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Abstract  Cyclodextrins are naturally occurring cyclic oligosaccharides, which are 
non-toxic and biodegradable. The main feature of cyclodextrins is the ability to 
encapsulate lipophilic compounds, and thus many applications have been devel-
opped in various disciplines. Although many cyclodextrin derivatives have become 
available in the market, their price is in the range of fine chemicals, and thus they 
are still often synthesised in laboratories. The actual number of cyclodextrin deriva-
tives exceeds 11,000, but new cyclodextrin derivatives are still needed for more 
advanced applications. Therefore, many newcomers or beginners in cyclodextrin 
chemistry struggle with a reliable choice of a synthetic route.

This chapter reviews the synthesis cyclodextrin derivatives that are able to be sub-
sequently modified. Indeed, the modification of a cyclodextrin already substituted 
with a suitable functional group is much easier than the optimisation of the substitu-
tion for every new cyclodextrin derivative desired. This chapter describes the synthe-
sis of different types of cyclodextrine derivatives: persubstituted, randomly substituted, 
persubstituted at selected positions, selectively substituted and monosubstituted.
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2.1  �Introduction

The history of cyclodextrin derivatives goes back to the beginning of the twentieth 
century when cyclodextrin properties were examined and the first derivatives were 
prepared (Crini 2014). Since then, cyclodextrin derivatives have come a long way, 
and they can currently find their use in many kinds of human activities: in 
pharmaceutical and biomedical applications (Jambhekar and Breen 2016; Sharma 
and Baldi 2016; Oliveri and Vecchio 2016; Coisne et al. 2016; Leclercq 2016; di 
Cagno 2017; Saokham and Loftsson 2017); nanotherapeutics (Bonnet et al. 2015; 
Swaminathan et al. 2016; Antoniuk and Amiel 2016; Mejia-Ariza et al. 2017; Venuti 
et  al. 2017); cosmetics, toiletries and personal care (Sharma and Baldi 2016); 
nutrition industry (Astray et al. 2009; Fenyvesi et al. 2016; Sharma and Baldi 2016); 
textile and packing industry (Radu et al. 2016; Sharma and Baldi 2016); separation 
techniques (Řezanka et al. 2014; Zhou et al. 2015; Adly et al. 2016; Saz and Marina 
2016; Zhu and Scriba 2016); and as artificial enzymes or catalysts (Kryjewski et al. 
2015; Macaev and Boldescu 2015; Aghahosseini and Ramazani 2016; Letort et al. 
2016).

Probably the most known application of cyclodextrin derivatives in daily life is 
the use of octakis[6-(2-carboxyethylthio)-6-deoxy]-γ-cyclodextrin sodium salt 
(sugammadex) in Bridion® (Donati 2008). When an individual undergoes surgery, 
anaesthesia must be provided. Drugs like rocuronium bromide are administered as 
they block transmission at the cholinergic nicotinic receptor at the neuromuscular 
junction. After the surgery the patient is transited from the anaesthetised to the fully 
recovered state. Therefore, sugammadex is administered. It is designed to bind the 
neuromuscular blocking agent instead of relying on rocuronium pharmacokinetic 
properties or on the inhibition of acetylcholine breakdown with a reversal agent.

2.1.1  �Inclusion Complexes of Cyclodextrin Derivatives

As it was illustrated in the previous paragraph, the key property of cyclodextrin 
derivatives lies in their ability to complex compounds in their cavity. These 
compounds are usually denoted as “guests”. There are several driving forces that 
could lead to the formation of cyclodextrin-guest complexes: van der Waals 
interactions, electrostatic interactions, hydrogen bonding, hydrophobic interactions, 
release of conformational strain, exclusion of “high-energy” water from the cavity, 
and charge-transfer interactions. Liu and Guo (Liu and Guo 2002) have shown that 
with the exception of the release of conformation strain and exclusion of water from 
the cyclodextrin cavity, the other interactions contribute to the complex formation. 
They concluded that hydrophobic and van der Waals interactions are the main 
driving forces, whereas hydrogen bonding and electrostatic interaction can signifi-
cantly affect the stability of the inclusion complex.
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The shape and size of guests forming complexes with cyclodextrin or its deriva-
tives are variable and therefore the strength of a complex depends on the cavity size 
(Szente and Fenyvesi 2017). In the case of cyclodextrin derivatives, the substituents 
present on a cyclodextrin skeleton should not be overlooked – as they could signifi-
cantly affect the formation of the inclusion complex. For example, an association 
constant of the abovementioned sugammadex with rocuronium bromide is 107 M−1 
(Bom et al. 2002), while native γ-cyclodextrin has the constant only in the order of 
104 M−1 (Cameron et al. 2002). The association constants for complexes of cyclo-
dextrin derivatives with a wide variety of guests can be found in the review by 
Rekharsky and Inoue (Rekharsky and Inoue 1998).

Cyclodextrin derivative-guest complexes are prepared by several methods: co-
precipitation, freeze-drying, kneading, melting, neutralization, grinding, sealed-
heating and others (Iacovino et al. 2017). Cyclodextrin complexes usually have a 
cyclodextrin derivative:guest ratio of 1:1. However many other cyclodextrin 
derivative:guest ratios are known (Song et  al. 2009b; Lima et  al. 2016), and 
cyclodextrins can even form a wide variety of other supramolecular structures 
including catenanes, rotaxanes (Harada et  al. 2009; Garcia-Rio et  al. 2014) and 
supramolecular polymers (Wang et al. 2016).

2.1.2  �Cyclodextrin Derivatives Properties

Nomenclature usually used by researchers for the description of cyclodextrin deriv-
atives is depicted in Fig. 2.1. A glucose unit possesses substitution sites at positions 
2, 3 and 6. Glucose units are named A, B, C etc. respectively in superscript. 
Sometimes the glucose units are numbered with roman numerals in superscript – i. 
e. I, II, III etc. Simplicity also often wins over precision. For example, per-O-methyl- 
2A-O-allyl-β-cyclodextrin refers to β-cyclodextrin, where allyl substituent is at posi-
tion 2 at one glucose unit and all 20 the other hydroxyl groups are protected with 
methyl groups.

As it was already shown in the previous section, substituents present on a cyclo-
dextrin skeleton play a key role in its properties. For example cyclodextrins with 
hydrophobic chains could form micelles or vesicles in water environment (Sallas 
and Darcy 2008), other cyclodextrins are capable of catalysing decomposition of 
organophosphorus compounds (Letort et al. 2016), and positively charged cyclo-
dextrin derivatives are used in chiral separations in capillary electrophoresis as they 
are able to interact with carboxylic acids (Tang and Ng 2008a).

The dependence of solubility on substituents could be demonstrated in the fol-
lowing example. Only 1.85 g of β-cyclodextrin is soluble in 100 ml water at room 
temperature (Szejtli 1998), while almost 24 g of per-O-methyl-β-cyclodextrin could 
be dissolved in the same amount of water (Szente and Szejtli 1999). Moreover, 
when heated, the solubility of the β-cyclodextrin increases, while in the case of the 
latter its solubility decreases. Permethylated cyclodextrins are also well soluble in 
most organic solvents.

2  Synthesis of Cyclodextrin Derivatives
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Cyclodextrin derivatives toxicity depends on the substituents present as well. 
The vast majority of toxicity tests are performed only on cyclodextrins randomly 
substituted, persubstituted or persubstituted at 2-, 3-, or 6-positions – as they are of 
interest of the pharmaceutical industry. Cytotoxic and hemolytic properties of these 
derivatives were compared by Kiss et al. on Caco-2 cells. Cell toxicity of several 
methylated β-cyclodextrin was the highest, while ionic derivatives were observed to 
be less toxic. The authors concluded cholesterol-solubilising properties could be a 
predictive factor for cyclodextrin derivatives cell toxicity (Kiss et al. 2010).

Randomly substituted sulfobutyl-β-cyclodextrin sodium salt with a degree of 
substitution 6.0–7.1 is well tolerated in male volunteers when administered 
intravenously at doses up to 200 mg/kg. Only a mild toxicity in the kidneys and liver 
was observed in rats at the dose of 3 g/kg, which is approximately 50-fold greater 
than the dose usually administered to men (Luke et al. 2010).

Randomly substituted 2-hydroxypropyl-β-cyclodextrin is well tolerated in rats, 
mice and dogs, particularly when administered orally. This cyclodextrin derivative 
is also well tolerated in humans, with the main adverse effect being diarrhoea. 
Moreover, intraperitoneal single dose of 10  g/kg in mice was neither lethal nor 
produced any toxicity (Gould and Scott 2005).

When speaking about randomly substituted derivatives, it should be taken into 
account there could be differences between derivatives with different degree of sub-
stitution (Li et  al. 2016). Three randomly substituted 2-hydroxypropyl-β- 
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Fig. 2.1  Structure and numbering of α-, β-, and γ-cyclodextrin. Glucose units are named A, B, C 
etc. respectively and carbon atoms in each unit are numbered as usual
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cyclodextrin with degree of substitution 4.55, 6.16 and 7.76 were compared when 
administered intravenously to rats once daily at a dose of 500 mg/kg for 7 days. It 
was concluded cyclodextrin derivative with lower degree of substitution resulted in 
more changes in hematological and biochemical parameters. However, the effects 
were reversible at the end of recovery.

2.2  �Cyclodextrin Derivatives

When native cyclodextrins are not suitable for a given application, their derivatives 
come into play. What type of a reaction should be used depends on the purpose of 
the product. For example, if a more soluble cyclodextrin derivative is required for 
the pharmaceutical application, then a random conversion of hydroxyl groups e.g. 
to sulphate (or another hydrophilic) group is carried out. However, such a product is 
a mixture of single compounds – usually characterised by degree of substitution. 
Moreover, the mixture differs in the detailed representation of individual isomers 
from batch to batch, even when degree of substitution remains constant (Estrada III 
and Vigh 2012).

When a single isomer cyclodextrin derivative is desired, the most straightforward 
way is to synthesise a persubstituted derivative. The direct synthesis of other single 
isomer derivatives is more challenging due to the number of theoretically possible 
isomers (Wenz 1994). The number of possible isomers is three for monosubstituted, 
dozens for disubstituted, and more than one hundred for trisubstituted derivatives.

The number of known cyclodextrin derivatives is huge. A search in SciFinder® 
for any substituted cyclodextrin skeleton revealed there are more than 2000 
derivatives for α-cyclodextrin, almost 8000 for β-cyclodextrin, and more than 1000 
for γ-cyclodextrin. Large ring cyclodextrins, i.e. having more than 8 glucose units 
(Endo 2011) or pre-α-cyclodextrin (Nakagawa et  al. 1994) derivatives are not 
covered herein as their use is scarce. However, the reactivity of these cyclodextrins 
is expected to be similar to the three basic ones, with the exception of reactions 
where the reagent interferes with the cavity – see below. The large ring cyclodextrins’ 
cavity is more flexible as well as more spacious, while pre-α-cyclodextrin has the 
smallest one.

Listing of more than 11,000 α-, β-, and γ-cyclodextrin derivatives would exceed 
the possibilities of this chapter. Thus the aim of this chapter is to provide a 
comprehensive view on the synthesis of favourite or interesting cyclodextrin 
derivatives, especially on those which are suitable for further modifications. The 
reason for this approach is obvious – the modification of a cyclodextrin already 
substituted with one or more suitable functional groups is much easier than the 
optimisation of substitution for every new cyclodextrin derivative desired. The 
chapter is divided into several sections, each focused on one type of cyclodextrin 
derivatives: persubstituted cyclodextrins, randomly substituted cyclodextrins, 
cyclodextrins persubstituted at selected positions, selectively substituted 
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cyclodextrins, and monosubstituted cyclodextrins (Fig. 2.2). A mini-summary could 
be found at the end of these sections as a help for busy readers.

For the purpose of this review, the term monosubstituted cyclodextrins or selec-
tively substituted cyclodextrins also refers to corresponding cyclodextrin deriva-
tives with all the remaining hydroxyl groups protected – methylated, acetylated, 
benzylated etc.

Preparation of other cyclodextrin derivatives not described herein could be found 
in the previous reviews (Table 2.1).

2.2.1  �Reactivity of Cyclodextrins

The modification reactions on cyclodextrins take place at the hydroxyl groups. As 
the hydroxyl groups are nucleophiles, the reaction proceeds via an electrophilic 
attack. However, a selective substitution of cyclodextrins is a great challenge for 
chemists as there are three types of hydroxyl groups present in one glucose unit (at 
position 2, 3 or 6). Moreover, several glucose units of which cyclodextrins are 
composed make the process rather difficult. Hydroxyl groups at positions 2, 3 and 6 
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compete against each other during the reaction. Fortunately, there are at least some 
differences among them. Hydroxyl groups at positions 6 are primary and at positions 
2 and 3 are secondary. Hydroxyl groups at positions 6 are the least acidic and the 
most accessible, at positions 2 are the most acidic, and at positions 3 are the least 
accessible (Khan et al. 1998).

When all the hydroxyl groups are deprotonated with an excess of a base, an elec-
trophilic reagent reacts at position 6, because it is the most accessible. The more 
reactive agents attack the hydroxyl groups at position 6 less selectively, and therefore 
they react also with the hydroxyl groups on the secondary rim. The less reactive 
reagents react at position 6 selectively. The best known examples of this feature are 
syntheses of 6A–O-tosyl-cyclodextrin where multisubstituted derivatives are the 
only by-products (Řezanka 2016).

Bases first deprotonate the hydroxyl groups at position 2, because they are the 
most acidic, having pKa = 12.2 (Sallas and Darcy 2008). The oxyanion formed is 
more nucleophilic than other non-deprotonated hydroxyl groups. Thus, the use of a 
corresponding amount of a strong base, e.g. NaH or LiH, often leads to the substitu-
tion at position 2 predominantly (Řezanka 2016).

Substitution at position 3 is the most difficult one for the abovementioned rea-
sons. Fortunately, some reagents interfere with the cavity of cyclodextrins, making 
this process much easier. For example, cinnamyl bromide forms a complex with 
β-cyclodextrin and allows the substitution to be selective at position 3 with multi-
substituted derivatives as the only by-products (Jindřich and Tišlerová 2005). On the 
other hand, such interference of a reagent with the cavity could be a complication in 
other modifications of cyclodextrins and should be always taken into account.

Solvents play another important role during the modification of a cyclodextrin. 
They can affect both nucleophilicity of oxyanions, as well as the strength of a 
complex with a substitution agent. If the complex is strong, the predominant prod-

Table 2.1  Reviews focused on preparation of cyclodextrin derivatives

Description Reference

Cyclodextrin derivatives used against organophosphorus compounds (Letort et al. 2016)
Cyclodextrins monosubstituted by several functional groups suitable for 
further synthesis

(Řezanka 2016)

Phosphorus-containing cyclodextrins (Grachev 2013)
Cyclodextrin derivatives prepared by click chemistry (Faugeras et al. 2012)
A few selectively functionalised cyclodextrins (Bellia et al. 2009)
Monosubstituted positively charged cyclodextrins for chiral separations (Tang and Ng 2008a)
Amphiphilic cyclodextrin derivatives (Sallas and Darcy 

2008)
Cyclodextrin derivatives bearing bridging substituents (Engeldinger et al. 

2003)
Systematic analysis of available methods for modification of 
cyclodextrins at position 2, 3 or 6

(Khan et al. 1998)

Cyclodextrin derivatives listed by functional groups present (Croft and Bartsch 
1983)
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uct will be driven by the orientation of the substitution agent in the interior of cyclo-
dextrin. Considering the abovementioned facts, the commonly achieved yields of 
substituted cyclodextrin derivatives are very low. Exceptions to this rule will be of 
interest in the next sections.

2.2.2  �Persubstituted Cyclodextrin Derivatives

A great variety of persubstituted cyclodextrins, i. e. cyclodextrin derivatives, where 
every hydroxyl group is substituted by the same functional group, are available 
from common commercial sources. However, they are still synthesised by researches 
because of their simple synthesis and lower overall cost when compared to the 
commercial ones. The modification usually aims to increase the solubility of 
cyclodextrins – either in organic solvents or water – or to use them in deprotection 
reactions – see below.

As it was stated above, the persubstitutions proceed smoothly and they are usu-
ally carried out by the reaction of a cyclodextrin with an excess of the reagent, e.g. 
alkyl halogenide, in the presence of a base. Per-O-methylated cyclodextrins are 
obtained by the reaction of a corresponding cyclodextrin with NaH and methyl 
iodide in N,N′-dimethylformamide (Nakazono et al. 2010; Stefanache et al. 2014) 
or dimethyl sulfoxide (Szejtli et al. 1980). Similarly, per-O-benzylated cyclodextrins 
are prepared by the reaction of a cyclodextrin with benzyl halogenide (Bjerre et al. 
2007; Normand et  al. 2012); per-O-trimethylsilylated cyclodextrins with 
trimethylsilyl chloride (Kurochkina et  al. 2014) or imidazole (Harabagiu et  al. 
2004) and per-O-(2-hydroxypropyl) cyclodextrins with propylene carbonate (Trotta 
et al. 2002).

Per-O-acetylated cyclodextrins are usually prepared by the reaction of a cyclo-
dextrin with acetanhydride instead of acetyl halogenide – as the latter one is more 
expensive and less easy to handle. The reaction is promoted by acids (Zhang et al. 
2011; Jicsinszky et al. 2015) or bases (Ghanem and Schurig 2001; Lian et al. 2014).

When a reagent for cyclodextrin persubstitution is chosen wisely, it allows a 
subsequent modification, which leads to other derivatives as it is illustrated by the 
example from Kraus et al. (Scheme 2.1) (Kraus et al. 2001). Firstly, per-O-allyl-β-
cyclodextrin is prepared. The subsequent oxidation steps led to an unstable 
formylmethyl derivative and it was thus directly transformed into a hydroxyethyl 
derivative. Finally, the oxidation and methylation reactions were carried out to 
obtain per-O-methoxycarbonylmethyl-β-cyclodextrin.

Mini-Summary  Persubstituted cyclodextrin derivatives are prepared by the reac-
tion of native cyclodextrin with an excess of the reagent.
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2.2.3  �Randomly Substituted Cyclodextrin Derivatives

Randomly substituted cyclodextrin derivatives are modified at various positions and 
they are usually characterised by degree of substitution. The exact structure and 
ratio of single derivatives forming the mixture of randomly substituted cyclodextrins 
is unknown. As well as in the case of persubstituted derivatives, randomly substituted 
cyclodextrin derivatives are largely available from common commercial sources 
and their synthesis is thus often claimed in patents (Wimmer 1995; Yanli 2005).

The purchase of randomly substituted cyclodextrin derivatives conceals many 
pitfalls. It was shown there could be a significant difference in the relative abundances 
of the isomers with the same degree of substitution between two batches (Estrada III 
and Vigh 2012). Moreover, the authors also found the information about degree of 
substitution from the supplier may be affected by an error.

Researches should be careful when preparing randomly substituted cyclodextrin 
derivatives as they do not know the exact composition of the single isomers in the 
product. As it has been shown before (Řezanka et  al. 2016), diverse single 
cyclodextrin isomers have different properties and their ratio could therefore affect 
the properties of randomly substituted cyclodextrin derivatives. They could be 
synthesised using conditions similar to preparation of persubstituted derivatives. 
The only need is to add a lesser amount of a reagent that is needed for a fully 

a) NaH, allyl bromide; b) OsO4, N-methylmorpholine N-oxide; c) NaIO4; d) NaBH4;
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substituted derivative. Syntheses of the most common randomly substituted cyclo-
dextrin derivatives are summarised in Table 2.2.

2.2.3.1  �Random Cyclodextrin Polymers

The randomly substituted cyclodextrin derivatives also include a group of random 
cyclodextrin polymers, where cyclodextrins are interconnected to the other ones in 
a random way. Such polymers could be synthesised via three approaches: i) 
cyclodextrins or their derivatives are directly cross-linked by a suitable agent; ii) 
cyclodextrins are first randomly modified with reactive groups, which are 
subsequently used for the attachment onto a polymer backbone; iii) cyclodextrin is 
substituted with a functional group that is available for polymerisation, e.g. double 
bond. The first approach often gives branched polymers, whereas the second and the 
third result in linear polymers substituted with cyclodextrins. Prepared random 
cyclodextrin polymers could have various properties depending on the amount and 
nature of their cross-linking agent or the type of connection and the polymer used. 
However in the vast majority of cases, the cyclodextrin polymers retain their key 
property – the ability to include guests in their cavity.

Table 2.2  Syntheses of common randomly substituted cyclodextrin derivatives

Randomly substituted 
cyclodextrin derivative Reagent Reference

Carboxymethylated 
β-cyclodextrin

Chloroacetic acid (Lammers et al. 1971; Reuben 
et al. 1994)

Carboxymethylated 
β-cyclodextrin

Sodium chloroacetate (Shirin et al. 2003)

2-hydroxybutylated 
β-cyclodextrin

Butylene oxide (Ishiguro et al. 2011)

2-hydroxypropylated 
β-cyclodextrin

Propylene oxide (Pitha et al. 1986; Rao et al. 
1992; Yuan et al. 2015)

Methylated β-cyclodextrin Dimethyl carbonate (Gan et al. 2011)
Methylated β-cyclodextrin Methyl chloride (Yanli 2005; Cui et al. 2010)
Methylated β-cyclodextrin Methyl iodide (Wimmer 1995; Yanli 2005)
Methylated β-cyclodextrin Dimethyl sulfate (Bakó et al. 1994)
Phosphated β-cyclodextrin Phosphoryl chloride (Lee and Lim 1998)
Sulfated β-cyclodextrin Sulfur trioxide pyridine 

complex
(Estrada III and Vigh 2012)

Sulfoethylated β-cyclodextrin Sodium 
2-bromoethanesulfonate

(Qu et al. 2002)

Sulfobutylated β-cyclodextrin 1,4-butanesultone (Song et al. 2009a; Ma et al. 
2016)

Sulfobutylated γ-cyclodextrin 1,4-butanesultone (Jung and Francotte 1996; 
Tongiani et al. 2005)

Sulfopropylated β-cyclodextrin 1,3-propanesultone (Lammers et al. 1971; Song 
et al. 2009a)
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The best known example of the first method is the direct reaction of epichlorohy-
drin – 2-(chloromethyl)oxirane – with a cyclodextrin (van de Manakker et al. 2009; 
Morin-Crini and Crini 2013; Concheiro and Alvarez-Lorenzo 2013; Gidwani and 
Vyas 2014). If the degree of cross-linking is sufficiently high, the resulting polymer 
becomes insoluble in water. Epichlorohydrin could be used for cross-linking of ran-
domly substituted cyclodextrin derivatives as well (Zhang et al. 2012).

Epichlorohydrin-cyclodextrin polymers are used in various applications (Morin-
Crini and Crini 2013; Folch-Cano et al. 2014), for example in lithium rechargeable 
batteries, where cyclodextrin cross-linked hyperbranched network structure covers 
the electrode, which results in a great improvement in both capacity and cycle life 
(Jeong et al. 2014).

Another example of the first approach is the use of N,N-carbonyldiimidazole as 
a reagent allowing cyclodextrin to be reacted with a cross-linker. For example, N,N- 
carbonyldiimidazole was first reacted with β-cyclodextrin forming a reactive deriva-
tive, which was subsequently used for the cross-linking with tris(2-aminoethyl)
amine (Scheme 2.2) (Wang et al. 2013).

Recently a review on cyclodextrin-polyurethane polymers for the removal of 
pollutants from waste water has been issued (Taka et al. 2017). Commonly used 
cross-linking agents for the synthesis of random cyclodextrin polymers are 
summarised in Fig. 2.3 (Mocanu et al. 2001; Concheiro and Alvarez-Lorenzo 2013; 
Karoyo and Wilson 2015).

Direct cross-linking of cyclodextrin has also recently been published in Nature 
(Alsbaiee et al. 2016). Cross-linking of β-cyclodextrin with tetrafluoroterephthalo-
nitrile resulted in a high-surface-area mesoporous polymer capable of adsorption of 
organic micropollutants. Moreover, only a mild washing procedure was required for 
the polymer regeneration and the polymer exhibited no loss in performance after 
recycling.
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An example of the second approach, where cyclodextrins are first randomly 
modified by reactive groups and subsequently attached onto a polymer backbone, is 
the use of randomly carboxymethylated β-cyclodextrin for the attachment onto 
chitosan (Krauland and Alonso 2007; Prabaharan and Gong 2008). Opening of 
anhydride in poly[(methyl vinyl ether)-alt-(maleic anhydride)] by deprotonated 
β-cyclodextrin fits this approach as well (Renard et al. 2005).

The third approach requires the introduction of functional groups with the ability 
to be polymerised. This requirement is usually fulfilled by the synthesis of 
cyclodextrin ester of acrylic acid  – e.g. by the reaction of cyclodextrin with 
m-nitrophenyl acrylate. Polymerisation of randomly acryloylated cyclodextrins is 
then initialised by potassium persulfate (Mocanu et al. 2001; Zhang et al. 2009).

Mini-Summary  Randomly substituted cyclodextrin derivatives are prepared by 
the reaction of native cyclodextrins with fewer equivalents of the reagent than the 
number of hydroxyl groups is. Random cyclodextrin polymers are most often 
synthesised by cross-linking with epichlorohydrin.

Cl
epichlorohydrin

NCOOCN

toluene-2,4-diisocyanate

OCN
NCO hexamethylene diisocyanate

Cl

O
Cl

O

succinyl chloride

ethylene glycol diglycidyl ether

O

O
O

O
O

Cl

O
Cl

O
sebacoyl chloride

OCN NCO
4,4'-diicyclohexylmethane diisocyanate

OCN NCO
4,4'-diphenylmethane diisocyanate

Fig. 2.3  Commonly used cross-linking agents for preparation of random cyclodextrin polymers
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2.2.4  �Cyclodextrins Persubstituted at Selected Positions

Cyclodextrins persubstituted at selected positions include cyclodextrins persubsti-
tuted either at 2 or 3 or 6 positions or any combination of thereof (Fig. 2.2). Synthesis 
of these derivatives is based on the different reactivity of hydroxyl groups described 
above and often employs the protection/deprotection methodology to achieve a 
desired derivative. The most favourite reactions are those carried out at position 6, 
because it possesses primary hydroxyl groups. Cyclodextrins could be easily substi-
tuted at this position with tert-butyldimethylsilyl or halogens. Such derivatives are 
useful precursors for amphiphilic cyclodextrin derivatives (Sallas and Darcy 2008). 
Otherwise very popular p-toluenesulfonyl, also so-called “tosyl”, group is not 
employed very often as it could spontaneously undergo the reaction to 3,6-anhydro 
form (Khan et al. 1998).

2.2.4.1  �Syntheses Based on per-6-O-(tert-Butyldimethylsilyl) 
Cyclodextrins

Synthesis of per-6-O-(tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrins is carried 
out by the reaction of native cyclodextrin with tert-butyldimethylsilyl chloride and 
BaO (Takeo et al. 1988; Takeo et al. 1989), pyridine (Fugedi 1989; Ashton et al. 
1996) or imidazole (Vincent et al. 1997; Maynard and Vigh 2000) (Scheme 2.3). 
Among the bases, pyridine gave the best yields (Ashton et al. 1996).

Hexakis(6-O-tert-butyldimethylsilyl)-α-cyclodextrin could be protected at posi-
tions 2 and 3 by acetyl, methyl or benzyl groups. Subsequent deprotection of silyl 
groups by BF3 with tetrahydrofurane, sodium methanolate or tetrabutylammonium 
fluoride results in useful derivatives, where hydroxyl groups at positions 6 are ready 
for any modification desired (Scheme 2.4) (Takeo et al. 1988). The reactions pro-
ceed similarly with β- (Jullien et al. 1994; Ashton et al. 1996; Vincent et al. 1997; 
Kirschner and Green 2005) or γ-cyclodextrin derivatives (Jullien et  al. 1994). 
TBDMS group in heptakis(2,3-O-dimethyl-6-O-tert-butyldimethylsilyl)-β-
cyclodextrin was also transformed by triphenylphosphine and bromine to 
heptakis(2,3-O-dimethyl-6-O-bromo)-β-cyclodextrin (Ashton et al. 1996).

Heptakis(6-O-tert-butyldimethylsilyl)-β-cyclodextrin was also used for the syn-
thesis of carboxymethyl β-cyclodextrin derivatives (Scheme 2.5). Firstly, positions 
2 and 3 were allylated and the silyl group deprotected by tetrabuty 
lammonium fluoride (Baer et al. 1992b). Subsequently, hydroxyl groups at position 
6 were methylated and allyl groups oxidised in a similar way as described above 
(Kraus et al. 2001).

The β-cyclodextrin derivatives similar to those depicted in Scheme 2.4 were also 
used for syntheses of other useful precursors (Scheme 2.6 and 2.7). Heptakis(6-O- 
tert-butyldimethylsilyl)-β-cyclodextrin was tosylated and the subsequent desi-
lylation yielded heptakis(2-O-tosyl)-β-cyclodextrin (Coleman et al. 1991). Although 
this derivative could also be obtained by the direct substitution reaction of 
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Scheme 2.3  Synthesis of per-6-O-(tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrins
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Scheme 2.4  Synthesis of α-cyclodextrins protected at positions 2 and 3

M. Řezanka



71

7

O
O

HO
HO

O

82 %

TBDMS
Br

NaH
7

O
O

O
O

O

TBDMS

TBAF

94 %

7

O
HO

O
O

O
NaH

86 %

7

O
MeO

O
O

O
MeI

1. OsO4, NMO
2. NaIO4

3. NaBH4

77 %

7

O
MeO

O
O

O

HO
HO

TEMPO

94 %

7

O
MeO

O
O

O

O
HO

CH2N2

NaClO
KBr

OH O

92 %

7

O
MeO

O
O

O

O
MeO

OMe O

TBDMS = tert-butyldimethylsilyl
TBAF = tetrabutylammonium fluoride
Me = methyl
NMO = N-methylmorpholine N-oxide
TEMPO = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl

Scheme 2.5  Synthesis of carboxymethyl β-cyclodextrin derivatives
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Scheme 2.6  Synthesis of useful β-cyclodextrin precursors

β-cyclodextrin with tosylimidazole in the presence of Cs2CO3, the yield is only 5% 
(Yu et al. 2006). It is noteworthy the subsequent substitution of tosyl group leads 
(according to Walden inversion) to non-cyclodextrin derivatives with aldohexoses in 
manno configuration.

β-cyclodextrins protected at positions 2 and 3 with methyl or acetyl group could 
undergo oxidation by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl forming 5-carboxy-5- 
dehydroxymethyl derivatives (Scheme 2.7). Moreover, the acetylated derivative 
enables deprotection at positions 2 and 3 (Kraus et al. 2000). Uccello-Barretta et al. 
also synthesised other derivatives persubstituted at position 6 by common reactions 
(Scheme 2.7) (Uccello-Barretta et al. 2005).
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Scheme 2.7  Synthesis of β-cyclodextrins persubstituted at position 6

Vigh and his colleagues devoted a great effort to synthesis of cyclodextrin deriva-
tives persubstituted at selected positions (Vincent et al. 1997; Maynard and Vigh 
2000; Busby and Vigh 2005; Tutu and Vigh 2011). Their methodology is based on 
modifications of per-6-O-(tert-butyldimethylsilyl)-α-, β- and γ-cyclodextrins 
(Scheme 2.8, 2.9 and 2.10). Synthesis of heptakis(2-O-methyl)-β-cyclodextrin 
includes a crucial step that involves the migration of silyl groups to position 3 and 
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the simultaneous methylation of the hydroxyl group at position 2 (Scheme 2.8). The 
migration mechanism was suggested on the basis of NMR spectroscopy and subse-
quently confirmed by X-ray crystallography (Maynard and Vigh 2000).

The migration also allows synthesis of heptakis(2-O-methyl-3-O-acetyl)-β- 
cyclodextrin, where substituents at every position are different from each other 
(Scheme 2.9). However, in this case, protection and migration of triethylsilyl instead 
of tert-butyldimethylsilyl groups is taken into advantage. Triethylsilyl is subse-
quently selectively hydrolysed by imidazole hydrochloride and free hydroxyl 
groups at position 3 are acetylated. The final product is obtained by the removal of 
tert-butyldimethylsilyl groups (Busby and Vigh 2005).
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Scheme 2.9  Synthesis of heptakis(2-O-methyl-3-O-acetyl)-β-cyclodextrin. Yields are not stated
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Finally, Tutu and Vigh synthesised heptakis(3-O-methyl-6-O-acetyl)-β-
cyclodextrin (Scheme 2.10). The product was prepared by the standard protection/
deprotection methodology with the selective benzylation of per-6-O- 
(tert-butyldimethylsilyl)-β-cyclodextrin at position 2 as the key step (Tutu and 
Vigh 2011).

2.2.4.2  �Syntheses Based on per-6-Halogeno-per-6-Deoxy Cyclodextrins

Another group of favourite starting materials for synthesis of cyclodextrins persub-
stituted at selected positions are cyclodextrins perhalogenated at position 6. They 
are synthesised from native cyclodextrins by the reaction with triphenylphosphine 
and bromine (Takeo et al. 1974) or iodine (Gadelle and Defaye 1991; Fernandez 
et al. 1995; Ashton et al. 1996; Benkhaled et al. 2008) in N,N′-dimethylformamide 
(Scheme 2.11). However, the synthesis of bromo derivatives has been declining due 
to more convenient handling of iodine.

These halogen derivatives are very useful precursors and could be easily trans-
formed for example into azides and amines (Ashton et al. 1996; Gorin et al. 1996) 
or thiols (Rojas et  al. 1995; Gorin et  al. 1996) by standard procedures (Scheme 
2.12). The remaining hydroxyl groups of these derivatives could be peracetylated 
(Boger et al. 1978; Baer et al. 1992a), methylated (Boger et al. 1978) or benzylated 
(Jullien et al. 1994) by the same methods described above.

Jicsinszky et  al. have recently described the use of per-6-iodo-per-6-deoxy-β- 
and γ-cyclodextrins for the synthesis of azido or thio derivatives in a planetary ball 
mill under solvent-free conditions. The authors found out the mechanochemical 
synthesis not only simplified the isolation and purification processes, but also 
allowed easy scale-up (Jicsinszky et al. 2016a).

Per-6-azido-per-6-deoxy cyclodextrins are the perfect starting materials for 
nowadays favourite copper-catalysed azide-alkyne cycloaddition reactions 
(Faugeras et al. 2012; Letort et al. 2016) or, as described by Kraus et al., for modi-
fications at positions 2 and 3 (Kraus et al. 2002) (Scheme 2.13). The key synthetic 
step is the use of BaO/Ba(OH)2 for the introduction allyl groups at positon 2. The 
property of this base is not unique for azido derivatives and it is used as well for 
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Scheme 2.11  Synthesis of 
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Scheme 2.13  Modifications of hexakis(6-azido-6-deoxy)-α-cyclodextrin

other syntheses, where the introduction of a substituent at position 2 is needed – see 
the beginning of the next section.

2.2.4.3  �Other Syntheses

As it was described above, BaO/Ba(OH)2 was successfully applied for the introduction 
of a substituent at position 2. Moreover, when the conditions are applied to a native 
cyclodextrin, the reaction proceeds to per-2,6-dialkyl cyclodextrin derivatives. This 
can be used e. g. in the synthesis of heptakis(2,6-O-dimethyl)-β-cyclodextrin (Szejtli 
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et  al. 1980) or heptakis(2,6-O-diallyl)-β-cyclodextrin (Bergeron et  al. 1976) 
(Scheme 2.14). Allyl groups in heptakis(2-O-allyl-3-O-methyl-6-O-allyl)-β-
cyclodextrin could be oxidised similarly to Scheme 2.5 to carboxymethyl deriva-
tives (Kraus et al. 2001).

Boger et al. used the selective deprotection strategy as the key step for syntheses 
of various cyclodextrin derivatives (Boger et  al. 1978). Firstly, per-O-benzoyl-α-
cyclodextrin is prepared. Secondly, the deprotection step by potassium isopropylal-
coholate is carried out. The base is selective due to its steric hindrance and thus is 
able to deprotect only the primary hydroxyl groups (Scheme 2.15). The resulting 
product was transformed to various 6-azido or 6-amino derivatives.

The selective deprotection strategy was also used for acetolysis of perbenzylated 
α-cyclodextrin (Angibeaud and Utille 1991). The reaction yielded hexakis(2,3-O-
dibenzyl-6-O-acetyl)-α-cyclodextrin, in which either acetyl or benzyl groups could 
be selectively deprotected (Scheme 2.16). Moreover, perbenzylated α-cyclodextrin 
was also used for deprotection by triethylsilane and iodine (Guitet et al. 2012). The 
method was originally developed for debenzylation of multiple-O-benzylated 
mono- and disaccharides (Pastore et  al. 2011) and in the case of α-cyclodextrin 
proceeds at position 3, which is normally the least accessible (Scheme 2.16).
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Mini-Summary  Synthesis of cyclodextrins persubstituted at selected positions 
utilises the different reactivity of hydroxyl groups and employs protection/deprotec-
tion methodology to achieve a desired derivative. Most of the syntheses begin with 
the substitution at position 6 – either by tert-butyldimethylsilyl or a halogen. BaO/
Ba(OH)2 direct the substitution to positions 2 and 6. When position 6 is blocked, 
the substitution proceeds selectively at position 2. The selective substitution at 
otherwise the least accessible position 3 could be achieved by deprotection of per-
benzylated cyclodextrin by triethylsilane with iodine.

2.2.5  �Selectively Substituted Cyclodextrins

Selectively substituted cyclodextrins fill the gap between all the above discussed 
cyclodextrin derivatives and monosubstituted cyclodextrins, i.e., they are single iso-
mer compounds with a known structure, where two or more substituents are attached 
to the cyclodextrin skeleton. Their synthesis is the most challenging among all 
cyclodextrin derivatives, as the number of possible isomers starts at dozens and ends 
at millions for different substituents at different positions. For the purposes of this 
chapter, the term of selectively substituted cyclodextrins also refers to the 
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Scheme 2.16  Selective deprotection of perbenzylated α-cyclodextrin
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derivatives that contain several free hydroxyl groups with the rest being protected 
by e. g. methyl, acetyl, benzyl or other groups.

2.2.5.1  �Syntheses Based on Direct Substitution

One of the first attempts to synthesise selectively substituted cyclodextrins was the 
use of disulfonates for the selective modification of selected glucose units at posi-
tion 6 (Scheme 2.17). 6A,6B derivative is formed when β-cyclodextrin is reacted with 
4,6-dimethoxybenzene-1,3-disulfonyl chloride (Breslow et  al. 1990). The use of 
benzophenone-3,3′-disulfonyl chloride led to 6A,6C derivative, while trans-stilbene- 
4,4′-disulfonyl chloride led to 6A,6D derivative (Tabushi et al. 1981). The disulfo-
nates could be transformed into diiodo (Breslow et  al. 1990), diazido, diamino 
(Tabushi et al. 1977; Di Blasio et al. 1996) or dithio derivatives (Tabushi et al. 1977) 
by common reactions.

Similarly, 2A,2B disulfonates were synthesised reacting benzophenone-3,3′-
disulfonyl imidazole with α- or β-cyclodextrin in 30% yields (Teranishi 2000). 
However, a further substitution of these derivatives leads to non-glucose cyclodextrin 
derivatives due to the stereogenic centre inversion. This problem could be avoided 
using non-sulfonate derivatives.
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α,α-Dimethoxytoluene is able to protect two hydroxyl groups on a cyclodextrin 
skeleton, but the reaction is non-selective. Heptakis(6-O-pivaloyl)-β-cyclodextrin 
was therefore prepared to overcome this disadvantage (Scheme 2.18). Pivaloyl 
derivative is, unlike a native cyclodextrin, capable of furnishing 2A,3B derivative in 
a good yield (Sakairi and Kuzuhara 1993). The subsequent benzylation of the 
remaining hydroxyl groups together with the exchange of pivaloyl residues to 
benzyl groups and deprotection of benzylidene led to per-O-benzyl-2A,3B–
dihydroxy-β-cyclodextrin. This approach was also applied for α- and γ-cyclodextrin 
as well (Sakairi et al. 1996b). Such derivatives are very useful precursors for further 
syntheses and are similar to the permethylated ones discussed below.

It is also possible to disubstitute just one glucose unit to obtain 2A,3A derivative. 
Such regioselectivity was achieved for the reaction of β-cyclodextrin with α,α’-
dibromo-o-xylene (Balbuena et al. 2007). The reaction proceeds with lithium diiso-
propylamide as a base in a 30% yield (Scheme 2.19). The subsequent methylation 
of all remaining hydroxyl groups together with hydrogenolysis of the xylene group 
gave per-O-methyl-2A,3A–dihydroxy-β-cyclodextrin. This approach was also suc-
cessfully applied on α- and γ-cyclodextrin (Balbuena et al. 2013).

Similarly, methallyl dichloride could be used instead of α,α’-dibromo-o-xylene 
(Fenger et al. 2011). The reaction proceeds on α- and β-cyclodextrin and in similar 
yields.
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When a trisubstituted cyclodextrin derivative is needed, the reaction of 
α-cyclodextrin with triphenylmethyl chloride, so-called “trityl chloride”, comes 
into play. The reaction yields symmetrically trisubstituted cyclodextrins due to ste-
rical hindrance (Scheme 2.20). Protection of all the remaining hydroxyl groups by 
methyl iodide and hydrolysis of trityl groups proceeded to a useful trisubstituted 
precursor – per-O-methyl-6A,6C,6E–trihydroxy-α-cyclodextrin (Boger et al. 1979). 
The quantitative analysis of α-cyclodextrin tritylation was studied later by ultra-fast 
liquid chromatography (Yoshikiyo et al. 2015).

2.2.5.2  �Syntheses Based on Selective Debenzylation

Protection/deprotection strategies are vastly used for syntheses of selectively substi-
tuted cyclodextrins, where sterical properties of a reagent together with cyclodex-
trin reactivity play the key role. Selective deprotection of perbenzylated cyclodextrins 
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by diisobutylaluminium hydride represents the most favourite method for synthesis 
of selectively substituted cyclodextrins, as well as monosubstituted cyclodextrins – 
see below. It was first described by Pearce and Sinaÿ (Pearce and Sinaÿ 2000). The 
method involves a selective deprotection of two opposite benzyl groups in high 
yields and is applicable to α-, β-, and γ-cyclodextrin (Scheme 2.21). Benzyl groups 
are removed from glucose units A and D at position 6, but in the case of γ-cyclodextrin 
also from glucose units A and E. Free hydroxyl groups could be subsequently used 
for organic chemistry transformations leading to the desired cyclodextrin derivative 
(Petrillo et al. 2009; Volkov et al. 2015).

It has been proposed the reaction involves at least two molecules of diisobutyl-
aluminium hydride and the mechanism occurs by a stepwise process (Sollogoub 
2013). This was proved by the synthesis of per-O-benzyl-6A-hydroxy derivatives, 
see below. This derivative could be used for the synthesis of per-O- benzyl-6A-de-
oxy-6A-azido derivatives and for the second debenzylation (Scheme 2.22). Azido 
groups provide steric hindrance to direct the second deprotection step towards the 
opposed glucose unit (Guieu and Sollogoub 2008a) allowing to introduce two dif-
ferent functional groups.

Such step by step debenzylation and substitution reactions could lead even to far 
more complicated structures – cyclodextrins trisubstituted (Guieu and Sollogoub 
2008b; Rawal et al. 2010), tetrasubstituted (Rawal et al. 2010; Sollogoub 2013), 
pentasubstituted (Guieu and Sollogoub 2008b) or heaxasubstituted at position 6, 
even with all the substituents different from each other (Wang et al. 2014). Moreover, 
together with Et3SiH/I2 hexakis-O-debenzylation at position 3 (Guitet et al. 2012) 
(see above) they allow a simultaneous selective deprotection on both the primary 
and secondary rim.
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2.2.5.3  �Syntheses Based on Other Selective Deprotections

Shortly after the selective bis-O-debenzylation was discovered, another selective 
double diisobutylaluminium hydride deprotection from Sinaÿ saw the light of day 
(du Roizel et al. 2002). It was found out both per-O-methyl α- and β-cyclodextrin 
were able to undergo a regioselective bis-O-demethylation, but on the secondary 
rim (Scheme 2.23). This opened the way for a direct access to 2A,3B derivatives 
(Letort et al. 2015).

As it was shown by Xiao et al. the reaction requires 2A methoxy group and an 
oxygen atom present at position 3B (Xiao et al. 2013) to proceed. The authors also 
showed it was possible to carry out two or even three bis-O-demethylations on per-
methylated α- or β-cyclodextrins (Scheme 2.24). However, in contrast to the multi-
ple bis-O-debenzylations described above, these bis-O-demethylations are carried 
out in one step.

The last from frequently used deprotections is selective bis-O-de(tert-butyldi-
methyl)silylation (Ghosh et al. 2012). It proceeds at 6A,6D positions in 70% yields and 
is carried out on hexakis(2,3-O-dimethyl-6-O-tert-butyldimethylsilyl)-α-cyclodextrin 
or heptakis(2,3-O-dimethyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin (Scheme 
2.25). The desilylation proceeds in even better yields on substrates where secondary 
hydroxyl groups are protected by benzyl instead of methyl groups. The methylated 
precursors were used in further transformations (Ghosh et al. 2012; Tatar et al. 2017).

Mini-Summary  The synthesis of selectively substituted cyclodextrins is quite a 
challenge due to the high number of theoretically possible isomers. However, selec-
tive bis-O-debenzylation (forming 6A,6D derivatives) and bis-O-demethylation 
(forming 2A,3B derivatives) make this process much easier. Such an approach allows 
to satisfy a sweet tooth of almost the majority of chemists. The deprotections could 
be used multiple times or combined with the other methods. Moreover, when 
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chemists are still picky, selective 6A,6B-, 6A,6C-, 6A,6D–sulfonations, 2A,3A–xylylation 
or 6A,6C,6E–tritylation could be offered.

2.2.6  �Monosubstituted Cyclodextrins

Monosubstituted cyclodextrins could be either substituted at positions 2, 3 or 6. 
Nowadays, there are two main methods for their synthesis: direct and indirect 
(Řezanka 2016). When using the first method, a cyclodextrin is directly reacted with 
a substitution agent. A desired monosubstituted product is then purified from other 
isomers, unreacted cyclodextrins and multiple-substituted by-products. The loca-
tion of a substituent on a glucose unit is driven by the cyclodextrin reactivity, which 
is described in Sect. 2.1. Yields usually strongly depend on solvent, base, type of 
cyclodextrin, and structure of the substitution agent and vary from units of percent 
up to a few dozens of percent. This dependency has been studied by several authors 
(Masurier et al. 2006; Martina et al. 2010; Řezanka 2016).

When reproducing synthesis according to the described procedure, please have 
in mind not all the authors use satisfactory purification steps and characterise the 
product sufficiently. Precipitation of a reaction mixture (e.g. by acetone) as the only 
purification method is inadequate. Without a proof of purity such as chromatogram 
from high-performance liquid chromatography, copy of 1H nuclear magnetic reso-
nance spectra etc. it is expected the product contains several impurities – e.g. unre-
acted cyclodextrin and multiple-substituted cyclodextrin derivatives.
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The second – indirect – method is based on a high-yielding deprotection step of 
a persubstituted cyclodextrin, such as permethylated, perbenzylated etc. 
Persubstituted cyclodextrins are easily obtained in high yields and thus the selective 
deprotection furnishes a monodeprotected derivative, where the free hydroxyl group 
is ready for further transformations. This method is more universal than the first 
one, as the substitution of the free hydroxyl group usually results in high yields 
regardless the nature of the substitution agent used.

There are also other methods available for cyclodextrin monosubstitution. It is 
possible to synthesise a monosubstituted derivative de novo. However, the synthesis 
requires many steps and the overall yield is very low (Sakairi et al. 1991; Sakairi 
et al. 1995; Chaise et al. 2008). An interesting approach of monosubstituted cyclo-
dextrin derivative synthesis is the use of proteases, which are able to direct the 
substituents regioselectively (Xiao et al. 2004; Wang et al. 2005). Unfortunately, 
this method has not been examined in detail yet. The last from the methods for 
monosubstituted cyclodextrin derivative synthesis is the use of several protection/
deprotection steps to achieve a desired product. However, this method requires a lot 
of steps and its use is now being superseded with direct and indirect strategies.

The syntheses of monosubstituted allyl, cinnamyl, propargyl, formylmethyl, car-
boxymethyl, azido and amino cyclodextrin derivatives have recently been studied in 
detail (Řezanka 2016). The following sections thus summarise the main findings 
and add information about other derivatives, which could be used as precursors for 
further synthesis.

2.2.6.1  �Monosubstitution at Position 2

The direct method takes advantage of the above mentioned fact the hydroxyl group 
at position 2 is the most acidic. The use of a strong base thus mostly leads to substi-
tution predominantly at this position and the yields reach up to 40%. However, 
sometimes the desired 2A-O substituted derivative is hard to separate from its isomer 
and the purification step is done after peracetylation (Scheme 2.26) (Řezanka and 
Jindřich 2011). Peracetylation has also other advantages such as easy distinguishing 
between 2, 3 and 6 isomers directly from 1H nuclear magnetic resonance spectrum 
(Řezanka 2016) and protecting the rest of hydroxyl groups against side reactions, 
for example, when oxidation of double bond is needed. Peracetylated derivatives 
could be easily deprotected by Zemplén deacetylation (Řezanka et al. 2010).

The best results for alkylation are generally achieved in dimethyl sulfoxide  
with a strong base like LiH together with a catalytic amount of LiI (Hanessian  
et al. 1995; Řezanka and Jindřich 2011); sodium ethoxide (Masurier et al. 2006, 
2009); lithium diisopropylamide (Masurier et al. 2006); or NaH (Kalakuntla et al. 
2013).

It is also possible to use the indirect method for the synthesis of cyclodextrin 
monosubstituted at position 2. As it has been mentioned above, regioselective bis-
O-demethylation yields permethylated 2A,3B-dihydroxy derivatives. The diol could 
be selectively alkylated at position 2 and subsequently methylated on the remaining 
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hydroxyl group yielding permethylated 2-O derivative (Scheme 2.27) (Guan et al. 
2009; Řezanka et al. 2015). A great variety of permethylated α-cyclodextrin deriva-
tives was prepared using this methodology (Xiao et al. 2013).

The other option of a selective deprotection, which yields 2-O substituted deriva-
tive, is selective debenzoylation (Sakairi et  al. 1996a). The deprotection is per-
formed on perbenzoylated β-cyclodextrin by hydrazine (Scheme 2.28). Free benzoyl 
group is then ready for further transformations. However, be aware of Walden inver-
sion at this position, e.g. when substituting tosyl group in this position. The product 
is a non-cyclodextrin derivative with one unit in manno configuration.
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2.2.6.2  �Monosubstitution at Position 3

As it has been mentioned above, position 3 is the least accessible, which results in 
difficulties during the synthesis of such derivatives. However, there are several 
methods allowing substitution at position 3. Jindřich and Tišlerová found the alkyla-
tion of β-cyclodextrin with cinnamyl bromide result selectively in 3A-O-cinnamyl-
β-cyclodextrin in a good yield (Jindřich and Tišlerová 2005). This behaviour is 
caused by the inclusion of cinnamyl bromide in the cavity. The resulting complex 
has the reactive centre of the alkylation agent oriented towards position 3. Cinnamyl 
group could be then oxidised after peracetylation and used for further synthesis 
(Scheme 2.29).

Another possibility to introduce a substituent at position 3 selectively is the use 
of copper(II) sulfate in water together with NaOH as a base (Masurier et al. 2009). 
Alkylation using these conditions for several allylic or benzylic reagents resulted in 
3-substituted derivatives in 40% yields. Other alkylation methods using NaOH in 
water or water/acetonitrile result only in 10% yields for cyclodextrin derivatives 
monosubstituted at position 3. Moreover, they have to be separated from their 2A-O 
and 6A-O isomers formed as by-products during the reaction (Řezanka and Jindřich 
2011; Zhou et al. 2012a, 2012b; Bláhová et al. 2013).
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The abovementioned regioselective bis-O-demethylation is also useful for the 
synthesis of permethylated cyclodextrin derivatives monosubstituted at position 3. 
The 2A,3B-diol could be selectively methylated at position 2 (Scheme 2.30) and the 
free hydroxyl group at position 3 serves as the reaction centre for further modifica-
tions (Xiao et al. 2013). Alternatively, the same derivative was obtained by selective 
demethylation of permethylated α-cyclodextrin by phenylthiotrimethylsilane in the 
presence of zinc(II) iodide (Scheme 2.30) (Chaise et al. 2004).

2.2.6.3  �Monosubstitution at Position 6

Cyclodextrins monosubstituted at position 6 represent unique precursors for the 
attachment to another molecule or to a surface. Connection through position 6 
leaves the wider rim of a cyclodextrin open for interactions of guests with the cavity. 
Moreover, cyclodextrins monosubstituted at position 6 are easy to synthesise com-
pared to the other derivatives. The reason has already been mentioned above – the 
hydroxyl group at position 6 is primary and the least acidic. The deprotonation of all 
hydroxyl groups thus predominantly leads to the substitution at this position, as 
there is the lowest steric hindrance. Although a lot of cyclodextrins monosubstituted 
at position 6 are commercially available, they are still synthesised by researchers 
due to their high price.

The most important cyclodextrins monosubstituted at position 6 are 6A-deoxy-
6A-tosyl-α-, β- and γ-cyclodextrin. To synthesise them, cyclodextrin is reacted with 
tosyl chloride (Petter et al. 1990; Brown et al. 1993; Hamasaki et al. 1993; Gao et al. 
1995; Liu et al. 1998; Tang and Ng 2008b; Trellenkamp and Ritter 2010; Xu et al. 
2010), tosyl anhydride (Zhong et al. 1998) or 1-tosylimidazole (Tang and Ng 2007; 
Cao et al. 2009; Nielsen et al. 2010; Kulkarni et al. 2012). While some authors do 
not use purification methods, it is recommended to treat the product by 
chromatography (Brown et al. 1993; Hamasaki et al. 1993; Kulkarni et al. 2012) or 
to recrystallise it from water (Gao et al. 1995; Tang and Ng 2008b; Nielsen et al. 
2010; Xu et al. 2010) or 50% MeOH in H2O (Popr et al. 2014; Bednářová et al. 
2016).
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Tosyl group is a useful precursor for azide, amino and thio groups (Scheme 
2.31). Tosylated cyclodextrins could react with sodium azide in water (Hamasaki 
et al. 1993; Tang and Ng 2008b; Trellenkamp and Ritter 2010; Kulkarni et al. 2012) 
or N,N′-dimethylformamide (Petter et al. 1990; Nielsen et al. 2010; Xu et al. 2010). 
It is also possible to synthesise azide under solvent-free conditions in a ball mill 
(Jicsinszky et al. 2016b). The azide group could be subsequently transformed into 
amine by the reduction with triphenylphosphine and ammonia (Hamasaki et  al. 
1993; Xu et al. 2010; Kulkarni et al. 2012) or water (Tang and Ng 2008b). Both 
azido and amino derivatives are the favourite compounds for the synthesis of defined 
cyclodextrin polymers (Pun et al. 2004; Zhou and Ritter 2010).

In order to synthesise a thiol, tosyl group is treated with thiourea and subse-
quently with sodium hydroxide (Fujita et  al. 1982; Fujita et  al. 1985; Martinelli 
et al. 2014). Tosyl derivatives also serve as precursors for N-alkyl (Tang and Ng 
2008a; Popr et al. 2014) or S-alkyl compounds (Bednářová et al. 2016).

When O-alkyl derivatives are needed, cyclodextrin could be directly alkylated in 
an excess of NaOH in water (Řezanka et al. 2010). It was found the method could 
be used for various alkylation agents on α-, β-, γ-cyclodextrins (Řezanka 2016). The 
yields typically reach values above 10% and no other monosubstituted isomers (2A-
O and 3A-O) are formed.

The best known indirect method for the synthesis of cyclodextrin derivatives 
monosubstituted at position 6 is selective debenzylation of perbenzylated α-, β-, and 
γ-cyclodextrins (Scheme 2.32) (Pearce and Sinaÿ 2000). The reactions proceed in 
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very good yields, unusual for monosubstituted cyclodextrins. The free hydroxyl 
group could be subsequently modified and benzyl groups removed by H2 on Pd 
(Lindbäck et al. 2012).

The second indirect method is the abovementioned regioselective bis-O-demeth-
ylation. It provides per-O-methyl-6A-hydroxy-α- or β-cyclodextrin as by-products 
in 20% yield (Scheme 2.33) (du Roizel et al. 2002). It is also possible to use the 
protection/deprotection methodology for the synthesis of the latter one (Chen et al. 
1996; Lupescu et al. 1999).

Mini-Summary  The direct syntheses of monosubstituted cyclodextrin derivatives 
benefit from the different reactivity of hydroxyl groups. 2A-O substituted derivatives 
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are obtained using a strong base in dimethyl sulfoxide. 3A-O substituted derivatives are 
synthesised using either selective introduction of cinnamyl group or selected alkylation 
agents in the presence of copper(II) sulfate. Cyclodextrins monosubstituted at position 
6 are the most favourite ones and 6A-deoxy-6A-tosyl-cyclodextrins overshadow all the 
other derivatives, as it is the most used precursor for further synthesis. Deprotection of 
methyl groups from permethylated cyclodextrins could lead selectively to either 2, 3, 
or 6 monosubstituted derivatives and debenzylation of perbenzylated cyclodextrins fur-
nishes per-O-benzyl-6A-hydroxy-cyclodextrins selectively in high yields.

2.3  �Conclusion

A lot of cyclodextrin derivatives have become available on the market over the 
years. However, their price is in the range of fine chemicals and thus they are still 
often synthesised in laboratories. Randomly substituted cyclodextrin derivatives are 
the only exception. Synthesis of persubstituted cyclodextrin derivatives remains 
more or less the same and the methods for cyclodextrins persubstituted at selected 
positions are now very well examined.

The synthesis of selectively substituted and monosubstituted cyclodextrin deriva-
tives has changed much over the years. Originally used direct methods subside and the 
indirect methods are now on the rise. The only exceptions are 6A-deoxy-6A-tosyl-α-, 
β- and γ-cyclodextrins. They are the most favourite precursors for further syntheses.

The synthesis of tosyl derivatives is quick, high yielding, using cheap chemicals and 
the tosyl group is suitable for further reactions. Moreover, the synthesis requires only 
an easy purification process, i.e. recrystallisation, which is the key step. Cyclodextrin 
derivatives aspiring to be similarly successful should fulfil these conditions.
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