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CHAPTER 5

Simulating Heterogeneous Clouds at Scale

Christos K. Filelis-Papadopoulos,
Konstantinos M. Giannoutakis, George A. Gravvanis,
Charalampos S. Kouzinopoulos, Antonios T. Makaratzis,

and Dimitrios Tzovaras

Abstract In this chapter, a review of existing cloud simulation frame-
works is given along with an overview of the recently proposed
CloudLightning simulation framework. Moreover, the parallel architec-
ture and parallel implementation details of the CloudLightning simulator
are presented along with the characteristics of the supported cloud archi-
tectures. These architectures include the traditional centralised approach
as well as the Self-Organised and Self-Managed CloudLightning approach.
The supported memory, network, and application execution models are
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reviewed. Furthermore, a recently proposed class of power models for
heterogeneous CPU-Accelerator-based hardware is discussed. Finally,
large-scale simulations for traditional and Self-Organised and Self-
Managed cloud environments are presented and compared.

Keywords CloudLightning simulator e Self-organisation e Self-
management ® Scalability e Large-scale simulations

5.1 INTRODUCTION

Cloud simulation tools have been extensively used for the analysis of cloud
data centres, since the cost of experimentation using various scenarios is
low. A number of different aspects, related to cloud environments, can be
studied through simulation including resource allocation strategies, live
migration of running applications to more efficient data centre resources,
energy consumption, and hardware resource utilisation. Several cloud
simulation tools have been developed during the past few years focusing
on different aspects of cloud environments. These tools can be categorised
into:

e Discrete Event Simulators (DES): These examine macro-scale phe-
nomena, such as application events that take place in certain moments
in time while completely disregarding micro-scale phenomena,
including network packet communication. DES are used to examine
large-scale simulations, while focus is given among others in the
study of cloud environments behaviour in terms of service delivery,
Virtual Machine (VM) allocation policies, utilisation of resources,
and the energy consumption of data centres.

e Packet-Level Simulators (PLS): These examine micro-scale phenom-
ena related to cloud environments, including packet loss and net-
work communication protocols. PLS offer high levels of accuracy at
the cost of performance though, since large-scale data centres cannot
be studied due to the restricting resolution of the simulations.

Cloud infrastructures continue to grow in both size and diversity to
cater for demand in terms of both user and data volumes and the variety
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of hardware resources. As a result, existing cloud simulation tools cannot
be used to efficiently simulate these heterogeneous environments at scales
several orders of magnitude greater than traditional data centres. By 2020,
hyperscale data centres will account for a substantial portion of all cloud
workloads and data (Cisco 2016). Furthermore, as hyperscale data centres
consist of servers in distinct geographical locations, the efficient manage-
ment of such infrastructures is made more difficult resulting in network
congestion and underutilisation of resources. Resource heterogeneity fur-
ther exacerbates these challenges. While hyperscale data centre operators
increasingly offer specialised hardware, such as Graphical Processing Units
(GPUs), Many Integrated Cores (MICs), and Field-Programmable Gate
Arrays (FPGAs), existing cloud simulation tools do not support them. The
efficient exploitation of the hardware infrastructure of heterogeneous
hyperscale cloud environments is a topic of great importance during the
last few years; thus, cloud simulation tools for studying heterogeneous
cloud environments that can cater for hyperscale need to be developed.

The remainder of this chapter is organised as follows. Section 5.2 pro-
vides a summary review of common cloud simulation frameworks used by
the scientific community and their limitations. A new simulation frame-
work, the CloudLightning Simulator, designed to simulate hyperscale
cloud environments composed of heterogeneous resources is presented in
Sect. 5.3. This is followed by a discussion of initial experimentation using
the CloudLightning Simulator to compare service delivery of three appli-
cation scenarios: oil and gas exploration, ray tracing, and genomics, using
(1) conventional cloud service delivery and (ii) cloud service delivery using
a self-organising self-managing (SOSM) approach.

5.2 CLOUD SIMULATION FRAMEWORKS

During the last decade, various cloud simulation frameworks have been
proposed, such as CloudSim (Calheiros et al. 2011), DCSim (Tighe et al.
2012), GDCSim (Gupta et al. 2011), GreenCloud (Kliazovich et al.
2012), iCanCloud (Nunez et al. 2012), and CloudSched (Tian et al.
2015). However, no existing cloud simulation framework is designed for
hyperscale simulations.

One of the main limitations of existing cloud simulation tools is the
lack of scalability. Most existing cloud simulation tools do not support
parallelism; thus, the simulation of very large data centres is not possible
(Byrne et al. 2017). Parallelism is of great importance for the simulation
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of hyperscale cloud environments since both computational work and
memory requirements can be distributed among multiple nodes, reducing
the execution time significantly and enabling the simulation of large-scale
data centres.

An important factor influencing scalability of the extant simulation
tools is memory requirements. In DES a large number of events should be
created and retained. The number of these events is closely related to the
number of resources simulated as well as the input tasks. Discrete Event
based simulators initialise the task list that will be executed for the whole
simulation and augment it gradually with new events according to time.
This process requires retaining a very large list in memory, its augmenta-
tion with new events, and its sorting in order to perform events in the
correct order. Thus, memory requirements increase significantly with the
number of resources or the simulation time. Memory restrictions also
occur due to the high level of detail of the simulated components, such as
in the case of the iCanCloud and GreenCloud frameworks, which becomes
prohibiting in very large-scale executions.

The effective management of resources is a significant challenge as their
number increases. More specifically, strategies which require the detection
of specific hardware cannot be applied or require significant computa-
tional cost when hyperscale systems are considered. Also, status informa-
tion corresponding to the underlying hardware resources is becoming
outdated, and thus efficient management of the system becomes more
challenging. Specialised strategies are required in hyperscale cloud envi-
ronments for the efficient and up-to-date management of the system.
Such strategies are not supported in existing simulation frameworks, and
thus the simulation of hyperscale systems is difficult to perform.

Finally, the inclusion of heterogeneous resources is not supported by
existing cloud simulation tools. Simple generic models are required for the
simulation of heterogeneous resources in order to be integrated in cloud
simulation environments (Makaratzis et al. 2017; Giannoutakis et al.
2017).

5.3 CLOUDLIGHTNING SIMULATOR

Unlike existing frameworks, the CloudLightning Simulator has been
designed from the ground up as a massively scalable solution, able to sim-
ulate hyperscale data centres consisting of millions of cloud nodes/servers.
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The framework is written in C++ and is parallelised using Message Passing
Interface (MPI) (Gropp et al. 1996) and OpenMP (Dagum and Menon
1998) to enable the efficient handling of hyperscale simulations.
CloudLightning supports the simulation of heterogeneous infrastructures
(including GPUs, MICs, and FPGAs/DFEs) that are commonly used for
the acceleration of High Performance Computing applications. One
important characteristic of the developed framework is the use of a time-
advancing loop, a technique that removes the need for pre-computation
and storage of future events, resulting in a significant reduction of its
memory requirements. This allows the integration of dynamic resource
allocation policies, such as SOSM, enabling the efficient management of
computer resources for simulating hyperscale environments. Moreover,
the CloudLightning Simulator places an emphasis on the simplicity of the
models it uses, focusing on models that require reduced number of com-
putations for producing the results of the simulations without loss of accu-
racy. Finally, all inputs and outputs of the simulator are represented
graphically.

The remainder of this section presents the generalised and extensible
CloudLightning simulation framework for simulating heterogeneous
resources using an SOSM approach.

5.3.1 Awchitecture and Basic Charactervistics of the Parallel
CloudLightning Simulation Framework

The CloudLightning Simulator was designed to simulate clouds relying
on the Warehouse Scale Computer (WSC) architecture (Barroso et al.
2013). WSC has been adopted by a multitude of companies including
Google, Amazon, Yahoo, Microsoft, and Apple, and has been widely used
in the design of cloud environments (Mars 2012). In the WSC architec-
ture, interconnected cloud computing nodes are grouped into cells that
arc centrally managed (Fig. 5.1).

In this architecture, the Gateway service is responsible for redirecting
end user requests to the appropriate Cells. The Gateway service is the
entry point of the system and is a cloud entity that receives resource
requests from the end users and redirects them to the Cells. A conceptual
cloud architecture with multiple Cells is presented in Fig. 5.2. The
resources are organised and monitored by the Cell manager’s broker that
is responsible for the provision of appropriate resources to end user
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requests and for the deployment of incoming tasks to the available
resources. The broker component is composed of multiple services,
including orchestration, telemetry, and identity service. Hyperscale cloud
environments consist of a considerably large number of Cells.

In the CloudLightning simulation framework, each Cell is hosted on a
different computing node of a distributed system, while the Gateway ser-
vice is hosted on the master computing node. The communication
between the Gateway service and the Cells is performed using the MPI
framework. The following operations are performed by each Cell (Filelis-
Papadopoulos et al. 2017, b):

e Receiving simulation parameters

e Initialisation of different components, including hardware resources,
the broker, network, telemetry, and the SOSM engine

e Receiving the task queue in each time-step

e Searching for available resources for the execution of the tasks, using
the SOSM engine

e Updating the state of the resources and controlling the execution of
the tasks

e Communicating status information to the Gateway Service
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The operations performed by the Gateway service are the following
(Filelis-Papadopoulos et al. 2017, b):

e Retaining simulation inputs and communicating data to the Cells for
the initialisation of the simulation components

e Creation of the task queue in each time moment, fragmentation of
the task queue into subqueues, and communication of the subqueues
to the Cells, by maintaining load balance through all Cells

e Receiving status information from the Cells

e Processing and storing historical statistics and metrics

The parallelisation of the CloudLightning Simulator in distributed sys-
tems is of great importance, since simulating hyperscale infrastructures is
a computationally and memory-intensive process. For this reason, various
components of the CloudLightning Simulator use the OpenMP frame-
work in different ways to accelerate their computations on shared memory
multiprocessors. The Gateway Service processes statistics in parallel—the
Cells perform resource discovery and task deployment as well as the update
of the resources’ state on different multiprocessor cores. The SOSM tech-
niques are also performed in parallel.

Figure 5.3 presents the software architecture of the CloudLightning
Simulator (Filelis-Papadopoulos et al. 2017):

5.3.2 SOSM Engine

One of the most important characteristics of the CloudLightning Simulator
is the use of SOSM techniques to control the underlying resources of the
Cells in a more efficient manner (Filelis-Papadopoulos et al. 2017).

In traditional cloud architectures, the resources are managed by the
broker, a central entity that is responsible for the search and deployment
of the available resources with respect to incoming task requests, the col-
lection of data for the state of all underlying resources, and the manage-
ment of all underlying resources of the data centre. This centralised
approach has limitations due to the computational complexity involved
in locating specific hardware, especially when the number of resources
increases. Locating the most appropriate server for the execution of a task
is a computationally expensive operation in large data centres, and it is
generally avoided in favour of strategies such as the “first-fit approach,”
where a task is deployed on the first available server or coalition of servers.
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Fig. 5.3 Software architecture of the parallel CloudLightning simulation
framework

This type of strategy is not effective though in terms of both computa-
tional and energy efficiency, resulting largely in the underutilisation of the
available resources (Filelis-Papadopoulos et al. 2017). More effective
strategies, such as SOSM, need to be applied to achieve high levels of
resource utilisation and thus computational and energy efficiency.

In the CloudLightning architecture, each Cell is organised in a hierar-
chical tree structure. As discussed earlier, the tree contains different enti-
ties, including prescription Routers (pRouters), prescription Switches
(pSwitches), and virtual Rack Managers (VRMs). Figure 5.4 presents an
example of the CloudLightning tree structure. In this structure, the
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Fig. 5.4 Hierarchical structure of the SOSM engine

resources are locally managed by the vRMs which in turn are locally man-
aged by the pSwitches, while the pSwitches are locally managed by the
pRouters. The local management of the architectural components allows
the efficient collection and analysis of data that can lead to an improved
decision-making process. Each component can describe the state of its
underlying resources since metrics describing the state of the resources are
collected with respect to an interval and averaged by each component to
form its own state. Also, weights describing the desired state of the system
are communicated from the Gateway Service to the underlying compo-
nents. By using these metrics and weights, each component’s Suitability
Index is computed. The Suitability Index expresses how appropriate is a
component to receive an incoming task. By using the Suitability Index,
each incoming task can be subsequently directed to the most efficient
resources.

The exchange of metrics and weights between the components is part
of the Self-Management actions and is performed by all the components
of the SOSM engine. The Self-Organisation techniques, on the other
hand, are solely performed by the vRMs and the pSwitches. In the case of
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vRMs, there can be an exchange of resources between VRMs that are
hosted by the same pSwitch, in order to maximise the efficiency of the
system and to host tasks that require more resources than available on a
vRM. New vRMs can also be created, while vRMs that do not contain any
resources to manage can be destroyed. Similarly, pSwitches that are hosted
by the same pRouter can exchange vRMs; new pSwitches can be created,
while existing pSwitches can be dismissed when they have no vRMs to
manage.

Each pRouter of a Cell is homogeneous, as it contains resources of the
same type. In order to maintain the homogeneity, Self-Organising actions
are not performed at the pRouter level; thus, pSwitches cannot be
exchanged between pRouters. For this reason, pRouters are the entry
point for the selection of a specific type of resource inside a Cell (Filelis-
Papadopoulos et al. 2017).

The SOSM system improves significantly the scalability of cloud envi-
ronments since the most appropriate hardware for the execution of a task
can be located fast and with low computational cost, even in data centres
with a very large number of resources. In the CloudLightning Simulator,
the SOSM engine is implemented in parallel using the OpenMP
framework.

5.3.2.1 Power Consumption Modelling

To estimate the power consumption of large-scale heterogeneous data
centres, a number of different power models for both Central Processing
Unit (CPU) servers and combined CPU-accelerator pairs were developed.
The power models are generic with low computational cost (Filelis-
Papadopoulos et al. 2017; Giannoutakis et al. 2017). For this reason, the
CloudLightning Simulator is capable of computing the power consump-
tion of very large heterogeneous data centres without a significant impact
on its scalability. The following subsection gives a detailed presentation of
the integrated power consumption models.

CPU Power Models
Piecewise interpolation methods between recorded CPU power consump-
tion levels, and generic models that estimate the trend of the power-
utilisation diagram of CPUs by using the idle and maximum power
consumption of the CPU servers, have been integrated.

The interpolation methods are performed between recorded CPU
power consumption levels that are available mainly as part of the
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Standard Performance Evaluation Corporation (SPEC) benchmark
(SPEC 2008). Existing simulators, such as CloudSim, use linear inter-
polation between power measurements on rounded utilisation intervals
(i.e. 0%, 10%, 20%, etc.) (Beloglazov and Buyya 2012). In order to
achieve improved accuracy, the interpolation methods in the
CloudLightning Simulator are applied on the exact utilisation intervals
of the power measurements (i.e. 0%, 10.2%, 19.7%, etc.) as the error of
the rounded interpolation intervals increases when simulating very
large data centres (Giannoutakis et al. 2017). Two different interpola-
tion methods were used, the linear and the “not-a-knot” cubic spline
interpolation.

Generic models were also integrated, since they require less computa-
tional cost and power measurements compared to the interpolation meth-
ods. The models estimate the power consumption of CPU servers by
using the utilisation of the CPU server and its power consumption in idle
and max states. The linear, square, cubic, and square root models that
have been used in existing cloud simulators (i.e. CloudSim) were inte-
grated (Beloglazov and Buyya 2012). For the CloudLightning Simulator,
a generic CPU power model was used based on a third-degree polyno-
mial, which estimates more accurately the trend of the power-utilisation
diagram of CPU servers (Filelis-Papadopoulos et al. 2017). The trend of
the generic models compared with the actual CPU measurements pro-
vided by SPEC (SPEC 2008) for an HP Proliant DL560 Gen 9! is pre-
sented in Fig. 5.5.

Existing cloud simulators (i.e. GreenCloud and CloudSim) support the
use of real application traces in order to compute the power consumption
of the simulated applications in each time-step. This approach would neg-
atively affect the scalability of the simulator in large-scale simulations, and
for this reason, mean values of real application traces were computed and
integrated. More specifically, the mean value of the CPU utilisation for
each application is used to compute the mean power consumption of the
application. Then, the energy consumption of the application is computed
by multiplying the mean power consumption of the application with its
execution time. This approach provides a lower computational cost, while
the result of the energy consumption of the application is computed with
approximately the same accuracy that would have been obtained if all the
power traces were used. This methodology has been tested, achieving high

levels of accuracy in the estimation of the energy consumption of applica-
tions (Makaratzis et al. 2017).
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Fig. 5.5 Generic CPU power models compared to the power-utilisation diagram
of an HP Proliant DL560 Gen 9 server

Combined CPU-Accelerator Power Models

A generic power consumption model was used for the estimation of the
power consumption of accelerators such as GPUs, MICs, and DFE
(Giannoutakis et al. 2017). This model was built around the idea that the
maximum power consumption of an accelerator is consumed when an
application is executed on the accelerator, while the idle power consump-
tion is consumed when the application is executed only on the CPU. This
binary model provides simplicity and increased accuracy (Makaratzis et al.
2017). The model for the power consumption of hardware accelerators is
described as follows:

Pacc (p) = (1 - p)Pacc—min + pPacc—max

where P, ., and P, _,,. are the minimum and maximum power con-
sumption values, respectively, that the application can consume on the
accelerator, while p is the percentage of the application that is parallelised
on the accelerator, thus in each time moment. Similarly, with the utilisa-
tion parameters of the CPU power model, the mean value of parameter is
computed based on real application traces, thus the mean value of the
power that is consumed on the accelerator is computed for the total
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execution time of the application. The combined CPU-accelerator mean
power consumption of the application is computed as the sum of the mean
power consumption of the CPU server and the mean power consumption
of the accelerator. The energy consumption of an application that is exe-
cuted on a heterogeneous node is computed by multiplying the combined
CPU-accelerator mean power consumption with the execution time of the
application.

To conclude, in order to keep the computational cost low, generic CPU
and accelerator power models were integrated in the CloudLightning
Simulator. The simplicity of the models is of great importance since mod-
els that are based on architectural details of the hardware resources require
a substantial number of computations, considering the heterogeneity and
the very large number of resources in the simulations. These models were
validated on heterogeneous testbeds and a good accuracy level was
achieved (Makaratzis et al. 2017).

5.3.2.2 Memory, Storage, and Network Modelling

Detailed modelling of memory would negatively affect the scalability of
the simulator, especially in large-scale simulations, since it would require
an increased amount of computations. Memory was implemented as a
resource, measured in GBytes, that is used in the allocation of VMs to
physical servers. Memory overcommitment was also implemented; thus,
the total available memory was computed as the product of the total physi-
cal memory and the overcommitment ratio. The power consumption of
memory was included in the power consumption of the CPU servers, elim-
inating the need for a separate memory power consumption calculation.

The modelling of storage was also implemented with simplicity in order
to keep the computational cost in low levels. The storage was implemented
as a resource measured in TBytes. Global storage was not implemented,
though its impact can be added directly to the time span of tasks. Detailed
modelling of the power consumption of storage was not implemented
since it would require substantially large number of computations, which
would negatively affect the scalability of the simulator. The energy con-
sumption of storage is considered to be included in the energy consump-
tion of the CPU servers, similar to memory modelling.

The network was implemented as a global component, visible from all
the underlying resources, with the network bandwidth being shared
among the arriving tasks of the system. When the requested network
bandwidth exceeds the available capacity, the execution of applications is
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affected negatively (in terms of the execution time). It should be noted
that the network model of the CloudLightning Simulator was imple-
mented through a catalogue of tasks, retaining all tasks executing at a
given time-step. A linear model for computing the time required to trans-
fer initial data and output data was implemented with a function of the
following form:

NT (t) = fileSize | bandwidth

where fileSize is the size of the file to be transferred and bandwidth is the
available physical bandwidth.

5.3.2.3 Application Models
In the design of the CloudLightning Simulator, the execution of VMs is
part of a given task and their life cycle is directly connected to it. Each task

is defined based on the following characteristics (Filelis-Papadopoulos
etal. 2017):

* Type of application (Genomics, Oil and Gas, Ray Tracing)

e Available implementations (CPU-only, CPU+GPU, CPU+DFE,
CPU+MIC)

Number of instructions (in Millions of Instructions [ MIs])
Required number of VMs

Required number of processing units per VM

Required memory per VM (in GBytes)

Required storage per VM (in TBytes)

Required accelerators per VM

Required network bandwidth

The minimum and maximum values are defined for the actual utilisa-
tion of the CPU, the memory, and the network. The actual resources used
by an application (utilisation) are computed based on application traces as
a percentage of the requested resources over a number of predefined
intervals. These utilisation parameters are considered as mean values with
respect to the total execution time of the application. This approach main-
tains the computational cost low, while the desired metrics are obtained
with the same accuracy that would have been obtained if all the application
traces were used.
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All task parameters, including the number of instructions, the required
number of VMs, and memory size, are randomly generated using a uni-
form random number generator with respect to predefined intervals. The
intervals are computed based on real application characteristics.

This approach of application modelling reduces computational cost,
allowing for large-scale simulations, while also providing realistic results
during the simulations.

5.3.2.4 Execution Models

Existing cloud simulators generally create a priori task lists for the whole
duration of the simulation, augment, and sort that list with respect to
events triggered by inputs and so on. However, this has the disadvantage
of simulation data storage, not only for the current event but also for
future ones, restricting the execution of large-scale simulations over long
time periods. In contrast, the CloudLightning Simulator is based on a
time-advancing loop, where incoming tasks are created dynamically in
each time-step and where each time-step is independent from any previ-
ous or future ones (Filelis-Papadopoulos et al. 2017). A task list is then
created at the beginning of each time-step, removing the need for data
storage of future tasks of the simulation. Creating task lists per time-step
reduces significantly the memory requirements of the simulation and
offers the ability to simulate dynamical components that change their
state according to dynamic strategies, including pRouters, pSwitches,
and vRMs while allowing for the simulation over extended time
periods.

In the execution of tasks, the time-step is used as the control mecha-
nism of the execution. The performance of applications is measured in
MIs while the computational capability of the physical servers is mea-
sured in Millions of Instructions per Second (MIPS). In each time-step,
the number of instructions that can be executed by the available
resources is subtracted from the total number of instructions of the
application. This time-step-controlled execution model offers signifi-
cant capabilities since the impact of various phenomena can be modelled
by applying penalties on the execution of tasks. For example, phenom-
ena such as performance degradation due to cache sharing or “noisy-
neighbours” can be modelled by reducing the computational capability,
meaning that fewer of the application’s instructions will be executed on
the current time-step. Similarly, the usage of hardware with a higher
computational capability, that is, accelerators, can be modelled by
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increasing the computational capability of the current time-step.
Service-level Agreement violations concerning memory, storage, or net-
work limitations can be modelled by applying similar penalties in the
execution of tasks.

This approach of execution modelling allows the integration of possible
extensions on the simulator, since any phenomenon can be modelled dur-
ing a simulation by applying penalties or gains in the execution of the
applications. Also, this execution model allows the simulation of very large
time periods and millions of cloud servers, since the memory requirements
of the execution model are very low.

5.4  EXPERIMENTAL RESULTS

This section presents the experimentation framework and the numerical
results occurred after simulating the traditional cloud delivery system and
the SOSM framework.

The experiments were performed on a cluster consisting of four Dell
PowerEdge C4130 nodes, each containing two 10-core Intel Xeon
E5-2630 v4 CPUs running at 2.20 GHz (3.10 GHz Max Turbo fre-
quency) with 128GB of Random Access Memory (RAM), and a Dell
PowerEdge R730 node containing two 8-core Intel Xeon E5-2609 v4
CPUs running at 1.70 GHz. During the simulation, the Dell PowerEdge
R730 node was used to host the Gateway service, while the 4 Dell
PowerEdge C4130 nodes were used to host the Cells.

The time period of the simulation was set to one week (604,800 sec-
onds), with a time-step of 1 second. The update interval of the Gateway
Service was chosen to be 200 seconds, while the update interval of the
pRouters, pSwitches, and vVRMs was 20 seconds. The cloud nodes of the
simulated data centre were selected to use an Intel Xeon E5-2699 v4
2.20 GHz-based node with 44 cores and 385,063.42 MIPS, 128 GBytes
of RAM, and 40 TBytes of storage.

Each Cell consisted of four different types of hardware, that is,
CPUs+GPUs, CPUs+MICs, CPUs+DFEs, or CPU servers with no accel-
erators. Each heterogeneous node consisted of a CPU and four accelera-
tors. The characteristics of the CPUs and the accelerators are presented in
Table 5.1. It is noted that the linear interpolation method on uneven utili-
sation intervals was used for the estimation of the power consumption of
the CPU servers, where the power values for the various utilisation inter-
vals were obtained? from SPEC (SPEC 2008).
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During the simulations, three different types of applications were con-
sidered. The characteristics of the applications are presented in Tables 5.2
and 5.3.

The CloudLightning Simulator was executed for different number of
resources, Cells, and submitted tasks. Each Cell was hosted on a Dell
PowerEdge C4130 node, while in the experiments with eight Cells, each
computing node was hosting two Cells. Three different configurations
were tested. In the first configuration, 11,000 resources per Cell were
utilised, while the experiment was performed for different number of
Cells. Similarly, in the second configuration, 110,000 resources per Cell
were used, and in the third configuration, 1,100,000 resources per Cell
were considered. The maximum number of submitted tasks was set equal
to four per second when one Cell was used, while this number was multi-
plied with the number of Cells when additional Cells were used. The VM
allocation policy used was the “first-fit approach,” according to which
tasks are placed on the first available server found.

Table 5.2 Hardware characteristics

Hardware MIPS 1dle power consumption — Max power consumption
(Watts) (Watts)

CPU 385,063.4268 44.9 269.0

MIC 1,347,721.9938 30.0 350.0

DFE 2,310,380.5608 70.0 100.0

GPU 1,155,190.2804 50.0 400.0

Table 5.3 Application characteristics

Application type: 1 2 3

Millions of instructions 1386.23-5544.91 462.08-2772.46 693.11-4158.69
Number of VMs 1-16 1-8 14

Number of vCPUs 4-8 8-16 4-8

Memory (GBytes) 4-8 4-8 4-8

Storage (TBytes) 0.02-0.04 0.01-0.02 0.04-0.08
Network bandwidth (MBps) 2.5-5 0.5-1 2.5-5

Network storage (GB) 0-0 0-0 0-0
Implementations 1,2,3 1,2,3 1,4

P 0,0.7,0.5 0,0.8,0.9 0,0.9
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Table 5.4 presents the outputs, in terms of the number of accepted
tasks, the average processor and accelerator utilisation, the average net-
work utilisation, the energy consumption of the data centre, and the exe-
cution time of the CloudLightning Simulator, simulating a traditional
centralised cloud service delivery system.

For all different configurations, it can be observed that the total num-
ber of rejected tasks was high, with an ~86% task rejection on average. The
task rejection was caused mainly by the network congestion appearing
early in the simulated cloud (Fig. 5.6). Despite the fact that the selection
of applications and their corresponding implementations (Table 5.3) were
performed randomly using a uniform random generator, accelerator
implementations were starting to be rejected after a period of simulated
time, since the network resources are shared between the resources hosted
across a Cell. This yields the acceptance of additional CPU tasks that in
general require more computational time for execution and consequently
overload the network.

The energy consumption estimation of the cloud infrastructure
increased with the number of resources per Cell and the number of Cells.
It is expected that, except from the idle servers that consume the mini-
mum power, when the utilisation of the cloud increases, the energy con-
sumption will proportionally increase.

The CloudLightning Simulator was also tested using the SOSM
resource allocation framework, for 100 resources per vRM, 10 vRMs per
pSwitch, and 5 pSwitches per pRouter. The VM allocation policy was
“Task Compaction,” where the system is provisioning as many VMs as
possible on cach physical server. Table 5.5 presents the outputs of the
CloudLightning Simulator, in terms of the number of accepted tasks, the
average processor and accelerator utilisation, the average network utilisa-
tion, the energy consumption of the data centre, and the execution time
of the simulator, when using the SOSM engine.

During the SOSM resource allocation simulation, it can be observed
that there was a more balanced utilisation between CPUs and accelera-
tors. More specifically, accelerators tended to be utilised at the same levels
as CPUs, while in many cases, their utilisation percentages overcame the
corresponding CPU ones. This was due to the fact that the system (SOSM
framework) decides the resources (and types of implementations) to be
allocated for a task, according to the predefined assessment functions,
that targets on (a) improved service delivery, (b) computational efficiency,
(c) improved energy consumption, and (d) efficient management of
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underlying resources. Since accelerators are more efficient in terms of
computational efficiency and energy consumption, the system’s choice is
apparent.

It can also be seen that the total number of rejected tasks was very low
(~0.05%), but the total estimated energy consumption of the cloud was
close to the estimations of the traditional delivery system, due to the utili-
sation of the energy-efficient accelerators. Thus, the SOSM- based cloud
environment was able to execute more tasks consuming almost equal
energy. This was expected, since the SOSM selects the most efficient
resources, executing the task faster, thus freeing those resources faster, and
consequently leading to more tasks being accepted.

In order to examine the energy efficiency of the two resource allocation
techniques in more detail, the ratio of the total energy consumption of the
data centre over the number of accepted tasks was computed for all experi-
ments. In Table 5.6, the number of Wh that is consumed per task for all
configurations is presented. It can be observed that the number of Wh per
task is substantially smaller when the SOSM engine is used. This is due to
the fact that when the SOSM engine is not used, the resources that are
utilised are selected randomly, while with the SOSM engine the resources

Table 5.6 Ratio of the total energy consumption of the cloud over the number
of accepted tasks for all configurations

Configuration Cells  Wh per task Wi per task
without SOSM — with SOSM

3030.26314 521.38713
1633.66523 539.09557
1268.57330 449.99035
1044.89027 566.98702
1333.53448 553.39248
15,744.33657 1167.88194
10,735.85269 1195.96974
6239.39226 1118.47856
4842.13695 1233.55551
6982.59563 1195.58945
142,955.84119  8326.39716
93,556.77024 8345.17402
53,754.62934 8276.59419
39,736.79489 8371.74376
60,682.07036 8337.67258

Configuration 1: 11,000 resources per Cell

Configuration 2: 110,000 resources per Cell

Configuration 3: 1,100,000 resources per Cell

CO M W N 00 W W o W
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are selected by the system, according to the predefined strategies; thus, the
most energy efficient solution is always chosen.

In Figs. 5.6 and 5.7, time-dependent charts are presented for the last
experiment of the third configuration (eight Cells, 1,100,000 servers per
Cell). In Fig. 5.6, the energy consumption, the processor utilisation, the
accelerator utilisation, and the network utilisation of the cloud are pre-
sented with respect to the simulated time for the traditional centralised
cloud service delivery. In Fig. 5.7, the energy consumption, the processor
utilisation, the accelerator utilisation, and the network utilisation of the
cloud are presented through the simulation time when using the SOSM
engine.

5.5 CONCLUSION

This chapter presented the work towards demonstrating the scalability of
the CloudLightning simulation framework. Cloud simulation tools are
examined, since demonstrating scalability in hyperscale clouds is unfeasi-
ble. The design and implementation of the CloudLightning simulation
framework were presented, a framework that overcomes the limitations of
the existing simulation platforms. The main innovations of the framework
lie in the fact that it is implemented for parallel computing systems (using
MPI and OpenMP), it is based on a time-advancing loop instead of a dis-
crete sequence of events, it allows the integration of dynamic resource
allocation systems such as SOSM, and it supports hybrid CPU-accelerator
resources. Finally, the CloudLightning Simulator was developed to be eas-
ily extensible, since the time-advancing execution model allows the inte-
gration of any strategies or phenomena observed in cloud environments.
From the experiments that were performed, the CloudLightning simu-
lator was found to be capable of simulating clouds with large number of
resources. Different executions were performed with the traditional cloud
delivery system and with the use of the SOSM framework, for a various
number of resources and Cells. Both the simulation platform and the
SOSM framework were found to be scalable; simulations up to 8,800,000
hardware resources grouped into eight Cells were performed, only limited
by the available hardware used for experimentation. SOSM was found to
provide a more balanced distribution of tasks on the available hardware
resources, with a much lower number of total rejected tasks. The energy
consumption was found to be equivalent to the energy consumed when
simulating a traditional cloud delivery system; however, the SOSM system
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was able to service a significantly larger number of tasks. Thus, the energy
consumed per task in the SOSM system was substantially reduced com-
pared to the traditional approach.

The CloudLightning Simulator and Simulator Visualization Tool are
available for download under the Apache 2 open source licence at https://
bitbucket.org/cloudlightning/cloudlightning-simulator and https://bit-
bucket.org/cloudlightning/cl-simulatorvisualization, respectively.

5.6  CHAPTER 5 ReLATED CLOUDLIGHTNING READINGS

1.

Byrne, J., Svorobej, S., Giannoutakis, K., Tzovaras, D., Byrne, P. J.,
Ostberg, P. O., et al. (2017). A review of cloud computing simula-
tion platforms and related environments. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science
(CLOSER 2017) (pp. 679-691). SCITEPRESS-Science and
Technology Publications, Lda.

. Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Kyziropoulos, P. E.

(2017). A framework for simulating large scale cloud infrastructures.
Future Generation Computer Systems. https://doi.org/10.1016/j.
future.2017.06.017

. Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Morrison, J. D.

(2017). CloudLightning simulation and evaluation roadmap. In
Proceedings of the Ist International Workshop on Next Generation of
Cloud Architectures, Vol. 2. ACM.

. Filelis-Papadopoulos, C. K., Grylonakis, E. N. G., Kyziropoulos,

P. E., Gravvanis, G. A., & Morrison, J. P. (2016). Characterization
of hardware in self-managing self-organizing Cloud environment.
In Proceedings of the 20th Pan-Hellenic Confervence on Informatics,
Vol. 56. ACM.

. Filelis-Papadopoulos, C. K., Giannoutakis, K. M., & Gravvanis,

G. A. (2017). Large-scale simulation of a self-organizing self-
management cloud computing framework. The Journal of
Supercomputing. https: / /doi.org,/10.1007 /s11227-017-2143-2

. Giannoutakis, K. M., Makaratzis, A. T., Tzovaras, D., Filelis-

Papadopoulos, C. K., & Gravvanis, G. A. (2017, April). On the
power consumption modeling for the simulation of Heterogeneous
HPC Clouds. In Proceedings of the Ist International Workshop on
Next Generation of Cloud Architectures, Vol. 1. ACM.


https://bitbucket.org/cloudlightning/cloudlightning-simulator
https://bitbucket.org/cloudlightning/cloudlightning-simulator
https://bitbucket.org/cloudlightning/cl-simulatorvisualization
https://bitbucket.org/cloudlightning/cl-simulatorvisualization
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1007/s11227-017-2143-2

148  C. K FILELIS-PAPADOPOULOS ET AL.

7. Lynn, T., Gourinovitch, A., Byrne, J., Byrne, P. J., Svorobej, S.,
Giannoutakis, K., et al. (2017). A preliminary systematic review of
computer science literature on cloud computing research using
Open Source simulation platforms. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science
(CLOSER 2017) (pp. 537-545). SCITEPRESS-Science and
Technology Publications, Lda.

8. Makaratzis, A. T., Giannoutakis, K. M., & Tzovaras, D. (2017).
Energy modeling in cloud simulation frameworks. Future Generation
Computer Systems. https: //doi.org,/10.1016/j.future.2017.06.016

NoOTES

1. https://www.spec.org/power_ssj2008 /results /res2016q2 /power_
$8j2008-20160607-00734.html

2. http://spec.org/power_ssj2008 /results /res2016q2 /power_ssj2008-
20160328-00719.html

REFERENCES

Barroso, L. A., Clidaras, J., & Hoelzle, U. (2013). The datacenter as a computer:
An introduction to the design of warehouse-scale machines. Morgan & Claypool.
https://doi.org,/10.2200,/S00516ED2V01Y201306CAC024

Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers. Concurrvency and Computation: Practice &
Experience, 24(13), 1397-1420. https: //doi.org,/10.1002 /cpe.1867

Byrne, J., Svorobej, S., Giannoutakis, K. M., Tzovaras, D., Byrne, P., Ostberg,
P. O, et al. (2017). A review of cloud computing simulation platforms and
related environments. In The 7th International Conference on Cloud Computing
and Services Science (pp. 651-663).

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F.; & Buyya, R.
(2011). CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1), 23-50. https: //doi.org,/10.1002 /spe.995

Cisco Global Cloud Index: Forecast and Methodology, 2015-2020. (2016).
Retrieved from https://www.cisco.com/c/dam/en/us/solutions/collateral /
service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared
memory programming. IEEE Computational Science and Engineering, 5(1),
46-55. https://doi.org,/10.1109,/99.660313


https://doi.org/10.1016/j.future.2017.06.016
https://www.spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160607-00734.html
https://www.spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160607-00734.html
http://spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160328-00719.html
http://spec.org/power_ssj2008/results/res2016q2/power_ssj2008-20160328-00719.html
https://doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1002/spe.995
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
https://doi.org/10.1109/99.660313

SIMULATING HETEROGENEOUS CLOUDS AT SCALE 149

Filelis-Papadopoulos, C., Xiong, H., Spataru, A., Castaine, G., Dapeng, D.,
Gravvanis, G., et al. (2017). A generic framework supporting self-organisation
and self-management in hierarchical systems. In Proceedings of the International
Symposinm on Parallel and Distributed Computing.

Filelis-Papadopoulos, C. K., Giannoutakis, K. M., Gravvanis, G. A., & Tzovaras,
D. (2017). Large-scale simulation of a self-organizing self-management cloud
computing framework. The Journal of Swupercomputing. https://doi.
org,/10.1007 /s11227-017-2143-2

Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Kyziropoulos, P. E. (2017). A
framework for simulating large scale cloud infrastructures. Future Generation
Computer Systems. https: //doi.org,/10.1016/j.future.2017.06.017

Filelis-Papadopoulos, C. K., Gravvanis, G. A., & Morrison, J. P. (2017).
CloudLightning simulation and evaluation roadmap. In Proceedings of the st
International Workshop on Next Generation of Clond Architectures (pp. 2:1-2:6).
New York, NY: ACM. https://doi.org,/10.1145,/3068126.3068128

Giannoutakis, K. M., Makaratzis, A. T., Tzovaras, D., Filelis-Papadopoulos, C. K.,
& Gravvanis, G. A. (2017). On the power consumption modeling for the simu-
lation of heterogeneous HPC clouds. In Proceedings of the Ist International
Workshop on Next Generation of Cloud Architectures (pp. 1:1-1:6). New York,
NY: ACM. https://doi.org,/10.1145,/3068126.3068127

Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6), 789-828. https://doi.org,/10.1016,/0167-
8191(96)00024-5

Gupta, S. K. S., Gilbert, R. R., Banerjee, A., Abbasi, Z., Mukherjee, T., &
Varsamopoulos, G. (2011). GDCSim: A tool for analyzing green data center
design and resource management techniques. In 2011 International Green
Computing Confervence and Workshops (pp. 1-8). https://doi.org/10.1109/
IGCC.2011.6008612

Kliazovich, D., Bouvry, P., & Khan, S. U. (2012). GreenCloud: A packet-level
simulator of energy-aware cloud computing data centers. The Journal of
Supercomputing, 62(3), 1263-1283. https://doi.org,/10.1007/s11227-010-
0504-1

Makaratzis, A., Khan, M., Giannoutakis, K., Elster, A., & Tzovaras, D. (2017).
GPU power modeling of HPC applications for the simulation of heteroge-
neous clouds. In International Conference on Parvallel Processing and Applied
Mathematics.

Mars, J. (2012). Rethinking the avchitecture of warehouse-scale computers (Doctoral
dissertation, University of Virginia). https://doi.org,/10.18130,/V30N5R
Nunez, A., Vazquez-Poletti, J. L., Caminero, A. C., Castane, G. G., Carretero, J.,
& Llorente, I. M. (2012).iCanCloud: A flexible and scalable cloud infrastructure
simulator.  Journal of Grid Computing, 10(1), 185-209. https://doi.

org/10.1007/5s10723-012-9208-5


https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1007/s11227-017-2143-2
https://doi.org/10.1016/j.future.2017.06.017
https://doi.org/10.1145/3068126.3068128
https://doi.org/10.1145/3068126.3068127
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1109/IGCC.2011.6008612
https://doi.org/10.1109/IGCC.2011.6008612
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.18130/V30N5R
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5

150  C. K. FILELIS-PAPADOPOULOS ET AL.

SPEC. (2008). Standard performance evaluation corporation, server power and per-
formance characteristics. Retrieved from http://www.spec.org,/powerssj2008 /

Tian, W., Zhao, Y., Xu, M., Zhong, Y., & Sun, X. (2015). A toolkit for modeling
and simulation of real-time virtual machine allocation in a cloud data center.
IEEE Transactions on Automation Science and Engineering, 12(1), 153-161.
https://doi.org,/10.1109 /TASE.2013.2266338

Tighe, M., Keller, G., Bauer, M., & Lutfiyya, H. (2012). DCSim: A data centre
simulation tool for evaluating dynamic virtualized resource management. In
2012 8th International Conference om Network and Service Management
(CNSM) and 2012 Workshop on Systems Virtualization Management (SVM)
(pp- 385-392).

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd /4.0 /), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

o900


http://www.spec.org/powerssj2008/
https://doi.org/10.1109/TASE.2013.2266338
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 5: Simulating Heterogeneous Clouds at Scale
	5.1 Introduction
	5.2 Cloud Simulation Frameworks
	5.3 CloudLightning Simulator
	5.3.1 Architecture and Basic Characteristics of the Parallel CloudLightning Simulation Framework
	5.3.2 SOSM Engine
	5.3.2.1	 Power Consumption Modelling
	CPU Power Models
	Combined CPU-Accelerator Power Models

	5.3.2.2	 Memory, Storage, and Network Modelling
	5.3.2.3	 Application Models
	5.3.2.4	 Execution Models


	5.4 Experimental Results
	5.5 Conclusion
	5.6 Chapter 5 Related CloudLightning Readings
	References




