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Preface

This book examines the neuroscience of mathematical cognitive development from 
infancy through emerging adulthood, addressing both biological and environmental 
influences on brain development and plasticity. It was written as a resource for pro-
fessors, researchers, clinicians, educators, and graduate students in the fields of 
developmental, cognitive, child clinical, educational, and school psychology; neu-
roscience and neuropsychology; and mathematics education and intervention. It 
was also designed to serve as a text for advanced undergraduate and graduate 
courses covering mathematical cognition. It includes background information on 
developmental psychology theory, brain development, and cognitive neuroscience 
research methods to make the volume more accessible to graduate students and 
professionals from other fields and to facilitate understanding and application of 
research results.

The book begins by presenting major theories for interpreting neuroscience stud-
ies of mathematical cognitive development and achievement, including evolution-
ary developmental psychology, a developmental systems approach, and the 
triple-code model of numerical processing. These theories provide a cohesive 
framework that is revisited throughout the text. A general paradigm for conducting 
studies using multiple levels of analysis to examine interactions between neural 
activity, behavior, and environmental contexts and experiences is discussed. Then, 
the book describes brain development and cutting-edge neuroscience research 
methods, including functional Magnetic Resonance Imaging (fMRI), Diffusion 
Tensor Imaging (DTI), Event-Related Potentials (ERP), and Transcranial Magnetic 
Stimulation (TMS), at a level that is comprehensible to those who may be unfamil-
iar with these neuroimaging techniques. The book includes chapters that discuss 
existing studies and new research findings from my work with colleagues at the 
University of Cincinnati using neuroscience research methods to examine quantity 
representation, calculation, and visuospatial cognition. Furthermore, it also presents 
neuroscience models and research for understanding mathematical difficulties and a 
diversity of exceptionalities, such as autism spectrum disorder and Turner’s syn-
drome. A review of mathematics intervention programs is included that relates them 
to neuroscience theory and research to provide information to researchers, practitio-
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ners, and educators seeking strategies for improving developmental trajectories, 
individual  outcomes, and educational practices for students experiencing mathe-
matical difficulties. The book ends with a summary of conclusions that can cur-
rently be drawn from neuroscience studies of mathematical cognitive development 
and recommendations for future research.

This book is a product of the work of many scholars and researchers dedicated to 
understanding mathematical cognitive development so that we may, ultimately, 
improve children’s learning and their success in life. Their names are too numerous 
to list here, but the references to each chapter provide some acknowledgement. I am 
especially inspired by the work of David F. Bjorklund, David C. Geary, Stanislas 
Dehaene, Daniel B. Berch, Robert Siegler, Douglas H. Clements, Ted Hasselbring, 
Lynn Fuchs, and Sharon Griffin. I am grateful to my colleagues Scott Holland, Peter 
Chiu, and Tzipi Horowitz-Kraus at the University of Cincinnati and Cincinnati 
Children’s Hospital Medical Center for engaging me in neuroimaging research. I 
feel especially privileged to have Vincent J. Schmithorst as a long- time collaborator 
on the research presented in this book. I offer my sincere gratitude to David 
F. Bjorklund for reviewing and providing feedback on portions of the text; Bethany 
Reeb-Sutherland for providing a photograph from her lab; Ted Hasselbring for 
assisting with permissions for the figures from the FASTT Math program; Sharon 
Griffin for providing figures from the Number Worlds program; and Vicki Plano-
Clark for her publication advice. I would especially like to thank Cheri Williams for 
mentoring and motivating me through the process of writing this book and for her 
friendship. I am also grateful for the camaraderie and support of my colleagues at 
the University of Cincinnati, especially Vicki Carr, Tina Stanton-Chapman, Heidi 
Kloos, and Cathy Maltbie; Jonathan Thomas at the University of Kentucky; and the 
graduate students who participated in my courses over the years, including 
Mathematics Cognition, especially Lori Kroeger, Nicole Hammons, Gail Headley, 
Laura Kelley, Lori Foote, Mindy Victor, Kate Doyle, Sammie Marita, Lindsay 
Owens, Rachel Lindberg, Jonathan Buening, Leslie Kochanowski, Sue Schlembach, 
Ann Rossmiller, and Ashley Vaughn. At Springer, I am grateful to Garth Haller, 
Judy Jones, and Michelle Tam for the opportunity to write this book and for their 
enthusiasm and assistance during this process. Finally, to my husband Russ, my 
daughters Ainsley and Paige, and my mother Theresa, I offer my deepest gratitude 
for their ever-present love, encouragement, and support.

Cincinnati, OH, USA Rhonda Douglas Brown 
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Chapter 1
Theories for Understanding 
the Neuroscience of Mathematical 
Cognitive Development

Rhonda Douglas Brown

Abstract Throughout history, humans have invented and used mathematics to 
solve meaningful problems critical to survival and prosperity. To advance our under-
standing of mathematical cognitive development and achievement, it is important to 
place research within theoretical frameworks that allow us to interpret and apply 
results. In this chapter, I discuss evolutionary developmental psychology as a meta- 
theory for considering important questions relevant to understanding neuroscience 
research on mathematical cognitive development. Then, I use a developmental sys-
tems approach to describe how genetics, neural activity, and experiences in environ-
mental niches dynamically interact in the development of evolved probabilistic 
cognitive mechanisms. As an example, I describe biologically primary mathemati-
cal abilities that may have been selected for in evolution to solve recurrent prob-
lems, passed on via genetics, and instantiated in human brain development. The 
process of their development into biologically secondary mathematical abilities, 
which are cultural inventions that build upon biologically primary abilities, is then 
described. I present Dehaene and colleagues’ triple-code model of numerical pro-
cessing as the predominant neuroscience-based theory of mathematical cognition. I 
conclude by arguing that there is a place for neuroscience in the field of cognitive 
development and advocating for the integration of scientific findings across levels of 
analysis.

Mathematical skills are important for human survival. Consider this interaction 
(originally in Portuguese) between a researcher posing as a customer and a 12-year- 
old boy with little formal education working as a street vendor in Recife, Brazil.

Customer: I’m going to take four coconuts. How much is that?
Child: Three will be 105, plus 30, that’s 135…one coconut is 35…that is…140!

This excerpt from seminal work by Carraher and colleagues demonstrates that 
children construct mathematics in everyday cultural experiences that are important 
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for survival (Carraher, Carraher, & Schliemann, 1985, p. 26). In Brazil and other 
places, it is fairly common for children of street vendors to help with the family 
business. From about the age of 8, children may carry out transactions while their 
parents are busy with other tasks. In doing so, they solve a number of mathematical 
problems involving addition, subtraction, multiplication, and sometimes division, 
without pencil and paper.

 The Importance of Mathematics in Human Development

Throughout history, humans have invented and used mathematics to solve meaning-
ful problems critical to survival and prosperity. To better understand the importance 
of mathematics in human development, let’s consider a few remains that provide a 
glimpse into how humans have used mathematics to solve problems and how they 
have passed conceptual and procedural knowledge on to future generations through 
instructional texts. The summary that follows was mostly gleaned from the work of 
Merzbach and Boyer (2011) who provide a comprehensive history of mathematics.

The oldest mathematical artifact, estimated at 35,000 years old, is the Lebombo 
bone, a small piece of baboon fibula with 29 well-defined notches found in the 
Lebombo Mountains between South Africa and Swaziland. Although there are 
 several hypotheses regarding the functional significance of the Lebombo bone, 
some scholars believe it was used as a lunar phase counter and binary calendar, 
indicating the quantification of time. Similarly, the Ishango bone pictured in Fig. 1.1 
was found in Northeastern Congo and is estimated at 20,000 years old. It has tally 
marks organized into groups and is thought to represent a counting system or lunar 
phase calendar (e.g., Setati & Bangura, 2012).

Ancient mathematical texts of the Babylonians, in the form of clay tablets dating 
back to 2000 years BC, document the use of basic arithmetic, including multiplica-
tion and division, geometry, fractions, algebra, quadratic and cubic equations, and 
the Pythagorean theorem. For example, in his description of Mesopotamian math-
ematical cuneiform texts from the Norwegian Schøyen Collection, Friberg (2008) 
translated one tablet (MS 2830) that contains computations involving four different 
commodities and market rates:

the question is how much a person can buy for 1 shekel of silver if equal amounts are 
bought of all four commodities (p. 1079).

Friberg also found evidence for what appears to have been ancient Geometry 
homework.

It is likely that… each student was supposed to go home with his hand tablet and spend part 
of the evening writing down a detailed version of the solution procedure, to be brought back 
to school the next day (p. 1079).

Remnants of Babylonian mathematics exist today in that it used a base-60 
numeral system that corresponds with our modern quantification of time in seconds 
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and minutes. Similarly, early Egyptian texts, such as the Rhind papyrus (circa 1650 
BC), served as an arithmetic and geometry instruction manual for students and the 
Moscow papyrus (circa 1980 BC) included story problems. In Greece, geometry 
was used to solve problems such as calculating the height of pyramids and the dis-
tance of ships from the shore. In 300 BC, Euclid wrote Elements, perhaps the great-
est mathematical text to date, which formalized the use of axioms, theorems, and 
proofs that are taught in modern day geometry courses. In China, although older 
texts have been found, The Nine Chapters on the Mathematical Art dated at 179 AD 
contains word problems involving agriculture, architecture, engineering, and busi-
ness. Europe was introduced to Indian and Islamic mathematics through the writ-
ings of Muḥammad ibn Mūsā al-Khwārizmī, dated around 825 AD, who described 
the Hindu-Arabic numeral system used throughout the world today, and the reduc-
tion and balancing of algebraic equations.

These artifacts demonstrate that humans have been using mathematics to solve 
real-world problems for more than 35,000 years, and likely during prehistoric peri-
ods. They also demonstrate that humans have been teaching and advancing mathe-
matics and its applications throughout this history. As the Common Era progressed, 
Fibonacci applied the positional notation of Hindu-Arabic numerals to improve 

Fig. 1.1 The Ishango bone 
found in Northeastern 
Congo approximately 
20,000 years ago has tally 
marks organized into 
groups that may represent 
a counting system or lunar 
phase calendar. Photograph 
from the Collections of the 
Royal Belgian Institute of 
Natural Sciences by Ben2 
(Own work) [GFDL 
(http://www.gnu.org/
copyleft/fdl.html), 
CC-BY-SA-3.0 (http://
creativecommons.org/
licenses/by-sa/3.0/), or CC 
BY-SA 2.5-2.0-1.0 (http://
creativecommons.org/
licenses/by-sa/2.5-2.0-
1.0)], via Wikimedia 
Commons

The Importance of Mathematics in Human Development

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
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http://creativecommons.org/licenses/by-sa/2.5–2.0-1.0
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trade transactions; navigational demands led to the development of trigonometry 
(Grattan-Guinness, 2009); and the works of Galileo, Kepler, Descartes, Newton, 
and Leibniz during the scientific revolution of the seventeenth century led to major 
developments in astronomy, analytic geometry, physics, and calculus. In the twenti-
eth century, Einstein used differential geometry to demonstrate general relativity, 
Turing used computability theory to develop computer science, and Mandelbrot 
used fractal geometry to describe nature. Currently, the application of mathematics 
to information technology, such as in bioinformatics, allows researchers addressing 
scientific questions to rapidly analyze volumes of data.

With these advances, one could argue that the scientific revolution continues. 
Currently, in the United States (U.S.) and other countries, since at least the 1990s, 
education policy has promoted STEM. STEM stands for the academic disciplines of 
Science, Technology, Engineering, and Mathematics (variations include STEMM, 
which incorporates Medicine, and STEAM, which incorporates Art). According to 
the economist Vilorio (2014), “STEM workers use their knowledge of science, tech-
nology, engineering or math to try to understand how the world works and to solve 
problems. Their work often involves the use of computers and other tools” (p. 3). In 
2007, the America COMPETES Act (P.L. 110-69) increased funding for science 
and engineering research and STEM education from kindergarten through postdoc-
toral training. Projections from the U.S. Bureau of Labor Statistics estimate employ-
ment in STEM occupations to grow to more than nine million between 2012 and 
2022 (as cited in Vilorio, 2014). Careers in STEM fields are expected to contribute 
to individual prosperity through higher wages and to the growth of economies in the 
U.S. and worldwide. Yet some scholars and educators believe that the current gen-
eration is not prepared for these careers (Vilorio, 2014; but see Charette, 2013). In 
the U.S., the National Assessment of Educational Progress (NAEP) online report for 
2015 indicates that only 25% of 12th grade students performed at or above the 
Proficient level in mathematics, which has not changed significantly since 2005 
(U.S. Department of Education, 2015).

 Theoretical Frameworks

Clearly, mathematics achievement is at least as important today as it was to the 
Babylonians. To advance our understanding of mathematical cognitive development 
and achievement, it is important to place research within theoretical frameworks 
that allow us to interpret and apply results. From my perspective, and others’, it 
makes sense to situate research on the neuroscience of mathematical cognitive 
development within the theoretical frameworks of Evolutionary Developmental 
Psychology (see Bjorklund & Pellegrini, 2002; Geary & Berch, 2016; Geary, Berch, 
& Koepke, 2015) and a Developmental Systems Approach (see Baltes, Reuter- 
Lorenz, & Rösler, 2006; Bronfenbrenner & Morris, 2006; Ford & Lerner, 1992; 
Gottlieb, Wahlsten, & Lickliter, 2006; Sameroff, 2009). In the following sections, I 
discuss evolutionary developmental psychology as a meta-theory for considering 
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important questions relevant to understanding neuroscience research on mathemati-
cal cognitive development. Then, I use a developmental systems approach to 
describe how genetics, neural activity, and experiences in environmental niches 
dynamically interact in the development of evolved probabilistic cognitive mecha-
nisms. As an example, I describe biologically primary mathematical abilities that 
may have been selected for in evolution to solve recurrent problems, passed on via 
genetics, and instantiated in human brain development. The process of their devel-
opment into biologically secondary mathematical abilities, which are cultural 
inventions that build upon biologically primary abilities, is then described (Geary, 
1995, 2007). I present Dehaene and colleagues’ triple-code model of numerical 
processing as the predominant neuroscience-based theory of mathematical cogni-
tion (Dehaene, 1992, 2011; Dehaene & Cohen, 1995, 1997; Dehaene, Piazza, Pinel, 
& Cohen, 2003). I conclude by arguing that there is a place for neuroscience in the 
field of cognitive development and advocating for the integration of scientific find-
ings across levels of analysis.

 Evolutionary Developmental Psychology

Twenty years ago David Bjorklund and I proposed that research from the field of 
developmental cognitive neuroscience could be incorporated into the perspectives 
of evolutionary psychology and a developmental systems approach (Bjorklund, 
1997a; Brown & Bjorklund, 1998; Byrnes & Fox, 1998a). This proposal reflects the 
emergence of the field of evolutionary developmental psychology over the last sev-
eral decades. Although a comprehensive presentation of this field is beyond the 
scope of this book (see Bjorklund & Ellis, 2014; Bjorklund & Pellegrini, 2002; 
Geary, 2005; Geary & Berch, 2016; Geary & Bjorklund, 2000), this section describes 
premises that are most relevant to framing and interpreting neuroscience research 
on mathematical cognitive development.

Evolutionary developmental psychology postulates that the human mind consists 
of a set of information-processing mechanisms that are instantiated in the brain. 
These psychological mechanisms and the processes governing their development 
are adaptations that evolved gradually through the process of natural selection in 
response to pressures confronted by ancestral humans in environments during the 
period of evolutionary adaptation, such as hunting and foraging, the need to cooper-
ate and compete with other members of social groups, and climate change (Bjorklund 
& Pellegrini, 2002; Geary, 2007). They are domain-specific and functionally spe-
cialized to produce behaviors that solve recurrent, real-world problems by extract-
ing and processing specific aspects of physical and social environments. Natural 
selection may have also acted upon the evolution of domain-general mechanisms, 
such as components of executive function, including cognitive flexibility, working 
memory, and inhibition (e.g., Bjorklund & Kipp, 1996; Geary, 2007). Furthermore, 
some characteristics that influence survival and reproductive success may not have 
been selected for the function that they currently serve or may be by-products of 
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adaptations co-opted to serve other functions, called exaptations (Gould & Vrba, 
1982). That is, existing systems generate solutions to new problems.

The emphasis placed on phylogeny in evolutionary developmental psychology 
leads to functional analyses that consider the distal and proximal causes of adaptive 
behavior. Pertinent questions that apply functional analysis to cognitive neurosci-
ence research include:

1. What neuroarchitecture supported cognition during the period of evolutionary 
adaptation?

2. What selection pressures were present during the period of evolutionary adaptation that 
may have led to the evolution of information-processing mechanisms underlying the 
cognition under consideration?

3. What adaptive problems needed to be solved?
4. What distal functions during the period of adaptation did the psychological mechanisms 

under investigation evolve to serve? and
5. How do the identified distal functions influence proximal causes of cognition and 

behavior? (Brown & Bjorklund, 1998, pp. 358–359).

Evolutionary developmental psychology recognizes that current human neuroar-
chitecture and its functions evolved gradually over millions of years. By asking 
these questions about distal explanations of behavior and how neural structures and 
their functioning support them, we enhance our understanding of cognitive develop-
ment. By integrating distal functions and proximal causes of cognition and behav-
ior, such as neural activity, we relate species-typical development to how individuals 
adapt to their particular life circumstances (Bjorklund, 2017; Bjorklund & Ellis, 
2014; for a different perspective, see Witherington & Lickliter, 2017). One of the 
most promising aspects of neuroscience research involves identifying brain struc-
tures and networks that carry out specific information-processing functions and 
describing how these work together to produce complex cognition. When we con-
sider distal and proximal functions, adaptive specializations and exaptations 
together, we can better understand the coexistence of domain-specific and domain- 
general abilities. For example, evolutionary adaptations in phylogenetically older 
and newer neural systems may coexist or result from the modification of existing 
systems. Interpreting neuroscience findings using a evolutionary developmental 
psychology lens may provide additional explanatory power and reconcile seem-
ingly contradictory findings. Thus, it is fruitful to consider evolutionary accounts of 
cognitive processes in relation to ontogenetic developmental processes. A develop-
mental systems approach provides a means for doing so.

 Developmental Systems Approach

I believe that the value of neuroscience theories and research is more fully realized 
when placed within a Developmental Systems Approach (Brown & Bjorklund, 
1998; Brown & Chiu, 2006; Kroeger, Brown, & O’Brien, 2012). Although there are 
conceptual and representational differences in developmental systems approaches 
(see Baltes et  al., 2006; Bronfenbrenner & Morris, 2006; Ford & Lerner, 1992; 
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Gottlieb et al., 2006; Sameroff, 2009), one basic model, shown in Fig. 1.2, depicts 
ontogenetic development throughout the lifespan as occurring within a hierarchi-
cally organized, integrated system of bidirectional interactions (bottom-up and top-
down) among multiple factors, including genetic activity, neural activity, behavior, 
and environment (Gottlieb, 1991; Gottlieb et al., 2006). Within this approach, prob-
abilistic epigenesis is the primary mechanism for ontogenetic change, rather than 
genetic determinism. New structural and functional properties may emerge through 
coactions (vertical and horizontal) with feedback between dynamic components of 
the developmental system. Integrating evolutionary developmental psychology and 
the developmental systems approach, Bjorklund, Ellis, and Rosenberg (2007) pro-
posed the concept of evolved probabilistic cognitive mechanisms, which are

information-processing mechanisms that have evolved to solve recurrent problems faced by 
ancestral populations; however, they are expressed in a probabilistic fashion in each indi-
vidual in a generation, based on the continuous and bidirectional interaction over time at all 
levels of organization, from the genetic through the cultural. These mechanisms are univer-
sal, in that they will develop in a species-typical manner when an individual experiences a 
species-typical environment over the course of ontogeny (p. 22).

Interpreting cognitive developmental neuroscience within this framework 
involves describing bidirectional relationships between genes, the maturation of 
structures, the functions of structures, developmental processes, and experiences in 
environments. These relationships result in plasticity, but also produce various types 
of constraints on learning related to the fact that humans inherit a species-typical 
genome and species-typical environments similar to those of their ancestors 
(Bjorklund & Ellis, 2014; Gelman & Williams, 1998; Spelke & Kinzler, 2007). 
Specific neurons, brain structures, regions, and networks process certain types of 
information reflecting architectural constraints. Furthermore, infants may possess 
inherited perceptual and information-processing biases that orient their attention 
and help them make sense of certain stimuli in core domains, including language, 
number, physics, and theory of mind, which reflect representational constraints 
(Bjorklund & Ellis, 2014; Spelke & Kinzler, 2007). Although these constraints on 

ENVIRONMENT

BEHAVIOR

NEURAL ACTIVITY

GENETIC ACTIVITY

Individual Development

Fig. 1.2 Depiction of a developmental systems approach that characterizes human development 
throughout the lifespan as occurring within a hierarchically organized, integrated system of bidi-
rectional interactions among genetic activity, neural activity, behavior, and environment. Source: 
Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental 
Psychology, 27(1), 4–13. https://doi.org/10.1037/0012-1649.27.1.4
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learning suggest that human infants are born prepared to process and learn certain 
types of information, as Bjorklund (2003, 2017) points out, prepared is not pre-
formed. Nevertheless, evolved cognitive mechanisms may form the basis for cogni-
tive development through childhood and adolescence (Bjorklund & Pellegrini, 
2002). Furthermore, adaptive functions may operate during a limited period of the 
lifespan, such as during infancy, by enhancing fit within a specific environment 
(e.g., Bjorklund, 1997b; Tooby & Cosmides, 1992). Chronotopic constraints place 
limitations on developmental timing such that some brain areas might be most 
receptive to certain types of experiences during sensitive periods of development; 
furthermore, early-developing brain areas may process different types of informa-
tion than later-developing areas.

This description of constraints on learning illustrates the importance of under-
standing cognitive development using multiple levels of analysis and attempting to 
integrate findings into cohesive descriptions and explanations. As described in 
Brown and Bjorklund (1998), applying a developmental systems approach pro-
motes the understanding that, as depicted in Fig. 1.2, neural activity influences cog-
nition and behavior, which, in turn, influence neural organization and function. The 
mechanism of probabilistic epigenesis can be used to characterize relationships 
between genetic activity, structural maturation, and function, which includes inter-
nal experiences (Bjorklund & Pellegrini, 2002). For example, individual differences 
in brain morphology result from differences during the proliferation phases of brain 
maturation and pruning occurs as a result of the number and connectivity of neurons 
firing in response to environmental experience (Byrnes & Fox, 1998b; Gottlieb, 
1991; for a brief description of these processes, see Chap. 2).

Biologically Primary and Secondary Mathematical Abilities

According to Geary (1995, 2007), biologically primary mathematical abilities rep-
resent a “core” modular system that responds to and processes certain types of 
information. These abilities are believed to have been important in the everyday 
lives of hunter-forager societies and hence were selected for during evolution. 
Biologically primary mathematical abilities include numerosity, ordinality, count-
ing, simple arithmetic, estimation, and geometry, and tend to recruit brain regions in 
the horizontal intraparietal sulcus (for detailed descriptions of neuroscience 
research on these topics, see Chaps. 3 and 4). Geary (2007) stated “The emergence 
of primary abilities through an interaction between experience and inherent con-
straints ensures that all people develop the same core systems of abilities and, at the 
same time, allows these systems to be fine tuned to the nuances of the local social 
group, and the biological and physical ecologies in which they are situated” (p. 475). 
He proposes that implicit, “folk” knowledge or skeletal competencies are fleshed 
out during human development through species-typical parent-child and peer inter-
actions, as well as children’s own intrinsically motivated play and exploration of 
environments, and that they can be linked in novel ways (e.g., Bjorklund, 2006; 
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Bouchard, Lykken, Tellegen, & McGue, 1996; Greenough, Black, & Wallace, 1987; 
Scarr, 1993), which reflects a neonativist perspective. Geary also proposes that bio-
logically primary abilities can be developed through more flexible top-down, con-
scious cognitive processing that engages executive function, including working 
memory, reasoning, and problem solving, and recruits the prefrontal and anterior 
cingulate cortices. Humans can innovate by creating novel solutions and they can 
also organize these solutions into a knowledge base that is culturally transferred 
across generations through texts, such as those described in the first section of this 
chapter, instructional practices, and other means. The need to acquire this corpus of 
knowledge accumulated from previous generations necessitates extended learning 
experiences throughout humans’ long childhood. Geary defines biologically sec-
ondary mathematical abilities as the culture-specific skills that build upon biologi-
cally primary abilities. They are typically taught within the context of formal 
schooling and require extrinsic motivation and extensive practice. Examples of bio-
logically secondary mathematical abilities include algebra, advanced geometry, and 
calculus. These skills are important to success in highly industrialized and techno-
logical societies; for example, in pursuing STEM careers. From the perspective of 
evolutionary educational psychology, Geary (Geary, 1995, 2007, 2010; Geary & 
Berch, 2016) suggests that explicit, teacher- directed instruction may not be best for 
the acquisition of early number skills related to biologically primary abilities, but 
may be the most effective instructional method for the acquisition of mathematical 
skills requiring biologically secondary abilities.

Let’s return to the excerpt from Carraher et al. (1985) at the outset of this chapter 
depicting an interaction between a “customer” and a 12-year-old Brazilian street 
vendor. It provides a basic illustration of how children can use mental calculation to 
correctly solve everyday problems. Based on qualitative analyses, the researchers 
concluded that a frequent strategy for multiplication problems involved succes-
sively chaining addition. In the example, the boy decomposed a quantity into tens 
and units; that is, to add 35 to 105, he added 30 and later incorporated 5 into the 
result. Now consider the same child’s response to a formal test given 1 week later 
by the same “customer” involving the same problem put into a more abstract con-
text based on school mathematics, using paper and pencil.

Child resolves the item 35 X 4 explaining out loud: 4 times 5 is 20, carry the 2; 2 plus 3 is 
5, times 4 is 20. Answer written: 200 (Carraher et al., 1985, p. 26).

The researchers posed the question “How is it possible that children capable of 
solving a computational problem in the natural situation will fail to solve the same 
problem when it is taken out of its context?” (p. 25). Results from their qualitative 
analyses suggest that different problem solving procedures may have been used 
across the two contexts. Specifically, the child street vendors seemed to understand 
quantity, but were not proficient at formal, abstract, symbolic mathematics using 
school-based procedures. In this example, the boy confused addition procedures 
with multiplication procedures, which is a common error (e.g., Jordan & Hanich, 
2000; Raghubar et al., 2009; Rourke, 1993), perhaps due to working memory and 
inhibition difficulties (e.g., Geary, 2011; but, see Cohen, Dehaene, Cohochon, 
Lehericy, & Naccache, 2000). Furthermore, the researchers noted that the children 
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did not appear to engage in error detection procedures to make sure that their result 
made sense given the nature of the problem. They concluded that their results 
 support sociocultural theorists’ thesis that everyday problem solving may be per-
formed using procedures different from those taught in schools (e.g., Cole, 1990; 
Donaldson, 1978; Lave, Murtaugh, & de la Rocha, 1984; Luria, 1976; Saxe, 1988).
The researchers note that there are, of course, limitations to mental calculation, in 
that the strategies used by Brazilian street vendors become difficult to execute with 
greater quantities, which can be surmounted through written computation. Ideally, 
school-taught mathematics provides symbol systems and procedural tools for solv-
ing complex problems more efficiently across multiple contexts. As noted by Devlin 
(2005), “they underpin all our science, technology, and modern medicine, and prac-
tically every other aspect of modern life. Their development marks one of the 
crowning achievements of the human race. But that doesn’t make them easy to learn 
or to apply. The problem is that humans operate on meanings. In fact, the human 
brain evolved as a meaning-seeking device. We see, and seek, meaning anywhere 
and everywhere.” Indeed, Carraher et al. (1985) suggested that “educators should 
question the practice of treating mathematical systems as formal subjects from the 
outset and should instead seek ways of introducing these systems in contexts which 
allow them to be sustained by human daily sense” (p. 28). Although these results are 
interpreted in different ways by researchers of varying theoretical perspectives, 
I believe they are consistent with neuroscience theories of mathematical cognition.

Triple-Code Model of Number Processing

The triple-code model of number processing (e.g., Dehaene, 1992, 2011; Dehaene 
et al., 2003; Dehaene & Cohen, 1995, 1997) is the predominant neuroscience model 
of mathematical cognition. The model proposes that three representational systems 
may be recruited for mathematical cognition: Quantity, Verbal, and Visual (Dehaene 
et al., 2003). These systems are thought to be instantiated by three neural circuits 
that coexist in the parietal lobe and operate in an interactive fashion during specific 
tasks. Figure 1.3 shows the representational systems for numerical processing and 
associated brain areas proposed in the triple-code model.

The Quantity system, often referred to as number sense (see Dehaene, 2011), is 
proposed to use nonverbal semantic representations (i.e., meaning or cardinal value) 
of size and distance relations between numbers during mathematical cognition. 
Like the biologically primary abilities discussed in the previous section, this system 
engages a horizontal segment of the intraparietal sulcus (HIPS) brain regions, 
which are activated during tasks involving quantitative representation of numbers, 
including number comparison, subtraction, approximate addition, and numerosity 
estimation (for a review, see Dehaene et al., 2003). For example, knowing that 7 is 
close to 8 on a mental number line reflects functioning of the quantity system.

The Verbal system is proposed to represent and manipulate sequences of number 
words when naming numbers, counting, retrieving well-learned addition and multi-
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plication facts from long-term memory, and performing exact calculation. For 
example, when you hear “two times three,” the word “six” may pop into your mind. 
Use of the verbal system recruits general-purpose language modules, including the 
left perisylvian network, and a region of the left angular gyrus (for a review, see 
Dehaene et al., 2003).

The Visual system is proposed to represent and spatially manipulate numbers in 
their visual, symbolic format, which is commonly Arabic numerals (Dehaene & 
Cohen, 1995). For example, to solve 54 − 31 = ?, you must first recognize the sym-
bols for numbers and then you might subtract 1 from 4 to determine that the second 
digit of the solution is 3 and then subtract 3 from 5 to determine that the first digit 
of the solution is 2, and then combine these results to obtain 23 as the final solution. 
Use of the visual system recruits the posterior superior parietal lobe on tasks that 
involve spatial attention orienting and working memory, including number com-
parison, counting, approximation, subtraction of two digits, and carrying out two 
operations (for a review, see Dehaene et al., 2003).

Dehaene et al. (2003) speculate that the quantity system may be a good candidate 
for a domain-specific “core” system. They also believe that the involvement of the 
verbal and visual systems in number processing reflects the recruitment of more 
domain-general representations and processes that are not restricted to numerical 
functions, similar to the top-down processes discussed in the previous section. 
Dehaene and Cohen (1995, 1997) proposed two major transcoding routes to describe 
how the systems interact with one another in mathematical cognition. An indirect 
semantic route specialized for quantitative processing is hypothesized to perform 
several functions, including manipulating analog magnitude quantity representa-
tions to compare operands; using back-up strategies by manipulating visual Arabic 
representations when rote knowledge is not available in verbal memory, such as 

Fig. 1.3 The left hemisphere (lateral view) indicating representational systems and corresponding 
brain regions proposed in the triple-code model of numerical processing. Source: Dehaene, S., 
Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive 
Neuropsychology, 20, 487–506. https://doi.org/10.1080/02643290244000239
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decomposing complex problems into new problems for which facts can be retrieved 
(e.g., 13 + 5 = 10 + 5 + 3 = 15 + 3 = 18) (LeFevre et al., 1996); and monitoring the 
plausibility of the direct asemantic route using estimation (Ashcraft & Stazyk, 
1981; Dehaene & Cohen, 1991). A direct asemantic route is hypothesized to trans-
code numerical symbols (i.e., Arabic numerals) to auditory verbal representations in 
the left perisylvian language areas to guide retrieval of memorized arithmetic facts 
without semantic mediation. Furthermore, prefrontal areas and the anterior cingu-
late are hypothesized to coordinate the sequencing of processing through the sys-
tems, maintaining intermediate results in working memory, and detecting errors 
(Dehaene, 1992; Dehaene et al., 1996; Dehaene & Naccache, 2001; Kopera-Frye, 
Dehaene, & Streissguth, 1996; Shallice & Evans, 1978).
Overall, neuropsychological cases and studies using functional Magnetic Resonance 
Imaging (fMRI) and Diffusion Tensor Imaging (DTI) (for explanations of these 
neuroimaging techniques, see Chap. 2) provide support for the three parietal circuits 
for number processing shown in Fig. 1.3 in adults (for reviews, see Arsalidou & 
Taylor, 2011; Dehaene et  al., 2003; Moeller, Willmes, & Klein, 2015; also, see 
Grabner et al., 2009; Klein et al., 2016; Schmithorst & Brown, 2004; van Eimeren 
et  al., 2010) and children (e.g., Ansari & Dhital, 2006; Ansari, Garcia, Lucas, 
Hamon, & Dhital, 2005) and a distinction between the semantic, language- 
independent system used for approximate math and the asemantic language and 
culture-dependent system used for exact math (Ansari & Karmiloff-Smith, 2002). 
However, the triple-code model was initially developed using neurological case 
studies of adult patients with lesions (see Chap. 2 on neuroscience research meth-
ods). Therefore, developmental processes for the three parietal circuits and their 
associated functions need further investigation. Chapters 3 and 4 describe neurosci-
ence research relevant to the triple-code model.

 A Place for Neuroscience in Cognitive Development

Humans are fascinated with their own brains and minds. For the past 25 years or so, 
innovations in neuroimaging technologies (see Chap. 2), such as fMRI, have allowed 
us to visualize the working brain and, as a result, neuroscience research has prolifer-
ated at an astounding rate. Nevertheless, cognitive developmental and educational 
psychologists have been appropriately cautious regarding the value and interpreta-
tions of neuroscience research (e.g., Brown & Bjorklund, 1998; Crone, Poldrack, & 
Durston, 2010; Poldrack & Wagner, 2004; Spelke, 2002; Turner, 2014). For exam-
ple, in 1997, Bruer published a now often-cited paper called Education and the 
Brain: A Bridge Too Far in which he stated, “Educational applications of brain sci-
ence may come eventually, but as of now neuroscience has little to offer teachers in 
terms of informing classroom practice. There is, however, a science of mind, cogni-
tive science, that can serve as a basic science for the development of an applied 
science of learning and instruction” (p. 4). Bruer (1997) and others (e.g., Alferink & 
Farmer-Dougan, 2010; Bowers, 2016; Geake, 2008; Goswami, 2006; Howard- 
Jones, 2014; Lindell & Kidd, 2011) cited counterproductive misapplications of 

1 Theories for Understanding the Neuroscience of Mathematical Cognitive Development



13

brain science, such as notions that people are right-brained or left-brained and learn-
ing styles. Others, including myself, felt cautiously enthusiastic regarding the future 
of neuroscience in the field of cognitive development, recognizing neural activity as 
a valid component of the developmental system (Brown & Bjorklund, 1998; Byrnes 
& Fox, 1998a). Yet, we doubted that “education 20 years from now will be radically 
different than it is today because of a paradigm shift to neuroscience thinking by 
prominent educational researchers and theorists. However, we do believe that devel-
opmental neuroscience theorizing and research will provide a clearer, more accurate 
picture of children’s developing cognitions and ways in which education can be 
tailored to the special characteristics of children’s changing intellects, and thus to 
improved educational practices” (Brown & Bjorklund, 1998, p. 356).

As described in a previous section, I believe that the promise of neuroscience 
theories and research is more fully realized when placed within a developmental 
systems approach, which has become increasingly feasible due to technological and 
methodological innovations (Brown & Bjorklund, 1998; Brown & Chiu, 2006; 
Kroeger et al., 2012). For example, the recording of Event-Related Potentials (ERP) 
has emerged as a portable means for gathering brain data across the life span, 
including newborns (e.g., Molfese, Molfese, & Pratt, 2007), and protocols for 
familiarizing children to fMRI procedures have greatly improved success rates and 
the quality of data for children aged 5 and older (e.g., Byars et al., 2002; Rajagopal, 
Byars, Schapiro, Lee, & Holland, 2014). Although these advances make the use of 
neuroimaging techniques more practical for studying development, what can stud-
ies measuring brain activity tell us about cognitive development that we cannot 
gather from the behavioral level of analysis? Beyond mapping brain structures and 
functions, longitudinal neuroimaging studies can contribute to our understanding of 
developmental processes by revealing how earlier developing brain systems change 
to support later-developing, more sophisticated abilities (Rajagopal et  al., 2014). 
Furthermore, neuroimaging studies go beyond localization by describing the tem-
poral dynamics of neural processing and interregional interactions in the brain. 
Using a developmental systems approach, I believe that understanding how the neu-
ral level of analysis interacts with other levels of analysis can go a long way towards 
explaining cognitive development.

Whenever possible, it makes sense to examine cognitive development using mul-
tiple levels of analysis within the same study (Brown & Chiu, 2006). Of course it 
would be very difficult to design studies examining all of the factors that interact to 
produce cognitive development within a given domain, but some are now using neu-
roimaging, behavioral, and experiential measures to advance our understanding of 
cognitive and developmental processes by revealing bidirectional relations between 
hierarchical levels of analysis. For example, Chapter 6 describes how some neurode-
velopmental disorders lead to differences in brain development that influence math-
ematical cognition, and Chap. 7 describes interventions that may influence behavior, 
cognition, and neural activity, potentially leading to gains in achievement.

Twenty years later, I believe that neuroscience research is mainstream in the field 
of cognitive development and is becoming integrated into our theories. At the time 
of this writing, a search of literature published through the end of 1998  in the 
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PsycINFO database using the terms “neuroscience” and “cognitive development” 
yielded 365 results. By the end of 2017, the same search yielded 4396 results. I also 
now believe that knowing more about neurological processes related to cognitive 
development will facilitate the design of better curricula, instructional practices, 
and interventions (see Kroeger et al., 2012). Scholars have been engaging in inter-
disciplinary discussions and translational research that meaningfully bridges the 
fields of neuroscience, cognitive development, and education (e.g., Coch, Michlovitz, 
Ansari, & Baird, 2009; Goswami, 2006; Howard-Jones et  al., 2016; Mareschal, 
Butterworth, & Tolmie, 2013; Varma, McCandliss, & Schwartz, 2008). 
Interdisciplinary, collaborative research teams work on projects using multiple lev-
els of analysis, including fMRI, behavior, and educational interventions (Brown & 
Chiu, 2006; Coch et al., 2009; Cohen et al., 2000; Hille, 2011; Johnson, Halit, Grice, 
& Karmiloff-Smith, 2002; Magill-Evans, Hodge, & Darrah, 2002; Supekar, 
Iuculano, Chen, & Menon, 2015). Professional societies and journals provide ven-
ues for disseminating this type of work (e.g., the International Mind, Brain, and 
Education Society). Professional development programs for researchers and educa-
tors integrating Mind, Brain, and Education are offered at several universities (e.g., 
http://education.jhu.edu/Academics/certificates/mindbrain/).

The most important reason for integrating these fields is to help children who are 
experiencing difficulties learning mathematics (Berch & Mazzocco, 2007). 
Neuroscientists, cognitive developmental psychologists, and math educators have 
made important discoveries. As researchers, our best approach for developing effec-
tive intervention practices is to triangulate our knowledge across these fields that 
have traditionally operated separately. By bringing these literatures together, we 
create opportunities for identifying conceptual knowledge and procedural skills that 
should be targeted in interventions and developing appropriate practices that affect 
student achievement. Although it is sometimes difficult for researchers from differ-
ent fields to work together, we have to make the effort to learn each other’s lan-
guages and integrate our results to build a cohesive understanding of mathematical 
cognitive development. Chapter 8 discusses where we stand with respect to these 
efforts and directions for moving forward.

Next, in Chap. 2, I provide a basic description of brain development and neuro-
science research methods as background information to the research presented in 
the remainder of the book.
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Chapter 2
Brain Development and Cognitive 
Neuroscience Research Methods

Rhonda Douglas Brown

Abstract In this chapter, I provide an overview of brain development, structure, 
and function as background for interpreting neuroscience research on mathematical 
cognitive development. The formation of the brain throughout prenatal develop-
ment is described and the location and functions of the four major lobes of the brain 
and the major sulci and gyri are identified. I also explain the structure and function-
ing of neurons. Brain growth and regionally specific developmental changes in gray 
and white matter are detailed. Then, I describe  cognitive neuroscience research 
methods including lesion studies, which measure changes in cognitive function 
related to brain injury, and Transcranial Magnetic Stimulation (TMS), which 
induces temporary lesions. Cutting-edge neuroimaging techniques that have pro-
vided opportunities for studying the living and working brain are explained, includ-
ing functional Magnetic Resonance Imaging (fMRI), which measures changes in 
blood flow, Diffusion Tensor Imaging (DTI), which measures white matter connec-
tivity patterns, Event-Related Potentials (ERP), which measures electrical activity, 
and functional Near-Infrared Spectroscopy (fNIRS), which uses light to measure 
changes in blood flow. I conclude by discussing advantages and limitations of using 
these cognitive neuroscience research methods. Despite their limitations, these 
methods provide us with tools for discovering how knowledge and thought are 
embodied in our brains.

Humans are fascinated with brains. Consider this quotation from Nature by Ralph 
Waldo Emerson, originally published in 1844.

Man carries the world in his head, the whole astronomy and chemistry suspended in a 
thought. Because the history of nature is characterized in his brain, therefore he is the 
prophet and discoverer of her secrets. Every known fact in natural science was divined by 
the presentiment of somebody, before it was actually verified (Emerson in Ferguson & Carr, 
1984, pp. 106–107).
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Our knowledge and thought are embodied in our brains, yet, we don’t fully under-
stand how. Throughout written history, humans have shown a curiosity and motiva-
tion to understand ourselves, our children, other people, and the world that surrounds 
us. We each have ideas about how the brain, mind, and cultural practices contribute 
to the development of our thinking, including our mathematical cognition. These 
theories and hypotheses are formally tested by researchers in the disciplines of neu-
ropsychology, cognitive developmental psychology, developmental cognitive neu-
roscience, and educational psychology using a variety of research methods. In this 
chapter, I focus on the methods that are most relevant to the neuroscientific study of 
mathematical cognitive development. But first, I provide a brief and basic overview 
of brain development, structure, and function as background for interpreting neuro-
science research. (For more comprehensive reviews of brain development and func-
tional neuroanatomy, see Lagercrantz, 2016 or Stiles, 2008, and Afifi & Bergman, 
2005, respectively).

 Brain Development, Structure, and Function

The human brain is often described as a mass of clay, with genes and experience as 
its sculptors. Genes provide the instructions for the formation of the brain’s basic 
structures and functions through experience-expectant processes within species- 
typical environments. Experience leads to individual differences in structures and 
functions through experience-dependent processes that allow our brains to be 
shaped by specific environments during their extended period of postnatal growth 
(Greenough, Black, & Wallace, 1987). For example, most humans acquire lan-
guage, but whether the language we acquire is English, or Spanish, or Mandarin 
Chinese depends on our cultural experiences. As I discussed in Chap. 1, biologically 
primary abilities, such as language, are species-typical, whereas, biologically sec-
ondary abilities, such as reading and mathematics, may or may not develop depend-
ing on cultural practices and individuals’ activities, including formal schooling. 
Thus, as described by a developmental systems approach, genetics influence neural 
activity, which influences, and is influenced by, experiences in environments.

The development of the most complex organ in the human body begins about 
19 days after fertilization, occurs at a rapid pace during the first several years of life, 
and extends into early adulthood. The neurulation process begins with the formation 
of the neural plate, which is an oval-shaped disk of cells that will become the brain 
and spinal cord. By 20 days, the neural plate has folded inward, forming the neural 
groove, which then becomes fused from the middle outwards to form the neural 
tube, a hollow cord of cells, by 26 days. The top of the neural tube is the emerging 
brain and the rest becomes the spinal cord. If the neural tube does not close properly 
at the top or bottom, the nervous system is affected, resulting in conditions such as 
anencephaly or spina bifida, respectively (see Chap. 6 for more information on 
mathematical difficulties related to spina bifida). By 1 month after fertilization, the 
neural tube and ventricles have developed into the forebrain, midbrain, and 
hindbrain.

2 Brain Development and Cognitive Neuroscience Research Methods
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Around 5 weeks, the forebrain enlarges and divides into two vesicles in the front, 
called the telencephalon and the diencephalon. The telencephalon develops into the 
cerebral cortex, basal ganglia, and limbic structures and begins dividing along its 
midline to form the left and right hemispheres, or halves, of the brain. The dien-
cephalon develops into the thalamus and hypothalamus. The hindbrain develops 
into the metencephalon, which forms the cerebellum and pons, and the myelen-
cephalon, which forms the medulla oblongata. Each of the ventricles contains 
proliferative zones where neurons, or nerve cells, and supporting glial cells are 
generated from stem cells during a process called neurogenesis, or proliferation, 
which begins at 3 weeks, peaks at 7 weeks, and is mostly complete by 18 weeks. 
This rapid cell division produces 100 billion neurons at the rate of over 500,000 per 
minute and leads to the initial formation of distinct brain regions (Eliot, 1999). New 
neurons go through a migration process, following chemical cues to their perma-
nent locations in the brain by travelling away from the ventricle along radial glial 
cells to form layers that make up the cerebral cortex, the seat of human cognition. 
The outer surface, called the neocortex because it is the newest area of the brain to 
evolve, varies from about 2 to 4 mm thick and is organized into six horizontal layers 
of cells. The phylogenetically older allocortex is comprised of structures and regions 
deep inside the brain with three or four layers.

By 7 months, all of the major structures of the brain are in place and the once 
smooth surface of the neocortex is now convoluted with sulci, which are fissures 
that allow the growing brain to fold in on itself, creating more surface area within 
the constraints of the skull, and gyri, which are elevated ridges. Sulci and gyri are 
used as reference points for locating brain regions and structures. Figure 2.1 illus-
trates the four major lobes of the brain and the major sulci and gyri from the left 
lateral (side) view of the exterior surface of the neocortex and the right sagittal 
(middle) view of the interior regions, including some of the allocortex. The frontal 
lobe is located anterior to (in front of) the central sulcus, or fissure, and superior to 
(above) the lateral or Sylvian fissure. The temporal lobe is located inferior to (below) 
the lateral fissure and anterior to the angular gyrus. The parietal lobe is posterior to 
(behind) the central sulcus and anterior to the parieto-occipital sulcus. The occipital 
lobe is located at the back of the brain, posterior to the parieto-occipital sulcus. The 
limbic system involves areas of the frontal, temporal, and parietal lobes and includes 
the amygdala, uncus, parahippocampal gyrus, cingulate gyrus, and paraolfactory 
area, as well as other internal structures.

Table 2.1 lists the major structures and functions associated with each lobe and 
the limbic system. Some major functions are lateralized, relying more on one hemi-
sphere than another. For example, generally, language functions are left lateralized 
and visuospatial functions are right lateralized. It is important to keep in mind that 
the hemispheres control the contralateral (or opposite) sides of the body, so the left 
hemisphere controls the right side of the body and vice versa; thus, handedness also 
relates to lateralization.

Although the major brain structures are in place by 7 months of gestation, neu-
rons are not fully functional. They have a basic structure, but have not yet set up 
communication networks that allow the brain to transfer, process, and integrate 
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information from the external world through our senses and engage in higher-order 
thinking. Figure 2.2 provides an illustration of communication between fully devel-
oped neurons. Each neuron has a cell body with a nucleus that contains deoxyribo-
nucleic acid (DNA). When a neuron is at rest, ions on the inside of the cell membrane 
are more positively charged than those on the outside. A neuron transfers information 
at the rate of 200 times per second by firing electrical impulses called action poten-
tials down a long fiber called an axon that extends from its cell body to other neurons. 
Multiple axon terminals branch off from the end of an axon that contains vesicles of 
a specialized chemical called a neurotransmitter. Positive calcium ions trigger the 
vesicles to drift to the cell membrane, fuse with it, and release the neurotransmitter. 

Fig. 2.1 The four major lobes of the brain and the major sulci and gyri from the left lateral (side) 
view of the exterior surface of the neocortex and the right sagittal (middle) view of the interior 
regions, including the limbic system

2 Brain Development and Cognitive Neuroscience Research Methods
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When neurotransmitter molecules are released into gaps between neurons, called 
synapses, they may bind to specialized receptors on the dendrites, or roots, of other 
neurons. Receptors and neurotransmitters operate like locks and keys. When a spe-
cific neurotransmitter molecule enters a receptor site, positive sodium ions flow 
into the cell, which may lead to a positive charge that moves down the axon to the 
axon terminals. There are up to 100 different neurotransmitters, with some serving 
excitatory functions that pass a signal on (e.g., glutamate) and others serving inhib-
itory functions that stop a signal from passing on (e.g., gamma- aminobutyric acid 
or GABA).

To become functional, once in its final location, a neuron goes through processes 
of differentiation and synaptogenesis during which it grows and extends its den-
drites and axonal terminals to form synapses with other neurons. These processes 
occur rapidly during the first several years of life when the brain is becoming orga-
nized into functional networks (e.g., Huttenlocher & Dabholkar, 1997). At the peak 
of synaptogenesis, 15,000 synapses are produced on every cortical neuron, which 
corresponds to a rate of 1.8 million new synapses per second between 2 months of 
gestation and 2 years after birth.

Indeed, infants have many more neurons and synapses than adults because they 
are overproduced early in development. Thus, critical, yet perhaps counterintuitive, 
processes during brain development include apoptosis, or cell death, and synaptic 

Table 2.1 Major structures and functions associated with each lobe and the limbic system of the 
brain

Region Major functions

Frontal lobe • Body movements
• Speech (productive language)
• Executive functions, including attention, inhibition, planning, reasoning, 
problem solving, and abstract thought
• Working memory
• Personality
• Emotions

Temporal lobe • Hearing
• Recognizing faces
• Understanding language
• Memory
• Sequencing and organization
• Emotion

Parietal lobe • Taste
• Perceiving touch, pressure, pain, and temperature
• Body awareness
• Visuospatial perception and processing
• Interpreting language and words

Occipital lobe • Vision
• Visuospatial processing

Limbic system • Olfaction (smell)
• Fight or flight response
• Long-term memory
• Emotion and motivation
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pruning based on experience-dependent neural activity (Fox, Levitt, & Nelson, 
2010; Stiles, 2009). Neurons that connect with other neurons, and are used to per-
form specific sensory, motor, and cognitive functions, survive and form hundreds of 
synapses with other cells, but those that are not used die off (Bertenthal & Campos, 
1987; Changeux & Dehaene, 1989; Edelman, 1987; Greenough et al., 1987). It is 
estimated that about 50% of neurons produced during gestation do not survive (Tau 
& Peterson, 2010). This reciprocal relationship between brain activity and structural 
organization allows human brains to adapt to environments and experiences and 
become more specialized. For example, Kuhl et al. (2006) provided evidence that 
infants’ ability to perceive phonemes from nonnative languages declines during the 
first year of life, while their abilities to perceive contrasts in their native language 
increases, which the authors attributed to neural commitment. According to Casey, 
Giedd, and Thomas (2000), “neurons that fire together wire together” (p.  246). 
More specifically, cognitive development coincides with the suppression of compet-
ing, less frequent behaviors through the loss of synapses and the strengthening of 
remaining connections through repeated exposure. Thus, the primary mechanism 
for learning and memory is experience-dependent modification of synapses 
(Shepherd, 2004). Ultimately, each neuron may be connected to thousands of other 
neurons.

Fig. 2.2 Neurons communicate through electrical impulses that travel along axons to synapses at 
dendrites where neurotransmitter molecules are released at receptor sites

2 Brain Development and Cognitive Neuroscience Research Methods
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Another major development related to brain function and microstructure is that 
axons become insulated in a coating of a fatty substance called myelin that is pro-
duced by glial cells. You may have heard the terms gray matter, which refers to the 
cell bodies and dendrites that form major brain regions, and white matter, which 
refers to the myelinated tracts of axons that lie beneath the cortex connecting brain 
areas into networks. The left and right hemispheres are connected by five commis-
sures of white matter that span the longitudinal fissures, the largest of which is the 
corpus callosum, indicated in the right sagittal (middle) view of Fig. 2.1, which is 
comprised of approximately 200 million myelinated axons (Giedd et  al., 2015). 
Myelination facilitates the conduction of action potentials, thereby increasing the 
speed, frequency, and synchrony of neural firing patterns, and reduces interference 
from nearby signals (Giedd et al., 2015).

The human brain grows very rapidly during infancy and early childhood. 
Approximately 80% of total brain volume is reached by 1.5  years (Groeschel, 
Vollmer, King, & Connelly, 2010), 95% is reached by 6 years (Lenroot et al., 2007), 
and peak size is reached at age 10.5 in girls and 14.5 years in boys, presumably due 
to dendritic growth (80% occurs after birth) and synaptogenesis (e.g., Giedd et al., 
2015; Huttenlocher, 1994). Then, brain size declines slightly into early adulthood, 
presumably due to pruning that occurs during the teens and twenties (e.g., Giedd 
et al., 2015; Huttenlocher, 1994; Whitford et al., 2007). Thus, total brain volume 
reflects a dynamic interaction between concurrent progressive and regressive pro-
cesses, with different tissue types, regions, and structures following different time 
courses (Durston et al., 2001). Cortical gray matter volume doubles to triples during 
the first year of life and increases by another 15–20% during the second year of life 
(Gilmore et al., 2012; Knickmeyer et al., 2008). Total volume of subcortical struc-
tures also doubles during the first year of life, except for the hippocampus, which 
shows a slower growth rate (Gilmore et al., 2012). In their longitudinal study exam-
ining developmental trajectories of brain matter volume between the ages of 5 and 
25 years, Giedd et al. (2015) reported that gray matter volumes generally follow 
inverted U-shaped curves with peaks occurring in the primary sensorimotor areas 
first between the ages of 2 and 4 (Gogtay et  al., 2004), in the parietal lobes at 
7.5 years for girls and 9 years for boys, in the temporal lobes at 10 years for girls 
and 11 years for boys, and in the frontal lobes at 9.5 years for girls and 10.5 years 
for boys. Cerebellum size peaks at 11.3  years for girls and 15.6  years in boys 
(Tiemeier et  al., 2010). On average, male brains are approximately 10% larger 
across the lifespan (Giedd et al., 2015). Throughout the lifespan, the human brain 
shows plasticity, continuing to respond to experience through synaptogenesis. 
Furthermore, although most neurons are formed before birth, evidence for the gen-
eration of new neurons after birth exists for the olfactory bulb, involved in smell, 
and the dentate gyrus of the hippocampus, involved in storing new memories 
(Eriksson et al., 1998; Nelson, de Haan, & Thomas, 2006).

Unlike gray matter, white matter increases with development, with most myelin-
ation occurring between the prenatal period and age 2 for the sensory and motor 
areas, but continuing to increase about 1–2% per year into late adolescence and 
early adulthood for the parietal and frontal areas (Giedd, Blumenthal, Jeffries, 

Brain Development, Structure, and Function



28

Castellanos, et al., 1999; Giedd et al., 2015; Miller et al., 2012; Sowell et al., 1999; 
Yakovlev & Lecours, 1967). The number of white matter tracts is relatively stable 
by age 4, but fiber density within tracts decreases with age (Dennis et al., 2014; Lim, 
Han, Uhlhaas, & Kaiser, 2015; Richmond, Johnson, Seal, Allen, & Whittle, 2016). 
The posterior corpus callosum reaches maturity during adolescence (Durston et al., 
2001; Giedd, Blumenthal, Jeffries, Rajapakse, et al., 1999; Thompson et al., 2000). 
With development and experience, white matter tracts increase their connectivity 
and organization, becoming more streamlined, thereby increasing speed and 
 efficiency of information processing (Richmond et al., 2016). Through these devel-
opmental processes, functional networks are established. In the next section, I 
describe how researchers use case studies and medical imaging techniques to dis-
cover relationships between brain structures, cognition, and behavior.

 Cognitive Neuroscience Research Methods

 Lesion Studies

Historically, lesion studies have been used to discover relationships between brain 
structures, cognition, and behavior. This method involves conducting case studies of 
patients with brain injury, disease, or neurodevelopmental disorders to assess loss or 
impairment of specific cognitive functions. The comparison of patients in lesion 
studies provides neuropsychologists with opportunities for discovering double dis-
sociations that reveal brain regions or structures supporting distinct cognitive func-
tional systems. When patients who have damage to circumscribed brain areas lose 
specific conceptual or procedural knowledge, we can draw inferences regarding 
where and how cognitive functions are instantiated in the brain. For example, 
Lemer, Dehaene, Spelke, and Cohen (2003) provided evidence for distinct quantity 
and verbal systems for numerical processing (see triple-code model in Chap. 1) by 
studying two patients with different types of lesions and acalculia, a broad term 
used to describe mathematical difficulties. Patient LEC had a focal lesion in the left 
parietal lobe and experienced difficulties performing approximation and subtraction 
tasks that require understanding of the meaning of numbers, which indicates dys-
function of the proposed quantity system, but LEC could accurately retrieve multi-
plication facts. Conversely, patient BRI had hypometabolism in the left temporal 
lobe and experienced difficulties with multiplication fact retrieval and exact addi-
tion on large problems, which indicates dysfunction of the verbal system, but BRI 
had proficient approximation and subtraction abilities. This type of study provides 
some evidence that the proposed quantity system is localized in the left parietal lobe 
and the proposed verbal system is localized in the left temporal lobe (also see 
Cappelletti, Butterworth, & Kopelman, 2001; Cipolotti & Butterworth, 1995; 
Cohen, Dehaene, Chochon, Lehéricy, & Naccache, 2000; Dagenbach & McCloskey, 
1992; Dehaene & Cohen, 1997; Delazer & Benke, 1997; Grafman, Kampen, 
Rosenberg, Salazar, & Boller, 1989; Lampl, Eshel, Gilad, & Sarova-Pinhas, 1994; 
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Pesenti, Seron, & Van Der Linden, 1994; Pesenti, Thioux, Samson, Bruyer, & 
Seron, 2000; van Harskamp & Cipolotti, 2001; van Harskamp, Rudge, & Cipolotti, 
2002; Whalen, McCloskey, Lesser, & Gordon, 1997).

However, lesion studies must be interpreted with some degree of caution. 
Although some brain regions may be highly specialized, permitting relatively 
straightforward inferences about relationships between structure and function, com-
plex cognitive functions likely involve networks of areas distributed across the brain 
(Dehaene, 2011). Other, nonmathematical processes required by tasks, such as 
attention and working memory, may be disrupted (e.g., Whalen et al., 1997) or com-
pensatory mechanisms may lead to the recruitment of other regions that could be 
affected because they are connected to the damaged regions (Nelson et al., 2006; 
Nelson & Bloom, 1997). Furthermore, case studies of patients with lesions are 
highly limited in their generalizability, especially regarding cognitive development, 
since they are typically conducted on adults with developed brains and acquired 
knowledge and skills, or on patients with neurodevelopmental disorders, which may 
have altered fundamental brain organization and affected multiple cognitive sys-
tems (Kolb & Fantie, 2009). Interestingly, these limitations can be addressed by 
using transcranial magnetic stimulation to induce lesions in individuals with typical 
development.

 Transcranial Magnetic Stimulation (TMS)

Transcranial magnetic stimulation (TMS) takes advantage of Faraday’s principles 
of electromagnetic induction. For this technique, researchers send a pulse of current 
through a coil placed over a participant’s head to generate a magnetic field so that it 
passes through the participant’s scalp and skull, inducing a current in his brain (for 
a review, see Pascual-Leone, Walsh, & Rothwell, 2000). This magnetic stimulation 
temporarily disrupts ongoing cortical activity in the targeted brain region, creating 
a transient lesion, allowing us to observe how behavior and performance are related 
to brain structures and distributed networks, functions, and the timing of processing. 
For example, Chap. 5 includes a description of a study (Sack et al., 2007) that dem-
onstrates the importance of the right parietal lobe to visuospatial cognition by dis-
rupting it using TMS and examining the frontoparietal network using functional 
Magnetic Resonance Imaging, which is described in the next section.

Over the past three decades, developmental cognitive neuroscience research has 
increased exponentially, which has led to important discoveries. Many of these dis-
coveries have been made possible by technological innovations in neuroimaging 
techniques that have provided opportunities for studying the living and working 
brain (for reviews, see Amso & Casey, 2006; Lenroot & Giedd, 2007; Twardosz, 
2007). Using these noninvasive technologies, researchers can localize cognitive 
functions in the brain and identify networks of neuronal activity in real time as 
information is transferred from region to region within the brain. Furthermore, we 
can better understand the development of typical and atypical cognitive processing, 
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thereby contributing to the science of learning and, ultimately, design of effective 
interventions. In the following sections, I provide broad overviews of the major 
technologies used in much of the developmental cognitive neuroscience research 
presented in this book, focusing on functional Magnetic Resonance Imaging.

 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) has rapidly become a popular 
method for noninvasively identifying brain regions and structures that are active 
while participants perform specific cognitive tasks inside a scanner. You may have 
experienced clinical MRI on your knee, heart, brain, or other part of your body dur-
ing which you laid down on a table, were moved into the bore of a magnet, and 
heard some loud banging noises as a series of digital photographs were taken. 
Although there are similarities in the experiences of a patient undergoing clinical 
MRI for the purposes of diagnosis and a participant in a research study using fMRI, 
there are some critical differences that permit the study of relationships between 
brain structures and cognitive functioning. Below, I provide a basic description of 
fMRI and an example of Institutional Review Board approved procedures used in 
studies I have conducted with colleagues at the Imaging Research Center at 
Cincinnati Children’s Hospital Medical Center. Many researchers at other hospitals 
and universities use similar procedures.

Basically, fMRI measures changes in blood flow in the brain. More specifically, 
fMRI measures the time course of neuronal activity in specific brain structures or 
regions during cognitive tasks. When neurons are active, their local blood supply 
and oxygen content changes, allowing us to identify the brain structures that are 
active during a cognitive task. Most studies use Blood Oxygenation Level Dependent 
(BOLD) contrast (Ogawa, Lee, Kay, & Tank, 1990). This method generates high 
spatial resolution brain images that reflect neuronal activity by measuring changes 
in the magnetic properties of hemoglobin correlated with the oxygenation of blood 
in the cerebral vessels. Since deoxygenated hemoglobin is paramagnetic and oxy-
genated hemoglobin is diamagnetic, changes in magnetic susceptibility result in 
changes to the overall magnetization of the hemoglobin in brain regions experienc-
ing increased blood flow due to activity. The brain images that are shown in the 
results of fMRI studies display this change in magnetization due to localized neuro-
nal activation using colored pixels. It is important to note that exactly what is repre-
sented by these colored pixels varies from study to study. For example, they could 
represent regions of brain activation or deactivation, or areas in which activation or 
deactivation is correlated with task performance or other measures. When reading 
studies using fMRI, you must carefully examine figures and captions and results 
sections to accurately interpret and draw conclusions from brain images.

Most fMRI studies are conducted at hospitals and universities because they have 
the necessary infrastructure and personnel. Typical research grade scanners have 
magnetic field strengths of 3 Teslas (T) or above. Thus, standardized MRI safety 
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restrictions and specific exclusion criteria for participation in a study are applied. 
Below, I describe what you would experience if you were participating in a typical 
fMRI study (also see Byars et al., 2002).

Upon arrival at the hospital, you are met by a researcher and escorted to the 
imaging center. The researcher explains the study and its procedures and she 
addresses any questions or concerns that you may have. Next, you provide your 
consent for participation in the study. Then, you complete a MRI safety and screen-
ing form that gathers your surgical history and information regarding the presence 
of any metal in your body that would lead to exclusion from the study since the 
strong magnetic field could tug at it, such as metal orthopedic pins or plates above 
the waist, orthodontic braces or a permanent retainer, or any medical devices, such 
as a pacemaker or nerve stimulator, as well as any injury or work involving metal. 
Next, you complete a demographic questionnaire that includes questions regarding 
your age, handedness, previously diagnosed neurological impairments (e.g., 
Autism), psychological disorders (e.g., Attention Deficit/Hyperactivity Disorder) or 
learning disabilities, and participation in intervention programs. Then, a registered 
radiological technologist, who runs the scanning session, reviews the form with 
you, describes the procedures used in MRI scanning, and addresses any questions 
that arise. Next, you remove all jewelry, pens, pencils, cellular phone, belt, and any 
other metallic objects from your clothing since these objects could be projectiles in 
the strong magnetic field of the scanner. Then, the researcher administers any neu-
ropsychological measures that are included in the study, such as standardized intel-
ligence tests, achievement tests, and so forth. Next, you participate in a brief training 
session on the specific experimental and comparison tasks that will be used in the 
study. On a desktop computer, you solve the same types of problems for each of the 
tasks that will be used in the fMRI scanner. On the monitor, you see a task name and 
directions, which are narrated by the researcher. As part of the training session, the 
researcher shows you how to use hand-held button boxes for making response 
selections during the tasks. You are told to hold very still and not to talk while mak-
ing your responses in the scanner because motion artifacts can make the images 
uninterpretable. The researcher addresses any of your questions regarding the tasks 
at this time. Then, you are escorted into the scanner room, shown in Fig. 2.3, and 
asked to lie on your back on the bed of the scanner. The radiological technologist 
explains that you can stop the scanning process at any time by signaling the control 
room through the intercom system, closed circuit video camera, or by squeezing a 
“panic bulb” clipped to your clothing. A radiofrequency (RF) coil, a cylindrical 
device open at both ends that serves as a receiving antenna, is placed over your head 
along with headphones to reduce scanner noise and allow you to hear auditory 
stimuli and instructions. The radiological technologist also helps you put on gog-
gles that display visual stimuli and places the button box for making response selec-
tions in your hand.

At the beginning and end of the scanning session, you watch a movie you have 
selected from the center’s video library via the MR-compatible audiovisual system 
while locator and anatomical scans and fine-tuning processes are conducted, which 
also may help you relax. Prior to each scan, the researcher uses the intercom system 
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to tell you that the scan is beginning, provide directions for the task, check that you 
are comfortable, and remind you to remain as still as possible despite the loud noises 
you hear during scanning.

Immediately preceding each math task, you view specific directions projected 
onto the goggles and the researcher reads them out loud using the intercom system. 
When the task begins, you see a math problem in the center of the visual field, with 
answer choices shown on the left and right sides of the visual field. You are instructed 
to press the left button on the hand-held box to select the answer choice on the left 
and the right button to select the answer choice on the right. Your button presses (left 
or right) and response time for each problem are stored along with the functional 
neuroimaging data for each trial. To control for neural activation related to move-
ments (i.e., button presses), visual processing, and cognitive functions associated 
with generating responses during the experimental trials, control trials are included 
during scanning sessions. For example, control trials for some tasks we have used 
consist of three identical numbers. Using the button box, you are asked to indicate 
which number from the left or right visual field is the same color as the number 
presented in the center of the visual field. Experimental and control trials can be 
presented in random order within blocks or interleaved in an event-related design. 
After scanning is completed, the researcher escorts you to a nearby testing room 
where you complete paper-and-pencil assessments. The total time required for par-
ticipation in a typical study is approximately 2.5 h, with scanner time limited to less 
than 1.5 h. At a later time, a neuroradiologist reviews all scans and reports any clini-
cally significant findings to the researcher, who then provides the results to you or 
your parent or guardian following hospital procedures.

What types of information can be gleaned from fMRI studies of mathematical 
cognition? A variety of questions can be answered using fMRI depending on the 

Fig. 2.3 fMRI scanner room at Cincinnati Children’s Hospital Medical Center. Photograph cour-
tesy of the University of Cincinnati
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type of experimental design, tasks, and measures used. Fundamentally, fMRI has 
been used to answer questions about which brain regions and structures perform 
particular cognitive functions. Changes in neural activity in a particular structure or 
brain region can be associated with differences in the underlying cognitive func-
tions recruited by different tasks (Brown & Chiu, 2006). Some studies are designed 
to examine group differences in brain activation during the performance of specific 
cognitive tasks. For example, participants may be classified into groups, those with 
Mathematical Difficulties (MD, or even subtypes of MD) and those with Typical 
Achievement (TA) based on standardized test results (e.g., percentile scores), to 
investigate relationships between pre-existing group membership and brain activa-
tion during the performance of specific math tasks (i.e., quasi-experimental, 
between-subjects designs). Accuracy and reaction time on the math tasks can be 
recorded and correlated with neural activation in particular Regions of Interest 
(ROIs). This method can be used with a variety of measures, including standardized 
paper-and-pencil tests, researcher-created assessments or tasks, demographic infor-
mation, and pertinent learning history. These measures collected outside of the 
scanner can be correlated with brain activation during tasks completed inside the 
scanner. For example, Kroeger (2012) created an assessment to examine the types 
of errors made when calculating multi-digit arithmetic problems, which can be cor-
related with brain activation during in-scanner cognitive tasks. Furthermore, longi-
tudinal studies can provide information about how functional networks change with 
age and experience.

A variety of data analysis protocols and software is available, such as SPM 
(Wellcome Dept. of Cognitive Neurology, London, UK). Typically, motion correc-
tion procedures are performed prior to statistical analysis of the functional data 
(Szaflarski et al., 2006; Thevenaz, Ruttimann, & Unser, 1998). In our studies, for 
each participant, activation T-maps are computed using the General Linear Model 
(GLM) assuming the Hemodynamic Response Function (HRF). Using SPM rou-
tines, T-maps are converted into 3D stereotaxic coordinate space (e.g., Talairach & 
Tournoux, 1988 or Montreal Neurologic Institute [MNI] template) to localize ana-
tomical regions and allow for comparisons between participants and groups.

 Diffusion Tensor Imaging (DTI)

fMRI procedures often also include Diffusion Tensor Imaging (DTI), which can be 
used to measure patterns and organization of connections from one brain area to 
another, axonal density and size, and myelination (Basser, 1997; Le Bihan, 1991; Le 
Bihan et al., 2001; Paus, 2010). DTI is a noninvasive neuroimaging technique that 
measures the diffusion process of water within brain tissue (Le Bihan & Breton, 
1985). The anisotropic diffusion of water along axons is less restricted than diffu-
sion perpendicular to the axonal direction, which permits the generation of 3D 
images of white matter tracts (Schmithorst, Wilke, Dardzinski, & Holland, 2005). 
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According to Qiu, Mori, and Miller (2015), quantitative measures of diffusion 
include fractional anisotropy (FA), which indicates “the degree to which water dif-
fusion is restricted in one direction relative to other directions” (p. 855), mean dif-
fusivity (MD), which “corresponds to the directionally averaged magnitude of 
diffusion” (p. 856) and reflects tissue density, and axial diffusivity (AD), and radial 
diffusivity (RD), which “reflect the rate of microscopic water motion parallel and 
perpendicular, respectively, to the direction of axonal fibers in a regional tissue” 
(p. 856). These measures have been used in studies characterizing typical develop-
ment of white matter, including age-related changes showing increases in white 
matter volume and regionally specific myelination (e.g., Giedd et al., 2015; Paus 
et al., 2001) and sex differences (e.g., Clayden et al., 2012; Lenroot & Giedd, 2010; 
Schmithorst, 2009; Schmithorst, Holland, & Dardzinski, 2008). Studies have con-
sistently shown linear increases in FA due to myelination and decreases in MD 
during early life, childhood, and adolescence (Dubois et al., 2008; Hüppi & Dubois, 
2006; Schmithorst, Wilke, Dardzinski, & Holland, 2002; Wang et  al., 2012). As 
noted by Giedd et al. (2015), several studies suggest a positive relationship between 
developmental changes in white matter fiber organization and cognitive function, 
including measures of language and memory (Nagy, Westerberg, & Klingberg, 
2004), reading (Deutsch et al., 2005), response inhibition (Liston et al., 2006), and 
intelligence (Clayden et  al., 2012; Mabbott, Noseworthy, Bouffet, Laughlin, & 
Rockel, 2006; Mabbott, Rovet, Noseworthy, Smith, & Rockel, 2009; Paus et al., 
2001; Schmithorst et al., 2002, 2005; Tamnes et al., 2010). Dysfunction or disorga-
nization of white matter tracts is associated with disorders (Le Bihan et al., 2001). 
For example, Kucian et al. (2014) found that children with arithmetic learning dif-
ficulties, called developmental dyscalculia, show reduced FA and fiber impairments 
in the superior longitudinal fasciculus adjacent to the intraparietal sulcus (IPS), 
which is a key region specified in the triple-code model of numerical processing 
(see Chap. 6 for information on mathematical difficulties).

 Event-Related Potentials (ERP)

When we engage in cognitive tasks, such as deciding whether or not the arithmetic 
problem 7 + 16 = 25 is correct, we perform mental operations that activate multiple 
brain areas. One way to study this activation involves measuring time courses of 
electrical activity across the whole brain. Electroencephalography (EEG) indexes 
synaptic activity by recording electrical signals of synchronized populations of neu-
rons through electrodes on the scalp. If you were participating in an ERP study of 
mathematical cognition, you would be fitted with an elastic cap that has between 20 
and 256 sensors with standard positions, like the one shown in Fig. 2.4. While you 
are wearing the cap that records electrical activity in your brain, you would watch a 
large number of trials of math problems, such as 7 + 16 = 25, presented on a monitor 
and click one button on a mouse if the solution is correct or a different button on the 
mouse if it is incorrect. EEG raw data is collected during stimulus presentation. The 
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electrical activity at each electrode site is averaged and the event-related potential 
(ERP) can be identified, which provides information regarding the timing and 
sequencing of particular neural events across the whole brain on the scale of tens to 
hundreds of milliseconds (Nelson et al., 2006; Steinhauer, 2014; for a review, see 
Luck, 2012). The EEG system displays the amplified EEG signals onto a separate 
monitor and stores data. Specifically, the system marks stimulus onset, allowing the 
sections of the EEG signal that reflect the processing of target stimuli to be identi-
fied. Once the study is complete, data is preprocessed to remove artifacts and correct 
for eye movements. Then, the EEG signals for the clean trials are averaged, time- 
locked to the onset of the target stimulus.

Cognitive developmental psychologists study ERP components. An ERP compo-
nent is “a voltage deflection that is produced when a specific neural process occurs in 
a specific brain region” (Luck, 2012, p. 526). For example, in our hypothetical exper-
iment, when you viewed the math problem 7 + 16 = 25 and decided whether the 
solution is correct or incorrect, many components were elicited that comprise an 
observed ERP waveform, such as the one shown in Fig. 2.5. Data analysis techniques 

Fig. 2.4 Infant 
participating in a study 
measuring event-related 
potentials. Photograph 
courtesy of Bethany 
Reeb-Sutherland, Ph.D.
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are used to isolate ERP components of interest from other brain activity (Kappenman 
& Luck, 2012; Luck, 2005; Steinhauer, 2014). Similar to fMRI, ERP studies use a 
subtraction method between experimental condition trials and control condition tri-
als to extract ERP profiles for specific cognitive processes. Components in wave-
forms are labeled according to the polarity of the peaks (P = Positive or N = Negative) 
and the timing by order (e.g., P1, P2, P3) or in milliseconds (e.g., P400). ERP epochs 
are typically 1 s long, beginning with stimulus presentation. During the first 200 mil-
liseconds (ms), ERP components primarily reflect  perception of the physical charac-
teristics of the stimulus. For example, a negative deflection around 100  ms (N1) 
indicates processing in the visual cortex, which is followed by a positive deflection 
around 200 ms (P2) that reflects more complex pattern recognition (P200). The ERP 
components that occur later in the time-series reflect higher-level cognitive process-
ing (e.g., P3 in Fig. 2.5). Due to variations in plotting conventions, when reading the 
results of an ERP study it is important to pay attention to which direction waveforms 
are plotted (i.e., Fig. 2.5 is plotted with positive deflections downward). Often, volt-
age maps are used to display the scalp distribution of these profiles during a specific 
time frame.

ERP methods are best suited for answering questions relevant to the timing of 
cognitive processes, particularly those that unfold over a short time frame, around 
approximately 2 s or less. Furthermore, ERP allows researchers to study cognition 
in the absence of behavioral responses, which is particularly useful for studying 
infants for whom fMRI often requires sedation (Dehaene et al., 1998; Luck, Vogel, 
& Shapiro, 1996). However, it does not have the spatial resolution of fMRI, so loca-
tions are limited to general regions, rather than specific structures. Thus, ERP is 
often combined with fMRI to provide more detailed information regarding loca-
tions of neural activity.

 Functional Near-Infrared Spectroscopy (fNIRS)

Functional Near-Infrared Spectroscopy (fNIRS), sometimes referred to as optical 
brain imaging, detects brain activity by noninvasively measuring changes in near- 
infrared light to monitor the concentration and oxygenation of hemoglobin (Chance, 
Zhuang, UnAh, Alter, & Lipton, 1993; Hoshi & Tamura, 1993; Kato, Kamei, 
Takashima, & Ozaki, 1993; Maki et al., 1995; Villringer, Planck, Hock, Schleinkofer, 
& Dirnagl, 1993). Thus, similar to fMRI, fNIRS measures brain activity by exam-
ining changes in hemodynamic responses (i.e., BOLD response). Similar to ERP 
procedures, an infant participating in an fNIRS study would wear a cap with fiber 
optic cables attached for transmitting and receiving light. A computer records data 
as the infant engages in cognitive tasks. fNIRS has some advantages over fMRI in 
that it has greater temporal resolution, it can be used for some experimental para-
digms that are not amenable to fMRI (i.e., is not as sensitive to motion), it’s porta-
ble, and the costs are lower. Although it has higher spatial resolution than ERP, 
fNIR cannot be used to measure cortical activity beyond 5–10  mm beneath the 
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skull. However, it can be simultaneously combined with fMRI to gain more precise 
localization information.

Despite their limitations, these cognitive neuroscience research methods provide 
us with tools for discovering how knowledge and thought are embodied in our 
brains. Chapters 3–6 present research that combines neuroimaging techniques and 
behavioral measures to help us better understand how the brain, mind, and cultural 
practices contribute to mathematical cognitive development.
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Chapter 3
Quantity Representation

Rhonda Douglas Brown and Vincent J. Schmithorst

Abstract In this chapter, we draw on evolutionary developmental psychology theory 
and Dehaene and colleagues’ triple-code model to describe quantity representation, 
which is the basis for a set of numerical abilities selected during evolution, including 
numerosity, which involves quickly determining the quantity of a set without counting, 
and ordinality, which involves recognizing that one set contains more than another 
without counting. We present research using innovative behavioral and cognitive neu-
roscience methods indicating that sensitivity to magnitude is present at birth and 
increases in precision into adulthood, including work investigating two quantity repre-
sentation systems: the Parallel Individuation (PI) system that allows humans to pre-
cisely track a small number of individual objects through space and time; and the 
Approximate Number system, or number sense, that allows humans to approximate 
the numerosities of sets of items without using symbols. Research establishing a rela-
tionship between quantity representation and mathematics achievement during child-
hood and adolescence is also described. We present results from a functional Magnetic 
Resonance Imaging (fMRI) study demonstrating that brain activation in the inferior 
occipital gyrus, lingual gyrus, and bilateral intraparietal sulcus (IPS) during magnitude 
comparison is positively related to adolescents’ mathematics achievement, whereas 
deactivation of the Default Mode Network (DMN) during magnitude comparison is 
negatively related to adolescents’ mathematics achievement, indicating that abstract 
quantity representation may be foundational for the development of calculation skills.

Take a look at Fig. 3.1 and, without counting, answer How many blocks are on the 
right side?

Your ability to quickly determine that there are 2 blocks in the array on the right 
side of the figure is called numerosity, which involves apprehending the number of 
objects, without counting. Now, take a look at Fig. 3.1 again and answer Which 
array has more, the one on the left or the one on the right? On this magnitude com-
parison task, your ability to quickly determine that the array on the left side has 
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more blocks demonstrates sensitivity to the ordinality of numerical relationships, 
which involves recognizing that one set contains more than another, without 
counting.

Would it surprise you to hear that infants possess these abilities? During the first 
days of life, newborns can discriminate numerosities of small sets. How do we 
know? Infants can’t talk and have little motor control to indicate their understand-
ing. Researchers studying infants’ early numerical processing carefully design stud-
ies using innovative methodologies that capitalize on what infants can do versus 
what they cannot (for reviews, see Cantrell & Smith, 2013; Mou & vanMarle, 2014). 
For example, in their seminal study using a habituation/dishabituation paradigm, 
Antell and Keating (1983) presented newborns with cards showing arrays contain-
ing the same number of dots until their visual fixation decreased to a criterion level 
(habituation) and then presented them with a new card containing a different num-
ber of dots and measured whether infants’ looking time increased (dishabituation), 
which indicates that they recognize a difference between the new card and the 
familiar ones. They found that infants could discriminate small sets of dots (2 vs. 3), 
but not larger sets (4 vs. 6). Thus, although infants cannot tell us that there are 2 
blocks on the right side of Fig. 3.1, they are sensitive to quantities in their environ-
ments and can discriminate arrays of up to 3 or 4 items (e.g., Starkey & Cooper, 
1980; Starkey, Spelke, & Gelman, 1983; van Loosbroek & Smitsman, 1990). Rather 
than arrays, Wynn and colleagues showed that 5- to 6-month-old infants can dis-
criminate between 2 and 3 jumps performed by puppets (Sharon & Wynn, 1998; 
Wynn, 1996; Wynn, Bloom, & Chiang, 2002). Studies have also provided some 
evidence for cross-modal matching between 2 or 3 items (e.g., Féron, Gentaz, & 
Streri, 2006; Kobayashi, Hiraki, & Hasegawa, 2005; Starkey et al., 1983; Starkey, 
Spelke, & Gelman, 1990; for different findings and interpretations, see Mix, Levine, 
& Huttenlocher, 1997 and Moore, Benenson, Reznick, Peterson, & Kagan, 1987). 
In research using food choice and manual search paradigms, infants watch as an 
experimenter hides food or other types of items by placing them in opaque buckets 
(Feigenson & Carey, 2003, 2005; Feigenson, Carey, & Hauser, 2002; vanMarle, 
2013). Such studies have found that 10- to 12-month-old infants are more likely to 
retrieve food from a bucket containing more items from sets of 1 to 3 items, but not 
when there are more than 3 items.

Using sets with larger numbers of objects, other research has demonstrated that 
infants can tell the difference between quantities larger than 4, but the ratio of the 
larger to smaller quantities must be large. Thus, discrimination of ordinality is a 
function of the number of items in the sets being compared, conforming to Weber’s 
law, which characterizes the perceptual discriminability of many sensory stimuli. 
For example, Izard, Sann, Spelke, and Streri (2009) familiarized newborns to a 

Fig. 3.1 Example of a trial 
from a magnitude 
comparison task
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continuous stream of auditory sequences of syllables that repeated a fixed number of 
times and measured looking times for visual arrays that either had the same number 
of objects as syllables in the auditory sequence or a different number of objects as the 
auditory sequence. They found that newborns looked longer at the visual arrays with 
the matching number of objects when the numbers differed by a ratio of 3:1 (4 vs. 12 
and 6 vs. 18), indicating that they recognize numerical equivalence between audi-
tory and visual information, but not when they differed by a 2:1 ratio (4 vs. 8).

Although sensitivity to magnitude appears to be present at birth, its precision 
increases with age into adulthood. Six-month-old infants can discriminate larger 
sets of visual and auditory quantities and event sequences, but only if the larger set 
is double the smaller set (i.e., 2:1 ratio); for example, a puppet jumping up and down 
4 times compared to 8 times (Lipton & Spelke, 2003; Wood & Spelke, 2005; Xu, 
2003; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005). Ten-month-old infants 
can discriminate sets differing at a 3:2 ratio (vanMarle, 2013; vanMarle & Wynn, 
2011; Xu & Arriaga, 2007). Three-year-olds can discriminate numerosities at a ratio 
of 4:3, 6-year-olds at a ratio of 6:5, and some adults can discriminate at a 11:10 ratio 
(Barth, Kanwisher, & Spelke, 2003; Halberda & Feigenson, 2008; Piazza et  al., 
2010; Siegler & Lortie-Forgues, 2014). Thus, there are developmental increases in 
the precision of nonsymbolically representing quantity that may be due to brain 
development and experience (Izard et al., 2009), as well as individual differences in 
acuity (for a review, see Halberda & Odic, 2015; Libertus & Brannon, 2010).

 Cognitive Systems for Quantity Representation

In Chap. 1, I described the importance of mathematics in human phylogenetic and 
ontogenetic development. Early quantity or magnitude representation is conceptual-
ized by Geary (1995, 2005) as a biologically primary ability that was selected during 
evolution to solve recurrent problems faced by our ancestors and is universally 
acquired by humans to guide everyday activities that are important to survival, such 
as foraging. The results described in the previous section indicate that humans (for a 
review of other species, see Starr & Brannon, 2015) can represent quantity at birth in 
an abstract way—before they learn language, number names, counting routines, or 
numeric symbols (e.g., Starkey et al., 1990). But, how can we explain differences 
between studies showing that the upper limits of infants’ discrimination of quantity 
is 3 or 4 items and those showing that infants can discriminate larger sets of quanti-
ties according to ratios increasing in precision with age and experience? Do these 
differences reflect distinct cognitive mechanisms and underlying neuroarchitectures? 
Are they due to infants’ difficulty with enumerating small and larger numerosities, 
other cognitive constraints, differential levels of experience, or imprecision in experi-
mental methods (Hyde & Mou, 2016)? Some theorists propose that humans use two 
evolutionarily older cognitive systems for abstract quantity representation: one for 
distinguishing between small quantities of 1–3 individual items in parallel, called the 
parallel individuation (PI) system, and one for approximating the numerosities of 
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sets of items, called the approximate number system (ANS), which corresponds to the 
quantity system of the triple-code model, or number sense (e.g., Dehaene, 2011; 
Feigenson, Dehaene, & Spelke, 2004; Gallistel & Gelman, 2000; Hyde, 2011; Hyde 
& Spelke, 2011; for a review, see Hyde & Mou, 2016). These dissociable systems are 
proposed to support nonsymbolic numerical cognition through different types of 
mental representations, each with distinct functions and constraints.

The PI, which has also been referred to as the object-tracking system or the object 
file system, allows human infants and some other species to precisely track a small 
number of individual objects through space and time (for a review, see Hyde & 
Mou, 2016). This system may not have evolved for numerical processing, but may 
be engaged when infants precisely discriminate between sets of 1–3 objects by rep-
resenting individual items separately, rather than summarizing a set’s numerosity 
using a symbol (Hyde, 2011). Because each item is represented individually, one- 
to- one correspondence procedures can be used for some comparison and simple 
arithmetic tasks by matching symbols for individual items back-and-forth across 
sets (Carey, 2009; Feigenson et al., 2004), but these procedures are labor intensive, 
requiring attentional and working memory resources. Thus, the system is con-
strained to three sets of 3–4 individual items (for a review, see Cowan, 2001).

In contrast to the PI system, the ANS is a general, imprecise, ratio-based mecha-
nism, often described as “noisy,” that allows humans to nonsymbolically represent 
approximate quantities (e.g., Lemer, Dehaene, Spelke, & Cohen, 2003; Gallistel & 
Gelman, 2000, 2005; for a review, see Starr & Brannon, 2015). According to Hyde 
and Mou (2016), “The output of this system, more broadly, is one of many types of 
estimates the brain makes to rapidly summarize the complex and uncertain visual 
environment…in the absence of exact verbal counting, the uncertainty or impreci-
sion in ANS representations increases logarithmically as numerosity increases” 
(p.  54). This phenomenon produces several signatures of the ANS described by 
Starr and Brannon (2015), among others. As previously noted, it adheres to Weber’s 
law, which specifies that numerosity discrimination depends on ratio instead of 
numerical distance (e.g., Dehaene, 2011; Feigenson et al., 2004; Revkin, Piazza, 
Izard, Cohen, & Dehaene, 2008; Starr & Brannon, 2015). That is, infants can dis-
criminate a set of 4 items from a set of 8 items more easily than they can discrimi-
nate a set of 8 items from a set of 12 items, even though the difference is 4 items in 
both cases because mental representations of larger numerosities are more impre-
cise. Distance effects occur such that discriminating between set sizes that are more 
discrepant, such as 2 from 8, is easier than those that are closer in number, such as 
2 from 3. Magnitude effects occur in that discrimination between set sizes is easier 
for fewer objects. Thus, it is easier to discriminate 3 from 4 than 8 from 9. There are 
upper limits on the ANS in that it cannot discriminate small differences between 
larger numbers, such as 27 from 28.

To understand the neural basis of these cognitive systems for nonsymbolic quan-
tity representations, researchers have combined techniques for imaging brain struc-
ture and function with paradigms for measuring behavioral performance on tasks 
(i.e., accuracy and reaction time). Furthermore, they have considered whether these 
types of representations and their associated neural activity are related to standard-
ized measures of mathematics concepts and achievement.
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 Neural Basis of Quantity Representation

The neural basis of quantity representation has been studied during different periods 
of development by combining a number adaptation paradigm with the use of neuro-
imaging techniques (for a review, see Hyde & Mou, 2016; see Chap. 2 for descrip-
tions of neuroimaging techniques). The number adaptation paradigm is a type of 
habituation/dishabituation paradigm, discussed at the outset of this chapter, that 
has been especially efficacious for understanding functional specialization of the 
brain for quantity representation during infancy, before verbal and visual symbols 
for number are acquired. For example, Izard, Dehaene-Lambertz, and Dehaene 
(2008) measured Event-Related Potentials (ERPs) using a number adaptation para-
digm to investigate neural responses to changes in numerosity in 3-month-old 
infants. In their study, electrical activity evoked by the brain was recorded on the 
surface of the scalp as 3-month-old infants watched a continuous stream of images 
of sets of objects. Within a given block of trials, most images contained the same 
type and number of objects, but some test images were interleaved into the stream 
that contained a different type and/or number of objects. Neural adaptation, reflect-
ing habituation, occurs when repeated presentation of the same stimulus leads to 
diminished neural responses in regions specialized for processing a particular type 
of representation, such as quantity, despite changes in other features, such as size, 
density, and position. When a stimulus is presented that is recognized as different, 
the neural response is reactivated, reflecting dishabituation. Using cortical source 
modeling, Izard et al. (2008) established a double dissociation between object and 
number processing in early infancy. They found that when the type of object 
changed, a ventral pathway in the left temporal cortex was activated in infants’ 
brains with an antagonistic response in the right temporal cortex, but when the num-
ber of objects changed, a dorsal pathway in the right inferior parietal and frontal 
cortex was activated. Furthermore, for number change, there was decreased response 
in left anterior temporal regions and increased response in right anterior temporal 
cortex. Izard et al. (2008) concluded that brain specialization for object and number 
processing is already present in early infancy and that there may be an antagonistic 
relation between the ventral network for object identity and the dorsal network for 
number and space (see Chap. 5 for further discussion of these networks). Contrary 
to behavioral studies, no differences in neural responses were found between small 
(2 vs. 3) and large (4 vs. 8 and 4 vs. 12) numerosities, leading the authors to suggest 
that human infants and nonhuman primates have an analog representation of numer-
osities for small and large numbers that shows developmental continuity by increas-
ing in precision and guiding the acquisition of arithmetic and mathematical 
concepts.

Similarly, using a number adaptation paradigm and event-related functional 
Near-Infrared Spectroscopy (fNIRS), Hyde, Boas, Blair, and Carey (2010) found 
that 6-month-old infants’ neural responses to number were right lateralized in the 
parietal lobe and were dissociated from their neural responses to shape in the occip-
ital lobe, which indicates that infants use the right intraparietal sulcus (IPS) to 
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 process number even before they learn symbolic number systems (Hyde et  al., 
2010). In a different study using fNIRS and a number alternation paradigm with 
6.5-month- old infants, Edwards, Wagner, Simon, and Hyde (2016) found that only 
1 right parietal channel out of 24 posterior channels responded to numerosity. 
Furthermore, they included two conditions to rule out alternative hypotheses that 
responses to number change are due to aspects of stimuli that tend to be confounded 
with number (i.e., item size, total area, spacing, luminance) or increased attention 
related to visual interest. They found a double dissociation between infants’ right 
parietal brain response to number change and their more general bilateral occipital 
and middle parietal visual attention response to interesting, colorful, audio-visual 
animations with no number change.

Other researchers using fNIRS with 5- to 7-month-old infants have found that 
anterior areas of the temporal lobes are involved in individuating two objects 
(Wilcox, Haslup, & Boas, 2010; Wilcox, Stubbs, Hirshkowitz, & Boas, 2012), pro-
viding support for the hypothesis that small and large quantities are processed by 
different neural systems. In contrast to Izard et al.’s (2008) results, Hyde and Spelke 
(2011) found differences in 6- to 7.5-month-old infants’ neural responses to small 
and large quantities. They used ERPs during a number alternation paradigm that 
involved viewing alternating images of dot arrays containing either small (1, 2, and 
3) or large (8, 16, and 32) sets of objects across 3 blocks in which there were no 
changes in numerosities, small changes (1:2 ratio), and large changes (1:3 or 1:4 
ratio). For small numerosities, but not large, an early positive component (P400) 
was greater over left and right occipital and temporal scalp sites for larger cardinal 
values. Conversely, for large numerosities, but not small, a mid-latency positivity 
(P500) was greater over posterior parietal scalp sites as ratio decreased, but was not 
sensitive to changes in cardinal value. These results indicate a double dissociation 
between small and large number processing that is present early in development, 
corresponding to the PI system and the ANS described in the previous section.

Moving beyond infancy, the use of other neuroimaging techniques with higher 
spatial resolution, particularly fMRI, becomes more feasible (Byars et al., 2002). 
Cantlon, Brannon, Carter, and Pelphrey (2006) used event-related fMRI with a 
number adaptation paradigm to study the ANS (Cantlon et al., 2006). They found 
that both 4-year-old children and adults engage bilateral IPS for processing the 
numerosity of object arrays, which was dissociated from shape processing. 
Children’s IPS activation was more right lateralized than adults who showed greater 
and more bilateral activation in the IPS.

 Relationships Between Neural Correlates of Quantity 
Representation and Mathematics Achievement

Although there are important questions surrounding the nature of the PI system and 
the ANS, it seems clear that infants and young children can represent quantity non-
symbolically; that is, they have number sense. Further questions arise concerning 
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whether this number sense forms the basis for biologically secondary mathematical 
abilities learned in school. Does the IPS that underlies quantity representation dur-
ing infancy and early childhood also support formal mathematics achievement dur-
ing childhood, adolescence, and emerging adulthood?

As noted by Hyde and Mou (2016), some studies have provided evidence for a 
relationship between the ANS and mathematics achievement scores (e.g., Bonny & 
Lourenco, 2013; Chen & Li, 2014; Fazio, Bailey, Thompson, & Siegler, 2014; 
Gilmore, McCarthy, & Spelke, 2010; Halberda & Feigenson, 2008; Halberda, Ly, 
Wilmer, Naiman, & Germine, 2012; Halberda, Mazzocco, & Feigenson, 2008). For 
example, Starr, Libertus, and Brannon (2013) found that individual differences in 
the discrimination of nonsymbolic magnitude at age 6 months are related to achieve-
ment on symbolic mathematics tasks at age 3, after controlling for IQ. Likewise, 
preschoolers who perform better when deciding which array has more dots have 
higher mathematics achievement 1–2 years later (Chu, vanMarle, & Geary, 2015; 
Libertus, Feigenson, & Halberda, 2011; Mazzocco, Feigenson, & Halberda, 2011) 
and individual differences at age 3 are related to scores on standardized mathemat-
ics achievement tests concurrently and at age 5 (Mazzocco et al., 2011).

Whether this relationship is unidirectional, bidirectional, or mediational remains 
unclear (Hyde & Mou, 2016). Some studies have not found a relationship between 
the ANS and mathematics achievement or have found that domain-general abilities 
mediate the relationship (e.g., Fuhs & McNeil, 2013; Gilmore et al., 2013; Lyons, 
Ansari, & Beilock, 2012; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; 
Sasanguie, De Smedt, Defever, & Reynvoet, 2012; for a review, see De Smedt, 
Noël, Gilmore, & Ansari, 2013). For example, vanMarle, Chu, Li, and Geary (2014) 
found that the relationship between the ANS and mathematics achievement in pre-
schoolers is mediated by the learning of symbolic quantity knowledge. Other 
research indicates that as children begin to map quantities with symbols, important 
developmental changes occur in the neural communication between the right pari-
etal region and other brain regions. For example, Park, Li, and Brannon (2014) 
presented 4- to 6-year-olds with magnitude comparison tasks using lines, dot arrays, 
and Arabic numerals while undergoing fMRI. They found a right parietal region that 
had a higher BOLD signal to numerical stimuli (dot arrays and Arabic numerals) 
than nonnumerical stimuli (lines). Furthermore, they found significant effective 
connectivity from the right parietal region to the left supramarginal gyrus and the 
right precentral gyrus, which was related to performance on a standardized mathe-
matics test. They concluded that effective neural connectivity underlying symbolic 
number processing might be critical to associations between quantities and symbols 
and predict mathematics achievement.

In a fascinating study using fMRI, Emerson and Cantlon (2012a, 2012b) had 
children aged 4- to 11-years-old match arrays of dots to Arabic numerals and found 
that functional connectivity of white matter between frontal and parietal regions 
measured during this task was predictive of scores on the Test of Early Mathematical 
Abilities (TEMA-3; Ginsburg & Baroody, 2003), in contrast to a control network 
involving matching faces, words, or shapes that showed little correlation with 
TEMA scores. They found that connectivity between frontal and parietal regions 
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correlated with performance on the in-scanner task and with TEMA scores. The 
researchers concluded that this frontal-parietal network is mathematics-specific, 
independent of children’s verbal IQ scores.

These studies provide evidence for a relationship between quantity representa-
tion and mathematics achievement during childhood, but does this relationship per-
sist into adolescence and emerging adulthood? During the transitional period of 
adolescence, the brain continues to mature and streamline its connections. One 
brain circuit that undergoes critical development from ages 7 to 15, including 
increases in anterior-posterior connectivity, is the Default Mode Network (Sato 
et al., 2014). The Default Mode Network (DMN), depicted in Fig. 3.2, is a circuit of 
brain regions that includes anterior structures (medial prefrontal and orbitofrontal 
cortex), posterior structures (the cingulate and precuneus), and lateral structures 
(angular gyri).

DMN activation is associated with mind-wandering; therefore, DMN deactiva-
tion is important for suppressing distractions during cognitively demanding tasks 
(Mason et  al., 2007; McKiernan, D’Angelo, Kaufman, & Binder, 2006). Studies 
using fMRI have revealed that school-aged children (9- and 12-year-olds) show 
reduced or absent DMN deactivation compared to adults for magnitude, approxi-
mate, and exact calculation tasks (Davis et al., 2009; Kucian, von Aster, Loenneker, 
Dietrich, & Martin, 2008). However, research on DMN deactivation and mathemat-
ical cognition during adolescence is sparse. To study relationships between mathe-
matical cognition and achievement during adolescence, we examined brain 
activation and deactivation of the DMN for a variety of tasks. Here, we present 
results for a magnitude comparison task. Chapter 4 presents results for exact and 
approximate calculation and error detection.

When you looked at Fig. 3.1 and determined, without counting, which side has 
more blocks, it was probably easy for you as an adult; and, according to the theory 
and research presented at the beginning of this chapter, it should be easy for children 
and adolescents as well. We used this magnitude comparison task in an fMRI study 
in which a small sample of adolescents (16 7th and 8th graders; 13.5-years-olds on 

Fig. 3.2 Depiction of connectivity between the anterior, posterior, and lateral brain regions of the 
Default Mode Network from a superior view. Source: Andreashorn (Own work) [CC BY-SA 4.0 
(http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons
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average) were shown arrays of blocks and asked to determine, without counting, the 
side of the screen that displayed either more (50% of trials) or less (50% of trials) 
blocks. Trials were presented in random order on a MR-compatible video projector 
and correct responses were presented on the left (50% of trials) and the right (50% 
of trials). Participants held a button box in each hand and were instructed to press 
the button in the left hand to choose the answer on the left side of the screen or the 
button in the right hand to choose the answer on the right side of the screen. The 
number of blocks on each side ranged from 1 to 9, with a difference of at least 2, 
unless the largest number of blocks was 2 or 3. To subtract the effects of general 
visual processing, participants also completed a control task in which they were 
asked to select whether a large block appeared on the left or right side of the visual 
field.

As shown in Fig. 3.3, we found that activation in the inferior occipital gyrus (top 
2 rows of images) and bilateral IPS (bottom 2 rows of images) positively correlated 
with performance on this magnitude comparison task. Deactivation in all (anterior, 
posterior, and lateral) DMN regions negatively correlated with performance on the 
magnitude comparison task. Furthermore, we found robust and significant negative 
correlations between average fMRI activation in IPS regions during magnitude 
comparison and posterior and lateral overall DMN deactivation. It is important to 
note that deactivation has a negative correlation value, indicating an increasing 
amount of deactivation, which corresponds to making more neural resources avail-

Fig. 3.3 Regions with significant (p < 0.01 FWE corrected) correlations between functional acti-
vation (positive) and deactivation (negative) and magnitude comparison task performance. Images 
in radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm
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able for cognitive processing. These results support the conclusion that low levels of 
competence in quantity processing (which is associated with low levels of activation 
of the IPS) increases the difficulty of the task, resulting in a need for greater neural 
resources, and, therefore, greater deactivation of the DMN. Thus, IPS activation and 
DMN deactivation may act in coordination, rather than as independent processes.

Our primary question concerned whether neural activity during magnitude com-
parison contributes to mathematics achievement as measured by standardized tests. 
We related activation of the inferior occipital cortex, lingual gyrus, bilateral IPS, 
and left prefrontal cortex and deactivation of the anterior, posterior, and lateral 
DMN during the task to math fluency and calculation as measured by percentile 
scores on the Woodcock-Johnson Tests of Achievement (WJ III; Woodcock, 
McGrew, & Mather, 2001) and overall math achievement (composite of math flu-
ency and calculation subtests). The math fluency subtest is designed to measure 
efficient fact retrieval for 2-operand problems. Participants solved as many simple 
addition, subtraction, and multiplication problems as they could during a 3-min 
time limit. The calculation subtest is designed to measure accurate calculation for 
more complex addition, subtraction, multiplication, division, and multiple opera-
tion problems, as well as geometric, trigonometric, logarithmic, and calculus opera-
tions, according to capabilities.

As shown in Fig. 3.4 we found that activation in the inferior occipital gyrus, the 
lingual gyrus (top 2 rows of images), and bilateral IPS (bottom 2 rows of images) 
during the magnitude comparison task positively correlated with math achievement 
and calculation subtest scores. Activation in these same areas as well as the right 
prefrontal cortex was positively correlated with math fluency subtest scores. (Images 
are presented in radiological orientation; therefore, left activation appears on the 
right side of the image and right activation appears on the left side of the image.) A 
significant negative interaction between magnitude comparison performance and 
calculation scores was found in the lingual gyrus. These findings are consistent with 
our hypothesis that quantity representation is related to math achievement as mea-
sured by skill at solving 2-operand problems efficiently (math fluency) and solving 
paper-and-pencil multi-digit mathematical problems (calculation), similar to the 
types of problems found in school contexts. This suggests that abstract quantity 
representation may be foundational for the development of calculation skills. The 
positive correlations between inferior occipital regions and math achievement, 
math fluency, and calculation may have been related to the translation of abstract 
symbols (blocks) into quantity representations, which is also likely to be an impor-
tant skill for the development of higher-order mathematical cognition. Haist, Wazny, 
Toomarian, and Adamo (2015) found similar results for the relationship between 
numerosity precision and mathematics achievement for children and adults, but not 
adolescents.

Concerning the DMN, as shown in Fig. 3.5, deactivation in all (anterior, poste-
rior, and lateral) regions during the magnitude comparison task negatively corre-
lated with math achievement, math fluency, and calculation. Thus, adolescents who 
were less proficient at mathematics deactivated the DMN to make more neural 
resources available for the task (i.e., potentially for increased attention), while it 
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Fig. 3.4 Regions with significant (p < 0.01 FWE corrected) positive correlations between func-
tional activation during magnitude comparison and Woodcock-Johnson III percentile scores for 
math achievement and math fluency. Regions with significant (p < 0.01 FWE corrected), negative 
magnitude task performance by calculation percentile score interaction for functional activation. 
Images in radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm

Fig. 3.5 Regions with significant (p < 0.01 FWE corrected) negative correlations between func-
tional deactivation during magnitude comparison and Woodcock-Johnson III percentile scores for 
math achievement, math fluency, and calculation. Images in radiologic orientation. Slice locations: 
Z −25 mm to Z = +70 mm
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was likely not necessary for adolescents who were more proficient at mathematics 
to do so. In general, adolescents found the magnitude comparison task quite easy 
(mean accuracy = 95%). Indeed, DMN deactivation was not detected at the group 
level.

Interestingly, we did not find significant correlations between in-scanner perfor-
mance on the magnitude comparison task and math achievement, math fluency, or 
calculation scores. Thus, at the behavioral level, there was no significant relation-
ship between magnitude comparison and standardized measures of mathematics 
achievement, yet a relationship was revealed when behavior was related to brain 
functioning. This study can be interpreted using a Developmental Systems Approach 
given that measures at multiple levels of analysis were used. It provides evidence 
that activation of critical brain regions (inferior occipital gyrus, lingual gyrus, bilat-
eral IPS) while using quantity representations, as predicted by Dehaene and col-
leagues’ triple-code model (e.g., Dehaene, 1992, 2011; Dehaene & Cohen, 1995, 
1997; Dehaene, Piazza, Pinel, & Cohen, 2003), is related to math achievement and 
that deactivation of the DMN to employ domain-general operations is negatively 
related to Mathematical achievement. In Chap. 4, we examine the roles of activation 
and deactivation of the DMN during tasks that are more similar to the types of prob-
lems children encounter in school contexts.
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Chapter 4
Calculation

Rhonda Douglas Brown, Vincent J. Schmithorst, and Lori Kroeger

Abstract In this chapter, we present neuroscience research that addresses the devel-
opment of the more complex skill of calculation from childhood into adulthood. 
Cognitive processes related to mathematics achievement are described including the 
quantity, verbal, and visual systems of Dehaene and colleagues’ triple-code model and 
domain-specific and domain-general processes. We present results from our research 
using functional Magnetic Resonance Imaging (fMRI) to examine relationships 
between neural correlates of calculation and mathematics achievement. Activation in 
critical brain regions and deactivation of the Default Mode Network (DMN) for a 
variety of tasks, including exact and approximate calculation and error detection, are 
illustrated. We also discuss our research using exploratory group Independent 
Component Analysis (ICA) to reveal separate components of functional activation in 
bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas during 
the mental addition and subtraction of fractions. Taken together, our work provides 
support for the triple-code model for a variety of tasks. Furthermore, it indicates that 
domain-specific neuroarchitecture for quantity processing and domain-general pro-
cesses related to the DMN may act in coordination to perform calculation.

The basic numerosity and ordinality competencies reviewed in Chap. 3 emerge with 
little, if any, instruction, and may be online at birth, or shortly thereafter. These 
biologically primary abilities exist across cultures and in other primate species 
whether or not they evolved to serve a quantitative function (Beran & Beran, 2004; 
Boysen & Berntson, 1989; Cantlon, Merritt, & Brannon, 2016; Hauser, 2000). 
Beyond infancy, these skills are transformed through cultural interactions within 
families, schools, and in other settings into biologically secondary mathematical 
skills that are developed through prolonged learning experiences (Geary, 1995, 
2007). In this chapter, we present neuroscience research that addresses the develop-
ment of the more complex skill of calculation from childhood into adulthood.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76409-2_4&domain=pdf
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In Chap. 1, Dehaene and colleagues’ (Dehaene, 1992, 2011; Dehaene & Cohen, 
1995, 1997; Dehaene, Piazza, Pinel, & Cohen, 2003) triple-code model of numeri-
cal processing was presented to describe how mathematical cognition is instantiated 
in the brain (see Fig. 1.3). To briefly summarize, the triple-code model predicts that 
three distinct representational systems associated with specific neural substrates 
may be used in mathematical cognition, depending on the task. According to the 
model, the quantity system, often referred to as number sense, uses nonverbal, 
meaning-based representations of size and distance relations between numbers on a 
mental number line and engages the bilateral horizontal intraparietal system (hIPS) 
of the brain to mediate performance on magnitude comparison and approximate 
calculation tasks. The verbal system represents numbers in a linguistic format and 
engages a region of the left angular gyrus and other language networks to retrieve 
well-learned arithmetic facts. The visual system represents and spatially manipu-
lates numbers in Arabic format and engages regions in the posterior superior pari-
etal lobe to perform arithmetic when well learned facts cannot be retrieved.

As described in Chap. 1, neuropsychological cases, functional Magnetic 
Resonance Imaging (fMRI), and Event-Related Potential (ERP) studies have pro-
vided support for the triple-code model for tasks involving number processing and 
calculation in adults (for a review, see Dehaene et al., 2003; Grabner et al., 2009; van 
Eimeren et al., 2010). Children engage a similar network of brain regions for simple 
number processing, with activation of hIPS increasing with age (Ansari & Dhital, 
2006; Ansari, Garcia, Lucas, Hamon, & Dhital, 2005). However, children also recruit 
the inferior frontal cortex to a greater extent than adults (Cantlon et al., 2009), impli-
cating a potential frontal to parietal shift with development and learning. Davis et al. 
(2009) found that children with Math Difficulties (MD) and those with Typical 
Achievement (TA) activated the same network of brain regions for exact and approx-
imate calculation tasks, but children in the MD group had significantly greater acti-
vation in the parietal, frontal, and cingulate cortices. They concluded that differences 
in these brain areas associated with domain-general cognitive resources, such as 
executive functioning and working memory, imply the use of more developmentally 
immature and less efficient strategies. The authors also found decreased task-related 
deactivation in children with MD in the anterior and posterior cingulate, which is 
part of the Default Mode Network (DMN; Raichle & Snyder, 2007).

Convergent evidence from longitudinal studies indicates that both domain- 
specific and domain-general cognitive processes contribute to mathematics achieve-
ment. Regarding domain-specific processes, studies have found that basic numerical 
competencies, such as number naming, recognition, and comparison (Geary, 2011; 
Landerl, Bevan, & Butterworth, 2004; Locuniak & Jordan, 2008), and early compe-
tence with simple arithmetic, including counting and decomposition procedures and 
arithmetic fact retrieval (Geary, 2011; Jordan, Kaplan, Ramineni, & Locuniak, 
2009; Mazzocco & Thompson, 2005), contribute to mathematics achievement. 
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Regarding domain-general abilities, speed of processing and working memory, par-
ticularly the central executive component, contribute to mathematics achievement 
(Bull, Espy, & Wiebe, 2008; Geary, 2011; Geary, Hoard, Byrd-Craven, & DeSoto, 
2004; Mazzocco & Kover, 2007; Passolunghi, Vercelloni, & Schadee, 2007; 
Swanson, Jerman, & Zheng, 2008). For example, Geary (2011) analyzed the initial 
state and growth of mathematics achievement from the beginning of 1st grade 
through 5th grade and found that specific quantitative skills, such as early fluency in 
apprehending quantity (see Chap. 3), combining small sets of items and Arabic 
numerals, accurate counting procedures for solving addition problems, number line 
knowledge, and the functioning of the visuospatial sketchpad (see Chap. 5) were 
uniquely predictive of mathematics achievement while controlling for domain- 
general abilities. He also found that domain-general abilities, such processing speed 
and the central executive component of working memory, predicted math achieve-
ment and growth, controlling for intelligence. Regarding the central executive com-
ponent of working memory, Geary (2011) found increases in its contribution to 
mathematics achievement as children progressed through grades in school. He 
explained these results by noting that the easier items on the mathematics achieve-
ment measure for the earlier grades minimally engage the central executive; how-
ever, the items become more difficult with successive grades, which requires more 
engagement of the central executive component of working memory. As complex 
tasks become more familiar and performance becomes more automatic and long- 
term memory-based, the role of the central executive lessens. Indeed, Geary (2011) 
also found that use of memory-based processes to solve addition problems, such as 
arithmetic fact retrieval and decomposition, also predicted mathematics achieve-
ment, with the benefits of basic fact knowledge in 1st grade increasing with each 
successive grade. Furthermore, studies of Math Disabilities/Difficulties (MD; see 
Chap. 6) have distinguished between difficulties in mathematical processing arising 
from a domain-specific core deficit in numerosity versus domain-general deficits 
(Butterworth & Reigosa, 2007; Reigosa-Crespo et al., 2012; Rubinsten & Henik, 
2009). The longitudinal studies described above focus on elementary and early 
middle- school aged children. Few studies have followed children into adolescence.

 Relationships Between Neural Correlates of Calculation 
and Mathematics Achievement

A key neural network that undergoes development from ages 7 to 15 is the Default 
Mode Network (DMN), depicted in Fig. 3.2 (Mason et  al., 2007; McKiernan, 
D’Angelo, Kaufman, & Binder, 2006; Sato et al., 2014). You may recall from Chap. 3 
that the DMN is a circuit of brain regions that includes anterior structures (medial 
prefrontal and orbitofrontal cortex), posterior structures (the cingulate and precu-
neus), and lateral structures (angular gyri). The DMN is important for domain-general 
functions related to attention, suppressing distractions during cognitively demanding 
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tasks, and engaging in effortful processing. Previous research has demonstrated that 
adults deactivate the DMN during magnitude and exact and approximate calculation 
tasks; whereas school-aged children (9- and 12-year-olds) show reduced or absent 
DMN deactivation (Davis et  al., 2009; Kucian, von Aster, Loenneker, Dietrich, & 
Martin, 2008). However, research on DMN deactivation and mathematical cognition 
during adolescence is sparse.

To study relationships between mathematical cognition and achievement during 
adolescence, we used functional Magnetic resonance imaging (fMRI) to examine 
brain activation in the inferior occipital cortex, lingual gyrus, bilateral IPS, and the 
left prefrontal cortex and deactivation of the anterior, posterior, and lateral DMN for 
a variety of tasks. Here, we present results for exact and approximate calculation 
and error detection. (Results for magnitude comparison were presented in Chap. 3). 
For all tasks, mathematical problems were presented in random order on a 
MR-compatible video projector in horizontal and vertical orientations. Correct 
responses were presented on the left and the right, and, when applicable, the choices 
varied as to whether the correct response was the higher or lower number (i.e., as 
possible, features of stimuli were evenly counterbalanced across trials). Participants 
held a button box in each hand and were instructed to press the button in the left 
hand to choose the answer on the left side of the screen or the button in the right 
hand to choose the answer on the right side of the screen.

 Exact Calculation

Take a look at Fig. 4.1 and choose the correct answer to each problem.
How did you solve the addition problem on the left? As an adult, you probably 

instantly recognized 11 as the correct response to 6 + 5 because you have associated 
the problem and the answer by repeatedly calculating it or by memorizing it through 
the drill-and-practice methods of schooling. A child in elementary school may solve 

11

Addition Multiplication Multiple Operations

Exact Calculation

6 + 5
2

3 + 9 - 2×412 6 8 1110

Fig. 4.1 Examples of problems used for three types of exact calculation tasks: addition, multipli-
cation, and multiple operations
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it by reasoning that 6 + 6 = 12, so 6 + 5 must be 1 less. How did you come up with the 
answer to the multiplication problem in the center? Again, as an adult you probably 
retrieved the answer to this math fact from memory, without the need for calculation. 
Elementary school children may solve it through repeated addition: 2 + 2 + 2 + 2 = 8 
or they may know that 2 × 3 is 6 and then add 2 more to get 8. How did you solve the 
problem on the right? Chances are that the correct answer didn’t just pop into your 
mind. You most likely had to retrieve the answer to 3 + 9, hold the answer 12 in work-
ing memory, and then determine that 12 − 2 = 10. In our study, we examined adoles-
cents’ brain activation and deactivation of the DMN while they were deciding the 
exact answer for addition, multiplication, and multiple operations problems like those 
shown in Fig. 4.1 and related the results to their mathematics achievement.

Addition

While undergoing fMRI, adolescents (14 7th and 8th graders; 13.5-years- old on 
average) were shown 1-digit, 2-operand addition problems like the one on the left 
side of Fig. 4.1 and had 3.5 s to select the side of the screen displaying the correct 
answer. The other response choice differed by either 1 or 2 from the correct answer 
so that participants had to determine the exact answer. To control for visual activa-
tion and response selection, we compared brain activation during mathematical 
problems to brain activation during a color matching task that gave adolescents 2.5 s 
to choose which of two identical numbers matched the color of the same number 
shown in the middle of the screen.

As shown in Fig. 4.2, we did not find significant correlations between activation 
in any brain regions and performance on these problems. However, deactivation in 
anterior DMN regions was negatively correlated with performance. Deactivation is 
quantified using negative numbers; thus, the interpretation of this result is that 
greater deactivation of anterior DMN regions during exact addition was associated 
with lower performance.

Our primary question concerned whether neural activity during exact addition 
contributes to mathematics achievement as measured by standardized tests. We 
related activation of the inferior occipital cortex, lingual gyrus, bilateral IPS, and 
left prefrontal cortex and deactivation of the anterior, posterior, and lateral DMN 
during the task to math fluency and calculation as measured by percentile scores on 
the Woodcock-Johnson Tests of Achievement (WJ III; Woodcock, McGrew, & 
Mather, 2001) and overall mathematics achievement (composite of math fluency 
and calculation subtests). The math fluency subtest is designed to measure efficient 
fact retrieval for 2-operand problems. Participants solved as many simple addition, 
subtraction, and multiplication problems as they could during a 3-min time limit. 
The calculation subtest is designed to measure accurate calculation for more com-
plex addition, subtraction, multiplication, division, and multiple operations prob-
lems, as well as geometric, trigonometric, logarithmic, and calculus operations, 
according to capabilities.
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Interestingly, activation during exact addition did not correlate with any of these 
measures. However, as shown in Fig. 4.3, deactivation in anterior, posterior, and right 
lateral DMN regions during addition negatively correlated with overall math achieve-
ment and math fluency. (Images are presented in radiological orientation; therefore, 
left activation appears on the right side of the image and right activation appears on 
the left side of the image.) In anterior and right lateral DMN regions a significant 
interaction indicating a smaller negative correlation between DMN deactivation and 
task performance for participants with higher calculation subtest scores was found.

Our interpretation of these results is that individuals who are less proficient with 
their math facts may need to rely more on counting and other strategies, so they 
deactivate the DMN to a greater extent to make resources available for deliberative, 
slower processes (i.e., attention, working memory, strategy use). However, higher 
achieving participants who can readily retrieve math facts from memory rely less on 
cognitive processes that require deactivation of the DMN. By 7th and 8th grade, 
many adolescents who are proficient at math can quickly retrieve addition facts. 
Indeed, the exact addition task was relatively easy for the participants in this study 
(M = 83.3% correct).

Multiplication

While undergoing fMRI, adolescents (N = 16) were shown 2- operand multiplication 
problems like the one in the center panel of Fig. 4.1 and had 3.5 s to select the side 
of the screen displaying the correct answer. The other response choice differed by 

Fig. 4.2 Regions with significant (p < 0.01 FWE corrected) correlations between functional acti-
vation (none) and deactivation (negative) and exact addition task performance. Images in radio-
logic orientation. Slice locations: Z −25 mm to Z = +70 mm
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either 1 or 2 from the correct answer so that participants had to determine the exact 
answer. To control for visual activation and response selection, we compared brain 
activation during mathematical problems to brain activation during a color match-
ing task that gave adolescents 2.5  s to choose which of two identical numbers 
matched the color of the same number shown in the middle of the screen.

Similar to the results for addition problems, as shown in Fig. 4.4, we did not find 
any significant correlations between brain activation during multiplication and task 
performance, math achievement, math fluency, or calculation. However, deactiva-
tion in posterior and lateral DMN regions positively correlated with exact multipli-
cation task performance.

Furthermore, as shown in Fig. 4.5, deactivation in lateral DMN regions posi-
tively correlated with math achievement, deactivation in anterior DMN regions 
positively correlated with math fluency, and deactivation in right lateral DMN 
regions positively correlated with calculation.

Thus, deactivation of the DMN during exact multiplication had an opposite rela-
tionship with standardized measures of mathematics achievement in comparison to 
exact addition; that is positive, rather than negative correlations. Thus, individuals 
with higher mathematics achievement deactivated the DMN to a greater extent than 
those with lower mathematics achievement, making more neural resources available 
for determining the exact answer.

Fig. 4.3 Regions with significant (p < 0.01 FWE corrected) negative correlations between func-
tional deactivation during exact addition and Woodcock-Johnson III percentile scores for math 
achievement and math fluency. Regions with significant (p < 0.01 FWE corrected) exact addition 
task performance by calculation percentile score interaction for functional deactivation. Images in 
radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm
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Fig. 4.4 Regions with significant (p < 0.01 FWE corrected) correlations between functional acti-
vation (none) and deactivation (positive) and exact multiplication task performance. Images in 
radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm

Fig. 4.5 Regions with significant (p < 0.01 FWE corrected) positive correlations between func-
tional deactivation during exact multiplication and Woodcock-Johnson III percentile scores for 
math achievement, math fluency, and calculation. Images in radiologic orientation. Slice locations: 
Z −25 mm to Z = +70 mm
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Multiple Operations

While undergoing fMRI, adolescents (N = 10) were presented with 3-operand prob-
lems involving addition and subtraction like the one on the right side of Fig. 4.1 
(addition first on half of the trials) and had 5 s to select the side displaying the cor-
rect answer. The other response choice differed by either 1 or 2 from the correct 
answer so that participants had to determine the exact answer. To control for visual 
activation and response selection, we compared brain activation during mathemati-
cal problems to brain activation during a color matching task that gave adolescents 
2.5 s to choose which of two identical numbers matched the color of the same num-
ber shown in the middle of the screen.

As shown in Fig. 4.6, in contrast to our results for 2-operand addition and multi-
plication, for these more complex 3-operand problems, activation in the left pre-
frontal cortex (PFC) negatively correlated with performance. Deactivation in the 
right lateral DMN region positively correlated with task performance.

As shown in Fig. 4.7, activation in the left PFC and right IPS during the multiple 
operations problems negatively correlated with math achievement and activation in 
the left PFC and left IPS negatively correlated with math fluency. We did not find 
significant correlations with calculation scores. The PFC activation may be due to 
maintaining the solution to the first operation in verbal working memory while com-
pleting the second operation (De Pisapia, Slomski, & Braver, 2007), which may be 
more effortful for individuals who are less proficient in mathematics.

As shown in Fig. 4.8, deactivation in posterior and right lateral DMN regions 
positively correlated with math achievement and deactivation in anterior DMN 
regions positively correlated with math fluency and calculation.

Fig. 4.6 Regions with significant correlations (p < 0.01 FWE corrected) between functional acti-
vation (negative) and deactivation (positive) and task performance on exact multiple operations  
problems. Images in radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm
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Fig. 4.7 Regions with significant (p < 0.01 FWE corrected) correlations between functional acti-
vation during exact multiple operations problems and Woodcock-Johnson III percentile scores for 
math achievement (negative), math fluency (negative), and calculation (none). Images in radio-
logic orientation. Slice locations: Z −25 mm to Z = +70 mm

Fig. 4.8 Regions with significant (p < 0.01 FWE corrected) positive correlations between func-
tional deactivation during exact multiple operations problems and Woodcock-Johnson III percen-
tile scores for math achievement, math fluency, and calculation. Images in radiologic orientation. 
Slice locations: Z −25 mm to Z = +70 mm
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For this task, participants with higher mathematics achievement may have deac-
tivated the DMN to a greater extent to make neural resources available during this 
more difficult task that likely involves working memory.

 Approximate Calculation

Now, take a look at Fig. 4.9 and choose the closest answer to each problem.
How did you choose your answers to these problems? Did you select your 

answers rather quickly, without performing any calculations? You may have recog-
nized the large differences between the two choices, which may have made it easy 
to select your answer. For the addition problem on left side of Fig. 4.9, you may 
have recognized that the first addend is close to 1000, so the answer would have to 
be 1375, the choice on the right, because the choice on the left is below 1000. For 
the subtraction problem in the center panel, you may have estimated that 800 − 400 
is closer to 400 than 45, and for the multiplication problem on the right side, you 
may have quickly recognized the appropriate number of zeros in the closest answer 
choice (i.e., 300 vs. 3000). Although these problems use different operations and 
may engage different types of strategies, they fundamentally assess approximate, 
rather than exact calculation.

While undergoing fMRI, adolescents (N = 16) were presented with these types of 
problems and had 5 s to select the side of the screen displaying the closest answer. The 
problems involved 3-digit addition and subtraction, and 1-, 2-, or 3-digit multiplica-
tion with two possible answers, a reasonable estimate and one that was off by approxi-
mately 1 order of magnitude. To control for visual activation and response selection, 
we compared brain activation during mathematical problems to brain activation dur-
ing a color matching task that gave adolescents 2.5  s to choose which of the two 

175

Addition Subtraction

Approximate Calculation

Multiplication

921 + 440 1,375 450
827

75 × 3-403 45 3,000 300

Fig. 4.9 Examples of problems used for three types of approximate calculation tasks: addition, 
subtraction, and multiplication
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identical 2- or 3-digit numbers matched the color of the same number shown in the 
middle of the screen.

As shown in Fig. 4.10, activation in bilateral IPS and the left lingual gyrus during 
approximate calculation positively correlated with mathematics achievement. 
Activation in these areas plus the right inferior occipital gyrus positively correlated 
with calculation subtest scores. Significant negative approximate calculation task 
performance by subtest interactions for activation in right IPS were also found for 
math fluency and calculation.

As shown in Fig. 4.11, for math achievement, a significant interaction was found 
in anterior and left lateral DMN regions, indicating a smaller correlation between 
DMN deactivation and task performance for participants with higher scores, but a 
larger correlation in the right lateral DMN region. For math fluency, a significant 
interaction was found in anterior, posterior, and right lateral DMN regions, indicat-
ing a smaller correlation between DMN deactivation and task performance for par-
ticipants with higher scores, while the opposite relationship was found in the left 
lateral DMN region. For the calculation subtest, a significant interaction indicating 
a smaller correlation between DMN deactivation and task performance for partici-
pants with higher scores was found in anterior, posterior, and lateral DMN regions.

Similar to the results for the magnitude comparison task presented in Chap. 3, for 
approximate calculation, activation in the IPS and lingual gyrus was correlated with 
standardized measures of math achievement. These two tasks were designed to mea-
sure approximate quantity representation and the results are consistent with predictions 

Fig. 4.10 Regions with significant (p < 0.01 FWE corrected) positive correlations between func-
tional activation during approximate calculation and Woodcock-Johnson III percentile scores for 
math achievement and calculation. Regions with significant (p < 0.01 FWE corrected) negative 
approximate calculation task performance by math fluency and calculation percentile score inter-
actions for functional activation. Images in radiologic orientation. Slice locations: Z −25 mm to 
Z = +70 mm
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regarding the quantity and verbal systems of Dehaene and colleague’s triple- code 
model of numerical processing. Thus, abstract quantity representation, or number 
sense, may be foundational to mathematics achievement (e.g., Gallistel & Gelman, 
1992; Geary, 2010; Geary, Hoard, Nugent, & Bailey, 2012).

For deactivation, the significant interactions involving task performance and 
standardized math achievement may be related to differences in strategy use. 
Adolescents with higher math achievement scores are likely using more efficient 
strategies involving approximation, making the task easier (i.e., negative correla-
tions), while adolescents with lower math achievement may be using more ineffi-
cient strategies, such as calculating the solution, which involves working memory 
and executive function, making the task more difficult (i.e., positive correlations; 
see Torbeyns, De Smedt, Peters, Ghesquière, & Verschaffel, 2011).

 Error Detection

Have you ever looked at an answer to a math problem and recognized that some-
thing’s wrong? Take a look at Fig. 4.12 and answer Yes or No if you think the solu-
tion to the problem is correct.

Were you able to quickly determine that the answer is No? What is the nature of 
this error? The problem in Fig. 4.12 represents a wrong operation error. That is, addi-
tion was performed, rather than multiplication. Other common errors include string 
intrusions, in which the answer generated is the next higher or lower number from 

Fig. 4.11 Regions with significant (p < 0.01 FWE corrected) approximate calculation task perfor-
mance by percentile score interactions (math achievement, math fluency and calculation) for func-
tional deactivation. Images in radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm
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one of the operands (e.g., 4 × 5 = 6), associated fact errors, in which the answer 
generated is 1 or 2 off from the correct solution (e.g., 5 + 8 = 12), and global errors, 
in which the answer combines the numerals of the two operands (e.g., 2 × 8 = 28).

To see what is happening in the brain when adolescents look at a solution to a 
problem and decide whether it is correct or not, we showed them 1- and 2-digit addi-
tion, subtraction, and multiplication problems like the one in Fig. 4.12 and gave 
them 3.5 s to indicate Yes if the answer is correct or No if it is not correct. We care-
fully designed the incorrect problems so that they involved the common errors that 
were described above made by children with mathematical difficulties (Raghubar 
et al., 2009). To control for visual processing, we compared brain activation during 
this type of error detection to a task in which we gave adolescents 2.5 s to indicate 
Yes if two identical numbers were the same color or No if they were not.

For this error detection task, we did not find any significant correlations between 
activation and performance, math achievement, math fluency, or calculation. As 
shown in Fig. 4.13, significant interactions were found in anterior and left lateral 
DMN regions, indicating a larger correlation between DMN deactivation and Error 
Detection performance for participants with higher math achievement, math flu-
ency, and calculation scores (for more detailed results, see Kroeger, 2012).

In contrast to our results for approximate calculation, adolescents with higher 
standardized achievement scores showed greater correlations between error detection 

Fig. 4.12 Example of a trial from an error detection task

Fig. 4.13 Regions with significant (p < 0.01 FWE corrected) error detection task performance by 
percentile score interactions (math achievement, math fluency, and calculation) for functional 
deactivation. Images in radiologic orientation. Slice locations: Z −25 mm to Z = +70 mm

4 Calculation



73

task performance and DMN deactivation. We attribute this result to the higher achiev-
ing adolescents more efficiently suppressing fast, automatic responses, which 
requires more neural resources for executive function and response comparison.

Across all of the tasks described in the previous sections, we conclude that deac-
tivation of the DMN plays an important role in mathematical cognition in adoles-
cents. There were no significant correlations between IPS activation and task 
performance or standardized math achievement scores for the more difficult tasks of 
exact multiplication, exact calculation involving multiple operations, or error detec-
tion; whereas many significant relationships were found related to deactivation of 
the DMN. These findings suggest that interventions for more complex calculation 
procedures could target skills related to the DMN, including developing efficiency 
in strategy use and working memory, in addition to more domain-specific quantita-
tive skills.

Fractions

In an earlier study, we examined adults’ use of the representational systems pro-
posed in Dehaene and colleagues’ triple-code model of numerical processing for an 
even more complex task: the mental addition and subtraction of fractions 
(Schmithorst & Brown, 2004). While undergoing fMRI using a block-periodic 
design (i.e., rather than event-related), adults (N = 15) were presented with three 
fraction problems and had 10 s to mentally calculate the solution. The problems 
involved addition and subtraction of fractions with single-digit numerators and 
denominators (e.g., 2/3  – 1/4), which sometimes resulted in negative solutions. 
Improper fractions were used, but denominators were 5 or less. All participants 
completed a practice session before scanning to ensure that they could perform the 
task. A visual reminder that a/b + c/d = (ad + bc)/bd was written on a board in the 
scanning area. To control for visual activation, participants were presented with 3 
sets of 4 numbers without divisor, addition, or subtraction symbols in the same posi-
tions on the screen as the fractions every 10 s.

We used exploratory group Independent Component Analysis (ICA; for details, 
see McKeown et al., 1998) and found separate components of functional activation 
in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. An 
additional component of activation was found in the medial-superior occipital 
gyrus. We suggested that the bilateral inferior parietal component corresponds with 
the quantity system of the triple-code model, which may have been used during this 
task to process the relative positions of fractions on a mental number line as well as 
relations between the sizes of fractions involved in proportional reasoning (Dehaene, 
1989; Dehaene, Dupoux, & Mehler, 1990; Ischebeck, Schocke, & Delazer, 2009; 
Restle, 1970). The left perisylvian component, which included Broca’s and 
Wernicke’s areas involved in language functions and basal ganglia, may have 
reflected use of the verbal system of the triple-code model for fact retrieval involved 
in determining common denominators (e.g., transforming 2/3 into 8/12 and 1/4 into 
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3/12) and adding and subtracting fractions (e.g., 8 − 3 = 5; González & Kolers, 
1982). We suggested that the bilateral inferior ventral occipitotemporal component 
of the ventral visual pathway, including the inferior temporal gyrus and fusiform 
gyrus, corresponds to the visual system of the triple-code model, which may have 
been used to recognize numerators in comparison to denominators and spatially 
manipulate the fractions in Arabic format to calculate solutions that could not be 
retrieved from memory (Ashcraft & Stazyk, 1981; Cohen & Dehaene, 1991; 
Dahmen, Hartje, Büssing, & Sturm, 1982; Dehaene & Cohen, 1991; Weddell & 
Davidoff, 1991). For the fourth component of medial-superior occipital gyrus acti-
vation, we suggested that neural correlates of the visual system might extend beyond 
the ventral visual pathway into other secondary visual areas (See Chap. 5 for more 
research on this pathway). Thus, the addition and subtraction of fractions employed 
all three systems proposed in the triple-code model. Our results were consistent 
with previous neuroimaging studies examining other types of calculation problems 
(Chochon, Cohen, van de Moortele, & Dehaene, 1999; Dehaene, Spelke, Pinel, 
Stanescu, & Tsivkin, 1999; Gruber, Indefrey, Steinmetz, & Kleinschmidt, 2001; 
Naccache & Dehaene, 2001; Pinel, Dehaene, Rivière, & Le Bihan, 2001; Simon, 
Mangin, Cohen, Le Bihan, & Dehaene, 2002; Stanescu-Cosson et al., 2000).

Taken together, our work provides support for the triple-code model for a variety 
of tasks. Furthermore, it indicates that domain-specific neuroarchitecture for quan-
tity processing and domain-general processes related to the DMN may act in coor-
dination to perform calculation.
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Chapter 5
Visuospatial Cognition

Jonathan Buening and Rhonda Douglas Brown

Abstract In this chapter, we present theory and research on early- and later- 
developing visuospatial cognition into adulthood and its importance to mathemati-
cal cognitive development. We describe  the development of dorsal and ventral 
visual pathways associated with the visuospatial functions of spatial awareness and 
pattern processing. Research using cognitive neuroscience techniques, including 
functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), 
and Transcranial Magnetic Stimulation (TMS), is presented on the following topics 
relevant to visuospatial cognition and its development: visual attention and search, 
visual perception and judgment, geometry, visual imagery and mental rotation, and 
visuospatial working memory. We conclude that the parietal lobe plays an important 
role in general visuospatial cognition and that the right hemisphere is dominant 
for  certain visuospatial skills. Other brain areas related to visuospatial cognition 
include the superior frontal gyrus/sulcus, anterior insular cortex, temporal-occipital 
cortex, dorsolateral prefrontal cortex, precentral gyrus, and left hemisphere dorsal 
anterior cingulate cortex.

Transport yourself back to school, perhaps back to a geometry class. Imagine post-
ers of different shapes that may have been up on the walls. Which ones draw your 
attention? Does your attention shift from one shape to another? Perhaps you detect 
patterns within a more complex geometric design. Are there any 3-dimensional 
(3D) representations of shapes within the room? If so, pick one, close your eyes, and 
imagine you’re holding it in your hand. Now turn it over and look at all sides of the 
shape. Put that shape down, and with your eyes still closed, think about what other 
images you remember viewing just a moment ago.

If you performed any of the tasks described just now, you made use of an array of 
visuospatial skills. Visuospatial cognition encompasses a variety of skills, including 
searching for and locating objects, shifting spatial attention, holding items in your 
visual memory, performing mental rotations, and detecting patterns, among others.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76409-2_5&domain=pdf
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 Neural Basis of Visuospatial Cognition

Research conducted with adults has described two major cortical streams related to 
visuospatial cognition: the dorsal visual pathway and the ventral visual pathway 
(e.g., Goodale & Milner, 1992; Mishkin & Ungerleider, 1982). Anatomically, both 
pathways begin at the retina where visual information is first received, and proceed 
to the primary visual cortex, referred to as V1, in the occipital lobe. From there, 
however, the pathways diverge, with the dorsal visual pathway projecting forward 
to the temporal lobe and then to the inferior parietal lobe, and the ventral visual 
pathway proceeding downward to the inferior temporal lobe. Each pathway has 
been associated with specific visuospatial functions. The dorsal stream, commonly 
referred to as the where or how stream, involves tasks primarily related to spatial 
awareness and action planning (Chinello, Cattani, Bonfiglioli, Dehaene, & Piazza, 
2013; Stiles, Paul, & Ark, 2008). The ventral visual pathway, known as the what 
stream, is used in tasks involving part-whole or global-local visual pattern process-
ing (Stiles et al., 2008). Figure 5.1 depicts each pathway from the left hemisphere 
lateral view.

Stiles et al. (2008) reviewed the literature on the development of brain networks 
and functions related to visuospatial processing. While many visuospatial skills are 
established early in life, many of those skills show protracted development. For 
example, they describe studies showing that children as young as 5 can perform 
mental rotations; however, they also noted that their speed and accuracy continues 

Ventral Visual Pathway

Dorsal Visual Pathway

Fig. 5.1 The left hemisphere (lateral view) indicating the dorsal and ventral visual pathways. 
Photograph by Selket (From File: Gray728.svg) [GFDL (http://www.gnu.org/copyleft/fdl.html), 
CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://
creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons
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to develop and improve through adolescence. They drew similar conclusions from 
their review of ventral stream skills, such as pattern processing. Also common to 
their findings is evidence of connectivity between regions of the brain. For example, 
with respect to spatial location, a network of neural systems emerges as early as the 
first year of life, involving areas in both the frontal and parietal lobes.

Some studies have sought to specifically explore the nature of developmental 
changes within the two major visuospatial streams. As described previously, each 
stream is associated with functions that answer a general question: the where versus 
the what. Therefore, you might expect that there would be certain correlations 
between those associated functions. By that same logic, you may also expect there 
to be little correlations among functions between the two streams. Chinello et al. 
(2013) investigated these issues by administering a series of tasks to both 
kindergarten- aged children and adults to measure six specific abilities: numerical 
acuity, finger gnosis (i.e., finger recognition or localization), visuospatial memory, 
grasping precision, face recognition, and object recognition. As hypothesized, 
Chinello and colleagues found that, for children, there are significant correlations 
among tasks falling within a particular functional domain (dorsal or ventral), but 
little correlation on tasks between domains. However, adults showed lower correla-
tions overall, whether within or between domains, suggesting that certain visuospa-
tial skills that are more interrelated during early childhood may become more 
specialized during adulthood. Overall, Chinello and colleagues concluded that 
functions between the two major visuospatial streams are unrelated and follow their 
own specific developmental trajectories (for a different perspective, see Pisella 
et al., 2013). More specifically, they found that the development of finger gnosis, 
spatial abilities, and nonsymbolic numerical abilities were correlated independently 
of chronological age. Chinello and colleagues attributed the source of this correla-
tion to finger counting, speculating that finger gnosis would improve with finger 
counting by increasing individual finger representations and their relative position 
in space and that finger counting would improve spatial abilities by tracking multi-
ple items in parallel with the corresponding mental representation of numerical 
quantities. Indeed, in children attending kindergarten, strategies for solving addition 
problems, including finger counting, were significantly correlated with spatial, but 
not verbal subtests of the Wechsler Preschool and Primary Scale of Intelligence 
(WPPSI; Geary & Burlingham-Dubree, 1989).

Thus, while the various structures and networks of the brain related to visuospa-
tial cognition are well identified, the developmental pathways of these structures, 
along with connectivity between them, are not clearly understood. Therefore, in this 
chapter, we review some of the major functions that fall within the realm of visuo-
spatial cognition, identify the major areas of the brain associated with those func-
tions, and describe what is known about how those functions change with 
development.

Before proceeding, however, it is important to place the role of visuospatial cog-
nition within the context of mathematical cognitive development, the focus of this 
text in general. Intuitively, it perhaps seems obvious that visuospatial skills would 
play a major role in mathematical cognitive development. In Chap. 4, results on the 
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mental addition and subtraction of fractions were presented from Schmithorst and 
Brown (2004) that indicated a bilateral inferior ventral occipitotemporal component 
of the ventral visual pathway, including the inferior temporal gyrus and fusiform 
gyrus. These areas comprise the visual system of the triple-code model (see Chap. 1), 
which may have been used to recognize numerators in comparison to denominators 
and spatially manipulate the fractions in Arabic format to calculate solutions that 
could not be retrieved from memory. We also found a component of medial- superior 
occipital gyrus activation and suggested that neural correlates of the visual system 
might extend beyond the ventral visual pathway into other secondary visual areas.

Wai, Lubinski, and Benbow (2009) cite longitudinal studies showing correla-
tions between spatial ability and later Science Technology Engineering and 
Mathematics (STEM) related degrees and careers. Thus, spatial ability could have 
important implications for guiding coursework, career pursuits, and appropriate 
interventions. Wai et al. (2009) conducted a study involving a sample of 400,000 
high school students, based on available data on spatial ability, along with degree 
and career data from an 11-year follow-up and found that spatial ability was indeed 
a reliable predictor of advanced STEM degrees, as well as occupational outcomes. 
Figure 5.2 shows example items from their measures of spatial ability. Importantly, 
their sample was not solely comprised of academically high-achieving students, 
suggesting that these implications are applicable to the general population. Given 
findings such as these, the importance of visuospatial ability to mathematical cogni-
tive development cannot be underestimated. Keeping this in mind, the following 
sections will review specific functions within the scope of visuospatial cognition.

 Visual Attention and Search

Let’s return to our imaginary geometry class. As you look around, are there shapes 
that seem to draw your attention involuntarily? In contrast, what if we asked you to 
find and look at a specific one—a circle, a parallelogram, or a cone? What if we 
asked you to look around and find examples of specific shapes hidden within objects 
or patterns in the room? Or what if we asked you to note all of the spherical objects 
you could see—where are they located in relation to each other? These are examples 
of activities that involve visual attention and visual search.

One important concept to remember about these functions is that they are not 
uniform in nature. There is no single definition of attention, but several types. For 
example, consider if you found yourself in a room where there was a fluorescent 
light flickering above. In that case, your attention would shift involuntarily to the 
light as a result of a stimulus. However, if we ask you to search for something spe-
cific, as we did above when mentioning a circle, parallelogram, or cone, your atten-
tion became goal-oriented in nature. Similarly, searching for one particular shape in 
a room means you have to match criteria in a specific, localized fashion; but asking 
you to locate all of the representations of that shape requires a more globalized view.
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Fig. 5.2 Example items 
from four tasks measuring 
spatial ability: 3D spatial 
visualization, 2D spatial 
visualization, mechanical 
reasoning, and abstract 
reasoning. Source: Wai, J., 
Lubinski, D., & Benbow, 
C. P. (2009). Spatial ability 
for STEM domains: 
Aligning over 50 years of 
cumulative psychological 
knowledge solidifies its 
importance. Journal of 
Educational Psychology, 
101(4), 817-835. https://
doi.org/10.1037/a0016127
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The dorsal stream is used in tasks involving spatial attention and orientation, 
spatial localization, and mental rotation. Briefly, research on spatial attention, and 
more specifically, spatial orientation, has shown that a posterior parietal network is 
involved in disengaging attention from one location, shifting it to a different loca-
tion, and inhibiting a return of attention to the original location, which is thought to 
be an evolutionarily important phenomenon (e.g., Posner, 1980; Posner & Petersen, 
1990). Like numerosity and ordinality, these abilities appear to be present very early 
in life, but show improvement between 2 and 4 months, and are mostly functional 
by 6 months (e.g., Butcher, Kalverboer, & Geuze, 1999; Clohessy, Posner, Rothbart, 
& Vecera, 1991; Hood, 1993; Simion, Valenza, Umiltá, & Dalla Barba, 1995; 
Valenza, Simion, & Umiltà, 1994). With age and experience, visual attention skills 
become more right lateralized. For example, Smith and Chatterjee (2008) reported 
that 12- to 14-year-olds with slower responses in both local and global attention 
tasks displayed more bilateral activation than better performing peers, who dis-
played a greater tendency towards right hemisphere activation. In adults, the right 
hemisphere, particularly the superior parietal cortex, is the dominant locale for 
visuospatial skills. In their study, Everts et  al. (2009) administered visual search 
tasks while participants were in an MRI scanner. Participants also completed assess-
ments measuring their visuospatial ability. Results showed that visual search was 
associated with bilateral frontal, superior temporal, and occipital regions, indicating 
interconnectivity of visuospatial networks. Additionally, Everts and colleagues 
found that lateralization of activity within the right hemisphere, particularly in the 
frontal and parietal regions, increased not only with age, but also with increased 
performance on visuospatial assessments. These results are consistent with Chinello 
et  al.’s (2013) findings suggesting that age and greater efficiency contribute to 
increased specialization in the brain related to visuospatial function.

 Visual Perception and Judgment

Visual perception is a broad term that encompasses several possible functions. Back 
in our geometry class, imagine if we were to show you a series of geometric shapes 
on note cards. In addition to different shapes being present, imagine too that there 
are differences in shading, the thickness of lines, the orientation of the shapes in 
relation to each other, the number of certain shapes appearing in a row, and so on. 
Whenever you notice those different aspects, you are activating a particular function 
within the realm of visual perception.

In terms of the areas of the brain involved in various visuospatial perception 
tasks, we see many commonalities with those already described in the dorsal and 
ventral streams, as well as in the areas related to visual attention and search. Ebisch 
et al. (2012) conducted a study investigating the nature of fluid intelligence by hav-
ing participants perform four tasks while undergoing fMRI. Tasks specific to visuo-
spatial perception included induction, for which participants must determine 
common characteristics among stimuli; visualization, for which participants must 
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manipulate visual images; and spatial relationship, for which participants are 
required to identity spatial patterns or orientations among objects. Brain areas that 
showed common activation across different tasks included the bilateral superior 
frontal gyrus/sulcus, inferior parietal lobe, intraparietal sulcus (IPS), posterior pari-
etal cortex, superior parietal cortex, anterior insular cortex, temporal-occipital cor-
tex, dorsolateral prefrontal cortex, precentral gyrus, and left hemisphere dorsal 
anterior cingulate cortex (ACC). These results indicate that visual perception 
involves a distributed frontoparietal network. For the visualization task, there was 
significant activation of the bilateral inferior parietal lobe, as well as the right hemi-
sphere dorsal ACC. These results are consistent with other findings stressing not 
only the importance of the parietal lobe in general visuospatial cognition, but also 
the dominance of the right hemisphere with respect to certain visuospatial func-
tions. Additionally, Ebisch and colleagues found that participants who scored higher 
on fluid intelligence assessments showed greater functional connectivity between 
these different brain areas, once again suggesting that specialization of the brain 
occurs not only with age, but also with increased skill and efficiency.

Other studies have shown similar results, and have sought to expand on them by 
including developmental data as well. Eslinger et  al. (2009) conducted an fMRI 
study in which participants aged 8–19 completed relational reasoning tasks. 
Specifically, participants had to identify a correct response in order to complete a 
series of images based on dimensions of color and shape. They found a network of 
related structures involved in these types of tasks including the superior parietal 
cortex, the dorsolateral prefrontal cortex, the superior premotor/supplementary 
motor region, and the occipital-temporal cortex, with the greatest level of activation 
in the right and left superior parietal cortices. In this primary area, Eslinger and col-
leagues found increased activation with age. They noted a contrast in the bilateral 
nature of activation in their study compared to lateral specialization in other studies, 
although this could be accounted for by the broad nature of the visuospatial tasks 
used. Interestingly, they found that certain areas showed decreased activation with 
age, notably the prefrontal-frontal cortex and the cingulate. As previously discussed, 
with age, children likely become more efficient in performing visuospatial tasks, 
which translates into a decreased need for executive function, attention, working 
memory, and so on, functions associated with the decreased brain activation areas 
mentioned above (i.e., the Default Mode Network [DMN]).

Regarding lateralization, Fink et al. (2000) conducted an fMRI study in which 
adult male participants had to judge if lines were correctly bisected. Scan results 
showed distinct and significant activation of the right hemisphere superior parietal 
cortex as well as the right inferior parietal cortex. Other studies have attempted to 
investigate this apparent hemispheric specialization and its place within the func-
tional connectivity network that seems to exist in visuospatial skills. Sack et  al. 
(2007) used transcranial magnetic stimulation (TMS; see Chap. 2 for a description) 
as a way to disrupt neural activity within the parietal lobe, and then measure effects 
on behavioral performance, as well as neural activity in both stimulated and unstim-
ulated areas of the brain through fMRI scans. The adult participants in the study 
were asked to identify either angle-based or color-based targets on a series of clock 
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images, both in a control trial and in a trial where TMS was applied. Results dem-
onstrated that, consistent with past research, the parietal and frontal lobes showed 
activation during both visual tasks. As predicted, right parietal TMS resulted in 
decreased behavioral performance as well as decreased activity in the stimulated 
area. However, decreased activation was also seen in the right postcentral gyrus and 
the middle frontal gyrus. These extended decreased activation areas were not 
observed when left parietal TMS was applied. These results further support the 
importance of the right parietal lobe in visuospatial tasks, and also demonstrate the 
functionally connective nature of the frontoparietal network with respect to visuo-
spatial cognition.

Building on this study, de Graaf, Roebroeck, Goebel, and Sack (2010) conducted 
research to further investigate the specific patterns of this functional connectivity. 
They had adult participants perform the same tasks described above used by Sack 
et  al. (2007), and then used fMRI to measure brain activation. Furthermore, de 
Graaf and colleagues employed a connectivity analysis technique known as Granger 
Causality Mapping (GCM) to investigate more closely the interactions within the 
established visuospatial network. Their results indicated a strong connectivity 
between the posterior parietal cortex and the middle frontal gyrus, which is consis-
tent with past findings. They also identified directional aspects of this network, dis-
playing a flow of information from the frontal to the parietal lobe. While the flow 
was mainly from the middle frontal gyrus to the posterior parietal cortex, other 
frontal regions were indicated as well, such as the insula. Other areas possibly 
involved in this network include the superior frontal sulcus, postcentral gyrus, and 
occipital cortex.

Many of the studies of visual perception described to this point indicate a certain 
degree of specialization that occurs in the brain with age, experience, or efficiency. 
Another possible mediator of specialization that is of particular interest in this text 
is task-specific—namely, tasks related to mathematical function. As previously 
noted, associations have been established between visuospatial cognition and math-
ematical skills. Some mathematical tasks relate directly to visuospatial cognition, 
such as those involving geometry (see Fig. 5.3). Izard, Pica, Dehaene, Hinchey, and 
Spelke (2011) sought to understand what sort of inherent ability we might have for 
geometric tasks as they relate to spatial perception. They conducted a study in which 
participants had to identify figures in a series of images that were different in some 
way; those differences could be related to one of a few geometric features, such as 
angle, size, or sense. By comparing results between children, adults, and an 
Amazonian tribe with no formal geometry education, Izard and colleagues found 
that certain geometric intuitions do indeed appear to be universal. However, devel-
opmental differences were noted with respect to certain tasks. In task trials involv-
ing stimuli related to length and angle, children performed well. However, in tasks 
requiring spatial sense, children were outperformed by adults, indicating a pro-
tracted development for certain types of visuospatial perception.

Other studies have added to the research on specific math-related visuospatial 
skills by investigating activity within specific brain circuits. Mangina et al. (2009) 
note that task stimuli involving size and dimension correlate more with mathematical 
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skills, and tasks involving orientation relate more to reading skills. In an effort to see 
if these differences are reflected in brain activity, they administered different percep-
tual tasks to participants that related specifically to direction, spatial orientation, size, 
or dimension. The adult participants were required to identify similar stimuli accord-
ing to one of the factors listed above while fMRI scans were conducted to measure 
brain activity. As with previous visuospatial studies, Mangina and colleagues identi-
fied overall activity within a distributed network that included the prefrontal cortex 
as well as the occipitotemporal and parietal regions. However, tasks related more to 
mathematical skills (i.e., those involving size and dimension) revealed activation in 
the bilateral posterior parietal, premotor, and prefrontal regions. These findings con-
trast with reading-related skills, which showed activation in the occipitotemporal and 
sensorimotor cortices.

Overall then, while studies of visual perception cover a broad array of topics, 
they establish clear evidence of a frontoparietal network and a high level of con-
nectivity between these brain regions, indicating that disruption to activity in one 
area can affect activity in another. The available data suggest that both lateral and 
focal specialization within this network is mediated by contributing factors such as 
age, experience, and task specificity.

 Visual Imagery and Mental Rotation

So far we’ve discussed attention to and perception of actual stimuli in our environ-
ment. But, in addition to what is directly perceivable, visuospatial cognition also 
encompasses our ability to picture objects and spatial relationships in our minds. 

Fig. 5.3 Some mathematical tasks relate directly to visuospatial cognition, such as those involv-
ing geometry, and are incorporated into mathematics curricula across grade levels
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For instance, imagine a map from your home to place of work. Perhaps consider a 
map that includes not only routes and direction, but also one that includes actual 
images as well, as if it was a picture from a satellite. How many landmarks, build-
ings, natural objects, and so on can you picture from that route and with how much 
detail? What color are the buildings? How big are the trees? Where are structures 
located in relation to one another? As you drive along your route, how does your 
perspective of a building change as you drive towards it, past it, and then away from 
it? What you pictured above involves not only visual imagery, but manipulation of 
that imagery as well.

It is first important to realize the different types of visual imagery. Let us return 
for a moment to the beginning of this chapter when we discussed two primary corti-
cal streams involved in visuospatial cognition. Remember how we distinguished 
between the dorsal stream, the where pathway concerned with spatial awareness, 
and the ventral stream, the what pathway concerned with object recognition? The 
available research on the basics of visual imagery indicates two basic types of imag-
ery that seem to fit within these two cortical streams.

One type is known as spatial imagery, and refers to a person considering the 
spatial relationship between objects and how they might exist or move in relation to 
each other. So, when we asked you to imagine the placement of structures along 
your route, you were making use of spatial imagery. The other type is known as 
object imagery, and as its name implies, it refers to a person actually picturing an 
object in his or her mind (Kozhevnikov & Blazhenkova, 2013). When we asked you 
to imagine the specific buildings and landmarks, you were making use of object 
imagery. Research supports both functional and anatomical differences between 
these two types of imagery, with processes related to spatial imagery being con-
tained more within the occipitoparietal dorsal pathway and object imagery being 
contained more within the occipitotemporal ventral pathway (Kozhevnikov & 
Blazhenkova, 2013).

Much of the cognitive neuroscience research on visual imagery has investigated 
spatial imagery. Kozhevnikov and Blazhenkova (2013) refer to past research that 
indicates that structures within the dorsal pathway seem to show less neural activity 
in people that perform better on spatial reasoning tasks. This inverse relationship 
between high performance on tasks and lower activity in those task-related areas of 
the brain is known as neural efficiency (Kozhevnikov & Blazhenkova, 2013), the 
idea that a person who is skilled in these sorts of tasks is able to make better and 
more efficient use of brain resources during task performance. For example, 
Kozhevnikov and Blazhenkova describe fMRI studies indicating that participants 
who are more skilled in object imagery tasks typically show less activation in the 
occipital complex when asked to study and visualize line drawings of common 
objects than participants who are more skilled in spatial imagery tasks.

There are other differences between the two imagery types. With regards to 
development, spatial ability seems to increase and peak during adolescence, fol-
lowed by a decline into adulthood (Kozhevnikov & Blazhenkova, 2013). Object 
ability, however, seems to increase continually with age. These fundamental differ-
ences between the two imagery types may have educational implications as well, 
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especially considering the fact that the increased use of spatial reasoning typically 
leads to increased success in mathematical problem solving, as noted in Kozhevnikov 
and Blazhenkova (2013), as well in other studies mentioned previously in this chap-
ter. There seem to be sex differences involved in visual imagery as well. Perhaps the 
area of visual imagery for which this is most evident is mental rotation, which 
involves a person’s ability to imagine how an object would look in a different orien-
tation. If you think back to when we asked you how a building would look depend-
ing on your angle to it while driving, you may have employed mental rotation during 
that exercise. As it relates to the two distinct types of imagery, mental rotation falls 
under the umbrella of spatial imagery. Going back to sex differences, Kozhevnikov 
and Blazhenkova (2013) note that available research points to females being more 
skilled in tasks of object imagery, and males being more skilled in tasks of spatial 
imagery, such as mental rotation.

Roberts and Bell (2000) used electroencephalography (EEG) to investigate dif-
ferences in brain activity with regard to both sex and age during mental rotation 
tasks. They noted that while previous research had indicated that men tend to dis-
play greater right parietal activation than women during mental rotation tasks, little 
research had been done to include the factor of development. To that end, they 
conducted a study with a group of 8-year-old children and a group of college stu-
dents, both male and female. Participants were shown a figure of a gingerbread man. 
Two versions of that figure were then presented, each rotated at a different angle 
from the original. Participants were asked to identify which of the two choices 
matched the original, which would involve mental rotation of the figure to its origi-
nal position. In terms of developmental differences, adult participants displayed 
more activation in all brain areas measured than children, with the exception of the 
lateral frontal area. Meanwhile, the comparison of men and women showed that 
men displayed more activation in the posterior temporal, parietal, and occipital 
regions, consistent with previous research. Interestingly, these activation differences 
were not seen between male and female children, suggesting a developmental factor 
in mental rotation with regards to sex differences. One result that was somewhat 
inconsistent with past research was that men displayed greater parietal activation in 
the left hemisphere as opposed to the right. However, the researchers suggested that 
this result may be in line with a male advantage for mental rotation tasks, as previ-
ous research has indicated that simple rotation tasks typically elicit greater left 
hemisphere activation than complex tasks. In this case, if the task was indeed easier 
for the male participants, then greater left hemisphere activation seems plausible.

Other studies have further investigated these apparent sex differences. Neubauer, 
Bergner, and Schatz (2010) noted some of the inconsistencies in the stability of 
mental rotation performance, citing studies that show performance can be enhanced 
through practice and training. Additionally, the advantage that males have on these 
tasks seems to disappear when the task is presented in 3D, rather than 2- dimensionally 
(2D). They conducted an EEG study in which they presented a mental rotation task 
involving 3D cubes to adolescents. Different trials were conducted involving both 
2D presentation (on a screen) and 3D presentation (using 3D glasses). Pre- and post-
tests were also completed after a training specifically designed for mental rotation 
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tasks. Neubauer and colleagues found that sex differences in terms of task perfor-
mance only held for the 2D version of the task. Additionally, females were able to 
increase their performance to a greater degree following the training. Consistent 
with previous research, activity was generally right lateralized in parietal regions for 
both sexes. One interesting note was that increased neural efficiency after training 
was seen in males overall, but in females neural efficiency only increased for the 3D 
task, rather than the 2D task. These findings suggest that mental rotation task perfor-
mance is malleable, indicating that activation and performance can depend on fac-
tors such as experience and the nature of the stimuli.

Development seems to be an important factor in tasks of mental rotation. A num-
ber of studies have investigated how children perform on these tasks, and what pat-
terns of brain activation they display. Heil and Jansen-Osmann (2007) cite previous 
research indicating that although adults show increased right parietal activity during 
mental rotation, children display greater left hemisphere activation. To validate this 
finding, they conducted an EEG study with a group of 7- and 8-year-old children 
involving mental rotation of alphabetical letters. Consistent with the pattern seen in 
the research on spatial reasoning in general, the most pronounced activation was 
seen in the parietal lobe. Additionally, results showed increased activity in the left 
hemisphere. The researchers speculated that this hemispheric difference between 
children and adults stems from how the two groups approach the task. Children may 
engage in more complex part-representations of mental rotation, whereas adults 
may engage in a simpler whole-representation of the entire figure. These approaches 
could correspond to differences in areas of activation. To build upon this study, 
Lange, Heil, and Jansen (2010) conducted an additional EEG study with the goal of 
determining whether this hemispheric difference in children may be stimulus depen-
dent. Instead of alphabetical letters, children were required to mentally rotate line 
drawings of animals. While activity was again displayed in the parietal region, there 
was no lateralization effect. This finding seems to support the results obtained by 
Neubauer et al. (2010), which point to a variability in mental rotation tasks based on 
task stimuli.

 Visuospatial Working Memory

Throughout the chapter, we’ve presented you with a variety of imaginary tasks. 
Many of these tasks required you to picture shapes you are familiar with. Others 
required you to navigate through an imaginary space. What can you remember 
about those tasks right now? Are you still able to picture the shapes you found hid-
den in objects in your geometry class? What did they look like? Can you picture 
them with the same detail you did some moments ago? What about when we asked 
you to drive past a building—can you still remember the exact route you took in 
your mind?

Just now, the questions we asked caused you to make use of your visuospatial 
memory. Related to general visuospatial memory is visuospatial working memory 
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(VSWM). Working memory in general is not a concept specific to visuospatial 
 cognition. In fact, working memory involves a few different functions such as mem-
ory, attention, and perception, and it is what allows you to hold pieces of informa-
tion in your mind while you operate on that information and use it towards a goal 
(Scherf, Sweeney, & Luna, 2006). Therefore, VSWM involves such abilities as 
being able to picture a novel object you just observed, or being able to remember a 
spatial pattern of movement. Anyone who has ever played the game Simon is prob-
ably familiar with latter, in which you must remember and repeat a pattern of 
sequential lighted buttons.

Just as with other concepts within visuospatial cognition, there are certain areas 
of the brain that have been implicated for VSWM tasks. However, some background 
is required. Two important components of general working memory have repeatedly 
been identified in the literature: the phonological loop, relating to verbal informa-
tion, and the visuospatial sketchpad , relating to visual information (Baddeley & 
Hitch, 1974). As Vecchi, Phillips, and Cornoldi (2001) note, there is evidence that 
these two components operate somewhat independently, such that increased load on 
one component will lead to increased significant interference on tasks requiring that 
same component, but not on tasks requiring the opposite component. Other theoreti-
cal views indicate that working memory performance may vary according to the 
type of stimuli being processed, as well as the degree of necessary active processing 
(Vecchi et al., 2001).

In terms of the type of information being processed, the subdivisions follow the 
same properties of the primary dorsal and ventral networks mentioned previously in 
this chapter. Remembering information related to the where of an object (e.g., the 
route that car takes to get home) activates the dorsal network. Remembering infor-
mation related to the what of an object (e.g., the size and color of a car) activates the 
ventral network. However, there are also differences involving the degree of active 
processing. Passive storage of information requires only remembering previously 
learned information as it was originally presented (Vecchi et al., 2001). However, 
active processing involves not only remembering that information, but also being 
able to manipulate it. Our previous discussion of mental rotation is an example of 
this active processing.

Research has shown that there are observable developmental differences with 
respect to VSWM and its associated subdivisions. One basic observed outcome is 
that VSWM skills increase with age during childhood, although this increase may 
relate more to improvements in working memory in general (Vecchi et al., 2001). 
However, when looking specifically at passive versus active processing, a distinc-
tion does seem to arise. Given effective training strategies, children perform as well 
as adults on tasks involving passive storage, but not on tasks involving active pro-
cessing. On the other end of the spectrum, older adults show a decline in their active 
processing ability, while their passive storage remains stable (Vecchi et al., 2001). 
Since these results are mostly based on VSWM test outcomes, one possible expla-
nation for this is the novelty of VSWM tasks versus verbal working memory tasks. 
Pure VSWM information is free of context, which can lead to an increased require-
ment of executive processing in the frontal lobe. It could be that the decline in 
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VSWM skills in older adults has more to do with these brain areas than functions of 
VSWM specifically.

Other researchers have investigated the aforementioned increase in VSWM skills 
with age and attempted to explain them using the different components of general 
working memory. Pickering (2001) cites previous research indicating that when 
remembering visual information, young children tend to encode the information 
visually; as children age, they tend to translate that same information phonologi-
cally. For example, older children may use verbal labels more than actual visual 
imagery. Additionally, increasing VSWM skills may reflect an overall maturation in 
children’s executive functioning, leading to more efficient use of both verbal- and 
visual-related processing. Pickering also notes that although verbal translation of 
information may account for some of this increase, it cannot explain it completely. 
Other factors may contribute, such as increased attentional capacity, processing 
speed, visuospatial knowledge, and memory strategies.

A number of cognitive neuroscience studies have been conducted to further 
investigate some of these developmental differences. Klingberg, Forssberg, and 
Westerberg (2002) conducted an fMRI study with participants ranging in age from 
9 to 18. Participants were presented with a VSWM task in which they had to remem-
ber positions of a number of red circles within a grid. Results showed that certain 
areas of the brain were activated during the task for all age groups, including the 
prefrontal, cingulate, parietal, and occipital cortices. Additionally, a positive corre-
lation was noted between age and activation in the superior frontal sulcus, the intra-
parietal and superior parietal cortices, and the left occipital cortex. These results are 
somewhat inconsistent with other studies of visuospatial cognition in which age 
usually correlated with lower frontal activity. However, VSWM tasks are somewhat 
unique in that they are not likely to improve with training and experience, leading to 
continued frontal activation. These results are consistent with other studies, how-
ever, in providing evidence of a frontoparietal network for visuospatial cognition. 
Klingberg and colleagues suggest that concurrent neurological developments, such 
as myelination within the parietal cortex and synaptic pruning, may contribute to 
the increased activation seen in this network with age.

Scherf et al. (2006) conducted an fMRI study with a group of children, adoles-
cent, and adult participants aged 8–47. In this study, participants had to move their 
eye gaze to a spatial target based on previous presentation of a visual stimulus in 
that target area. As predicted, certain regions displayed activation for all three age 
groups, including the right dorsolateral prefrontal cortex, the right ACC, the bilat-
eral interior insula, the right superior temporal gyrus, the right interoccipital sulcus, 
and the right basal ganglia. Interestingly, the parietal cortex was not included in 
these results. Developmentally, children displayed greater activation in the thalamus 
and cerebellum in comparison to adolescents. Additionally, children displayed less 
activation in the dorsolateral prefrontal, parietal, premotor, and cingulate cortices 
than adolescents or adults. Overall, these results are consistent with other findings 
indicating that the dorsal pathway has a more protracted developmental trajectory 
than the ventral pathway. While both adolescents and adults showed activation in 
the aforementioned areas, Scherf and colleagues noted that adult activation was 
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more left lateralized in regions consistent with use of the phonological loop. As 
mentioned previously, this may reflect a strategy of verbally recoding visual infor-
mation for increased memory effectiveness.

Because of these apparent developmental differences in VSWM, other research-
ers have attempted to investigate the associated educational implications by explor-
ing associations between VSWM and certain academic abilities, including 
mathematical performance. Dumontheil and Klingberg (2012) cited meta-analyses 
showing the IPS to be vital in numerical processing. As this area of the brain has 
been noted to be important to VSWM as well, they conducted a longitudinal study 
investigating the relationship between working memory ability, arithmetic perfor-
mance, and brain activation in children aged 6–16  years. Participants’ VSWM, 
visuospatial reasoning, and arithmetic abilities were assessed using standardized 
assessments. A subset of participants also took part in an fMRI scan while perform-
ing a VSWM task. Their results showed that VSWM and visuospatial reasoning 
correlated positively with arithmetic performance, but there was no relationship 
with age. However, there were developmental differences in brain activation, with 
increased activation in the left parietal sulcus relative to the rest of the brain predict-
ing poorer arithmetic performance 2 years later, but greater activation in the whole 
brain VSWM network predicting better arithmetical performance.

Whereas Dumontheil and Klingberg’s (2012) study investigated VSWM and 
associated brain activation trends with respect to mathematics, others have sought 
to explore the relationship between mathematical performance and the type of 
working memory employed as children grow older. Soltanlou, Pixner, and Nuerk 
(2015) conducted a study in which children in grades 3 and 4 were assessed on both 
verbal and visual working memory tasks and their multiplication skills. As observed 
in other studies, results showed that, overall, children’s working memory skills 
increased with age. However, they also found that while verbal working memory 
was a predictor of multiplication problem solving ability in grade 3, it was not pre-
dictive of performance in grade 4. The opposite was true for VSWM, being a predic-
tor of performance in grade 4, but not in grade 3. According to Soltanlou and 
colleagues, these results are consistent with other studies showing a weak connec-
tion between the phonological loop and mathematical ability in adults versus chil-
dren. The implication is that the verbal component of working memory is important 
when younger children are learning math skills, but that as they develop, their 
understanding of mathematics becomes more abstract and visually based. Results 
such as these show the general developmental trends seen in VSWM have a com-
plex interaction with children’s mathematical abilities and cognition.

Conclusions

Overall, research indicates the important role of the parietal lobe in general visuo-
spatial cognition, but also the dominance of the right hemisphere with respect to 
certain visuospatial skills. Other brain areas related to visuospatial cognition include 
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the superior frontal gyrus/sulcus, anterior insular cortex, temporal- occipital cortex, 
dorsolateral prefrontal cortex, precentral gyrus, and left hemisphere dorsal anterior 
cingulate cortex.
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Chapter 6
Mathematical Difficulties 
and Exceptionalities

Rachel Lindberg and Rhonda Douglas Brown

Abstract In this chapter, we review research on mathematical difficulties and 
exceptionalities. Mathematical difficulties are distinguished from general learning 
difficulties, and include developmental dyscalculia and mathematical learning dis-
abilities. We discuss research on cognitive processing associated with mathematical 
difficulties, including the approximate number system, or number sense, fact 
retrieval, delayed procedural development, fractions and proportional reasoning, 
visuospatial reasoning, working memory, and time estimation. We also present neu-
roscience research indicating specific effects related to mathematics for children 
with a diversity of neurodevelopmental disorders, syndromes, and conditions, 
including Autism spectrum disorder, Fragile X syndrome, Turner syndrome, 
22q11.2 deletion syndrome, Williams syndrome, Spina Bifida, prenatal alcohol 
exposure, premature birth, developmental coordination disorder, attention deficit 
hyperactivity disorder, epilepsy, traumatic brain injury, schizophrenia, and depres-
sion. Neuroscience research related to individual differences in language and read-
ing and giftedness, including synesthesia, is also discussed. We conclude by raising 
considerations and limitations for interpreting neuroscience research on mathemati-
cal difficulties and exceptionalities, including small sample sizes, group assign-
ment, inferences from lesion and neuroimaging studies, and the disease model.

 Mathematical Difficulties

We encounter numbers on a daily basis and in a number of formats, including Arabic 
(2), number words (two), Roman numerals (II), time (2:00 p.m.), finger signs, and 
words with numeric meaning (duo). Individuals with dyscalculia have difficulty 
mastering these numerical understandings and show deficits in counting skills, 
magnitude processing, arithmetic, using digits and quantities, and spatial represen-
tations as well as difficulties in domain-general skills such as working memory and 
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attention (Kucian & von Aster, 2015). Kaufmann et al. (2013) suggested that dyscal-
culia subtypes arise from both domain-general and domain- specific processing defi-
cits. From a developmental perspective, von Aster and Shalev (2007) proposed that 
any of the four steps of number acquisition may be negatively affected in individu-
als with dyscalculia, including (1) innate number representation, (2) associations 
between nonverbal characteristics and linguistic symbolization, (3) Arabic notation 
and value, and (4) exact number line with ordinal number positions. Research on 
neural correlates of dyscalculia report reduced brain activation in core areas of num-
ber processing and increased activation in frontal regions (Ashkenazi, Rosenberg-
Lee, Tenison, & Menon, 2012; Kucian & von Aster, 2015; Kuhn, 2015; Stark, Eve, 
& Murphy, 2016). In other words, individuals with dyscalculia do not activate the 
same brain regions as their typically developing (TD) peers. This finding of a differ-
ent developmental trajectory suggests compensatory networks for number process-
ing (Kucian & von Aster, 2015; Stark et al., 2016).

Mathematical difficulties (MD) are typically characterized by impairments in 
arithmetic problem solving (Karagiannakis, Baccaglini-Frank, & Papadatos, 2014). 
That is, individuals with mathematical difficulties have impairments in cognitive 
processes that are specifically related to mathematical understanding. To distinguish 
mathematical difficulties from general learning difficulties and low mathematics 
achievement, researchers search for indicators of numerical cognition, arithmetic 
reading, working memory, numerical processing speed and accuracy, and visuospa-
tial processing (Tolar, Fuchs, Fletcher, Fuchs, & Hamlett, 2016). Although more 
general cognitive processes such as working memory and intelligence (IQ) are asso-
ciated with mathematical difficulties, the literature uses indicators of number- 
specific cognitive processes more often than comparisons between IQ and 
achievement to identify mathematical difficulties (Bartelet, Ansari, Vaessen, & 
Blomert, 2014; Tolar et al., 2016). For example, Tolar et al. (2016) evaluated math-
ematical problem solving among 813 third-grade students and used percentiles 
among the sample to classify students into learning disabled (LD), low achievement 
(LA), and no learning difficulties groups. They found significant differences 
between the groups in achievement, cognitive processing, and attention. Furthermore, 
Tolar et al. (2016) found that when groups were defined by mathematical problem 
solving achievement, they differed in basic arithmetic skills, but when groups were 
defined by IQ discrepancy, they differed in word problem solving. These findings 
indicate a need to specify types of learning difficulties in order to meet the needs of 
individual students. In the literature, four subtypes of mathematical learning diffi-
culties have been identified: number sense, procedural, semantic, and spatial 
(Bartelet et al., 2014; Geary, 2010; Jordan, Hanich, & Kaplan, 2003; Karagiannakis 
et al., 2014; Mazzocco & Myers, 2003; Raghubar et al., 2009). For example, Geary 
(2010) described a number sense subtype that involves difficulties with exact, small 
quantity and approximate representational systems; a procedural subtype that 
involves working memory difficulties during counting; a semantic subtype that 
involves fact retrieval deficits; and a visuospatial subtype that involves difficulties in 
aligning numerals in multi-digit calculations.

Mathematical learning disabilities (MLD) represent a discrepancy between 
mathematical performance and expected performance based on age, intelligence, 
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and educational level (Geary, 2011). Individuals with MLD are delayed in the 
development of procedural skills and have difficulty storing and retrieving arithme-
tic facts while those classified as having low mathematics achievement demonstrate 
average intelligence and subtle deficits in attention (Geary, 2011, 2013). Therefore, 
tests of intelligence may help identify whether individuals have MLD or low 
 mathematics achievement. To document growth trajectories of children with MLD 
and low mathematics achievement, Geary, Hoard, Nugent, and Bailey (2012) 
tracked and compared number processing, fact retrieval, and arithmetic competency 
among children from kindergarten through fifth grade. Results are shown in Fig. 6.1. 
Although no significant achievement score differences were found between chil-
dren with MLD and low achievement, children with MLD demonstrated a develop-
mental delay of 1  year for simple problems and 1–2  years for more complex 
problems and experienced more difficulties retrieving facts from long-term mem-
ory. Difficulty in fact retrieval may be due to the inability of children with MLD to 
inhibit irrelevant information in working memory during retrieval or lower execu-
tive attention (Geary, 2011; Geary, Hoard, & Bailey, 2012; Kuhn, 2015).

To identify neurological underpinnings of cognitive deficits, many studies inves-
tigating MLD use fMRI to study brain activation during various mathematical tasks. 
Such research indicates that children with MLD demonstrate significantly greater 
activation in domain-general brain regions, which may be due to greater cognitive 
demands and reliance on developmentally immature methods of problem solving 
(Davis et al., 2009; Geary, 2010). According to Davis et al. (2009), abnormal brain 
activation may lead to reallocation of cognitive resources to other areas of the brain 
in order to maintain performance. In the following section, we discuss various cogni-
tive processing difficulties associated with mathematical difficulties in greater detail.

 Cognitive Processing Difficulties

Approximate Number System or Number Sense On number line estimation 
tasks, children with MLD use less mature strategies and make more estimation 
errors, suggesting deficits in mental representation of numerical magnitude (van’t 
Noordende, van Hoogmoed, Schot, & Kroesbergen, 2016), or the quantity system of 
the triple-code model (see Chap. 1). However, research also indicates that individu-
als with MLD have difficulties with accessing magnitude representations on sym-
bolic number comparison tasks (Andersson & Östergren, 2012; de Smedt & 
Gilmore, 2011; Defever, de Smedt, & Reynvoet, 2013). For example, children with 
MLD have greater difficulty comparing two numbers that are presented in two dif-
ferent formats (the Arabic numeral 2, five dots), but do not have difficulty when 
comparing two numbers presented in the same format (three dots, six dots). Research 
on brain activation related to symbolic number processing demonstrates that chil-
dren with dyscalculia show differential brain activation in the intraparietal sulcus 
(IPS), bilaterally, during number comparison than children without dyscalculia 
(Mussolin et al., 2010).

Cognitive Processing Difficulties
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Fact Retrieval Mastery of arithmetic facts and speed of fact retrieval, correspond-
ing to the verbal system of the triple-code model, are impaired among those with 
MLD. Poor fact mastery and retrieval are associated with developmental delays, 
little developmental growth over time, and immature calculation strategies (Baroody, 
Bajwa, & Eiland, 2009; Jordan et al., 2003). Abnormal activation in the prefrontal 
cortex among children with MLD may indicate differential neural pathways for 
information retrieval. In their study of children with MLD and low mathematics 
achievement, Geary, Hoard, Nugent, and Bailey (2012) found that children with 
MLD had the lowest verbal IQ and achievement scores, relied most heavily on fin-
ger and verbal counting to solve mathematical problems, had pervasive working 
memory deficits, and took longer to respond to problems. Individual differences in 
each area of brain activation may differentiate individual subtypes of MLD and lead 
to different developmental and information retrieval patterns.

Delayed Procedural Development Procedural errors during problem solving may 
represent developmental delays in mathematical processing. Errors in mathematical 
facts (i.e., verbal system of the triple-code model) and visual monitoring (visual 
system of the triple-code model) are most characteristic of children with MLD 
(Raghubar et  al., 2009). To study procedural development in adolescents, 
Rosenzweig, Krawec, and Montague (2011) used a think-aloud method where stu-
dents verbally reported their strategies for solving mathematical problems of vary-
ing complexity. They found those with MLD used more task-unrelated verbalizations 
on the most complex problems, suggesting potential difficulty in analyzing complex 
procedures or translating mental procedures into verbalizations.

Fractions and Proportional Reasoning Hecht and Vagi (2010) found that indi-
viduals with MLD showed significantly fewer gains in fraction computation and 
word problem solving over time, indicating potential difficulties in both conceptual 
knowledge and attention. These findings support the literature on slower growth 
trajectories and attentional deficits in MLD.

Visuospatial Representation Solve the following word problem:

Carol is wrapping gifts and tying them with ribbon. Each gift requires 3 feet of ribbon and 
she can only wrap 1 gift at a time. If Carol has 28 feet of ribbon, how many presents can she 
tie with ribbon?

When solving the problem, did you picture the problem in your mind? If so, did 
you visualize pictorial representations of the objects, or did you visualize a sche-
matic or diagram of the problem? Different types of visualizations can be used to 
help solve mathematical problems, although varying definitions of imagery can 
contribute to different findings on the relationship between visuospatial representa-
tion and mathematics achievement. Van Garderen and Montague (2003) examined 
this relationship among students who were either classified as gifted, TD, or having 
MLD. They found that gifted students used more visualizations overall and primar-
ily used schematic representations, TD students used both schematic and pictorial 
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representations, and students with MLD used the fewest visualizations and favored 
pictorial representations. Furthermore, van Garderen and Montague (2003) noted 
that schematic representations were more often associated with correct responses, 
while pictorial representations were typically associated with incorrect responses. 
Difficulties with visuospatial information and representation among individuals 
with MLD may relate to their inability to inhibit irrelevant information from work-
ing memory by means of including irrelevant information in their visualizations.

Working Memory Research suggests that working memory includes the visuo-
spatial sketchpad for number line representation, the phonological loop for main-
taining arithmetic results, and the  central executive for sequencing complex 
arithmetical procedures (Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 
2013; Menon, 2016; Meyer, Salimpoor, Wu, Geary, & Menon, 2010). To examine 
each of these components and their relation to brain activation, Ashkenazi et  al. 
(2013) studied the performance of children on a block recall task. They found the 
central executive and phonological working memory functions were similar between 
TD individuals and individuals with MLD, but visuospatial working memory was 
significantly lower and brain activations demonstrated differential use in those with 
MLD. These findings are consistent with other research on visuospatial working 
memory in which reduced brain activity was observed in children with MLD 
(Menon, 2016; Rotzer et al., 2009).

Time Estimation Accurate time perception allows us to predict, anticipate, and 
respond to daily situations, such as estimating how long we need to get ready in the 
morning or guessing the current time without looking at a clock. Time perception 
consists of three components: clock or regular interval pulses, memory for duration 
and number of pulses, and comparison between current and previously remembered 
duration (Hurks & van Loosbroek, 2014). To compare time perception between 
children with TD and those with MLD, Hurks and van Loosbroek (2014) measured 
verbal time estimation, time production, and time reproduction. They found that 
children with MLD overestimated duration of a time interval and underproduced a 
reproduction of a time sample. Thus, difficulties in time perception may be due to 
the translation from experienced duration to a verbal statement.

Multiple Difficulties So far, we have discussed how individuals with MLD are 
alike. However, even within this group, individual differences in strategies, working 
memory, visuospatial representation, and other cognitive processes contribute to 
differing developmental trajectories. Research suggests that individual differences 
in fact retrieval strategies may be related to delayed development (Geary, Hoard, 
Byrd-Craven, & DeSoto, 2004) and impaired verbal retrieval (Berteletti, Prado, & 
Booth, 2014) may prevent the shift from counting to more complex retrieval strate-
gies. Kaufmann, Wood, Rubinsten, and Henik (2011) conducted a meta-analysis of 
19 studies to examine individual differences between symbolic and nonsymbolic 
representation, number magnitude processing, and neural correlates of calculation 
in children. They found that children activate a broad network of brain regions when 
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performing calculation and symbolic and nonsymbolic representation activated dif-
ferent parietal regions. Additionally, children with dyscalculia had less robust 
number- activations in the intraparietal sulcus (IPS), indicating that they used 
 compensatory neural pathways or activated inefficient frontal brain regions during 
calculation tasks. Therefore, any combination of cognitive processing deficits may 
contribute to MLD and be represented by differential brain activation.

Limited Opportunities Apart from cognitive abilities, environmental opportuni-
ties for learning and social experiences may contribute to learning success and dif-
ficulty. Take a moment to think about the environmental influences on your learning 
during childhood. Did you have many same-age peers or siblings? What kinds of 
toys and activities did you have to engage you physically and mentally? Did you 
attend a preschool or daycare center? These and other factors can contribute to dif-
ferences in early mathematical learning. Jordan and Levine (2009) reported that poor 
early learning experiences and instruction led children entering school to rely on 
counting strategies longer, have poor calculation fluency, and difficulties in reading 
and language skill acquisition. Children with low SES show delays in number com-
petence and little growth during early school years if they begin at a low level 
(Jordan & Levine, 2009). With regard to such environmental factors, positive early 
learning experiences prior to formal education are essential for successful and 
developmentally appropriate learning.

 Exceptionalities

 Neurodevelopmental Disorders, Syndromes, and Conditions

Mathematical Learning Difficulties may be related to neurodevelopmental disor-
ders, syndromes, and conditions. Neurodevelopmental disorders have a basis in 
biology and are thought to directly influence brain structure and function, which in 
turn affects cognition and mathematical learning and performance. Children with 
22q11.2 gene deletion syndrome demonstrate difficulties in procedural calculation, 
mathematical word problem solving, and understanding numerical quantities 
(Dennis, Berch, & Mazzocco, 2009). Similarly, girls with Turner syndrome are 
slower at number comparison, processing, and numerical estimation, while girls 
with fragile X syndrome show weaker numerical understanding. In other develop-
mental disorders, profiles of difficulties are less clear, as greater individual differ-
ences exist. According to Dennis et al. (2009), trajectories of MLD include early 
mathematical impairments that predict later difficulties, which may span a lifetime. 
Regarding results from neuroimaging studies, some findings appear to be common 
in those with MLD, including reduced white matter and parietal lobe activation 
(Dennis et al., 2009). Again, it is important to note that mathematical abilities are 
associated with a complex developmental system of biological, genetic, and envi-
ronmental factors. In this section, we will discuss some of the research on neuro-
developmental disorders, syndromes, and conditions, and their relation to MLD.
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Autism Spectrum Disorder Autism spectrum disorder (ASD) is an early onset 
neurodevelopmental disorder that primarily affects social communication and inter-
action (for a review, see Pelphrey, Yang, & McPartland, 2014). Some people believe 
that individuals with ASD are more likely to show mathematical giftedness. 
However, conclusions from Chiang and Lin’s (2007) meta-analysis suggest that the 
full range of mathematical ability is represented in the ASD population, with a sub-
set of those with ASD experiencing significant mathematical difficulties. These dif-
ficulties may involve early-developing skills that require perceiving and representing 
multiple objects simultaneously, such as numerosity and subitizing discussed in 
Chap. 3. For example, O’Hearn et al. (2016) found that, while engaging in an enu-
meration task, adults with autism showed greater activation, used more regions with 
smaller set sizes, and showed a lack of deactivation for competing processes com-
pared to TD adults. Oswald et al. (2016) found that adolescents with ASD were five 
times more likely to have mathematical difficulties than to be mathematically gifted, 
with perceptual reasoning accounting for much of the differences in mathematical 
performance between individuals with ASD and their TD peers. Regarding neural 
functioning, Damarla et  al. (2010) found that, although their behavioral perfor-
mance on the Embedded Figures Task was similar to controls, a sample of adoles-
cents and young adults with ASD showed less activation in dorsolateral frontal areas 
and more activation in bilateral parietal and right occipital areas, possibly indicating 
reliance on visuospatial strategies. Furthermore, they showed lower functional con-
nectivity between frontal areas involved in working memory and executive function 
and posterior (parietal and occipital) areas involved in visuospatial processing, 
which was positively correlated with size of the corpus callosum. Yamada et  al. 
(2012) found similar results using the Raven’s Standard Progressive Matrices test. 
However, Iuculano et al. (2014) found that school-age children with ASD used more 
sophisticated decomposition strategies and solved numerical problems better than 
TD peers. Interestingly, they found that activation in ventral temporal-occipital 
areas typically associated with face processing predicted problem solving abilities 
in children with ASD, but not their TD peers. They concluded that individuals with 
ASD use cortical regions involved in perceptual expertise in novel ways.

Fragile X and Turner Syndromes Fragile X is caused by a disruption in the pro-
duction of fragile X mental retardation protein (FMRP), leading to less than optimal 
neural development as well as deficits in visual perception skills, working memory, 
and executive function (Murphy, 2009). More is known about MLD in girls with 
fragile X syndrome, as this population is more often studied in the literature. 
According to Rivera, Menon, White, Glaser, and Reiss (2002), females with fragile 
X have acalculia, or inability to complete simple arithmetic problems, as well as 
patterns of weakness in arithmetic reasoning and digit span. Individuals with fragile 
X show no differences in brain activation in the bilateral prefrontal cortex, motor, or 
parietal cortices between easy and difficult tasks, which may indicate deficiencies in 
number sense and rational number knowledge. Turner syndrome results from partial 
or complete loss of an X chromosome and has cognitive phenotypes similar to 
 fragile X, including weaknesses in visuospatial perception, mathematics, sustained 
attention, and executive function (Mazzocco & Hanich, 2010).
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22q11.2 Genetic Deletion and Williams Syndrome Chromosome 22q11.2 dele-
tion, or velo-cardio-facial syndrome, and also called DiGeorge syndrome, is caused 
by deletion on chromosome 22. Individuals with 22q11.2 deletion syndrome often 
have specific facial features, such as a long face; flat cheeks; wide-set eyes with 
hooded eyelids; small, low-set ears with squared upper ears; a narrow nose; a small, 
downward mouth; cleft lip or palate; and an underdeveloped chin. 22q11.2 deletion 
syndrome is associated with abnormalities in posterior and frontoparietal neural 
networks (Brankaer, Ghesquière, De Wel, Swillen, & De Smedt, 2016). Regarding 
cognitive phenotype, children with 22q11.2 deletion syndrome exhibit deficits in 
visuospatial working memory and executive control as well as domain-specific 
impairments in numerical representations and slower execution of calculations and 
word problem solving (de Smedt et al., 2007; De Smedt, Swillen, Verschaffel, & 
Ghesquière, 2009). de Smedt et al. (2009) found that individuals with 22q11.2 dele-
tion syndrome were significantly slower than their TD peers on number compari-
son, strategy use, and problem solving with larger quantities. Deficits in visuospatial 
processes are also found in individuals with Williams syndrome, which is associated 
with atypical brain activation patterns in the parietal lobe and decreased grey matter 
(O’Hearn & Luna, 2009). Despite impairments to visuospatial processes, visual 
abilities such as perception of motion and face and object recognition remain intact 
among those with Williams syndrome. O’Hearn and Luna (2009) also found impair-
ments in number magnitude representation and approximate numbers, but strong 
memory for mathematical facts and exact number representation.

Spina Bifida Spina bifida myelomeningocele is a neurological disorder that affects 
development of the spine and brain and is accompanied by difficulties with arithme-
tic, estimation, and word problem solving (English, Barnes, Taylor, & Landry, 
2009). In a longitudinal study, Barnes et al. (2014) found that children with spina 
bifida performed worse than TD peers on mathematical calculations, mathematical 
and reading fluency, and passage comprehension. Despite demonstrating strong ver-
bal and word reading skills, individuals with spina bifida show impairments specific 
to mathematics learning.

Prenatal Alcohol Exposure and Premature Birth Individuals with prenatal 
alcohol exposure present with neurocognitive deficits in visuospatial processing, 
attention, and working memory as well as mathematical processing, particularly 
among physically affected (dysmorphic) individuals (Santhanam, Li, Hu, Lynch, & 
Coles, 2009). Research on premature birth (less than 32 weeks) focuses on brain 
structure and function such that reduced grey matter in premature brains negatively 
correlates with reaction times of numerical processing (Starke et al., 2013). Children 
born prematurely tend to show reduced brain size and function, which relates to dif-
ficulties in classifying numbers. Similar results in reduced brain morphology were 
found by Klein et  al. (2014). Children born prematurely demonstrated greater 
 activation of the inferior frontal gyrus during a number comparison task, which was 
linked to lower estimated IQ. Taken together, research suggests that premature birth 
is associated with abnormal brain morphology and function, which, in turn, affects 
numerical processing and intelligence.
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Developmental Coordination Disorder Developmental coordination disorder 
(DCD) is characterized by impairment in motor coordination and has been con-
nected to mathematical learning difficulties (Pieters, Roeyers, Rosseel, Van 
Waelvelde, & Desoete, 2015). One characteristic of mathematical difficulties that 
appears in individuals with DCD is developmental delay, in which children demon-
strate skills equal to younger peers based on age and educational level. For example, 
Pieters, Desoete, Van Waelvelde, Vanderswalmen, and Roeyers (2012) examined 
differences in fact retrieval and procedural calculation between children with mild 
and severe DCD. Overall, difficulties in both fact retrieval and procedural calcula-
tion were reported for individuals with DCD and those with mild DCD had aca-
demic profiles similar to children 1 year younger, while those with severe DCD had 
academic profiles similar to children 2 years younger.

Attention Deficit/Hyperactivity Disorder While reading a long journal article or 
book chapter such as this, it is normal for attention to wander or to have small, regu-
lar breaks, so go stretch for a minute before coming back to your reading. Were you 
able to jump back into the reading fairly easily? Can you remember the information 
you previously read? As you are reading, do you experience significant difficulties 
in avoiding physical or mental distractions? Individuals with attention deficit/hyper-
activity disorder (ADHD) have difficulty sustaining attention and retaining informa-
tion in working memory and would likely be unable to sustain attention to this 
reading for long. Previous research on the neural correlates of ADHD consistently 
demonstrates weaker activation in attention-related areas, which may represent lack 
of arousal or attention during simple tasks (Lenartowicz et  al., 2014; van Ewijk 
et al., 2015). To capture attention and incentivize individuals with ADHD, research 
advocates the use of greater external rewards and feedback. Hammer et al. (2015) 
measured the effects of rewards and feedback on working memory and brain activa-
tion in individuals with ADHD, observing greatest performance when individuals 
with ADHD received high rewards and feedback, during which brain activation 
equaled that of TD peers. Therefore, offering greater external rewards and feedback 
may be an avenue to help children with ADHD sustain attention and inhibit distract-
ing behaviors and thoughts.

Epilepsy and Traumatic Brain Injury Epilepsy is a chronic disease characterized 
by seizures caused by abnormal neuronal discharges (Lv et al., 2014). Seizures may 
lead to cognitive impairments in memory, attention, language, and executive func-
tion, depending on where the neuronal discharges are located. For individuals with 
epilepsy, brain plasticity may allow secondary, compensatory pathways to form in 
order to maintain cognitive functions. Lv et al. (2014) examined cognitive impair-
ments due to epilepsy and found that those with right temporal lobe epilepsy 
 demonstrated lower functional connectivity in regions of the right prefrontal lobe, 
but greater functional connectivity in adjacent regions, indicating compensatory 
pathways to allow continual functioning of visuospatial working memory. The result 
of physical injury rather than seizures, traumatic brain injury (TBI) may lead to 
similar deficits in information processing speed, visuospatial processing, memory, 
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and executive function. Specific to visuospatial processing, research suggests dam-
age to the left hemisphere results in local or detail-oriented errors, while damage to 
the right hemisphere results in global or big-picture errors; thus, as discussed in 
Chap. 5, visuospatial processing is lateralized (Schatz, Ballantyne, & Trauner, 
2000). Overall, mathematical-related difficulties for individuals with TBI compared 
to those with TD include lower performance on math fluency, calculation, applied 
problems, and verbal working memory (Raghubar, Barnes, Prasad, Johnson, & 
Ewing-Cobbs, 2013).

Schizophrenia and Depression Schizophrenia involves breakdown of thought, 
emotion, and behavior, leading to faulty perceptions and mental fragmentation. 
Depression is characterized by persistent depressed mood, withdrawal from rela-
tionships, and loss of interest in activities. While using fMRI to measure brain acti-
vation during mental arithmetic among individuals with schizophrenia and 
depression, Hugdahl et  al. (2004) detected significantly lower response accuracy 
and slower reaction times. Furthermore, individuals with schizophrenia activated 
parietal lobe regions and showed deficits in the left hemisphere, while individuals 
with depression activated frontal lobe regions and showed deficits in the right hemi-
sphere. Although dysthymic disorder is characterized by sad and irritable mood and 
is only associated with depressive symptoms, individuals with dysthymic disorder 
demonstrate patterns of neurological activation and mathematical learning difficul-
ties similar to those with depression. Indeed, children with dysthymic disorder dis-
played abnormal brain activity in regions of the left prefrontal cortex, which are 
associated with working memory and are impaired in individuals with depression 
(Vilgis, Chen, Silk, Cunnington, & Vance, 2014).

 Individual Differences in Language and Reading

Deaf or Hard of Hearing Earlier in this chapter, we discussed how acquisition of 
linguistic skills is important for numerical processing and how innate abilities for 
processing small quantities provide the foundation for secondary mathematical 
abilities, which rely on language skills and formal schooling. Consider your own 
learning of numbers—did you speak numbers as you learned them or repeat what 
you heard about quantities and arithmetic formulas? Children who are deaf or hard 
of hearing are not afforded this luxury and research indicates they struggle to learn 
the fundamentals required to achieve good mathematics performance and have dif-
ficulties in symbolic number processing (Rodríguez-Santos, Calleja, García-Orza, 
Iza, & Damas, 2014). In their investigation of nonsymbolic and symbolic number 
representation task performance among children, Rodríguez-Santos et  al. (2014) 
observed equal task performance between TD and deaf or hard of hearing children, 
but the later were significantly slower at accessing quantity information from sym-
bolic representations. Further research may help determine whether slower reac-
tions and symbolic processing speed are more related to differential neural pathways 
or developmental delay.
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Multilingualism Multilingualism has obvious linguistic benefits, but it is unclear 
whether cognitive costs exist with multilingual learning, particularly when the lan-
guage used during instruction differs from the language used during knowledge 
retrieval (Saalbach, Eckstein, Andri, Hobi, & Grabner, 2013). Cognitive costs refer 
to the disadvantages or abnormal brain functions that occur in information storage 
and retrieval due to the extra cognitive resources dedicated to becoming proficient 
in multiple languages. Research on cognitive costs of multilingualism indicate that 
gained knowledge is tied to the language of learning while switching between lan-
guages lowers accuracy and speed in addition to utilizing differential neural net-
works for solving problems (Grabner, Saalbach, & Eckstein, 2012; Saalbach et al., 
2013). Mondt et al. (2011) used fMRI to examine whether language of instruction 
influenced calculation skills and found that children who did not complete a math-
ematical task in the same language they used to learn the information activated more 
diffuse areas, suggesting that multilingual children who use different languages for 
information learning and retrieval use secondary, and potentially weaker, neural 
pathways for information recall.

Reading Disabilities and Dyslexia Dyslexia is primarily a language-based disor-
der in which individuals exhibit difficulties with phonological awareness and pro-
cessing and demonstrate deficits in translating symbolic representations and 
information recall (Olulade, Gilger, Talavage, Hynd, & McAteer, 2012). Individuals 
with dyslexia may have comorbid difficulties with mathematical learning or  dyscal-
culia. Research on such comorbidity reveals significant impairments on fact retrieval 
and exact mental calculation and arithmetical fact retrieval, although significantly 
slower reading speed accounts for some variance between individuals with TD and 
those with dyslexia and dyscalculia (Mammarella et al., 2013). Functional differ-
ences in nonverbal areas of the brain during information processing were examined 
by Olulade et al. (2012) who found that individuals with reading difficulties demon-
strated less activity in the left frontal and occipital-temporal areas during a reading 
task. Thus, individuals with dyslexia may exhibit deficits in reading speed and word 
processing as demonstrated by abnormal brain activation during reading, and, when 
comorbid with MLD, demonstrate impairments in poor mental calculation and 
arithmetic fact retrieval.

 Giftedness

Up to this point, we have explored conditions that lead to mathematical difficulties 
and low achievement. Now, we turn to the opposite end of the performance spec-
trum to consider neural correlates of mathematical giftedness, which is character-
ized by exceptional mathematical abilities that emerge early in life without formal 
training. Prescott, Gavrilescu, Cunnington, O’Boyle, and Egan (2010) investigated 
whether mathematical giftedness is associated with enhanced functional connectiv-
ity during complex spatial tasks. They found that mathematically gifted individuals 
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showed greater intrahemispheric frontoparietal connectivity, which is involved in 
complex spatial analysis, and greater interhemispheric dorsolateral prefrontal and 
premotor connectivity, which indicates better integration of inputs from more areas 
of the brain without additional processing costs. Consistent with these findings, 
Fehr, Weber, Willmes, and Herrmann (2010) reported the case of mathematical 
prodigy CP who engaged in daily training in mental calculations and exhibited 
faster processing speed and a larger network that included greater activation in fron-
tal and posterior brain regions as well as typical patterns of activation in the middle 
frontal and inferior parietal regions.

When you see a string of numbers or are given certain mathematical problems or 
formulas, do you automatically associate them with particular sights, shapes, sounds, 
or smells? For some individuals, every number has its own color, emotion, and per-
sonality. For example, when DT thinks of the number 1, it is a flash of white light 
and when he thinks of the number 6, he sees it as a black hole, a place to climb into, 
and a retreat from the world. This condition, in which stimulation in one sensory or 
cognitive stream involuntarily leads to experiences in other sensory or cognitive 
systems, is called synesthesia. Baron-Cohen and colleagues (2007; Bor, Billington, 
& Baron-Cohen, 2007) have published single case studies of savant DT, who not 
only has a form of synesthesia that creates complex 3D mental landscapes when he 
is stimulated by a stream of numbers, but also has Asperger syndrome, which is 
considered an ASD. As noted by Baron-Cohen and colleagues, this combination 
seems to have endowed DT with exceptional numerical memory and calculation 
abilities. For example, DT knows the value of Pi up to 22,514 decimal places and he 
can rapidly perform mental calculations. To better understand DT’s abilities, Bor 
et al. (2007) used fMRI to compare his neural activity to TD controls without synes-
thesia or ASD. During a digit span task, DT showed hyperactivity in bilateral pre-
frontal cortex during encoding in comparison to controls, indicating that his 
processing of number sequences is different. The authors speculated that TD’s syn-
esthesia generates highly chunked representations of numbers that enhance encod-
ing of digits and facilitate recall and calculation, which is supported by their findings 
that DT’s neural activity and performance did not differ for structured and unstruc-
tured digit sequences, whereas controls showed higher bilateral prefrontal activation 
and a performance advantage for structured sequences. DT’s more conceptual form 
of synesthesia in combination with his focus on local details associated with 
Asperger syndrome may explain his exceptional abilities. Brogaard, Vanni, and 
Silvanto (2013) provided a different case study of JP who has an exceptional ability 
to draw complex geometric images by hand and reports perceiving mathematical 
formulas and objects as geometric images. They found that JP demonstrated greater 
activation in the left temporal, parietal, and frontal lobes for formulas that induced 
geometric images in comparison to those that did not, suggesting that his synesthetic 
experiences are based on particular concepts, rather than general perceptions.

Table 6.1 displays each of the specific mathematical learning exceptionalities 
discussed in the chapter, along with accompanying cognitive processing phenotypes 
and neurological correlates.
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Table 6.1 Neurodevelopmental conditions, associated cognitive processing difficulties, and 
neural correlates

Neurodevelopmental 
condition

Associated cognitive processing 
difficulties Neural correlates

Autism spectrum 
disorder

• Low mathematics achievement
• Slow growth rates

• Less activation in left frontal 
areas
• Greater activation in IPS, 
visuospatial areas

Fragile X • Visual perception, working 
memory, executive function
• Arithmetic reasoning, digit span, 
acalculia (number sense)

• Greater activation in 
bilateral prefrontal cortex, 
motor, parietal cortices

Turner syndrome • Sustained attention, visuospatial 
perception, executive function
• Symbolic numerical magnitude 
processing

22q11.2 deletion 
(velo-cardio-facial 
syndrome)

• Visuospatial perception, executive 
function
• Numerical representation, slower 
calculation, and word problem solving

• Abnormal activation in 
posterior and fronto-parietal 
networks

Williams syndrome • Visuospatial representation, 
numerical magnitude processing, 
approximate number systems

• Abnormal parietal lobe 
activation, decreased grey 
matter

Spina Bifida • Arithmetic estimation, calculation, 
word problem solving

Prenatal alcohol 
exposure

• Visuospatial representation, 
attention, working memory
• Math processing

Premature birth • Numerical processing and 
classification, low IQ

• Reduced brain size, reduced 
grey matter
• Greater activation of inferior 
frontal gyrus

Developmental 
coordination 
disorder

• Developmental delay, procedural 
calculation, math fact retrieval

Attention deficit/
hyperactivity 
disorder (ADHD)

• Sustained attention, working 
memory, information retention

• Low activation in attention- 
related areas

Epilepsy • Visuospatial working memory, 
attention, language, executive function

• Less functional connectivity 
in right prefrontal lobe
• Greater functional 
connectivity in adjacent and 
other areas

Traumatic brain 
injury

• Individual variation (e.g., 
information processing speed, 
memory, executive function)

• Depends on location of 
injury and cognitive processes 
affected

Schizophrenia • Low math performance, slow 
reaction times

• Parietal lobe activation

Depression • Low math performance, slow 
reaction times, working memory

• Frontal lobe activation
• Abnormal activation in left 
PFC

(continued)
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 Considerations and Limitations

The human brain is highly plastic. Neural pathways have the ability to change in 
response to different experiences. For example, an individual with TBI  to the right 
prefrontal lobe may activate adjacent prefrontal regions and other areas in order to 
maintain cognitive functions. Delazer, Benke, Trieb, Schocke, and Ischebeck (2006) 
examined the case of HR, whose reduction of cortical perfusion in the superior and 
posterior parietal lobe and posterior temporal lobe resulted in unaffected verbal 
intelligence, but at the cost of visuospatial processing, numerical approximation and 
estimation skills, dot counting, and positioning on a number scale. HR displayed 
normal language area activation during mathematical tasks, but activated inferior 
temporal structures during a multiplication task, which may be indicative of the 
brain requiring additional effort or using compensatory pathways to complete the 
calculation task (Delazer et al., 2006). Previous research on compensatory pathways 
reveals how brain plasticity plays a role in creating secondary neural networks to 
sustain cognitive function among individuals with dyscalculia (Kaufmann et  al., 
2011; Kucian & von Aster, 2015), MLD (Davis et al., 2009; Geary, 2010), ADHD 
(Hammer et al., 2015), and TBI (Lv et al., 2014).

Whether research is conducted with case studies of cognitive factors or neuroim-
aging studies using fMRI, a major limitation across research on MLDs is the use of 
small samples (Desoete, Praet, Titeca, & Ceulemans, 2013; Kucian et  al., 2014; 
Raghubar et al., 2013; Rosenzweig et al., 2011; Vilgis et al., 2014), which typically 

Table 6.1 (continued)

Neurodevelopmental 
condition

Associated cognitive processing 
difficulties Neural correlates

Deaf or hard of 
hearing

• Symbolic number processing
• Developmental delay

Multilingualism • Low accuracy and speed (language 
switching)

• Abnormal activation of 
diffuse areas

Reading disabilities 
and dyslexia

• Exact mental calculation, math 
fact retrieval, slow reading speed, 
slow word processing

• Low activation in left frontal 
and occipital-temporal areas 
during reading tasks

Giftedness • Individual variation (e.g., 
exceptional math reasoning skills, 
mental calculation)
• Individual variation in cognitive 
costs

• Greater intrahemispheric 
frontoparietal activation
• Greater interhemispheric 
dorsolateral prefrontal and 
premotor connectivity,
• Larger general network 
activation

Synesthesia • Individual variation (e.g., 
exceptional number processing, 
numerical memory, math calculation)

• Depends on cognitive 
processes affected

Note. The table is not exhaustive in listing neurodevelopmental conditions, associated cognitive 
processing, or neural correlates, only summarizing findings reported in this chapter
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limits power and effect sizes of significant findings, thereby limiting generalizabil-
ity and reliability of the research. Samples themselves may be limited due to age or 
group assignment. Research with homogenous age groups assumes that profiles of 
strengths and weaknesses of numerical and mathematical learning difficulties are 
stable across development, such that adult data can be used to understand children 
with similar learning difficulties, and vice versa (Ansari, 2010; Ansari & Karmiloff- 
Smith, 2002). Regardless of age, participants are often divided into TD and MLD 
groups based on performance during measures of intelligence or mathematical abil-
ity. However, groups can vary depending on what measures of performance and 
cutoff scores are used (Kaufmann et al., 2011; Mazzocco & Myers, 2003; Mondt 
et al., 2011; Passolunghi & Mammarella, 2010), which further limits generalizabil-
ity and reliability as individuals near cutoff scores are essentially interchangeable 
between groups, and individuals with exceptional mathematical abilities (e.g., 
gifted) are placed into TD groups. Related to group assignment, not all research 
uses disorder subtypes to further separate groups by individual differences, such as 
dysthymic disorder primarily sad or irritable type (Vilgis et al., 2014), lifelong ver-
sus learned bilingualism (Saalbach et al., 2013), and ADHD primarily attentive or 
hyperactive/impulsive type (Hammer et al., 2015). Together, these limitations sug-
gest individual differences within groups are not adequately addressed in the 
research.

Additional limitations relating to generalizability are evident in lesion and neu-
roimaging studies. Brain activation among groups of participants with the same 
learning and mathematical deficits may be reliable if samples are homogenous. 
However, samples of individuals with neurodevelopmental disorders are not always 
checked to account for medication use (van Ewijk et  al., 2015) or intervention 
(Raghubar et al., 2013), which can drastically affect brain activation and presence 
of learning deficits depending on the type and duration of medication or interven-
tion. Diagnosis and treatment of individuals with learning difficulties can rely on 
research that does not directly study individuals with learning deficits. For example, 
research used to diagnose deficits in developmental dyscalculia is derived from 
studies of individuals with brain lesions, which assumes the profile of deficits are 
the same between dyscalculia and brain lesion patients (Ansari & Karmiloff-Smith, 
2002). In line with research on individual differences among those with learning 
difficulties, a limitation in neuroimaging research is the uncertainty of associations 
between brain activation and cognitive deficits. Researchers are unsure whether 
numeracy deficits characteristic of genetic disorders are more related to domain- 
general or domain-specific processes (Ansari & Karmiloff-Smith, 2002; Barnes 
et al., 2014). Further research on neuroimaging and brain lesion studies is needed to 
identify mathematical deficits and their accompanying patterns of brain activation.

Research on MLDs is limited due to the adoption of the “disease model” of 
abnormal learning by early medical researchers, which focuses on medical aspects 
of conditions and considers individuals with conditions such as reading difficulties 
to be “diseased” (Gilger & Hynd, 2008). The continued use of a disease model sug-
gests negative genetic underpinnings of all conditions outside of the normal range. 
Therefore, less is known or discussed about the high end of the spectrum, such as 
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mathematical giftedness. As research on mathematical difficulties often divides par-
ticipant samples between TD and developmentally delayed or challenged, mathe-
matical exceptionalities and gifted individuals are not often identified and these 
individuals become mixed with TD individuals.

Gilger and Hynd (2008) state that most research on learning difficulties that does 
not follow the disease model is performed by professionals typically focusing on 
educational issues, rather than underlying causes. What little is known about causes 
is often limited to neurological foundations of particular neurodevelopmental disor-
ders or else replaced in favor of correlational studies whose associations with envi-
ronmental factors and cognitive deficits do not imply causality. Research  suggests 
the brain is the basis of behavior, while individual differences are the result of com-
plex, integrated effects of genes and environment (Gilger & Hynd, 2008). Genetics 
play a role in risk for difficulties and giftedness, but are not isolated causes as they 
interact with environmental and cognitive factors at the individual and group level 
to create a highly complex profile of the individual. For example, two individuals 
with synesthesia can demonstrate exceptional skills in numerical processing, but 
have different experiences. As we saw with case studies of synesthesia, both JP and 
DT were diagnosed with synesthesia, yet JP’s experiences created pictorial repre-
sentations which he would draw by hand when presented with image-inducing for-
mulas (Brogaard et  al., 2013) while DT’s experiences created detailed mental 
landscapes when presented with a stream of numbers (Bor et al., 2007). According 
to Gilger and Hynd (2008), giftedness and reading difficulties, as well as general 
learning difficulties, are seen as opposite ends of a learning continuum. This view of 
learning as a natural spectrum to which internal and external factors may influence 
reinforces the need for further research on learning differences and individual fac-
tors that affect them.
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Chapter 7
Enhancing Mathematical Cognitive 
Development Through Educational 
Interventions

Lori Kroeger and Rhonda Douglas Brown

Abstract In this chapter, we presents theory and research on mathematical inter-
ventions, which are programs used to provide supplementary opportunities to chil-
dren who are struggling with learning mathematical concepts, facts, and procedures 
either in small groups or individually (Tiers 2 and 3 of the Response to Intervention 
framework). Fifteen mathematical interventions and curricula for students in Pre- 
Kindergarten through Post-Secondary levels are listed that meet the Institute of 
Education Sciences’ What Works Clearinghouse’s standards, with scientific evi-
dence of potentially positive effects on mathematical outcomes. Three additional 
programs with digital components are highlighted: The Number Race; Fluency and 
Automaticity through Systematic Teaching with Technology (FASTT Math); and 
SRA Number Worlds® with Building Blocks®. For each of these programs, we pro-
vide an overview, describe the user’s experience, and summarize theoretical frame-
works and efficacy studies. Furthermore, we describe how components of the 
programs are related to neuroscience theory and research on mathematical cogni-
tion and development, particularly Dehaene and colleagues’ triple-code model of 
numerical processing.

Mathematical interventions are broadly defined as programs that provide some level 
of supplemental support to children during the learning process. These programs are 
most frequently used to provide additional support to children who are struggling to 
learn mathematical concepts and procedures. Using the Response to Intervention 
(RTI) framework, a tiered model of instruction with continuous assessment and 
evaluation of student progress over an extended period of time, these interventions 
are most likely to involve a teacher working with targeted small groups of children 
(Tier 2) or one-on-one with a student (Tier 3) (for a review, see Lyon, Fletcher, 
Fuchs, & Chhabra, 2006). However, some mathematical interventions are used to 
provide additional opportunities to children who are advanced in learning math. 
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As noted by Swanson (2008), RTI and neuroscience research on mathematical cog-
nitive development are complementary approaches that can help explain and predict 
individual differences that emerge in children at risk for learning disabilities after 
exposure to validated instructional procedures.

How do teachers, intervention specialists, school psychologists, administrators, 
and parents know which intervention programs are effective, result in lasting 
changes in learning, and meet the specific needs of children in their learning envi-
ronments? To inform decision making, the Institute of Education Sciences (IES) 
within the United States Department of Education established the What Works 
Clearinghouse (WWC) over 15 years ago to review research, determine studies with 
research methodologies that meet rigorous standards, and summarize scientific evi-
dence on the effectiveness of educational programs, products, practices, and poli-
cies. The WWC’s Find What Works online resource provides evidence snapshots, 
reports, including thorough descriptions, and a comparison tool for over 140 math-
ematical interventions. Currently, this resource lists 15 mathematics interventions 
and curricula for students in Pre-Kindergarten through Post-Secondary levels with 
scientific evidence of potentially positive effects on outcomes that meets the WWC’s 
standards, presented in Table 7.1. In addition to these programs, there are many oth-
ers with varying levels of scientific evidence (for a review, see Kroeger, Brown, & 
O’Brien, 2012). In the following section, several intervention programs that are 
consistent with neuroscience research on mathematical cognition are described in 
detail.

Table 7.1 Mathematical intervention programs with evidence of positive effects listed by the 
What Works Clearinghouse

Intervention program or curriculum Grades

Accelerated Math 2–8
Building Blocks® for Math (SRA Real Math) Pre-Kindergarten
Cognitive Tutor® Algebra I 8–Post- Secondary
Core-Plus Mathematics 9–10
DreamBox Learning Kindergarten–1
Everyday Mathematics® 3–5
I CAN Learn® Pre-Algebra and Algebra 8
Lindamood Phoneme Sequencing® (LiPS®) 1–4
Odyssey® Math 4–8
Pre-K Mathematics Pre-Kindergarten
Saxon Math 1–8
Teach for America (TFA) Kindergarten–12
The Expert Mathematician 8
University of Chicago School Mathematics Project (UCSMP) Algebra 8
University of Chicago School Mathematics Project (UCSMP) Multiple 
Courses

7–10

Note. Adapted from https://ies.ed.gov/ncee/wwc/FWW/Results?filters=,Math
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 Mathematical Intervention Programs Related to Neuroscience 
Research

A comprehensive review of mathematical intervention programs is beyond the 
scope of this chapter. Instead, we provide descriptions of three mathematical inter-
vention programs with digital components, including The Number Race, FASTT 
Math, and SRA Number Worlds® with Building Blocks®, and relate them to neuro-
science research on mathematical cognition, particularly the triple-code model 
(Dehaene, 1992, 2011; Dehaene & Cohen, 1995, 1997; Dehaene, Piazza, Pinel, & 
Cohen, 2003) described in Chap. 1. For each program, we provide an overview, 
describe the user’s experience, and summarize theoretical frameworks and efficacy 
studies.

 The Number Race

Overview With a focus on number sense development, The Number Race game 
was designed by Wilson and Dehaene in direct alignment with the triple-code model 
to help strengthen the user’s brain circuits for each of the three representational sys-
tems detailed by the model (see http://www.thenumberrace.com/nr/home.php). By 
representing number in each of the three codes, quantity, verbal, and visual, the user 
is engaging each of the specific regions of the brain associated with the codes while 
playing the game. The Number Race seeks to accomplish six goals: strengthen the 
brain mechanisms of number processing, establish the mental number line, teach 
and practice counting, teach and practice early addition and subtraction, encourage 
fluency, and help children with dyscalculia. While the game does support represen-
tations of number in all three codes of the model, it is limited in its overall scope and 
should be used in conjunction with a more comprehensive mathematics program.

User Experience When playing the game for the first time, the user builds a profile, 
where he/she self-selects the playing level as beginner, intermediate, or advanced. 
After building the profile or selecting it, the user chooses which world he/she will 
play in: the sea or the jungle. The game begins with a voice instructing the user to 
“Choose which side you want.” On a split screen two quantity representations are 
displayed. On the left is the Arabic digit and dots representing a quantity; the right 
side has a similar display of a different quantity. In addition to the Arabic digits and 
dots, the game reads the number name aloud. At this point, the user drags the char-
acter to the quantity he/she wants to select. For instance, if the representations are 3 
and 1, the user will hear “three” while three tokens are stacking up in the middle of 
the screen, followed by “one,” while that token aligns next to the others. This visual 
representation with tokens supports development of the number line concept as the 
user can visually compare the quantities side-by-side. Once the user selects the quan-
tity, a voice tells the user which quantity he/she has chosen and who has more. For 
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instance, if the user does select the larger quantity, the game says, “You have more. I 
have the least.” The user then wins the corresponding number of tokens that he/she 
drags onto a number line at the bottom of the screen. While the user is placing tokens 
on the number line, he/she hears a voice counting the spaces. After the tokens are 
placed on the number line, the user hears the addition problem that corresponds to 
the move. For example, if the user won three tokens, he/she would hear “3 plus 1 
equals 4” and see the addition problem before the pawn is moved. The Number Race 
user is initially instructed to compare sets of objects or numbers 1 through 10. In 
more advanced levels, the objects are removed, using only Arabic digits and auditory 
number names. Additionally, the game board has spaces that, if landed on, will result 
in the player moving backward the number of spaces corresponding to the quantity 
chosen. In that case, the game provides visual and auditory cues for the subtraction 
problem. The goal of the game is to reach the end of the board first.

To support the development of fluency, The Number Race maintains a 75% suc-
cess rate for the user by relying on an algorithm that automatically adjusts the 
numerical distance between the quantities and the length of the allowed response 
time. This approach supports the development of knowledge and skills at a level that 
is both appropriate, yet challenging to individual users, providing positive experi-
ences with both numbers and math procedures.

Theoretical Frameworks The Number Race was designed and developed in direct 
alignment with the triple-code model. To support development of all three represen-
tational systems, the game presents quantity arrays and number lines, engaging the 
quantity system; digits, engaging the visual system; and spoken words, engaging 
the verbal system. The Number Race game “is one of only a few games that were 
specifically designed to teach and practice the various representations of numbers 
and the transformations between them, with a special focus on the quantity repre-
sentation” (Wilson & Dehaene, 2004). This opportunity to practice comparing num-
bers across the three systems “encourages processing quantity and transforming the 
numbers from their symbolic representation to the quantity representation” (Wilson 
& Dehaene, 2004).

Efficacy Studies Two studies have shown support for The Number Race game. 
The first (Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006), conducted over 
4 months, included nine participants, aged 7–9 years old. Pre-testing indicated that 
all participants were experiencing mathematical learning difficulties. Over a period 
of 5 weeks, participants played the game for 30 min per day. At the end of the inter-
vention period, participants were tested again on a number of mathematical con-
cepts, including enumeration, nonsymbolic and symbolic numerical comparison, 
addition, subtraction, counting, transcoding, and understanding of the base-10 sys-
tem. Post-test results indicated “progress in several core areas of numerical cogni-
tion: number comparison, subitizing, and subtraction” (Wilson et al., 2006, p. 14).

In a second study (Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009), chil-
dren identified with low numeracy played The Number Race, or Graphogame-Math, 
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or did not participate in either intervention, but completed pre- and post-tests. Both 
treatment groups showed improvement in number comparison over the control 
group, but gains were short-lived. It is important to note that both of these studies 
involved small sample sizes and were conducted by the developers of the program.

 Fluency and Automaticity Through Systematic Teaching 
with Technology (FASTT Math)

Overview FASTT Math is a program that places emphasis on increasing accurate 
and fluent basic fact retrieval (see http://www.hmhco.com/products/fastt-math/
index.htm). This program, designed for both struggling and accelerated students in 
2nd grade and up, uses a baseline assessment to create an individualized learning 
program that can be used to provide core or supplemental instruction in math fact 
learning. Through the use of adaptive technology, the user is scaffolded through 18 
independent games that foster growth on targeted math facts.

User Experience When the user begins the intervention, he/she completes a 
Placement Assessment designed to determine typing speed, which facts are already 
known, and which are ready to be learned. For the typing test, the user is shown 
numbers, one at a time, and instructed to type the number as fast as he/she can. In 
the second phase of the Placement Test, the user is given math fact problems and 
asked to type the answer as quickly as he/she can. For example, if shown 3 × 8, the 
user would type 24 as quickly as he/she is able. When the Placement Assessment is 
complete, the user can see her/his Fact Grid. The Fact Grid provides a graphic rep-
resentation of Fast Facts—those already  learned facts that can be retrieved from 
memory in less than 1 s. In Fig. 7.1, these are the 82 highlighted facts. The Study 
Facts are those that have been identified from the Placement Assessment as 
to be learned because they were not retrieved in less than 1 s. These are the 16 facts 
in the lower right corner of Fig. 7.1. The Focus Facts are 4 × 9 and 9 × 4, which have 
been selected by the software program for focused practice during the user’s current 
session.

Once the ready to be learned facts have been identified through the Placement 
Assessment, the user begins the Adaptive Instruction component of the intervention. 
FASTT Math is driven by an algorithm that accounts for the speed of typing and 
known facts and delivers instruction on to-be-learned facts only. The instruction 
within the intervention is built on the principle of expanding recall, a system in 
which the Focus Facts are interspersed with Fast Facts (see Fig. 7.2). As the user 
gains fluency with the Focus Facts, the algorithm increases the amount of time 
between presentations of the target facts, requiring the retrieval of facts over a lon-
ger and longer period of time. Throughout this game-like component of the FASTT 
Math intervention the user is scaffolded through games targeting number facts that 
have not yet been learned while also reinforcing well-known facts.
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Fig. 7.1 FASTT Math Fact Grid from http://www.hmhco.com/products/fastt-math/index.htm 
with permission from Houghton Mifflin Harcourt

Fig. 7.2 FASTT Math Model of Expanding Recall from http://www.hmhco.com/products/fastt-
math/index.htm with permission from Houghton Mifflin Harcourt
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Within this component, the user completes a round of 60 practice items, in which 
the two Focus Facts are interspersed with Fast Facts. The goal is to type the answers 
as quickly as possible, pressing the spacebar to move to the next problem. Providing 
both audio and visual instruction on the Focus Facts, this 10 min practice session 
starts by displaying a focus fact; for example, 4 × 9 = 36. While this is displayed on 
the screen, the user hears, “four times nine is thirty-six.” The process is repeated for 
9 × 4. The users is instructed to rehearse those facts until he/she feels ready to prac-
tice them. If the user needs or wants additional support, he/she can click a See It 
button, which then provides a visual representation of the fact on a 100-grid show-
ing 4 rows of 9 dots, as shown in Fig.  7.3. This leads to a thorough conceptual 
explanation of the fact and its reciprocal.

After completing the Adaptive Instruction, the user is taken to her/his Dashboard. 
The Student Dashboard supports a growth-mindset by providing a platform for 
actively monitoring one’s learning progress and success. This is where the user 
tracks her/his progress, sees which facts are mastered and those still being learned, 
checks on her/his personal best times and scores, and customizes her/his experience 
by changing the screen interface, as shown in Fig. 7.4. This Dashboard may pro-
mote motivated learning and executive function in that the user can engage in self- 
regulation and monitoring of her/his own learning.

To continue to build her/his fact retrieval skills, the user can play Fluency Games 
for Practice and STRETCH-To-Go games. The Fluency Games allow the user to 

Fig. 7.3 FASTT Math See It Grid from http://www.hmhco.com/products/fastt-math/index.htm 
with permission from Houghton Mifflin Harcourt

Mathematical Intervention Programs Related to Neuroscience Research

http://www.hmhco.com/products/fastt-math/index.htm


126

practice newly learned facts. Through an engaging, personalized interface, the user 
solves fact problems. The user can see her/his progress on the screen. In the Race 
Car gaming interface, the FASTT Math racecar moves into first place as the student 
answers the problems correctly and quickly. Study Facts answered correctly in less 
than 1 s become Fast Facts in the next challenge.

To extend growth to users who have mastered basic facts, the STRETCH-To-Go 
component allows them to apply basic facts to more advanced objectives, providing 
an appropriate level of challenge. One objective in the STRETCH-To-Go platform 
is to identify equivalent equations. In the Equal and Out game, the user must iden-
tify the pair of numbers that correctly completes an equation, as shown in Fig. 7.5. 
For this game, the user drags numbers onto the scale to balance the equation. The 
algorithm responds to the user’s answers, both correct and incorrect, to maintain an 
appropriate level of challenge.

Theoretical Frameworks The FASTT Math Program is designed around four 
theoretical frameworks: the developmental trajectory of math fact fluency, building 
declarative knowledge through repeated exposure to math facts, purposeful cou-
pling of number and language to optimize memory, and employing technology to 
increase learner motivation. The developers of FASTT Math draw on the work of 
developmental and cognitive psychologists suggesting that young children must 
first learn the general properties of numbers and the conceptual processes of  addition 
prior to learning multiplication, and that this learning is supported by the use of 

Fig. 7.4 FASTT Math Student Dashboard from http://www.hmhco.com/products/fastt-math/
index.htm with permission from Houghton Mifflin Harcourt
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increasingly sophisticated strategies (Fosnot & Dolk, 2001; Van de Walle, Karp, & 
Bay-Williams, 2010). Early-developing strategies are both cumbersome and prone 
to error (Ashcraft, 1992; Fuson, 1982, 1988, 1992; Kilpatrick, Swafford, & Findell, 
2001; Siegler, 1988). Children with mathematical learning difficulties are often 
challenged by number sense, the learning of basic properties of number and the 
relationships between numbers and objects, often relying on early-developing strat-
egies (Fleischner, Garnett, & Shepard, 1982; Geary et al., 2009; Hasselbring, Goin, 
& Bransford, 1988; Torbeyns, Verschaffel, & Ghesquière, 2004; Vaidya, 2004). 
Reliance on these immature strategies leads to a negative impact on future mathe-
matical learning. The FASTT Math program “helps students abandon the use of 
inefficient strategies for determining the results of basic number combinations and 
promotes student automaticity with basic math facts” (FASTT Math Next Generation 
Research Foundation paper, 2012, p. 4).

The second research base upon which FASTT Math is developed suggests that 
declarative knowledge can be built and sustained through instruction and practice 
with a small set of targeted math facts (c.f., Hasselbring et al., 1988). This instruc-
tion and practice must be purposeful; if not, the child may create inaccurate number 
associations, resulting in mislearned facts that, when called upon, may be retrieved 
in place of the correct response (Dehaene, 2011). When the association between 
numbers has been well learned, the processing of those math facts moves from the 
quantity system in the parietal regions to one that engages in automatic retrieval 

Fig. 7.5 FASTT Math Equal and Out Game in the STRETCH-To-Go Component from http://
www.hmhco.com/products/fastt-math/index.htm with permission from Houghton Mifflin Harcourt
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from the verbal system in the temporal regions of the brain associated with language 
(Dehaene, 2011). FASTT Math developers optimize this coupling between number 
and language by using “controlled response times to reinforce the memory connec-
tion and inhibit the use of counting or other non-automatic strategies, thereby ‘mov-
ing’ the fact into the student’s declarative knowledge network” (FASTT Math Next 
Generation Research Foundation paper, 2012, p. 13), which relies on the verbal 
code in triple-code model for fast retrieval.

Accurate fact retrieval leads to increased reliance on long-term memory, freeing 
working memory resources for more complex operations (Baroody, Bajwa, & 
Eiland, 2009), the third theoretical framework of the FASTT Math intervention. 
Once these basic facts have been well learned, the user can begin to practice more 
advanced concepts in the STRETCH-To-Go component, allowing them to rely on 
the retrieval strategy while solving complex problems. “As students play in this 
STRETCH-To-Go component, they gain opportunities to understand inverse rela-
tionships, recognize unknowns, and apply mathematical properties. Specifically, 
this aspect of the software links students’ fluent facts to related computations with 
multiples of 10. For example, if 3 + 8 is a fluent fact, then the STRETCH-To-Go 
games could include computations such as 30 + 80 as well as 80 + 30, relating 
meaning for the commutative property with a fluent fact” (FASTT Math Next 
Generation Research Foundation paper, 2012, p. 5).

The final theoretical framework upon which FASTT Math relies is the premise 
that technological environments can positively affect learning of mathematical con-
tent and motivation to learn. The gaming environment provides a level of intrinsic 
motivation and allows for individualized learning (Clements, 2002; Kamii, 2000). 
The computerized format also permits instant corrective feedback by providing the 
correct problem and answer (Van de Walle et al., 2010).

Efficacy Studies The sole empirical study validating the FASTT Math program 
examined the efficacy of the program with a sample of 160 children (ages 7–14). 
Participants were assigned to either a treatment group (those with mathematical 
learning difficulties) or a contrast group (those with no identified mathematical 
learning disabilities). The treatment group received daily instruction using the 
FASTT Math system. A comparison of the pre- and post-test assessments revealed 
that the experimental group increased the number of facts that were retrieved from 
memory by 45–73% over the duration of the study. Furthermore, participants in the 
experimental group developed fluent facts at a rate twice that of the control group. 
However, it is important to note that the study was conducted by the developer of the 
program and inferential statistics were not reported.

 SRA Number Worlds® with Building Blocks®

Overview As a Common Core State Standards-based intervention, SRA Number 
Worlds® with Building Blocks® is a math curriculum designed to develop profi-
ciency in mathematical literacy and fluency for children in Pre-Kindergarten through 
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8th grade, bringing struggling learners’ performance on par with their peers (see 
http://www.mheducation.com/prek-12/program/microsites/MKTSP-TIG05M0.
html). It is the only mathematics intervention with an embedded prevention pro-
gram for Pre-Kindergarten through 1st grade (SRA Number Worlds: Research and 
efficacy, 2015). Designed from a project-based learning approach, Number Worlds 
focuses on solving ill-formed problems with many possible solutions; developing 
functional knowledge with cognitive flexibility; engaging in self-directed, active, 
and engaged learning; collaborating; and building habits of reflection and self- 
appraisal in all learning experiences (Barrows & Kelson, 1993). As shown in 
Fig. 7.6, Number Worlds focuses on developing number sense, procedural skills, 
fluency, operations sense, and spatial understanding.

User Experience At the beginning of the program, the user completes a Number 
Knowledge Test. This individually administered, oral assessment indicates whether 
the user is performing below, above, or at grade level proficiency. From this assess-
ment, the teacher can also identify which concepts have been mastered and which 
are yet to be learned. The Number Knowledge Test provides the teacher with direc-
tion about which Level Placement Test to administer and can be used to track the 
user’s progress over a particular instructional period or the entire academic year. 

Fig. 7.6 SRA Number Worlds Topics by Grade from Griffin (2015) with permission from Sharon 
Griffin
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The Level Placement Test (see Fig. 7.7 for an example) is used to determine the 
appropriate instructional level by assessing pre-existing knowledge. The user com-
pletes a range of items on the test, which approximates her/his abilities. If a student 
makes several consecutive correct responses, it is assumed that the student would 
also respond correctly to the preceding items, which are easier (Using the Number 
Worlds Placement Tests, n.d.).

Once a level has been determined and assigned, the user gains access to her/his 
Dashboard. This interface provides a to-do-list of activities and assessments. The 
assignments are hyperlinked, making it easy for the user to access the assignment 
he/she wants to work on with the goal of completing it by the due date. From the 
Dashboard, the user can also access Building Blocks software, a series of approxi-
mately 200 online learning activities for grades Pre-Kindergarten through 8 that 
adapt to the user’s responses to ensure an appropriate level of challenge. In these 
engaging, game-like modules, the user practices the skills that have been identified 
on the Level Test as to be learned. Extra practice items are also available for devel-
oping mastery. For example, in one Building Blocks activity, the user is instructed to 
match the product to its correct quantity representation by dragging it to the visual 
representation. If the user answers the problem correctly, he/she is advanced to the 
next activity in her/his learning trajectory. If the user responds incorrectly,  he/she is 
prompted to think about her/his response and try again. If he/she commits an error a 
second time, the user is provided with a hint or a short tutorial before being prompted 
to try again. If a pattern of errors occurs, the algorithm recognizes that the user needs 
additional support and provides a detailed tutorial that breaks the skill into smaller 
steps or activities designed to develop the associated foundational skills.

Fig. 7.7 Example of a SRA Number Worlds Placement Test from Griffin (2015) with permission 
from Sharon Griffin
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From the Dashboard, the user can also access Math Tools and Games. By choos-
ing from a variety of interactive games, the user receives additional practice with the 
conceptual knowledge and procedural skills that he/she is working to build. In the 
Dragon Quest game shown in Fig. 7.8, multiple users can play with each other while 
building their number sense knowledge and skills. Each user clicks a spinner and 
moves her/his pawn the corresponding number of spaces on the game board. 

The Number Worlds system also provides multiple Interactive Tools that can be 
used by teachers and users as they work through the activities in the system, includ-
ing a white board, timer/stopwatch, protractor, ruler, and a customizable number line. 
Another beneficial feature within the system is the option to print and export work.

Theoretical Frameworks The Number Worlds intervention is built upon five 
guiding principles that support children’s learning of conceptual and procedural 
mathematical skills. Guiding Principle 1, Building upon children’s current knowl-
edge, draws upon constructivism, acknowledging that children use “their existing 
knowledge to construct new knowledge that is within reach— that is one step 
beyond where they are now” (SRA Number Worlds: Research and efficacy, 2015, 
p. 7). The second Guiding Principle, Follow the natural developmental progression 
when selecting new knowledge to be taught, is based on the work of Case (1992), 
which suggested that “because there are limits in development on the complexity of 
information children can handle at any particular age/stage, it makes no sense to 
attempt to speed up the developmental process by accelerating children through the 
curriculum” (SRA Number Worlds: Research and efficacy, 2015, p. 7). Recognizing 

Fig. 7.8 SRA Number Worlds Dragon Quest Game from Griffin (2015) with permission from 
Sharon Griffin
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working memory limitations, the developers of Number Worlds designed the pro-
gram so that the user works on a restricted number of concepts and skills at one time 
(for an in-depth theoretical explanation, see Griffin, 2009). The Number Worlds 
curriculum and activities adhere to Guiding Principle 3, Teach computational flu-
ency as well as conceptual understanding. Guiding Principle 4 is to Provide plenty 
of opportunity for hands-on exploration, problem solving, and communication. 
Guiding Principle 5, Expose children to the major ways number is represented and 
talked about in developed societies, is the basis for the exposing users to multiple 
ways of representing numbers that are built into the intervention curriculum. This 
final Guiding Principle is aligned with the triple-code model by recognizing that 
quantity and numerical information are processed using different representational 
systems operating in distinct brain regions. Number Worlds provides access to and 
practice with multiple representation of numbers, including pictorial representa-
tions of quantity and digits, aligning with the quantity and visual systems of the 
triple-code model, respectively.

The development of Building Blocks technology-enhanced materials was funded 
by the National Science Foundation (NSF) and is based on the work of Simon 
(1995) and Clements and Sarama who created research-based mathematical learn-
ing trajectories, which they define as descriptions of children’s thinking and learn-
ing in a specific mathematical domain and a route through a set of instructional 
tasks designed to facilitate mental processes and actions that will advance them 
through a developmental progression (see Clements, 2007; Clements & Sarama, 
2004, 2011, 2014; Sarama & Clements, 2009). That is, they defined key mathemati-
cal cognitive developments and sequenced them along research-based learning tra-
jectories. Building Blocks activities were developed to support defined skills at 
points along the trajectories.

Efficacy Studies Griffin (2004) reported that several evaluation studies demon-
strated that children from low-income communities who participated in the Number 
Worlds program showed significant gains in conceptual knowledge of number and 
number sense in comparison to a matched control group who received different 
school readiness training. Furthermore, she noted

These gains enabled them to start their formal schooling in grade one on an equal footing 
with their more advantaged peers, to perform as well as groups of children from China and 
Japan on a computation test administered at the end of grade one, and to keep pace with 
their more advantaged peers (and even outperform them on some measures) as they pro-
gressed through the first few years of formal schooling (Griffin, 2004, p. 178; Griffin & 
Case, 1997).

Several major studies evaluating the efficacy of Building Blocks have been pub-
lished in peer-reviewed journals. Clements and Sarama (2007) described an initial 
summative evaluation of Building Blocks in classrooms with children at risk for 
later school failure, including state funded and Head Start programs. They reported 
that the classrooms with children who learned mathematics using Building Blocks 
increased their scores on tests of early mathematics and geometry significantly 
more than the comparison group, with achievement gains nearing those found for 
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individual tutoring. In a another study, Clements and Sarama (2008) used random-
ized trials and found that, after 26 weeks of instruction, children in classrooms using 
the Building Blocks curriculum had significantly greater increases in scores from 
pre-test to post-test than the comparison group and the control group. Children in 
Building Blocks classrooms showed the greatest gains in verbal counting, recogni-
tion of number and subitizing, comparison of shape, and shape composition. 
Furthermore, they were more accurate and increased their use of more sophisticated 
strategies. Another study using a randomized block design involving 1375 pre-
schools in 106 classrooms provided evidence that children in the Building Blocks 
group learned more mathematics than children in the control group (Clements, 
Sarama, Spitler, Lange, & Wolfe, 2011; for longitudinal results, see Clements, 
Sarama, Wolfe, & Spitler, 2013). It is important to note that the implementation of 
Building Blocks in these studies was likely more comprehensive than the online 
learning activities that are embedded within Number Worlds.

 Other Intervention Programs

There are other well-designed and researched mathematical intervention programs 
and protocols that are consistent with neuroscience research. For example, Math 
Recovery® (MR); program (http://www.mathrecovery.org/) is primarily a profes-
sional development program that provides training in identifying, teaching, and 
assessing children’s understanding of mathematics from kindergarten through 5th 
grade (e.g., Wright, Ellemor-Collins, & Tabor, 2012). Other types of mathematical 
intervention focus on the explicit instruction and deliberate practice of specific 
skills. For example, Hot Math (http://www.intensiveintervention.org/chart/aca-
demic-intervention-chart/13683) targets problem solving skills (for efficacy studies 
see, Fuchs, Fuchs, & Hollenbeck, 2007; Fuchs et al., 2008) and Pirate Math (http://
www.intensiveintervention.org/chart/academic-intervention-chart/13648) targets 
counting procedures for solving simple addition and subtraction problems (for effi-
cacy studies, see Fuchs et al., 2008, 2009, 2010).

 Conclusions and Future Directions for Research

Efficacy studies provide scientific evidence of interventions that promote positive 
mathematical learning outcomes for students from early childhood through emerg-
ing adulthood. This chapter provided a few illustrations of mathematical interven-
tion programs that are based on, or consistent with, theory and research from the 
fields of neuroscience and cognitive development. Future research could more 
firmly establish the effects of mathematical interventions by conducting pre- and 
post-intervention studies using fMRI and other neuroimaging techniques to show 
how interventions actually change brain functioning.

Conclusions and Future Directions for Research
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Chapter 8
Conclusions and Future Directions 
for the Neuroscience of Mathematical 
Cognitive Development

Rhonda Douglas Brown

Abstract In this chapter, I call attention to progress that has been made over the 
past 20 years in children’s mathematics achievement and in using neuroscience to 
understand mathematical cognitive development. Evidence supporting the triple- 
code model of numerical processing is mounting and we are beginning to understand 
how domain-specific and domain-general cognitive processes related to mathemat-
ics are instantiated in the brain and how they change with age and experience. I note 
that there is a great deal of work ahead in studying and applying the results of neu-
roscience research on mathematical cognitive development. Future studies should 
focus on longitudinal changes for the various components of numerical processing 
and how they interact in children with and without mathematical difficulties and on 
the effects of intervention and instructional approaches using a pre-/post-design.

In Chap. 1, I noted that the National Assessment of Educational Progress (NAEP) 
online report for 2015 indicates that only 25% of 12th grade students performed at 
or above the Proficient level in mathematics, which has not changed significantly 
since 2005 (U.S. Department of Education, 2015). Yet, results from the Trends in 
International Mathematics and Science Study (TIMSS) 2015 indicate that over the 
course of 20 years, mathematics achievement has risen to its highest levels, with 
approximately 40% of 4th graders and 30% of 8th graders reaching the highest 
benchmarks (see Fig. 8.1; Mullis, Martin, Foy, & Hooper, 2016). Of the 17 coun-
tries with 20-year trend data (1995–2015) for 4th grade, 14 had higher average 
mathematics achievement in 2015 than 1995, just 2 had lower achievement, and 1 
was unchanged. There were 16 countries with 20-year trend data for 8th grade, and 
in both mathematics and science there were 9 countries with higher achievement in 
2015, 3 countries with lower achievement, and 4 countries where average achieve-
ment was unchanged (Mullis, Martin, & Loveless, 2016). Mathematics education is 
advancing students’ achievement.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76409-2_8&domain=pdf
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Like the performance of 7th and 8th graders on the TIMSS 2015, a great deal of 
progress has been made over the past 20 years in using neuroscience to understand 
mathematical cognitive development. Evidence supporting the triple-code model of 
numerical processing (Dehaene, 1992, 2011; Dehaene & Cohen, 1995, 1997; 
Dehaene, Piazza, Pinel, & Cohen, 2003) is mounting and we are beginning to 
 understand how domain-specific and domain-general cognitive processes related to 
mathematics are instantiated in the brain and how they change with age and experi-
ence. In my view, one of the most important conclusions from the research thus far 
is that, fundamentally, mathematics involves understanding quantities and the rela-
tionships between them, but it also involves verbal skills, visuospatial skills, and 
executive function skills. I placed emphasis on and because I believe some recent 
philosophies and practices in education put all or most of the weight on developing 
children’s understanding of quantity, but not necessarily on the other components. 
Consider this excerpt published in the journal Mind, Brain, and Education:

…a local district was considering adoption of a new elementary mathematics curriculum 
and was struggling to choose between one instructional program focused on teaching “pro-
cedures” and another that claimed to enhance children’s understanding of “mathematical 
concepts.” The debate over which of these two methods was “best” became quite heated and 
was accompanied by the formation of factions within the educational community. Frustrated 
with this situation, the superintendent asked one of us (Ansari) to talk with the teachers 
about the differences between procedural and conceptual aspects of math learning from a 
research perspective. In an afternoon presentation and discussion with all the math teachers 
from the district present, behavioral and neuroscientific data on math learning were 
reviewed and the teachers ’ questions were addressed from a research-based viewpoint. 
Later, the superintendent reported that this event had lowered tensions and helped teachers 
in the opposing camps to recognize that a false dichotomy had been established; that rather 
than either/or, both instructional approaches had some value (Coch, Michlovitz, Ansari, & 
Baird, 2009, p. 31).

Fig. 8.1 Approximately 30% of 8th graders reached the highest benchmarks according to the 
results from the 2015 Trends in International Mathematics and Science Study (TIMSS)
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Some teachers are especially concerned with focusing too much on memorization 
of addition, subtraction, multiplication, and division facts. Yet, the bulk of research 
from cognitive developmental psychology and the neuroscience of mathematical 
cognitive development indicates that fast fact retrieval makes an important contribu-
tion to mathematics achievement, as the school in Fig.  8.2 understands, and it 
doesn’t have to be at the expense of conceptual understanding. Many of us may have 
not so fond memories of timed math fact worksheets during our school days. But, as 
discussed in Chap. 7, computerized games and apps, such as FASTT Math, make 
learning math facts much more fun and engaging for children than it used to be.

Indeed, by understanding double dissociations (see Chap. 2), we know that fact 
retrieval involves the left lingual gyrus, whereas quantity representation involves the 
intraparietal sulcus (IPS). Thus, focusing solely on conceptual aspects of mathemat-
ics will not necessarily lead to math fact fluency. Performing complex mathematics 
involves an orchestration of many brain regions and networks. And from evolution-
ary developmental psychology, we understand that current human neuroarchitecture 
and its functions evolved gradually over millions of years—evolution works with 
what it’s got. Thus, we see heterogeneity in mathematical learning disabilities 
(MLD), including the number sense, procedural, semantic, and visuospatial sub-
types discussed in Chap. 7. Taking research on the neuroscience of mathematical 

Fig. 8.2 Research indicates that fast retrieval of math facts is important for mathematics 
achievement
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cognitive development into account, balanced curricula and targeted interventions 
make sense. As noted by Katzir and Paré-Blagoev (2006),

Neuroscience has provided fascinating glimpses into the brain’s development and function; 
advances in our knowledge of the brain hold promise for improving the education of young 
children. When applied correctly, brain science may serve as a vehicle for advancing the 
application of our understanding of learning and development. Reciprocally, education may 
serve as an important vehicle in formulating important research questions for neuroscien-
tists and in providing more precise guidelines for behavioral measurements used in neuro-
science. Brain research can challenge common-sense views about teaching and learning by 
suggesting additional systems that are involved in particular tasks and activities (p. 70).

As an example of education informing research, a seasoned mathematics teacher 
noticed that even college students struggled with reading mathematical text. As a 
Ph.D. student, she conceptualized Symbolic Mathematics Language Literacy 
(SMaLL), which she defined as the ability to read and write symbolic mathematics 
using the conventions of the writing system for the language of mathematics. For 
example, in reading mathematical text, f(x) makes more sense mathematically than 
(f)x. Using a task similar to the error detection task presented in Chap. 4, her research 
found that SMaLL is related to measures of mathematics achievement (Headley, 
2016). This research could also be easily conducted as a neuroimaging study to 
understand the neural and cognitive systems involved in reading mathematical text. 
Furthermore, an intervention study could be conducted with students who struggle 
with reading mathematical text using a pre-intervention/post-intervention design to 
understand how instructional practices change neural activity related to mathemati-
cal cognition.

Similar work on interventions for dyslexia has revealed different patterns of neu-
ral changes for different individuals, with some experiencing normalizing effects, 
while others show compensatory effects (for a review, see Katzir & Paré-Blagoev, 
2006). Furthermore, as noted by Swanson (2008), neuroscience research can help 
explain and predict individual differences in response to intervention and document 
changes in functional brain anatomy that may result from intervention. Future stud-
ies should also focus on longitudinal changes for the various components of numeri-
cal processing and how they interact in children with and without mathematical 
difficulties. Although not all types of mathematical cognition are conductive to 
studies using neuroimaging techniques, such as solving especially long paper-and- 
pencil problems, there is a great deal of work ahead in studying and applying the 
results of neuroscience research on mathematical cognitive development.
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