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Abstract. Enumerating interesting patterns from data is an important
data mining task. Among the set of possible relevant patterns, maximal
frequent patterns is a well known condensed representation that limits at
least to some extent the size of the output. Recently, a new declarative
mining framework based on constraint programming (CP and satisfiabil-
ity (SAT) has been designed to deal with several pattern mining tasks.
For instance, the itemset mining problem has been modeled as a con-
straint network/propositional formula whose models correspond to the
pattern to be mined. In this framework, closeness, maximality and fre-
quency properties can be handled by additional constraints/formulas. In
this paper, we propose a new propositional satisfiability based approach
for mining maximal frequent itemsets that extends the one proposed
in [13]. We show that instead of adding constraints to the initial SAT
based itemset mining encoding, the maximal itemsets, can be obtained
by performing clause learning during search. Our approach leads to a
more compact encoding. Experimental results on several datasets, show
the feasibility of our approach.

1 Introduction

Mining frequent itemsets in datasets is a fundamental problem in the data mining
field since it enables several mining tasks such as discovering association rules,
data correlations, sequential patterns, etc. The problem of finding frequent item-
sets and its corresponding association rules was originally proposed by Agrawal
in [2]. Several algorithms have been proposed to deal with this enumeration prob-
lem. One can cite the levelwise and the pattern-growth like approaches. The first
one is based on the generate-and-test framework [2], while the second is based
on the divide-and-conquer framework [9] (see also H-Mine [18], LCM [22] and
[21] for a survey).

Usually, the number of the frequent patterns is known to be large. To reduce
the size of the output, condensed representations, such as maximal and closed
itemsets, have been introduced. Maximal Frequent Itemsets (MFI) is a subset
of closed itemsets with longest size. Several methods have been proposed to
discover the maximal frequent itemsets. Bayardo proposed a MaxMiner algo-
rithm which extends the Apriori algorithm [15]. MaxMiner employs a breadth-
first traversal of the search space to limit the database scanning. Furthermore,
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it uses a dynamic heuristic to increase the effectiveness of superset-frequency
pruning. Several other enhancements have been suggested for mining the MFI.
Pincer-Search algorithm combined the top-down and bottom-up [16] techniques
to discover the maximal frequent itemset. Agarwal et al. implement a depth
first search technique with bitmap representation (DepthProject) [1]. In which,
column denotes the items and rows denotes the transactions. Like MaxMiner
algorithm, they used dynamic reordering and look-ahead pruning. A projection
mechanism is used to reduces the size of database. They efficiently find the sup-
port counts and give a superset of the MFI. D. Burdick et al. further extended
DepthProject and named it as Mafia [4]. They used vertical bit-vector data
format. Compression and projection on bitmaps are applied to increase the per-
formance. Unlike DepthProject and MaxMiner pruning technique, Mafia used
Parent Equivalence Pruning. Algorithm GenMax [8] is a backtrack search based
algorithm. More specifically, it integrates numerous optimization techniques to
prune the search space including progressive focusing that perform maximal-
ity checking and diffset propagation for fast support counting. To search MFI,
SmartMiner [24] records at each step tail information to guide the search for
new MFI.

Recently, constraint programming and propositional satisfiability have been
used for modeling several data mining tasks in a declarative way, and solv-
ing them using generic solving techniques [5,7,11,13,19]. Such approaches show
that many task in data mining such as itemset, association rules, and sequence
mining can be reduced into the enumeration of the models of a set of con-
straints/propositional formulas. In [20], the authors show that the generation of
MFI can also be formulated as the enumeration of a set of models of a constraint
network by adding a constraint to force the required models to be maximal.

In this paper, we propose to extend the SAT based approach for mining
closed frequent itemsets proposed in [13], to generate the set of maximal ones.
We show that instead of encoding maximality as a set of constraints, we can add
clauses during search to cut non-maximal frequent itemsets.

2 Background

Let us first introduce the propositional satisfiability problem (SAT) and some nec-
essary notations. We consider the conjunctive normal form (CNF) representation
for the propositional formulas. A CNF formula Φ is a conjunction (∧) of clauses,
where a clause is a disjunction (∨) of literals. A literal is a positive (p) or negated
(¬p) propositional variable. The two literals p and ¬p are called complementary.
A CNF formula can also be seen as a set of clauses, and a clause as a set of literals.
We denote by V ar(Φ) the set of propositional variables occurring in Φ.

A Boolean interpretation B of a propositional formula Φ is a function which
associates a value B(p) ∈ {0, 1} (0 corresponds to false and 1 to true) to the
propositional variables p ∈ V ar(Φ). It is extended to CNF formulas as usual. A
model of a formula Φ is a Boolean interpretation B that satisfies the formula,
i.e., B(Φ) = 1. We note M(Φ) the set of models of Φ. SAT problem consists in
deciding if a given formula admits a model or not.
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Algorithm 1. DPLL Based Enumeration solver
Input: Φ: a CNF formula
Output: M: all the models of Φ

1 I = ∅, ; /* Current interpretation */

2 M = ∅ ; /* Set of models */

3 dl = 0 ; /* decision level */

4 while (true) do
5 conflictClause = unitPropagation(Φ, I);
6 if (conflictClause!=null) then
7 if (dl == 0) then return M;
8 � = lastDecision;
9 backtrack(dl − 1);

10 dl = dl − 1;
11 I = I ∪ {¬�};

12 else
13 if (I |= Φ) then
14 M = M ∪ {I};
15 � = lastDecision;
16 backtrack(dl-1);
17 dl = dl − 1;
18 I = I ∪ {¬�};

19 else
20 � = selectDecisionVariable(Φ);
21 dl = dl + 1;
22 I = I ∪ {�};

23 end

24 end

25 end

Let us informally describe the most important components of modern SAT
solvers, usually called CDCL (Conflict Driven Clause Learning) solvers. They
are based on a reincarnation of the historical Davis, Putnam, Logemann and
Loveland procedure, commonly called DPLL [6]. It performs a backtrack search;
selecting at each level of the search tree, a decision variable which is set to a
Boolean value. This assignment is followed by an inference step that deduces
and propagates some forced unit literal assignments. This is recorded in the
implication graph, a central data-structure, which encodes the decision literals
together with there implications. This branching process is repeated until find-
ing a model or a conflict. In the first case, the formula is answered satisfiable,
and the model is reported, whereas in the second case, a conflict clause (called
learnt clause) is generated by resolution following a bottom-up traversal of the
implication graph [17,23]. The learning or conflict analysis process stops when
a conflict clause containing only one literal from the current decision level is
generated. Such a conflict clause asserts that the unique literal with the current
level (called asserting literal) is implied at a previous level, called assertion level,
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identified as the maximum level of the other literals of the clause. The solver
backtracks to the assertion level and assigns that asserting literal to true. When
an empty conflict clause is generated, the literal is implied at level 0, and the
original formula can be reported unsatisfiable. In addition to this basic scheme,
modern SAT solvers use other components such as activity based heuristics and
restart policies. An extensive overview can be found in [3].

When tackling the enumeration of the models of a CNF formula, the clause
learning components can be heavy when the set of models to learn is very large.
In [10], the authors show that a simple DPLL algorithm can outperform CDCL
based approach when dealing with the problem of enumerating models of propo-
sitional formulas. The efficiency of the proposed enumeration algorithm have
been evaluated on several propositional formulas encoding itemsets mining prob-
lem [14].

Algorithm 1 depicts the general scheme of a DPLL-like procedure to enumer-
ate the models of a formula. when a model is found (line 16), then the solver
performs a simple backtracking to the precedent level to propagate the negation
of the last decision (line 18). The enumeration stops when a conflict occurs in
level 0 or if the model is found at level 0.

3 Frequent Itemset Mining

A database D comprises a set of transactions {T1, T2, . . . , Tm} and Ω a set of
items. Each transaction has a unique transaction identifier (tid) and contains a
set of items over Ω. A set of items is often called an itemset. Let I be an itemset
and T a transaction. We will use the notation, I ⊆ T , to denote that I is a
subset of the set of items that T contains. When the context is clear, we will
often directly refer to a transaction as the set of items that it contains.

Classical Data mining problems are usually concerned with itemsets that
frequently occur in a database of transactions. The number of occurrences of an
itemset in a database is commonly referred to as the support of this itemset,
formalized as follows.

Definition 1 (Support). Let X be an itemset and D a database of transac-
tions. The support of X in D, denoted Supp(X), is the number of transactions
of D in which X occurs as a subset. The frequency of X is defined as the ratio
of Supp(X) to |D|.

Let D be a transaction database over Ω and λ a minimum support threshold.
The frequent itemset mining problem consists in computing the following set:

FI(D,λ) = {X ⊆ Ω | Supp(X) � λ}.

Mining of the complete set of frequent itemsets may lead to a huge number of
itemsets. In order to face this issue, this problem can be limited on the extraction
of closed itemsets. Thus, enumerating all closed itemsets allows us to reduce the
size of the output.
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Table 1. A transaction database D

tid Itemset

1 A B C D

2 A B E F

3 A B C

4 A C D F

5 G

6 D

7 D G

Definition 2 (Closed Frequent Itemset). Let D be a transaction database
(over Ω). An itemset X is a closed itemset if there exists no itemset X ′ such
that (1) X ⊆ X ′ and (2) ∀T ∈ D, X ∈ T → X ′ ∈ T .

Extracting all the elements of FI(D, λ) can be obtained from the closed itemsets
by computing their subsets. We denote by CFI(D, λ) the subset of all closed
itemsets in FI(D, λ).

For instance, consider the transaction database described in Table 1. The set
of closed frequent itemsets with the minimal support threshold equal to 2 are:
CFI(D, 2) = {A,D,G,AB,AC,AF,ABC,ACD}.

If we consider subset inclusion as defining a partial order for itemsets, then
we can introduce the notions of maximal frequent itemsets, as follows.

Definition 3 (Maximal Frequent Itemset). Let X be an itemset of a
database D. We say that X is a maximal itemset in D given a minimum thresh-
old λ, if there exists no itemset Y such that X ⊂ Y and Y is a frequent in D.

The problem of mining maximal frequent itemsets MFI, is to enumerate all
maximal frequent itemsets whose support is no less than a preset threshold.

MFI(D,λ) = {X ⊆ Ω | Supp(X) � λ and X is maximal}.

4 Itemset Mining Based Constraints Encoding

Recent work tackle the problem of mining frequent itemsets by encoding this
problem into constraints. In [13], the authors show that the generation of itemsets
from transaction D can be encoded as the enumeration of the models of a CNF
formula Φ i.e., there exists a one to one mapping between the models of the set
of constraints and the set of frequent itemsets. Let us first review this approach.
As said, the approach of [13] consists to introduce boolean variables pa (resp.
qi) to represent each item a ∈ Ω (resp. each transaction Ti).

m∧

i=1

(¬qi ↔
∨

a∈Ω\Ti

pa) (1)
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m∑

i=1

qi � λ (2)

∧

a∈Ω

((
∨

a�∈Ti

qi) ∨ pa) (3)

The formula (1) allows to model the transaction database and then to catch
the itemsets when an itemset appear in a transaction Ti (qi = 1) if and only iff
the variables not involved in Ti are set to false. The formula (¬qi ↔ ∨

a∈Ω\Ti
pa)

can be translated to the following CNF formula:
∧

a∈Ω\Ti

(¬qi ∨ ¬pa) ∧ (qi ∨
∨

a∈Ω\Ti

pa)

Formula (2) allows us to consider the itemsets having a support greater than or
equal to λ. This encoding is defined as a 0/1 linear inequality, usually called car-
dinality constraint. Because of the presence of such constraint in several applica-
tions, many efficient CNF encodings have been proposed over the years. Mostly,
such encodings try to derive the best compact representation while preserving
the efficiency of constraint propagation (e.g. [12]).

Formula (3) capture the closure property. Intuitively, if the itemset is involved
in all transactions containing an item a then a must be added to the candidate
itemset. In other words, when in all the transactions where a does not appear,
the candidate itemset is not included, we deduce that the candidate itemset
appears only in transactions containing the item a. Consequently, to be closed,
the item a must be added to the final itemset.

The advantage of this approach is its ability to be easy to modify in order to
integrate others constraints. For instance, enumerating itemsets of size at most
k, can be expressed by simply adding the linear constraint

∑
a∈Ω pa � k.

5 Enumerating Maximal Itemset

In this section we show how to enumerate maximal itemset using constraints. Let
us recall that in [20], the authors provide a set of constraints that can be added
to the CSP formula of closed frequent itemsets problem in order to generate
the set of maximal itemset. Similarly, using satisfiability the maximality can be
expressed as follow:

∧

a∈Ω

(¬pa →
∑

Ti | a∈Ti

qi < λ) (4)

Constraint (4) expesses that if a is not in the final maximal itemsets I, it means
that the frequency of I in the transactions containing a is lower than λ. However,
translating constraint (4) into clauses can lead to a large CNF formula. Another
alternative is to manage theses constraints inside the solver. However their number
remains a problem for the efficiency of SAT solvers. To avoid constraint addition,
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in this section we show a new approach that allows to add blocking clauses during
search. For this purpose, we consider that our solver is a DPLL-like procedure. To
illustrate our approach, assume that the solver assign with the truth value true
the variables representing items. Let us note B as the model of the CNF formula
encoding the frequent itemsets mining task and P (B) = {a|B(pa) = 1} the fre-
quent itemset. Clearly the first found model B corresponds to a maximal frequent
itemset P (B). To avoid retrieving a model B′ such that P (B′) ⊂ P (B), one need
to block all itemset I ⊂ B. To do this, it is sufficient to add the blocking clause
c = (

∨
a∈Ω\P (B) pa) to Φ. The solver can then backtrack and performs positive

assignment of the variables representing Ω.
The main idea of our approach consists in adding blocking clauses each time a

model is found. Let us note that such clauses comprise the literals representing
items that are assigned to false under the current assignment. Consequently,
such clauses are false before backtracking. In order to enumerate correctly the
set of maximal itemsets, one need to take into account the levels of literals of c
to backtrack at the adequate level.

Note that in general for real transaction databases, the missing items in each
transaction Ti is larger than those of Ti i.e., |Ti| 
 |Ω \ Ti|. As a consequence,
each blocking clause c added to cut non maximal itemsets can be larger. Let us
suppose that the current itemset appears in the transaction Ti. Clearly, c can
be written as c = (

∨

a∈Ti\P (B)

pa ∨
∨

a∈Ω\Ti

pa). On the other hand, according to

constraints (1), ¬qi =
∨

a∈Ω\Ti

pa. So, c can be rewritten as c = (
∨

a∈Ti\P (B)

pa∨¬qi).

As formulated, the size of c can be considerably reduced. Furthermore, one can
obtain the smallest clause c by choosing the smallest transaction Ti containing
P (B).

In the sequel, we present Algorithm 2 that can be integrated to Algorithm1
to generate maximal itemsets based on the approach discussed below. More
precisely, and as discussed before, when a model is found, a blocking clause
c must be added to the formula. This clause is falsified at the current level.
Furthermore, the literals of c can be assigned at different level of the search tree.
Then, instead of performing a simple backtracking as shown in Algorithm 1, we
have to analyze c in order to deduce the adequate backtracking level.

Algorithm 2. DPLL for Maximal Itemsets
1 M = M ∪ {B};
2 c → ∨

a∈Ω | ¬pa∈B pa;

3 Φ ← Φ ∪ c;
4 btl, � ← analyze(c);
5 backtrackUntil(btl);
6 dl = btl;
7 B = B ∪ {�};
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Example 1. Let us reconsider the set of transactions of Table 1 and assume that
λ = 2. Suppose that the solver choose the following variable ordering pA, pE ,
pF , pG, pB , pD, and pC . Then, the first assignment leading to a model is B =
{pA,¬pE ,¬pF ,¬pG, pB ,¬pD, pC} such that pA is assigned to level 1, pB at level
2, and pC at level 3. The added blocking clause is c = (pD ∨pE ∨pF ∨pG). Then
the solver must backtrack to the level 1 since c is falsified in level 2.

From the complexity point of view, as shown, each time a model is found a
blocking clause is added to the formula. Consequently, the maximum number of
added clauses is equal to the number of maximal itemsets. Let us recall that the
number of maximal itemsets is often limited compared to closed ones.

6 Experimental Validation

We carried out an experimental evaluation to analyze the effect of adding block-
ing clauses and branching heuristics. To this end, we implemented a DPLL-like
procedure, denoted DPLL4MFI as described in Algorithm 2. In this procedure,
each time a model is found, we add a blocking clause (no-good) and perform
a backtracking after analyzing the blocking clause. We considered a variety of
datasets taken from the FIMI1 and CP4IM2 repositories. All the experiments were
done on Intel Xeon quad-core machines with 32 GB of RAM running at 2.66 GHz.
For each instance, we used a timeout of 15 min of CPU time.

In our experiments, we compare the performances of DPLL4MFI to the variant
DPLL4CFI that enumerate the set of closed itemsets. Let us recall that the DPLL
procedure utilize a static branching heuristic i.e., the variables corresponding to
the infrequent items are assigned first. Note that the solver does not branch
on qi variables. In fact, by assigning the variables pa, a ∈ Ω, the variables
qi, 1 ≤ i ≤ m are propagated because the variables qi depend on those of pa as
expressed by constraint (1).

In Table 2 we report some obtained results when considering some datas
and some chosen values of the minimum support threshold. Unsurprisingly, the

Table 2. Maximal Itemsets for some datas

instance (#item, #trans) min supp #CFI #MFI DPLL4CFI
time(s)

DPLL4MFI
time(s)

hepatitis (68, 137) 14 1827263 189205 2.21 29.35

lumph (68, 148) 10 46801 5191 0.08 0.11

primary tumor (31, 336) 34 31024 2043 0.04 0.02

anneal (93, 812) 81 1224754 15977 2.7 0.47

german-credit (112, 1000) 100 2080152 232107 10.38 37.26

mushroom (119, 8124) 812 3287 453 1.95 1.72

1 FIMI: http://fimi.ua.ac.be/data/.
2 CP4IM: http://dtai.cs.kuleuven.be/CP4IM/datasets/.

http://fimi.ua.ac.be/data/
http://dtai.cs.kuleuven.be/CP4IM/datasets/
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number of maximal itemsets is often limited compared to closed ones. Also, the
time needed to compute them is slightly greater than the one needed to generate
the closed ones due to added blocking clauses.

7 Conclusion

In this paper, we consider the problem of enumerating the set of maximal fre-
quent itemsets using propositional satisfiability. We show how to answer this
question by utilizing a DPLL-like procedure for model enumeration combined
to clause learning from models. Experimental results show that this approach
is interesting, as it allows to avoid adding maximality constraints to the initial
encoding.

As a future work, we plan to pursue our investigation in order to find the
best heuristics to speed up the enumeration of the models. For example, it
would be interesting to integrate some background knowledge in such heuris-
tic design. Finally, clause learning, an important component for the efficiency of
SAT solvers, admits several limitation in the context of model enumeration. An
important issue, is to study how such important mechanism can be efficiently
integrated when maximal itemset generation is considered.
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