
Chapter 2
A Review of Simulation Usage
in the New Zealand Electricity
Market
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Abstract In this chapter, we outline and review the application of simulation on
the generation offer and consumption bids for the New Zealand electricity market
(NZEM). We start by describing the operation of the NZEM with a particular focus
on how electricity prices are calculated for each time period. The complexity of this
mechanism, in conjunctionwith uncertainty surrounding factors such as consumption
levels, motivates the use of simulation.Wewill then discuss simulation–optimization
methods for optimal offer strategies of a generator, for a particular time period, in the
NZEM.We conclude by extending our ideas and techniques to consumption bids and
interruptible load reserve offers for major consumers of electricity including large
manufacturers such as the steel mill.
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2.1 Introduction to Wholesale Electricity Markets

Electricity markets have become prevalent around the world in the past two to
three decades. The first example of privatization of an electric power system took
place in Chile in the early 1980s. The idea behind the Chilean model was to bring
rationality and transparency to the operations of the power system that would
ultimately be reflected in power prices. Other rationales for the eventuation of
electricity markets include better reliability and signalling appropriate levels of
investment in infrastructure in the energy sector through proper pricing of this
commodity. England–Wales, New Zealand, Australia, the Nord Pool, Spain and the
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Pennsylvania–Jersey–Maryland (PJM) markets are amongst the oldest electricity
markets with an abundance of available data.

2.1.1 Pricing of Electricity

Arguably, proper pricing of electricity is the corner stone of the electricity market
paradigm. This is a key for signalling scarcity, and it is the market signal that would
drive investment decisions. While in most commodity markets the price of a good
is determined through supply and demand, in the case of electricity, the physical
constraints governing an electricity system also impact prices. Electricity is not a
storable commodity. It is injected into a transmission grid at certain nodes of that
transmission grid often referred to as grid injection points (GIPs) and flows through
the grid complying with physical constraints. Electricity is withdrawn at grid exit
points (GXPs) and delivered to consumers. Due to the physical constraints on the flow
of electricity, in all electricity markets, the dispatch of the generation of electricity
is left to an independent system operator (ISO). In most electricity markets, an
additional function of the ISO is to determine the price of electricity at different
nodes of the transmission network.

Typically in a wholesale electricity market, for each period of the day, each gener-
ator offers in generation quantities for each of its plants (possibly located at different
GIPs), at certain prices. In its most general form, the generation offers are sup-
ply functions (also known as offer curves) denoted p = S(q), where S(q) is the
marginal price of producing quantity q. In all electricity markets, S(q) is required to
be a monotone increasing function. It is important to note that these supply functions
are offered by a deadline well ahead of the pertaining (market) time period; therefore,
participants do not know other generator offers or a complete picture for demand.

These supply offers are collected by the ISO. The ISO estimates the demand (in the
case of inflexible demands), over that period. The ISO then solves a side constrained
network optimization problem where the objective is to minimize the total cost of
production of electricity. The constraints of this optimization problem reflect that
demand must be met at every node of the network and that physical flow constraints
such as transmission line capacities and Kirchhoff’s laws must be complied with.
Often reactive power modelling is left out of the ISO’s dispatch problem, and the
problem is in fact a direct current equivalent load flowmodel [17, 24]. When flexible
demand is offered into the market, in the form of a demand-side bid, the objective of
the ISO’s optimization problem becomes welfare maximization, producing system
optimal amounts of generation and consumption for a time period.

A general model for the ISO’s economic dispatch problem (EDP) in its simple
cost-minimizing form is formulated below.
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EDP: minimize
∑

i

∑
m∈O (i)

∫ qm
0 Cm(x)dx

s.t. gi (y) + ∑
m∈O (i) qm = Di , i ∈ N , [πi ]

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

(2.1)

We use i as the index for the nodes in the transmission grid. We use m as the index
for the generators, and O(i) indicates the set of all generators located at node i .
Generator m can supply quantity qm , and the demand at node i is denoted by Di .
Qm indicates the capacity of generator m. Here the components of vector x measure
the dispatch of each generator, and the components of the vector y measure the flow
of power in each transmission line. We denote the flow in the directed line from i
to k by yik , where by convention we assume i < k. (A negative value of yik denotes
flow in the direction from k to i .) It is required that this vector lie in the set Y , which
means that each component satisfies the thermal limits on each line and satisfies loop
flow constraints that are required by Kirchhoff’s Law. The function gi (y) defines the
amount of power arriving at node i for a given choice of y. This notation enables
different loss functions to be modelled. For example, if there are no line losses, then
we obtain

gi (y) =
∑

k<i

yki −
∑

k>i

yik .

With quadratic losses, we obtain

gi (y) =
∑

k<i

yki −
∑

k>i

yik −
∑

k<i

1

2
rki y

2
ki −

∑

k>i

1

2
rik y

2
ik .

The price of electricity is determined as the shadow price πi of the node balance
constraints above that indicate demand must be met at all nodes. This price is the
system cost of meeting one more unit of demand at node i . This method of deter-
mining the electricity price is sometimes referred to as locational marginal pricing
(LMP). New Zealand and the PJM market in the USA are examples of electricity
markets with LMP. It is worth noting that some wholesale electricity markets oper-
ate by assuming that demand and supply are located at the same node, and trading
takes place in that one node. This means that a single price of electricity is arrived
at. Nevertheless, in order to ensure that the demand is met at all nodes and that the
flow complies with physical constraints, a balancing market would follow in real
time where the residuals of the single node market are traded. The UK wholesale
electricity market is an example of a single node market.

2.2 The New Zealand Electricity Market

Following a transition from a centralized system, to a deregulated electricity mar-
ket, an immediate natural question for a generator is what supply offer function will
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optimize their returns. In a strictly monitored market such as the PJM, there is not
much room for a generator to exercise market power. In such a market, the marginal
cost of generation of electricity is relatively well known. Much of the supply is pro-
cured from thermal plants (e.g. gas and coal) with known cost of fuel or nuclear plants
with a minimal marginal cost of generation. Here, it is relatively simple for a market
monitor to observe the supply offers and question any offers that are significantly
above the marginal cost of production.

Not all electricity markets are strictly monitored however. Markets such as Nord
Pool and the New Zealand market are dominated by hydroelectric generation. While
one can argue that inflows into hydro-lakes are free, there is an opportunity cost
attached to using the water now or saving it for a future period. This is particularly
important as the inflows are uncertain and dry periods can have disastrous conse-
quences for the electricity system. This opportunity cost is referred to as the value of
water. When all market participants are risk neutral, this value can be found by solv-
ing a large-scale stochastic program that minimizes the expected cost of production
of electricity, using various generation sources in a coordinated fashion, over a long
time horizon (e.g. a year that is divided into 52weeks; see e.g. [18, 20]). In a real
market, however, generators face various risks and it is not possible to ascertain their
level of risk. Even if this information were available, it would not always be possible
to solve an equivalent centralized problem to obtain the value of water [19, 23].
Hence, the New Zealand market was designed not to be a strictly regulated market.
The question therefore remains, how can a generator offer supplies into thismarket so
as to maximize their profits. The answer to this question, and a very similar question
for the demand side, utilizes simulation intensely and is the topic of the remainder
of the chapter.

2.2.1 The Need for Simulation: Pricing in the NZEM

While it would be highly desirable to obtain a simple analytical answer to the ques-
tion of optimizing generation offers, this is not possible due to the nature of price
determination. As laid out in Sect. 2.1.1, the nodal price of electricity is the value of
the optimal shadow prices for the demand constraints. There is no explicit analytical
form for these prices, which are clearly affected endogenously, as the firm varies
their supply offer. The best way to tackle the problem of offer optimization over an
electricity market is to simulate the ISO’s problem and obtain prices. It is fortunate
that the Electricity Authority (EA), who exercise oversight over theNZEM, hasmade
publicly available an accurate replica of the market clearing optimization problem
that is solved in New Zealand in every half hour time period. This replica is referred
to as the vectorized Scheduling, Pricing and Dispatch (vSPD) that is available from
the EA’s web site.1

1See http://www.emi.ea.govt.nz/.

http://www.emi.ea.govt.nz/
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The market clearing side constrained network optimization vSPD contains over
250 nodes(GIPs and GXPs) and over 450 arcs (that form the backbone transmis-
sion network for New Zealand). The database for vSPD contains historical offer and
demand information dating back to 2000. The generator offers for New Zealand are
in the form of five step, step functions, where each step is referred to as a tranche.
Each historical tranche of each offer is available, indicating the quantity and price
pair that comprise that tranche, for each generator. Furthermore, the database con-
tains information on the thermal capacity of the transmission lines, availability of
generation units, demand data and various other necessary information for replicating
any historical period. This is a rich and ideal set-up for simulation.

Another feature of the NZEM is the co-optimization of energy and reserve. Elec-
tricitymarkets need to be robust to failure. To that end, reserve generation is procured
for every electricity market. In New Zealand, the procurement of reserves takes place
in conjunctionwith procurement of energy. There are a number of constraints relating
energy and reserves. We mention this feature of the NZEM here for completeness;
however, we will refrain from dwelling on this point for the sake of simplicity. We
will return to this point in Sect. 2.4 when we discuss consumption and reserve offer
strategies for a major consumer of electricity.

2.3 Optimal Offers for Generation

We start this section by formulating an analytical description of the generator opti-
mization problem under uncertainty. We will lay out a simulation–optimization
approach for this problem which has been in use by generators over the NZEM.
Under a number of strong assumptions, the problem of generator offer optimization
can be solved analytically. Our setting is a realistic electricity market where such
strong assumptions are not justified. However to place the problem in context and
gain some intuition, we start with this analytically tractable case.

2.3.1 A Simplified Problem

The problemof bid–offer optimizationwas first approached byKlemperer andMeyer
[14] who were interested in modelling an oligopoly facing uncertain demand, where
eachfirmbids a supply function as its strategy.This is in contrast to previousmodels in
the economics literature where firmswere restricted to strategize over their quantities
only (Cournot models) or their prices only (Bertrand models) and allows a firm to
adapt better to an uncertain environment. Green and Newbery address the same
question but in the context of the British spot market [13].

To begin, let us assume that there are only twogenerators supplying themarket (i.e.
we are dealing with a duopoly) and suppose that the offer curve of the competitor is
given by q = S(p). Let us also assume that the demand curve is given by q = D(p),
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that is themarket will absorb quantity q if the price is p. For their analysis, Klemperer
and Meyer use the concept of the residual demand curve faced by the generator.
Consider the curve given by q = D(p) − S(p). This determines what quantity must
be offered into the market if we desire the price to be p based on the demand curve
and the competitor’s offer strategy. Note that this approach makes the simplified
assumption that all transactions occur at a single node. The inverse of this curve
describes how the price is influenced by the quantity we offer and is referred to as
the residual demand curve. With this information at hand, it is now easy to optimize
the profits of the generator in question (see Fig. 2.1).

Recall that Klemperer and Meyer point out that supply functions allow a firm
to adapt better to an uncertain environment. If there are multiple possible residual
demand curves that a generator may face, the supply function response may allow
selecting a point on each of these residual demand curves that would optimize the
generator’s profit given that that residual demand curve has realized. This is referred
to as a strong supply function response (see Fig. 2.2). A number of papers construct
the residual demand curve by simulating the (single node) market and explicitly
building the supply function response; see e.g. [9, 10]. In [9], the residual demand
curve takes on a step function form and the authors develop a nonlinear integer
programming model of the generator’s revenue optimization problem. They develop
a combined coordinate search, branch and bound method to solve this problem.
Torre et al. exploit the nature of the previous problem to develop a more efficient
solution method in [10].

In a sequence of papers, Anderson and Philpott have also addressed the profit
maximization problem of a price-maker generator under various assumptions. In [3],
they assume that a price-maker generator knows its competitors’ offer curves, but is
faced with uncertain demand. They first establish the existence of a strong supply
function response, for such a generator, that would be optimal for any realization of
the uncertain demand. This strong supply function response is guaranteed to exist
when the generation costs of the generator in question are increasing and convex,

Fig. 2.1 Optimal point for a
generator to get dispatched
along a residual demand
curve
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and the competitor offers are log-concave. They discuss a procedure where the true
aggregate offer stack of the competitors is approximated by a log-concave function.
Note that this (aggregate) offer stack would be a step function in almost all real-
world electricity markets. They construct a strong supply function response Sg , for
the generator in question. Subsequently, they approximate Sg in order to comply
with market rules. Finally, they provide bounds on the performance of such an offer
strategy.

In [2], Anderson and Philpott generalize their model by allowing uncertainty not
only in the demand but also allow the competitor offers to be unknown. They intro-
duce the concept of a market distribution function ψ(q, p) pertaining to a specific
generator at a specific transmission node. They define ψ(q, p) to be the probability
of not being fully dispatched if the generator submits a quantity q at price p. Let
R(q, p) denote the or profit that the generator makes if it is dispatched q at a clear-
ing price of p. They demonstrate that if the generator submits the curve s, and the
pertinent market distribution function ψ is continuous then the expected profit of the
company is given by

V (s) =
∫

s
R(q, p)dψ(q, p).

They proceed to provide conditions that guarantee (local) optimality of an offer
stack s that would maximize V (s). To address the question of estimating the market
distribution function see [4, 22].

2.3.2 Using Simulation for the General Problem

The work described thus far only deals with generators that are located at a single
node of the market or alternatively assumes that the wholesale market is a single
node market. As noted in Sect. 2.1 however, most wholesale electricity markets use
locational marginal pricing where the price of electricity is different from node to

Fig. 2.2 Building a strong
supply function response
from a distribution of
residual demand curves
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node. To capture the effects of the transmission network, a generator must look at the
variations in the prices from the dispatch problem EDP as a function of how it offers
into themarket. The revenue optimization problem is nowposed as a bilevel program,
or amathematical programwith equilibrium constraints (MPEC) and becomes a non-
convex optimization problem.

maximize R(x, π)

s.t. (x, π) ∈ arg min
∑

i

∑
m∈O (i)

∫ qm
0 Cm(x)dx

s.t. gi (y) + ∑
m∈O (i) qm = Di , i ∈ N ,

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

Here x denotes the vector of quantities dispatched at each node if the generator
offered at that node (or is 0 if the generator in question does not own generation
at a particular node), and π is the vector of electricity prices. Note that the inner
optimization problem, namely the economic dispatch problem EDP can be replaced
with its necessary and sufficient conditions for optimality as it is a convex problem
(see e.g. Chap. 4 of [5]). In this case, the reformulation is referred to as an MPEC
[16]. Furthermore, as described in Sect. 2.1, the offers submitted to the market are
for a (near) future period. In particular, over the NZEM, generator offers are “locked
in” two hours ahead of each time period. Therefore, generators have at best prob-
abilistic knowledge of demand and competitor offers. The amount of randomness
depends on what the generator (plant owner) is assumed to know before submitting
the offer curve. Competing generators’ offer curves may be modelled stochastically
(if unknown) or deterministically (if known). A realistic problem is likely to contain
some of each: the availability of another power plant owned by the same firm is prob-
ably known, while the availability of a wind farm is likely to be unknown. submitted
very close to the time of production. We will assume that the sizes of loads require a
stochastic model. The model may also include stochastic transmission line outages.

Pritchard considers this stochastic version of the above MPEC in [21]. An algo-
rithm is developed where first the market is simulated under varying (quantity, price)
offers of the generator in question. The market clearing prices faced by this generator
are recorded, and a global optimization is performed that determines the best supply
function offer resulting in optimal expected profits for our generator.Wewill proceed
with detailing the steps.

We begin by subdividing the q − p plane containing the offer stack, with a finite
rectangular grid by considering a range of price and quantities, each subdivided into
intervals. For examples, a price range may be from a $1.00 to $1000.00 with finer
step sizes for likely prices (tens to few hundred dollars) and coarser steps further
out in the range. This will restrict the class of admissible supply functions to those
which follow the edges of this grid. Then there are only finitelymany admissible offer
stacks, each consisting of a finite sequence of horizontal or vertical line segments
that are grid edges. Note that for any grid edge e, being dispatched on edge e is
independent of which other edges have been included in the offer stack. Therefore,
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Fig. 2.3 A grid for building an optimal offer stack based on edge values using simulation

the expected payoff from any offer stack can be computed by adding the expected
payoffs from the edges comprising this offer stack.

Let V (e) denote the value of including edge e in the offer stack. To estimate
V (e) by simulation, we start with n randomly (and independently) chosen scenarios
{ω1, . . . , ωn}, where each “scenario” is a realization of the random elements of the
problem (e.g. competitors’ offer curves, loads, outages, etc.). Such scenarios may be
extrapolated from historical information ormay be based on richer ensemble forecast
information. For each scenario ωi and each edge e, we can compute the payoff Vi (e)
if ωi results in a point of dispatch along e (i.e. when the offer curve includes e), or 0
if no such dispatch occurs. We can now approximate V (e) by V̂ (e) = 1

n

∑n
i=1 Vi (e).

Note that V̂ (e) is a consistent unbiased estimator of V (e). Figure2.3 illustrates a
(q, p) grid with along with frequency of dispatch attached to each edge.

To build the optimal offer stack resulting in the optimal expected profits for the
generator, we can utilize dynamic programming. Due to the monotonicity constraint
on any admissible offer stack, once at a vertex k of the grid, we must choose to con-
tinue right or up from that point. Therefore, the maximum expected payoff attached
to a vertex k is given by

W (k) = max(Wr (k),Wu(k)).
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where

Wr (k) =
{−∞ if k is on q = qmax

V (er (k)) + W (νr (k)) otherwise.

In the above equation, νr (k) is the vertex adjacent to k on the right and er (k) is the
edge joining these vertices. Wu(k) has an analogous description involving the edge
and the neighbour above k. Given that V ((qmax , pmax )) = 0, we can start at the upper
right-hand corner of the (q, p) grid and utilize a Bellman recursion to determine the
optimal generator stack.

2.4 Bid Optimization for Large Consumers of Electricity

Similar to generators, large consumers in an electricity market, who are exposed
to spot market prices, are often able to influence the clearing price through their
decisions. These users, often large industrial sites or potentially aggregated blocks
of residential or commercial users who wish to actively participate in the electricity
market, can carefully choose their consumption level to influence price. There is a
large amount of uncertainty associated with this problem, especially for participants
who bid in the co-optimized ancillary service markets. For the same reasons as out-
lined above in the generation case, the problem of choosing an optimal consumption
level, with an associated optimal reserve offer, is too broad to undertake analytically.
As an alternative, numerical simulations can be used to approach this problem. A
methodology to tackle this problem numerically was presented by Cleland et al. in
[8]. This methodology is similar to what has already been presented for the genera-
tion case; however, it has nuances stemming from the co-optimization of energy and
reserve. We present a concise detailed version here.

2.4.1 Reserve Co-optimization

Modern markets often incorporate the provision of ancillary services (AS) into the
market dispatch problem. These ancillary services such as primary, secondary and
tertiary contingency reserve or regulating reserve [11, 12] are often procured dif-
ferently throughout the world. New Zealand has fully co-optimized primary and
secondary contingency reserve via separate markets [1]. In Spain, for example, sec-
ondary reserve is procured for both contingency and regulation purposes, but primary
reserve is a non-remunerated mandatory service [15]. In New Zealand, consumers
are capable of participating in the AS markets through the provision of IL, for which
they are paid the spot market reserve price for the FIR (primary) and SIR (secondary)
markets. This benefits the consumer (industrial site) directly through additional rev-
enue. But also indirectly, as the provision of IL capable reserve may release spinning
reserve plant back to the energy market which may alleviate constraints.
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The NZEM operates under N − 1 reserve requirements, and sufficient reserve is
procured to secure against the largest risk setter in each ofNewZealand’s two islands.
In theory, this prevents under scheduling of reserve, in practice it can have a notable
effect upon energy prices. When a risk setting asset (generator or transmission) is the
marginal energy unit, the cost of securing the output from this unit (the reserve price)
is incorporated into the energy price. For a marginal generator, the final energy price
π is thus linked to the marginal energy, pe, and marginal reserve, pr , offer prices.
We illustrate this through a very simple example. Let x1 and x2 and xr represent the
system dispatches from firms 1, 2 and reserve, respectively. Similarly, let p1, p2 and
pr denote the offered prices of energy and reserve by the firms, and q1, q2 and qr
the quantities available at the respective price. The small dispatch problem, meeting
demand d in a single node network, is formulated as

min p1x1 + p2x2 + pr xr (2.2)

s/t x1 + x2 = d [π ]
xr ≥ x1 [λr1]
xr ≥ x2 [λr2]

xi ≤ qi i ∈ {1, 2, r}
xi ≥ 0 i. ∈ {1, 2, r}

When c1 + r < c2, and d < q1, meeting a marginal unit of demand will require
procurement of an extra unit of energy. Hence, π = p1 + pr ; this is easily verified
by writing the KKT conditions.

If the marginal generator is transmitted from a neighbouring reserve zone (in New
Zealand, these are differentiated by the twomajor island land masses), then the nodal
energy prices become linked via the marginal reserve price in Eq.2.3.

π2 = π1 + pr,2 (2.3)

where π1 and π2 denote the locational marginal prices in nodes 1 and 2, respectively.
The above two examples are very simple illustrations of the interaction of energy

and reserve prices. In reality, not only does reserve have to be covered for each of
the North and South islands of New Zealand, energy and reserve are also restricted
through constraints that express physical limitations such as ramp rate of a tur-
bine in the event of an emergency shortage where reserves are called upon. The
joint optimization of consumption and reserve offers is therefore a significant chal-
lenge theoretically. However, it may be approached numerically through simulations.
Large consumers are an inviting target for this approach due to the convergence of
means (manned control rooms, real-time prices, advanced metering) and motive
(profit maximization), which is often missing from smaller consumers. These con-
sumers thus satisfy many of the conditions which are a requirement for demand
elasticity [6].
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2.4.2 Optimization of Consumption and Reserves

We start by determining the consumption levels for our major consumer. These are
naturally derived from the plant operation modes. In order to compute consumer
profits, a utility figure for electricity consumption in a designated period may be
necessary; note that this figure is inputted by the user, and they are free to experiment
with a range of utilities. As the operational decisions for the plant are made ahead of
time, the energy offers and other consumption quantities for the period in question
are uncertain. Therefore, we need to consider a distribution. To address this, the user
will input a base scenario. This can be a scenario derived from historical offers, e.g.
the equivalent period on the previous day or a period closely matched to hydrology
or demand conditions. We develop a “rest of New Zealand” set of scenarios that are
generated from randomly scaled versions of demand (in nodes other than the one in
question) for the base scenario. In particular, we can use a log-normal distribution
for each island and the number of these scenarios can be chosen by the user.

For each demand level, corresponding to a plant operational mode, a distribution
of energy prices at the consumer (site) node is determined. The site can then use
this information to determine, under uncertainty, their optimal operating level. This
can be done in expectation, or with any risk measure, as the distribution of prices
attached to each consumption level is provided. Prices are used as they represent the
only source of permitted variability in the site profitability calculation. A graph of
the price distributions, found using simulation, is presented in Fig. 2.4.

As observed in Sect. 2.4.1, there may be a significant interaction between the
market clearing price of electricity and the offered reserve prices. To take full account
of this and determine a combined optimal consumption and reserve offer, we require
a grid containing all admissible reserve supply stacks for the site. In other words,
the quantity, price plane of possible offers, is subdivided into a finite grid consisting
of rectangular cells, identical to what was presented for the generator offer case.
This simplifies our problem as admissible offer stacks are those which follow the
edges of the cells. we now output energy (and reserve) price distributions attached to
each level of consumption. However this time, the price distribution attached to each
consumption level is derived from the optimal reserve offer for the corresponding
consumption level, for the period. For each consumption level (drawn from plant
operationmode), we simulate differentmarket scenarios using vSPD, as before. Each
simulation will record the point of dispatch on any admissible reserve offer stack
confined to our reserve grid. This is effectively done by tracing out the intersections
of the “reserve residual demand” on the grid (as outlined in Sect. 2.3). We are now
in a position to find an optimal reserve offer stack, for this consumption level using
dynamic programming. The states of this DP are the vertices of the reserve grid.
It is clear that the value to go attached to the top right corner of the reserve grid
is zero (no reserves above our max quantity and max price will be procured). We
solve the DP using backward recursion. The actions for this DP amount to amending
a vertical (moving up) or a horizontal (moving right) segment to the reserve offer
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stack constructed thus far. Our choices are limited to up and right moves as the stack
must be increasing.

The overall approach separates the co-optimization problem into three sequential
steps. The influence of each consumption level on energy and reserve prices under
uncertainty is determined in phase one. In the second phase, the optimal reserve offer
stack attached to each consumption level is determined using the dynamic program-
ming, very similar to the case for generator offers. Lastly, the optimal consumption
level with its associated reserve offer stack is determined through a repetition of
phase one, with the optimal reserve offer level in place. Cleland et al. have reported
on the effectiveness of this methodology under various performance measures on
experiments that span 13months of data. The results are outlined in [7].

2.5 Conclusions

Pricing of electricity is a complex process that relies on solving a large-side con-
strained network optimization problem for every time period of every market. Many
decisions, such as offer strategies for generators and consumption bids for major
users of electricity, ought to be made based on a good understanding of electricity

Fig. 2.4 Distribution of market clearing prices found through simulation
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prices.We laid out in this chapter, twomajor applications of simulation–optimization
over a deregulated electricity market. These applications have been developed and
are in use in the NZEM.
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