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Abstract. This paper presents the recognition of myoelectric signal's algorithm
design thru artificial neural network architecture, for the manufacture of a
prototype of human hand prosthesis. At the beginning of the project the myo-
electric sensor was designed to help capture the signals that correspond to the
movement of each finger of a human hand. A database was generated with
captured myoelectric signals, which was used for the training of artificial neural
networks (ANN), obtaining the weights and bias. The performance of the
architecture was evaluated with statistical criteria for the validation of ANN,
comparing between simulated data and experimental data. It was found, that the
best architecture in this project has 7 neurons in the hidden layer, one in the
output layer and 96% correlation coefficient, this architecture is the number 7 in
Table 1 which contains a performance report learning algorithm of the different
architectures proposed.
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1 Introduction

Prosthesis is an artifact developed in order to improve the quality of life of people who
by some accident lost some limb of their body. Through the advancement of tech-
nology in the last decades prostheses have becoming more advanced. The human body
is able to generate electrical signals in its muscles, these signals are known as bio-
electric signals. The bioelectrical signals are divided into different types depending on
the origin of this signal. The myoelectric signals are those generated by the contraction
of some muscle of any extremity such as the arms and legs, can be measured with a
suitable equipment and thus use the information that these provide us in the design of
prostheses. The work of Parimal performs a micro controlled system, based on the
microcontroller 68HC11 (Parimal et al. 1988). The system amplifies the myoelectric
signals, filters them, digitizes them and the control algorithm decides the movement of
a robot of two degrees of freedom. Another similar work in which, unlike the previous
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one, a myoelectric prosthesis is activated (Romero et al. 2001). In systems oriented to
assistance in industrial environment, is the work of López, di Sciasco, Orosco,
Ledesma, Echenique, and Valentinuzzi (López et al. 2006), in this paper, a myoelectric
sensor was designed, which is responsible for capturing, amplifying and filtering the
signals generated by the contraction of the muscles responsible for the movement of
each finger. The recognition of the myoelectric signals is performed through neural
network architecture, allowing a more reliable result. This architecture could be
developed and validated thanks to the Matlab tool, to later generate a function which
represents the operation of said neural network, obtaining a signal recognition algo-
rithm and entering it in the Arduino Mega 2560 development board in order to obtain a
Prototype of prosthesis of a human hand shown in Fig. 1.

2 Experimental System

The development methodology of this research project begins with the design of a
myoelectric sensor for the acquisition of the signals. A database was created from the
myoelectric signals generated by the contraction of the muscles responsible for the
movements of each finger of a human hand.

2.1 Myoelectric Sensor Design

The parameters of the myoelectric signals to be captured are:

• The frequency of the myoelectric signal is 50 and 200 Hz.

Fig. 1. Prototype of prosthesis of a human hand.
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• Sleep state: is the state where the excitable cells maintain a potential
−90 mV < V < −50 mV.

• Active state: in this state excitable cells have an electrical potential between
−55 mV < V < 30 mV.

A myoelectric sensor was designed with the following characteristics:

• Pre-amplification
• High pass filter
• Low pass filter
• Amplification and signal coupling
• Selection of cables for electromyography (EMG)

An instrumentation amplifier with biomedical applications AD620 was used, which
requires less components to adjust the gain and presents a rather high CMRR (Common
Mode Rejection Ratio) value at low frequencies. To calculate the components of this
stage, the formula recommended in the AD620 circuit data sheet was used:

G ¼ 1þ 49:9KX
RG

In this case it is desired to calculate RG, since it was postulated as G = 250,
therefore the result is the following:

RG ¼ 49:4KX
250� 1

¼ 198:88X;
RG

2
¼ 200X

2
¼ 100X

High Pass Filter: This was calculated for a cut-off frequency of 5 Hz with a
commercial capacitor of C = 0.1 lF.

FC ¼ 1
R � 2p � c ; R ¼ 1

2p � 0:1 lFð Þ � 5Hzð Þ ¼ 318:3 kX

R6 ¼ 610 kX==610 kX ¼ 305 kX

Inverter Amplifier: The purpose of this amplifier that is connected between the R6

of the AD620 is to provide patient safety also helps to maintain a stability in the signals
obtained in the EMG.

V0

V1
¼ �RF

R1
;
V0

V1
¼ � 470KX

12KX
¼ 39:16

Low pass filter: A Butterworth low pass filter of order 2 was designed with a
Sallen-key topology, with a quality factor of 0.71, gain 1, and with a cutoff frequency
of 980 Hz. Obtaining the following results.
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R1 ¼ 22KX;R2 ¼ 1:2KX;C1 ¼ 10 nF;C2 ¼ 100 nF

Once the amplification problem of the small signals has been solved, it is necessary
to design additional stages for conditioning the system, which are aimed at filtering and
cleaning the signal being collected and amplifying the filtered signal. The circuits used
are shown in Fig. 2.

2.2 Acquisition

When the myoelectric sensor was obtained, the EMG was performed, in other words, to
capture signals from the muscles responsible for the movement of the fingers on the
hand. The EMG consists of placing surface electrodes on the required extremity as
shown in Fig. 3, these sensors are connected by wires to the input of the myoelectric
sensor, and the output of the myoelectric sensor is connected to the Arduino Mega
2560 which sends the data to a PC.

Fig. 2. Sensor of myoelectric signals with all its stages.

Fig. 3. Placement of the surface electrodes for the realization of EMG.
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With the help of the Matlab tool the signals obtained were plotted and saved, in
order generate a database necessary for the training of the neural network. In this work
the movements on which they worked were the contraction of each of the fingers and
the full fist at the same time, namely, the movement of opening and closing the
complete hand. The signals are shown in the following Figs. 4, 5, 6, 7, 8 and 9.

Fig. 4. Myoelectric signal produced by the full fist.

Fig. 5. Myoelectric signal produced by the index finger

Fig. 6. Myoelectric signal produced by the middle finger
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Fig. 7. Myoelectric signal produced by the ring finger

Fig. 8. Myoelectric signal produced by the little finger

Fig. 9. Myoelectric signal produced by the thumb.
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3 Artificial Neuronal Networks

An Artificial Neuronal Networks (ANN) is defined as a nonlinear mapping system.
They consist of a number of simple processors connected by connections with weights.
Processing units are called neurons. Each unit receives inputs from other nodes and
generates a simple scalar output that depends on the available local information, and
stored internally or arriving through the weighted connections.

Simple artificial neurons were introduced by McCulloch and Pitts in 1943. An
artificial neural network is characterized by the following elements:

1. A set of processing units or neurons.
2. An activation state for each unit, equivalent to the output of the unit.
3. Connections between units, generally defined by a weight that determines an input

signal to the unit.
4. A propagation rule, which determines the effective input of a unit from the external

inputs.
5. An activation function that updates the new activation level based on the actual

input and previous activation.
6. An external entry that corresponds to a term determined as bias for unit.
7. A method for gathering information, corresponding to the learning rule.
8. An environment in which the system will operate, with input signal and even error

signals.

An abstract and simple model of an artificial neuron (Fig. 10) composed of a set of
inputs X ¼ x1; x2; x3; . . .; xið Þ which simulates the function of the dendrites; A vector of
W ¼ w1;w2;w3; . . .;wið Þ which emulates the function of a synapse; An action
threshold or also called bia h; An activation function which is considered the equivalent
of soma and an output (Pedro and Inés 2004).

Fig. 10. Natural elements of a neuron.
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The descriptions of the components that make up an artificial neuron are:

• Input vector: this vector X ¼ x1; x2; x3; . . .; xið Þ contains the information that the
neuron is going to process; Where “i” is the number of inputs to the neuron.

• Vector of synaptic weights: Each of the elements of the input vector X ¼
x1; x2; x3; . . .; xið Þ is multiplied by an adjustable value called the synaptic weight and
is represented by the vector X ¼ x1; x2; x3; . . .; xið Þ. This vector is adjusted during
training, in order to minimize the error of the neuron output with respect to the
expected output.

• Threshold or bia: It is denoted by the symbol h and is considered as an additional
weight that receives an input with a value equal to unity.

Activation or transfer function: The rule that establishes the effect of the total input
ut on the activation of the unit is called the activation function Fk (Pedro 2010).

Some of the most used functions are the linear, sigmoid and hyperbolic tangent
(Sergio 2017). The equations are listed as follows:

f xð Þ ¼ x

f xð Þ ¼ 1
1þ e�x

f xð Þ ¼ 2
1þ e�2x � 1

Starting from a series of random synaptic weights, the learning process looks for a
set of weights that allow the network to develop a certain task. Most of the training
methods used in neural networks with forward connection consist of proposing an error
function that measures the current performance of the network as a function of the
synaptic weights. The goal of the training method is to find the set of synaptic weights
that minimize (or maximize) the function. There are two types of learning, if the
network learns during its normal operation or if the disconnection of the network until
the process terminates on-line and off-line networks, respectively (Pedro and Inés
2004).

• Learning algorithms are listed below:
• Descending batch gradient (traingd).
• Gradient batch and traingdm.
• Variable learning rate (traingdx).
• Conjugate gradient algorithms.
• Scaled conjugate gradient (trainscg).
• BFGS algorithm (trainbfg).
• Levenberg-Marquardt (trainlm).

After the training were submitted to different statistical processes in order to
compare the performance of the different ANN architectures obtained. Some of the
statistical equations used to compare groups of data generated with artificial neural
networks are described below. The output of the ANN is OUTSIM the simulated data,
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the experimental data are named with OUTEXP and n represents the number of values of
the samples (Bassam 2014).

Coefficient of determination measures the degree of dependence between variables,
taking the value 0 in case of null correlation or the value 1 in case of total correlation.
Equivalent to the square of the correlation coefficient.

R2 ¼ 1�
Pn
i¼1

ðOUT expðiÞ � OUTsimðiÞÞ2

Pn
i¼1

ðOUT expðiÞ � OUT expÞ2

The Root Mean Square Error (RMSE) is a measure of the degree of dispersion of
the data with respect to the average value. It is known as the standard deviation for a
discrete probability distribution:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

OUTsimðiÞ � OUT expðiÞ
� �2

n

vuuut

MPE (Mean Percentage Error) is the mean of the percentage error. It is a simple
metric, used to see if the forecast error has a positive or negative bias. It is also said that
the forecast is underestimated or overestimated

MPE ¼
Pn
i¼1

OUT expðiÞ�OUTsimðiÞ
OUTexpðiÞ

� �
n

� 100 %ð Þ

4 Artificial Neural Network Design and Training

Once the signals were captured and a database was generated, the data was subse-
quently debugged. This was done by submitting the database to a statistical process
which gave us the variables that were considered for the input vector of RNA, these
variables are: variance, standard deviation, mean square value, RMS value, symmetry
coefficient and kurtosis. For the training of the neural network we used the variables
derived from the database debugging and the Matlab package, which offers us a series
of predefined functions which facilitate the training process (Demuth et al. 2007). We
performed different tests dividing the database into 3 in different percentages, that is,
60% for training, 20% validation and 20% for test. Before training, it was considered to
define different criteria, such as the number of hidden layer neurons, the learning factor
among others. The Levenberg-Marquardt algorithm was used for the training of the
tests, since in comparative studies (Sergio 2017) it has shown a better performance with
respect to the algorithms of backpropagation, descending gradient, among others.
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An algorithm was proposed which helped to calculate the following parameters:

• Number of neurons in the hidden layer.
• Learning factor.
• Linear correlation coefficient.
• The RMSE.
• Synaptic weights and bias.
• Storage of results of each training.

The artificial neural network which has the following characteristics (Fig. 11):

• Network type: perceptron.
• 8 inputs, 7 neurons in the hidden layer, one neuron in the output layer and one

output.
• Hyperbolic function in the hidden layer of RNA.
• Linear function in the RNA output layer.
• A Levenberg-Marquardt optimization algorithm.

In the Table 1 an extract of a report generated from the training is presented, in the
Fig. 12 is shown an outline of which are the stages that were followed in the work. This
report was obtained using the data base of the myoelectric signals andwith the 8 variables
derived from the debugging of the database with the help of statistical methods. In this
example the architecture No. 7 exhibits the best correlation (0.9622). The cases were
calculated the R2 (test), RMSE (global and test) and the CR of the variables. The global
RMSE includes 100% of the training data and the test data only 20%.

Fig. 11. Neural network graphical model.
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After completing the training of the network with the architecture No. 7, the val-
idation stage was started in which the database compiled in the electromyography was
tested. The objective is to compare the experimental and simulated outputs, in order to
bring the ANN architecture to a development card (Arduino) and thus give an appli-
cation to the ANN.

5 Results and Implementation of the Neural Network

The results obtained with this architecture were satisfactory obtaining the following
parameters:

Fig. 12. Diagram of the stages by the project is constituted.

Table 1. Report extract generated by the learning algorithm.

Number of
architecture

Architecture
ANN

Numbers
of
neurons

Epoch Root Means
Square Error
(RMSE)

Means
Percentage
Error (MPE)

R2 Coefficient
of
determination

Best linear
equation

1 8–1–1 1 1000 0.554209372 17.36174307 0.9004 0.81T + 0.71

2 8–2–1 2 1000 0.285012061 12.64856695 0.9502 0.88T + 0.43

3 8–3–1 3 1000 0.283046879 13.77088346 0.9504 0.89T + 0.04

4 8–4–1 4 1000 0.27890845 11.34057548 0.9516 0.89T + 0.35

5 8–5–1 5 1000 0.213592679 11.66547187 0.9628 0.92T + 0.3

6 8–6–1 6 1000 0.230296651 10.53668406 0.9599 0.94T + 0.2

7 8–7–1 7 1000 0.21687368 10.19372467 0.9622 0.93T + 0.27

8 8–8–1 8 1000 0.264669891 12.85161597 0.9539 0.9T + 0.33

9 8–9–1 9 1000 0.275548412 11.76859909 0.9517 0.92T + 0.28

10 8–10–1 10 1000 0.267190521 11.66423641 0.9535 0.94T + 0.22
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• RMSE: 0.2168 (Root Means Square Error).
• MPE: 10.194% (Percentage Error).
• Alignment: 0.93T + 0.27.
• Synaptic weights.
• Pathways.

The linear correlation between the measured and the estimated ANN obtained in
test 7 is shown in Fig. 13, the values of WI, WO, B1 and B2, respectively, are shown in
Tables 2 and 3.

Fig. 13. Graph of linear correlation between the experimental and simulated results.

Table 2. Synaptic weights of architecture #7, of the 8 inputs for the 7 neurons of the hidden
layer.

Synaptic Weight Matrix WI

0.8475 2.2854 2.1476 0.1976 −0.5232 −3.9432 −2.5756 −3.3085
3.7104 −9.9741 −10.029 −5.5328 −3.5506 −5.6621 −7.5008 −6.102
14.8244 13.2162 −0.6775 4.2638 −3.1937 −3.8813 −6.7063 0.6947
−7.9776 −15.0781 3.212 6.7119 1.209 1.3704 9.7667 1.7998
1.5851 0.6765 −0.6552 2.0935 −1.1748 1.1137 −1.5177 −0.7433

−3.9121 −41.0433 −11.7778 8.4399 −1.998 10.4343 −22.3041 0.3034
6.7575 3.4153 1.9836 −19.1374 1.4781 −6.1953 8.4232 −3.6328
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5.1 Equation Resulting from ANN

Finally we present the proposed equation obtained from architecture #7, given by:

OUT ¼
X7
j¼1

WO n;jð Þ
2

1þ e�2
P8

i¼1
WI j;ið Þ�In ið Þð ÞþB2

� � � 1

 !" #
þB1

WHERE:

• WI j;ið Þ ¼ Matrix of synaptic weights of the inputs.
• WO n;jð Þ ¼ Matrix of synaptic weights of the hidden layer.
• In ið Þ ¼ Input data.
• B1 ¼ Paths of the hidden layer.
• B2 ¼ Path of the output layer.

5.2 Application with Arduino

The final application of the previous processes, an ARDUINO MEGA 2560 devel-
opment board was used, it was possible to carry out a demonstrative application in
which the proposed ANN equation was entered in a simplified way. This application
was achieved with an algorithm show in Fig. 14 hat has the purpose of making a
selection of the input data, which were obtained from the database debugging, it is
worth mentioning that each input data is a result of a Statistical process applied to each
signal, produced by the movement of each of the fingers. After performing the process
of data entry, these are introduced to the ANN equation obtaining an output value
which will trigger the movement of one of the fingers of the prototype of the prosthesis.

In order to validate the proper functioning of the training and the result of the neural
network, an arduino program was performed, in which a part of the database, the
synaptic weights and the bias are entered.

The program that was developed consists of three steps which will be explained in
detail:

• Step one: the program generates a random number, that number represents a row of
the database which is an 8 � 24 matrix (columns per row), the data in that row is
entered into the resulting function of the training of the neural network.

• Step two: data entered into the function of the neural network results in a predicted
output according to the row that was selected each result obtained will generate an
action.

Table 3. Synaptic weights and paths of the hidden layer and the layer of exit.

Synaptic weights and bias of the hidden layer and exit layer

Vector WO −1.9619 1.0649 1.2106 1.004 1.8337 −1.2558 0.9283
Vector B1 6.8032 7.7847 −3.5825 3.3002 5.0344 10.8505 2.6925
Vector B2 1.4902
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• Step three: each action is based on the calculated output, it is worth mentioning that
these outputs have an error rate of 10.94% (MPE). The order of the actions is as
follows.

• Out = 1: All servos are actuated, imitating how the complete fist closes (Fig. 15a).
• Out = 2: the servo is actuated by mimicking the contraction of the index finger

(Fig. 15b).
• Out = 3: the servo two is actuated by mimicking the contraction of the medium

finger (Fig. 15c).
• Out = 4: the servo three is actuated by mimicking the contraction of the ring finger

(Fig. 15d).
• Out = 5: the four servo is actuated by mimicking the contraction of the little finger

(Fig. 15e).
• Out = 6: the five servo is actuated by mimicking the contraction of the thumb

(Fig. 15f).

Fig. 14. Algorithm used for the application in ARDUINO MEGA 256.
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6 Conclusions

Through the design of a myoelectric sensor it was possible to obtain myoelectric
signals, the contraction of the muscles responsible for the movements of each finger, of
a human hand, as well as to develop a way of selection and characterization of
myoelectric signals. Using neural networks we can obtain a selection of signals with a
small degree of error, with this we offer a good performance of the prototype of the
prosthesis.
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