
Chapter 2
Pore Structures

Abstract Pore structures play a very critical role in the petroleum industry, which
controls the capacity of oil and gas storage in the reservoir (Anovitz and Cole in
Rev Miner Geochem 80(1):61–164, 2015). Pore with different properties such as
pore size and pore shape can impact the physical, mechanical and chemical prop-
erties of the rocks including strength, elastic modulus, permeability, and conduc-
tivity (Boadu in J Appl Geophys 44(2–3):103–113, 2000; Sanyal et al. in Chem
Eng Sci 61(2):307–315, 2006; Wang et al. in J Appl Geophys 86:70–81, 2012).
Therefore, characterization and quantification of the pore structures appear to be
crucial for reservoir development. The boom of the unconventional resources in the
recent decade brought the attention of the many researchers’ attention. Shale oil
formation is one of the typical unconventional reservoirs and the understanding of
these kinds of formation is still limited. In comparison to the conventional reser-
voirs such as sandstone or limestone, the pore structures in shale reservoirs are more
complex due to the abundance of the nano-pores. In this chapter, various kinds of
methods are introduced and applied to analyze the micro structures of the shale oil
formation.

2.1 Methods

2.1.1 SEM

SEM has been one of the most useful tools to study the pore microstructures.
High-resolution SEM images can discriminate between solid matrix and pores due
to the different gray level pixels and have been the main tool to analyze the pore
structures of the porous medium (Bogner et al. 2007; Joos et al. 2011). For the shale
oil formation, such as the Bakken shale, Small chips that are parallel to the bedding
from the cores were taken. Samples were trimmed down to the 0.5 cm square cube,
using a trim saw. Cube is then smoothed out on all faces by hand with a Buehler
polishing wheel using 600-grit silicon carbide grinding paper. The samples are
mounted to the ion mill sample holder using carbon tape and placed in the
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Leica EM TIC 3X argon ion mill. After that, all samples were milled at an
accelerating voltage of 8 kV, with gun current at 3 mA for 8 h. Finally, samples
were removed from the ion mill’s sample holder and mounted on a clean SEM stub
using carbon paint. A high-quality image is required for accurate segmentation and
subsequent quantification analysis.

2.1.1.1 SEM Image Processing

After we had derived the gray scale image from the FESEM, we segmented the
images by converting the original image into the binary image where white pixels
represent pores, and black pixels exhibit the solid matrix. The porosity can be
calculated as the ratio of the area of white pixels to the whole scan area. Finding a
suitable threshold accurately to segment the gray level images can affect the
analysis results directly. Only under the circumstances that the segmentation
algorithm which is precise and reproducible, we can get the meaningful quantitative
data which can be used to formulate the microstructure properties relationships.
Based on the comparison made by Wong et al. (2006), we applied critical overflow
point technique, which is related to the inflection of the cumulative brightness
histogram to find the accurate upper threshold gray level for porosity.

After we had determined the upper threshold value, we segmented the image and
converted it into binary format. Then Image J software, which is a commonly used
image analysis software, was used to study the pore structures.

2.1.1.2 Pore Size

We used a popular image processing software to analyze the pore structures of the
segmented area and applied box plot to compare the pore sizes of the four samples.

Two shape parameters (Aspect Ratio and Circularity) were utilized to describe
the pore shape information of the rocks (Liu and Ostadhassan 2017a, b, c).

The aspect ratio of the image describes the proportional relationships between its
width and height. For the pore structure analysis, the aspect ratio can determine the
shape of the pores which is defined as Takashimizu and Iiyoshi (2016):

AR ¼ xFmax

xFmin
ð2:1Þ

where xFmax and xFmin are the major and the minor axis of the approximate ellipse,
respectively. Therefore, if the aspect ratio is approaching 1, the pore is approximate
to a perfect circle while a decreasing aspect ratio can be translated to the increased
deformation of the pores.

Circularity is defined as the degree to which the particle is similar to a circle by
taking into consideration of the smoothness of the perimeter. Circularity is a
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dimensionless value which can be described using the following equation (Cox
1927):

C ¼ 4p
AI

P2
I

ð2:2Þ

where AI and PI are the pore area and the perimeter of the pore, respectively.
The circularity value ranges from 0 to 1. If the circularity is close to 1, the pore is

approximate to a perfect round and smooth circle.

2.1.1.3 Fractal Dimension

The main attraction of the fractal geometry originates from its strong ability to
describe the irregular or fragmented shape of natural features as well as other
complex objects that traditional Euclidean geometry fails to characterize (Lopes and
Betrouni 2009). The key parameter in fractal geometry is the fractal dimension, D,
which can offer a systematic approach to quantify irregular patterns. Among all
fractal dimension computing methods, the box-counting method which was defined
by Russel et al. (1980), is the most popular method to calculate the fractal
dimension (Lopes and Betrouni 2009).

The Box-counting technique is used to get the scaling properties of 2-D fractal
objects by covering the 2-D image with a range of boxes of size e and counting the
number of boxes N. Each box contains at least one pixel representing objects under
study. This procedure is then repeated for a range of e values. Then we get the
different box counting numbers N covering the pore space at various grid size e.
Finally, we calculate the fractal dimension based on the following equation:

D0 ¼ lim
e!0

logNðeÞ
logð1=eÞ ð2:3Þ

For the 2D image, the fractal dimension D ranges from 1 to 2.

2.1.1.4 Multifractal Analysis

The significant interest in production from unconventional plays including oil and
gas shales has called for several studies to better characterize such complex
resources. Unlike the homogeneous pore structures in sandstones, the pores in shale
formations are always heterogeneous. The heterogeneities which can be identified
over the various scales from nanometers to meters will result in different properties
of the rocks even at the same porosity (Vasseur et al. 2015). The impact of the
heterogeneity of the pore structures on shale’s properties needs to be understood in
order for economic production. For the SEM images, multifractal and lacunarity
theory can be used for the pore structure heterogeneity analysis.
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The single fractal dimension which is widely used to study the porous structures
cannot describe the complex structures with subsets of regions having various
properties. However, the multifractal theory, which considers the amount of mass
inside each box, appears to be able to characterize the pore structure properties.

For the measurement of fractal dimension, the number N(e) of features of certain
size e scale as Chhabra and Jensen (1989), Mendoza et al. (2010)

NðeÞ� e�D0 ; ð2:4Þ

where D0 is called the fractal dimension, which is frequently be expressed as:

D0 ¼ lim
e!0

logNðeÞ
log 1

e

; ð2:5Þ

D0 can be derived by counting the number of boxes with various sizes to cover the
object under investigation and then estimating the slope value from the log-log plot.

Then, the following equation will be applied to quantify the local densities by
estimating the mass probability in the ith box:

piðeÞ ¼ NiðeÞ=NT ; ð2:6Þ

where NiðeÞ is the number of pixels containing mass in the ith box and NT is the
total mass of the system. Thus the probabilities in the ith box PiðeÞ can be written as
the following equation:

PiðeÞ� eai ; ð2:7Þ

where ai is the singularity strength which can characterize the density in the ith box
(Feder 1988; Halsey et al. 1986).

For multifractal measurements, a probability distribution is measured as:

X
i

½piðeÞ�q � esðqÞ; ð2:8Þ

where q is the exponent expressing the fractal properties in different scales of the
object. sq can be defined as:

sðqÞ ¼ lim
r!0

ln
X
i

PiðeÞq
 " #

= lnð1=eÞ; ð2:9Þ

and the generalized dimension Dq which is related with q can be expressed as
Halsey et al. (1986):
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Dq ¼ sðqÞ=ðq� 1Þ; ð2:10Þ

Also, we can use the relationship between parameters of f(a) versus a to calculate
the multifractal spectra:

NðaÞ� e�f ðaÞ; ð2:11Þ

where N(a) is the number of boxes for which probability PiðeÞ has singularity
strengths between a and a + da. f(a) contains the same information of generalized
dimensions Dq and can be defined as Halsey et al. (1986), Chhabra and Jensen
(1989):

f ðaðqÞÞ ¼ qaðqÞ � sðqÞ; ð2:12Þ

where a(q) can be defined as:

aðqÞ ¼ dsðqÞ=dq: ð2:13Þ

2.1.1.5 Lacunarity Analysis

In order to quantify the heterogeneities of the pore structures of the sample, lacu-
narity was introduced to solve this kind of problem. Lacunarity which was intro-
duced by Mandelbrot (1983) is a counterpart of the fractal dimension which can be
used to describe the size distributions. Lacunarity measures the deviation of a
geometric object that has translational invariance and can be thought as a measure
of gapiness of the geometric structure. If the structure has more wide or large gaps,
the structure has higher lacunarity value.

The gliding-box counting algorithm was applied to calculate the lacunarity in
this paper by utilizing a moving window (Smith et al. 1996; Plotnick et al. 1993).
A box of size r is positioned at the upper left corner of the image and the number of
the occupied sites can be regarded as the box mass. Then the box is moved one
column to the right and the box mass is again counted. This process is repeated over
all rows and columns of the image producing a frequency distribution, mass M, of
the region that we studied. The number of the boxes with the size r containing a
mass (M) of the image was designated by n(M, r), with the total number of boxes
counted designated by N(r). If the image size is P, then:

NðrÞ ¼ ðP� rþ 1Þ2 ð2:14Þ

Then the probability distribution Q(M, r) can be calculated by the frequency
distribution (Backes 2013; Plotnick et al. 1993):
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QðM; rÞ ¼ nðM; rÞ
NðrÞ ð2:15Þ

The first and second moments of this distribution are defined by:

Að1Þ ¼ RMQðM; rÞ ð2:16Þ

Að2Þ ¼ RM2QðM; rÞ ð2:17Þ

Then the lacunarity of this box size is defined as:

KðrÞ ¼ Að2Þ

ðAð1ÞÞ2 ð2:18Þ

The statistical behavior of KðrÞ can be understood by recognizing that:

Að1Þ ¼ uðrÞ ð2:19Þ

Að2Þ ¼ uðrÞ2 þ r2ðrÞ ð2:20Þ

Finally, we can get (Allain and Cloitre 1991; Malhi and Román-Cuesta 2008)

KðrÞ ¼ r2ðrÞ
uðrÞ2 þ 1 ð2:21Þ

Here r2ðrÞ is the variance of the number of sites per box and uðrÞ is the mean
value of the number sites per box. Then we can repeat this process with different
box size and get the set of the lacunarity values at various box size.

2.1.2 AFM (Atomic Force Microscopy)

AFM is derived from the principles from the scanning tunneling microscope and the
stylus profilometer (Binnig et al. 1986) and a quite new technology in the big
characterization family. Compared with other types of microscopy such as SEM,
AFM has a high ability in characterizing the surface features at nanometer and
angstrom scales and can produce 3D topography image which can be used to study
the depth, roughness and many other things (Bruening and Cohen 2005). AFM is
now widely used in biology and material science research but still rarely used in
petroleum engineering (Javadpour 2009; Javadpour et al. 2012; Liu et al. 2016a).

The working mechanism of the AFM can be described as below: The cantilever
is held at one end while free on the other end, as the tip approaches or retracts from
the surface, the cantilever is moved vertically due to the changes of the interactive
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force. Then the deflected laser beam can be detected and the related signal can be
transmitted to data-processing equipment. Contact mode and tapping mode have
become the two most used methods for imaging. In contact mode, the deflection of
the cantilever is kept constant. The drawback of this mode is that the dragging
motion of the tip can cause some potential damage to both sample and probe and
will influence the accuracy of the image. This mode is quite suitable for hard
surface samples. In order to overcome the shortages of the contact mode, tapping
mode was developed which is implemented in ambient air by oscillating the can-
tilever assembly at or near the cantilever’s resonance frequency using a piezo-
electric crystal.

2.1.3 Gas Adsorption

Low pressure adsorption measurement which has been extensively used in the
surface chemistry analysis for characterization of porous medium nowadays has
been applied to quantify the pore structures of the shale formation (Kuila and
Prasad 2013; Cao et al. 2016; Sun et al. 2016). Nitrogen is the most widely used gas
for the adsorption analysis. One limitation of nitrogen, which originates from the
gas molecule and pore throat sizes, makes it inaccurate in characterizing the
micro-pore size range. CO2 adsorption was then used to analyze the micro-pores
since it works well in the media containing pores less than 2 nm (Tang et al. 2003).
The combination of nitrogen and CO2 can give us information about the whole pore
size distributions less than 200 nm. Need to add some more explanation here about
the gas adsorption.

Prior to adsorption measurement, the samples were degassed for at least 8 h at
110 °C to remove moisture and volatile in the sample pores. Low-pressure nitrogen
was measured on a Micromeritics® Tristar II apparatus at 77 K. Carbon dioxide
adsorption was measured on a Micromeritics® Tristar II plus apparatus at 273 K.
Gas adsorption volume was measured over the relative equilibrium adsorption
pressure (P/P0) range of 0.01–0.99, where P is the gas vapor pressure in the system
and P0 is the saturation pressure of nitrogen (Liu et al. 2017).

The gas adsorption experimental data was used to quantify the amount of the gas
adsorbed at different relative pressures (P/P0) where P0 is the saturation pressure of
the absorbent and the P is gas vapour pressure in the system.

For nitrogen adsorption, the total volume can be derived from the total amount
of vapor adsorbed at the relative pressure (P/P0) which is close to 1, assuming that
the pores are filled with the liquid adsorbate. The average pore radius of the sample
can be calculated as:

rp ¼ 2V
S

; ð2:22Þ
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where V is the total amount of the nitrogen adsorbed, and S is the surface area
derived from the BET (Brunauer, Emmett and Teller) theory (Labani et al. 2013).

To calculate the pore size distribution (PSD) from the nitrogen adsorption, BJH
and DH model cannot give the realistic description of micro-pore filling which can
lead to an underestimation of pore sizes for micro pores and even the smaller
meso-pores (Ravikovitch et al. 1998). In this study, we applied density functional
theory (DFT) molecular model due to its applicability in determining the PSD in
micro-pore scale as well as meso-pore scale (Do and Do 2003). The carbon dioxide
adsorption data were interpreted using the non-local density functional theory
(Amankwah and Schwarz 1995; Fan and Ziegler 1992).

Fractal geometry, proposed by Mandelbrot (1982), has a strong ability to
describe the irregular or fragmented shape of natural features as well as other
complex objects that traditional Euclidean geometry fails to characterize (Lopes and
Betrouni 2009). Fractal dimension (D) is the key parameter in the fractal geometry,
which can offer a systematic approach to quantify irregular patterns. For the gas
adsorption theory, several fractal models have been developed such as the BET
model, fractal FHH model and the thermodynamic model (Avnir and Jaroniec
1989; Cai et al. 2011; Yao et al. 2008). The fractal FHH model which focuses on
the capillary condensation region of the fractal surface, has been proven to be the
most effective method for analyzing the fractal behavior of porous medium (Yao
et al. 2008). FHH model can be described using the following equation:

lnV ¼ ConstantþðD� 3Þ lnðlnð1=ðP=P0ÞÞÞ ð2:23Þ

where V is the total volume of the adsorption, P is the equilibrium pressure, P0 is
the saturated vapour pressure of the adsorption and D is the fractal dimension.

2.2 Examples and Results

2.2.1 SEM Image Analysis

2.2.1.1 Image Processing

SEM gray image of Sample 1 at the scan size 6.35 � 4.42 lm2 by the FEI Quanta
650 SEM apparatus (Fig. 2.1a) and analyzed the influence of the threshold value on
the pore area. Figure 2.1b represents the pore area under different threshold values
(the intensities of the grayscale image) (Liu and Ostadhassan 2017a, b, c).

It can be found from the series of images shown in Fig. 2.1b, that the segmented
area (white pixel areas) increases steadily as the threshold value increases. Once the
threshold is above 70, a sudden increase in the segmented area is notified due to
changes of the beam interaction volume used to capture the boundary (Wong et al.
2006; Goldstein et al. 1981). This phenomenon is analogous to filling up a pore
with a fluid. Before the fluid arrives near the edge, the volume filled with the fluid
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will increase gradually, once it arrives near the edges, a critical point is reached and
the liquid will overflow to the surrounding areas, and this will lead to a sudden
increase of the area covered with the fluid. Therefore, the threshold value of

(a) original image

Binary images(b)

Fig. 2.1 The influence of the threshold value on the segmented area (white pixels represent pores;
black pixels denote solids)
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Fig. 2.2a is 74.2 and the segmented pore area of this image under this threshold
value are provided in Fig. 2.2b.

Based on the above method, we determined the threshold value of the four
samples we analyzed both at high magnification ratio (scan area 21.19 � 14.7 lm2)
and low magnification ratio (scan area 127.15 � 88.11 lm2) and derived the sur-
face porosity which is summarized in Table 2.1.
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Fig. 2.2 Application of overflow criteria to determine the threshold level for quantifying porosity
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The results showed that surface porosity of all the samples under two different
magnifications are in the low range, less than 7%. Both under high and low
magnification ratios, Upper Bakken has more pore counts than that of the Middle
Bakken Formation. This is because the Upper Bakken has more clay minerals than
the Middle Bakken formation. Pores are most abundant in the clay matrix, com-
pared with other mineral matrix (Houben et al. 2014). The pore structures of the
same sample derived from the image analysis method show different values (pore
counts, porosity and mean pore size values) under different magnification ratios,
showing the importance of studying the effect of the magnification ratio on the pore
structures.

2.2.1.2 Pore Size Distribution Analysis

Pore Size Distribution (PSD) of each sample under both HM and LM is presented
in Fig. 2.3.

Figure 2.3 shows that the pore size distributions of the four samples both under
high and low magnification are largely positive skewed, which means that most
pores have small pore sizes. Only a few outliers can be found in Fig. 2.4, which
illustrates that only a small number of large pores exist in the samples while most
pores are at the nanoscale range.

2.2.1.3 Pore Shape Distributions Analysis

We used the aspect ratio and circularity to analyze the pore shape and distributions
of the samples. Figure 2.5 shows that the aspect ratio distributions demonstrate
positive skewness whereas the circulation distributions show negative skewness.

Table 2.1 Information about the pore structures of Bakken formation

Formation Pore
counts

Pore area
(%)

Mean pore size
(nm)

Sample 1 Upper Bakken LM 15,257 6.77 91.55

HM 11,220 6.47 15.94

Sample 2 Upper Bakken LM 10,738 4.03 89.31

HM 5360 5.21 18.04

Sample 3 Middle
Bakken

LM 7167 6.34 186.42

HM 1053 6.96 30.09

Sample 4 Middle
Bakken

LM 4532 6.5 211.63

HM 702 4.046 29.66

Note HM means high magnification ratio (image size 21.19 � 14.7 lm2) while LM denotes low
magnification ratio (image size 127.15 � 88.11 lm2)

2.2 Examples and Results 27



The distribution illustrates that many pores are prone to round pores since they have
the small aspect ratios and high circularity values.

Based on further observations of the pores we deduced that if the circularity
value was close to 0, the pores were representing micro-cracks, and if the circularity
was approaching 1, round and circular pores were abundant. We divided all the
pores with different circularity values into three different groups of micro-cracks
(C < 0.2), intermediate pores (0.2–0.8) and round pores (C > 0.8).

We grouped the pores of all the samples both under high and low magnification
ratios. Results in Tables 2.2 and 2.3 show that Sample 1 and Sample 2 host more
round pores but fewer micro-cracks compared with the pore structures of Sample 3
and Sample 4.

The pore structure analysis of the four samples illustrates that the Upper member
has an abundance of smaller round pores than those of the Middle member, which
hosts more micro-cracks. This is in agreement with the mineralogical composition
of each member. Upper Bakken has more clay minerals (illite) whereas the Middle
Bakken consists of more brittle minerals such as dolomite, pyrite, and feldspar,
which are believed to have a very strong control over the pore shape and structure
(Liu et al. 2016b).
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Fig. 2.3 Pore size distributions of four samples
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Fig. 2.4 Boxplot of pore area distributions of the four samples
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Fig. 2.5 Pore shape distributions of the samples
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2.2.1.4 Fractal Dimension Determination

Two-dimensional box counting calculations of the pore spaces of the samples have
been carried out in the following section. Figure 2.6 shows boxes with different
length scale to cover the pore spaces within sample 1 at the scan size
6.35 � 4.42 lm2. Figure 2.7 displays the fractal dimension of this image.

The fitting curve was applied to the data in Fig. 2.7 to correlate an evident linear
relationship between lnN and ln e with the correlation coefficients of higher than
0.99, which indicates that the pore structure of rock samples presents very strong
fractal characteristics. Then we calculated the fractal dimension of all the samples.
Table 2.4 shows that all the samples under high magnification and low magnifi-
cation demonstrate fractal characteristics with high correlation coefficients.
However, the four samples with different pore structures showed different fractal
dimensions. Sample 1 has the highest fractal dimension values both under high
magnification and under low magnification, showing that Sample 1 has the most
complex pore structures. Under high magnification, Upper Bakken Formation has
higher fractal dimension compared with the value of Middle Bakken Formation due
to abundant small pores exist in clay minerals appear in the scan image.

Table 2.2 Ratio of pores with different shapes to the whole scan image area

Total porosity
(%)

Micro-cracks
(%)

Intermediate
pores (%)

Round pores
(%)

Sample
1

LM 6.771 2.283 2.851 1.618

HM 6.47 2.423 2.732 1.298

Sample
2

LM 4.026 1.027 1.821 1.167

HM 5.213 1.625 2.853 0.726

Sample
3

LM 6.343 2.542 3.198 0.589

HM 6.956 5.408 1.455 0.092

Sample
4

LM 6.585 2.908 3.102 0.52

HM 4.05 2.444 1.492 0.112

Table 2.3 Ratio of pores with various shapes to the total pore area

Micro-cracks (%) Intermediate pores (%) Round pores (%)

Sample 1 LM 33.71732388 42.10604047 24.17663565

HM 37.44976816 42.22565688 20.32457496

Sample 2 LM 25.50919026 45.23099851 29.25981123

HM 31.17200000 54.72850000 14.09936697

Sample 3 LM 40.07567397 50.41778338 9.506542645

HM 77.74583094 20.91719379 1.336975273

Sample 4 LM 44.16097191 47.1070615 8.731966591

HM 60.34567901 36.83950617 2.814814815
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Fig. 2.6 SEM image of Sample 1 divided by grids with different length scale
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Fig. 2.7 Fractal dimensions of pore structures of sample shown in Fig. 2.6
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2.2.1.5 Heterogeneity Analysis

Based on the determination of the REA, we segmented all the samples into binary
format. Then we did multifractal analysis of all the samples. The mean of gener-
alized dimensions (Dq) versus variable q (between −10 and +10) for the five
samples are shown in Fig. 2.8.

Figure 2.8 shows that all samples follow a sigmoid fit and exhibit pronounced
decreasing Dq values with increasing q. D0, D1 and D2 are the three parameters that
are commonly used for the multifractal analysis. D0 is called the capacity dimension
which provides the average values of the analyzed structure distribution, indicating
the complexity of the pore structures. D1 is called the information dimension and D2

is the correlation dimension (Li et al. 2012). The values of these parameters for the
samples tested in this study are listed in Table 2.5.

Table 2.4 Fractal dimension
analysis results

D R2

Sample 1 LM 1.81444 0.99806

HM 1.82341 0.99708

Sample 2 LM 1.75422 0.99685

HM 1.71802 0.99444

Sample 3 LM 1.79201 0.99604

HM 1.47195 0.99126

Sample 4 LM 1.73229 0.99211

HM 1.38407 0.98966
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Fig. 2.8 Generalized dimensional spectra for the images of the five samples
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The parameters in Table 2.5 demonstrate that all the five samples have the same
characteristics: D0 > D1 > D2, confirming that the pore distributions of the five
samples are multifractal. Sample 5 has the highest D0 value while Sample 3
showing the smallest demonstrating that Sample 5 has the most complex pore
structures as opposed to Sample 3 with the least complex pore structures. The ratio
of D1/D0 is an indication of the dispersion of the porosity with respect to the pore
size since it provides the information of proportional variation instead of the
absolute variation (Mendoza et al. 2010). Sample 2 and Sample 3, correspondingly,
carry the largest and lowest ratio D1/D0 among the five samples tested in this study.

The multifractal spectrum can be plotted to visualize the distribution of the pores
of the samples. Figure 2.9a illustrates the relationship between aq and q of the five
samples. Similar to Dq, aq also decreases as q increases. As q < 0, aq decreases
steadily followed by a sudden drop. Figure 2.9b shows the relationship between f
(a) and aq. Due to the difference of the D0 values in the five samples tested, a shift is
observed in the crest of the spectra from top to the bottom, which corresponds to the
apex of the spectrum. Sample 5 has the largest f(a) value due to its largest D0 value
among all the samples.

From the curves in Fig. 2.9a, we can read the values of amax and amin, which
indicate the fluctuation of maximum and minimum probability of pixels (Costa and
Nogueira 2015). The related extension of singularity length Da which is defined as
Da = amax � amin can be calculated and the curve asymmetry of singularity spec-
trum (A) can be quantified based on the following equation (Hu et al. 2009; Shi
et al. 2009):

A ¼ a0 � amin
amax � a0

ð2:24Þ

The values of A calculated for the samples are shown in Table 2.6. The data in
this Table show that Sample 3 has the highest value of the Da whereas Sample 1
experiencing the lowest value. Sample 3 has the largest probability distribution and
strongest multifractality. The asymmetry values of Sample 1, 2 and 5 listed in
Table 2.6 are less than 1, i.e. the curve is left skewed, indicating the domain of low
exponents and slight fluctuation, while the values of Sample 3 and Sample 4 are
larger than 1, demonstrating the domain of large exponents and large fluctuation.

The magnitude of the difference in the values of a0 and D0 is a measure of
heterogeneity (Li et al. 2012). Figure 2.10 shows the plot of a0 versus D0 of the five
tested samples. The data points of all samples deviate from the 450 line indicating

Table 2.5 Values of D0, D1

and D2 for the five samples
D0 D1 D2 D1/D0

Sample 1 1.7394 1.7149 1.6990 0.9859

Sample 2 1.7846 1.7716 1.7576 0.9927

Sample 3 1.7243 1.6495 1.5993 0.9566

Sample 4 1.7637 1.6930 1.6419 0.9599

Sample 5 1.8496 1.8289 1.8115 0.9888

34 2 Pore Structures



-10 -5 0 5 10
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Sample 1
 Sample 2
 Sample 3
 Sample 4
 Sample 5

q

q

(a) q versus q

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sample 1
 Sample 2
 Sample 3
 Sample 4
 Sample 5

f(
)

(b) f versus q

Fig. 2.9 The multifractal
spectrum of the five samples
tested

Table 2.6 Values of Da and
asymmetry values of
singularity spectrum (A) of
samples

Sample amax amin a0 Da A

1 2.1688 1.5615 1.7711 0.6073 0.5270

2 2.3009 1.6157 1.7973 0.6852 0.3606

3 2.2210 1.4062 1.8156 0.8148 1.0099

4 2.1826 1.3855 1.8464 0.7971 1.3709

5 2.2792 1.6544 1.8748 0.6248 0.5450
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that the samples are heterogeneous and should be described by the multifractal
spectra rather than the monofractal dimension. From Fig. 2.10, it can also be found
that the distance between Sample 3 and the 450 line is the largest, indicating that
Sample 3 is the most heterogeneous one among all these samples.

We changed the window moving size and calculated the related lacunarity.
Figure 2.11 shows the grids of the image at different scales for Sample 1, as an
example. Then we plotted lacunarity values against a range of different moving
window sizes and the results presented in logarithmic axes. Figure 2.12 shows that
the lacunarity values vary as the box size changes. In all cases, as the box size
increases, the lacunarity value decreases. This is because at small spatial scales, the
moving window size is much smaller than the size of the dominant textual com-
ponents of the image, and most boxes are either mostly occupied or left empty. As a
result, the variance of the number of occupied sites in a moving window is large,
resulting in high lacunarity. As the box size increases, the size of the moving
window increases and becomes larger than any repeating spatial pattern in the
image, the variance in the number of the occupied sites in the moving window
diminishes and the lacunarity tends to unity (and its logarithm value tends to zero)
(Malhi and Román-Cuesta 2008). The plots of Sample 1 and Sample 2 show lower
values than those of Sample 3, 4 and 5, showing smaller lacunarity values.
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Fig. 2.10 Homogeneity of the five samples
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The mean lacunarity, which is to put the heterogeneity from one perspective and
one series of grid sizes into an average, was calculated based on the following
equation (Costa and Nogueira 2015):

Fig. 2.11 SEM image of Sample 1 divided by grids with different length scale
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Fig. 2.12 Lacunarity analysis of five samples
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K ¼
P

i ð1þ rðrÞ=uðrÞÞ2
h i

nðM; rÞ ð2:25Þ

The results of the calculations for the five samples are shown in Fig. 2.13.
This figure shows that Sample 3 has the highest lacunarity value whereas Sample

2 has the lowest. As it was mentioned earlier, the sample with higher lacunarity has
larger exhibits larger gaps in the image, indicating more heterogeneity. Overall,
from the lacunarity analysis, Sample 3 exhibits the most heterogeneous pore
structure among all samples. We compared the heterogeneity analysis using both
lacunarity and multifractal fractal methods. The results showed that we could derive
the same results, i.e. Sample 3 is the most heterogeneous and Sample 2 is the most
homogeneous among all the testing samples, which demonstrates that multifractal
theory and lacunarity method can derive same results regarding the samples’
heterogeneity.

2.2.2 AFM

Figure 2.14a shows the relationships between force (V) and Z (the height) for the
tip approaching and retracting process from one test point of the sample (Liu et al.
2017). When the cantilever is far away from the surface, there are no detect
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0.10

0.15

0.20

Fig. 2.13 Lacunarity values of five tested samples
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interaction forces. As the cantilever approaches the surface, forces such as van der
Waals electrostatic forces come into play. The gradually attractive force exceeds the
spring constant, and the tip begins to contact the surface. As the tip retracts a particular
point (adhesion force point), the spring constant exceeds the gradient of the force of
adhesion and the tip suddenly breaks away from the sample to its equilibrium position
(Kumar et al. 2008). Figure 2.14b are the part of the approaching and retracting curves
of the sample of different points. From this pic we find different test points have
different contact points, then we combined the location of the test points and contact
point value and finally we got the topography image of the sample surface.

Figure 2.15a shows the topography image of one sample from Bakken
Formation in 2D format. The color differences in the picture show the height
difference. The darker the color in the image, the lower the depth of the test point.
Figure 2.15b is the 3D image of the sample surface which can tell the height
difference more directly.

Since the sample was polished, we can regard that the surface is very flat, then
the height difference between different test points can be viewed as the existence of
pores. We consider the highest height value point as the sample surface and then the
height difference between the studying point and the highest point can be calculated
as pore depth. Figure 2.16b illustrates the pore depth along the scanning line in
Fig. 2.16a. The maximum pore depth in this scanning line is 0.5687 lm. A typical
pore with diameter 2.43 lm and depth 0. 55621 lm was extracted and can be found
in Fig. 2.6c. Then we calculated the pore surface area and volume area showing in
Table 2.7. Results showed that this pore has a surface area around 1.03 lm2 and

(a)

(b)

Adhesion force
Contact Point

One test point

Part of the whole test points

Fig. 2.14 Approaching and retracting curves
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volume around 0.04467 lm3. This further proves that AFM can detect the depth of
the pores and estimate the pore volumes which is beyond the ability of SEM
(Hirono et al. 2006).
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Fig. 2.15 AFM image of the shale sample
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Fig. 2.16 Pore structure analysis (a is the surface image of the sample, b is the vertical distance
value from line from (a), c is the pore image extracted from (a), and d is the 3D format of (c))
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Table 2.7 Pore parameters
analyzed from Fig. 2.16c

Parameters Value Unit

Horizontal area 1.03 µm2

Valley area 1.32 µm2

Volume 44,676,431 nm3

Perimeter 4.4 µm
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Fig. 2.17 Statistical analysis of the pore depth of the sample from the line (a is the Pore depth
distribution and b is the probability plot)
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Pore size distributions play a major role in determining the adsorbing properties
of the rock which need to be analyzed. Statistical analysis method was used to study
the pore depth distributions of the line in Fig. 2.16a. Results can be observed from
Fig. 2.17. Figure 2.17a illustrates that the number of pores with depth larger than
0.56 lm are the most while the number of the pores with depth around 0.08 lm are
the least among all the groups. Probability plot of pore depth in Fig. 2.17b depicts
that the mean of the pore depth of the pore is 0.3108 lm and around 70% of the
pores have the depth less than 0.5 lm.

Based on the different depths of the test points, we get the distributions of the
depths of the whole sample surface. Figure 2.18 shows that the depth of the sample
surface has a wide range from 0 to 1.2 lm and more than 50% of the points are
above 0.6 lm. The maximum pore depth of the scanned sample surface is
1.15445 lm, more than 60% of the pores whose depths are between 0.8 and
1.1 lm.

2.2.3 Gas Adsorption

2.2.3.1 Nitrogen Gas Adsorption Curve Analysis

Figure 2.19 represents the nitrogen gas adsorption data for the Bakken samples. At
the extremely low relative pressure, the pores exhibit micro-pore filling and the
amount of the adsorption will depend on the micro-pore volume. Then as the
relative pressure increases, the multilayer adsorption will be formed. The knee-bend
in Fig. 2.19a in the adsorption isotherm indicates the completion of the monolayer
and the beginning of the multilayer, which can reflect the existence of the
meso-pores and macro-pores. At the higher relative pressure, the gas in the pores
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Fig. 2.18 Statistical analysis
of the pore depth distributions
of the whole sample surface
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starts to condense. It should be mentioned that gas condensation at various pres-
sures takes place in pores with different sizes. For the desorption part of the Middle
Bakken samples (Fig. 2.19b), as the relative pressure decreases, the quantity of gas
adsorption decreases. Then, the desorption curve was forced to coincide with the
adsorption curve which is caused by the “tensile strength effect” (Groen et al.
2003). The hysteresis loop between the adsorption and desorption can be viewed in
Fig. 2.19b due to the existence of the meso-pore pores in the Middle Bakken
samples (Liu et al. 2017).

The capillary condensation will occur during adsorption and is proceeded by a
metastable fluid state while capillary evaporation during desorption occurs via a
hemispherical meniscus, separating the vapor and the capillary condensed phase
(Groen et al. 2003). The sudden disappearance of the hysteresis loop in Fig. 2.19b
around a certain relative pressure can indicate the presence of the small pores less
than 4 nm in the Middle Bakken samples. This is due to the hemispherical meniscus
that will collapse during the capillary evaporation in pores with the diameter less
than 4 nm. The shape of the hysteresis loop can indicate the pore type of the porous
medium. From Fig. 2.19 in the Middle Bakken samples, the desorption part of
measurement exhibits an obvious yielding point at the critical relative pressure.
When the relative pressure becomes larger than the critical point, the adsorption and
desorption both increase steeply and the hysteresis loop is very narrow which
represents the plate type pores in the Middle Bakken Formation. For the Upper and
Lower Bakken, the hysteresis loop is very wide and the adsorption and desorption
portion of the curve is flat from the beginning to the end of desorption, which
represents the silt type pore. In comparison with Middle Bakken samples, the
hysteresis loop in the Upper and Lower Bakken samples does not disappear sud-
denly and there was no obvious forced closure phenomenon (Fig. 2.19a, c). This
indicates that the samples from Upper and Lower Bakken Formation contain
abundant pores smaller than 4 nm (Cao et al. 2015). The plate-shape pores in the
Middle Bakken and the silt-shape pores in Upper and Lower Bakken is advanta-
geous for the flow of the hydrocarbon due to their excellent openness. None of the
samples we analysed in this study, showed a horizontal plateau at the relative
pressure close to 1, which illustrates that the Bakken shale samples still contain a
range of macro-pores which cannot be analysed by the nitrogen gas adsorption
method (Cao et al. 2016; Schmitt et al. 2013).

2.2.3.2 PSD Analysis from the Nitrogen Adsorption

Due to the tensile strength effect, the pore size distribution analysis which can be
estimated from the desorption curve, will be limited to 4–5 nm which cannot
describe the pore structures accurately. So, the adsorption branch will be chosen for
the PSD analysis. Figure 2.20 shows the pore size distribution of the samples based
on the DFT theory. The PSD curve of all samples exhibited the multimodal char-
acteristic with several volumetric maxima. The pore structures were analysed and
the following observations were reached:
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• Middle Bakken has larger pore volume and average pore size diameter than the
Upper and Lower Bakken (Table 2.8).

• Positive relationships exist between macro pore volume and average pore
diameter (Fig. 2.21a); total pore volume and pore diameter (Fig. 2.21b).

• An overall inverse correlation exists between the average pore diameter and the
BET surface area (Fig. 2.22a). BET shows an increasing trend as the
micro-meso pore volume increases (Fig. 2.22b) while no obvious relationship
can be seen between the macro-pore volume and BET surface area (Fig. 2.22c).

2.2.3.3 Fractal Analysis

Based on previous studies (Sun et al. 2016), the nitrogen adsorption isotherm can be
divided into two main regions (Fig. 2.23a). Region 1 is the monolayer-multilayer
adsorption in which the dominant force is van der Waals and Region 2 is the
capillary condensation regime with the surface tension being the dominant force
(Khalili et al. 2000; Qi et al. 2002). We separated the nitrogen adsorption isotherm
and analysed the fractal behaviour of the two regions respectively. D1 can reflect the
fractal behaviour of region 1 with D2 representing the fractal behaviour of region 2
(Fig. 2.23b). The fractal analysis results for the samples are presented in Table 2.9.
The results show that for all the samples, the fractal dimension of region 2 (D2) is
larger than the fractal dimension of region 1 (D1). This is interpreted as D2

describes the capillary condensation of gas clumps occurred in the shale pores while
D1 value represents the mono-multilayer adsorption. As more gas was adsorbed,
more molecules were available to cover the aggregated outline thus increasing the
surface fractal dimension (Sahouli et al. 1997; Tang et al. 2016). D2 is larger than

Table 2.8 Low pressure nitrogen adsorption analysis results

Samples Bakken
formation

BET surface
area (m2/g)

Total pore
volume
(cm3/100 g)

Micro-meso
pore
(cm3/100 g)

Average pore
diameter (nm)

#1 UpperBakken 3.292 0.937 0.829 11.384

#2 UpperBakken 3.785 0.887 0.765 9.370

#3 UpperBakken 3.481 1.003 0.890 11.525

#4 UpperBakken 2.624 0.476 0.435 7.262

#5 UpperBakken 4.08 0.747 0.697 7.321

#6 MiddleBakken 5.021 1.372 1.265 10.929

#7 MiddleBakken 4.823 1.425 1.256 11.818

#8 MiddleBakken 2.197 0.998 0.874 18.179

#9 MiddleBakken 4.765 1.633 1.462 13.711

#10 MiddleBakken 5.934 1.525 1.409 10.277

#11 Lower Bakken 4.359 0.499 0.469 4.581

#12 Lower Bakken 3.897 0.856 0.777 8.784
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D1 can also indicate that the pore structures of the shale samples are more com-
plicated than the pore surface. Samples from the Middle Bakken Formation with
higher average D1 values and lower D2 values than samples from the Upper and
Lower Bakken Formation corresponds to more irregular pore surface and less
complicated pore structures.

The correlations between the fractal dimension (D2) and the pore structures were
analysed further. Figure 2.24 shows that the fractal dimension D2 has a negative
linear relationship between the total pore volume and the average diameter. The
shale samples in the Bakken Formation with smaller pore volume and smaller
average diameter tends to have higher fractal dimension D2, demonstrating that
those samples have more complex pore structures.
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2.2.3.4 CO2 Adsorption Analysis

In order to characterize the pores with sizes less than 2 nm, CO2 gas adsorption was
applied. Figure 2.25 shows the CO2 adsorption isotherms of all samples tested in
this study. The CO2 adsorption isotherms of the Upper Bakken and Lower Bakken
have similar shapes. As the relative pressure increases from 0, the adsorption
quantity increases rapidly followed by a slow increase after the relative pressure
reaches a critical point. For the Middle Bakken, the adsorption quantity increases
with an increasing rate as the relative pressure increases. This is since CO2 is first
adsorbed into the smaller pores and then into the relatively large pores as relative
pressure increases. The difference in the CO2 adsorption isotherms between the
Upper/Lower and the Middle Bakken Formation originates from their different pore
microstructures. The results in Table 2.10 show that Upper and Lower Bakken
formations own more micro-pores (approximately 3 times) than the Middle Bakken.
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Pores with sizes less than 1 nm exist in the Upper and Lower Bakken. Pores with
size range of 1–2 nm are the main contributors to the total porosity of micro-pores
for the Bakken samples.

2.2.3.5 Full Range Pore Size Analysis

CO2 adsorption can characterize the pore sizes less than 2 nm while nitrogen
performs well in quantifying the meso-pores and the macro-pores (less than
200 nm). In this section, the pore size distribution results of the two gas adsorption
methods were combined in order to analyse the pore structures. The blue curve in
Fig. 2.9 shows the pore size distributions (less than 200 nm) of several samples. In
order for quantitative measure of the pore size distributions, deconvolution method
was applied to determine the mean size and the standard deviation of each pore size
family in a given distribution. The pore size family can be quantified by the distinct
peaks from the pore size distribution. Gaussian/normal distribution is commonly
used to describe the experiments regardless of whatever probability distribution
describes an individual experimental result. The detailed deconvolution procedure
can be found in Ulm et al. (2007). In this procedure, it can be assumed that the
pores can be divided into J = 1, n pore size groups with sufficient contrast in pore
size distributions. The Jth pore group occupies a volume fraction fJ of the total
porosity. The theoretical probability density function (PDF) of the single phase,
which is assumed to fit a normal distribution is defined as:

PJðxi;UJ ; SJÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðSJÞ2

q exp
�ðxi � ðUJÞÞ2

2ðSJÞ2
 !

; ð2:26Þ

Table 2.9 Fractal analysis of the Bakken samples

Samples Bakken formation Slope D1 R2 Slope D2 R2

#1 Upper Bakken 0.769 2.231 0.998 0.368 2.632 0.991

#2 Upper Bakken 1.297 1.703 0.999 0.269 2.731 0.993

#3 Upper Bakken 0.885 2.115 0.997 0.359 2.641 0.995

#4 Upper Bakken 0.732 2.268 0.996 0.413 2.587 0.999

#5 Upper Bakken 0.952 2.048 0.999 0.270 2.730 0.994

#6 Middle Bakken 0.632 2.368 0.999 0.519 2.481 0.998

#7 Middle Bakken 1.107 1.893 0.996 0.456 2.544 0.996

#8 Middle Bakken 0.868 2.132 0.997 0.602 2.398 0.999

#9 Middle Bakken 0.724 2.276 0.996 0.500 2.500 0.997

#10 Middle Bakken 0.662 2.338 0.999 0.470 2.530 0.997

#11 Lower Bakken 0.818 2.182 0.990 0.298 2.703 0.999

#12 Lower Bakken 0.895 2.105 0.994 0.304 2.697 0.994
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where UJ and SJ are the mean value and the standard deviation of pore size dis-
tributions of the phase J = 1 to n. Minimizing the difference between the data from
the weighted model-phase probability distribution function (PDF) and the experi-
mental PDF using the following equation, we can derive the unknowns {fJ, UJ, SJ,}:

min
Xm XN

i¼1

Xn
J

fJPJðxi;UJ ; SJÞ � PxðxiÞÞ2
 " #

ð2:27Þ

Xn
J¼1

fJ ¼ 1 ð2:28Þ
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(a) Upper Bakken

(b) Middle Bakken
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Fig. 2.25 CO2 adsorption
isotherms for Bakken samples
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In the above equation, Px (xi) is the measured value of the normalized frequency
of the pore size xi and m is the number of the intervals (bins).

To ensure that the pore size groups have sufficient contrast, the overlap of
successive Gaussian curves representative of the two phases is constrained by the
following criterion (Sorelli et al. 2008).

UJ þ SJ\UJþ 1 þ SJþ 1 ð2:29Þ

The colorful curves in Fig. 2.26 display the deconvolution results of the samples
and the red dash curve shows the fit sum of the deconvolution phases. The fitting
coefficients of all the samples are above 0.85 which shows that the models fit the
experiment data very well. It can be found that the pores in Upper, Middle and
Lower Bakken have five typical pore size categories. The deconvolution results of
the samples demonstrate that the Bakken samples analysed (Upper, Middle, and
Lower Bakken shales) have similar pore size families. One pore size category exists
in the micro-pore scale with mean value around 1.5 nm (Family 1), which is
defined as the micro-pore size family and one pore size category that is in the
macroscale with mean size value larger than 50 nm (Family 5), which is defined as
the macro-pore size family. The other three pore families belong to the meso-pore
scale with mean size value 9 nm (Family 2), 24 nm (Family 3) and 34 nm (Family
4), respectively, which can be defined as the meso-pore families. Compared with
the volume ratios of each pore size family, it was observed that the percentage of
micro-pore size family is larger in the samples from the Upper and Lower Bakken
than that of the Middle Bakken.

Table 2.10 Pore size analysis from the CO2 adsorption

Samples Bakken formation Micro-pore <2 nm (cm3/
100 g)

Micro-pore <1 nm (cm3/
100 g)

#1 Upper Bakken 0.159 0.025

#2 Upper Bakken 0.152 0.025

#3 Upper Bakken 0.126 0.020

#4 Upper Bakken 0.146 0.025

#5 Upper Bakken 0.186 0.039

#6 Middle Bakken 0.048 0.000

#7 Middle Bakken 0.035 0.000

#8 Middle Bakken 0.019 0.000

#9 Middle Bakken 0.028 0.000

#10 Middle Bakken 0.048 0.000

#11 Lower Bakken 0.128 0.024

#12 Lower Bakken 0.090 0.020
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