required policies in
dynamic environments [2]. Similarly, in the face of growing traffic and demand
for more data rate from consumers, the service providers need to keep up with
the pace through investments in bigger and faster links and edge routers, even
though revenues are growing quite slowly [3].

In view of the afore mentioned challenges, the need for a cost effective and
programmable network which is robust enough to meet the demand of users is
imperative. Thus, the emergence of Software Defined Networks (SDN). SDN has
created commendable avenues to overcome age-old problems in networking, while
simultaneously enabling the introduction of complex, secure and reliable network
policies for next generation networks [4]. As a revolutionary concept, SDN alters
existing networks by separating the forwarding functionalities of existing devices,
known as data plane from control element, known as control plane [5].

The future of SDN mainly lies in its acceptance and deployment. Technology
and its deployment take years before it can be available to end users due to
standardisation process and Request for Comments (RFCs). Speculations how-
ever remain as to whether same should be expected for SDN or not. According
to [1] a proposal for open and programmable network is presented. The need for
researchers to run experiment on campus network using an OpenFlow switch is
further emphasised in [1]. In line with this, ETHANE, a new network architec-
ture for enterprise was suggested in [6]. For the proposed architecture, in [6],
ETHANE switch does not need to learn addresses, support Virtual Local Area
Networks (VLANs) or check for source-address spoofing and it has been deployed
in a campus environment. The work in [6] was augmented when Google, deployed
B4 using OpenFlow switches in their Wide Area Networks (WAN) data centre [7].
Also, with the advent of a Linux foundation collaborative project, OpenDaylight
(ODL) [8] platform and VMware NSX virtualisation platform, global acceptance
and deployment is envisaged to be no longer far from reach.

In spite of the programmability, flexibility, universal connectivity and decen-
tralised control, which were critical to the success of SDN, these features are
at odds with making it more secure. The SDN platform can bring with it sev-
eral security breaches which include an increased potential for Denial-of-Service
(DoS) attacks due to controller centralisation and flow table limitations in network
devices [9]. Furthermore, abstraction of flows and underlying hardware resources
make it easier for harvesting of intelligence which can be used effortlessly for fur-
ther exploitation and reprogramming entire network by malicious user [4].

In this paper, the impact of DoS attack on SDN is presented. The simulation
has been perfomed using mininet and OpenDaylight controller tools and the sim-
ulation result shows that DoS flooding attack on SDN network can degrade net-
work performance by decreasing network throughput and introduce large jitter.
This paper is structured as follows: Sect. 2 presents related works on the SDN
architecture, vulnerabilities in the SDN architecture and DoS attacks on SDN.
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Fig. 1. SDN architecture illustrating the data, control and application layers.

The experimental method and tools are presented in Sect. 3. Then Sect. 4 shows
the experimental set-up. The results and analysis are presented in Sect. 5. Finally,
the conclusion and future work are presented in Sect. 6.

2 Related Work

2.1 SDN Architecture

SDN architecture encompasses the complete network platform. It is a modular
approach that defines chain of command and interoperability within network.
Unlike traditional network, the intelligence of data plane devices is removed to
a logically centralised control system [10]. Figure 1 presents the SDN architec-
ture showing the data/infrastructure, control and application layer. In an SDN
architecture, there are two main elements: the controllers and the forwarding
devices. A forwarding device is a hardware or software element specialised in
packet forwarding and based on a pipeline of flow tables where each entry of a
flow table has: a matching rule, action to be executed on matching packets and
counters that keep statistics of matching packets [4]. The controller serves as the
brain of the network and it deals with management of network state. Below is a
description of various layers:

Infrastructure layer: This layer is also known as data plane. It consists
of simple forwarding elements without embedded control or software to take
autonomous decisions. It is accessible through the southbound interface and
allows packet switching and forwarding.
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Control layer: This layer consists of SDN controllers providing a consolidated
control functionalities through Application Programming Interfaces (APIs). The
crucial value of the controller is to provide abstractions, essential services, and
common APIs to developers. Three communication interfaces allows the con-
troller to interact: northbound, southbound and the east/westbound interfaces.

(i) Southbound Interfaces: Southbound interface allows the controller and for-
warding elements to interact in the infrastructure layer, thus being the
crucial instrument for clearly separating the control and data plane func-
tionality.

(ii) Northbound Interfaces: This interface is the connecting bridge between
application layer and control layer. It enables the programmability of the
controllers by exposing the data models and other functionalities within the
controllers for use by applications at the application layer. The northbound
interface is mostly a software ecosystem, hence, a common northbound
interface is still an open issue.

(iii) East/Westbound Interfaces: This interface is a special communication inter-
face envisioned for distributed controllers to synchronise state for high avail-
ability. Its function include import/export data between controllers and
monitoring/notification capabilities to check if a controller is up or notify
a takeover on a set of forwarding elements.

Application Layer: The application layer consists of end-user business appli-
cations and network services. Example of application that runs here is network
virtualisation. Network policy is also defined here.

2.2 Vulnerabilities in SDN Architecture

A number of security analyses has been carried on the vulnerabilities in SDN.
Adnan et al. in [5] identified the state of art in SDN security solutions with respect
to each layer of SDN architecture. The work focuses on possible security attacks in
SDN which could be executed. However, no solution to identified threats is pre-
sented. A comprehensive survey of security in SDN is presented in [11,12], the
authors identified vulnerabilities introduced by separation of control and data
plane. Sandra et al. in [11] presents an overview of SDN security and itemise
research work coupled with solution to security issues in SDN. In [12] classifica-
tion is done using the STRIDE approach and possible SDN security controls is
proposed. The concept of offering SDN security as a service is presented in [13].

Kreutz et al. in [2] presents a high level security analysis. Seven main potential
threat vectors are presented. Three of the seven identified threat vectors are
specific to SDN and relates to the three planes present in SDN architecture.
The analysis does not present SDN as a less secure network but triggers the
need for innovative ways of responding to the new threats arising from network
programmability. The authors state the consequences of these threats in SDN
and solutions to the seven threat vectors was proposed.
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In [14], a feasibility study on attacking SDN is carried out by fingerprinting to
ascertain usage of SDN/OpenFlow switches by the network. The SDN network is
then subjected to a specifically crafted flow requests from the data plane to the
control plane to exhaust the network resources. Another security vulnerabilities
was analysed in ProtoGENI [15]. The authors explored three potential security
issues as follows:

(i) Resource connection: Once a malicious user obtains access to one exper-
iment node, attacks can easily be launched by utilising the huge ProtoGENI
computing resources as a launchpad to harm existing internet users.

(ii) Wireless Nodes Distribution: Network sniffing or spoofing can be done
here to identify desired node for launching attacks.

(iii) Virtualization Technology: In ProtoGENI virtualisation, ProtoGENI
resources are shared among as many user as possible. Any bug or compro-
mise from a single device will expose other users in sharing resources to
attacks.

The Authors discovered the possibility of using ProtoGENI resources to launch
flooding attack to the wider internet. Also, the possibility of compromising con-
fidentiality and availability of other ProtoGENI users is high.

2.3 DoS Attack on SDN

DoS and Distributed DoS (DDoS) attack remains one of the severe network secu-
rity problems in both traditional network and SDN. Due to separation of control
and data plane, an attacker could saturate the controller with malformed packets
requiring a flow rule decision. On the other hand, the flow table of the infras-
tructure device can be overwhelmed with malicious packets. To address bottle-
necks of potential saturation attack, AVANT-GUARD [16] introduce connection
migration to reduce amount of data-to-control-plane interactions. The method
enables the data plane to shield the control plane from saturation attacks. How-
ever, the data plane itself is subject to attack. Similarly, a backup strategy which
offers resilience against failures in a centralised controlled network is presented
in [17]. This approach is an attempt to solve single point of failure bottleneck
and it provides seamless transition between primary controller to a back-up con-
troller. However, this solution is limited to centralised implementation and it
also raises concern in terms of trust between the east-west interface communi-
cations. In addition, Braga et al. [18] proposed lightweight, a new method for
detecting DDoS. The proposed method boasts of high rate of true positives and
low rate of false alarm using Self Organising Maps (SOM) for flow analysis. The
lightweight method consider median values in training the SOM. The drawback
of this method is that false negatives are reported when the attack parameter is
set to a low value.

The controller has been compared to an operating system capable of manag-
ing applications through programmatic interface [19]. Similarly, ETHANE was
built to provide network-wide fine-grain policy using a centralised declaration
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and enforcing it [6]. While the concept of a centralised controller allow the sim-
plification of policy enforcement and management tasks for network managers,
it creates quite a number of bottle necks. In [9], analysis of SDN implementation
key challenges has been carried out. The authors opined deployment of SDN
technology will contribute to the vision of future communications if outstand-
ing challenges were resolved. In [20] the possibility of DoS attacks and poor
rule design that can lead to saturating volumes of controller queries is discussed.
Though OpenFlow vulnerabilities in terms of lack of adoption of Transport Layer
Security (TLS) for controller-switch communication is highlighted in [20], a num-
ber of vulnerabilities proposed was not verified in the work.

3 Experimental Method and Tools

In this experiments, Mininet is used [21]. Mininet is an open source network
emulator devoted entirely to OpenFlow architecture and SDN implementation.
For the controller, ODL controller is used [22]. ODL integrates open source,
open standards and open APIs to deliver SDN platform to make networks more
programmable and adaptive. DoS attacks usually engage numerous compromised
hosts and a rich topology to launch a successful attack on its victim. While
our scenario is much simpler than what is obtainable in real world attacks, we
deliberately chose such a low-complexity set-up to expose and analyse the impact
of DoS attack on SDN. Common testing tools such as, ping and iperf are used
to generate traffic between host and servers. Figure 2 shows the methodology
flowchart with each step explained.

Start

Create UDP and TCP 
server

End

Hosts make requests 
from UDP and TCP 

servers

Measure throughput 
and jitter

Plot graph of 
throughput and jitter

Launch 
ICMP attack

Step1

Step2

Step3

Step4

Step5

Step6

Fig. 2. Methodology flowchart.
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Step 1: Start Mininet and ODL controller

Sudo mn --custom scenario.py --topo

--controller = remote,ip = x.x.x.x

Where x.x.x.x represents the ip address of the remote controller.
Check connectivity using

$mininet > net

Step 2: Create UDP and TCP server

UDP: iperf -s -u -p 5566 -i1
TCP: iperf -s -p 5566 -i1

The TCP server is made to listen on port 5566 with a default window size of
85.3 KB. Similarly, UDP server is made to listen on port 5566 with a default
UDP buffer size of 208 KB while receiving 1470 bytes datagrams and the result
is monitored every 1 s.

Step 3: Hosts make requests from TCP server and UDP server

TCP: -iperf -c x.x.x.x -p5566 -t100
UDP: -iperf -c x.x.x.x -u -t100 -p5566

Step 4 and Step 5: Results were extracted using AWK file and results plotted
using MATLAB. Then, malicious hosts 5 and 6 launched flooding attack on the
servers (similar to step 3). Legitimate traffic is started at the beginning of an
experiment, and an attack is launched shortly after for a duration of 100 s.

Step 6: End

mininet# ctrl z (end mininet)
Sudo mn -c (clear topology)

4 Experimental Set-Up

In this section, a series of experiments are performed to verify the effects of DoS
attack in the SDN network. The experimental setup is shown in Fig. 3. To create
the scenario in Fig. 3, many software and tools are used as shown in Table 1.
There are two servers and four switches in the network. Each switch has a host
connected to it. The Transmission Control Protocol (TCP) server is connected
to OpenFlow switch1 while User Datagram Protocol (UDP) server is connected
to OpenFlow switch3. ICMP flood attack will be launched against both servers
by malicious hosts 5 and 6.
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Fig. 3. Experimental setup.

Table 1. Simulation parameters

Simulation Details

Platform/Enviroment -Oracle Virtual Box as base environment for simulations

-Ubuntu OS as base for Mininet v2.2 emulator

-Ubuntu Server as base for OpenDaylight (Boron) controller

-Host CPU as intel core i7, 12 G RAM

Attack tool Hping tool - Hping3 used for flooding attack

5 Results and Analysis

As discussed in the experimental setup, we simulate for two different scenarios;
TCP and UDP requests under normal operating condition and under attack.
The results for these scenarios are discussed below.

5.1 Effect of DoS Attack on Throughput

Figures 4 and 5 shows a significant drop in throughput due to malicious
behaviour (ICMP flood attack) being executed by two attacking nodes. The aver-
age throughput for requests made from host 4 to the TCP server is 214 Mbits/s
for a total of 2.5 GB of information transferred in 100 s. Similarly, the aver-
age throughput of host2 requests from TCP server is 233 Mbits/s for a total of
2.72 GB of information transferred.

Notice that Host 2 shows a better bandwidth utilisation than Host 4 and the
reason for this is not far-fetched; they are both connected to OpenFlow switch 1.
While the better bandwidth utilisation is seen as an advantage here, it is a major
security risk and attractive honeypot to launch attack against the server. The
impact of this connection is felt when the server is subjected to ICMP flood attack.
During attack, the average throughput dropped to 106 Mbits/s from 214 Mbits/s
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Fig. 4. TCP requests from host 4 to TCP server under ICMP attack.
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Fig. 5. TCP requests from host 2 to TCP server under ICMP attack.

recorded for H4 requests from server1 without ICMP flood attack. The impact of
the attack launched by host 5 and 6 became noticeable after 15 s of transmission
and the bandwidth utilisation degraded for the rest of the transmission. The trend
is similar for host2 requests from TCP server as degradation started after 8 s of
transmission and degraded for the rest of the transmission. The average through-
put for h2 requests from TCP server dropped from 233 Mbits/s to 87.4 Mbits/s
when the server is under attack. The degradation is more severe for host 2 when
under attack even though higher throughput is recorded during normal operation.
Hence, the need for better network design, traffic isolation based on priority for
mission-critical network and dynamic proactive ways of addressing DoS attacks
when the system is under serious attack.
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5.2 Effect of DoS Attack on Jitter

Jitter is defined as a variation in the delay of received packets. In Figs. 6 and 7,
using UDP buffer size of 208 KB, the jitter varies between 0.003 ms and 0.789 ms.
Host 4 Jitter remains within a fair range because it is connected to OpenFlow
switch 3 with the UDP server. The spiky delay waveform indicates the presence
of congestion in the network. Even though the congestion occurs for a very short
period, if the congestion time is more than the scheduled packet transmission
time, it will lead to packet drops. Notice that jitter values obtained from host 4
requests to UDP server is better compared to requests from host 2.
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Fig. 6. UDP requests from host 2 to UDP server under ICMP attack.
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Fig. 7. UDP requests from host 2 to UDP server under ICMP attack.
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6 Conclusion and Future Work

In this paper, the impact of DoS attack on SDN has been demonstrated. This
study reveals that for a simple network, a DoS attack on the infrastructure plane
(UDP and TCP servers) will highly degrade network performance as shown in
the performance metrics (throughput and jitter). For a Distributed DoS (DDoS)
attack with more active agents, the attack will be more severe. Hence, the need
for a robust resilient SDN security architecture. While the evaluation of the
impact of DoS attack on SDNs remains a very rigorous endeavour, the work car-
ried out in this paper offers a primer to the objective evaluation of DoS attack
on SDNs. The simulation results revealed a drop in network throughput from
233 Mbps to 87.4 Mbps and the introduction of large jitter between 0.003 ms and
0.789 ms during DoS attack. In the future, the mitigation of DoS and DDoS
attacks in an exhaustive way at both control and data plane layers will be
examined.
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