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Abstract Support vector machines (SVM) and deep convolutional neural networks

(DCNNs) are state-of-the-art classification techniques in many real-world appli-

cations. Our investigation aims at proposing a hybrid model combining DCNNs

and SVM (called DCNN-SVM) to effectively predict very-high-dimensional gene

expression data. The DCNN-SVM trains the DCNNs model to automatically extract

features from microarray gene expression data and followed which the DCNN-SVM

learns a non-linear SVM model to classify gene expression data. Numerical test

results on 15 microarray datasets from Array Expression and Medical Database

(Kent Ridge) show that our proposed DCNN-SVM is more accurate than the classi-

cal DCNNs algorithm, SVM, random forests.

Keywords Microarray gene expression ⋅ Convolutional neural networks

Support vector machines

1 Introduction

Nowadays, the development of high-throughput technologies such as DNA microar-

ray has led to incremental growth in the public databases such as the ArrayEx-

press [1] and NCBI Gene Expression Omnibus [2]. Microarray is technology which

enables researchers to investigate and address issues which is once thought to be non

traceable by facilitating the simultaneous measurement of the expression levels of

thousands of genes in a single experiment [3]. A characteristic of microarray gene
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expression data is that the number of variables (genes) m far exceeds the number of

samples n, commonly known as curse of dimensionality problem. The vast amount of

gene expression data leads to statistical and analytical challenges and conventional

statistical methods give improper result due to high dimension of microarray data

with a limited number of patterns [4]. It is not feasible when build machine learn-

ing model due to the extremely large features set with millions of features and high

computing cost.

With the wealth of gene expression data from microarrays being produced, more

and more new prediction, classification, and clustering techniques are being used for

the analysis of the data. Many methods have been used for microarray gene expres-

sion data classification, and typical methods are support vector machines (SVM)

[5–8], k-nearest neighbor classifier [9], C4.5 decision tree [10–12] and ensemble

methods, such as random forests [13], random forests of oblique decision trees [14],

bagging and boosting [15, 16].

In recent years, convolutional neural networks (CNNs) have achieved remarkable

results in computer vision [17], text classification [18]. In addition, CNNs is also used

for omics, biomedical imaging and biomedical signal processing [19]. Most data in

bioinformatics are raw data such as gene sequences, proteins, microarray, medical

image. Conventional machine learning algorithms have limitations in processing the

raw form of data, so hybrid models often are used to combine the advantage of fea-

tures extraction from the raw data of CNNs and performance classification of SVM

or random forests (RF). The hybrid model neural network and SVM was initially

proposed in [20]. In [21], model is later proposes in for handwritten digit recogni-

tion. More relevant previous work include [22], where a hybrid model approach is

presented: the CNNs has trained using the back-propagation algorithm and the SVM

is trained using a non-linear regression approach. It is noticeable that error classifica-

tion rate gained by the hybrid model has achieved better results. In [23], the hybrid

model uses for recognition for mobile swarm robotic systems. In addition, CNNs

and RF are also combined to build hybrid model for electron microscopy images

segmentation [24].

In this paper, we propose a hybrid model combining DCNNs and SVM (called

DCNN-SVM) to effectively classify very-high-dimensional gene expression data.

The main idea of our approach is to train a specialized DCNNs to extract robust

hierarchical features from microarray gene expression data (MGE data) and provide

them to SVM classifier using radial basis function kernel (RBF). Our approach dif-

fers from these previous ones as we build a single model instead of using disjoint

classifiers trained separately. In relevant previous work, the CNNs is trained using

the back-propagation algorithm and the SVM is trained using a non-linear regression

approach, linear kernel function and random forest. The data in the relevant previous

work was image such as: handwritten digit, medical image and video.

We have used 15 datasets of ArrayExpress [1] and Biomedical repository [25] to

evaluate our model and also to compare to traditional classification methods such as

DCNNs, support vector machines [26] and random forests [27]. The results showed

that DCNN-SVM extract robust hierarchical features and improves classification
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accuracy. Our method shows an excellent performance in general with support vector

machines classifier using radial basis function kernel.

The paper is organized as follows. Section 2 presents our approach, a hydrid

model combining DCNNs and SVM. Section 3 shows the experimental results. We

then conclude in Sect. 4.

2 Methods

2.1 Deep Convolutional Neural Networks

DCNNs are designed to process multiple data types, especially two-dimensional

images, and are directly inspired by the visual cortex of the brain. In the visual cortex,

there is a hierarchy of two basic cell types: simple cells and complex cells [28]. Sim-

ple cells react to primitive patterns in sub-regions of visual stimuli, and complex cells

synthesize the information from simple cells to identify more intricate forms. Since

the visual cortex is such a powerful and natural visual processing system, DCNNs

are applied to imitate three key ideas: local connectivity, invariance to location, and

invariance to local transition [29]. There are three main types of layers used to build

DCNNs architectures: convolutional layer, pooling layer, and fully connected layer.

Normally, a full DCNNs architecture is obtained by stacking several of these layers.

In a DCNNs, the key computation is the convolution of a feature detector with an

input signal. Convolutional layer computes the output of neurons connected to local

regions in the input, each one computing a dot product between their weights and the

region they are connected to in the input volume. The set of weights which is con-

volved with the input is called filter or kernel. Every filter is small spatially (width

and height), but extends through the full depth of the input volume. For inputs such

as images typical filters are small areas and each neuron is connected only to this

area in the previous layer. The weights are shared across neurons, leading the filters

to learn frequent patterns that occur in any part of the image. The distance between

the applications of filters is called stride. Whether stride hyper parameter is smaller

than the filter size the convolution is applied in overlapping windows.

2.2 Support Vector Machines

Support vector machines (SVMs) proposed by Vapnik [26] are systematic and prop-

erly motivated by statistical learning theory. SVMs are the most well known as class

of learning algorithms using the idea of kernel substitution. SVM and kernel-based

methods have shown practical relevance for classification, regression [30]. The SVM

algorithm is to find the best separating plane furthest from the different classes. In

order to achieve this purpose, a SVM algorithm tries to simultaneously maximize



236 P.-H. Huynh et al.

Fig. 1 Linear separation of

the datapoints into two

classes

the margin (the distance between the supporting planes for each class) and minimize

the error (any point falling on the wrong side of its supporting plane is considered to

be an error). For binary classification problem (see Fig. 1), samples of one class are

located on one side of the hyper-plane while samples of the other class are located

on the other side of the hyper-plane.

For multiclass, one-versus-all [26], one-versus-one [31] are the most popular

methods due to their simplicity. Let us consider k classes (k > 2). The one-versus-

all strategy builds k different classiers where the ith classier separates the ith class

from the rest. The one-versus-one strategy constructs k(k − 1)∕2 classiers, using all

the binary pairwise combinations of the k classes. The class is then predicted with a

majority vote.

SVM can use some other classification functions, for example a polynomial func-

tion of degree d, a radial basis function (RBF) or a sigmoid function. More details

about SVM and other kernel-based learning methods can be found in [32].

2.3 Support Vector Machines Using the Feature Extraction
from Deep Convolutional Neural Networks

DCNNs are efficient at learning invariant features from data, but do not always pro-

duce optimal classification results. Conversely, a non-linear SVM cannot learn com-

plex invariances, but produce good decision surfaces by maximizing margins using

soft-margin approaches [33].

Our investigation is to propose a hybrid model architecture: A coupling SVM with

the feature learning of DCNNs (denoted by DCNN-SVM) for classifying microar-

ray gene expression data. The training task of DCNN-SVM consists of two main

steps. First, the algorithm learns DCNNs to deeply extract functional features from

high dimensional gene expression profiles. Next, it trains non-linear SVM models to

perform the classification of the data representation extracted by the previous one.

The network architecture is shown in Fig. 2. Firstly, the first layer uses gene

expression data. Secondly, the second and fourth layers of the network are convolu-

tion layers alternator with sub-sampling layers, which take the pooled maps as input.



A Coupling Support Vector Machines with the Feature Learning . . . 237

Fig. 2 The DCNN-SVM architecture

Consequently, they are able to extract features that are more and more invariant to

local transformations of the input layer. The sixth layer is fully connected layer. The

final layer is substituted by SVM with the RBF kernel for classification. The out-

puts from the hidden units are taken by the SVM as a feature vector for the training

process. After that, the training stage continues till realizing good trained. Finally,

classification on the test set is performed by the SVM classifier with such automati-

cally extracted features.

3 Evaluation

We implement DCNN-SVM, SVM and random forests in python, using library

SVM, LibSVM [34], tensorflow [35] and scikit library [36]. All tests were run under

Linux Mint on a single 2.4 GHz Core I3 PC with 8 GB RAM.

3.1 Experiments Setup

In our experiments, we use datasets provided by ArrayExpress database [1] and the

Medical Database (Kent Ridge) [25]. ArrayExpress archive of Functional Genomics

Data stores data from high-throughput functional genomics experiments. We down-

loaded MGE datasets from the ArrayExpress. The criteria for selecting the datasets

were that the experiments had been conducted in humans and in the field of cancer.

Datasets published or updated after 2012 and provided processed data. To reduce

the source of variability of classification model performances because of the array

used in the experiments, we retained studies conducted with Affymetrix array. The

datasets and their characteristics are summarized in Table 1.

The test protocols are presented in the column 5 of Table 1. Some datasets are

already divided in training set (Trn) and testing set (Tst). For these datasets, we used
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Table 1 Description of microarray gene expression datasets

ID Name Individuals Attributes Classes Protocols References

1 Lung cancer 181 12533 2 Trn-Tst [37]

2 Prostate cancer 136 12600 2 Trn-Tst [38] ID:68907

3 Astra Zeneca 627 54756 22 k-fold [1] ID:57083

4 L. Leukaemia 575 22500 3 k-fold [1] ID:33315

5 CCLE 917 19044 21 kfold [1] ID:36133

6 GTex 837 22801 13 k-fold [1] ID:45787

7 Breast cancer 327 54627 6 k-fold [1] ID:20685

8 Breast cancer 97 24481 2 Trn-Tst [39]

9 Leukemia 40 54675 2 loo [1] ID:14858

10 Cancer cell. Project 950 54627 50 k-fold [1] ID:MT-AB37

11 T-ALL & T-LL 29 15435 3 loo [1] ID:1577

12 Sarcoma 105 22283 10 loo [1] ID:6481

13 Lung cancer 203 12600 5 loo [40]

14 Breast cancer 286 22283 3 loo [1] ID:2034

15 Miscellaneous 50 10100 5 loo [41]

the training data to build the our model. Then, we classified the testing set using the

resulted model. With a datasets having less than 300 data points, the test protocol is

leave-one-out cross-validation (loo). For the others, we used 10-fold cross-validation

protocols remains the most widely to evaluate the performance [42]. Our evaluation

used on the classification accuracy.

The DCNN-SVM architecture is shown in Table 2. It consist of 2 convolutional

layers with 32 and 16 feature maps of (3 × 3) kernel, and each convolutional layer

has a (2 × 2) average pooling layer followed. The features are taken from the last

fully connected layer. SVM takes these outputs from the fully connected for classifi-

cation. The one-versus-all method is utilized for the multi-class SVM that is possibly

to be viewed as a trainable feature extractor. We have also tried other configurations

of CNN, whereas this one gives the best performance. Input data are transformed

the following way: we use microarray expression feature to represent each sample

patient, which transform into a feature matrix. For deep convolutional neural net-

works configurations, we use ADAM method [43] for optimization, cross-entropy

for loss function. The batch size is set to 16 and 50 epochs are used. We also tried to

tune activation function with ReLU, Tanh and Sigmoid. The Tanh activation works

better than other activation functions for microarray gene expression data.

We propose to use RBF kernel type in SVM models because it is general and

efficient [44]. We also tried to tune parameters γ of RBF kernel and the cost C (a

trade-off between the margin size and the errors) to obtain a good accuracy. These

parameters are presented in Table 2.
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In order to evaluate the effectiveness of our approach, we used two different exper-

iments to classify microarray samples. First, we compare DCNN-SVM with SVM,

random forests (RF) and traditional DCNNs. In this experiments, RF algorithms

build 200 decision trees and we use linear kernel type in SVM models (C = 105,

γ = 0.01). Second, we compare different kernel functions in the SVM classifier: a

linear kernel (DCNN-SVM linear) and a radial basis function (DCNN-SVM) with

best parameter in Table 2. In addition, we also compared DCNN-SVM with DCNNs

using random forest (DCNN-RF) classifier.

3.2 Experiments Results

Numerical test results on 15 microarray datasets are shown in Table 3. Results on

15 datasets showed that DCNN-SVM is more accuracy than the classical DCNNs

algorithm, SVM, random forests. DCNN-SVM has the best accuracy of 11 out of

15 datasets. SVM and RF have the best only 1 out of 15 datasets. Table 3 and Fig. 3

showed that DCNN-SVM uses the RBF kernel to achieve the best accuracy result of

11 over 15 datasets. The DCNN-SVM uses linear kernel to achieve the best accuracy

of 6 out of 15 datasets and DCNN-RF uses RF classifier has the best accuracy of 5

Table 3 Classification results in terms of accuracy (%)

ID SVM RF DCNNs DCNN-RF DCNN-SVM

Linear

kernel

RBF kernel

1 99.33 97.99 100.0 100.0 100.0 100.0

2 91.18 94.12 97.00 97.00 97.00 97.00

3 80.54 71.45 89.30 88.51 88.96 89.32

4 83.30 80.35 87.14 86.62 87.13 87.13

5 90.73 87.24 91.18 91.40 91.17 91.40

6 97.73 97.37 97.86 97.74 97.86 97.86

7 88.69 84.40 88.80 88.30 88.80 89.20

8 68.42 68.42 75.00 75.00 75.00 75.00

9 87.50 85.00 77.50 85.00 100.0 100.0

10 61.41 56.42 94.8 95.00 95.4 95.4

11 89.66 96.55 86.21 96.55 93.10 93.10

12 71.43 63.81 65.71 62.86 69.52 69.52

13 93.60 92.12 93.60 94.09 93.60 93.60

14 87.41 86.01 87.06 87.76 88.11 88.11

15 68.00 64.65 56.00 62.00 58.00 96.00
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Fig. 3 Comparison of accuracy (%)

out of 15 datasets. DCNNs has the best accuracy of 4 out of 15 datasets. This superi-

ority of DCNN-SVM (RBF) on CNNs, DCNN-SVM (RF) and DCNN-SVM (linear)

showed in table results: 5 wins of DCNN-SVM (RBF) on DCNN-SVM (linear), 10

wins of DCNN-SVM (RBF) on DCNN-SVM (RF) and DCNNs on 15 datasets.

4 Conclusion and Future Works

We have presented a hybrid model combining DCNNs and SVM to classify very-

high-dimension microarray gene expression data. The features are learned through a

convolution process and then sent as input to a SVM classifier using RBF kernel to

the objective of interest. After modifications through specified hyper parameters, the

model performs quite comparatively well on the task tested on 15 different datasets

from ArrayExpression and Medical Database. The numerical test results show that

our proposal is more accurate than the classical DCNNs algorithm, support vector

machines, random forests for classifying.

In the near future, we intend to provide more empirical test on large datasets of

microarray gene expression and comparisons with other algorithms. Our proposal

can be effectively parallelized. A parallel implementation that exploits the multicore

processors can greatly speed up the learning and predicting tasks.
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