
Extended Floyd-Hoare Logic over
Relational Nominative Data

Mykola Nikitchenko1(B) , Ievgen Ivanov1,
Artur Korni�lowicz2 , and Andrii Kryvolap1

1 Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska Street, Kyiv 01601, Ukraine

nikitchenko@unicyb.kiev.ua, ivanov.eugen@gmail.com, krivolapa@gmail.com
2 Institute of Informatics, University of Bia�lystok,

Cio�lkowskiego 1M, 15-245 Bia�lystok, Poland
arturk@math.uwb.edu.pl

Abstract. The classical Floyd-Hoare logic is defined for the case of total
pre- and postconditions and partial programs (i.e. programs can be unde-
fined on some input data, but conditions must be defined on all data).
In this paper we propose an extension of this logic for the case of partial
conditions and partial programs over structured data. These data are
based on two constructing primitives: naming and relational structuring
and are called relational nominative data. They can conveniently repre-
sent many data structures used in programming. The semantics of the
proposed logic is represented by special algebras of partial functions and
predicates over relational nominative data. Operations of these algebras
are called compositions. We present an inference system for the men-
tioned logic and propose an approach to its formalization in Mizar proof
assistant. The obtained results can be used in software verification.

Keywords: Formal methods · Software verification
Floyd-Hoare logic · Proof assistant · Nominative data · Partial table
Relational database

1 Introduction

Floyd-Hoare logic [1–3] is a formal system widely used for reasoning about pro-
gram correctness. It is based on the notion of a Floyd-Hoare triple (assertion)
which consists of a precondition, a program, and a postcondition and means the
following requirement: when input data satisfies the precondition, the program
output must satisfy the postcondition, if the program terminates. Specification
of program properties in terms of Floyd-Hoare triples is natural and reasoning is
convenient thanks to a compositional proof system. A survey of the important
results on properties of the Hoare’s proof system (soundness, completeness in
specific senses) and its extensions was given in [3].

In the classical Floyd-Hoare logic predicates (pre- and postconditions) are
assumed to be total (defined on all data) and programs can be partial (in the
c© Springer International Publishing AG, part of Springer Nature 2018
N. Bassiliades et al. (Eds.): ICTERI 2017, CCIS 826, pp. 41–64, 2018.
https://doi.org/10.1007/978-3-319-76168-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76168-8_3&domain=pdf
http://orcid.org/0000-0002-4078-1062
http://orcid.org/0000-0002-4565-9082

42 M. Nikitchenko et al.

sense that if a program does not terminate, its resulting value is undefined).
The ability to deal with partiality is an important aspect, because partial oper-
ations frequently arise in programming. In most programming languages some
basic operations on data such as arithmetic division are already partial. Further-
more, partiality of programs may be caused by non-termination which can arise
from loop constructs and/or recursion. For similar reasons partiality can arise
in software specifications.

In [4] the following classification of partiality phenomena in software speci-
fications was proposed: non-termination, i.e. if evaluation of an expression does
not terminate, its value is assumed to be undefined and the operation is consid-
ered partial; error value, i.e. if some values of an operation’s argument are illegal
(e.g. division by zero, Pop operation applied to an empty stack, etc.), the result
of the operation on such values is assumed to be undefined and the operation
is considered partial; and nondeterminism, i.e. if a result of an operation on an
argument value is not determined uniquely by the specification of this operation
(operation is underspecified), the result of application of the operation to such
a value is assumed to be undefined and the operation is considered partial. Other
opinions on the meanings of partiality in software specifications can be found in
[5–7].

In [5] a taxonomy of the ways of dealing with partiality in software specifica-
tion languages and logics was proposed. Among different approaches notable are
excluding partial functions from consideration and providing alternative nota-
tions (e.g. graph of a partial function), using a three-valued (many-valued) logic,
where the third value represents an undefined result, or making all function
applications denote [5]. It should be noted that almost all approaches that try
to not allow partial programs and/or predicates that describe program guards
or properties explicitly and reduce or translate them to the classical case of total
functions and predicates have drawbacks analyzed in detail in [4–6].

A more natural and potentially fruitful approach is to allow partiality in both
programs and program specifications and construct non-classical proof systems
allowing explicit reasoning about properties of such programs and specifications.
This approach is applied in this paper to Floyd-Hoare logic. More specifically,
in the classical Floyd-Hoare logic the predicates describing program pre- and
postconditions are assumed to be total. But obviously, it is desirable to be able
to use partial operations in pre- and postconditions of programs, where partiality
may be interpreted in one of the senses proposed in [4]. So it is desirable to obtain
an extension of Floyd-Hoare logic that is able to deal with both partial programs
and partial predicates.

We consider such an extension in this paper. In the previous works [8,9] we
have considered extensions of Floyd-Hoare logic to partial mappings over data
represented as partial mappings on named values (called nominative sets) and
proposed the corresponding inference systems and investigated their soundness
and extensional and intensional completeness. However, nominative sets (which
can be considered as partial functions from names to values) naturally represent
only a flat data organization in low-level programming. Using Floyd-Hoare logic

Extended Floyd-Hoare Logic over Relational Nominative Data 43

with partial mappings over nominative sets for reasoning about programs which
operate on complex data structures (e.g. trees) is inconvenient, because one needs
to take into account many low-level details about data structure implementa-
tion. For this reason, in this paper we propose an extension of Floyd-Hoare
logic for the case of partial conditions and partial programs on more general
class of data. These data are based on two primitives: hierarchical naming and
relational structuring and are called relational nominative data. As was shown
in [10] hierarchically nominative data are sufficient for representing many data
structures (like multidimensional arrays, lists, trees, etc.) that are frequently
used in programming. Relational structuring permits to represent partial tables
and relations used in relational databases.

To develop such an extension we will adopt the composition-nominative app-
roach [11] to program formalization. This approach aims to propose a mathemat-
ical basis for development of formal methods of analysis and synthesis of software
systems and is grounded on several principles [12], including the Development
principle (from abstract to concrete), the Principle of integrity of intensional and
extensional aspects, the Principle of priority of semantics over syntax, Compo-
sitionality principle, and the Nominativity principle. The latter Nominativity
principle states that nominative data adequately represent various forms of data
that are processed and stored in computing systems. Nominative data can be
considered as a special class of hierarchically organized data. There exist several
types of nominative data [12] (with simple or complex names and with simple
or complex values), but all of them are based on naming relations that associate
names and values. In the composition-nominative approach on the abstract level
a computing system is modeled as a partial function that maps nominative data
(input data) to nominative data (output data). Such functions are called binom-
inative. Properties of data are represented as partial predicates on nominative
data. Nominative functions and predicates can be composed in many ways, e.g.
by sequential composition, branching, and so on. Operations that construct com-
posed systems from constituents are called compositions. A set of compositions
together with a set of functions obtained from a chosen set of basic functions by
applications of compositions forms an algebraic system (program algebra) which
is a semantic model of a programming language. The syntax of this language
follows naturally from this semantic model: programs are represented as terms
of the described algebra.

In accordance with the composition-nominative approach the semantic com-
ponent of our Floyd-Hoare logic extension will be based on program algebra
(a set of functions and predicates on nominative data which can be obtained
from some chosen basic functions and predicates using a specific set of composi-
tions). In this paper we generalize the notion of nominative data by adding a new
constructing primitive that introduces finite relations (sets of nominative data)
as name values. Obtained data are called relational nominative data. Such data
permit to model relations considered in relational databases. Thus, the carrier
sets of our program algebra will consist of partial functions and predicates over
relational nominative data with complex names and complex values [10].

44 M. Nikitchenko et al.

We will treat a Floyd-Hoare triple as a composition with two predicates on
relational nominative data and a program (a partial binominative function which
belongs to the carrier set of the program algebra) as arguments. The predicates
represent pre- and postconditions and the result of the composition is a predicate.
However, the classical definition of Floyd-Hoare triple validity leads to Floyd-
Hoare composition that is not monotone [8]. Monotonicity is one of the key
properties used for reasoning about programs. It is also important for reasoning
about loop-free programs and using them as approximations of programs with
loops. This explains the need of a special definition of Floyd-Hoare composition
for the extension of Floyd-Hoare logic on partial predicates which is monotone,
but converges to the classical definition, if predicates are total. Such a definition
was presented in [8] and we will adapt it to the case considered in this paper.

To make our Floyd-Hoare logic extension practically applicable for program
verification one can implement it in a proof assistant software [13].

Many well known proof assistants (e.g. Isabelle, Coq, PVS, etc.) provide
a substantial support for reasoning about total functions, programs, predicates
and are convenient for either formulating the classical Floyd-Hoare logic axiomat-
ically, or embedding it in their logics. For example, Isabelle proof assistant
includes the “Hoare” HOL (Higher-Order Logic)-based theory that provides an
implementation of Hoare logic for a simple imperative programming language
with WHILE loops following [14,15]. However, a support of reasoning about
programs using partial pre- and postconditions is generally not developed.

We propose an approach to formalization of our extended Floyd-Hoare logic
which supports partial pre- and postconditions in the proof assistant Mizar
[16,17]. This proof assistant is based on first-order logic and axiomatic set the-
ory (Tarski-Grothendieck set theory [18]). The Mizar system has its own proof
verifier1 used to verify the logical correctness of proofs written in the Mizar lan-
guage – a declarative language designed to write mathematical documents. It
contains rules for writing traditional mathematical items (e.g. definitions, the-
orems, proof steps, etc.) and also provides syntactic constructions to launch
specialized procedures (e.g. term identifications, term reductions [22], flexary
connectives [23], definitional expansions [24]) which increase the computational
power of the verifier (e.g. equational calculus [25,26], processing properties of
functors and predicates [27–29]). An important component of the Mizar system
is its library of formalized mathematical theories called Mizar Mathematical
Library (MML). It contains developments on various domains of mathematics,
including set theory, calculus, topology, lattice theory [30], group theory, cate-
gory theory, algebra [31], rough sets [32], and others.2 Consequently, Mizar has
well developed tools for working with partial functions and predicates and is
well-suited for our purposes. Besides, the Mizar system has a degree of proof

1 Research on using specialized external systems to increase computational power of
the Mizar system is also conducted [19–21].

2 Due to the size, the MML is a subject of research on optimization of theorems
and definitions [33]. It includes the improvement of legibility of proofs [34–36] and
removing duplications.

Extended Floyd-Hoare Logic over Relational Nominative Data 45

automation support such as discovery of a list of proven facts that imply the
current goal which may be used as basis for implementing software verification
in a semi-automatic mode.

To simplify and partially automate application of Floyd-Hoare logic to prov-
ing program properties it is convenient to have a corresponding system of infer-
ence rules. The traditional inference system for the language WHILE [37] is
sound and extensionally complete for the classical Floyd-Hoare logic with total
predicates [37] (extensional completeness means that pre- and postconditions
may be arbitrary predicates; intensional completeness means that pre- and post-
conditions should be presented by formulas of a given language). Soundness and
completeness are important for practical applicability of an inference system (if
a system is not sound, assertions that can be inferred using this system may be
false; if a system is not complete, some of the valid assertions could be impossible
to infer). However, this inference system is not sound and complete for partial
predicates as was shown in [8].

To deal with the soundness and completeness problems we will modify the
traditional inference system for the language WHILE and introduce additional
constraints on inference rules that correspond to the new definition of validity
of Floyd-Hoare assertions, and investigate its soundness and extensional com-
pleteness. The obtained results extend the results concerning inference systems
for Floyd-Hoare logic with partial predicates over flat (non-hierarchical) data
obtained in [8,9].

The paper is organized in the following way. In Sect. 2 we describe the notion
of relational nominative data and define main operations on them. In Sect. 3 we
describe our semantics based on Floyd-Hoare logic. In Sect. 4 we specify the syn-
tax of our extended Floyd-Hoare logic. In Sect. 5 we propose an inference system
for our logic and consider problems of its soundness and completeness. In Sect. 6
we describe an approach to formalization of our extended Floyd-Hoare logic in
Mizar. In Sect. 7 we describe the related work. In Sect. 8 we give conclusions.

2 Algebra of Relational Nominative Data

In the composition-nominative approach data are treated as nominative data.
There are several types of nominative data, but all of them are based on naming
relations. The simplest type of nominative data is the class of nominative sets
which are partial mappings from a set of names (program variables) to a set of
basic values. Other types of nominative data represent hierarchical data organi-
zations [10]. Here we present the definition of relational nominative data. Before
giving such definitions, let us introduce the following notation.

To distinguish total functions from partial we will use the symbol
p−→ for

partial functions and t−→ for total. We will also use the symbol n−→ for partial
functions with finite graphs. For any partial function f : D

p−→ D′ on some
set D :

46 M. Nikitchenko et al.

– f(d) ↓ denotes that f is defined on d ∈ D;
– f(d) ↓= d′ denotes that f is defined on d ∈ D with a value d′ ∈ D′;
– f(d) ↑ denotes that f is undefined on d ∈ D;
– dom(f) = {d ∈ D | f(d) ↓} is the domain of a function (note that in different

branches of mathematics there exist different definitions of the domain of
a partial function; we will adopt the convention used in recursion theory).

We will denote by f1(d1) ∼= f2(d2) the strong equality, i.e. the condition that
f1(d1) ↓ if and only if f2(d2) ↓, and if f1(d1) ↓, then f1(d1) = f2(d2).

For any nonempty set V we will denote by V + the set of all nonempty finite
sequences (words) of elements of V . For any word u ∈ V + we will denote by |u|
its length. If u, v ∈ V +, we will denote by uv the concatenation of u and v. We
will write u ≤ v, if u is a prefix of v, and u < v, if u ≤ v, u �= v.

For any set of names V and a set of basic values (atoms) A the corresponding
class V A of nominative sets is defined as

V A = V
p−→ A.

We chose V to denote the set of names because we are oriented on math-
ematical logic where V is practically standard notation for a set of variables
(names). We will use the following notations for nominative sets:

– [v1 	→ a1, . . . , vn 	→ an], where v1,. . . , vn are names from V and a1, . . . ,
an are atoms from A, denotes a nominative set with the graph {(v1, a1),
. . . , (vn, an)};

– [vi 	→ ai|i ∈ I], where I is some set of indices, means a nominative set with
the graph {(vi, ai) | i ∈ I};

– v 	→ a ∈ d, where d is a nominative set, means that d(v) ↓= a, i.e. the value
of the variable v in d is a;

– [] denotes the empty nominative set (a nowhere defined function).

Relational nominative data are built over classes of names V and basic val-
ues A using a naming construction of the form [v1 	→ d1, . . . , vn 	→ dn], and
a relational construction of the form {d1, . . . , dn} where v1, . . . , vn are different
names from V and d1, . . . , dn are either atoms or other relational nominative
data.

Relational nominative data are classified in accordance with the following
parameters [10]: names can be simple (unstructured) or complex (structured),
values can be simple (unstructured) or complex (structured). Within the class of
complex structured values we distinguish the class of relational values of the form
{d1, . . . , dn}. To define the notion of a complex name we will use the Development
principle (from abstract to concrete) and consider the simplest case of name
construction: complex names are sequences of simple names which satisfy the
associativity property [10]. More specifically, we will assume that complex names
are constructed with the help of concatenation operation (which is associative).
We will adopt the following Principle of associative construction and processing
of complex names [10]: complex names are constructed from simple names using

Extended Floyd-Hoare Logic over Relational Nominative Data 47

concatenation, and data with complex names must be processed by operations
that take into account associativity of names. Moreover, we will require that data
with complex names satisfy the Principle of unambiguous associative naming
[10]: one complex name must have at most one corresponding value in any given
data.

Let us give the formal definition of the class RND(V,A) of relational nom-
inative data with complex names and complex values. We will assume that V
and A are fixed nonempty sets of simple names and basic values. We will call
the elements of V + complex names.

First, we define

RNDs(V,A) =
⋃

k≥0

RNDsk(V,A),

where
RNDs0(V,A) = A ∪ {[]},

RNDsk+1(V,A) = RNDsk(V,A)∪(V + n−→ RNDsk(V,A))∪R(RNDsk(V,A)).

Here n−→ denotes a constructor of nominative sets and R denotes a construc-
tion of finite relations:

R(X) = {Y ⊆ X | Y is finite}.

The class RNDs(V,A) uses complex names in its construction, but possible
ambiguity of naming is not taken into consideration. Thus, we add additional
restrictions to obtain the class RND(V,A).

Naming structure can be represented by oriented trees with arcs labeled by
names and leafs labeled by atoms, empty nominative set, or relations. We will call
any finite sequence of names p = (v1, v2, . . . , vk) a path. A path in a given data
d ∈ RNDs(V,A) is a path (v1, v2, . . . , vk) such that the value of the expression
(. . . ((d(v1))(v2)) . . . (vk)) is defined (it corresponds to a path from the root to
some vertex in a tree). If pt = (v1, v2, . . . , vk) is a path in d, we will say that
(. . . ((d(v1))(v2)) . . . (vk)) is the value of pt in d and denote it as d(v1, v2, . . . , vk).

A terminal path is a path with atomic, empty value or relational value.
Data of the class RND(V,A) are elements of the set RNDs(V,A) such that

for any d and any two paths (u1, u2, . . . , uk) and (v1, v2, . . . , vl) in d, neither of
which is a prefix of another, words u1u2 . . . uk and v1v2 . . . vl are incomparable
in the sense of prefix relation (principle of unambiguous associative naming).
This principle should be applied to all subdata within d.

In [10] it was shown how conventional data structures can be represented by
different kinds of relational nominative data.

Let Nd(V,A) = (V + n−→ RND(V,A)) ∩ RND(V,A) and

Rd(V,A) = R(RND(V,A))

be the subclasses of RND(V,A) called classes of nominative and relational data
respectively.

48 M. Nikitchenko et al.

The main operations on nominative data consist of operations over nomina-
tive data and operations over relational data. Operations over nominative data
are operations of denaming (taking a value of a name), naming (assigning a new
value to a name), and overlapping (overwriting).

The nominative rank of d ∈ RND(V,A) is the greatest length of terminal
paths in d. For any word u ∈ V + and any data d ∈ RND(V,A) let us denote

d/u = [v1 	→ d(v) | d(v) ↓, v = uv1, v1 ∈ V +]

(division of d by u).

Definition 1. Associative denaming

v ⇒a: RND(V,A)
p−→ RND(V,A)

is an operation with a parameter v ∈ V +. On Rd(V,A) it is undefined, and on
Nd(V,A) is defined by induction on the length of v as follows:

– if |v| = 1, then v ⇒a (d) = d(v), if d(v) ↓; v ⇒a (d) = d/v if d(v) ↑ and
d/v �= [], and v ⇒a (d) ↑ otherwise.

– if |v| = n > 1, then v ⇒a (d) ∼= v1 ⇒a (x ⇒a (d)),
where v = xv1, x ∈ V , v1 ∈ V n−1 (principle of associative denaming).

For example,

uv ⇒a ([u 	→ [vw 	→ 1, u 	→ 2]]) = [w 	→ 1].

It is easy to check that v ⇒a satisfies the following property (associativity)

u ⇒a (d) ∼= un ⇒a (un−1 ⇒a (. . . u1 ⇒a (d) . . .))

for all complex names u, u1, u2, . . . , un ∈ V + such that u = u1u2 . . . un.

Definition 2. Naming is an operation

⇒ v : RND(V,A) t−→ RND(V,A)

with a parameter v ∈ V + such that

⇒ v(d) = [v 	→ d].

Overlapping can be considered as an operation which updates values in the
first argument with the values from the second argument. It joins two data and
resolves name conflicts in favor of its second argument. We will define two kinds
of overlapping: global and local. Global overlapping can be used for formalization
of procedure calls and the local overlapping formalizes the assignment operator
in programming languages.

Extended Floyd-Hoare Logic over Relational Nominative Data 49

Definition 3. Global overlapping is a binary operation

∇a : RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined inductively by the nominative rank of the first argument as follows.
Let Ndk(V,A) be the class of data with the nominative rank not greater

than k.
Induction base. If d1 ∈ Nd0(V,A), then

d1∇ad2 ∼=
{

d2, d1 = [] and d2 ∈ Nd(V,A)\A;
undefined, in other cases

Induction step. Assume that the value d1∇ad2 is defined for all d1, d2 such
that d1 ∈ Ndk(V,A). Let d1 ∈ Ndk+1(V,A) and d1 /∈ Ndk(V,A). Then
d1∇ad2 = d, where d ∈ Nd(V,A) is defined by its values on names u ∈ V +:

– d(u) = d2(u), if u ∈ dom(d2) and u does not have a proper prefix which
belongs to dom(d1);

– d(u) = d1(u)∇a(d2/u), if d1(u) ↓ and d1(u) /∈ A, and u is a proper prefix of
some element of dom(d2);

– d(u) = d2/u, if d1(u) ↓ and d1(u) ∈ A, and u is a proper prefix of some
element of dom(d2);

– d(u) = d1(u), if d1(u) ↓ and u is not comparable (in the sense of prefix
relation) with any element of dom(d2);

– d(u) ↑, otherwise.

The following examples illustrate this operation:

1. [u 	→ d1]∇a[v 	→ d2] = [u 	→ d1, v 	→ d2], if u, v are incomparable in the sense
of prefix relation;

2. [uv 	→ d1]∇a[u 	→ d2] = [u 	→ d2], i.e. a value of a name in the second
argument overwrites the value of extension of this name in the first argument;

3. [u 	→ d1]∇a[uv 	→ d2] = [u 	→ (d1∇a[v 	→ d2])] (d1 /∈ A), i.e., a value of
a name in the second argument modifies values of prefixes of this name in the
first argument.

Definition 4. Local overlapping is an operation

∇v
a : RND(V,A)

p−→ RND(V,A)

with a parameter v ∈ V + such that

d1∇v
ad2 ∼= d1∇a(⇒ v(d2)).

For example, [u 	→ 1]∇v
a[w 	→ 2] = [u 	→ 1, v 	→ [w 	→ 2]].

Now we define operations that operate also on relational data. Therefore
we consider two cases: data is a nominative data and data is a relational data.
Nominative data are often considered as sets.

50 M. Nikitchenko et al.

Definition 5. Union ∪ is an operation

∪ : RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined for any d1, d2 ∈ RND(V,A) in the following way:

– d1 ∪ d2 = [v 	→ d′|v 	→ d′ ∈ d1 or v 	→ d′ ∈ d2], if d1, d2 ∈ Nd(V,A) and
names from dom(d1) and dom(d2) are pairwise incomparable;

– d1 ∪ d2 = {d′|d′ ∈ d1 or d′ ∈ d2}, if d1, d2 ∈ Rd(V,A);
– undefined in other cases.

An example of the union of elements of Nd(V,A): if

d1 = [x1 	→ 1, x2 	→ 2], d2 = [x3 	→ 3, x4 	→ 4],

then d1 ∪ d2 = [x1 	→ 1, x2 	→ 2, x3 	→ 3, x4 	→ 4].
An example of the union of elements of Rd(V,A): if

d1 = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]},

d2 = {[u 	→ 5, v 	→ 6], [u 	→ 7, v 	→ 8]},

then d1 ∪ d2 = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4], [u 	→ 5, v 	→ 6], [u 	→ 7, v 	→ 8]}.

Definition 6. Difference \ is an operation

\ : RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined for any d1, d2 ∈ RND(V,A) in the following way:

– d1 \ d2 = [v 	→ d′|v 	→ d′ ∈ d1 and v 	→ d′ �∈ d2], if d1, d2 ∈ Nd(V,A);
– d1 \ d2 = {d′|d′ ∈ d1 and d′ �∈ d2}, if d1, d2 ∈ Rd(V,A);
– undefined in other cases.

An example of the difference of elements of Nd(V,A): if

d1 = [x1 	→ 1, x2 	→ 2], d2 = [x1 	→ 1, x4 	→ 4],

then d1 \ d2 = [x2 	→ 2].
An example of the difference of elements of Rd(V,A): if

d1 = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]},

d2 = {[u 	→ 1, v 	→ 2], [u 	→ 5, v 	→ 6]},

then d1 \ d2 = {[u 	→ 3, v 	→ 4]}.

Definition 7. Product ⊗ is an operation

⊗ : RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined for any d1, d2 ∈ RND(V,A) in the following way:

Extended Floyd-Hoare Logic over Relational Nominative Data 51

– d1 ⊗ d2 = {d′
1 ∪ d′

2 | d′
1 ∈ d1, d

′
2 ∈ d2}, if d1, d2 ∈ Rd(V,A);

– undefined in other cases.

An example of the product of elements of Rd(V,A): if

d1 = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]}, d2 = {[w 	→ 3]},

then d1 ⊗ d2 = {[u 	→ 1, v 	→ 2, w 	→ 3], [u 	→ 3, v 	→ 4, w 	→ 3]}.

Definition 8. Projection πv1,...,vn is an operation

πv1,...,vn : RND(V,A)
p−→ RND(V,A)

with parameters v1, . . . , vn ∈ V + such that v1, . . . , vn are pairwise incomparable
names, defined for any d ∈ RND(V,A) in the following way:

– πv1,...,vn(d) = [v 	→ d(v)| v ∈ {v1, . . . , vn}, v ∈ dom(d)], if d ∈ Nd(V,A);
– πv1,...,vn(d) = {πv1,...,vn(d′)| d′ ∈ d, d′ ∈ Nd(V,A)}, if d ∈ Rd(V,A);
– undefined in other cases.

An example of the projection of elements of Nd(V,A): if

d = [x1 	→ [a 	→ 1, b 	→ 2], x2 	→ [a 	→ 1, c 	→ 2], x3 	→ []],

then πx1,x3(d) = [x1 	→ [a 	→ 1, b 	→ 2], x3 	→ []].
An example of the projection of elements of Rd(V,A): if

d = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]},

then πv(d) = {[v 	→ 2], [v 	→ 4]}.

Definition 9. Deleting δv1,...,vn is an operation

δv1,...,vn : RND(V,A)
p−→ RND(V,A)

with parameters v1, . . . , vn ∈ V + defined for any d ∈ RND(V,A) in the following
way:

– δv1,...,vn(d) = [u 	→ d(u) | u ∈ dom(d), u �∈ {v1, . . . , vn}], if d ∈ Nd(V,A);
– δv1,...,vn(d) = {δv1,...,vn(d′) | d′ ∈ d, d′ ∈ Rd(V,A)}, if d ∈ Rd(V,A);
– undefined in other cases.

An example of an application of deletion to elements of Nd(V,A): if

d = [x1 	→ [a 	→ 1, b 	→ 2], x2 	→ [a 	→ 1, c 	→ 2], x3 	→ []],

then δx2(d) = [x1 	→ [a 	→ 1, b 	→ 2], x3 	→ []].
An example of an application of deletion to elements of Rd(V,A): if

d = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]},

then δu(d) = {[v 	→ 2], [v 	→ 4]}.

52 M. Nikitchenko et al.

Definition 10. Renaming rv1,...,vn
u1,...,un

is an operation

rv1,...,vn
u1,...,un

: RND(V,A)
p−→ RND(V,A)

with parameters v1, . . . , vn, u1, . . . , un ∈ V + such that v1, . . . , vn are pairwise
incomparable names, defined for any d ∈ RND(V,A) in the following way:

– rv1,...,vn
u1,...,un

(d) = δv1,...,vn(d) ∪ [v 	→ d(u) | u ∈ dom(d)], if d ∈ Nd(V,A);
– rv1,...,vn

u1,...,un
(d) = {rv1,...,vn

u1,...,un
(d′) | d′ ∈ d, d′ ∈ Rd(V,A)}, if d ∈ Rd(V,A);

– undefined in other cases.

An example of application of renaming to elements of Nd(V,A): if

d = [x1 	→ [a 	→ 1], x2 	→ [a 	→ 1, b 	→ 2]],

then ry1,x1
x1,x2

(d) = [x2 	→ [a 	→ 1, b 	→ 2], y1 	→ [a 	→ 1], x1 	→ [a 	→ 1, b 	→ 2]].
An example of application of renaming to elements of Rd(V,A): if

d = {[v 	→ 2], [v 	→ 4]},

then ru
v (d) = {[v 	→ 2, u 	→ 2], [v 	→ 4, u 	→ 4]}.

Definition 11. Natural join �� is an operation

��: RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined for any d1, d2 ∈ RND(V,A) in the following way:

– d1 �� d2 = d1 ∪ d2,
if d1, d2 ∈ Nd(V,A) and d1(v) = d2(v) for any v ∈ dom(d1) ∩ dom(d2);

– d1 �� d2 = {d′
1 �� d′

2|d′
1 ∈ d1, d

′
2 ∈ d2, d

′
1 �� d′

2 is defined},
if d1, d2 ∈ Rd(V,A);

– undefined in other cases.

An example of the natural join of elements of Nd(V,A): if

d1 = [x 	→ 1, y 	→ 2], d2 = [y 	→ 2, z 	→ 3],

then d1 �� d2 = [x 	→ 1, y 	→ 2, z 	→ 3].
An example of the natural join of elements of Rd(V,A): if

d1 = {[u 	→ 1, v 	→ 2], [u 	→ 3, v 	→ 4]},

d2 = {[v 	→ 2, w 	→ 3]},

then d1 �� d2 = {[u 	→ 1, v 	→ 2, w 	→ 3]}.

Definition 12. Division ÷ is an operation

÷ : RND(V,A) × RND(V,A)
p−→ RND(V,A)

defined for any d1, d2 ∈ RND(V,A) as:

d1 ÷ d2 ∼=
⋃

{d ∈ RND(V,A) | d ⊗ d2 ⊆ d1}.

Extended Floyd-Hoare Logic over Relational Nominative Data 53

An example of the division of elements of Rd(V,A): if

d1 = {[u 	→ 1, v 	→ 1], [u 	→ 1, v 	→ 2], [u 	→ 2, v 	→ 1]},

d2 = {[v 	→ 2]},

then d1 ÷ d2 = {[u 	→ 1]}.

Definition 13. An algebra of relational nominative data RNDA(V,A) is an
algebra with the carrier RND(V,A) and the operations

⇒ v, v ⇒a,∇v
a,∪, \,⊗, πv1,...,vn , δv1,...,vn , rv1,...,vn

u1,...,un
, ��,÷.

3 Semantics of Extended Floyd-Hoare Logic

We treat programs as being defined over nominative data.
Let Bool = {F, T} be the set of Boolean values, PrV,A = RND(V,A)

p−→
Bool be the set of partial predicates. They can be used to represent semantics of
conditions in programs.

Let FPrgV,A = Nd(V,A)
p−→ Nd(V,A). The elements of FPrgV,A are called

binominative functions. They can be used to represent semantics of programs.
Multi-sorted algebras on sets of partial predicates and partial binominative

functions can be used to define semantics of program logics [11,38]. The opera-
tions of such algebras will be called compositions.

There are many possible ways to define compositions that provide means to
construct complex programs from simpler ones. We have chosen the following
compositions to include them as basic to the logics of program level (level of
binominative functions):

– parametric assignment composition ASx which corresponds to assignment
operator := ;

– composition of identical program id which corresponds to the skip operator
of the WHILE language;

– composition of sequential execution •;
– conditional composition IF which corresponds to the if-then-else operator;
– cycle (loop) composition WH which corresponds to the while-do operator;
– superpositions Sx̄

F which correspond to procedure calls.

We also need compositions that provide the possibility to construct different
kinds of expressions (functions) and conditions (predicates) that are program
components. Thus, we will include into the list of compositions superposition
compositions.

Finally, to construct predicates describing properties of programs we define
the Floyd-Hoare composition FH. It takes a precondition, a postcondition, and
a program as inputs and yields a predicate that represents respective Floyd-
Hoare assertion. We will also define a composition of preimage predicate trans-
former inspired by weakest precondition introduced by Dijkstra [39].

Let us give definitions of the mentioned compositions.

54 M. Nikitchenko et al.

Definition 14. Disjunction is a binary composition

∨ : PrV,A × PrV,A t−→ PrV,A

such that for all p, q ∈ PrV,A and d ∈ RND(V,A):

(p ∨ q)(d) =

⎧
⎨

⎩

T, if p(d) ↓= T or q(d) ↓= T,
F, if p(d) ↓= F and q(d) ↓= F,
undefined in other cases.

Definition 15. Negation is a unary composition

¬ : PrV,A t−→ PrV,A

such that for all p ∈ PrV,A and d ∈ RND(V,A):

(¬p)(d) =

⎧
⎨

⎩

F, if p(d) ↓= T,
T, if p(d) ↓= F,
undefined in other cases.

We will consider conjunction p ∧ q of predicates p, q as an abbreviation for
¬(¬p ∨ ¬q).

Definition 16. Existential quantification over hierarchical data is a unary com-
position

∃x : PrV,A t−→ PrV,A

with a parameter x ∈ V + such that for all p ∈ PrV,A and d ∈ RND(V,A):

(∃x p)(d) =

⎧
⎨

⎩

T, if p(d∇x
ad′) ↓= T for some d′ ∈ RND(V,A),

F, if p(d∇x
ad′) ↓= F for all d′ ∈ RND(V,A),

undefined in other cases.

For each n = 1, 2, 3, . . . denote by Ūn(V) the set of all tuples (x1, . . . , xn) ∈
(V +)n of n complex names such that x1, x2, . . . , xn are pairwise incomparable
in the sense of prefix relation ≤.

Also, let us denote Ū(V) =
⋃∞

n=1 Ūn(V).

Definition 17. For each n = 1, 2, 3, . . . , superposition of n functions into
a function is a n+1-ary composition

Sx̄
F : (FPrgV,A)n+1 t−→ FPrgV,A

with a parameter x̄ = (x1, . . . , xn) ∈ Ūn(V) such that for all f, g1, . . . , gn ∈
FPrgV,A and d ∈ RND(V,A):

Sx̄
F (f, g1, . . . , gn)(d) ∼= f(d∇a[x1 	→ g1(d), . . . , xn 	→ gn(d)]).

Extended Floyd-Hoare Logic over Relational Nominative Data 55

Definition 18. For each n = 1, 2, 3, . . . , superposition of n functions into
a predicate is a n+1-ary composition

Sx̄
P : PrV,A × (FPrgV,A)n t−→ PrV,A

with a parameter x̄ = (x1, . . . , xn) ∈ Ūn(V) such that for all p ∈ PrV,A,
g1, . . . , gn ∈ FPrgV,A, and d ∈ RND(V,A):

Sx̄
P (p, g1, . . . , gn)(d) ∼= p(d∇a[x1 	→ g1(d), . . . , xn 	→ gn(d)]).

Definition 19. Denomination is a null-ary composition ′x : FPrgV,A with
a parameter x ∈ V + such that for each d ∈ RND(V,A):

′x(d) ∼= x ⇒a (d).

Definition 20. Assignment over hierarchical data is a composition

ASx : FPrgV,A t−→ FPrgV,A

with a parameter x ∈ V + such that for each f ∈ FPrgV,A and d ∈ RND(V,A):

ASx(f)(d) ∼= d∇x
af(d).

Definition 21. Identity program composition is a null-ary composition
id : FPrgV,A such that for each d ∈ RND(V,A):

id(d) = d.

Definition 22. Sequential execution is a binary composition

• : FPrgV,A × FPrgV,A t−→ FPrgV,A

such that for all f, g ∈ FPrgV,A and d ∈ RND(V,A):

(f • g)(d) ∼= g(f(d)).

Definition 23. Branching is a ternary composition

IF : PrV,A × FPrgV,A × FPrgV,A t−→ FPrgV,A

such that for all r ∈ PrV,A(condition), f, g ∈ FPrgV,A(branches bodies), and
d ∈ RND(V,A):

IF (r, f, g)(d) =

⎧
⎨

⎩

f(d), if r(d) ↓= T and f(d) ↓,
g(d), if r(d) ↓= F and g(d) ↓,
undefined in other cases.

56 M. Nikitchenko et al.

Definition 24. While cycle is a binary composition

WH : PrV,A × FPrgV,A t−→ FPrgV,A

such that for each p ∈ PrV,A (condition), f ∈ FPrgV,A (loop body), and d ∈
RND(V,A):

WH(p, f)(d) ↓= f (n)(d),

if n ≥ 0 such that p(f (i)(d)) ↓= T for all i = 0, 1, . . . , n−1 and p(f (n)(d)) ↓= F ,
where f (i) denotes f • f • · · · • f︸ ︷︷ ︸

i

and f (0) = id; and WH(p, f)(d) ↑, otherwise.

Definition 25. Monotone Floyd-Hoare composition

FH : PrV,A × FPrgV,A × PrV,A t−→ PrV,A

is a composition such that for all p, q ∈ PrV,A (pre- and postcondition), f ∈
FPrgV,A (program), and d ∈ RND(V,A):

FH(p, f, q)(d) =

⎧
⎨

⎩

T, if p(d) ↓= F or q(f(d)) ↓= T,
F, if p(d) ↓= T and q(f(d)) ↓= F,
undefined in other cases.

Definition 26. Predicate transformer composition is a binary composition

PC : FPrgV,A × PrV,A t−→ PrV,A

such that for all q ∈ PrV,A, f ∈ FPrgV,A, and d ∈ RND(V,A):

PC(f, q)(d) =

⎧
⎨

⎩

T, if f(d) ↓ and q(f(d)) ↓= T,
F, if f(d) ↓ and q(f(d)) ↓= F,
undefined in other cases.

Predicate transformer composition is the same as Glushkov prediction opera-
tion (sequential execution of a function and a predicate). We call this composi-
tion (defined for partial predicates) as preimage predicate transformer composi-
tion in order to relate it to the weakest precondition predicate transformer [39].
Note that FH(p, pr, q) = p → PC(pr, q).

The Floyd-Hoare composition is called monotone, because it satisfies the
following property, as was shown in [8]:

p ⊆ p′, q ⊆ q′, f ⊆ f ′ ⇒ FH(p, f, q) ⊆ FH(p′, f ′, q′),

where inclusion ⊆ is understood as inclusion of the graphs of functions and
predicates.

We also need to raise the level of RNDA(V,A) operations to the level of
compositions. It means, that operations ⇒ v, v ⇒a we treat as nullary com-
positions of the type FPrgV,A, operations ∪, \, �� as binary compositions of
the type FPrgV,A × FPrgV,A t−→ FPrgV,A, and πv1,...,vn , δv1,...,vn , rv1,...,vn

u1,...,un
as

unary compositions of the type FPrgV,A t−→ FPrgV,A. We will use the same
symbols both for data algebra operations and compositions.

Extended Floyd-Hoare Logic over Relational Nominative Data 57

Definition 27. A relational nominative program algebra RNPA(V,A) is a two-
sorted algebra < PrV,A, FPrgV,A; ∨,¬,∃x, Sx̄

P , Sx̄
F ,′ x, id, ASx, •, IF,WH, FH,

PC, ⇒ v, v ⇒a, ∇v
a, ∪, \, ⊗, πv1,...,vn , δv1,...,vn , rv1,...,vn

u1,...,un
, ��, ÷ >.

This algebra is the semantic base of our extension of Floyd-Hoare logic to
partial predicates and (hierarchical) nominative data with complex names and
complex values.

4 Syntax and Interpretation

Algebra RNPA(V,A) has strong expressive power that is not required for our
goal: to construct a special program logic. Therefore we restrict syntactically
the class of terms of this algebra. The idea is to consider programs as binomi-
native functions constructed with the help of compositions id, ASx, •, IF,WH,
Sx̄

F . Functions of other types (including relational data) can be represented by
functional expressions. Formulas represent nominative predicates. The signature
of the constructed logic is Σ = (V, Ps, FEs, Prgs) where Ps, FEs, Prgs are sets
of predicates, functions, and program symbols.

Let us give definitions of the sets of program texts PtΣ , formulas FrΣ , func-
tional expressions FExΣ , and Floyd-Hoare assertions FHFrΣ .

The sets PtΣ , FEΣ , and FrΣ are defined inductively (here we use the sym-
bols of compositions in the purely syntactic sense, i.e. they are currently not
associated with semantics, also, for parameters from V + respective restrictions
hold):

1. if prs ∈ Prs, then prs ∈ FrΣ ;
2. if fes ∈ FEs, then fes ∈ FEΣ ;
3. if prgs ∈ Prgs, then prgs ∈ PtΣ ;
4. if Φ, Ψ ∈ FrΣ , then Φ ∨ Ψ , ¬Φ, ∃x ∈ FrΣ ;
5. if fe, fe1, fe2 ∈ FEs, then ⇒ v, v ⇒a, ′x, fe1∇v

afe2, fe1 ∪ fe2, fe1 \ fe2,
⊗, πv1,...,vn(fe), δv1,...,vn(fe), rv1,...,vn

u1,...,un
(fe), fe1 �� fe2 ∈ FEΣ ;

6. if Φ ∈ FrΣ and fe ∈ FEΣ , then σ(Φ, fe) ∈ FEΣ ;
7. if n ≥ 1, Φ ∈ FrΣ , fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ūn(V), then

Sx̄
P (Φ, fe1, . . . , fen) ∈ FrΣ ;

8. if n ≥ 1, fe, fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ūn(V), then
Sx̄

F (fe, fe1, . . . , fen) ∈ FEΣ ;
9. if n ≥ 1, prg ∈ PtΣ , fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ūn(V), then

Sx̄
F (prg, fe1, . . . , fen) ∈ PtΣ ;

10. if x ∈ V + and fe ∈ FEΣ , then ASx(fe) ∈ PtΣ ;
11. id ∈ PtΣ ;
12. if prg1, prg2 ∈ PtΣ , then pr1 • pr2 ∈ PtΣ ;
13. if Φ ∈ FrΣ and prg1, prg2 ∈ PtΣ , then IF (Φ, prg1, prg2) ∈ PtΣ ;
14. if Φ ∈ FrΣ and prg ∈ PtΣ , then WH(Φ, prg) ∈PtΣ .

The set FHFrΣ is the set of all formulas of the form {p}f{q}, where p,
q ∈ FrΣ and f ∈ PtΣ .

58 M. Nikitchenko et al.

Definition 28. Let Σ = (V, Ps, FEs, Prgs) be a logic signature and A be
an arbitrary set. Then an interpretation J is a tuple (RNPA(V,A), IPs, IFEs,

IPrgs), where IPs : Ps
t−→ P rV,A is an interpretation mapping for predicate

symbols, IFEs : FEs
t−→ FPrgV,A and IPrs : Prs

t−→ FPrgV,A are interpreta-
tion mappings for function and program symbols, respectively.

For any interpretation J = (RNPA(V,A), IPs, IFEs, IPrgs) we will denote
by JFr, JFE , and JPt the formula, function, and program text interpretation
mappings

JFr : FrΣ t−→ PrV,A,

JFE : FEΣ t−→ FPrgV,A,

JPt : PtΣ
t−→ FPrgV,A

which are the standard extensions of IPs, IFEs, and IPrgs to FrΣ , FEΣ , and PtΣ

respectively (defined by structural induction). Also, we will denote by JFHFr the
interpretation mapping of Floyd-Hoare assertions JFHFr : FHFrΣ t−→ PrV,A

defined as follows:

JFHFr ({p}f{q}) = FH(JFr (p), JP t(f), JFr (q)).

In this paper we will not define interpretations explicitly expecting that they
are clear from the context. For any P ∈FrΣ or P ∈ FHFrΣ we will denote by
PJ or (P)J the predicate that corresponds to P under interpretation J. We will
omit the index J when it is clear from the context.

We will use the following notation for any predicate p:
pT = {d | p(d) ↓= T} is the truth domain of a predicate p;
pF = {d | p(d) ↓= F} is the falsity domain of p.

Definition 29. A formula P ∈ FrΣ or a Floyd-Hoare assertion P ∈FHFrΣ

is valid (irrefutable) in an interpretation J (denoted as J |= P), if PF
J = ∅.

Definition 30. A formula P ∈FrΣ or a Floyd-Hoare assertion
P ∈FHFrΣ is logically valid (denoted as |= P), if it is valid in every interpre-
tation.

Let us define the logical consequence relation |= ⊆ FrΣ × FrΣ as

p |= q ⇔ |= p → q,

where p → q means ¬p ∨ q for any p, q ∈FrΣ .
We will also need the following special logical consequence relations

|=T , |=F ⊆ FrΣ × FrΣ

such that

– p |=T q ⇔ pT
J ⊆ qT

J for every interpretation J ;
– p |=F q ⇔ qF

J ⊆ pF
J for every interpretation J .

Extended Floyd-Hoare Logic over Relational Nominative Data 59

5 Inference System for a Floyd-Hoare Logic with Partial
Predicates

To make the program logic which we have defined applicable to software verifi-
cation problems it is necessary to present an inference system. Such an inference
system could be based on the inference system for the classical Floyd-Hoare logic
with total predicates for the language WHILE [37], but it is known be unsound in
the case of partial predicates [8] which is considered in the paper. For this reason
additional constraints need to be added to achieve a sound inference system.

We will write �X p to denote that a formula p is derived in some inference
system X. An inference system X is sound, if �X p ⇒ |= p for each formula
p, and is complete, if |= p ⇒ �X p for each p. Completeness can be treated in
extensional or intensional approaches. For extensional completeness [37] pre- and
postconditions can be arbitrary predicates. Intensional completeness requires
that pre- and postconditions are presented by formulas in a given language.

The classical inference system for the language WHILE [37] can be presented
in semantic form as follows (x ∈ V):

R AS {Sx
P (p, h)} ASx(h) {p} R SKIP {p} id {p}

R SEQ
{p} f {q}, {q} g {r}

{p} f • g {r} R IF
{r ∧ p} f {q}, {¬r ∧ p} g {q}

{p} IF (r, f, g) {q}

R WH
{r ∧ p} f {p}

{p} WH(r, f) {¬r ∧ p} R CONS
{p′} f {q′}
{p} f {q} p → p′, q′ → q

This inference system is sound and extensionally complete for total pred-
icates, but for partial predicates it is not sound [8,9], because rules R SEQ,
R WH, and R CONS do not guarantee a valid derivation from valid premises.

There can be different solutions for this problem. Here we will restrict the
class of assertions to the class of T -increasing assertions [9].

An assertion {p}f{q} is T -increasing if p |=T PC(f, q). In this case the truth
domain of p is included in the preimage of the truth domain of q under f.

It is important to note that for partial predicates T -increasing assertions are
logically valid, i.e. p |=T PC(f, q) implies |= {p}f{q}.

Now we extend the inference system TI [9], oriented on T -increasing asser-
tions, to the system RN. This extension takes into account that the language
works with complex names and new superposition compositions appeared in our
program language.

In this new system RN rules R AS, R SKIP , R SEQ, R IF , R WH remain
the same, but v ∈ V + in the rule R AS since we consider complex names. To
these rules the following new rules specifying superpositions into a program
(procedure calls) are added:

R SFID {Sx̄
P (p, g1, . . . , gn)}Sx̄

F (id, g1, . . . , gn){p}

R SF
{p}Sx̄

F (id, g1, . . . , gn) • f{q}
{p}Sx̄

F (f, g1, . . . , gn){q}

60 M. Nikitchenko et al.

Also, we have to change the consequence rule R CONS to the following rule:

R CONS’
{p′} f {q′}
{p} f {q} , p |=T p′, q′ |=T q

Proposition 1. The inference system RN is sound for the class of T-increasing
assertions.

To prove the proposition we should demonstrate that axioms specify T -
increasing assertions, and that given T -increasing assertions as premises the
rules specify T -increasing assertions as consequences.

These properties can be proved analogously to [8, Theorem 4].

Proposition 2. The inference system RN is extensionally complete for the class
of T-increasing assertions.

The prove is analogous to the standard proofs based on the notion of weakest
precondition (see, for example, [37]) but taking into account partiality of predi-
cates we use preimage predicate transformer (preimage composition) instead of
the weakest precondition. Such a proof is given in [9, Theorem 4.1]. To prove
our proposition we should additionally consider rules for superpositions with
complex names. Details are omitted here.

In the system RN a new unconventional consequence relation |=T is used. Its
main semantic properties were studied in [40]. Further investigation will permit
to substitute this consequence relation by the corresponding inference relation
�T . Let us also note that relational operations were not directly used in RN. The
functions over relational data can be used inside arguments of assignment and
superposition compositions. They will be specified explicitly in the predicate
logic for relational nominative data. A detailed investigation of such logic is
planned for the forthcoming publications.

6 Towards Formalization of Extended Floyd-Hoare Logic
in Mizar

We proposed a formalization of nominative data in Mizar in [41–44]. In the
mentioned work different types of nominative data were defined as Mizar modes
with set parameters V and A which meant the sets of basic names and atomic
values, respectively. We can use this formalization as a basis for formalization
of the extended Floyd-Hoare logic for programs over relational nominative data.
The following steps have to be done to achieve this.

(1) Define the mode of binominative functions over Nd(V,A). This gives us
a formalization of FPrgV,A defined above.

(2) Similarly define the modes of partial predicates over RND(V,A).
(3) Formalize PtΣ (program texts), FrΣ (formulas), FEΣ (functional expres-

sions), and FHFrΣ (Floyd-Hoare assertions) as Mizar modes.

Extended Floyd-Hoare Logic over Relational Nominative Data 61

(4) Formalize the interpretation mapping in accordance with Definition 28.
(5) Formalize the relation of validity in an interpretation in accordance with

Definition 29 and the relation of validity in accordance with Definition 30.
(6) Formalize the logical consequence relation p |= q and the special logical

consequence relations p |=T q and p |=F q for p, q ∈FrΣ .
(7) Formulate the inference rules of the RN inference system described in Sect. 5

as Mizar schemes and formally prove their semantic validity.

Finally, the proven inference rules can be used to prove semantics properties of
programs defined by concrete program texts (elements of PtΣ).

7 Related Work

Logical approaches to program specification and reasoning about program prop-
erties were used in the works by Floyd [1] and Hoare [2]. These approaches were
based on axiomatic systems with total predicates and used triples of a precon-
dition, program, and a postcondition. Later, it became evident that partiality
of predicates and programs needs to be taken into account which gave rise to
three-valued logics which represented undefinedness of a predicate by a spe-
cial third value. In particular, such logics were studied by �Lukasiewicz, Kleene,
Bochvar and others. At the same time many other extensions of Floyd-Hoare
logic were proposed as a basis for program verification, including Dynamic logic
and Separation logic. In Dynamic logic [45] special modalities that allow usage
of program texts and specifications alongside are used. A Floyd-Hoare assertion
{p}pr{q} can be replaced with a formula p → [pr]q, where [pr]q indicates that if
a program pr terminates, then q necessarily holds. For deterministic programs,
[pr]q is equal to our preimage composition which also allows use of specifications
and program texts together. Separation logic [46] was introduced to deal with
widespread usage of heap and pointers in programming. This logic has special
means for specifying heap properties. But only a heap function that maps mem-
ory addresses to values is assumed to be partial. In other aspects only total
predicates are considered.

The ways of dealing with partiality in current software specification languages
(VDM, RSL, Z, etc.) are described in [4]. Most approaches use either a many-
valued logic or underspecification for dealing with partiality.

8 Conclusions

We have proposed an extension of Floyd-Hoare logic for the case of partial con-
ditions and programs on hierarchically organized data called relational nomina-
tive data. Such data can conveniently represent many data structures used in
programming. We have proposed a special inference system for our logic, investi-
gated its soundness and extensional completeness and proposed an approach to
its formalization in the Mizar system. In the future works we plan to implement
the proposed approach and apply the results to software verification tasks.

62 M. Nikitchenko et al.

References

1. Floyd, R.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32
(1967)

2. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

3. Apt, K.: Ten years of Hoare’s logic: a survey - part I. ACM Trans. Program. Lang.
Syst. 3(4), 431–483 (1981). http://doi.acm.org/10.1145/357146.357150

4. Hähnle, R.: Many-valued logic, partiality, and abstraction in formal specifica-
tion languages. Log. J. IGPL 13(4), 415–433 (2005). http://dx.doi.org/10.1093/
jigpal/jzi032

5. Jones, C.: Reasoning about partial functions in the formal development of pro-
grams. In: AVoCS 2005. Electronic Notes in Theoretical Computer Science, vol.
145, pp. 3–25. Elsevier (2006). https://doi.org/10.1016/j.entcs.2005.10.002

6. Gries, D., Schneider, F.B.: Avoiding the undefined by underspecification. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 366–373. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0015254

7. Duzi, M.: Do we have to deal with partiality? Misc. Log. 5, 45–76 (2003)
8. Kryvolap, A., Nikitchenko, M., Schreiner, W.: Extending Floyd-Hoare logic for

partial pre- and postconditions. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M.,
Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 355–378.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03998-5 18

9. Nikitchenko, M., Kryvolap, A.: Properties of inference systems for Floyd-Hoare
logic with partial predicates. Acta Electrotech. Inform. 13(4), 70–78 (2013)

10. Skobelev, V., Nikitchenko, M., Ivanov, I.: On algebraic properties of nominative
data and functions. In: Ermolayev, V., Mayr, H., Nikitchenko, M., Spivakovsky,
A., Zholtkevych, G. (eds.) Communications in Computer and Information Science,
ICTERI, vol. 469, pp. 117–138. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13206-8 6

11. Nikitchenko, M., Shkilniak, S.: Mathematical logic and theory of algorithms. Pub-
lishing house of Taras Shevchenko National University of Kyiv, Ukraine (2008). (in
Ukrainian)

12. Nikitchenko, M.: Composition-nominative aspects of address programming.
Cybern. Syst. Anal. 45, 864 (2009). https://doi.org/10.1007/s10559-009-9159-4

13. Wiedijk, F. (ed.): The Seventeen Provers of the World. Foreword by Dana S. Scott.
LNAI, vol. 3600. Springer, Heidelberg (2006). https://doi.org/10.1007/11542384

14. Gordon, M.: Mechanizing programming logics in higher order logic. In: Birtwistle,
G., Subrahmanyam, P. (eds.) Current Trends in Hardware Verification and Auto-
mated Theorem Proving, pp. 387–439. Springer, New York (1989). https://doi.
org/10.1007/978-1-4612-3658-0 10

15. Von Wright, J., Hekanaho, J., Luostarinen, P., Langbacka, T.: Mechanizing some
advanced refinement concepts. Form. Methods Syst. Des. 3(1), 49–81 (1993).
https://doi.org/10.1007/BF01383984

16. Bancerek, G., Byliński, C., Grabowski, A., Korni�lowicz, A., Matuszewski, R.,
Naumowicz, A., Pa̧k, K., Urban, J.: Mizar: state-of-the-art and beyond. In: Kerber,
M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI),
vol. 9150, pp. 261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20615-8 17

17. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reason. 55(3), 191–198 (2015). http://dx.doi.org/10.1007/s10817-015-9345-1

http://doi.acm.org/10.1145/357146.357150
http://dx.doi.org/10.1093/jigpal/jzi032
http://dx.doi.org/10.1093/jigpal/jzi032
https://doi.org/10.1016/j.entcs.2005.10.002
https://doi.org/10.1007/BFb0015254
https://doi.org/10.1007/978-3-319-03998-5_18
https://doi.org/10.1007/978-3-319-13206-8_6
https://doi.org/10.1007/978-3-319-13206-8_6
https://doi.org/10.1007/s10559-009-9159-4
https://doi.org/10.1007/11542384
https://doi.org/10.1007/978-1-4612-3658-0_10
https://doi.org/10.1007/978-1-4612-3658-0_10
https://doi.org/10.1007/BF01383984
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/s10817-015-9345-1

Extended Floyd-Hoare Logic over Relational Nominative Data 63

18. Trybulec, A.: Tarski Grothendieck set theory. Formaliz. Math. 1(1), 9–11 (1990)
19. Naumowicz, A.: Interfacing external CA systems for Gröbner bases compu-

tation in Mizar proof checking. Int. J. Comput. Math. 87(1), 1–11 (2010).
http://dx.doi.org/10.1080/00207160701864459

20. Naumowicz, A.: SAT-enhanced Mizar proof checking. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol.
8543, pp. 449–452. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08434-3 37

21. Naumowicz, A.: Automating Boolean set operations in Mizar proof checking with
the aid of an external SAT solver. J. Autom. Reason. 55(3), 285–294 (2015).
http://dx.doi.org/10.1007/s10817-015-9332-6

22. Korni�lowicz, A.: On rewriting rules in Mizar. J. Autom. Reason. 50(2), 203–210
(2013). http://dx.doi.org/10.1007/s10817-012-9261-6

23. Korni�lowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44,
238–250 (2015). http://dx.doi.org/10.1016/j.cl.2015.07.002

24. Korni�lowicz, A.: Definitional expansions in Mizar. J. Autom. Reason. 55(3), 257–
268 (2015). http://dx.doi.org/10.1007/s10817-015-9331-7

25. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27, 356–364 (1980). http://doi.acm.org/10.1145/322186.322198

26. Grabowski, A., Korni�lowicz, A., Schwarzweller, C.: Equality in computer proof-
assistants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of
the 2015 FedCSIS. Annals of Computer Science and Information Systems, vol. 5,
pp. 45–54. IEEE (2015). https://doi.org/10.15439/2015F229

27. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and require-
ments. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol.
3119, pp. 290–301. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27818-4 21

28. Korni�lowicz, A.: Enhancement of Mizar texts with transitivity property of pred-
icates. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F.
(eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 157–162. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42547-4 12

29. Naumowicz, A., Korni�lowicz, A.: Introducing Euclidean relations to Mizar. [47],
pp. 245–248. https://doi.org/10.15439/2017F368

30. Grabowski, A.: Mechanizing complemented lattices within Mizar type system.
J. Autom. Reason. 55(3), 211–221 (2015). http://dx.doi.org/10.1007/s10817-015-
9333-5

31. Grabowski, A., Korni�lowicz, A., Schwarzweller, C.: On algebraic hierarchies in
mathematical repository of Mizar. In: Ganzha, M., Maciaszek, L.A., Paprzycki,
M. (eds.) Proceedings of the 2016 FedCSIS. Annals of Computer Science and
Information Systems, vol. 8, pp. 363–371. IEEE (2016). https://doi.org/10.15439/
2016F520

32. Grabowski, A., Jastrz ↪ebska, M.: Rough set theory from a math-assistant perspec-
tive. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP
2007. LNCS (LNAI), vol. 4585, pp. 152–161. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73451-2 17

33. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories.
In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R.,
Sexton, A.P. (eds.) CICM 2010. LNCS (LNAI), vol. 6167, pp. 300–314. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14128-7 26

http://dx.doi.org/10.1080/00207160701864459
https://doi.org/10.1007/978-3-319-08434-3_37
https://doi.org/10.1007/978-3-319-08434-3_37
http://dx.doi.org/10.1007/s10817-015-9332-6
http://dx.doi.org/10.1007/s10817-012-9261-6
http://dx.doi.org/10.1016/j.cl.2015.07.002
http://dx.doi.org/10.1007/s10817-015-9331-7
http://doi.acm.org/10.1145/322186.322198
https://doi.org/10.15439/2015F229
https://doi.org/10.1007/978-3-540-27818-4_21
https://doi.org/10.1007/978-3-540-27818-4_21
https://doi.org/10.1007/978-3-319-42547-4_12
https://doi.org/10.15439/2017F368
http://dx.doi.org/10.1007/s10817-015-9333-5
http://dx.doi.org/10.1007/s10817-015-9333-5
https://doi.org/10.15439/2016F520
https://doi.org/10.15439/2016F520
https://doi.org/10.1007/978-3-540-73451-2_17
https://doi.org/10.1007/978-3-540-73451-2_17
https://doi.org/10.1007/978-3-642-14128-7_26

64 M. Nikitchenko et al.

34. P ↪ak, K.: Improving legibility of natural deduction proofs is not trivial. Log.
Methods Comput. Sci. 10(3), 1–30 (2014). http://dx.doi.org/10.2168/LMCS-
10(3:23)2014

35. P ↪ak, K.: Automated improving of proof legibility in the Mizar system. [48], pp.
373–387. https://doi.org/10.1007/978-3-319-08434-3 27

36. P ↪ak, K.: Improving legibility of formal proofs based on the close reference prin-
ciple is NP-hard. J. Autom. Reason. 55(3), 295–306 (2015). http://dx.doi.org/
10.1007/s10817-015-9337-1

37. Nielson, H., Nielson, F.: Semantics with Applications - A Formal Introduction.
Wiley, Hoboken (1992)

38. Nikitchenko, M., Tymofieiev, V.: Satisfiability in composition-nominative log-
ics. Cent. Eur. J. Comput. Sci. 2(3), 194–213 (2012). https://doi.org/10.2478/
s13537-012-0027-3

39. Dijkstra, E.: A Discipline of Programming, 1st edn. Prentice Hall PTR, Upper
Saddle River (1997)

40. Nikitchenko, M., Shkilniak, S.: Semantic properties of T-consequence relation in
logics of quasiary predicates. Comput. Sci. J. Mold. 23(2(68)), 102–122 (2015)

41. Ivanov, I., Korni�lowicz, A., Nikitchenko, M.: Formalization of nominative data in
Mizar. In: Proceedings of TAAPSD 2015, pp. 82–85. Taras Shevchenko National
University of Kyiv, Ukraine, 23–26 December 2015

42. Ivanov, I., Nikitchenko, M., Kryvolap, A., Korni�lowicz, A.: Simple-named complex-
valued nominative data - definition and basic operations. Formaliz. Math. 25(3),
205–216 (2017). http://dx.doi.org/10.1515/forma-2017-0020

43. Korni�lowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: Formalization of the
algebra of nominative data in Mizar. [47], pp. 237–244. https://doi.org/10.15439/
2017F301

44. Korni�lowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: Formalization of
the nominative algorithmic algebra in Mizar. In: Świ ↪atek, J., Borzemski, L.,
Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 176–186. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-67229-8 16

45. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)
46. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:

Proceedings of the 17th LICS, pp. 55–74 (2002)
47. Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.): Proceedings of FedCSIS 2017.

Annals of Computer Science and Information Systems, vol. 11. IEEE, Prague,
Czech Republic, 3–6 September 2017

48. Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.): CICM 2014.
LNCS (LNAI), vol. 8543. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-08434-3

http://dx.doi.org/10.2168/LMCS-10(3:23)2014
http://dx.doi.org/10.2168/LMCS-10(3:23)2014
https://doi.org/10.1007/978-3-319-08434-3_27
http://dx.doi.org/10.1007/s10817-015-9337-1
http://dx.doi.org/10.1007/s10817-015-9337-1
https://doi.org/10.2478/s13537-012-0027-3
https://doi.org/10.2478/s13537-012-0027-3
http://dx.doi.org/10.1515/forma-2017-0020
https://doi.org/10.15439/2017F301
https://doi.org/10.15439/2017F301
https://doi.org/10.1007/978-3-319-67229-8_16
https://doi.org/10.1007/978-3-319-08434-3
https://doi.org/10.1007/978-3-319-08434-3

	Extended Floyd-Hoare Logic over Relational Nominative Data
	1 Introduction
	2 Algebra of Relational Nominative Data
	3 Semantics of Extended Floyd-Hoare Logic
	4 Syntax and Interpretation
	5 Inference System for a Floyd-Hoare Logic with Partial Predicates
	6 Towards Formalization of Extended Floyd-Hoare Logic in Mizar
	7 Related Work
	8 Conclusions
	References

