
31© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_2

CHAPTER 2

Cloud Architectures and Management
Approaches

Dapeng Dong, Huanhuan Xiong, Gabriel G. Castañe,
and John P. Morrison

Abstract  An overview of the traditional three-layer cloud architecture is
presented as background for motivating the transition to clouds contain-
ing heterogeneous resources. Whereas this transition adds many impor-
tant features to the cloud, including improved service delivery and reduced
energy consumption, it also results in a number of challenges associated
with the efficient management of these new and diverse resources. The
CloudLightning architecture is proposed as a candidate for addressing this
emerging complexity, and a description of its components and their rela-
tionships is given.

Keywords  Cloud architecture • Infrastructure • Management • Service
delivery model • Heterogeneous cloud

D. Dong (*) • H. Xiong • G. G. Castañe • J. P. Morrison
Department of Computer Science, University College Cork, Cork, Ireland
e-mail: d.dong@cs.ucc.ie; h.xiong@cs.ucc.ie; gabriel.gonzalezcastane@ucc.ie;
j.morrison@cs.ucc.ie

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_2&domain=pdf
https://doi.org/10.1007/978-3-319-76038-4_2
mailto:d.dong@cs.ucc.ie
mailto:h.xiong@cs.ucc.ie
mailto:gabriel.gonzalezcastane@ucc.ie
mailto:j.morrison@cs.ucc.ie
mailto:j.morrison@cs.ucc.ie

32 

2.1   Introduction

Cloud end-users are demanding greater performance and diversity of
cloud services than ever before. As discussed in Chap. 1, the high-
performance computing (HPC) and other end-user communities are
seeking to exploit new and diverse hardware designed for specialist tasks.
As well as supporting these new demands, cloud service providers (CSPs)
face the challenges of achieving cost-effective scalability while increasing
energy efficiency. Accommodating heterogeneity and maximising server
utilisation (and by inference minimising over-provisioning) is a significant
shift from conventional homogeneous cloud computing service design.
This is particularly the case with HPC where end-users require a greater
level of access and control over elements of the cloud infrastructure. To
access heterogeneous resources, exploit these resources to reduce applica-
tion development effort, make optimisation easier, and simplify service
deployment, a re-evaluation of our approach to both resource manage-
ment and service delivery is required.

The remainder of this chapter discusses conventional cloud architecture
designs and provides an overview of the CloudLightning architecture, a
novel architecture designed to meet the challenges of the heterogeneous
cloud. The next section presents the three layers of conventional cloud
architectures—the Infrastructure Layer, the Cloud Management Layer,
and the Service Delivery Layer. This is followed by a discussion of the
main challenges associated with transitioning to a truly heterogeneous
cloud with an emphasis on resource management and abstraction. In Sect.
2.4 CloudLightning is presented, a cloud architecture inspired by the
design principles of emergence, self-organisation, self-management, and
the separation of concerns discussed in Chap. 1. Each functional compo-
nent and their relationships are detailed to provide insights into how it
differs from the conventional cloud and realises important properties from
the end-user and CSP perspectives including support for heterogeneity,
ease of use, auto-scaling, data locality, high availability (HA), and net-
working organisation.

2.2   Cloud Architecture

Over the last decade, large-scale consumer-facing cloud services have been
created by service providers such as Amazon, Microsoft, Google, and
Rackspace. These data centres are large industrial facilities containing the

  D. DONG ET AL.

https://doi.org/10.1007/978-3-319-76038-4_1
https://doi.org/10.1007/978-3-319-76038-4_1

  33

computing infrastructure that runs their services: servers, storage arrays,
and networking equipment. This core equipment requires supporting
infrastructure in the form of power, cooling, and external networking
links. Reliable service delivery depends on the holistic management of all
of this infrastructure as a single integrated entity. Architecturally, this
holistic management can be logically separated into three layers from bot-
tom to top including an Infrastructure Layer, a Cloud Management Layer,
and a Service Delivery Layer, as shown in Fig. 2.1.

2.2.1   Infrastructure Organisation

Cloud infrastructure design is the art of balancing requirements to ensure
data centre scalability, maintaining server fault tolerance, minimising costs,
and maximising bisection end-to-end bandwidth (Kim 2011; Wang et al.
2014). Traditional data centre infrastructure is based on a hierarchical
structure typically with a three-tier design including the Access Layer, the

Fig. 2.1  Classical cloud architecture is considered to be composed of three layers.
The Service Delivery Layer is one seen by users; this layer is realised by the Cloud
Management Layer, which is also responsible for realising the objectives of the Cloud
Service; the Infrastructure Layer comprises of the underlying collection of storage,
computing, and network resources and their required hardware and software

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

34 

Aggregation Layer, and the Core Layer (Martin Pueblas 2010), as shown
in Fig. 2.2.

•	 The Access Layer (also called the Edge Layer): The primary function
of the Access Layer is to connect servers that typically reside in the
same rack. An Access-Layer switch is thus often referred to as a Top-
of-Rack (ToR) switch.

•	 The Aggregation Layer (also called, the Distribution Layer): The
Aggregation Layer is a multi-purpose system that interfaces the
Access and Core Layers. The main function of the Aggregation Layer
is to keep the various communication domains separately, thus pro-
viding intelligent switching and HA between regional ToRs.

•	 The Core Layer: The Core Layer is responsible for providing high-
speed, scalable, and reliable connectivity across the entire data
centre.

This traditional three-tier data centre design is created with simplicity
in mind. The design relies on the use of high-end enterprise-class switches
in the upper layers, whereas the lower layers can function effectively with
less sophisticated equipment. Previous research has indicated that adding
additional servers to a data centre, using the traditional three-tier design,
will reduce the end-to-end bisection bandwidth in proportion to the size

Fig. 2.2  The traditional three-tier networking infrastructure

  D. DONG ET AL.

  35

of the data centre (Al-Fares et al. 2008). In support of cloud computing
and in response to the rise in popularity of Big Data and High-Performance
Computing as a Service (BDaaS and HPCaaS, respectively), the organisa-
tion of the infrastructure in modern data centres is biased towards scal-
ability and high throughput.

In general, design strategies are centred on two basic models—the
Switch-Centric model and Server-Centric model. The next section dis-
cusses these models and the main network designs associated with these
models.

2.2.1.1	 �The Switch-Centric Model
In the Switch-Centric model, servers are interconnected using switches
and routers. The Fat-tree network is a representative of the Switch-Centric
model that is widely acknowledged and used for data centre networking
infrastructure. A Fat-tree network is also known as Clos topology
(Leiserson 1985). In a Fat-tree network, servers are grouped into Points
of Delivery (PoDs). A PoD consists of n number of servers and n number
of switches. n/2 switches are connected to n servers and act as Access-
Layer switches. The remaining switches are connected to the Access-Layer
switches and, to each other, acting as Aggregation-Layer switches.
Moreover, PoDs are connected using additional (n/2)2 switches acting as
Core-Level interconnections. Thus, the Fat-tree design guarantees a one-
to-one over-subscription ratio between any pair of nodes in the network.
However, the scalability of the infrastructure is limited by the number of
ports available on each switch. BCube (Guo et al. 2009) is another Switch-
Centric design based on a recursive-defined topology. In a BCube design,
n servers are connected to an n-port switch forming a cell. n cells are con-
nected through n switches to form a cube. BCube is designed for modular
data centres and accommodates high performance in a multicast and
broadcast network; however, the complexity of network cabling is rela-
tively high. Portland (Niranjan Mysore et al. 2009), RBridges (Ghanwani
2011), SmartBridge (Rodeheffer 2000), SEATTLE (Kim 2011), and VL2
(Greenberg et al. 2011) are commonly used routing and forwarding pro-
tocols and network address schemes for the Fat-tree-based infrastructure.

2.2.1.2	 �The Server-Centric Model
In the Server-Centric model, both servers and switches participate in
packet routing, and in the Server-Centric model, both servers and switches
participate in packet routing and forwarding. DCell (Guo et al. 2008) is a

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

36 

representative implementation of the Server-Centric model. In DCell, n
servers are connected to an n-port switch forming the smallest entity
known as a Cell. n+1 number of Cells are interconnected via the network
interfaces of each server, thus forming a larger network. The hierarchical
topological design makes DCell networks scalable and robust. However,
the network diameter increases exponentially with the size of the network.
This implies that Cells in the inner layer will carry more network traffic,
and end-to-end communications may experience greater latency. FlatNet
(Lin et al. 2012) is another Server-Centric recursive-defined network. The
FlatNet design uses more switches to achieve higher scalability, n3, com-
pared to n2 of DCell. Based on similar rules used in DCell, FlatNet orga-
nises n servers in an n-port switch as a Cell. A higher layer is formed from
n2 number of lower layers. In FiConn configurations, the main network
interfaces of a server are connected to their corresponding ToR switch(es),
and the redundant network interfaces of a server is used to establish direct
server-to-server connections (Li et al. 2009). In contrast to DCell, FiConn,
and FlatNet, the SprintNet design focuses on high performance. SprintNet
uses multiple, c number of switches connecting n servers in each Cell, in
which n/(c+1) ports connect to other Cells in the network. Infrastructure
expansions are achieved by adding c*n/(c+1) Cells each time. The
SprintNet is specially designed for high-throughput infrastructure.

The current trend is towards using a Server-Centric design based on a
recursively defined topology. From a cloud management perspective, the
number of servers determines scalability, the number of switches affects
the infrastructure cost and the energy efficiency, the number of links indi-
cates the complexity of constructing the network, and the diameter of the
network directly influences the network throughput (high-throughput
networks will improve the service delivery experience, especially for Big
Data and HPC and high-throughput computing (HTC) applications).
HPC and HTC based on heterogeneous computational resources may
have specific requirements on the types of switches, port numbers, and
link capacity. Unfortunately, none of the existing design schemes can guar-
antee scalability, fault tolerance, high performance, and energy efficiency
at the same time. To this end, a hybrid infrastructure organisation scheme
using the combination of several interconnected topological designs may
be required. For example, a combination of Fat-tree, BCube, and
SprintNet may be capable of providing the required infrastructure. As a
side effect, a hybrid design introduces further complexity that must be
managed.

  D. DONG ET AL.

  37

2.2.2   The Cloud Management Layer

Depending on the business goals, the technologies chosen to implement a
cloud architecture varies from vendor to vendor. In principle, all cloud
architecture implementations aim to realise quality attributes that most
appropriately reflect the business goals of the CSP. In Chap. 1, cloud com-
puting was defined, as per National Institute of Standards and Technology,
as having five properties including on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service (Mell and
Grance 2011). Technically, any data centre having those properties can be
considered as a cloud. These properties can be realised by composing a set
of commonly acknowledged functional components, as shown in Fig. 2.3.
In principle, all cloud management platforms follow the same architectural
design, but their implementations vary greatly. The following sections give
a high-level overview of how two representative cloud management plat-
forms, namely OpenStack and Google Kubernetes, implement the classical
cloud architecture, based on virtualisation and containerisation technolo-
gies, respectively.

2.2.2.1	 �OpenStack
OpenStack (OpenStack, LLC 2017) is an open-source cloud platform
designed to manage virtualised environments. Hypervisors are used to vir-
tualise servers; various technologies including Virtual Local Area Networks,

Fig. 2.3  Cloud management architect—a component view

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

https://doi.org/10.1007/978-3-319-76038-4_1

38 

Linux kernel namespaces, and various tunnelling techniques are used to
virtualise networks; and storage resources are abstracted through the use
of Network File Systems, Remote Volume, Object Storage, and other
network-based clustering file systems such as GlusterFS (Red Hat &
GlusterFS 2012), Ceph (Weil 2006), and Google File System (Ghemawat
et al. 2003).

In particular, for managing computational resources, OpenStack uses a
front-end Application Programming Interface (API) server for receiving
and answering requests. Typically, allocating a computational resource will
require other components, for example, a virtual network, a security
group, and operating system images. This can be a complex task when
dealing with multiple simultaneous requests with different configurations.
In order to reduce this complexity, the front-end API server forwards the
requests to a nova-conductor service. The nova-conductor coordinates vari-
ous associated components to satisfy for a particular request. The nova-
conductor uses a scheduler service (nova-scheduler) to locate potential
physical server(s) that meet the specified requirements, including the
number of Central Processing Unit (CPU) cores, the size of memory, and
storage space. The requested resources (Virtual Machines [VMs]) will be
deployed by a nova-compute service (by calling hypervisor-specific APIs)
on the most appropriate physical servers. Architecturally, the computa-
tional resource management consists of a front-end API server, request
coordinators (can be a group of resource coordinators to deal with high-
volume requests), and an agent per computational node (executing the
actual resource provisioning and deployment commands).

Managing networking in the cloud is a complex task. This is because
conventional network functional components, for example, firewalls, rout-
ers, switches, networking connections, and Network Interface Cards
(NICs), must be provided to end-users on top of shared physical network-
ing resources and networking equipment. These cannot be virtualised or
containerised like computational resources using hypervisors or container
engines; rather, networking virtualisation is mainly built on top of several
packet tagging/encapsulation techniques and the use of software imple-
mentations of respective networking devices such as virtual routers and
virtual switches.

OpenStack storage systems are decoupled from computational
resources. OpenStack offers several basic types of storage systems includ-
ing traditional database systems, network-attached storage, and object
storage. The back-end technologies supporting these storage systems vary

  D. DONG ET AL.

  39

greatly. In general, database systems and object storage are used by cloud
applications, whereas remote volumes are used when creating VMs.

2.2.2.2	 �Google Kubernetes
Kubernetes is the most recent evolution of Google data centre manage-
ment technology (Rensin 2015; Burns et al. 2016). Architecturally,
Kubernetes uses a master/worker model. It consists of a master server and
multiple minions (workers). The command line tools connect to the API
endpoint in the master, which manages and orchestrates all minions. The
minions receive instructions from the master and initialise local containers,
appropriately.

A Kubernetes Master is composed of a number of components: the API
server, the Replication Controller, the etcd Daemon, and the Scheduler.
The API server is responsible for processing requests and for manipulating
the underlying state objects. The Replication Controller determines how
many pods or containers need to be run. The etcd Daemon stores configu-
ration data. Lastly, the Scheduler is used to place work on an appropriate
minion (or minions) based on an analysis of the state of the current infra-
structure and the requirements of the service being provisioned.

A Kubernetes Minion is also composed of a number of components:
the Kubelet, the Proxy, the cAdvisor, and a Pod. The Kubelet manages the
lifecycle of containers in response to instructions from the master. The
Proxy forwards network traffic to the appropriate containers. It performs
primitive load balancing and is responsible for making sure that each net-
working environment is internally accessible while remaining isolated
from other environments. The cAdvisor is a daemon that provides con-
tainer users with an understanding of the resource usage and the perfor-
mance characteristics of their containers. Finally, a Pod defines a collection
of containers, deployed on the same minion, and provides them with a
shared context.

2.2.3   The Service Delivery Layer

As outlined in Chap. 1, there are three basic cloud service delivery
models: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These service delivery models are also
referred to as cloud business models or resource abstraction models. Each
of these delivery models is realised in specific layers of the cloud architec-
ture. IaaS, for example, provides end-users access to tangible physical infra-

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

https://doi.org/10.1007/978-3-319-76038-4_1

40 

structures, such as physical servers, networking equipment, and storage
systems. IaaS also provides access to virtualised physical servers, known as
Virtual Machines. IaaS offers maximum flexibility to end-users for config-
uring and operating the acquired resources, thus IaaS targets end-user
groups interested in building Information Technology (IT) infrastructure.

In order to reduce the configuration complexity and operational costs,
CSPs can provide pre-configured platforms and offer those ready-to-use
platforms to the end-user. This service model is often referred to as
PaaS. Examples of PaaS are pre-configured operating systems (e.g., Linux,
Windows), Web application servers (e.g., Apache Tomcat, Oracle Glassfish
Red Hat JBoss), Workflow Engines (e.g., Apache Orchestration Director
Engine), and Messaging frameworks (e.g., RabbitMQ, ZeroMQ). PaaS
provides services to system administrators and developers in need of pre-
configured platforms for their systems or applications to function as
expected. Although PaaS can greatly reduce configuration complexity and
operational costs, it still requires the end-users to have domain-specific
knowledge to engage with the platforms being provided. There are also
cloud end-users who are interested only in consuming services, such as
email, business processes, customised applications, for example, Customer
Relationship Management and Enterprise Resource Planning. When a
CSP has installed, configured, and provided those customer-facing soft-
ware solutions as a service, they are referred to as SaaS.

As the cloud ecosystem rapidly evolves, heterogeneous resources are
being incorporated into the cloud environment, which has traditionally
been homogeneous. This evolution requires multiple service abstraction
modes to coexist and to be combined to provide more versatile services.

2.3   Transitioning to Heterogeneous Clouds

Cloud infrastructure has traditionally been built on homogeneous
resources. This approach afforded simplicity of design and uniformity of
resource management. In recent years, different types of resources have
been made available to the cloud user community and have proven to be
extremely popular due to their speed and modest power consumption.
This evolution on the tradition design is thus leading to the emergence of
the heterogeneous cloud. Heterogeneity is a broad concept. It can refer to
different models of physical servers, produced by various manufacturers,
and/or it can refer to different servers having different computational
power, storage size, and networking capacities. Functionally, various types
of coprocessors and accelerators, such as the Intel Xeon Phi Coprocessor

  D. DONG ET AL.

  41

(Many Integrated Core [MIC]), the Field-Programmable Gate Array
(FPGA), and the Graphical Processing Unit (GPU), have already been
used in many production clouds. At a lower level, each type of CPU
(Advanced Micro Devices, Intel, or even Advanced Reduced Instruction
Set Computing Machine [ARM]), system memory (e.g., Double Data
Rate {1, 2, 3}, 3D transistors), and storage types (e.g., mechanical disks
and Solid State Disks) has different speeds and power consumption pat-
terns. From a networking perspective, several types of networking connec-
tions (e.g., 1 Gb/s standard Ethernet, 10/40Gb/s high-speed Ethernet,
Fibre Optical network, and InfiniBand) coexist in many major cloud
deployments. The heterogeneity in hardware, resource organisation
schemes, and software creates rich features and services that can support a
wide range of applications from general web applications and networking
infrastructure services to Big Data processing, high-performance/
throughput computation applications, and recently the Network Virtual
Function to support traditional telecommunication applications.

Heterogeneity also has its challenges from a cloud management per-
spective due to the complexity associated with managing diversity. Each
type of hardware, resource organisation scheme, and software has its own
unique static features, such as architecture, computation power, speed,
and bandwidth, and each also exhibits different runtime patterns, such as
power consumption, computation performance, access methods, and sup-
porting software libraries. In order to efficiently and effectively manage
such complex environments, the Cloud Management Layer must adapt to
this evolving diversity. In this regard, the two most challenging aspects
that must be addressed are the efficient management of resources and the
support for flexible resource abstraction methods.

2.3.1   Resource Management

Heterogeneous resources introduce a large feature space into the cloud.
The careful refinement of resource features and their combinations pro-
vide two clear advantages: (i) support for a wide range of applications and
(ii) an appropriate mapping between application requirements/specifica-
tions and the resource features/characteristics. These can maximise the
desires of both the end-user and the CSP, for example, respectively maxi-
mising application performance and reducing power consumption. This
process requires resource management capable of efficiently and effec-
tively manipulating such a large feature space at scale.

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

42 

In the current cloud environment, resource scheduling can be catego-
rised into three schemes including Monolithic, Two-Level Scheduling,
and Shared-State (Schwarzkopf et al. 2013).

A Monolithic Scheduler has a single instance, is sequential, and must
implement all policy choices in a single code base. The Google Borg
scheduler is effectively monolithic, although the more recent releases of
this scheduler have been optimised to provide internal parallelism and
multi-threading to address HA and scalability. A Two-Level Scheduling
approach separates application schedulers from resource schedulers. Mesos
acts in this manner. It is an infrastructure management framework and
makes use of a central master scheduler to decide how many resources
from the available pool can be assigned to a framework. An application
scheduler, within each framework, then allocates resources to applications
within its own domain. Finally, a Shared-State scheme uses a Shared-State
Scheduling approach, supporting multiple parallel schedulers. Each sched-
uler is given a private, local, frequently updated copy of the global state for
use in making local scheduling decisions. Once a scheduler makes a place-
ment decision, it updates the shared copy of the global state in an atomic
commit, and the time from state synchronisation to the commit attempt is
called a transaction. Google Omega (Schwarzkopf et al. 2013; Burns et al.
2016) uses the Shared-State scheme. Omega schedulers operate in parallel
using lock-free optimistic concurrency control. Omega is also designed to
support multiple distinct workloads having their own application-specific
interfaces, state machines, and scheduling policies.

Common cloud resource scheduling algorithms map applications to
resources using resource availability metrics such as the number of avail-
able CPU cores, the free memory, the available storage space, and other
system-state information. These schedulers use as little information as pos-
sible to make reasonable decisions in a timely manner. This approach is
sufficient for a cloud composed of homogeneous resources. In contrast,
heterogeneous clouds introduce a much higher degree of complexity for
which conventional approaches to resource management are inadequate.
Thus, new and innovative solutions are required to efficiently support the
transition from the homogeneous to heterogeneous cloud.

2.3.2   Resource Abstraction

Current cloud management platforms are typically designed to manage
either virtualised or containerised environments. Considering that the

  D. DONG ET AL.

  43

traditional cloud consists of homogeneous resources based on general-
purpose processing units (CPU architectures) and standard hardware
components, virtualisation and containerisation technologies have dem-
onstrated their ability, in many production environments, to abstract
standard hardware resources.

However, heterogeneity creates new challenges to existing resource
abstraction methods. Specifically, many computation accelerators, such as
MICs and GPUs, cannot be simply virtualised nor containerised without
specific configurations being done at both the hardware and software lev-
els. In particular, different models and manufacturers of the same type of
computation accelerators may require different configurations on the host
server (e.g., setting CPU features in the Basic Input/Output System and
motherboard configurations) and in the software (e.g., changing kernel
versions, updating operating system drivers, and choosing the appropriate
hypervisor). This poses the challenge of how to flexibly use various
resource abstraction methods to access different types of resources
seamlessly.

2.4   The CloudLightning Approach

The CloudLightning architecture has been constructed in an effort to
address the challenges resulting from the transition to the emerging het-
erogeneous cloud. It recognises that the complexities associated with
resource management due to this transition are nontrivial, and it proposes
the use of self-organisation and self-management as a potential way for-
ward. Thus, the architecture is composed of components and services with
the necessary support for self-organisation and self-management. The
CloudLightning architecture demonstrates how specialised hardware can
be seamlessly integrated and the problems of centralised resource manage-
ment at scale can be addressed, whilst recognising the inevitable added
complexity resulting from supporting heterogeneity. Figure 2.4 shows the
overview of the CloudLightning architecture, including the Service
Delivery Layer, the Cloud Management Layer, and the Infrastructure
Layer.

2.4.1   Infrastructure Organisation

The infrastructure organisation of CloudLightning is reminiscent of the
Warehouse Scale Computer concept in which the infrastructure is composed

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

44 

of Cells. A Cell is composed of Racks, which in turn contain servers of
homogeneous hardware. In contrast, CloudLightning also incorporates het-
erogeneity by allowing different Racks to contain different computational
resources.

2.4.2   Hardware Organisation

In a CloudLightning managed domain, physical servers are partitioned
into groups based on geographical locations or regions; each of these
partitions is called a Cell. A Cell is composed of a pool of heterogeneous
computational resource, known as the Compute Resource Fabric. In the
CloudLightning system, five elementary computational hardware types
are considered explicitly. These include commodity servers (CPUs), serv-

Fig. 2.4  An overview of the CloudLightning architecture showing how its vari-
ous components are organised into the classical conceptual cloud layers

  D. DONG ET AL.

  45

ers with GPU accelerators, servers with MIC accelerators, servers with
FPGA accelerators, and Non-uniform Memory Access Scale high-
performance computer.

In a conventional data centre, physical racks are used to hold servers
and switches. However, in a cloud deployment, the rack has no explicit
identity that can be used to determine, from within the cloud software
stack, where a particular compute/storage resource is physically located.
To maintain information about groups of servers and to manage their
resources, CloudLightning introduces virtual components called vRacks.
A vRack contains a group of physical servers that share common proper-
ties including hardware type, hardware compatibility, and network con-
nection type.

2.4.2.1	 �Resource Abstraction
The Hardware Abstraction Layer (HAL) provides a logical view of the
underlying cloud infrastructure directly to the Cloud Management Layer.
The HAL places resources into vRacks. Each vRack contains a certain
number of homogeneous resources. The size of each vRack is initially
determined by the management complexity for the type of resources to be
managed. During the evolution of the system, a vRack may negotiate with
other vRacks to exchange information and to transfer resources to achieve
system goals such as maximising resource utilisation, reducing power con-
sumption, and improving the service delivery experience.

When new hardware joins the CloudLightning managed domain, a
dedicated Plug & Play interface is used to facilitate the connection of new
hardware to the CloudLightning system. The newly connected hardware
is required to expose available capacities and capabilities to the interface.
In response, the interface will create CloudLightning-specific resources
(CL-Resources) to represent the capabilities exposed. Depending on their
type, these CL-Resources will be attached to an existing vRack, or if an
appropriate vRack of this type is not available, a new vRack of an appropri-
ate type is created. Where appropriate, the newly created vRack will be
managed by a designated vRack Manager. This process is shown in Fig. 2.5.

2.4.3   The Cloud Management Layer

The CloudLightning management layer is shown in Fig. 2.4. The func-
tional components and their relationships are explained in detail in the
following sections.

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

46 

A Cell Manager is the software component associated with each Cell.
The Cell Manager receives an Application Requirements Document from
the Gateway Service, and it acquires CL-Resources in response to the
requirements articulated in that “document”. This can be done in at least
one of two ways: either by allowing the user to select from a set of resources
returned from a Resource Discovery phase or by allowing the system to
assign appropriate resources immediately that meet the service require-
ments. In the former case, resource reservation is required while users
make their choice, and in the latter case no reservation is needed.

2.4.3.1	 �CL-Resource Discovery
The CL-Resource Discovery process is initiated when the Cell Manager
receives an Application Requirements Document from the Gateway. This
“document” contains a set of Blueprint Requirements and a set of Service
Requirements for each service in that Blueprint.

The function of the discovery process is to locate all of the possible
CL-Resources that can be used to implement each of these services, con-
sistent with particular constraints articulated in the list of Service
Requirements.

The discovery process can determine information about dynamically
changing capabilities and capacities by communicating with a group of
vRack managers. From this information, the discovery process determines
the CloudLightning system’s ability to provide CL-Resources for each of
the possible Implementation Options mentioned in the Service Requirements.

Fig. 2.5  Support for heterogeneous resources using Plug & Play interface at the
Hardware Abstraction Layer

  D. DONG ET AL.

  47

To guarantee these options remain available until the selection process is
complete, all of the associated CL-Resources must be reserved by the asso-
ciated vRack Managers. Thus, resources are potentially reserved across
multiple vRack Managers until the selection process determines that they
should be acquired or released. All of these Implementation Options are
then passed directly to the CL-Resource selection process.

2.4.3.2	 �The CL-Resource Selection
This process applies the remaining constraints articulated in the list of
Service Requirements and constraints associated with the Blueprint
Requirements to determine a solution set consistent with all of the
Application Requirements. If at this stage the solution set is not unique,
the selection process will choose a unique solution by considering the
options that minimise the overhead for the CSP. The associated
CL-Resources in the solution set are then acquired automatically and
those CL-Resources not in the solution set are released. Once the
CL-Resources are acquired, their handlers are passed back to the Gateway
for subsequent use by the Deployment Manager.

A vRack Manager is associated with each vRack. The function of a
vRack Manager is to manage all of the CL-Resources that can be exposed
from its associated vRack. In addition, it can create/aggregate
CL-Resources in/on its vRack, as necessary. When the vRack Manager
aggregates CL-Resources in its vRack, it creates a new type of CL-Resource
called a Coalition. This is one of the defining characteristics of the
CloudLightning system in that it allows CL-Resources to be formed into
groups of homogeneous CL-Resource types to implement specific services
with those requirements. A vRack Manager is responsible for managing
the physical servers in its vRack. The set of servers associated with vRacks
may be re-allocated over time. Similarly, new servers may be added to a
Cell and others may be removed. This may trigger the creation/destruc-
tion/reorganisation of vRacks and their associated vRack Managers.

There are three functional components within each vRack Manager: a
Resource Acquisition component, a Coalition Lifecycle Management
component, and a Self-Organisation Agent.

2.4.3.3	 �Resource Acquisition
This component is activated by the selection process of the Cell Manager.
It attempts to acquire CL-Resources; this can be guaranteed if they have
been previously reserved. The CL-Resources being acquired may already

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

48 

exist within the vRack or they may have to be dynamically created by the
vRack Manager. Once these CL-Resources have been acquired, their
CL-Resource handlers are returned to the selection process of the Cell
Manager.

2.4.3.4	 �Coalition Lifecycle Management
A Coalition is a special type of CL-Resource. In general, it represents a
group of homogeneous CL-Resources, each of which exists within a single
vRack. The vRack Manager may form a number of Coalitions, which may
be persistent and used as a means of rapidly providing an implementation
option for specific services. These persistent Coalitions are called Static
Coalitions. The vRack Manager may also aggregate its CL-Resources,
none of which may be a Coalition in itself, to form Coalitions dynamically
in response to a specific CL-Resource acquisition request from Cell
Manager. In managing dynamic CL-Resources, such as Coalitions, bin-
packing strategies can be used to balance resource utilisation and power
management. By appropriately managing the mix of static versus dynamic
CL-Resources, faster service deployment can be balanced against potential
savings on power consumption.

A Coalition is an entity that can be seen as an execution environment,
formed by grouping together a number of CL-Resources. Coalitions may
exist inside a single vRack and so each is under the control of single vRack
Manager. The constituency of a Coalition may span multiple servers within
that vRack. Coalitions are formed by a vRack Manager in response to spe-
cific service requirements. The vRack Manager may decide to persist
Coalitions for improved service delivery, and these Coalitions are called
Static Coalitions. Coalitions may also be formed dynamically by a vRack
Manager again in response to specific service requirements. This dynamic
formation may involve the dynamic creation of some or all of the constitu-
ent CL-Resources. When a dynamically formed Coalition is subsequently
disbanded, its dynamically created constituents are destroyed, but any
static CL-Resources used in its formation are left unchanged and persist to
be reused in subsequent Coalition formations. Figure 2.6 illustrates a
number of Coalitions in a vRack. From the illustration, it can be seen that
a Coalition can exist entirely within a single server or can span multiple
servers within the same vRack. In the situation that a single vRack Manager
does not contain sufficient resources to satisfy a specific requirement, it
may negotiate with an adjacent vRack Manager to acquire the appropriate
resources.

  D. DONG ET AL.

  49

2.4.3.5	 �Self-Organisation Agent
The vRack Manager is a basic component of self-organisation in the
CloudLightning system. vRack Managers organise themselves into groups
and collectively determine local optimum strategies for CL-Resource
management. The Self-Organisation Agent maintains information about
other vRack Managers in the same group, it exchanges local state informa-
tion with the Self-Organisation Agent in those vRack Managers, and it
triggers power management decisions in the servers contained in its vRack.
Negotiations between the various Self-Organising Agents within a vRack
Manager group may result in the migration of servers from one vRack to
another. Since CL-Resources may span multiple servers in the same vRack,
any proposed migration must not violate the invariants associated with
maintaining coalitions.

Fig. 2.6  Illustration of resource coalition

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

50 

A vRack Manager Group is composed of a group of vRack Managers
whose vRacks contain the same type of hardware. The Self-Organisation
Agents of the vRack Managers within the group exchange information to
optimally respond to resource discovery request from the Cell Manager.
Together, they decide on if, and on where, the required CL-Resources are
located or could be created. In making these decisions, the individual
interests of each vRack Manager and the interests of the group as a whole
are taken into account. This distributed decision process embodies the
self-organisation strategy, which evolves to meet global objectives deter-
mined from the requirements driving the architecture design. vRack
Managers are distinguished by the vRack hardware type. This distinction
gives rise to a classification of the vRack Managers.

2.4.3.6	 �Classification of vRack Managers
Type-A vRack Managers are the most generic. They manage a collection
of hardware resources of the same type (see Fig. 2.7). In one instance,
these can be commodity hardware; in another, they could be CPU-GPU
pairs, CPU-Data Flow Engine (DFE) pairs, or CPU-MIC pairs.

Type-B vRack Managers are more specialised. They manage a collec-
tion of HPC machines of the same type, each of which is exposed to the
CloudLightning system as a single CL-Resource (see Fig. 2.8). If two or
more HPC machines are managed by the same vRack Manager, then it is
assumed that they are identical in all respects. This ensures that the
CL-Resources exposed to the vRack Manager are the same.

Type-C vRack Managers manage a collection of hardware resources of
the same type co-located on a high-speed interconnect (see Fig. 2.9).
These can be commodity servers, or in other instances, they could be serv-
ers with GPU accelerators, servers with MIC accelerators, or servers with
DFE accelerators.

Fig. 2.7  vRack
Manager Type-A

  D. DONG ET AL.

  51

2.4.3.7	 �vRack Manager Activities
Type-A vRack Managers can only group with other Type-A managers (see
Fig. 2.10). These groups can self-organise (e.g., in an attempt to improve
power consumption). Self-organising involves servers migrating between
vRack Managers in the same group. These groups also self-manage to
improve service delivery but deciding locally which member of the group
is the best to respond to particular service requests.

Neither Type-B nor Type-C vRack Managers engage in self-organisation.
In general, the CL-Resources being managed are created from hardware
of different types, thus cannot migrate to other vRack Managers. However,
in principle, Type-B (see Fig. 2.11) vRack Managers can group together
and Type-C (see Fig. 2.12) vRack Managers can group together in an
effort to reduce the overall number of vRack Manager Groups. This in
turn will simplify the administration required in the Cell Manager.

2.4.4   Service Delivery Model

The ready availability of large numbers of powerful, and increasingly het-
erogeneous, resources being made available by CSPs is making possible the
deployment of large, data, and compute-intensive, applications. In many
cases, these, quite often legacy, applications are monolithic in construction

Fig. 2.8  vRack
Manager Type-B

Fig. 2.9  vRack
Manager Type-C

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

52 

Fi
g.

 2
.1

0 
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

A

  D. DONG ET AL.

  53

Fi
g.

 2
.1

1 
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

B

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

54 

Fi
g.

 2
.1

2 
vR

ac
k

M
an

ag
er

 G
ro

up
 T

yp
e-

C

  D. DONG ET AL.

  55

and require bespoke execution environments. Consequently, it can be chal-
lenging to deploy them in the cloud without acquiring IaaS and employing
specialised engineering knowledge.

In this cloud usage model, the provider has no control over the effec-
tive utilisation of resources nor have cloud application developers an
incentive to engage in costly customisation to increase resource efficiency
when, regardless of the efficiency achieved, they are paying for the entire
resource. Composing cloud services from workflows of large, possibly
legacy, applications will most likely be the trend as support for emerging
Big Data applications requires sophisticated, multi-phase data processing.
Being essentially independent, the required resources for the applications
that run in each of these phases may differ greatly in number and type, and
hence the problems of cost and efficiency could be significantly exacer-
bated. Clearly, an approach is needed to allow the sophistication of the
cloud to evolve in an efficient and cost-effective manner. It can be seen
that there is no clear distinction between the concerns of cloud application
developer and those of the Cloud Provider. The concerns of the CSP cen-
tre around efficient management and utilisation of cloud resources, and
the concerns of cloud application developers centre on the specification,
deployment, and service-level agreements (SLAs) associated with their
applications.

To address this usability question, CloudLightning uses a Blueprint-
oriented cloud application design and deployment approach. In this con-
text, Blueprints are workflows in which nodes (Service Element) represent
extant applications and edges distinguish the phases of the Blueprint exe-
cution where particular applications are active. All Service Elements are
stored in a Service Catalogue, which is managed by the Gateway Service
(Fig. 2.4). Cloud application developers may choose Service Elements
from the Service Catalogue and link Service Elements to realise desired
business logics. Attributes and parameters can be specified on a per Service
Element basis. Altogether, the Service Elements, their linkages, and associ-
ated attributes and parameters comprise the application Blueprint, as
shown in Fig. 2.13. The use of the Blueprint would drastically alter the
current cloud usage model in that it would shift the burden of resource
discovery, provisioning, and deployment from the cloud application devel-
opers to CSPs. This shift would greatly reduce the cost to, and the level of
expertise needed by, cloud application developer while simultaneously giv-
ing CSPs full control over, and affording opportunities for the efficient use
of, the cloud resources.

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

56 

2.4.5   Advanced Architecture Support

The design philosophy of the CloudLightning architecture is fundamen-
tally different from the current cloud in operation. This results in the
CloudLightning having different strategies for realising various important
properties including auto-scaling, data locality, HA, and networking
organisation.

2.4.5.1	 �Auto-Scaling
Scalability is one of the most important features in cloud computing. The
CloudLightning system supports scalability provided that Blueprint devel-
opers explicitly indicate in the Blueprint which services are expected to
require scaling. This explicit indication can be given by enclosing the ser-
vices to be scaled within a Scaling Envelope. This envelope embeds services
into Blueprint in order to monitor its load. When a pre-defined load
threshold is crossed, this system service will dynamically acquire the appro-
priate resources from the CloudLightning system to scale the user service
appropriately. By using the envelope in the Blueprint, consumers can see
that execution of that Blueprint may result in charges relating to extra
resources that cannot be determined statically. Additionally, the
CloudLightning auto-scaling scheme allows application developers to
explicitly specify how to service elasticity and partition data in a fine-
grained manner. The scaling envelope and its associated impact on the
CloudLightning system are illustrated in Fig. 2.14.

Fig. 2.13  CloudLightning Blueprint

  D. DONG ET AL.

  57

2.4.5.2	 �High Availability
HA refers to the mechanisms used to ensure continuity of service delivery.
If an infrastructure component (e.g., network equipment or server) fails,
redundancy and flexible load balancing mechanisms may be employed to
ensure that the overall service remains available. HA will be addressed
within the CloudLightning system by using a Hot-Standby server for each
of its software components. To provide HA of the services running on the
CloudLightning system, service replication may be used. Since replication
has an associated cost, the decision to use it should be made by the
Blueprint developers by expressing that preference in the Blueprint. An
envelope mechanism similar to the one used for auto-scaling may be used.

2.4.5.3	 �Data Locality
Data locality, defined as keeping data close to the computation, is one
of the most important factors considered for HPC/HTC and Big Data

Fig. 2.14  Auto-scaling using CL Envelope Mechanism

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

58 

applications. In the cloud environment, the concept of data locality is
not well defined. The CloudLightning system does not propose to
introduce mechanisms to give Blueprint developers control over the
data locality, unless that control is provided explicitly by specialised
CL-Resources dedicated to high-speed data processing. Thus, this func-
tionality would have to be exposed to the Blueprint developers at the
Blueprint level.

In the CloudLightning system, data locality constraints may have to be
considered at various levels in the self-managed and self-organised compo-
nents; thus, it may be necessary to develop strategies for data locality at the
Coalition, vRack, and Cell level. For instance, if a given Blueprint consists
of two services: Service_A and Service_B, knowing that if Service_A will
generate significant amount of data that will be further processed by
Service_B (this information will be specified between Service_A/B in the
Blueprint specification), then this information is a potential data locality
requirement for the Blueprint which will be thereafter used by Cloud
Management Layer to deploy the Blueprint on appropriate resources. On
the other hand, in different application domains, such as HPC/HTC and
Big Data, many applications require local storage for computation. In
cases where data locality is a predominant concern, CloudLightning sys-
tem is designed to use Network Attached Storages (NAS) through high
bandwidth links in order to minimise the data transmission cost over the
network. However, in cases where the NAS is not present, local persistent
storage can also be used.

2.4.5.4	 �Dynamic VPN Creation for Blueprint Service Execution
To create an isolated execution environment for each Blueprint, the
CloudLightning Management Layer creates dedicated Virtual Private
Networks (VPNs) for each Blueprint, as shown in Fig. 2.15. The services
within a Blueprint need to communicate with each other, services are
mapped onto dedicated Coalitions, which may be running on different
physical servers. In addition, the Coalitions running various services of a
Blueprint may extend over multiple vRacks. Regardless of their physical
location in the CloudLightning system, dedicated VPNs created for each
Blueprint will ensure that CL-Resources and the data exchange between
them remain secure and private to the Blueprint from which they are
constructed.

  D. DONG ET AL.

  59

2.5   Conclusion

The trend for hardware vendors to create more specialised offerings, capable
of providing faster, more accurate, and power-efficient solutions, looks set to
continue. The increasing demand for this hardware and for access to HPC is
driving an evolution of cloud computing that offers versatile services. A het-
erogeneous cloud at scale embodies many hardware types, each with differ-
ent cost/performance/power profiles. This, together with the attempt to
satisfy the disparate needs of a large and varied customer community, makes
the heterogeneous cloud a complex system. In evolving to heterogeneous
clouds, CSPs may no longer offer Software/Platform/Infrastructure as a
service, separately. Instead, CSPs may undertake to offer a combination of
these to the customer on demand. This approach would require a service
orchestration designer tool that could be used to compose a set of services
together with an appropriate expression of service-level requirements into a
cloud application Blueprint. From this perspective, customers no longer
need to be concerned about how solutions are provided; rather customers
can concentrate on describing the problem to be solved. This also gives more
control to the CSP over how to provision and optimise resources, to meet
both consumer needs and system requirements. However, the complexity of

Fig. 2.15  Blueprint-
driven VPN creation

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

60 

managing resources in a heterogeneous cloud environment should not be
underestimated. Self-organisation is one of the tools that can be employed to
effectively address this complexity. More specifically, in a properly designed
self-organising approach, global system objectives may be met as the by-
product of emergent behaviour resulting from the application of low-level
self-organising rules and strategies; this approach has been adopted by the
CloudLightning project. In the next chapter, the self-organising and self-
managing approach for cloud management in the CloudLightning architec-
ture level and details for developing effective cloud organisation strategies
and efficient resource management algorithms are addressed.

2.6   Chapter 2 Related CloudLightning Readings

	1.	 Xiong, H., Dong, D., Filelis-Papadopoulos, C., Castané, G. G.,
Lynn, T., Marinescu, D. C., et al. (2017). CloudLightning: A self-
organized self-managed heterogeneous cloud. Annals of Computer
Science and Information Systems, 11, 749–758.

References

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data
center network architecture. SIGCOMM Computer Communication Review,
38(4), 63–74.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg,
omega, and kubernetes. Communications of the ACM, 59(5), 50–57.

Ghanwani, R. P. (2011). Routing Bridges (RBridges): Base protocol specification.
Internet Requests for Comments. RFC Editor.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File system.
SIGOPS Operating System Review, 37(5), 29–43.

Greenberg, A., et al. (2011). VL2: A scalable and flexible data center network.
Communications of the ACM, 54(3), 95–104.

Guo, C., et al. (2008). Dcell: A scalable and fault-tolerant network structure for
data centers. SIGCOMM Computer Communication Review, 38(4), 75–86.

Guo, C., et al. (2009). BCube: A high performance, server-centric network archi-
tecture for modular data centers. SIGCOMM Computer Communication
Review, 39(4), 63–74.

Kim, C., et al. (2011). SEATTLE: A scalable ethernet architecture for large enter-
prises. ACM Transactions on Computer Systems, 29(1), 1.

Leiserson, C. (1985). Fat-trees: Universal networks for hardware-efficient super-
computing. IEEE Transactions on Computers, C-34, 892–901.

Li, D., Guo, C., Wu, H., Tan, K., & Zhang, Y. (2009). FiConn: Using
backup port for server interconnection in data centers. In INFOCOM 2009
(pp. 2276–2285). IEEE.

  D. DONG ET AL.

  61

Lin, D., Liu, Y., Hamdi, M., & Muppala, J. (2012). FlatNet: Towards a flatter data
center network. In Proceedings of Global Communications Conference
(GLOBECOM) (pp. 2499–2504). IEEE.

Martin Pueblas, B. C. (2010). Cisco service ready architecture for schools design
guide. Cisco Systems, Inc.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Computer
Security Division, Information Technology Laboratory, National Institute of
Standards and Technology.

Niranjan Mysore, R., et al. (2009). PortLand: A scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Computer Communication Review, 39(4),
39–50.

OpenStack, LLC. (2017). The openstack project. Retrieved from https://www.
openstack.org

Red Hat & GlusterFS. (2012). GlusterFS. Retrieved from http://www.gluster.org
Rensin, D. K. (2015). Kubernetes—Scheduling the future at Cloud Scale.

Sebastopol, CA: OSCON.
Rodeheffer, T. L. (2000). SmartBridge: A scalable bridge architecture. SIGCOMM

Computer Communication Review, 30(4), 205–216.
Schwarzkopf, M. et al. (2013). Omega: Flexible, scalable schedulers for large com-

pute clusters. In Proceedings of the 8th ACM European Conference on Computer
Systems (pp. 351–364). ACM.

Wang, T., Zhiyang, S., Yu, X., & Hamdi, M. (2014). Rethinking the data center
networking: Architecture, network protocols, and resource sharing. Access,
IEEE, 2, 1481–1496.

Weil, S. A. (2006). Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th symposium on Operating Systems Design and Implementation
(pp. 307–320). USENIX Association.

Open Access  This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

  CLOUD ARCHITECTURES AND MANAGEMENT APPROACHES 

https://www.openstack.org
https://www.openstack.org
http://www.gluster.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 2: Cloud Architectures and Management Approaches
	2.1 Introduction
	2.2 Cloud Architecture
	2.2.1 Infrastructure Organisation
	2.2.1.1	 The Switch-Centric Model
	2.2.1.2	 The Server-Centric Model

	2.2.2 The Cloud Management Layer
	2.2.2.1	 OpenStack
	2.2.2.2	 Google Kubernetes

	2.2.3 The Service Delivery Layer

	2.3 Transitioning to Heterogeneous Clouds
	2.3.1 Resource Management
	2.3.2 Resource Abstraction

	2.4 The CloudLightning Approach
	2.4.1 Infrastructure Organisation
	2.4.2 Hardware Organisation
	2.4.2.1	 Resource Abstraction

	2.4.3 The Cloud Management Layer
	2.4.3.1	 CL-Resource Discovery
	2.4.3.2	 The CL-Resource Selection
	2.4.3.3	 Resource Acquisition
	2.4.3.4	 Coalition Lifecycle Management
	2.4.3.5	 Self-Organisation Agent
	2.4.3.6	 Classification of vRack Managers
	2.4.3.7	 vRack Manager Activities

	2.4.4 Service Delivery Model
	2.4.5 Advanced Architecture Support
	2.4.5.1	 Auto-Scaling
	2.4.5.2	 High Availability
	2.4.5.3	 Data Locality
	2.4.5.4	 Dynamic VPN Creation for Blueprint Service Execution

	2.5 Conclusion
	2.6 Chapter 2 Related CloudLightning Readings
	References

