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Abstract. This paper presents a design of an artificial neural network algorithm
for prediction and management of electric loads for the optimal operation of a
microgrid with sources of renewable energy. The hybrid power generation
system is composed of a photovoltaic array, wind turbines, public power grid,
electric loads and battery bank as a storage system. A dynamic neural network is
implemented to determine the optimal amounts of energy that must be obtained
from the sources, to reduce costs and improve efficiency. Simulation results
demonstrate that generation of each energy source can be reached in an optimal
form using the proposed design.
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1 Introduction

Nowadays, an energy crisis exists since reserves of coal-based fuels are being depleted,
due to the increment of their exploitation and consumption. When generating energy
with this type of fuel greenhouse gases are emitted, causing: global warming, the
alteration of the climate, and the habitat [1]. The costs of production and storage of
various low capacity renewable energy sources have decreased considerably, and
currently, the world is working on integrating them into public power grids. The first
steps in the integration of renewable energy sources came with the implementation of
hybrid photovoltaic-wind systems as complementary sources for rural applications and
weak connections to the grid.

Research is currently underway on the integration of various small-scale energy
sources such as solar thermal, biomass, fuel cells and tidal power, under new and
advanced control schemes constituting what is called a smart grid. Since the production
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costs of photovoltaic and wind farms have been significantly reduced, they have
become the primary choice for power generation in smart grids [2, 3]

A smart grid is a kind of grid that can efficiently integrate the behavior and actions
of all users connected to it. It ensures a sustainable and efficient energy system, with
low losses and high levels of quality and security of supply. Humanity has experienced
in the last century an immense development based on the energy of fossil origin
consumption. These energies have been exploited assuming an unlimited availability,
and without assessing at any time the environmental costs caused.

The human being has focused to date on an energy model in which a rigorous chain
is followed in the following order: generation, distribution, transport, and consumption.
However, changing this model is more than a necessity today, with the new model
tending to the diversification of energy sources, greater use of renewable energies,
efficiency, and energy saving. The new energy model aims to transform the current
system into a distributed system, in which any agent that is connected to the network has
the possibility of contributing energy, making possible the creation of microgenerators,
so that there is no such direct dependence on the current energy generation [4–7].

Although there is no standard general definition of a smart grid. The European
Smart Grids Platform (Smart Grids: European Technology Platform) defines a smart
grid as “A power grid capable of intelligently integrating behavior and the actions of all
the users connected to it, generators, consumers and those who carry out both actions,
in order to safely and efficiently distribute electricity from a sustainable and economic
point of view” [8].

2 Energy Management System

An energy management system (EMS) can be defined as a methodology to achieve
sustained and continuous improvement of energy performance. The implementation of
an EMS should not be understood as an objective itself, what really matters is the
results of the whole system. Understood in this way, the effectiveness of an EMS will
depend, to a large extent, on the commitment and willingness of all the factors involved
to manage the use and cost of energy. The EMS aim at the continuous improvement in
the use of energy through a more efficient use of energy, reducing consumption,
associated financial costs and emissions of greenhouse gases, as well as by making
better use of renewable energies [9–11].

An EMS brings the following benefits:

• Helps identify, prioritize and select actions to improve energy performance, based
on their potential savings and the level of investment required.

• Reduce costs by making the most of the energy resources.

Boosts productivity and growth (greater use, less waste).

• Ensures the trust and quality of the information used for making decisions.
• It facilitates the integration of existing management systems.
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2.1 Power Measurement Device

A power measurement device allows the measurement of current and voltage variables.
This device replaces the use of voltmeters and amperemeter. It has the capacity to
measure power incorporating additional benefits such as wireless communication
through protocols ZigBee, with which we can integrate this equipment into the soft-
ware to perform power management by implementing a monitoring system. An energy
monitoring system can record electrical variables of interest that at some point provide
information to establish the behavior of a power system. It is important to have these
real-time data storage systems to monitor the operational performance.

The proposed measurement device has two voltage transducers and four current
traducers, which convert the input power variables into other output variables of very
small values. The resulting data is passed through six low pass filters, designed to
condition the signal and finally direct them to the analog inputs of an “Arduino DUE”.
A Xbee module is connected to carry out communication with the computer and obtain
the measurement data in real time.

The main components of the wind generation system are illustrated in Fig. 1. This
system is part of the microgrid installed in the Faculty of Engineering of the UADY.
The power from turbines passes through the control panel, where it is verified that it is
within the allowed operating ranges, otherwise, the turbine is protected by shutting
down the entire system. Subsequently, the power produced is directed to rectifiers to
regulate resistive loads. The resistive loads come into operation when there is an
excessive surplus of power. From the resulting power passing through the rectifiers,
two currents and the same voltage are generated for each pair of rectifiers. At this stage
of the generation process of the wind system is where the measurement of voltages and
currents is taken for the proposed device.

Fig. 1. Power measurement scheme in wind power systems
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3 Artificial Neural Networks

An Artificial Neural Network (ANN) is a distributed parallel processor made up of
simple processing units (neurons), which stores knowledge obtained experimentally,
and makes it available for use. Knowledge is acquired by the network through a
learning process and the connection weights between neurons, known as synaptic, are
used to store it. The procedure used to perform the learning process is called training
algorithm, whose function is to modify the synaptic weights of the network in an
orderly way to achieve the desired design goal [12].

An ANN can be seen like a black box in which enters a database conformed by
input variables. Each of the input variables is assigned with an appropriate weighting
factor (W). The sum of the weighted inputs and the bias (b) produces the input for a
transfer function which will generate an output value. The main characteristic of this
model is that specific information about the physical behavior system or the way in
which the data were obtained are not required [13, 14].

3.1 Model of an Artificial Neuron

The neuron is the fundamental information processing unit for the operation of a neural
network. Figure 2 shows the model of a neuron, which forms the basis for the design of
artificial neural networks [16, 17]. In the neuronal model presented four basic elements
are identified:

• Connection links wkj
� �

:Characterized by their own weight. Specifically, a signal xj at
the input of the synapse j connected to neuron k is multiplied by the synaptic weight
wkj. It is important to note the notation: the first subscript refers to the receiving neuron
and the second refers to the input of the synapse to which the weight is concerned. If
wkj [ 0 the connection is excitatory; Also, if wkj\0; the connection is inhibitory.

• Summing Junction Rð Þ: Add the input signals multiplied by wkj. The operations
described in this point constitute a linear combination.

• Activation function uð Þ: It limits the amplitude of the output of a neuron to a finite
value. Usually, the normalized amplitude range of the output of a neuron is written
as the closed unit interval [0,1] or alternatively [−1,1].

• Threshold bk. It has the effect of increasing (positive value) or decreasing (negative
value) the total input to the activation function.

Fig. 2. Model of an artificial neuron
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3.2 Extended Kalman Filter

The Kalman filter is based on the state space formulation of linear dynamic systems,
providing a recursive solution to the optimal linear filtering problem. It is applied in
stationary environments as non-stationary. The solution is recursive; so, each update of
the estimated state is calculated from the previous estimate and the new input data, so
only the previous estimate requires storage. In the application of the Kalman filter for
training neural networks, the synaptic weights of the network are the states that the
Kalman filter estimates and the output of the neural network is the measurement used
by this filter [17, 18].

With the algorithm based on the Extended Kalman Filter (EKF), learning con-
vergence is improved. EKF training of neural networks, both static and recurrent, has
proven to be reliable for many applications in the last twenty years. However, this
training requires the heuristic selection of some design parameters which is not always
an easy task [19].

Consider a nonlinear dynamic system described by the following state space model

w kþ 1ð Þ ¼ f k;w kð Þð Þþ u kð Þ ð1Þ

y kð Þ ¼ h k;w kð Þð Þþ v kð Þ ð2Þ

u kð Þ and v kð Þ are independent noises, empty, zero-mean and with covariance matrices
Q kð Þ and R kð Þ; respectively. f k;w kð Þð Þ denotes the non-linear matrix function of
transition, which can be variant in time and h k;w kð Þð Þ denotes the nonlinear mea-
surement matrix function, which can also be variant in time.

The idea of the extended Kalman filter is to linearize the state space model of (1)
and (2) at each sampling instant around the most recent estimated state, which can be
taken as ŵ kð Þ o ŵ� kð Þ: Once the model is obtained, the Kalman filter equations are
applied. The approximation proceeds:

Step 1. The following matrices are computed

Fkþ 1;k ¼ @f k;w kð Þð Þ
@w

����
w¼ŵ kð Þ

ð3Þ

H kð Þ ¼ @h k;w kð Þð Þ
@w

����
ŵ� kð Þ

ð4Þ

Step 2. Once the matrices F �ð Þ and H �ð Þ are evaluated, they are used in a first-order
Taylor series approximation for the nonlinear functions f k;w kð Þð Þ and h k;w kð Þð Þ
around ŵ kð Þ and ŵ� kð Þ respectively. Specifically, they approximate as follows

f k;w kð Þð Þ � F w; ŵ kð Þð ÞþFkþ 1;k w; ŵ kð Þð Þ ð5Þ

h k;w kð Þð Þ � H w; ŵ� kð Þð ÞþHkþ 1;k w; ŵ kð Þð Þ ð6Þ

Forecast and Energy Management of a Microgrid 85



With (3) and (4), the nonlinear state Eqs. (5) and (6) are approximated as:

w kþ 1ð Þ � Fkþ 1;kw kð Þþ u kð Þþ d kð Þ ð7Þ
�y kð Þ � H kð Þw kð Þþ v kð Þ ð8Þ

where

�y kð Þ ¼ y kð Þ � h w; ŵ� kð Þð Þ � H kð Þŵ� kð Þð Þ ð9Þ

d kð Þ ¼ f w; ŵ� kð Þð Þ � Fkþ 1;kŵ kð Þ ð10Þ

Although there are some differences between the equations that define the neural
networks of this work, both can be represented by the model

w kþ 1ð Þ ¼ w kð ÞþDw kð Þ ð11Þ

ŷ kð Þ ¼ h w kð Þ; . kð Þð Þ ð12Þ

Which is a simplification of the state space model given by (1) and (2). w kð Þ is the
vector of synaptic weights, and ŷ kð Þ is the output vector of the neural network, . kð Þ
represents the input vector to the neural network and h �ð Þ is the nonlinear output
function of the network. Considering the model (11–12) and the extended Kalman
filter, the following set of equations are used to update the synaptic weights of the
neural networks at each iteration

K kð Þ ¼ P kð ÞHT kð Þ RþH kð ÞP kð ÞHT kð Þ� ��1 ð13Þ

w kþ 1ð Þ ¼ w kð ÞþK kð Þ y kð Þ � ŷ kð Þ½ � ð14Þ

P kþ 1ð Þ ¼ P kð Þ � K kð ÞH kð ÞP kð ÞþQ ð15Þ

Where P kð Þ 2 R
N�N and P kþ 1ð Þ 2 R

N�N are the covariance matrices of the
prediction error in iterations k and kþ 1; respectively; N represents the total number of
synaptic weights in the neural network; w kð Þ 2 R

N is the vector of weights (states);
And y kð Þ 2 R

o is the vector with the desired output of the network; Or is the total
number of outputs of the neural network; And ŷ kð Þ 2 R

o is the output vector produced
by the neural network; K kð Þ 2 R

N�o is the Kalman gain matrix; Q 2 R
N�N is the

covariance matrix of the process noise; R 2 R
o�o is the covariance matrix of the

measurement noise and H kð Þ 2 R
o�N is the matrix containing the derivatives of each

output of the neural network ŷi with respect to each of the weights wj of the network, as
indicated by:

Hij kð Þ ¼ @ŷi kð Þ
@wj nð Þ

� �
w kð Þ¼ŵ kþ 1ð Þ

; i ¼ 1; . . .; o; j ¼ 1; . . .;N ð16Þ
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3.3 Embedding Dimension

To build a prediction model of a time series, it is important to determine the embedding
dimension of the series. The embedding dimension defines the number of previous
values in the time series known as regressors that will determine the next value. The
method used in the present work to determine the embedding dimension is called the
Cao method [20].

The reconstruction of the dynamics immersed in the time series was performed, for
this purpose two parameters must be calculated, the first is the optimal delay of
embedding se, and the second is the embedding dimension de. The method is based on
the construction of the delay vector of the series. The dimension vector de is defined as:

y nð Þ ¼ s nð Þ; s nþ Tð Þ; s nþ 2Tð Þ; . . .; s n� de � 1ð Þseð Þ½ � ð17Þ

In this method, the quantity is defined as:

a n; dð Þ ¼ yn dþ 1ð Þ � ykðn;dÞ dþ 1ð Þ		 		
yn dð Þ � ykðn;dÞ dð Þ		 		 ð18Þ

The number k n; dð Þ is an integer such that the vector of dimension d, is the nearest
value of the vector yn dð Þ: The advantage of this method lies in defining the average:

E dð Þ ¼ 1
N � dse

XN�dse

n¼1
a n; dð Þ ð19Þ

And define the parameter

E1 dð Þ ¼ E dþ 1ð Þ
E dð Þ ð20Þ

While d increases, the value of parameter E1 dð Þ is stabilized in d0, in this case it, is
expected that d0 approaches to 1. When this happens the minimum dimension of
embedding will be when d0 � 1: For the calculation of the optimal delay of embedding
as shown in Fig. 3(A), an autocorrelation function was used, where the first value close
to zero was selected and the delay was calculated for each database. The embedding
dimension was obtained, using the autocorrelation function previously obtained.
Figure 3(B) shows the convergence of the method for the time series of wind
speed.
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4 Optimization Problem Formulation

In this section, the optimization problem solution of a microgrid operation, intercon-
nected to the public grid of the Engineering Faculty of the Autonomous University of
Yucatan (UADY), is developed, besides there are batteries for storage and supply of
energy. The objective is to determine the optimal amounts of energy for the wind, solar,
battery and public power supply systems, to satisfy the demand generated by a
building. A scheme is proposed that minimizes the purchase of energy from the public
grid and the operating costs of the hybrid system’s energy sources.

The problem of optimization to be solved is the type of linear programming, and for
its solution, a recurrent neural network is proposed capable of solving the problem of
optimization proposed by [8]. Computer programs are designed in Matlab to simulate
the optimal operation of the hybrid system, using the proposed neural network. The
simulation results show the performance of the neural network. In addition, it is nec-
essary to define the operating costs of each energy source that forms the system.

The electric microgrid installed in the Engineering Faculty of the Autonomous
University of Yucatan is illustrated in Fig. 4. It is composed of the public power grid,
wind generators, photovoltaic systems, batteries for energy storage and a load man-
agement system. The objective is to determine the optimal amounts of power supplied
for each energy source, over a time horizon, to satisfy the electrical demand, with
respect to a time horizon. Minimizing the energy acquired from the public grid subject
to constraints and power balance equations, as shown below intervals and the
short-term generation scheduling problem can be formulated as follows:

CT ¼
XN

t¼1
FC tð Þ ð21Þ

where

CT Total energy cost acquired from the microgrid
FC Energy cost of the microgrid at each time interval

Fig. 3. (A) Autocorrelation function, (B) Embedding convergence using Cao’s method
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The optimization problem minimizes the purchase of energy from the public grid
and the operating costs of the microgrid, the objective function arises as follows

FC tð Þ ¼ CGPG tð ÞþCWPW tð ÞþCSPS tð ÞþCBDPBD tð ÞþCBCPBC tð Þ ð22Þ

where PB tð Þ ¼ PBD tð Þ � PBC tð Þ: The optimization problem is subject to constraints,
which are also defined in each subsystem that compose the electric microgrid as

PG tð ÞþPW tð ÞþPS tð ÞþPBD tð Þ � PBC tð Þ ¼ Lc tð Þþ Lo tð Þ ð23Þ

where

PG tð Þ Power output of the public grid at time t
PW tð Þ Power output of the wind system at time t
PS tð Þ Power output of the solar system at time t
PBD tð Þ Power input of the battery bank at time t
PBC tð Þ Power output of the battery bank at time t
Lc tð Þ Power demand of the critical load at time t
Lo tð Þ Power demand of the ordinary load at time t
LT tð Þ Total power demand at time t

The total power demand is considered as follows LT tð Þ ¼ Lc tð Þþ Lo tð Þ
To solve the energy management problem a canonical form of a linear program-

ming problem is described in the following way

min cTv ð24Þ

Av� b ð25Þ

v� 0 ð26Þ

Fig. 4. Scheme of the microgrid installed in the Faculty
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where v 2 R
n is a vector column of decision variables, c 2 R

n; b 2 R
m are column

vectors of parameters and A 2 R
mx n is a coefficients matrix. For operative reasons, it is

assumed that the feasible region denoted V̂ is not empty and limited. Therefore, an
upper bound vmax exists 0� v� vmax for i ¼ 1; 2; . . .; n: Moreover, the inequality of
(25) can easily be converted to equality by the addition of m slack variables. Without
loss of generality, the linear programming problem is described as follows

min cTv ð27Þ

Av ¼ b ð28Þ

0� vi � vmax; i ¼ 1; 2; . . .; n: ð29Þ

To solve an optimization problem through neural computation, the key is to pro-
pose the problem in a neural network whose steady state represents the solution to the
optimization problem [21]. The state equations of the analog neural network are
presented as follows

_u tð Þ ¼ �gATAv tð Þþ gATb� cn tð Þ ð30Þ

vi tð Þ ¼ vmax
1þ exp �bui tð Þ½ � ; i ¼ 1; 2; . . .; n ð31Þ

where u tð Þ 2 R
n is the instantaneous input vector of the network to the neurons and

v tð Þ 2 Rn is the state vector of the activation respectively. The initial conditions u 0ð Þ y
v 0ð Þ are initialized randomly, n tð Þ 2 R

n is an auxiliary state vector and
n 0ð Þ[ 0; g; b; yT; are positive scalar parameters. The dynamic neural network pro-
posed for linear programming consists of n connected artificial neurons massively. The
connection weights between the neurons are given by �gATA and the polarization
thresholds of the neurons are given by gATb: Figure 5 represent the block diagram of
(30) and (31).

Fig. 5. Proposed dynamic neural network
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For a neural network to perform a solution procedure for a linear programming
problem, the steady state of a neural network must represent at least one feasible
solution in the feasible region. To this end, two theorems are derived from [21].

Theorem 1. The steady state of the proposed neural network represents a feasible
solution to the problem of linear programming (27–29), limt!1v tð Þ 2 V̂ .

Theorem 2. If T 	 4
bVmaxkmin

where kmin ¼ min ki; i ¼ 1; 2; . . .;min m; nf gf g and ki is

the i� ieth of gATA; then the steady state of the proposed neural network represents an
optimal solution to the linear programming problem (27–29),
limt!1v tð Þ ¼ argminv2v̂cTv:

According to Theorem 1, the asymptotic stability of the proposed neural network
implies the viability of the solution generated by the neural network.

5 Simulation Results

To achieve the optimization of the operation of a microgrid it is necessary to know the
generation capacities of the renewable energy sources, as well as to estimate the energy
demand in a determined period with the ability to make estimates from previously
measured data. The simulation results are presented for the operation optimization of
the microgrid installed in the Faculty. To perform the microgrid simulations, predic-
tions of wind and photovoltaic power, wind speed and energy demand are considered,
using high order neural networks. Each sample of the time series used in each pre-
diction process is the average measurement at fifteen-minute intervals.

A neural network predictor for wind speed and wind power is implemented based
on the high order recurrent neural network training method with Kalman filter. First,
the optimum vector dimension is determined, then the number of hidden units for both
hidden layers are selected. The training of the network is performed using measured
data every fifteen-minutes for five days.

To train the high order recurrent neural network for each variable corresponding to
wind generation, the following design parameters for each neural network was
followed:

• 7 regressors
• 10 elements in the hidden layer
• 1 neuron in the output layer
• 250 maximum iterations
• The synaptic weights values were initialized randomly

The wind system has two wind turbines of 10 kW each, and the total wind power is
applied to the inverter mathematical model, the result is illustrated in Figs. 6 and 7.
A good prediction horizon was obtained with an average square error of 0.0048 for the
prediction of wind speed and 0.0050 for wind power.
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The total photovoltaic power generated by 86 panels installed in the Faculty is
applied to the mathematical model of the inverter to obtain the power of the photo-
voltaic system, and the result is illustrated in Fig. 8. For the prediction of photovoltaic
generation, the data was normalized before being processed by the network and the
output of the network was scaled, the following design parameters for the neural
network was followed:

• 8 regressors
• 8 neurons in the hidden layer
• 1 output neuron
• 200 maximum iterations
• The synaptic weights values were initialized randomly

Fig. 7. Wind power prediction of the system installed in the Faculty (five days)

Fig. 8. Photovoltaic power prediction (five days)

Fig. 6. Wind speed prediction of the wind system area (five days)
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For the prediction of energy demand, the following design parameters for the neural
network was followed:

• 6 regressors
• 8 neurons in the hidden layer
• 1 neuron in the output layer
• 200 maximum iterations
• The synaptic weights values were initialized randomly

The prediction of the energy demand used in the simulation is presented in Fig. 9.
Previously obtained data corresponding to the energy consumption of the mechatronics
building in the Faculty. The prediction was successful with a good prediction horizon
and a mean square error of 0.00012.

From the predictions and the tariff scheme, the algorithm determines if it is nec-
essary to perform energy storage in the battery bank and when it should be used, taking
as constraints the maximum and minimum state of charge of the batteries. On the other
hand, in the case where the current power delivered by the photovoltaic and wind
system is not enough to satisfy the demand, the management system determines the
amount of power that it must acquire from the public grid.

After obtaining the predictions corresponding to the power and wind speed, pho-
tovoltaic generation and energy demand, they were used in a high order recurrent
neural network, where the energy loads management is performed. Figure 10 shows the
graph of five days of generation and consumption respectively. According to the results
obtained in the simulation, it is observed that the energy demand is always higher than
the generation of the wind and photovoltaic systems, and the battery bank, so the
system determines the amount of power that is lacking and this is acquired from the
public grid.

In Mexico de the information of the energy cost from the public grid is available on
its website, in this work, a maximum rate of $ 3.85 per kWh of energy consumed to the
public grid was established. According to the results obtained in the simulation, it is
obtained that the total operation cost of the microgrid is $ 1395.70, where the daily
power consumption of the public grid in kWh is 172.85 and the monthly energy
consumption in kWh is 5185.73.

Fig. 9. Energy demand of the building (five days)
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The state of charge of the batteries in the system operation, as is illustrated, the
loading and unloading behavior is very linear, this behavior is because the energy
demand is always higher than the energy generated and stored, so the batteries are in
constant operation. The system behaves correctly within the range of the parameters set.

The main advantage of the computational intelligence techniques presented in this
chapter is the availability of a reliable tool for forecasting the energy production and the
corresponding distribution of the charges and storage of the batteries using artificial
neural networks.

6 Conclusions

In this work, the optimization of the operation of a microgrid based on recurrent neural
networks was performed. According to the results obtained, it is established that the
proposed network configuration proves to be functional. In addition, based on the
proposed configuration, it is possible to implement mathematical models of the dif-
ferent elements of the system. The goal was to determine the optimum amounts of
energy for wind, solar, battery bank and public grid systems.

High order recurrent neural networks were applied to predict the energetic variables
presented in the microgrid with good estimation results. The network used has a
compact structure but considering the dynamic nature of the system that is required to
predict the behavior, high order neural networks demonstrated in the simulation to be a
tool that adequately models the complexity associated with the dynamics of energy
generation. The importance of having a permanent measurement system is that it leads
users sooner or later to achieve improvements in the electrical system and obtaining
energy savings based on a real base of comparison, as well as energetic.

The number of iterations in the range of 200 to 250 was chosen to improve the
speed of convergence, since a greater number of iterations does not significantly
improve the error, but the computation time increases. Likewise, it was tested with a
greater number of neurons, however, the result did not improve, so it was decided to
use as few neurons as possible, without losing fidelity at work.

Fig. 10. Power flow in the microgrid with the management system (five days)
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