
Chapter 12
Insurance Models Under Incomplete
Information

Ekaterina Bulinskaya and Julia Gusak

Abstract The aim of the chapter is optimization of insurance company performance
under incomplete information. To this end, we consider the periodic-review model
with capital injections and reinsurance studied by the authors in their previous paper
for the case of known claim distribution. We investigate the stability of the one-step
and multi-step model in terms of the Kantorovich metric. These results are used for
obtaining almost optimal policies based on the empirical distributions of underlying
processes.
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12.1 Introduction

The primary goal of any insurer is redistribution of risks and indemnification of
policyholders. This explains the popularity of reliability approach in actuarial sci-
ences, that is, thorough analysis of ruin probability. Being a corporation insurance
company has a secondary but very important goal, namely dividends payment to the
shareholders. So, the alternative cost approach was started by De Finetti in 1957 (see
[9]).

Thus, there arose the new research directions in actuarial sciences specific for
modern period. They include, along with dividends payments (see, e.g., [1, 2, 11,
15]), reinsurance and investment problems (see, e.g., [4, 8, 13]). Hence, the treatment
of complexmodels (see, e.g., [6]) and consideration of new classes of processes, such
as martingales, diffusion, Lévy processes, or generalized renewal ones (see [7]), is
needed. It turned out as well that discrete-time models sometimes are more realistic
since reinsurance treaties have usually one-year duration, dividends are also paid
at the end of financial year (see, e.g., [17]). Several types of objective functions
and various methods are used to implement the stochastic models optimization (see,
e.g., [19, 22]). It is also important to mention investigation of systems asymptotic
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behavior and their stability with respect to parameters fluctuation and perturbation of
underlying processes (see, e.g. [3, 5, 25]). Furthermore, in practice neither the exact
values of parameters nor the processes distributions are known. Thus, it is important
to study the systems behavior under incomplete information. If there is no a priori
information at all it may be useful to employ the empirical processes.

The chapter is organized as follows. In Sect. 12.2, we gather some auxiliary
results. The results concerning convergence in distribution in L1 are transferred to
Appendix. Section12.3 contains a brief description of themodel treated in the chapter
(Sect. 12.3.1). Further parts of Sect. 12.3 are devoted to stability of the model under
consideration. The case of unknown claim distribution is considered in Sect. 12.4.
Finally, Sect. 12.5 presents conclusion and further research directions.

12.2 Preliminary Results

To investigate stability of themodel, it is necessary to evaluate the difference between
the objective functions calculated for two distributions close in some metric. For this
purpose, we have chosen Kantorovich or Wasserstein L1 metric.

12.2.1 Kantorovich or Wasserstein L1 Metric

We begin by recalling the following definition given, e.g., in [23], see also [20].

Definition 12.1 For random variables (r.v.’s) X and Y defined on some probability
space (Ω,F , P) and possessing finite expectations, it is possible to define their
distance on the base of Kantorovich metric in the following way

κ(X, Y ) =
∫ +∞

−∞
|F(t) − G(t)|dt,

where F and G are the distribution functions (d.f.’s) of X and Y , respectively.

This metric coincides (see, e.g., [12] or [23]) with Wasserstein L1 metric defined
as d1(F, G) = inf E |X − Y | where infimum is taken over all jointly distributed X
and Y having marginal d.f.’s F and G. It is supposed that both d.f.’s belong to C1

consisting of all F such that
∫ +∞
−∞ |x | d F(x) < ∞.

Lemma 12.1 The following statements are valid.
1. Let F−1(t) = inf{x : F(x) ≥ t}, then d1(F, G) = ∫ 1

0 |F−1(t) − G−1(t)| dt.
2. (C1, d1) is a complete metric space.

3. For a sequence {Fn}n≥1 from C1 one has d1(Fn, F) → 0 if and only if Fn
d→

F and
∫ +∞
−∞ |x | d Fn(x) → ∫ +∞

−∞ |x | d F(x), as n → ∞. Here
d→ denotes, as usual,

convergence in distribution.
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The proof can be found in [12].
We are going to use also the notion of Lipschitz function.

Definition 12.2 A function f mapping a metric space (S1, ρS1) into a metric
space (S2, ρS2) is called Lipschitz if there exists a constant C ≥ 0 such that
ρS2

(
f (s ′), f (s ′′)

) ≤ CρS1(s
′, s ′′) for any s ′, s ′′ ∈ S1, here ρS1 , ρS2 denote metrics

in the corresponding spaces.

Now we can formulate

Lemma 12.2 Let X, Y be nonnegative r.v.’s possessing finite expected values and
κ(X, Y ) = ρ. Assume also that g : R+ → R+ is a non-decreasing Lipschitz function.
Then κ(g(X), g(Y )) ≤ Cρ where C is the Lipschitz constant.

Proof The distribution function of the random variable g(X) can be calculated in a
following way

Fg(X)(t) = P{g(X) ≤ t} = P{X ≤ g−1(t)} = FX
(
g−1(t)

)
,

where g−1(t) is defined as in Lemma 12.1. Similarly, one can write Fg(Y )(t) =
FY

(
g−1(t)

)
.

Since g is a non-decreasing Lipschitz function, we get the following sequence of
equalities and inequalities

κ(g(X), g(Y )) =
∫

R+
|Fg(X)(t) − Fg(Y )(t)|dt =

∫
g−1(R+)

|FX (s) − FY (s)|dg(s)

=
∫

g−1(R+)

|FX (s) − FY (s)|g′(s)ds ≤ C
∫

g−1(R+)

|FX (s) − FY (s)|ds

≤ C
∫

R+
|FX (s) − FY (s)|ds = Cρ.

In the first line, we have used the definition of Kantorovich metric and change of
variables t = g(s). As usually, g−1(R+) is preimage of R+. Then the properties of
Lipschitz functions are employed. �

The next result enables us to estimate the difference between infimums of two
functions.

Lemma 12.3 Let functions f1(z), f2(z) be such that | f1(z) − f2(z)| < δ for some
δ > 0 and any z > 0. Then | inf z>0 f1(z) − inf z>0 f2(z)| < δ.

Proof Put Mi = inf z>0 fi (z), i = 1, 2. According to definition of infimum, for any
ε > 0, there exists z1(ε) such that f1(z1(ε)) < M1 + ε. Therefore, f2(z1(ε)) ≤
f1(z1(ε)) + δ < M1 + ε + δ implying M2 ≤ f2(z1(ε)) < M1 + ε + δ.

Letting ε → 0 one gets immediately M2 ≤ M1 + δ. In a similar way, one estab-
lishes M1 ≤ M2 + δ, thus obtaining the desired result |M1 − M2| < δ. �
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12.2.2 Distance Between Empirical Functions

First of all we would like to establish that if the difference between two d.f.’s is small
in the Kantorovich metric the same is true for the corresponding empirical functions.
Thus, let {Xi = Xi (ω)}n

i=1 be a sample of size n from the population of r.v.’s with d.f.
F . The empirical d.f. is given by Fn(ω, t) = n−1 ∑n

i=1 I {Xi ≤ t}, where ω ∈ Ω and
I {A} is indicator of the set A. Suppose there exists another sample Y1, . . . , Yn from
the population of random variables with distribution function, say, G. The empirical
distribution function for this sample is denoted by Gn(ω, t). Note that we are going
to assume further on the samples to consist of independent identically distributed
(i.i.d.) r.v.’s.

Proposition 12.1 Let κ(F, G) = ρ, then P(κ(Fn,Gn) > ρ) → 0 as n → ∞.

Proof Obviously,
∫ +∞
−∞ |Fn(ω, t) − Gn(ω, t)|dt does not exceed

∫ +∞

−∞
|Fn(ω, t) − F(t)|dt +

∫ +∞

−∞
|Gn(ω, t) − G(t)|dt +

∫ +∞

−∞
|F(t) − G(t)|dt,

therefore we get P (κ(Fn,Gn) > ε + ρ) is less than

P
(
κ(Fn, F) >

ε

2

)
+ P

(
κ(Gn, G)|dt >

ε

2

)
+ P (κ(F, G) > ρ) . (12.1)

The last term in (12.1) is equal to 0, since we assumed ρ = ∫ +∞
−∞ |F(t) − G(t)|dt .

Two first terms tend to 0 as n → ∞ for any ε > 0 due to convergence almost surely
(a.s.) of empirical function to theoretical one in Kantorovich metric (see, e.g., [10]).
Thus, we get the desired result. �

Remark 12.1 Since κ(Fn, F) and κ(Gn, G) tend to zero a.s., as n → ∞, the state-
ment of Proposition 12.1 can be rewritten as follows: lim supn→∞ κ(Fn,Gn) ≤ ρ

if κ(F, G) ≤ ρ.

12.2.3 Convergence in Distribution for a Fixed t

Suppose for simplicity that two samples are independent. For each fixed t ∈ R the
difference Hn(ω, t) =: Fn(ω, t) − Gn(ω, t) is a real-valued function of the random
vector (X1, Y1, . . . , Xn, Yn) defined on a probability space (Ω,F , P), namely

Hn(ω, t) = 1

n

n∑
i=1

I {Xi ≤ t} − 1

n

n∑
i=1

I {Yi ≤ t} = 1

n

n∑
i=1

ζi (t), (12.2)

where ζi (t) = I {Xi ≤ t} − I {Yi ≤ t}, i = 1, n, are i.i.d. r.v.’s. Recall that
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Eζi (t) = E I {Xi ≤ t} − E I {Yi ≤ t} = F(t) − G(t),

Varζi (t) = VarI {Xi ≤ t} + VarI {Yi ≤ t} = F(t) + G(t) − (F2(t) + G2(t)).

Since Varζi (t) < ∞, the central limit theorem for i.i.d. r.v.’s gives
∑n

i=1 ζi (t) − n (F(t) − G(t))√
F(t) + G(t) − (F2(t) + G2(t))

√
n

d→ N (0, 1),

where N (0, 1) is a standard normal variable. In other words,

√
n

Hn(ω, t) − (F(t) − G(t))√
F(t) + G(t) − (F2(t) + G2(t))

d→ N (0, 1).

According to properties of convergence in distribution, we get immediately the fol-
lowing result.

Proposition 12.2 For any t ∈ R

√
n |Hn(ω, t) − (F(t) − G(t))| d→

√
F(t) + G(t) − (F2(t) + G2(t))|N (0, 1)|.

12.3 Stability of Insurance Model

Weare going to study the stability of the periodic-reviewmodel of insurance company
performance with capital injections and reinsurance introduced in [8].

12.3.1 Model Description

Let u be the initial surplus of insurance company. It is supposed that the surplus at the
beginning of each period has to be maintained above some level a > 0. Denote by ξn

the aggregate claim during the nth period. The sequence {ξn} is assumed to consist of
i.i.d. r.v.’s with a known d.f. F possessing a density and a finitemean γ . The company
concludes at the end of each period the stop-loss reinsurance treaty. If the retention
level is denoted by z > 0, then c(z) = lγ − m

∫ +∞
z F(t) dt is the insurer premium

(net of reinsurance). Here we supposed that the insurer and reinsurer premiums are
calculated on the base of expected value principle, and l and m are the corresponding
safety coefficients. As usual F(t) = 1 − F(t).

It is necessary to choose the sequence of retention levels minimizing the total
discounted injections during n periods.

One-period minimal capital injections are defined as follows

h1(u) := inf
z>0

EJ (u, z), where J (u, z) = (min(ξ, z) − (u − a) − c(z))+ .
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For the n-step model, n ≥ 1, the company surplus U (n) at time n is given by the
relation

U (n) = max(U (n − 1) + c(z) − min(ξ, z), a), U (0) = u.

It was also proved in [8] that the minimal expected discounted costs hn(u) injected
in company during n years satisfy the following Bellman equation

hn(u) = inf
z>0

(EJ (u, z) + αEhn−1(max(u + c(z) − min(ξ, z), a))), h0(u) = 0,

(12.3)
where 0 < α < 1 is the discount factor.

Put hn(u, z) := EJ (u, z) + αEhn−1(max(u + c(z) − min(ξ, z), a)) for n ≥ 1. It
was established that infimum of the function hn(u, z) is achieved for some z > 0 and
function hn(u) determined by (12.3) is continuous in u.

12.3.2 One-Step Model

We are going to add the label X to all functions depending on ξ if ξ ∼ law(X).
Putting Δ1 := supu>a |h1X (u) − h1Y (u)| we prove the following result.

Theorem 12.1 Let X, Y be nonnegative r.v.’s possessing finite expectations, more-
over, κ(X, Y ) = ρ. Then

Δ1 ≤ (1 + l + m)ρ

where l and m are the safety loading coefficients of insurer and reinsurer premiums,
respectively. Both premiums are calculated according to expected value principle
and 1 < l < m.

Proof Begin by estimating |EJX (u, z) − EJY (u, z)|. Setting
CX := −(u − a) − lEX + mE(X − z)+, CY := −(u − a) − lEY + mE(Y − z)+,

it is possible to write

|EJX (u, z) − EJY (u, z)| = |E (min(X, z) + CX )+ − E (min(Y, z) + CY )+ |
≤ |E (min(X, z) + CX )+ − E (min(X, z) + CY )+ |︸ ︷︷ ︸

δ1(u,z)

+ |E (min(X, z) + CY )+ − E (min(Y, z) + CY )+ |︸ ︷︷ ︸
δ2(u,z)

.

Now we estimate separately δ1(u, z) and δ2(u, z).
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δ1(u, z) ≤ E| (min(X, z) + CX )+ − (min(X, z) + CY )+ | ≤ |CX − CY | ≤ (l + m)ρ.

Applying Lemma 12.2 to r.v.’s X , Y and function g(x) = (min(x, z) + CY )+, we
get

δ2(u, z) = |Eg(X) − Eg(Y )| =
∣∣∣∣
∫

R+
F g(X)(t)dt −

∫
R+

F g(Y )(t)dt

∣∣∣∣
≤

∫
R+

|Fg(X)(t) − Fg(Y )(t)|dt = κ(g(X), g(Y )) ≤ ρ,

due to g′(x) ≤ 1. Hence using Lemma 12.3 and just obtained estimates for δ1(u, z)
and δ2(u, z), it is easy to establish the desired result

Δ1 ≤ sup
u

|EJX (u, z) − EJY (u, z)| ≤ (1 + l + m)ρ.

�

12.3.3 Multi-step Model

Now we can prove the following result.

Lemma 12.4 Function hn(u) defined by (12.3) is non-increasing in u.

Proof Since h0(u) ≡ 0 the statement of lemma is valid for n = 0. Due to the
fact that max(u + c(z) − min(ξ, z), a) is non-decreasing in u, we easily see that
hn−1(max(u + c(z) − min(ξ, z), a)) and its expectation are non-increasing in u if
we assume hn−1(u) to be non-increasing. Furthermore, J (u, z) = (min(ξ, z) − (u −
a) − c(z))+ does not increase in u; hence, the same is true for EJ (u, z). Summing
these results we conclude that EJ (u, z) + Ehn−1 (max(u + c(z) − min(ξ, z), a)) is
non-increasing in u for any fixed z. It follows immediately that hn(u) is also non-
increasing in u, as infimum in z of previous expression. So, we proved the desired
result by means of mathematical induction. �

In the next lemma, we estimate the continuity modulus of function hn(u).

Lemma 12.5 For each n ≥ 0 and any u ≥ a, Δu ≥ 0 the following inequality is
valid

|hn(u + Δu) − hn(u)| ≤ CnΔu,

where Cn = (1 − αn)(1 − α)−1.

Proof Weuse themathematical induction and beginwith n = 0. Since h0(u) ≡ 0 it is
clear that |h0(u + Δu) − h0(u)| = 0. Hence, one has C0 = 0 = (1 − α0)(1 − α)−1.

Now assume that inequality |hn−1(u + Δu) − hn−1(u)| ≤ Cn−1Δu is already
established. Due to
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|J (u + Δu, z) − J (u, z)|
= | (min(ξ, z) − (u + Δu − a) − c(z))+ − (min(ξ, z) − (u − a) − c(z))+ | ≤ Δu

it follows immediately that |EJ (u + Δu) − EJ (u, z)| ≤ Δu.
Combining the induction assumption and obvious inequality

|max(u + Δu + c(z) − min(ξ, z), a) − max(u + c(z) − min(ξ, z), a)| ≤ Δu,

we get

|Ehn−1(max(u + Δu + c(z) − min(ξ, z), a)) − Ehn−1(max(u + c(z) − min(ξ, z), a))|
≤ Cn−1Δu.

Taking into account that Cn−1 = (1 − αn−1)(1 − α)−1 we can write

|hn(u + Δu, z) − hn(u, z)| ≤ (1 + αCn−1)Δu = CnΔu.

Application of Lemma 12.3 with f1(z) = hn(u + Δu, z) and f2(z) = hn(u, z) leads
us to the desired result ending the proof. �

Denote by hnX (u) and hnY (u) the minimal injected capital during n years if the claim
distribution coincideswith law(X) and law(Y ), respectively.Our aim is to investigate
|hnX (u) − hnY (u)| under assumption κ(X, Y ) = ρ. We put Δn = supu>a |hnX (u) −
hnY (u)| to formulate the following result.

Theorem 12.2 Let X, Y be nonnegative random variables having finite means and
κ(X, Y ) = ρ. Then

Δn ≤
(

n−1∑
i=0

αi Cn−i

)
(1 + l + m)ρ,

here 0 < α < 1 is the discount factor, 1 < l < m are the safety loadings of insurer
and reinsurer and Ck, k ≤ n, were defined in Lemma 12.5.

Proof We begin by estimation of |hnX (u, z) − hnY (u, z)|. Since

(u − a) + lEX − mE(X − z)+ = −CX , (u − a) + lEY − mE(Y − z)+ = −CY ,

one can write

max(u + c(z) − min(X, z), a) = a − (CX + min(X, z))−,

max(u + c(z) − min(Y, z), a) = a − (CY + min(Y, z))−,

where (CX + min(X, z))− = min{0, CX + min(X, z)}.
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Hence, it is possible to get the following expression

|hnX (u, z) − hnY (u, z)| ≤ |EJX (u, z) − EJY (u, z)|︸ ︷︷ ︸
δ1n (u,z)

+α
∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣ .
The first summand in right-hand side of the last inequality is estimated in the one-step
model as follows

δ1n (u, z) ≤ (1 + l + m)ρ.

The second summand can be bounded by the sum of three terms.

∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣
≤ ∣∣Ehn−1X

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CX + min(X, z))−

)∣∣︸ ︷︷ ︸
δ2n (u,z)

+ ∣∣Ehn−1Y

(
a − (CX + min(X, z))−

) − Ehn−1Y

(
a − (CX + min(Y, z))−

)∣∣︸ ︷︷ ︸
δ3n (u,z)

+ ∣∣Ehn−1Y

(
a − (CX + min(Y, z))−

) − Ehn−1Y

(
a − (CY + min(Y, z))−

)∣∣︸ ︷︷ ︸
δ4n (u,z)

According to definition of Δn−1 for any u ≥ a, we have
∣∣hn−1X (u) − hn−1Y (u)

∣∣ ≤
Δn−1, therefore

δ2n (u, z) ≤ Δn−1

∫
R

d FX (t) = Δn−1.

Using Lemma 12.2 for g(x) = hn−1Y

(
a − (CY + min(x, z))−

)
, one can write

δ3n (u, z) ≤ Cn−1ρ.

To apply Lemma 12.2, it is necessary to verify that g(x) is non-decreasing. This fact
clearly follows from Lemma 12.4 due to the form of g(x).

As follows from Lemma 12.5, for any u ≥ a one can use inequality |hn−1Y (u +
Δu) − hn−1Y (u)| ≤ Cn−1Δu to get

δ4n (u, z) ≤ Cn−1|CX − CY | ≤ Cn−1(l + m)ρ.

Combining the obtained results one gets

|hnX (u, z) − hnY (u, z)| ≤ (1 + l + m)ρ + α (Δn−1 + Cn−1(1 + l + m)ρ)

= Δ1 + αCn−1Δ1 + αΔn−1 = CnΔ1 + αΔn−1,
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whence it follows

Δn ≤ sup
u

|hnX (u, z) − hnY (u, z)| ≤ CnΔ1 + αΔn−1.

Since C1 = 1 one gets immediately from the previous formula

Δn ≤ CnΔ1 + αΔn−1 ≤ (Cn + αCn−1)Δ1 + α2Δn−2

. . . ≤
n−2∑
i=0

αi Cn−iΔ1 + αn−1Δ1 =
(

n−1∑
i=0

αi Cn−i

)
(1 + l + m)ρ.

�

Remark 12.2 Letting n tend to infinity it is not difficult to establish that upper bound
of Δn tends to (1 − α)−2(1 + l + m)ρ. In fact,

n−1∑
i=0

αi Cn−i =
n−1∑
i=0

αi (1 − αn−i )

1 − α
= 1

1 − α

n−1∑
i=0

αi − 1

1 − α
nαn =

= 1

1 − α

(
1 − αn−1

1 − α
− nαn

)
→ 1

(1 − α)2
,

as n → ∞ and 0 < α < 1.
This result shows that the difference between the objective functions diminishes

as the distance ρ between the claim distributions decreases. Thus, we have proved
the stability of the model under consideration with respect to claim distribution
perturbations.

The discount factor α describes the effect of reducing the value of money over
time. Hence, it is natural that for α close to 1 the difference is larger than for small
values of α.

12.4 Incomplete Information

Up to now,we assumed the claimdistribution F per year to be known. In this case, it is
possible to find the analytical solution of optimization problem. However in practice,
the theoretical d.f. is usually unknown. It is understandable that for calculations the
empirical d.f. Fn (n is the sample size) is taken instead of the theoretical one, since
Fn(t) → F(t) a.s. as n → ∞.

For illustration, we formulate the result from [8] concerning one-step case and
show what one can obtain if F is unknown. We need to introduce in addition to
c(z) defined in Sect. 12.3.1 the functions r(z) = ∫ +∞

z F(x) dx , k(z) = z + mr(z)
and g(z) = k(z) − lγ , that is, c(z) = lγ − mr(z) and g(z) = z − c(z). Moreover,
we put z∗ = F−1(1 − m−1).
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There exist three sets D1 = {m > l > γ −1k(z∗)}, D2 = {γ −1k(z∗) ≥ l > γ −1z∗}
and D3 = {γ −1z∗ ≥ l > 1}. It is obvious that g(z∗) < 0 in D1, g(z∗) ≥ 0 in D2 ∪ D3

and z∗ − c(∞) ≥ 0 in D3. Put also u∗ = a + z∗ − lγ and u∗
1 = a + k(z∗) − lγ =

a + g(z∗). Moreover, it was established that inequalities a > u∗
1, u∗ < a ≤ u∗

1 and
a ≤ u∗ are equivalent to the relations (l, m) ∈ D1, (l, m) ∈ D2 and (l, m) ∈ D3,
respectively.

Recall that the optimal policy depends on system parameters l and m as follows.

Theorem 12.3 ([8]) 1. If (l, m) ∈ D1, then h1(u) = 0 for all u ≥ a. The optimal
retention level z1(u) = z∗.
2. If (l, m) ∈ D2, then h1(u) = 0 for u ≥ u∗

1. The optimal retention level z1(u) = z∗.
For u ∈ [a, u∗

1), the function z1(u) is the unique solution, for a fixed u, of the equation
u − a + c(z) = z∗.
3. If (l, m) ∈ D3, then for u > u∗ the results coincide with those of part 2, whereas
for u ∈ [a, u∗] it is optimal to use no reinsurance, that is, to take z1(u) = ∞.

We have reproduced only parts of Theorems 1, 2, and 3 proved in [8] pertaining to
our investigation.

Denote by z∗(n), u∗(n), u∗
1(n), and γ (n) parameters z∗, u∗, u∗

1, and γ calculated
using the empirical d.f. Fn instead of theoretical one.

Corollary 12.1 For fixed a, l, and m the following relations take place a.s., as
n → ∞,

z∗(n) → z∗, u∗(n) → u∗, u∗
1(n) → u∗

1.

Proof It iswell known that convergence in distribution is equivalent to convergence in

quantile. That is, if Fn
d→ F , then F−1

n
d→ F−1 (quantiles converge in the continuity

points of the limit function F−1(t), 0 < t < 1), see [23]. Moreover, as follows from
part 3 of Lemma 12.1, convergence in Kantorovich metric implies convergence in
distribution, as well as convergence of expected values, and vice versa. If we take
Fn = Fn , then, according to [23], d1(Fn, F) → 0 a.s., as n → ∞. Hence, it is clear
immediately that z∗(n) = F−1

n (1 − m−1) → F−1(1 − m−1) = z∗ a.s., as n → ∞.
Since u∗(n) = a + z∗ − lγ (n), parameters a and l are fixed, whereas |γ (n) −

γ | ≤ d1(Fn, F) → 0 a.s., as n → ∞, the second statement of corollary is also valid.
Turning to the last statement of corollary, we can write |r(z∗(n)) − r(z∗)| ≤

d1(Fn, F) + |z∗(n) − z∗|. Hence, one easily gets

|u∗
1(n) − u∗

1| ≤ (m + l)d1(Fn, F) + (m + 1)|z∗(n) − z∗| → 0, a.s.

ending the proof. �

Remark 12.3 Since z1(u) is equal either to z∗ or to c−1(z∗ + a − u) for (l, m) ∈
D1 ∪ D2 it follows immediately from Corollary 12.1 that optimal retention level
calculated using empirical d.f. converges a.s. to theoretical one, as the sample size
tends to infinity. For the set D3, there exists also the possibility of no reinsurance.
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Fig. 12.1 Sets Di for
exponential distribution

The boundary between D3 and D2 is given by the curve l = ϕ1(m) where
ϕ1(m) = γ −1F−1(1 − m−1), whereas the boundary between D2 and D1 is deter-
mined by ϕ2(m) = ϕ1(m) + mγ −1r(z∗). Thus, if we denote by ϕ

(n)
i (m), i = 1, 2,

the corresponding functions calculated on the base of empirical d.f., it is obvious that
ϕ

(n)
i (m) → ϕi (m) a.s., as n → ∞. So it is possible to specify entirely the “empirical”

optimal policy for given parameters l,m, a, and u.Moreover, for a given initial capital
u one can choose a providing zero additional costs entailed by capital injection.

The form of the sets Di , i = 1, 2, 3, is depicted by Fig. 12.1 for exponential claim
distribution.

It is also interesting tomention that for uniform, aswell as, exponential distribution
the boundaries ϕi (m), i = 1, 2, do not depend on distribution parameters.

12.5 Conclusion and Further Research Directions

In this chapter, only the case of no a priori information about the claim distribution
was treated for one-step model. The multi-step case is the next step. However to deal
with it, we need to prove at first the existence of the so-called asymptotically opti-
mal stationary policy. Then it will be possible to construct empirical asymptotically
optimal policy, in other words, to propose a policy based on empirical distribution
giving the same long-run injection cost per period as the above-mentioned station-
ary policy. These results will be published elsewhere. We plan also to carry out the
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sensitivity analysis as proposed in [18, 21, 24] for finding out the most important
scalar parameters. Such analysis was already performed in [5] for two risk models.

12.6 Appendix

Here we prove some results concerning convergence in distribution in L1 we plan to
use in further investigation of two samples case.

Recall that (X1, Y1), (X2, Y2), . . . is a sequence of independent random vectors
defined on a probability space (Ω,F , P) taking values in R2. Moreover, introduced
in the previous Sect. 12.2.3 random variables ζi (t) for a fixed t can take values
from the set {−1, 0, 1}. Hence, values of Hn(t, ω) for a fixed n belong to the set
{in−1 : i = −n, n} for any t , whereas mapping Hn(t, .) : Ω → R is measurable.
Thus, the process Hn(t, ω) for a fixed n is jointly measurable in (t, ω), that is, it is
B(R) × F -measurable. As usually, B(R) is the Borel σ -algebra in R.

Theorem 12.4 Let X, Xi , i ∈ N , be i.i.d. r.v.’s with d.f. F and let Y, Yi , i ∈ N , be
also i.i.d. r.v.’s but with d.f. G. Put

η(t) := (I {X > t} − P(X > t)) − (I {Y > t} − P(Y > t)) , −∞ < t < ∞,

whereas ηi , i ∈ N, are the processes obtained by substitution of Xi instead of X
and Yi instead of Y in the last expression. Then

(a) The processes
∑n

i=1 ηi/
√

n = √
n(Fn − Gn − (F − G)) converge in distribu-

tion in L1(R) to the process B1(F(t)) + B2(G(t)), t ∈ R, where B1 and B2 are
two independent Brownian bridges, if and only if

∫ +∞

−∞

√
F(t)(1 − F(t)) + G(t)(1 − G(t)) dt < ∞. (12.4)

(b) (1) If the condition (12.4) is valid the sequence

∣∣∣∣∣∣

∣∣∣∣∣∣
n∑

i=1

ηi /
√

n

∣∣∣∣∣∣

∣∣∣∣∣∣
L1

= √
n

∫ +∞
−∞

|Fn(ω, t) − Gn(ω, t) − (F(t) − G(t))| dt, n ∈ N ,

is stochastically bounded.

(2) If the sequence
∣∣∣∣∑n

i=1 ηi/
√

n
∣∣∣∣

L1
is stochastically bounded, then

sup
n

E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

(I {ηi > t} − P(ηi > t))/
√

n

∣∣∣∣∣
∣∣∣∣∣

L1

< ∞.
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Proof According to [14] for any random element η(t) from L1(R) such that∫ ||η||L1d Pη < ∞ and
∫

ηd Pη = 0 condition
∫ +∞
−∞

√
E(η(t))2dt < ∞ is equivalent

to weak convergence of the measures generated by
∑n

i=1 ηi (t)/
√

n to a Gaussian
measure on L1(R). First, we show that this condition has the form (12.4) in our case.

Putting X̃(t) = I {X > t} − P(X > t), Ỹ (t) = I {Y > t} − P(Y > t), for s, t ∈
R, we have, due to independence of X and Y combined with E X̃(t) = EỸ (t) = 0,

cov(η(s), η(t)) = E(X̃(s) − Ỹ (s))(X̃(t) − Ỹ (t)) = E X̃(s)X̃(t) + EỸ (s)Ỹ (t)

= min(F(t), F(s)) − F(t)F(s) + min(G(t), G(s)) − G(t)G(s).

Hence, according to the central limit theorem for Rk , k ∈ N , one has

(η(t1), . . . , η(tk))
d→ (B1(F(t1)) + B2(G(t1)), . . . , B1(F(tk)) + B2(G(tk)))

for any sequence t1, . . . , tk with ti ∈ R, i = 1, k. Using the result from [16], we
see that processes

∑n
i=1 ηi (t)/

√
n converge to the process B1(F(t)) + B2(G(t)) in

L1(R) as n → ∞. Thus paragraph (a) of the theorem and sufficiency of paragraph
(b) are established.

Statement of paragraph (b2) is the immediate consequence of the proof of part
(b) of Theorem 2.1 in [10]. �
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