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Abstract. The Particle Swarm Optimization is one of the most famous nature
inspired algorithm that belongs to the swarm optimization family. It has already
been used successfully in the continuous problem. However, this algorithm has
not been explored enough for the discrete domain. In this work we introduce
new operators that are dedicated to combinatorial research that we implemented
on a modified discrete particle swarm optimization called DPSO-CO to solve
travelling salesman problem. The experimental results on a set of different
instances, and the comparison study with others adaptations show that adopting
new ways, combinations and operators gives birth to a really competitive effi-
cient algorithm in operational research.
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1 Introduction

The metaheuristic algorithms, is a set of nature inspired methods, generally based on
search probability technique to find a good solution within a reasonable time. Today,
the metaheuristic algorithms have become more involved into solving a real engineer
single and multi-objective problems; before applying the metaheuristics on a real
problem, the researchers tested its quality performance to resolve classical problems.
As far as the combinatorial problems is concerned, the travelling salesman problem
(TSP) is considered as the most famous one that belongs to NP-hard problems [1], Its
resolution consists in finding a short travel among a set of cities that the salesman has to
visit in order to finish his journey at the initial starting point. Furthermore, TSP has
several variations in different areas, which makes its resolution more attractive in
computer wiring, vehicle routing and scheduling problems. Moreover, numerous
metaheuristics have been published for TSP such as genetic algorithm [2], harmony
search algorithm [3], particle swarm optimization [4], ant colony optimization [5] and
bee colony optimization [6].
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The particle swarm optimization (PSO) [7] is one of the well known optimization
algorithms, inspired by bird flocks intelligence method, and classified on swarm
intelligence algorithm. The principle of PSO focuses on the collaboration of all par-
ticles swarm, where each particle seeks a good position and moves with a specific
velocity. This algorithm defines a specific rule which allows each particle to follow the
best position in swarm without ignoring its own search making it always search for
what is best. In fact, several adaptations of PSO called discrete particle swarm opti-
mization (DPSO) have been proposed [8–10] for a different combinatorial optimization
problems, one of the most known adaptations was introduced by Clerc [11], but the
experience showed that adaptation of DPSO does not give competitive results like other
metaheuristics methods.

This work presents a new adaptation of DPSO named DPSO-CO with the intro-
duction of new combinatorial operators that follows the idea of Clerc in addition to
unification dimension, which is then concluded by the presentation of a performance
DPSO. The rest of this paper is organized as follows: definition of travelling salesman
problem in the Sect. 2 and description of particle swarm optimization algorithm in the
Sect. 3, while the Sect. 4 is devoted to give presentation of new operators and a new
adaptation. The application and the study of experimental results of this proposition
comes in the Sect. 5, and the conclusion and perspective in the Sect. 6.

2 Travelling Salesman Problem

The travelling salesman problem consists on finding the shortest path for the salesman
to take in order to visit all cities while two rules must be respected: first, he needs to
visit each city only once, second, he has to finish at the starting point. Mathematically
speaking, the solution of this problem is a permutation p, contains n elements, where
n presents the number of cities, and the ith element pi indicate the i

th city that should be
visited, therefore, the objective function to be minimized is:

f xð Þ ¼
Xn�1

i¼1
distance pi; piþ 1ð Þþ distance pn; p1ð Þ ð1Þ

3 Particle Swarm Optimization

In 1995, Kennedy and Eberhart introduced the particle swarm optimization [12] that is
a research algorithm based on the cooperation and sharing information within a defined
research space in order to find a good food source like the social behaviour in bird
flocking and fish schooling for example In researcher space, the algorithm launches a
set of individuals as candidate solution called “particles”, each particle has a position
known by all the group. In every moment, particles are moving with a specific velocity
towards the best position without ignoring their previous ones that will be shared in the
group once found.
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More concretely, in D-dimensional space, a population of n particles as potential
solutions, each particle has a position Pt (Eq. 2) which is generated randomly in t ¼ 0.

Pt ¼ Xt
i

� �
i¼1;::;n¼ xti1; x

t
i2; . . .; x

t
iD

� �
i¼1;::;n ð2Þ

However, before next iteration t, each i th particle is based on the global best position

founded in group gbestt�1 ¼ gbestt�1
k

� �
k¼1;::;D, and its best previous position pbest

t�1
i ¼

pbestt�1
i;k

� �
k¼1;::;D

to calculate its next velocity Vt
i ¼ vti;k

� �
k¼1;::;D

according Eq. 3,

which will take it towards another position Xt
i ¼ xti;k

� �
k¼1;::;D

by formulation of Eq. 4.

Vt
i ¼ x� Vt�1

i þ c1 � r1 � pbestt�1
i � Xt�1

i

� �þ c2 � r2 � gbestt�1 � Xt�1
i

� � ð3Þ

Xt
i ¼ Xt�1

i þVt
i ð4Þ

Where x is the inertia coefficient constant in interval [0, 1], c1 and c2 are cognitive
and social parameters constants in interval [0, 2], and r1, r2 are two generated
parameters randomly in [0, 1]. This process keeps repeating until the stopping con-
dition will be reached. As in our case, the objective is to find the best cycle of TSP
without exceeding a maximum iteration number, Algorithm 1 resumes this process
with a pseudo code of PSO.

Algorithm 1. Pseudo code of proposed method
Begin
Initial population P with d solutions randomly
For each p in P do
Initial their velocity : vp
Initial their best position founded : pbest

end For each
Get gbest : the best pbest in P
While ((optimum not finder) and (iteration number is not 
archived)) do
For each p in P do
Calculate vp with equation 3
Update p following equation 4 
if(cost(p)<cost(pbest)) then
pbest = p
if(cost(p)<cost(gbest)) then
gbest = p

end if
end if

end for each
end while
return gbest
End.
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4 Proposed Particle Swarm Optimization with Discrete
Operators

The proposed discrete particle swarm optimization with combinatorial operators
(DPSO-CO), follows the same method of operators presented by Clerc [11], but they
focus mainly on the unification of the dimension of velocity and position, in order to
avoid any truncate of velocity so that no data would be lost. This section is devised in
three sub-sections, where the first one contains a presentation of the novel operators
while in the second one adaptation of DPSO for this operator is to be found.

4.1 Novel Discrete Operators

Before starting representing operators, as it is known, the structure of the position is
represented as a permutation p, and velocity is a set of permutation. In this proposed
operators, we defined the data structure of velocity like position, which means that the
velocity is a permutation of d elements, where d is dimension of research space.

v ¼ vkð Þk¼1;::;d ð5Þ

Addition for position and velocity. The result of addition between velocity and
position is a position, which velocity translates the order of item position, that means in
each ith item of x will be the (vi)

th item in x′ resumed in Eq. 6, to clarify this operation
formulate 7 and Fig. 1. Example of position x plus velocity vshow example of addition
between position and velocity.

xþ v ¼ x0 ¼ x
0
i

� �
i¼1;::;d

¼ xkð Þi¼1;::;d=i ¼ vk ð6Þ

x ¼ 1; 4; 3; 5; 2ð Þ
v ¼ 5; 2; 4; 3; 1ð Þ

�
xþ v ¼ 2; 4; 5; 3; 1ð Þ ð7Þ

With this operator, if addition of position and two velocities give the same position, it
implies that they are equal (Eq. 8), and this redefinition makes more sense of vector
translation to velocity.

Fig. 1. Example of position x plus velocity v
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xþ v0 ¼ xþ v00 ) v0 ¼ v00 ð8Þ

Addition between two velocities. The addition of velocity v1 with another velocity v2

is a new velocity v3 with d elements, where each item i in v3 equal value of (vi
1)th item

in v2, this action resumes to translation of v1 by v2, where (x + v1) + v2 = x + (v1 + v2)
but v1 + v2 not equals v2 + v1. Equation 9 resumes an example of this operation.

v1 þ v2 ¼ v3 ¼ v3i
� �

i¼1;::;d¼ v2
v1ið Þ

� �
i¼1;::;d

ð9Þ

v1 ¼ 2; 5; 1; 4; 3ð Þ
v2 ¼ 3; 1; 2; 5; 4ð Þ

�
v3 ¼ v1 þ v2 ¼ 1; 4; 3; 5; 2ð Þ ð10Þ

Subtraction operator. At the same idea of addition operator, it is applied between two
positions, so the x1 minus x2 is v where each ith item in v (vi

th) equal the rang k flowing
Eq. 11, the result is a velocity v which enables the second position to move towards the
first position. And if x1 - x2 = v then x1 = x2 + v.

x1 � x2 ¼ v ¼ við Þi¼1;::; d¼ kð Þi¼1;::;d=x
1
k ¼ x2i ð11Þ

x1 ¼ 3; 1; 4; 2; 5ð Þ
x2 ¼ 1; 4; 3; 5; 2ð Þ

�
v ¼ x1 � x2 ¼ 2; 3; 1; 5; 4ð Þ ð12Þ

Multiplication operator. In this operator, the coefficient represents a probability
parameter of adjustment for velocity, in other way, the particle moves with some
velocity which can include some problems that can create a small disruptive impact on
its position for the next iteration. Thus, the multiplication between a coefficient c and
velocity v. After that the operator checks if a random number between 0 and 1 is less
than c, then he applies a random swap in v, otherwise it does nothing (Eq. 13).

cv ¼ random swap of v randðÞ\c
v otherwise

	
ð13Þ

4.2 Discrete Particle Swarm Optimization

The proposal method DPSO-CO based on these new defined operators generates
randomly particles population, then starts the search loop, where it detects, in each
iteration, gbest and generates the next solution for each particle following Eqs. 3 and 4,
where the inertia coefficient constant takes value 1, c1 and c2 are generated for each
iteration between 0 and 1. Each new solution gets a small perturbation with 2-opt in
order to look for a better neighbour, 2-opt improves a solution by applying iteratively
exchanges between two edges resuming in Fig. 2. 2-Opt Swap, where (A) represents
the initial case, and (B) is the new perturbation of tour. In TSP case, to accept exchange
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between two pairs (a, b) and (c, d) to (a, c) and (b, d) the sum of distances of (a, c) and
(b, d) must be less than the sum of pairs (a, b) and (d, c). This process continues until
DPSO-CO finds the best known solution for the problem or if it exceeds the maximal
number of possible iterations.

5 Experimental Results

In order to validate its performances, the proposed adaptation has been programmed
with C++ language and has been made on PC with processor Intel(R) Core(TM)
i5-2500 CPU @ 3.30 GHz and 4 Go of RAM, and has been tested on some symmetric
benchmarks of TSPLIB library [13].

Table 1 represents the numerical results on twenty instances of symmetric prob-
lems, each instance is executed thirty times, the first column represents the name of
instance problem, the second column Opt shows the best known optimum of instance,
while the third and fourth columns show respectively the best and worst solutions
obtained by DPSO-CO. In the fifth column the average length of all solutions is to be
found, and in the next column the standard deviation SD of all the results is shown. The
seventh and eighth columns represent respectively the percentage relative error of the
average PDav and the best solution PDbest according to the optimal known solution
presented in second column, this value is calculated following Eq. 14. Finally in the
ninth column C1%/Copt, where C1% indicates the number of solutions where relative
error is less than 1 and Copt is the number of solutions equal to optimum known
solution that means the number of iteration which its relative error is null, and the last
one is time column that shows the average of time execution of all iterations in second.

PDsolution ¼ Solution lenght � optimal known lenght
optimal known lenght

� 100% ð14Þ

The experimental results have shown that this proposed method gets the optimum
one for the majority of instances, especially for medium-sized category instances where
the average execution time is the shortest. To verify its performance according to the
current DPSO, we have implemented DPSO presented by Clerc [11] and showed the
results in Table 2. Comparison of the proposed algorithm with DPSO proposed by
Clerc [11]. When comparing, DPSO gets the best known solutions for some instances,
but in general, it does not provide results better than DPSO-CO that give solutions in a

Fig. 2. 2-Opt Swap
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shorter time and with less amount of relative errors terms of who get result in small
time and with a less reduced amount of relative errors. Both Fig. 3. Comparison
average relative error between proposed method and PSO-ACO-3Opt [14] and Fig. 4.
Comparison average execution time between proposed method and PSO-ACO-3Opt
[14] show the difference of the PDav and the execution time between the proposed
DPSO and the latest improved hybrid DPSO with Ant colony and 3-opt called
PSO-ACO-3opt [14], from these figures DPSO-CO is more efficient than
PSO-ACO-3Opt in terms of time and quality.

In addition, Table 3. Comparison of the proposed algorithm with DCS [15].
compares results of DPSO-CO with DCS [15], where column Time represents the
average time for all iteration average execution, and the last line represents the average
of each column. The results show that their performances are very close, and
DPSO-CO gives a nice result especially in time of execution for medium-size
instances, but when the size of the problem increases, DCS takes the advantage.

Table 1. Results of the proposed method DPSO-CO for some symmetric instance of TSPLib.

Instance Opt Best Worst Average SD PDav PDbest C1%/
Copt

Time

eil51 426 426 427 426.07 0.25 0.02 0.00 30/28 0.22
berlin52 7,542 7,542 7,542 7,542.00 0.00 0.00 0.00 30/30 0.02
st70 675 675 675 675.00 0.00 0.00 0.00 30/30 0.13
eil76 538 538 540 538.53 0.72 0.01 0.00 30/18 2.09
pr76 108,159 108,159 108,159 108,159.00 0.00 0.00 0.00 30/30 0.11
rat99 1,211 1,211 1,212 1,211.07 0.25 0.01 0.00 30/28 2.29
kroA100 21,282 21,282 21,282 21,282.00 0.00 0.00 0.00 30/30 0.28
kroB100 22,141 22,141 22,141 22,141.00 0.00 0.00 0.00 30/30 1.63
kroD100 21,294 21,294 21,309 21,294.50 2.69 0.00 0.00 30/29 2.25
kroE100 22,068 22,068 22,106 22,069.40 6.85 0.01 0.00 30/28 3.93
rd100 7,910 7,910 7,911 79,10.07 0.25 0.00 0.00 30/28 2.19
eil101 629 629 635 631.20 1.78 0.35 0.00 30/06 6.49
lin105 14,379 14,379 14,379 14,379.00 0.00 0.00 0.00 30/30 0.27
pr107 44,303 44,303 44,387 44,309.50 18.43 0.01 0.00 30/26 5.48
ch130 6,110 6,110 6,147 61,22.57 11.44 0.21 0.00 30/08 15.79
pr136 96,772 96,772 97,105 96,870.70 86.98 1.10 0.00 30/07 18.27
pr144 58,537 58,537 58,537 58,537.00 0.00 0.00 0.00 30/30 0.48
Ch150 6,528 6,528 6,561 6,537.37 10.91 0.14 0.00 30/16 20.45
kroA150 26,524 26,524 26,689 26,556.20 41.66 0,12 0.00 30/03 27.18
kroB150 26,130 26,130 26,237 26,152.70 23.61 0,09 0.00 30/04 28.01
rat195 2,323 2,336 2,370 2,355.70 7.20 1,41 0.56 02/00 65.60
kroA200 29,368 29,368 29,599 29,495.30 55.63 0,43 0.00 30/01 83.45
ts225 126,643 126,643 126,643 126,643.00 0,00 0,00 0.00 30/30 0.86
tsp225 3,916 3,939 3,983 3,964.90 12.18 1.25 0.59 02/00 64.67
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Table 2. Comparison of the proposed algorithm with DPSO proposed by Clerc [11].

Instance DPSO DPSO-CO
PDbest PDav C1%/COpt Time PDbest PDav C1%/COpt Time

eil51 0.00 0.14 30/13 2.12 0.00 0.02 30/28 0.22
st70 0.00 0.01 30/29 4.82 0.00 0.00 30/30 0.13
eil76 0.00 0.94 15/03 7.87 0.00 0.01 30/18 2.09
pr76 0.00 0.04 30/15 8.38 0.00 0.00 30/30 0.11
kroB100 0.00 0.17 30/06 21.57 0.00 0.00 30/30 1.63
kroD100 0.00 0.38 30/02 21.18 0.00 0.00 30/29 2.25
kroE100 0.13 0.40 30/00 21.84 0.00 0.01 30/28 3.93
eil101 0.79 1.84 02/00 20.80 0.00 0.35 30/06 6.49
lin105 0.00 0.00 30/30 20.89 0.00 0.00 30/30 0.27
pr107 0.00 0.21 30/01 22.81 0.00 0.01 30/26 5.48
ch130 0.20 0.90 19/00 51.93 0.00 0.21 30/08 15.79
pr136 0.21 0.76 26/0 44.14 0.00 1.10 30/07 18.27
pr144 0.00 0.00 30/30 31.79 0.00 0.00 30/30 0.48
Ch150 0.34 1.08 12/00 64.49 0.00 0.14 30/16 20.45
kroA150 0.36 1.04 12/00 71.22 0.00 0.12 30/03 27.18
kroB150 0.24 0.86 24/00 68.39 0.00 0.09 30/04 28.01
rat195 2.28 3.37 00/00 145.70 0.56 1.41 02/00 65.60
kroA200 0.85 1.31 05/00 184.59 0.00 0.43 30/01 83.45
ts225 0.07 0.31 30/0 216.03 0.00 0.00 30/30 0.86

0

0.2

0.4

0.6

0.8

1
PSO-ACO-3Opt DPSO-CO

Fig. 3. Comparison average relative error between proposed method and PSO-ACO-3Opt [14].
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Fig. 4. Comparison average execution time between proposed method and PSO-ACO-3Opt
[14].

Table 3. Comparison of the proposed algorithm with DCS [15].

Instance PDbest PDav C1%/COpt Time
DCS DPSO-CO DCS DPSO-CO DCS DPSO-CO DCS DPSO-CO

eil51 0.00 0.00 0.00 0.02 30/30 30/28 1.16 0.22
st70 0.00 0.00 0.00 0.00 30/30 30/30 1.56 0.13
eil76 0.00 0.00 0.00 0.01 30/29 30/18 6.54 2.09
pr76 0.00 0.00 0.00 0.00 30/30 30/30 4.73 0.11
kroB100 0.00 0.00 0.00 0.00 30/29 30/30 8.74 1.63
kroD100 0.00 0.00 0.04 0.00 30/19 30/29 8.74 2.25
kroE100 0.00 0.00 0.00 0.01 30/18 30/28 14.18 3.93
eil101 0.00 0.00 0.22 0.35 30/06 30/06 18.74 6.49
lin105 0.00 0.00 0.00 0.00 30/30 30/30 5.01 0.27
pr107 0.00 0.00 0.00 0.01 30/27 30/26 12.89 5.48
ch130 0.00 0.00 0.42 0.21 28/07 30/08 23.12 15.79
pr136 0.01 0.00 0.24 1.10 30/00 30/07 35.82 18.27
pr144 0.00 0.00 0.00 0.00 30/30 30/30 2.96 0.48
Ch150 0.00 0.00 0.33 0.14 29/10 30/16 27.74 20.45
kroA150 0.00 0.00 0.17 0.12 30/07 30/03 31.23 27.18
kroB150 0.00 0.00 0.11 0.09 30/05 30/04 33.01 28.01
rat195 0.04 0.56 0.81 1.41 20/00 02/00 57.25 65.60
kroA200 0.04 0.00 0.26 0.43 29/00 30/01 62.08 83.45
ts225 0.00 0.00 0.01 0.00 30/26 30/30 47.51 0.86
Average 0.01 0.01 0.14 0.21 29/18 29/19 21.21 14.89
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6 Conclusion

This paper presents a new adaptation of DPSO-CO characterized by a novel definition
of discrete operators. This proposed DPSO-CO method has been applied on different
symmetric TSP instances from TSPLib. The result was compared in confrontation with
the last hybrid PSO known and a recent competitive algorithm DCS. From this
obtained study, it can be concluded that the proposed DPSO-CO are effective and more
performant than other methods. However, this work opens new horizons for DPSO-CO
to solve other combinatorial problems especially when using open discrete operators in
new different ways that can be used in the future for others metaheuristic algorithms to
test and increase the performance of research.
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