
Chapter 11
Benefits and Application of Tree
Structures in Gaussian Process Models to
Optimize Magnetic Field Shaping
Problems

Natalie Vollert, Michael Ortner and Jürgen Pilz

Abstract Recent years have witnessed the development of powerful numerical
methods to emulate realistic physical systems and their integration into the indus-
trial product development process. Today, finite element simulations have become a
standard tool to help with the design of technical products. However, when it comes
to multivariate optimization, the computation power requirements of such tools can
often not be met when working with classical algorithms. As a result, a lot of atten-
tion is currently given to the design of computer experiments approach. One goal of
this work is the development of a sophisticated optimization process for simulation
based models. Within many possible choices, Gaussian process models are most
widely used as modeling approach for the simulation data. However, these models
are strongly based on stationary assumptions that are often not satisfied in the under-
lying system. In this work, treedGaussian processmodels are investigated for dealing
with non-stationarities and compared to the usual modeling approach. The method
is developed for and applied to the specific physical problem of the optimization of
1D magnetic linear position detection.

Keywords Gaussian process surrogates · Non-stationarity · Simulation data
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11.1 Introduction

Gaussian process (GP) models have been widely used as emulators for time-
consuming computer models, where the most common approach is adopted from
spatial statistics and named Kriging [13]. This refers to a linear model with a
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systematic departure realized as a stationary Gaussian random function. A major
problemwith this approach is the strong assumption of stationarity and homoscedas-
ticity of the GPs, which is firstly difficult to verify and secondly often not valid. An
efficient way to deal with this problem is to partition the input parameter space into
regions and to fit individual, stationary GPs in each region. This method is referred
to as treed Gaussian process modeling [6].

It is the ultimate goal of this work to develop an emulator based on GPs to model
and optimize realistic physical systems using FEM data. This is done in the context
ofmagnetic linear position detectionwhere themagnetic field of a permanent magnet
is emulated in the magneto-static limit. In such systems, a magnet moves relative to
a magnetic sensor and the state of the magnet is determined from the field that is
seen by the sensor. The advantages are wear-free measurements, high resolutions,
low power requirements, and an excellent robustness against temperature and dirt
with multiple applications in modern industries, e.g., in the detection of shifting
shafts, flexible arm mechanisms, gearboxes or lift systems, [16]. To improve the
signal stability while retaining cost-effectiveness, it is proposed in [9] to shape the
magnetic field at the sensor by designing a compound magnet. However, even when
dealing with a small number of constituents, the compound features multiple degrees
of freedom which makes the modeling and optimization process difficult.

This work is intended to be a preliminary study for emphasizing advantages and
also possible disadvantages of the treed GP models in comparison to the usual GPs.
Thus, emulators of the magnetic field are constructed and investigated for both mod-
eling approaches. To that end, the sample points for the construction of the models
are generated from an analytical description for the magnetic field. Furthermore, at
this early stage, the compound consists only of a single rectangular magnet, consid-
erably reducing the number of parameters to better understand the potential and the
difficulties of this method.

11.2 Magnetic Linear Position Detection

Magnetic position and orientation detection systems play an important role in mod-
ern industrial applications. Their features include contact-free measurement, low
power requirements, and high resolutions combined with an excellent robustness
against oil, grease, and dirt without the need for airtight seals or other environmental
contamination control in harsh environments. Long life times up to decades and cost-
effectiveness are especially interesting for the cost-driven automotive sector where
magnetic sensors are increasingly used for gear shift detection, gas pedals, speed
sensors, and many other applications.

State-of-the-art magnetic linear position detection systems feature a magnet that
moves relative to a magnetic sensor which detects the magnetic field to determine
the position of the magnet; see Fig. 11.1a. The magnetic field is generally not a
linear function of the position of the magnet but typically features an even and an
odd component; see Fig. 11.1b. It can be a sensitive task to find a bijective map that
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Fig. 11.1 a shows a sketch of a linear position detection system. A rectangular magnet with
magnetizationM oriented in the z-direction moves along the stroke s ∈ [−S, S] in x-direction and
generates a magnetic field with components Bx and Bz . The sensor is positioned on the positive
z-axis at a distance Δ from the magnet called the airgap. b shows the magnetic field components
detected by the sensor as a function of the position of the magnet for a typical setup with a cubical
magnet with side length 10mm, a remanence field of one Tesla and an airgap of 5mm

relates the magnetic field to the position of the magnet. Distinction is essentially
made between 1D and 2D magnetic position detection systems, where the former
picks up both components of the magnetic field applying a 2D sensor, while the latter
just detects the odd component with a simple 1D probe. For 1D position sensing,
the linear range of the odd field component about the origin is used; see Fig. 11.1b.
When compared to their 2D counterparts, 1D systems have a lot of shortcomings
like small measurement ranges and an even smaller linear region as well as airgap
instability. Despite these critical disadvantages, 1D systems are still used in modern
industrial applications, solely due to their cost-effectiveness, as 1D sensors are much
cheaper than 2D ones.

It is proposed in [9] to improve 1Dmagnetic position detection systems by design-
ing a compoundmagnet which features a highly linear odd field component Bx along
a given stroke while minimizing the magnet volume at the same time to reduce
costs. The multiple shape parameters of the compound make the optimization a very
time-consuming process when calculating the magnetic field by FEM means. In the
following sections, a design of computer experiments approach is developed.

11.3 Gaussian Process Models

The statistical approach for computer experiments consists of two parts—
experimental design and modeling. The designing refers to finding a set Dn of n
points in the experimental domain T that optimally represents the entire domain;
for further information, see [1, 5, 14, 15]. Then, data is collected based on the
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optimal designDn and the relationshipbetween the input variablesxi = (x1, . . . , xs)T ,
i = 1, . . . , n, and the output is modeled.

11.3.1 Kriging Setup

Among many different modeling approaches (see, e.g., [5]), especially Gaussian
process models, also called Kriging models, are of main interest for computer exper-
iments. Here, the response Y (x) is treated as a realization of a stochastic process,
i.e.,

Y (x) = μ(x) + Z(x), (11.1)

where μ(x) is the trend function and Z(x) is a primarily stationary Gaussian process
with zero mean. There are different types of Kriging based on the definition of the
trend function. The most general form is known as universal Kriging, where the
trend function is specified by μ(x) = f(x)Tβ, i.e., as a regression model. Here, the
function vector f is fixed, and the parameter vector β needs to be estimated. The
ordinary Kriging approach defines a slightly simpler model, which has an unknown
but constant trend, i.e., μ(x) = μ. The covariance matrix of the Gaussian process
Z(x) is given by

Cov(Z(xi), Z(xj)) = σ 2R(xi, xj), (11.2)

where R(xi, xj) = Corr(Z(xi), Z(xj)) is a given correlation function, scaled by the
process variance σ 2 and xi, xj ∈ Dn .Most of the time, it is assumed that the stochastic
process is stationary, i.e., R(xi, xj) = R(xi − xj) = R(h). Among many possible
correlation functions (see [11]), the Matérn class is of great importance and is given
by

R(h) = 21−ν
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)ν
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)
, (11.3)

where Γ is the gamma function, Kν is a modified Bessel function, h = |xi − x j |,
and ν, θ are positive parameters. The sample paths of a GP with the Matérn corre-
lation function are �ν − 1� times differentiable. Note, that, in general, the product
correlation rule is used for multivariate input variables in computer experiments, i.e.,

R(xi, xj) =
s∏

k=1
R j (xik − x jk), see [3]. Usually, the parameters β, σ 2, ν, and θ are

unknown and hence need to be estimated, e.g., by maximum likelihood estimation
(MLE); see [5] for further details. When the parameters are specified, the model can
be used to make predictions Y (x0) at untried points x0 /∈ Dn . Let x1, . . . , xn ∈ Dn be
the set of design points and yD = (y(x1), . . . , y(xn))T the corresponding data, then
a linear predictor of y(x0) is given by
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Ŷ (x0) = λT (x0)yD. (11.4)

Among all linear predictors, the best linear unbiased predictor (BLUP) is a common
choice for prediction at untried points. This predictor minimizes the mean squared
error (MSE)

MSE
(
Ŷ (x0)

)
= E

(
λT yD − Ŷ (x0)

)2
, (11.5)

with respect to λ under the unbiased-constraint

E
(
λTYD

) = E (Y (x0)) . (11.6)

Solving this optimization problem defines the BLUP as

Ŷ (x0) = fT β̂ + kK−1
D (yD − F β̂), (11.7)

where f = ( f1(x0), . . . , fk(x0))T , KD = σ 2RD , k = (R(x1, x0), . . . , R(xn, x0)), β̂
is the least squares estimator of β and F the design matrix, [13].

11.3.2 The Curse of Stationarity

A lot of research has been done concerning GPs and complex computer code mod-
eling with a lot of examples and case studies where this approach was successfully
demonstrated; see, e.g., [3]. Nevertheless, it has also been shown that especially
the strong assumption of stationarity of the process can lead to problems, as many
physical models exhibit a clear non-stationary behavior. To deal with this problem,
non-stationary correlation functions can be used; see [10]; however, fitting fully
non-stationary models quickly becomes difficult and computationally intractable.
Another approach uses treed Gaussian process models (TGP); see, e.g., [6]. Here,
the main idea is to divide the parameter space by making binary splits on single
variables, i.e., a tree partition and fitting an independent GP model in each leaf; see
Fig. 11.2.

This method has the advantage of a comparatively simple modeling of non-
stationarity and an easier covariance matrix inversion as a result of data reduction in
each leaf. It is also more likely that the trend functions in each leaf can be assumed
to be simple functions or even just constants without losing information, making
parameter estimation easier and reducing the risk of over-fitting. Furthermore, the
partitioning yields perfect conditions for multi-core computing, which may further
reduce computation time.
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Fig. 11.2 Tree partitioning:
division of the input space by
binary splits. The two splits
result in three leafs, i.e.,
three data sets—for GP1, all
data points with x1 ≤ c1 are
used, GP2 contains all data
points with x1 > c1 and
x2 ≤ c2, and GP3 includes
the remaining data.
An independent GP model is
fitted in each of the three
leafs

11.4 Case Study: Magnetic Field Shaping

In this section, different GP models are tested to describe the odd component Bx

of the magnetic field along the stroke s ∈[−10, 10] mm of a rectangular magnet
with sides 2a, 2b, and 2c aligned in x-,y-, and z-direction and a magnetization of
M = (0, 0, x). In this first case study, the magnet volume V and side a are fixed to
known, and realistic values and boundaries are given for the other parameters; see
Table11.1. The resulting GP model is then used to find the optimal values for c and
x where the deviation of Bx along the stroke from a linear function with a slope of
one millitesla per millimeter is minimal.

A CL2-optimal latin hypercube design (see [5]) with n = 50 points for the param-
eters c and x with respective ten regularly spaced points along the stroke s is used
to generate the data, a total of 500 points (c,x ,s), of the final design. It is important
to notice that the FEM simulation environment would always model the magnetic
field along the entire stroke providing an arbitrary number of sample points for s and
thus limiting the number of evaluations only for the parameters c and x . Without loss
of generality, the data is generated using an analytical description of the magnetic

Table 11.1 Assumptions and
constraints for the involved
parameters

Parameter Constraints

Δ 5 mm

V 500 mm3

a 12 mm

b V
8ac mm

c [0.1, 50] mm

x [100, 1000] mT

s [−10, 10] mm
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field for ideal permanent magnets for testing the validity of the GP model, see [2].
A constant trend function and Matérn correlation function with ν = 3

2 are assumed
for the GP models, and the DIviding RECTangles (DIRECT) algorithm is used for
global optimization; see [7, 8]. The algorithms are implemented in R, making use
of the packages DiceKriging, DiceDesign, nloptr ([4, 7, 12]).

It is known that for the parameter c, the stationarity assumption does not hold.
For small values of c, the magnetic field varies strongly, while it is quite flat for
larger values; see Fig. 11.3. Therefore, several GP models are investigated based on
different splits for c and compared due to their ability to obtain the optimal values for
c and x , which can be determined from the analytical model to be c = 10.264815 and
x = 997.9207. The results are summarized in Table11.2 and represented graphically
in Fig. 11.4.

It can be seen from Table11.2 and Fig. 11.4 that the TGP approach can really
yield improvements and give an almost perfect fit despite the stationarity assumption,
especially when using two splits on c. However, solutions can also get worse by bad
splitting, where especially the last and extreme case in Table11.2, i.e., when the
border is drawn almost directly at the optimal value, emphasizes one of the major

Fig. 11.3 Influence of the
parameter c on the magnetic
field Bx . The red point refers
to the optimal value for c
based on optimization of the
analytical function, and the
two red lines divide c into the
parts used in the trees. The
x-axis refers to the interval
[0.1, 50] mapped onto [0, 1]

Table 11.2 Different GP models, based on the splits defined by c border and the related optimized
parameter values

c border c value x value

none 9.443181 977.7832

15.07 9.614540 970.3704

2.595 ∧ 15.07 10.196923 996.9839

10.264 ≈ copt 8.416667 845.2808
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Fig. 11.4 The left-hand figures show real versus predicted outputs for 5000 arbitrary parameter
combinations. The right-hand figures show the optimization solution based on the analytical equa-
tion and the models. The dashed line refers to the solution where the parameters obtained by the
model with two splits are inserted into the analytical equation and the red line refers to a line with
slope one in all pictures

drawbacks of treed structures. In this case, the estimated optimal values for c and x
are far from being an acceptable solution. The reason for this lies in inaccuracies near
the borders that occur due to the natural behavior of treed processes: at the border two
processes, with probably completely different structures, melt together. This means
that unless there is an sample point directly at the border, the two processes may
not even meet at the same point leading to discontinuities. Assuming that there are
enough border sample points, there remains the problem that differentiability of the
process at the border will be never guaranteed, but rather very unlikely; see Fig. 11.5.
However, the assumption of differentiability is crucial for many physical systems and
hence should be also held in belonging models.
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Fig. 11.5 It is shown how
the magnetic field Bx
changes along the parameter
c. The red dotted line refers
to the border which at the
same time is the solution for
the optimal c. The processes
do melt together at the same
point because there is a
sample point directly at the
border, however, the
undesirable bend, and hence
non-differentiability, is
obvious

11.5 Conclusion and Outlook

It has been shown that treed Gaussian process models can be a powerful tool for the
design of computer experiments, but great care must be taken with respect to the
partitioning of the tree. Especially, predictions near borders can exhibit large errors
and bad functional attributes. For optimization, it is crucial to grant good fitting of
the GPmodel, especially near the optimum. However, it can never be guaranteed that
the optimum is not located near or even directly at a border. Thus, actual research is
strongly concerned with the construction of border processes that yield at least once
continuously differentiable borders. Furthermore, also systematic and reasonable
partitioning is currently under investigation, which should be achieved using an
adapted genetic algorithm. From a physical point of view, more complex compound
magnets with considerably more parameters will be implemented based on realistic,
noisy FEM data to improve real-world magnetic linear position detection systems
moving beyond the analytic description.
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