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Abstract. At this time, great effort is being directed toward develop-
ing problem-solving technology that mimic human cognitive processes.
Research has been done to develop object recognition using Computer
Vision for daily tasks such as secure access, traffic management, and
robotic behavior. For this research, four different machine learning algo-
rithms have been developed to overcome the computer vision problem of
object recognition. Hierarchical temporal memory (HTM) is an emerg-
ing technology based on biological methods of the human cortex to learn
patterns. This research applied an HTM algorithm to images (video
sequences) in order to compare this technique against two others: sup-
port vector machines (SVM) and artificial neural networks (ANN). It was
concluded that HTM was the most effective.
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1 Introduction

One relevant issue in computer science is to try to interpret an image for a
specific purpose. This research focuses on recognizing objects in an image with
different occlusion percentages. Right now, computers have the computational
power to achieve this objective with an acceptable running time.

Singh [1] defines video tracking as the process to detect one moving object
throughout a video sequence, and a fundamental task of this tracking is to rec-
ognize the object in every frame. An object of interest can be: an animal, a
machine, a person, etc. A system to detect the existence of objects in a frame
was developed. The dataset consisted of video sequences of people, and this gave
different challenges related to shape transformation (because of object move-
ments) and occlusion (when the object is partially occluded by other objects).
Figure 1 shows an example of occlusion.

The human brain has a neocortex. This element is in charge of visual pattern
recognition and many other cognitive processes. Hierarchical temporal memory
(HTM) is a technology developed to try to mimic the neocortex. It is very similar
to artificial neural network (ANN), but with some architectural and conceptual
c© Springer International Publishing AG, part of Springer Nature 2018
C. Brito-Loeza and A. Espinosa-Romero (Eds.): ISICS 2018, CCIS 820, pp. 1–14, 2018.
https://doi.org/10.1007/978-3-319-76261-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76261-6_1&domain=pdf
http://orcid.org/0000-0003-0997-2917


2 F. Fallas-Moya and F. Torres-Rojas

Fig. 1. An example of an occluded face.

differences. For example, the cells1 are connected to different cells all over the
region (see Fig. 2). These connections or synapses can change during the training
period. Even more, they can change during classification. It depends on the
input data. The HTM architecture have cells that are arranged into regions, and
regions that can form a complex hierarchy.

This HTM technology was developed by Hawkins [2] and it is closely related
to the biological structure of the neocortex that has six layers of regions. This
explains why HTM uses the concepts of regions, cells, and hierarchies. The
regions can be constructed using different numbers of cells. An important aspect
is that the connections inside regions can change over time.

The idea behind hierarchies is to learn complex patterns. This is similar to the
idea behind convolutional neural networks, as explained by Fan et al. [3]. There,
every layer tries to detect gradient features to have an accurate classification
process. In the case of HTM, every defined level2 will be learning different degrees
of an image, to get to the final layer. The idea is to learn complex patterns.
See Fig. 3.

1.1 HTM and Pattern Learning

As well as in ANN, HTM network has a specific region for the input data. The
outcome of this first layer is passed to the following region to be trained, and
the process continues for every region until the last one.

HTM uses the concept of sparse distributed representations (SDR). It is a
technique to represent different patterns, where a small number of cells are picked
to be active.

1 In the HTM terminology, cells are synonyms of neurons.
2 The terms level and region will be used interchangeably.
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Fig. 2. An HTM region with columns of cells, the cells are connected to different cells.
Also, the concept of sparse distributed representations (SDR), the patterns are just a
few and distributed cells along the region.

HTM can receive an enormous input. However, every layer needs just a few
cells to represent it. Higher layers apply the same concept until the final layer is
reached. This process is not uniform or deterministic. This explains why different
cells can be picked. In Fig. 2 shows that it is not mandatory for these cells to be
close to each other. To summarize, only a few cells are need and these cells can
be distributed along the region.

As Schlag [21] explains, the way HTM learns patterns is in a statistical
manner, very similar to Bayesian Networks; however, they differ in the hierarchy
construction and the usage of time. First, it converts raw data into proper HTM
input, using some decoders (libraries developed for HTM). Second, from the data
it looks for activations which occur together (spatial patterns). It then searches
sequences of these patterns over time (temporal patterns). So, there is not a back
propagation step, it does some kind of clustering classification. These learned
patterns are used to perform inference on new inputs. In HTM the concept of
time is important, the order in which the patterns enter the architecture impacts
the connection construction in the network.

Just like a biological neuron, an HTM cell has dendrites, proximal and a distal
dendrites. The dendrites contain many synapses in order to receive signals. The
proximal dendrites receive a feed-forward input from regions in a lower layer. The
distal receive their input from neighboring cells which belong to the same HTM
region. Every cell is made up of a number of synapses, which can be potential
or permanent. During the training process these synapses can change due to the
classification result. Every cell can be in a different state: predictive, active and
fully active. These states will defined the synapses. This cell flexibility to easily
change its connections will help to make a fast training step. According to Schlag
[21] (2016), “This increase and decrease in permanence is an important aspect
of the Hebbian3 learning ability of HTMs”.

3 Hebbian Theory defined by Gerstner [22].
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Fig. 3. An HTM hierarchy: in this example, the hierarchy has four levels of regions.

To have a full HTM implementation one can use the online prediction
framework (OPF). It provides all components needed to create an architecture.
A short description of these components follows.

– Raw input: for example integers.
– Encoder: it turns data into SDR.
– Spatial Pooler: it creates an SDR over a region.
– Temporal Pooler: it links the connections between cells (synapses).
– Cortical Learning Algorithm (CLA): it generates a prediction.

Another way to use HTM technology is to use isolated components. For
example, using the spatial pooler and the temporal pooler to make patterns and
these patterns can be connected to a classifier algorithm. The proposed approach
involves using the two previous options. First the OPF tool, second, the temporal
pooler combined with a high level classifier.

2 The Recognition Algorithms

Occlusion is an interesting challenge, see Fig. 1. The proposed algorithms were
developed to overcome this problem. To measure this aspect accuracy4 was used.
In fact, the occlusion success rate (OSR) was used to referred to the accuracy.
If the OSR has a high value, it means that with an occlusion challenge, the
algorithm has a good performance. Therefore, the OSR was implemented to
measure and to compare the different algorithms.

4 “The accuracy is the proportion of true results (both true positives and true
negatives) among the total number of cases examined” [5].
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Fig. 4. The main components of the proposed algorithms.

2.1 Feature Extraction

As far as the algorithms are concerned, Fig. 4 shows the proposal. Every algo-
rithm has the same pre-processing step. Scale invariant feature transform (SIFT)
[6] was used for extracting features. Solem [7] gives a definition for SIFT: “SIFT
features are invariant to rotation, intensity, and scale. In fact, they can be tracked
in the presence of noise and 3D rotation”. It performs two tasks: interest point
detection and description of each point with data. These two tasks generate data
to avoid rotation and scale differences, which are common during video frame
analysis. The descriptor obtained is a vector with the following data: 16 values
that describe the interest point, it is a matrix 4×4. And, every cell of the matrix
is represented by histogram of 8 values. At the end, there are 128 floating values
(4 × 4 × 8 = 128) as shown in Fig. 5.

The SIFT process can be seen in Fig. 6. It illustrates a SIFT process over an
image. The results are shown on the right of Fig. 6, with the following results:
3365 detected points and since every point has a descriptor of 128 floating values,
the total is 430720 values. This quantity was not manageable by the available
hardware. As a result, a constraint was implemented: the videos have a resolution
of 50 pixels with only 12 interest points, as shown in Fig. 7.

Figure 7 gives an example of one frame. On the left of the image, a person
with a red t-shirt is raising their hands. An important aspect is that a variant of
the SIFT algorithm was used. It is called Dense SIFT. It is different because it
allows to choose static points and to set the radiuos of each one. 12 points were
chosen to cover the whole image to form a grid over it, for a total of 1536 values.
Some advantages of this technique are: the SIFT information for every frame of
the video will have the same size for the classifications task. Also, static points
will allow to detect changes on the image. This is a well-known technique used
by Hassner et al. [8] in a similar problem of classification. Also Han et al. [9]
developed an algorithm using SIFT to classify people.



6 F. Fallas-Moya and F. Torres-Rojas

Fig. 5. A point detected by the SIFT algorithm and the descriptor generated around
the point. (a) A grid generated around the interesting point. Its orientation is according
to the gradient direction. (b) Every cell of the grid is represented by an 8 bin histogram.
(c) Get all histograms from the grid. (d) All histograms are concatenated to have a
vector. Image from [7].

Fig. 6. SIFT process over an image: it detects about 3365 points.

Fig. 7. Dense SIFT: there are 12 static points and they have a predetermined radius.
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2.2 Proposed Algorithms

As shown in Fig. 4 there are 4 algorithms. A brief explanation of each algo-
rithm follows.

1. HTM Hard: the word “Hard” means a full or complete implementation of
an HTM algorithm. It does mean that all pieces of HTM were used. That is,
Encoders, Spatial Pooler, Temporal Pooler, and Cortical Learning Algorithm.
A modified version of OPF was used. This modification was implemented
because of the streaming data, and it was based on Costa’s proposal [10].
Numenta5 does not recommend the use of streaming data over OPF. Anyway
this modification was needed. This explains the long execution time (it lasts
60 times more). This modification was made in the input layer. Basically,
it receives only one input value. There is an OPF file called model params,
there, an for loop was added to read more than one parameter. Here, the 1536
values were read. Algorithm 1 shows the relationship between all the steps in
this algorithm.

2. HTM soft: it is the recommended version for image processing. Numenta
recommends this algorithm [15], where a single component (in this case the
spatial pooler) is connected to a classifier. In this research a k-Nearest Neigh-
bors [11] classifier was implemented with the spatial pooler.

3. SVM: a strong SVM library for the classification task was used, in this case
the LibSVM [16]. A linear kernel function was used for this implementation.

4. ANN: the library PyBrain [12] was chosen for implementing this algorithm.
A feedforward backpropagation neural network was implemented. The archi-
tecture was chosen from previous research, the number of hidden layers by
Bishop [13] and the numbers of hidden neurons by Blum [14].

3 Experiments

Design of Experiments (DoE) was used as a statistical model with the R [17]
language. It tries to answer if predefined factors have an influence over a study
response variable, and, if there is a significant influence, the important issue
is to quantify that influence [18]. The ANalysis Of VAriance (ANOVA) is an
instrument of DoE. It measures the variance over the factor values against the
variance of other predefined factors. OSR is the response variable and it has four
factors. Table 1 shows the factors: machine learning technique, training-set size,
the percentage of occlusion and the complexity of the scenario. On the one hand,
a simple scenario is composed of white background and some objects. On the
other hand, a complex scenario has more objects, light contrast, and different
backgrounds.

As shown in Table 1, there are 4 techniques, 3 training-sets, 4 occlusion per-
centages, and 2 scenarios, for a total of 96 combinations. 4 replicas were picked,
for a number of 384 runs (4 × 3 × 4 × 2 = 96 × 4 = 384). It is important to
5 Numenta is the enterprise behind of the HTM technology.
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Algorithm 1. HTM Hard
Require: videoFrames are Dense SIFT files

1: function Classification-task(videoFrames, groundTruth)
2: resultingFrames ← videoFrames � Encode all entries
3: for i ← 1 to resultingFrames.size do
4: spatialPoolerResult ← SP (resultingFramesi)
5: temporalPoolerResult ← TP (spatialPoolerResult)
6: prediction ← CorticalLearningAlgo(temporalPoolerResult)
7:
8: if prediction = groundTruthi then
9: δ ← δ + 1

10: end if
11: end for
12: accuracy ← groundTruth.size

δ
� accuracy = OSR

13: return accuracy
14: end function

highlight that every run is a sequence of frames. For instance, the training phase
has 38 + 176 + 474 = 688 images for training. With 2 scenarios, that is 1376
images. Also there are 4 replicas, for a total of 5504 images to train our algo-
rithms. Regarding to the testing phase, there are 96 runs of 360 frames, for a
total of 34560. Since there are 4 replicas, the total number of classification tasks
is 138240.

Table 1. Factors and levels for this research.

Selected factors

Techniques Training sets Occlusion(%) Scenarios

Levels HTM (Hard) 38 75 Simple

HTM (Soft) 176 50 Complex

ANN 474 25

SVM 0

The data are composite of low-quality videos (in a resolution of 50 × 50
pixels). There was a hardware constraint, the OPF requires more RAM than
the one available on the machine used (16 GB of RAM). The OPF builds a full
structure of HTM which requires a lot of memory.

Another important aspect is regarding to the videos used in this research.
These videos were recorded with some important rules to have good statistical
results.
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1. There are 3 video classes: two different persons moving around, one class per
person. And the background with no motion, the final class. These persons
were moving with different percentages of occlusion, this percentage does not
change throughout the video. See Table 1 for the occlusion percentages.

2. One replica has 4 occlusion percentages, 2 different scenarios (completely dif-
ferent videos), and 3 different classes (8 videos per class). That is, 24 different
videos. Since there are 4 replicas, there were 96 videos.

3. Every video has 36 s. Every second has 15 frames, that is, a total number of
540 frames per video. In Table 1 the number of frames taken for training the
algorithms can be different (38, 176 and 474).

4 Results and Analysis

DoE needs to accomplish two assumptions. First, the residuals are normally dis-
tributed. Second, they are independent with a constant variance, as explained by
Anderson and Whitcomb [19]. Fortunately, these assumptions were accomplished
and no data transformation was needed. Table 2 shows the output of an ANOVA
(Acronym explanation: Df: Degrees of Freedom, Sum Sq: Sum of Squares, Mean
Sq: Mean of Squares, F val: F values, Pr(>F): Probability values).

Table 2. The ANOVA results.

Df. Sum-Sq. Mean-Sq. F-val Pr(>F)

Tech 3 0.96 0.32 4.97 0.0022

Train 1 0.03 0.03 0.54 0.4623

Occlu 1 0.51 0.51 8.02 0.0049

Scenario 1 0.16 0.16 2.50 0.1148

Tech:Train 3 0.41 0.14 2.12 0.0970

Tech:Occlu 3 1.44 0.48 7.49 7.15e-05

Train:Occlu 1 0.01 0.01 0.11 0.7369

Tech:Scenario 3 0.31 0.10 1.62 0.1840

Train:Scenario 1 0.06 0.06 0.95 0.3303

Occlu:Scenario 1 0.08 0.08 1.20 0.2746

Tech:Train:Occlu 3 0.06 0.02 0.33 0.8012

Tech:Train:Scenario 3 0.20 0.07 1.05 0.3695

Tech:Occlu:Scenario 3 0.06 0.02 0.30 0.8247

Train:Occlu:Scenario 1 0.03 0.03 0.40 0.5255

Tech:Train:Occlu:Scenario 3 0.06 0.02 0.30 0.8256

Residuals 352 22.57 0.06
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The first important fact of Table 2, is that the probability of Tech-
nique:Occlusion has a value of 7.15−5, which gives us a significance of 0.0. This
means that there is confidence that the interaction of Technique and Occlusion
is very significant. With this information, the null research hypothesis can be
rejected, which says that no factor affects the response variable.

There are two other interesting facts: the factor Technique has a confidence of
99.78%, because its probability value is 0.0022. Similarly with the factor Occlu-
sion that gives the confidence of 99.51%, its probability is about 0.0049. Conse-
quently, the factors Occlusion, Technique and their interaction has a significant
affectation over the response variable, the OSR value. With the information
about the ANOVA process, the following step is to analyze the significant fac-
tors and their interaction.

4.1 Technique (Tech)

Box plots [20] were used to analyzed some aspects. On the one hand, Fig. 8 shows
that ANN has the lowest quartile6 and the mean with the lowest value, which
means that ANN fails more than the others.

Fig. 8. Box plot for the Technique factor.

On the other hand, the HTM Hard algorithm has its 50% of data enclosed in
the thinnest box, also the upper and lower quartile boundaries have the smallest
range. The mean is near to 0.5 and it has a lot of outliers, this situation is normal
because the upper and lower quartiles form a small range. The lower quartile
shows that this algorithm had fewer failures than the others. This algorithm had
a stable performance.

6 Quartile: they are the values that divide a list of numbers into quarters.
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4.2 Occlusion (Oclu)

In Fig. 9, there is the box plot of the factor Occlusion against OSR. It can be
seen that all algorithms fail if the occlusion value is incremented, on 75% the
lower boundary of the box is almost 0.0. This is a expected behavior, because
the more the object is occluded, the more difficult to hit.

Fig. 9. Box plot for the Occlusion factor.

It can be appreciated that the mean value for 25% and 50% have almost
the same value, which indicates it is easier for an algorithm to hit. This can be
explained because people have more characteristics from the hips towards the
head. Also, there is another interesting aspect: the values for 25%, 50%, and
75%, have their upper box boundary close to 0.5 of accuracy, but, the box of 0%
has it close to 0.6, which indicates that with 0% the algorithms tend to fail less.
However, its mean has the lower value. This situation tells that under a specific
condition, it produces more fails with 0%. An explanation is that with 0% the
objects (people) had more freedom to move, and did not have to be behind of
an object to catch the occlusion.

4.3 Interaction: Occlusion (Oclu) and Technique (Tech)

The final aspect to analyze is one of the most interesting ones. The interaction
between two factors: technique and occlusion. Whitcomb and Anderson give the
definition of interaction [19]: “Interactions happen when the effect of one of the
factors depends on another factor”. Figure 10 shows many relevant situations.
The first one is that all algorithms tend to decrease. It is obvious because as the
occlusion raises its value, it is more difficult for all algorithms to hit.

Another aspect to note is that HTM Soft and ANN do not have an acceptable
performance, unlike SVM and HTM Hard. It was mentioned that with 0% of
occlusion, there is a huge challenge: the targets had more freedom to move all
over the scene. It is considered that ANN and HTM Soft do not have sensibility
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under this condition (target movements). Hence, the good performance of SVM
and HTM Hard shows that these algorithms are better implementations for real
world systems.

Fig. 10. Interaction of two significant elements (factors): occlusion and technique.

The third aspect analyzed is that SVM has a remarkable behavior on 0%.
A stable performance on 25% and 50%, it is similar to HTM Hard. However,
it fails on the 75% value. This situation indicates that it could not classify well
when the object was almost totally occluded.

Lastly, there is the HTM Hard implementation. It has an excellent perfor-
mance on 0%, a good sensibility to target movements. Also, good results on 25%
and 50%. As seen in Fig. 10, HTM Hard had the best performance on the value
of 75% of occlusion. As a result, this is the best algorithm for the occlusion
challenge.

5 Conclusions

A modified version of an OPF algorithm was used (HTM Hard). Based on the
statistical results, one conclusion is that this algorithm is better to recognize
objects than the others. But, it was experienced an unexpected situation: it
had the largest running time. It lasts 60 times more comparing with the other
implementations. It is not feasible to implement with streaming data.

Another aspect is that SVM had a good performance. During tests, it was
the fastest implementation. However, it had a poor performance on 75%. Also,
there are the ANN and the HTM Soft performance, which had the worst
results. As a result, their implementation is not recommended with the proposed
architectures.

All algorithms used SIFT to classify. This technique provides enough informa-
tion to feed a machine learning algorithm. For classifying purposes, Dense SIFT
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was used to have a fixed amount of data per frame. Only 12 SIFT points were
used. However, with a limited amount of data the results were acceptable and
satisfactory.

Finally, it was discovered that the implementations of HTM Hard and SVM
are more sensitive to object movements. They have an acceptable performance
with a small quantity of data. HTM Hard is the recommended version for this
kind of problem because in real world systems the objects are moving all over
the scene.

6 Future Work

The next step is to test different combinations of algorithms. For instance, recur-
rent neural networks (RNN), convolutional neural networks (CNN), bayesian
networks, etc. It would be interesting to use CNN, due to its similarity to HTM
(many layers, feature patterns reduction, etc.).

Another interesting aspect is to test different HTM combinations. For exam-
ple, to implement the usage of a temporal pooler with a classifier (in this research
kNN was implemented) such as SVM, ANN, RNN, CNN, etc. Furthermore, high-
quality videos can be used and get more information.

Also, to use more points (Dense SIFT values). It can be treated as an hyper-
parameter and adjust it to get better results.

Finally, another feature extraction technique can be used as well as different
preprocessing techniques.
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