
Chapter 3
Power and Sample Size Considerations
in Psychometrics

Clemens Draxler and Klaus D. Kubinger

Abstract An overview and discussion of the latest developments regarding power
and sample size determination for statistical tests of assumptions of psychometric
models are given. Theoretical as well as computational issues and simulation tech-
niques, respectively, are considered. The treatment of the topic includes maximum
likelihood and least squares procedures applied in the framework of generalized lin-
ear (mixed) models. Numerical examples and comparisons of the procedures to be
introduced are quoted.

Keywords Psychometrics · Power and sample size · Conditional maximum
likelihood · Rasch model · Conditional tests · Analysis of variance

3.1 Introduction

Thedevelopment and the application of psychometricmodels including techniques of
estimation of model parameters and statistical tests of model assumptions have expe-
rienced a rapid growth in recent decades. Classical frequentist as well as Bayesian
approaches to statistical inference have been treated and applied extensively in psy-
chometric literature. An overview is given by, for example, Rao and Sinharay [21].
Strangely, power and sample size considerations in the classical (frequentist) sense
have been neglected for a long time. Reasonsmay be the influence of nuisance param-
eters on the precision of inferential statements about the parameters of interest and
the difficulty of predetermining a reasonable level of precision (e.g., the deviation
from the hypothesis to be tested or the length of a confidence interval) which depends
on the practical context.
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This summary chapter refers to these issues and their related problems. It reviews
and discusses the latest advancements concerning power and sample size planning in
psychometrics developed by [5–7] on the one hand and by [11, 12, 30] on the other
hand. The treatment refers to generalized linear models [1, 14, 15] and the exponen-
tial family of probability distributions (e.g., [4]). It is concerned with both maximum
likelihood and least squares approaches. Statistical tests derived from asymptotic
theory are considered as well as so-called exact tests based on discrete probabil-
ity distributions. Results quoted are either derived analytically or from numerical
procedures. The focus lies on the Rasch model [8, 23].

3.2 Power and Sample Size in a Conditional Maximum
Likelihood Framework

Draxler and Alexandrowicz [6] treat questions of sample size computations within
the scope of the conditionalmaximum likelihood (CML) approach [3] and refer to the
trinity of Wald [27], score [20, 24], and likelihood ratio tests [16, 28]. Let f ( y, θ , τ )
denote a probability distribution (density or mass function) of the random vector Y
of the natural exponential family indexed by the parameter vectors θ and τ taking
values in natural parameter spaces � and T. The vector θ is treated as the parameter
of interest and τ as a nuisance parameter vector. Denote by T(Y) a vector-valued suf-
ficient statistic for τ with probability distribution g(t, θ , τ ). Consider the sequence of
independent randomvectorsY1, . . . ,Yn , a sample of n independent observations, and
their sufficient statistics T(Y1), . . . ,T(Yn) with respective distributions f ( yi , θ , τ i )

and g(t i , θ , τ i ), for i = 1, . . . , n. Given T(Y i ) = t(yi ), the conditional probability
distribution h( yi , θ | T i = t i ) = f (·)/g(·), g(·) > 0, does not depend on τ i ∀ i so
that one obtains by

L(θ) =
n∑

i=1

log[h( yi , θ | T i = t i )] (3.1)

the logarithm of the conditional likelihood as a function of the parameter of interest
θ only and by

θ̂ = arg max
θ ∈ �

L(θ) (3.2)

the CML estimate. The properties of the CML estimator are established by [3, 18] by
proving a number of convergence theorems. Its asymptotic distribution ismultivariate
normal with mean vector θ and covariance matrix �(θ) = I(θ)−1, where the Fisher
information matrix is obtained by

I(θ) = −E

[
∂2L(θ)

∂θ∂θ ′

]
. (3.3)
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The latter is assumed to be positive definite. The presupposed regularity conditions
generally hold for the exponential family except the following very mild condition.
Roughly speaking, toomany too large absolute values in the sequence of the nuisance
parameters have to be excluded for the CML estimator to be (weakly) consistent. In
a practical context, one will mostly be safe to assume this condition to be satisfied.
Further considerations regarding power and sample size computations depend on the
asymptotic properties of the CML estimator.

The precision of inferential statements about θ and thus also power and sample
size of tests of hypotheses regarding θ obviously depend on the covariance of the
estimator θ̂ . To attain a desired level of precision, the rate of decrease of Cov(θ̂ ) or
equivalently the rate of increase of the Fisher informationwith increasing sample size
nmust be known. Unfortunately, this is not the case since the information depends on
the unknown distributions of the sequence of sufficient statistics T1, . . . , Tn which
themselves depend on the sequence of the unknown nuisance parameters τ 1,…,τ n .
It is an obvious consequence of the assumption that the Ys need not be identically
distributed. By rewriting the information matrix as

I(θ) = −E

[
∂2L(θ)

∂θ∂θ ′

]
= −

n∑

i=1

E

{
∂2 log[h( yi , θ | T i = t i )]

∂θ∂θ ′

}
(3.4)

it can be seen that the information depends on the observed sequence of the sufficient
statistics T1 = t1, . . . , Tn = tn . Since the summands on the right-hand side of (3.4),
the separate pieces of information, need not be equal given different observed values
of the sufficient statistics, the total information in the sample does not only depend on
the total number of observations n but on the particular sequence T1 = t1, . . . , Tn =
tn observed. This is a problem for planning the power and sample size in experiments
(before the data have been collected) since theTs are randomand it cannot be planned
(deterministically) which values to be observed. As a consequence [6], introduce an
additional assumption on the nuisance parameters so that a common distribution for
the Ts is obtainedwhich, besides, has another advantage. By choosing an appropriate
distribution, it may be avoided to observe too many too large absolute values of
the nuisance parameters meeting the requirements for the CML estimator θ̂ to be
consistent. Let the sequence of nuisance parameters be independent and identically
distributed with probability density function ϕ(τ ) = ϕ(τ 1) = · · · = ϕ(τ n) so that

g(t, θ) =
∫

g(t1, θ , τ 1)ϕ(τ 1)dτ 1 = · · · =
∫

g(tn, θ , τ n)ϕ(τ n)dτ n. (3.5)

It follows for the information matrix

I(θ) = −n
∫

E

{
∂2 log[h( yi , θ | T i = t i )]

∂θ∂θ ′

}
g(t, θ)dt = nH(θ), (3.6)
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where the matrix H(θ ) denotes the integral in (3.6) times −1. Hence, given the
assumption (3.5) and given θ , the information matrix (3.6) and Cov(θ̂ ) are simple
(one to one) functions of the sample size n.

Consider testing a class of linear hypotheses given by Jθ = c, with c as a vector
of constants and J as the Jacobian matrix of the transformation φ(θ). The latter
is assumed to be a vector-valued continuously differentiable function with lower
dimensionality than θ . As is well known, the three test statistics of the trinity of
testing procedures under consideration will be asymptotically equivalent if Jθ = c is
true, with common asymptotic distribution given by the central χ2 with df= rank(J).
If Jθ = c does not hold asymptotic equivalence and a common distribution will only
be obtained under an additional technical assumption of a sequence of alternative
hypotheses (or contiguous alternative). This is a rather general result quoted bymany
authors. For details, the reader is referred to [6] and the references quoted therein. For
computational purposes of planning the sample size, a deviation from the hypothesis
to be tested must be chosen depending on practical considerations concerning the
consequences of the error of the second kind of the statistical test. Provided the
predetermined deviation is not too far from Jθ = c, the distributions of the test
statistics are well approximated by the non-central χ2 density with df = rank(J) and
non-centrality parameter λ as a (quadratic) function of the chosen deviation and the
sample size n (e.g., [1, 9, 10]. For the CML case and the Rasch model, results of
a Monte Carlo analysis quoted by [6] hint at quite satisfying approximations of the
distributions of the test statistics by the non-central χ2 family for different levels of
deviations chosen from a range of particular interest in practice. Poor approximations
have only been observed in cases where the chosen deviation is tremendously large
and thus unrealistic in practice. Regarding the likelihood ratio test statistic, a more
extensive Monte Carlo analysis with very detailed results is provided by [2].

Let θ = θ1 be a vector defining a deviation from the hypothesis to be tested so
that Jθ1 �= c and denote by λ0 the particular value of the non-centrality parameter
of the χ2 distribution with df = rank(J) for which the β quantile equals the value
of the 1 − α quantile of the central χ2 (with the same degrees of freedom), where α

and β are the probabilities for the errors of the first and second kind of the statistical
test. The sample size of the tests can be determined by replacing all random quan-
tities (functions of the observations) in the expressions of the test statistics by their
expectations evaluated at θ = θ1. Then, the expectations of the test statistics are set
equal to the expectation of the non-central χ2 distribution with df = rank(J) and
non-centrality parameter λ0. Given θ = θ1 and the assumption on the distributions
of the sufficient statistics given by (3.5), the expectations of all three test statistics are
one-dimensional functions of the sample size n so that the (three) equality restric-
tions simply have to be solved according to n. In all three cases, explicit solutions
exist. Exemplarily, for the Wald test statistic W , one obtains

E
{
χ2 [df = rank(J), λ0]

} = E [W (θ1)] (3.7)
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λ0 + rank(J) = (Jθ1 − c)′
[
J ′n−1H(θ1)

−1 J
]−1

(Jθ1 − c) + rank(J) (3.8)

n = ceil

{
λ0

(Jθ1 − c)′
[
J ′H(θ1)−1 J

]−1
(Jθ1 − c)

}
. (3.9)

Regarding score and likelihood ratio tests, the sample size is determined on the same
lines but the derivation of their expectations is slightly more complicated. For details,
one is referred to [6].

3.3 Power of Pseudo-Exact or Conditional Tests
of Assumptions of the Rasch Model

The following considerations are restricted to the Rasch model and are based on
a Markov Chain Monte Carlo (MCMC) approach developed by [25]. Draxler and
Zessin [7] discuss the power function of conditional or pseudo-exact tests which
may be viewed as generalizations (multivariate and more general covariances) of
Fisher’s well-known exact test. The exact discrete probability distributions under the
hypothesis to be tested and under a given deviation and the power function of the
tests, respectively, are well approximated using the cited MCMC technique.

The Rasch model determines the discrete probability distributions of a number of
persons indexed by i = 1, . . . , n to a number of items indexed by j = 1, . . . , k. Let
Yi j ∈ {0, 1} be the binary response of person i to item j and consider a n × k matrix
with entries given by the binary responses of every person to every item. Given
the observed values of all row sums R1 = r1, . . . , Rn = rn and all column sums
C1 = c1, . . . ,Ck = ck , the conditional probability distribution of all free Bernoulli
variables (binary responses) is discrete uniform and simply obtained by the recip-
rocal number of (possible) matrices not violating the given row and column sums
of the observed matrix. The exact distribution of any suitable test statistic under the
hypothesis to be tested can easily be derived from this conditional distribution. A
number of practically interesting examples are quoted by [19]. The conditional dis-
tribution of a test statistic under a given deviation from the hypothesis to be tested
and the power of the respective conditional test may also be derived from the uni-
form distribution as shown by [7]. Counting the total exact number of matrices with
fixed row and column sums is a complicated problem in realistic cases with the usual
numbers of persons and items. Thus, for computational purposes, the exact distribu-
tions and exact power may be sufficiently approximated by random sampling from
the uniform distribution of matrices with given row and column sums which is well
accomplished by the application of a MCMC approach suggested by [25].

A general expression of the power function of conditional tests may be derived as
follows. Consider a generalization of the Raschmodel determining the discrete prob-
ability distribution of the binary response Yi j . Denote it by P(Yi j = yi j | X = x),
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with X as a (random) vector of covariates or a vector of any responses (of any per-
sons to any items) other than Yi j on which Yi j may depend. The distribution P(·) is
indexed by a parameter vector η, and it is assumed that the logit of P(·) is linear in η.
Restricting the parameter space of η so that the Rasch model is obtained as a special
case yields the hypothesis to be tested. Given X = x and η, all binary responses are
assumed to be independent so that their joint probability distribution is obtained by
the product over all persons and items. Let	 denote the sample space which consists
of all n × k matrices with given row and column sums. Then, it follows for the joint
conditional distribution

P(Y = y | X = x, R1 = r1, . . . , Rn = rn,C1 = c1, . . . ,Ck = ck) =
n∏

i=1

k∏
j=1

P(Yi j = yi j | X = x)

∑
	

n∏
i=1

k∏
j=1

P(Yi j = yi j | X = x)

,

(3.10)

where Y consists of all free Bernoulli variables (binary responses). Let C ⊆ 	 be the
critical region with size α of the conditional test of the hypothesis of any restriction
of the parameter space of η yielding the Rasch model. The power function β(η) of
this test is then easily obtained by summation of (3.10) over all elements in C.

The denominator on the right-hand side of (3.10) is a normalizing constant. The
summation has to be taken over the complete set 	. In practice, for computational
purposes, a random sample of matrices from 	 is drawn so that the summation has
only to be taken over all matrices drawn. For this purpose, for instance, the R package
Rasch Sampler [26] may be used. The conditional distribution of Y , the size α of
the critical region C, and the power function of the test can be approximated in this
way. The critical region C will be most powerful at level α if it is chosen according
to the fundamental lemma of [17]. Thus, it has to be composed of those 100α% of
matrices from 	 yielding the largest values of (3.10).

An example of the parameterization of the general model which is of particular
interest in practice assumes the Rasch model to hold conditionally on an additional
covariate. For simplicity, consider a fixed (not random) binary covariate xi ∈ {0, 1},
for instance sex. Then,

P(Yi j = yi j | xi ) = exp
[
yi j (θi + β j + δ j xi )

]

1 + exp(θi + β j + δ j xi )
. (3.11)

Factorization of the product of (3.11) over all persons and items immediately shows
that the statistics Ri = ∑

j Yi j ,C j = ∑
i Yi j and Tj = ∑

i Yi j xi are sufficient for the
parameters θi , β j , and δ j so that for the joint conditional distribution of the T s one
obtains
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P(T = t | x1, . . . , xn, R1 = r1, . . . , Rn = rn,C1 = c1, . . . ,Ck = ck) =
∑
T
exp

(
k∑
j=1

t jδ j

)

∑
	

exp

(
k∑
j=1

t jδ j

) ,(3.12)

with T ′ = (T 1, . . . , Tk−1). Note that one of the T s is not free. The summation in
the numerator of the right side of (3.12) has to be taken over the subset T ⊆ 	

consisting of those matrices contained in 	 which satisfy T = t. The parameters
θi ∈ R and β j ∈ R are person and item parameters which are treated as nuisance
by conditioning on the observed values of their sufficient statistics, and δ j ∈ R is
characterizing a violation of the assumption of the Rasch model of independence
of the items of the covariate. Thus, δ j is the conditional effect of item j given
the covariate. For identifiability reasons, let δk = 0 or

∑
δ j = 0. Note that in this

example, the θ parameters (person parameters) are nuisance parameters. This is
inconsistent with the notation introduced. This is only for a notational convenience
in psychometric literature (e.g., [8]).

A second example concerns a conditional test of the assumption of local indepen-
dence of the responses of a person to the items. Consider the following model

P(Yi2 = yi2 | Yi1 = yi1) ∝ exp [yi2(θi + β2 + ϑyi1)] (3.13)

which introduces local dependence of item 2 on item 1. The probability distributions
of the binary responses of all persons to all other items (except item 2) are assumed
to be given by the Rasch model. Unlike the previous example, in this case, the
joint conditional distribution of all free binary responses and the power function of
the conditional test of ϑ = 0 is not only a function of the parameter of interest ϑ

characterizing a violation of the assumption of local independence (of item 2 on item
1) but of all parameters (since the row and column sums of thematrix of responses are
not sufficient for the person and item parameters). In practice, it seems to be rather
difficult to choose reasonable values for all parameters of the model, in particular for
the person parameters, so that the power can be computed.

Finally, a numerical example from [7] shall be presented but using different seeds
for the pseudo-random number generator (so that the results will not be identical).
It refers to the model given by (3.11) and (3.12), respectively, and is concerned with
power computations of the conditional test of the hypothesis that all δs are equal
to 0 with size α = 0.05. Consider n = 100 persons and k = 15 items. The column
sums of the observed matrix of binary responses are between 4 and 97. The row
sums have large frequencies for values in the middle of the possible range and low
frequencies for values near 0 and 15. For one half of the total number of respondents,
the covariate takes the value 1, and for the other half, it is 0. Item 9 is chosen as the
only deviating item, where item 9 is an item with a given column sum of 53 which
is roughly in the middle of the possible range of values. The power is computed for
different values of δ9 deviating from 0. The R Package Rasch Sampler is used to
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Fig. 3.1 Summaries of power computations of conditional tests of the hypothesis that all δs in
(3.11) and (3.12), respectively, equal 0 considered as a function of δ9 (deviation of item 9)

sample from 	. For every chosen δ9 value, 8000 matrices are drawn, and for each
matrix, its conditional probability is computed using (3.12). The critical region C
is chosen to consist of the 5% of matrices (400 matrices) with the largest values of
(3.12). The power is computed by summation of the conditional probabilities over
all matrices in C. This procedure is replicated 100 times to observe the precision of
the approximation of the exact power. Figure3.1 shows summaries of the results.

3.4 Linear Models and Least Squares Approach

Starting traditionally, one has to realize that most statistical tests of assumptions of
the Raschmodel apply test statistics which are (asymptotically)χ2 distributed. These
test statistics’ degrees of freedom do not depend on the sample size but only on the
number of parameters estimated. In the following, an approach is discussed where
the number of degrees of freedom does depend on the sample size so that it can be
used for power and sample size considerations. Kubinger, Rasch, and Yanagida [11,
12, 30] aimed for some F-distributed test statistic within the framework of analysis
of variance. In general, such an approach provides a variety of procedures for power
and sample size planning, whether there are one- ormulti-way designs, whether there
is the case of models with fixed or random effects or a mixed model, and whether
the factors are crossed, nested, or mixed classified.

Since the Rasch model is a generalized linear model with logit link function,
the idea of testing assumptions of the model within the framework of analysis of
variance (linear models with identity link) may sound strange at first sight, but sur-
prisingly, it works pretty well. Consider a three-way analysis of variance of the kind



3 Power and Sample Size Considerations in Psychometrics 47

(A � B) × C , with A as a fixed factor characterizing a covariate associated with
the persons, for instance the persons′ sex, C as another fixed factor with levels given
by the different items and B as a random factor with levels given by the persons
(which are assumed to be drawn randomly from the population). The latter is nested
within the levels of A. Hence, linear effects of the factors on the expectations of
Bernoulli variables (the binary responses of persons to items) are assumed. Of inter-
est is the hypothesis that there is no interaction effect A × C . It is tested using a F
test statistic obtained by dividing the mean of squares of the interaction A × C by
the mean of squares of the interaction B × C within A. Roughly speaking, provid-
ing the number of levels of A is restricted to two, this approach may be viewed as
equivalent to considering the logit model given by (3.11) and testing the hypothesis
that all δs (conditional effect parameters or the interaction of the covariate and the
items) equal 0.

It is obvious that the probability distribution of the test statistic introduced cannot
be assumed to belong to a known family of distributions, like F , since the distribu-
tions of the binary responses of persons to items cannot be of the class of normal
distributions. Rasch, Rusch, Simeckova, Kubinger,Moder, and Simecek [22] provide
results of a simulation study obtaining actual type I risks sometimes far exceeding
the nominal level (up to five times as high). Thus, power and sample size com-
putations have been based on numerical procedures approximating the probability
distributions of the test statistic under the hypothesis to be tested as well as under a
given deviation. In doing so, Kubinger, Rasch, and Yanagida [11] showed that their
approach will only work if no main effect of A exists. Strictly speaking, the nominal
type I risk of the statistical test of the hypothesis of no interaction A × C holds as
long as no main effect of A is assumed; otherwise, the type I risk will be far too high.

3.5 Numerical Examples and Comparisons

In the following, a few numerical examples are quoted comparing the power of
the χ2 tests with the F test introduced. The size of the tests is predetermined as
α = 0.05 (nominal type I risk). The hypothesis to be tested assumes equality of the
item parameters of the Rasch model between two groups of persons. The number
of persons is chosen to be 300 in each of both groups, and the person parameters
are drawn from the standard normal distribution. The number of items is chosen as
k = 15. Under the hypothesis to be tested, it is assumed that the item parameters are
given by −3.5, −3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, and 3.5 in
both groups (equality of item parameters between the groups).

The following scenarios of deviations from this hypothesis are considered. In
each case, two items are considered as deviating items. The respective columns in
Tables3.1 and 3.2 quote the absolute deviations of the two deviating items from the
respective values assumed under the hypothesis to be tested within both groups of
persons. For example, referring to the first row and first column of Table3.1, the
parameter of item 7 is 0.1 smaller than the value under the hypothesis to be tested (so
that it equals −0.6), whereas the parameter of item 9 is 0.1 larger (so that it equals
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0.6) in the first group of persons. In the second group, the deviations are exactly the
other way round (deviations of reversed sign). Thus, the absolute differences of the
item parameters of the two items between the two groups are both 0.2 (symmetrically
around the value assumed under the hypothesis to be tested).

The power for the Wald test is computed using the relations given by (3.7)–(3.9),
where the distribution of each τ (which corresponds to the person parameter in
the Rasch model) is assumed to be the standard normal. The common distribution
g(t, θ) of the sufficient statistics for the τ s is obtained using numerical integration
(Gauss–Hermite). The power of the F tests is computed using simulation procedures
provided by the R package pwrRasch [29]. The number of simulation runs (number
of replications) is chosen to be 3600. Tables3.1 and 3.2 show the results for all
considered scenarios of deviations.

Table 3.1 Power computations for Wald and F tests referring to scenarios with deviating items 7
and 9 as well as 5 and 11

Abs. deviation
of items 7 and
9

Wald test F test Abs. deviation
of items 5 and
11

Wald test F test

0.1 0.12 0.18 (0.07) 0.1 0.1 0.12 (0.06)

0.15 0.24 0.38 (0.07) 0.15 0.18 0.23 (0.06)

0.2 0.44 0.63 (0.07) 0.2 0.31 0.39 (0.06)

0.25 0.68 0.84 (0.06) 0.25 0.5 0.59 (0.06)

0.3 0.86 0.95 (0.07) 0.3 0.69 0.78 (0.07)

0.35 0.96 0.99 (0.07) 0.35 0.85 0.91 (0.06)

0.4 1 1 (0.06) 0.4 0.94 0.97 (0.06)

0.45 1 1 (0.06) 0.45 0.98 0.99 (0.07)

Note. The observed level of the type I risk of the F tests is quoted in parenthesis

Table 3.2 Power computations for Wald and F tests referring to scenarios with deviating items 3
and 13 as well as 1 and 15

Abs. deviation
of items 3 and
13

Wald test F test Abs. deviation
of items 1 and
15

Wald test F test

0.1 0.08 0.08 (0.06) 0.1 0.06 0.07 (0.06)

0.15 0.11 0.1 (0.07) 0.15 0.06 0.07 (0.06)

0.2 0.18 0.13 (0.06) 0.2 0.07 0.07 (0.06)

0.25 0.27 0.2 (0.07) 0.25 0.09 0.08 (0.06)

0.3 0.4 0.28 (0.07) 0.3 0.11 0.09 (0.06)

0.35 0.54 0.39 (0.07) 0.35 0.13 0.11 (0.07)

0.4 0.68 0.52 (0.07) 0.4 0.16 0.12 (0.06)

0.45 0.8 0.66 (0.07) 0.45 0.2 0.14 (0.06)

0.5 0.89 0.8 (0.07) 0.5 0.24 0.17 (0.07)

0.55 0.95 0.89 (0.06) 0.55 0.29 0.2 (0.06)

Note. The observed level of the type I risk of the F tests is quoted in parenthesis
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Themain implication of the results is to be expected from theory andmay be stated
as follows. In terms of power, the F test performs better than theWald test in the cases
shown in Table3.1, whereas its performance is worse in the cases shown in Table3.2.
Table3.1 refers to examples in which the parameter values of the two deviating
items are approximately in the middle of the assumed range of values matching the
(assumed) mean of the distribution of person parameters. Consequently, the majority
of expectations of the binary responses of persons to the respective deviating items
are around 0.5, and for an expectation in a close interval around 0.5, the dependence
on the assumed factors is close to linearity as is assumed in the linear modeling
framework of analysis of variance. On the contrary, Table3.2 refers to scenarios
assuming the expectations of the binary responses to both deviating items to be
farther from 0.5 and thus closer to the natural boundaries 0 and 1 so that the assumed
linear dependence (of the expectation on the factors) is more inappropriate.

It must also be remarked that the F test seems to be biased, but the bias seems
to be small. At least, this is what can be observed in the examples considered. In all
scenarios, the observed type I risk is slightly larger than the nominal one as is seen
by the values in parenthesis in both tables.

3.6 Discussion

In the analysis of psychometric data, one is usually confronted with nuisance param-
eters influencing the precision of inferential statements about parameters of inter-
est. One way of eliminating the effect of nuisance parameters is conditioning on
the observed values of their sufficient statistics and pursuing the well-known CML
approach, respectively, which is, for instance, applicable for the class of Rasch mod-
els. When the data and in particular the sufficient statistics (as functions of the data)
have already been observed, such an approach allows for estimating the parameters
of interest and testing hypotheses about them. It is even possible to compute the
power of statistical tests post hoc. Before observing the data, like in cases the sample
size of an experiment is to be planned in advance, the CML approach is obviously
not applicable without additional assumptions on the nuisance parameters and their
sufficient statistics as discussed by [6]. Thus, one may argue that in this case CML
as well as the consideration of conditional tests described in Sect. 3.3 is not suitable
solutions of the problem of the influence of nuisance parameters.

Developing this thought further, one may arrive at another common approach of
dealing with nuisance parameters termed as marginal maximum likelihood which is
widely used for psychometric models. This approach assumes a probability distribu-
tion for the nuisance parameters since in most applications the nuisance parameters
are treated as random variables anyway (since they are assumed to be drawn ran-
domly from the population). Maydeu-Olivares and Montano [13] used the marginal
maximum likelihood framework to develop procedures for power and sample size
computations for a few particular statistical tests of assumptions of psychometric
models.
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Another point worth discussing is the problem of predetermining a deviation from
the hypothesis to be tested in practice (for the computation of power and sample
size, respectively). In most applications, not only one but multiple parameters are
of interest and the practical meaning of a deviation from the parameter value to be
tested usually differs from one parameter to the other and depends on the practical
context as well. A suitable contribution on this topic is provided by [5] describing a
three-step procedure facilitating the evaluation of the practical meaning of deviations
from the hypothesis to be tested.

An essential difference between the conditional tests based on discrete probability
distributions and all other approaches described in this summary chapter is that the
conditional tests are one-sided. Hence, the power of these tests is expected to be
considerably larger so that comparisons with the χ2 and F tests (in terms of power)
do not make much sense. From the practical point of view, one-sided tests may be
less suitable in the context of psychometric modeling since one is usually interested
in the question whether model assumptions hold or not. The directions or signs of
deviations from the parameter values to be tested do not play an important role.

Finally, some comments on the utility of the F test shall be discussed. Power
computations depend on Monte Carlo procedures. On the one hand, it is nice to have
an R package providing the necessary numerical procedures for the approximation
of the power of the tests. On the other hand, the computation of the power with
the R package pwrRasch is restricted to tests of hypotheses of the following type.
Regarding every single parameter of interest, exactly one value has to be chosen.
That is, the item parameters have to be chosen for both groups of persons and under
the hypothesis to be tested they are chosen so that they are equal between both
groups (like it is described in the first two paragraphs of Sect. 3.5). Such a hypothesis
is usually not the hypothesis one is interested in. Of interest is the hypothesis that
the differences between the item parameters equal 0. The problem is that the power
of the test does not only depend on the difference of an item parameter between
the groups but also on the level on which this difference is assumed (whether it is
an easy or difficult item that possibly differs between two groups) and, again, the
latter is usually not of interest in an application and it will hardly ever be possible
to reasonably predetermine it. Furthermore, the procedure is restricted to the Rasch
model and to the question of group differences. Tests of other important assumptions
of the model like local independence and equal item discriminations are excluded.
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