
Chapter 2
Discrete-Time Signals and Systems

2.1 Introduction

Continuous-time or analog signals are processed using analog devices such as
amplifiers, filters, etc. It is impossible to process signals multiplexed from
various sources using a single hardware system in the analog domain. On the
other hand, digital signals can be processed using both special-purpose hardware
and software systems. Worldwide use of Internet, mobile communications, etc.
demands all kinds of data such as video, audio, graphics, etc. In order to receive
this information on a single device, computer, for instance, it is impossible to use
analog signals and techniques. In order to be able to design and implement
digitally based systems, it is absolutely necessary to have an understanding of
digital signals and systems. Digital signals are discrete in time and amplitude.
However, we will assume discrete-time signals to have a continuum of amplitude
in order to be able to analyze such signals and systems mathematically. In this
chapter we will describe typical discrete-time signals mathematically and then
use them to describe and analyze linear time-invariant discrete-time systems. To
help the readers understand the mathematical details, we will work out examples
followed by MATLAB-based examples. Since digital signals are obtained from
analog sources, we will also discuss the conversion of continuous-time signals
into digital signals using analog-to-digital converters (ADC).
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2.2 Typical Discrete-Time Signals

A discrete-time signal is denoted by x[n], y[n], etc. and is defined over the interval
�1 < n < 1 , n 2 Z. The amplitude of a discrete-time signal is a continuum, while
its argument n is an integer. If a discrete-time signal is obtained from a continuous-
time signal, then the argument of the discrete-time signal is an integer multiple of the
sampling interval. We will discuss the sampling process later in the chapter. A
discrete-time signal is also referred to as a sequence. When a discrete-time signal
is processed by a computer in software or hardware, the signal amplitudes are
represented by numbers, and so the signal is a digital signal. Even though discrete-
time signals are processed by a computer, we will still assume their amplitudes to be
a continuum in our discussion.

There are several discrete-time signals that are useful in characterizing other
discrete-time signals as well as systems similar to those used in the continuous-
time domain. We will describe them here briefly.

Unit Impulse Sequence A unit impulse sequence is denoted by δ[n] and is defined
as

δ n½ � ¼ 1, n ¼ 0
0, n 6¼ 0

�
ð2:1Þ

A unit impulse in the discrete-time is similar to the Dirac delta function in the
continuous-time except that the unit impulse sequence is physically realizable.

Unit Step Sequence A unit step sequence is denoted by u[n] and is defined as

u n½ � ¼ 1, n � 0
0, n < 0

�
ð2:2Þ

The unit step sequence plays a similar part in the analysis of discrete-time systems
as its continuous-time counterpart.

Exponential Sequence A real exponential sequence is defined as

x n½ � ¼ αnu n½ �, αj j < 1 ð2:3Þ
In (2.3), α is a real constant.

Real Sinusoidal Sequence A real sinusoidal sequence is defined as

x n½ � ¼ A cos nΩ0 þ ϕð Þ, �1 < n < 1, n2Z ð2:4Þ
In Eq. (2.4), A is the amplitude,Ω0 ¼ 2π f 0

Fs
is the normalized frequency in rad, f0 is

the frequency in Hz, Fs is the sampling frequency in Hz, and ϕ is the phase offset
in rad.
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Complex Exponential Sequence A complex exponential sequence is described by

x n½ � ¼ Aαnexp �jnΩ0ð Þu n½ �, αj j < 1 ð2:5Þ
In Eq. (2.5), the amplitude A may be complex, and α is a real constant.

Periodic Sequence A sequence x[n] is said to be periodic with period N if x[n + kN]¼ x
[n], where k is an integer. From the definition we can easily verify that the sinusoidal
sequence in (2.4) is periodic with period N ¼ kFs

f 0
.

2.3 Discrete-Time Systems

A discrete-time system, L :f g, is one that accepts an input sequence x[n] to produce
an output sequence y[n]. It can be formally written as

y n½ � ¼ L x n½ �f g ð2:6Þ

Linearity A discrete-time system is said to be linear if it satisfies the superposition
rule. In other words, a discrete-time system is linear if the following condition holds:

y n½ � ¼ L αx1 n½ � þ βx2 n½ �f g ¼ αy1 n½ � þ βy2 n½ �, ð2:7Þ
where y1 n½ � ¼ L x1 n½ �f g and y2 n½ � ¼ L x2 n½ �f g. So, a linear discrete-time system
responds to a linear combination of input sequences with the same linear combina-
tion of individual responses. Linear discrete-time systems are most useful because
they can be solved analytically. If the above condition stated in (2.7) is not valid,
then the discrete-time system is nonlinear. Nonlinear systems in general don’t have
closed-form solution and must be solved iteratively. Hence linear systems are
preferred in practice though many practical systems may be nonlinear.

Time- or Shift-Invariant Discrete-Time Systems A discrete-time system is said to
be time- or shift-invariant if a delayed input results in a delayed response:

L x n� m½ �f g ¼ y n� m½ �,m2Z ð2:8Þ

Impulse Response As in the continuous-time system, the response of a discrete-
time system to a unit impulse sequence is called the impulse response and is denoted
by h[n]. The impulse response is formally defined as

h n½ � ¼ L δ n½ �f g ð2:9Þ
The impulse response is unique to a given discrete-time linear system and is very

useful in calculating the system response to any given input. It is also very useful in
the design of digital filters. We will deal with the design of digital filters later in
the book.
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Causality A discrete-time system is causal if it is non-anticipatory. That is to say
that if the response of a discrete-time system at the current time index, n, does not
depend on the input at a future time instant, then the system is causal.

Let us understand what we have discussed so far clearly by going through the
following examples.

Example 2.1 A discrete-time system is defined by the following difference
equation:

y n½ � ¼ x nþ 1½ � � 2x n½ � þ x n� 1½ � ð2:10Þ
Is it (a) linear? (b) Is it time-invariant? (c) Is it causal?

Solution Let me make it clear. A discrete-time system may be characterized by a
linear difference equation just as we described a continuous-time system by a
differential equation.

(a) Let the input be a linear sum of two input sequences: x[n] ¼ ax1[n] + bx2[n],
where a and b are constants. Then the response of the system can be written using
(2.10) as

y n½ � ¼ a x1 nþ 1½ � � 2x1 n½ � þ x1 n� 1½ �ð Þ
þb x2 nþ 1½ � � 2x2 n½ � þ x2 n� 1½ �ð Þ

¼ ay1 n½ � þ by2 n½ �
ð2:11Þ

In the above equation, y1 n½ � ¼ L x1 n½ �f g and y2 n½ � ¼ L x2 n½ �f g. Since the super-
position rule is satisfied, the given discrete-time system is linear.

(b) From the given difference equation, we notice that delaying the input sequence
by an integer M produces a response, which is exactly the delayed version of the
response by the same integer M. Hence the system is time- or shift-invariant.
Note that if the coefficients a and b are dependent on the time index n, then the
system will no longer be shift-invariant!

(c) We notice from the given system’s input-output relationship that the response of
the system at the current time index n depends on the input at the next future
input. Therefore, the system is anticipatory and hence is non-causal.

Example 2.2 Determine if the discrete-time system y[n]¼ K + x[n] + 0.75x[n� 1],
where K is a constant, is (a) linear, (b) time-invariant, and (c) causal?

Solution
(a) If we apply the superposition rule, we observe that it is not satisfied due to the

constant K. Hence the system is not linear. However, it is piecewise linear.
(b) Since the delayed input produces the same delayed response, the system is time-

invariant. It can also be inferred from the fact that the coefficients in the given
input-output relationship are constants, independent of the time index.

(c) The system response at the current time index n does not depend on the input
sequence at future time instants. Hence the system is causal.
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Stability A discrete-time system is said to be stable if a bounded input produces a
bounded output. Equivalently, we can impose the stability condition on the impulse
response. We will look at it after we define the convolution sum. This definition of
stability is called bounded-input bounded-output (BIBO) stability.

Example 2.3 Is the system described in Example 2.1 stable in the BIBO sense?

Solution If we assume that the absolute value of the input sequence is finite, that is, |
x[n]| � M for all n, then we see that the output sequence value is also finite:

y n½ �j j � x nþ 1½ � � 2x n� 1½ � þ x n½ �j j � 4M < 1 ð2:12Þ
Hence the system is stable.

2.4 Convolution Sum

The response of an LTI discrete-time system to any given input sequence can be
obtained in terms of its impulse response sequence and the input sequence by what is
called the convolution sum. We first observe that a given sequence x[n] can be
represented as an infinite sum of unit impulses:

x n½ � ¼
X1
k¼�1

x k½ �δ n� k½ � ð2:13Þ

Equation (2.13) follows from the definition of the unit impulse. So, the right-hand
side of (2.13) is zero except for k ¼ n, in which case, the right-hand side is simply x
[n]. Having expressed the input sequence in terms of the unit impulse sequence, we
next determine the response of the LTI system as

y n½ � ¼ L x n½ �f g ¼ L
X1
k¼�1

x k½ �δ n� k½ �
( )

ð2:14Þ

Since the system is linear, the system operator can be taken inside the summation
as

y n½ � ¼
X1
k¼�1

L x k½ �δ n� k½ �f g ð2:15Þ

That is, the response is the linear sum of the responses to individual impulses
δ[n � k]. However, x[k] is a constant, and since the system is linear, the response to
constant times an input is equal to the constant times the response to the input.
Therefore, (2.15) can be rewritten as
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y n½ � ¼
X1
k¼�1

x k½ �L δ n� k½ �f g ð2:16Þ

We have also assumed the system to be time-invariant. Therefore,
L δ n� k½ �f g ¼ h n� k½ �. Hence,

y n½ � ¼
X1
k¼�1

x k½ �h n� k½ � ð2:17Þ

Equation (2.17) is known as the convolution sum of the sequences x[n] and h[n]
and is usually abbreviated as x[n]⨂ h[n]. In (2.17), if we substitute m ¼ n � k, then
we can also write the convolution sum as

y n½ � ¼
X1

m¼�1
h m½ �x n� m½ � ð2:18Þ

Procedure to Calculate the Convolution Sum
We can list a graphical procedure to calculate the convolution sum given in
Eq. (2.17) as follows:

1. Flip the impulse response h[n] about the origin, and label the abscissa with the
integer variable k.

2. Multiply the input sequence and the flipped impulse response sequence point by
point, and sum them over the entire interval. This sum gives the response at n¼ 0.

3. Slide the flipped impulse response to the right one sample at a time.
4. Multiply the input sequence and the flipped impulse response sequence point by

point, and sum them over the entire interval. The sum gives the system response
at subsequent time instants.

5. For negative integer values of n, repeat steps 3 and 4, except that the impulse
response sequence is slid to the left instead of right.

Example 2.4 Consider the LTI discrete-time system with an impulse response h
[n] ¼ αnu[n], |α| < 1. Determine its unit step response.

Solution Using the graphical interpretation of the convolution sum, we first label the
abscissa with the index k. Next we flip the impulse response about the ordinate. This is
shown in black color in Fig. 2.1a with no shift. In the same plot, the input sequence in
red color is shown, which is a unit step. There is only one sample that overlaps the two
sequences for n ¼ 0, and the corresponding product of the two sequences results in the
response at n ¼ 0. As can be seen from Fig. 2.1b, any shift of the impulse response
sequence to the left, that is, for n < 0, will leave no overlapping of the two sequences.
Hence the system response will be zero for n < 0. Figure 2.1c shows the flipped impulse
response shifted to the right by 3, that is, n¼ 3. Now there are four overlapping samples.
Wemultiply the overlapping samples and sum them to obtain the response at n¼ 3. This
can be continued for each shift of the impulse response to the right. To obtain the
response in closed form, we resort to the convolution sum in Eq. (2.17).
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y n½ � ¼
X1
k¼�1

x k½ �h n� k½ � ¼
Xn
k¼0

αn�k ¼ /n
Xn
k¼0

α�k ð2:19Þ

In (2.19) since the input is zero for n < 0, the lower limit of the summation is zero.
Also, the response is zero for n < 0. The upper limit is n corresponding to the current
time instant. The sequence on the right-hand side of (2.19) is an exponentially
decreasing sequence. After simplifying (2.19) we get the unit step response of the
system,

y n½ � ¼ αnþ1 � 1
α� 1

, n � 0 ð2:20Þ

The impulse response and the system response are shown in Figs. 2.2a and b,
respectively. The impulse response sequence is assumed to be (0.75)nu[n]. The
rise time of the LTI system is defined as that interval in which the step response
changes from 10% to 90% of its final response. The final value of the response is
found to be 4.

Causality Revisited Earlier we said that an LTI system is causal if it is
non-anticipatory. We can also impose causality on the impulse response of the
LTI system. To this end, recall that the convolution sum represents the response of
an LTI discrete-time system to an input sequence. If the input to an LTI discrete-time
system is assumed to be zero for n less than zero, then the response y[n] in terms of
the impulse response h[n] is written as

y n½ � ¼ x n½ � � h n½ � ¼
X1
k¼0

x k½ �h n� k½ � ð2:21Þ

For instance, let us evaluate the response at n ¼ 1. Expanding the summation on
the right-hand side of (2.21), we have

y 1½ � ¼ x 0½ �h 1½ � þ x 1½ �h 0½ � þ x 2½ �h �1½ � þ x 3½ �h �2½ � þ � � � ð2:21aÞ
Since the system is assumed to be causal, y[n¼ 1] should not be dependent on x[n] for

n > 1. However, x[n] is the input sequence and is not zero. Therefore, h[�1] ¼ h
[�2] ¼ � � � ¼ 0. That is to say that h[n] ¼ 0 for n < 0. Generalizing, we say that for the
system to be causal, h[n � k] ¼ 0, for k > n. Otherwise it will be anticipatory. Let
m¼ n� k. Then, for the system to be causal, k > n⟹m < 0. Hence for the system to be
causal, h[n]¼ 0 for n < 0, which implies that the upper limit of the summation in (2.21) is
n. An LTI discrete-time system is causal if and only if its impulse response is zero for
n < 0. Otherwise it is non-causal.

Stability in Terms of the Impulse Response An LTI discrete-time system is stable
in the BIBO sense if its response is finite for a finite input. Let the input sequence x
[n] be bounded, that is, |x[n]| � M < 1 , for all n. Using the convolution sum in
(2.17), we can bound the output as given below:
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y n½ �j j ¼
X1
k¼�1

x k½ �h n� k½ �
�����

����� ¼ X1
k¼�1

x n� k½ �h k½ �
�����

����� � M
X1
k¼�1

h k½ �j j ð2:22Þ

From (2.22) we see that the absolute value of the response is finite if and only ifX1
n¼�1

h n½ �j j < 1 ð2:23Þ

Thus, an LTI discrete-time system is stable in the BIBO sense if and only if its
impulse response sequence is absolutely summable.

Example 2.5 An LTI discrete-time system is described by y[n]¼ x[n] + 0.5y[n�1],
y[�1] ¼ 0. Determine if the system is stable in the BIBO sense.

Solution First, we need to find the impulse response of the system. Using x
[n] ¼ δ[n], in the above system definition and the fact that y[�1] ¼ 0, we obtain
the following:

y 0½ � ¼ δ 0½ � þ 0:5y �1½ � ¼ 1;
y 1½ � ¼ δ 1½ � þ 0:5y 0½ � ¼ 0:5;
y 2½ � ¼ 0:5y 1½ � ¼ 0:52;
y 3½ � ¼ 0:5y 2½ � ¼ 0:53, . . .
y n½ � ¼ 0:5y n� 1½ � ¼ 0:5n

ð2:24Þ

Thus, we find the impulse response sequence to be h[n] ¼ 0.5nu[n]. For this
system to be stable, the impulse response sequence must be absolutely summable:X1

n¼�1
h n½ �j j ¼

X1
k¼0

0:5nj j ¼
X1
k¼0

0:5n ¼ 1
1� 0:5

¼ 2 < 1

Since the impulse response sequence is absolutely summable, the above system is
stable.

2.5 Linear Difference Equation

So far we have defined an LTI discrete-time system in terms of its impulse response,
which fully defines the system. The response to any input sequence can then be
obtained by convolving the input and impulse response sequences. Alternatively,
one can also describe an LTI discrete-time system by a linear difference equation
with constant coefficients. More specifically, an LTI discrete-time system can be
described by

Xp
k¼0

bky n� k½ � ¼
Xq
j¼0

a jx n� j½ �, b0 ¼ 1 ð2:25Þ
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The order of the difference equation (2.25) is the maximum of p and q. In
Eq. (2.25), if not all bk

’s are zero then the corresponding difference equation is
called a recursive equation. It uses both feed-forward and feedback to compute the
output at each time instant. On the other hand, if all but b0 are zero, then the resulting
equation is termed non-recursive difference equation. To make it clearer, let us
rewrite (2.25) as

y n½ � ¼
Xq
j¼0

a jx n� j½ � �
Xp
k¼1

bky n� k½ � ð2:26Þ

At each time instant n, the response is obtained by finding the weighted sum of
the previous p output samples and then subtracting it from the weighted sum of the
input samples, which involves the current and previous q input samples. In order to
use the previous input and output samples, we need to store them. More specifically,
we need to store p previous output samples and q previous input samples and retrieve
them to compute the present output sample. Let us clarify this by an example.

Example 2.6 Draw a signal flow diagram to compute the response of the 2nd-order
LTI discrete-time system described by the following recursive equation:

y n½ � ¼ a0x n½ � þ a1x n� 1½ � � b1y n� 1½ � � b2y n� 2½ � ð2:27Þ
A signal flow diagram shows how the signals flow or propagate from the input to

the output. It uses adders, multipliers, and delays. Each delay element corresponds to
one sampling interval. Lines with arrows indicate the direction of signal flow.
Figure 2.3 depicts the signal flow diagram to compute the output for a given input
described by (2.27). An adder is depicted by a circle with a plus sign inscribed in it.

x[n] y[n]

y[n-1]

y[n-2]

a0

a1

b1

b2

unit
delay

+

+
+

+

-

unit
delay

unit
delay

Fig. 2.3 A signal flow diagram corresponding to the difference equation (2.27)
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A triangle pointing in the direction of the signal flow indicates a multiplier with the
coefficient shown by the side of the triangle. A unit delay is depicted by a rectangle.
The various elements are interconnected by straight lines with arrows indicating the
direction of the signal flow.

The signal flow diagram shown in Fig. 2.3 is not the most efficient in terms of
delay elements. It uses three delay elements. The difference equation in (2.27) uses
output samples corresponding to two previous sampling intervals. Hence, it is
possible to use a total of only two unit delays, which is more efficient than using
three unit delays. We will discuss signal flow graphs in more detail in a later chapter.

Solving Linear Difference Equations Instead of computing the response of an LTI
discrete-time system at each time instant by solving the difference equation recur-
sively, one can also obtain the system response in closed form by means of analytical
solution to the difference equation. The general solution to a constant coefficient
linear difference equation consists of two parts: complementary solution yC[n] and
particular solution yP[n]. The complementary solution is the response to zero input,
and the particular solution is the response to a specified input. Thus, the total solution
to a linear difference equation with constant coefficients can be expressed as

y n½ � ¼ yC n½ � þ yP n½ � ð2:28Þ
The complementary solution is obtained by (1) setting the input to zero,

(2) assuming a solution of the type αn, (3) substituting the solution in the zero
input difference equation (2.25), and (4) solving for α. For a pth-order linear
difference equation with constant coefficients, the complementary solution then
takes the form

yC n½ � ¼
Xp
i¼1

aiαi
n ð2:29Þ

The particular solution is assumed to be some constant times the input. The
constant of proportionality is determined by substituting the particular solution in
the difference equation and solving the resulting equation. Finally, the constants in
the complementary solution are determined using the initial conditions in the total
solution. Let us illustrate the above statements by the following example.

Example 2.7 Solve the following difference equation when the input is a unit step
sequence:

y n½ � ¼ x n½ � þ 0:25y n� 1½ � þ 0:125y n� 2½ �,with y �1½ � ¼ 1, y �2½ � ¼ �1

Solution Let the complementary solution be yC[n] ¼ αn. Substituting yC[n] for y[n]
in the above difference equation with x[n] ¼ 0, we get

αn ¼ 0:25αn�1 þ 0:125αn�2
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Or,

1 ¼ 0:25α�1 þ 0:125α�2⟹α1 ¼ 0:5, α2 ¼ �0:25

Therefore, the complementary solution is yC[n]¼ a(0.5)n + b(�0.25)n. Since the input
is a unit step sequence, the particular solution is assumed to be yP[n]¼ cu[n]. To find the
value of the constant c, substitute yP[n] for y[n]in the given difference equation with the
input x[n] ¼ u[n]. We, therefore, have

cu n½ � ¼ u n½ � þ c� 0:25u n� 1½ � þ c� 0:125u n� 2½ �⟹c ¼ 1:6

Therefore, the total solution to the given difference equation is expressed as

y n½ � ¼ 1:6u n½ � þ a 0:5ð Þn þ b �0:25ð Þn

Finally, use the initial conditions to solve for the two constants in the comple-
mentary solution. Thus, the two equations involving the constants a and b are

y �1½ � ¼ 1 ¼ a 0:5ð Þ�1 þ b �0:25ð Þ�1 þ 1:6⟹2a� 4b ¼ �0:6

y �2½ � ¼ �1 ¼ a 0:5ð Þ�2 þ b �0:25ð Þ�2 þ 1:6⟹4aþ 16b ¼ �2:6

The solution to the above two equations gives a ¼ � 5
12 and b ¼ � 7

120. The overall
solution to the given difference equation is, therefore,

y n½ � ¼ � 5
12

0:5ð Þn � 7
120

�0:25ð Þn þ 1:6, n � 0

Note that the difference equation and the total solution give the same value of
1.125 at n¼ 0. Figure 2.4 shows stem plots of the response to a unit step sequence of
the system in Example 2.7 using both the difference equation and the total solution.
They appear to be identical. This shows that one can compute the response of an LTI
discrete-time system either directly from the given difference equation or from the
total solution obtained by analytical means.

Example 2.8 Let us consider the case where the input has the same form as one of
the terms in the complementary solution. Specifically, we want to solve the differ-
ence equation of an LTI discrete-time system described by

y n½ � � 0:8y n� 1½ � þ 0:15y n� 2½ � ¼ 0:5ð Þnu n½ �, y �1½ � ¼ 1, y �2½ � ¼ 0 ð2:30Þ
Let the complementary solution be yC[n] ¼ αn. Substituting the complementary

solution in (2.30) with input being zero, we have

αn � 0:8αn�1 þ 0:15αn�2 ¼ 0 ð2:31aÞ
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or,

α2 � 0:8αþ 0:15 ¼ 0, ð2:31bÞ
which gives α1 ¼ 0.5 and α2 ¼ 0.3.

Since one of the terms in the complementary solution, namely, α1, has the same
form as the input, the particular solution must be assumed to be

yP n½ � ¼ βn 0:5ð Þnu n½ � ð2:32Þ
The complementary solution and the particular solution must be linearly inde-

pendent. That is why the particular solution in (2.32) is used instead. To determine β,
we solve Eq. (2.30) with y[n] replaced with βn(0.5)nu[n]:

βn 0:5ð Þn � 0:8β n� 1ð Þ 0:5ð Þn�1 þ 0:15β n� 2ð Þ 0:5ð Þn�2 ¼ 0:5n ð2:33aÞ
Or,

βn� 0:8β n� 1ð Þ
0:5

þ 0:15β n� 2ð Þ
0:52

¼ 1⟹β ¼ 2:5 ð2:33bÞ

Fig. 2.4 Stem plots showing the system response to a unit step in Example 2.7. Top plot: response
using the difference equation. Bottom plot: response obtained from the total solution
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Therefore, the total solution to the difference equation (2.30) is

y n½ � ¼ a 0:5ð Þn þ b 0:3ð Þn þ 2:5n 0:5ð Þn, n � 0 ð2:34Þ
To find the values for the constants in (2.34), use the initial conditions:

y �1½ � ¼ 1 ¼ a

0:5
þ b

0:3
þ 2:5 �1ð Þ

0:5
ð2:35aÞ

y �2½ � ¼ 0 ¼ a

0:52
þ b

0:32
þ 2:5 �2ð Þ

0:52
ð2:35bÞ

The solution to (2.35a) and (2.35b) results in a ¼ 0 and b ¼ 1.8. Thus, the
solution to Eq. (2.30) is

y n½ � ¼ 1:8 0:3ð Þn þ 2:5n 0:5ð Þn, n � 0 ð2:36Þ
Figure 2.5 shows the response calculated using the difference equation (2.30) in

the top plot and the response obtained from the total solution in the bottom plot.
They seem to be identical.

Fig. 2.5 Stem plots showing the system response to the input in Example 2.8. Top plot: response
using the difference equation. Bottom plot: response obtained from the total solution
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Example 2.9 An LTI discrete-time system is described by the following difference
equation with initial conditions:

y n½ � � 1:5y n� 1½ � þ 0:5625y n� 2½ � ¼ x n½ �, y �1½ � ¼ 1, y �2½ � ¼ 0

Determine the total solution to the above difference equation if x[n] ¼ cos (0.2n)
u[n].

Solution Let the complementary solution be yC[n] ¼ αn. Then, with x[n] ¼ 0, the
difference equation becomes

αn � 1:5αn�1 þ 0:5625αn�2 ¼ 0: ð2:37aÞ
Or,

αn�2 α2 � 1:5αþ 0:5625
� � ¼ 0⟹α1 ¼ α2 ¼ 0:75 ð2:37bÞ

Since the two roots of the characteristic equation are the same, the two terms of
the complementary solution are αn and nαn and are linearly independent. Thus,

yC n½ � ¼ aαn þ bnαn ð2:38Þ
Next we assume the particular solution to be

yP n½ � ¼ A cos 0:2nþ φð Þu n½ � ¼ Re Ae j 0:2nþφð Þ
n o

u n½ � ð2:39Þ

Note that we have introduced a phase term in the argument of the cosine function
of the particular solution. An LTI system will respond to a sinusoidal input of a
certain frequency with the same sinusoid but with different amplitude and phase. In
order to evaluate the constants of the particular solution, we substitute (2.39) in the
given difference equation. Therefore, we have

Re Ae j 0:2nþφð Þ � 1:5Ae j 0:2nþφ�0:2ð Þ þ 0:5625Ae j 0:2nþφ�0:4ð Þ
n o
¼ Re e j0:2n

� � ð2:40Þ
Rearranging (2.40), we get

A cos φð Þ � 1:5 cos φ� 0:2ð Þ þ 0:5625 cos φ� 0:4ð Þ½ � cos 0:2nð Þ
� A sin φð Þ � 1:5 sin φ� 0:2ð Þ þ 0:5625 sin φ� 0:4ð Þ½ � sin 0:2nð Þ
¼ cos 0:2nð Þ ð2:41Þ

From (2.41), we obtain the following two equations:

A cos φð Þ � 1:5 cos φ� 0:2ð Þ þ 0:5625 cos φ� 0:4ð Þ½ � ¼ 1 ð2:42aÞ

A sin φð Þ � 1:5 sin φ� 0:2ð Þ þ 0:5625 sin φ� 0:4ð Þ½ � ¼ 0 ð2:42bÞ
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Solving the Eqs. (2.42a) and (2.42b) for A and φ, we get A ¼ 10.8225 and
φ ¼ � 1.024592 rad, respectively. The total solution is, therefore,

y n½ � ¼ a 0:75ð Þn þ bn 0:75ð Þn þ 10:8225 cos 0:2n� 1:024592rð Þ ð2:43Þ
Using the given initial conditions in the above equation and solving the resulting

two equations, we find the system response to be

y n½ � ¼ �4:8955 0:75ð Þn � 2:8912� n 0:75ð Þn
þ 10:8225 cos 0:2n� 1:024592ð Þ, n� 0 ð2:44Þ

The responses obtained by recursively solving the difference equation and from
the total solution to the difference equation are plotted as stem plots and are shown in
Fig. 2.6. They seem to agree.

Convolution of Finite-Length Sequences Consider the two finite-length
sequences {x[n]}, 0 � n � N � 1 and {h[n]}, 0 � n � M � 1. Since the two
sequences are of finite length, the convolution of these two sequences will result in a
sequence that is also of finite length. In fact, the length of the convolution of the
sequences of lengths M and N isM + N� 1. We can demonstrate this by an example.
In Fig. 2.7 top plot is shown the two sequences to be convolved. For the sake of
simplicity, the sequences are shown in solid lines though they are discrete. The
bottom plot of Fig. 2.7 shows {x[k]} as well as the flipped sequences {h[�k]},

Fig. 2.6 Response of the LTI system of Example 2.9 plotted as stem plots
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{h[M � k]}, and {h[M + N � 1 � k}. From the figure we observe that the
convolution is zero for n < 0 and n > M + N � 1. Hence, the length of the
convolution of two sequences of length M and N is M + N � 1.

Figure 2.8 shows the convolution of a length-9 triangular sequence and a length-
11 unit amplitude pulse sequence resulting in a length- 11 + 9–1 ¼ 19 sequence.

Fig. 2.7 Graphical
illustration of the
convolution of two finite-
length sequences. Top plot:
length M and N sequences.
Bottom plot: flipped and
shifted sequence for shifts
0, M, and M + N � 1,
respectively
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Fig. 2.8 Convolution of a length-9 triangular sequence and length-11 unit amplitude pulse
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2.6 Sampling a Continuous-Time Signal

So far we have assumed explicitly the availability of discrete-time signals without
reference to their origin. However, many discrete-time signals originate from their
continuous-time counterparts. It is, therefore, necessary to understand how discrete-
time signals are obtained from continuous-time signals and the implications thereof.
It must be pointed out that the processed discrete-time signals must be converted
back to their continuous-time versions. For example, one has to understand how
many samples per second are necessary so that the discrete-time signal can be
converted back to its continuous-time version without any impairment. Too many
samples per second mean that the digital signal processor has to carry out a lot of
arithmetic operations per second. This may impose undue constraints on the proces-
sor speed. On the other hand, fewer samples per second may cause serious distor-
tions, which cannot be tolerated. Thus, one must determine the correct number of
samples per second required for distortionless recovery of the continuous-time signal
from the discrete-time signal. This can be achieved only by mathematical reasoning.
In the following we will consider the process of sampling a continuous-time signal to
obtain the discrete-time version and its implications. We will further ascertain the
correct sampling interval for a given continuous-time signal.

Ideal Sampling A discrete-time signal is obtained from a continuous-time signal by
sampling the continuous-time signal precisely at regular or uniform intervals of time.
The sampled signal xs(t) can be expressed mathematically as

xs tð Þ ¼ x tð Þjt¼nTs
, n2Z ð2:45Þ

where Ts is the sampling interval. Figure 2.9 illustrates the ideal sampling process.
The continuous-time signal is shown in cyan color and the sampled signal in red
stems. At each sampling instant, the amplitude of the discrete-time signal corre-
sponds to that of the continuous-time signal. Since the interval between any two
samples is the same, the sampling is called uniform sampling. We also notice that the
width of each sample is zero. Therefore, this type of sampling is called ideal
sampling or impulse sampling. In practice, there is no such thing as ideal sampling.
Each sample has a finite width, though very small. This type of sampling is called
non-ideal sampling and has some implications, which we will consider later.

Our first task is to establish an upper limit on the sampling interval. In other words,
what is the largest value of Ts and yet the continuous-time signal can be recovered from
the sampled signal without any distortion? In order to answer this question, we must
resort to the frequency domain representation of the signals under consideration. To this
end we can rewrite Eq. (2.45) in terms of Dirac delta functions as

xs tð Þ ¼
X1
n¼�1

x tð Þδ t � nTsð Þ ð2:46Þ
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Note that the unit impulse is zero except at time instants t¼ nTs, at which instants
its strength equals the sample value of the continuous-time signal. We can now
express the Fourier transform of the sampled signal in terms of the Fourier transform
of the continuous-time signal. Since the Fourier transform is the frequency domain
representation of a signal, we will be able to determine the upper limit on the
sampling interval. To this end, let X( f ) be the Fourier transform of the
continuous-time signal x(t). Then the Fourier transform of the sampled signal can
be written as

Xs fð Þ ¼ F xs tð Þf g ¼ F
X1

n¼�1
x tð Þδ t � nTsð Þ

( )
ð2:47Þ

Using the linearity and convolution in the frequency domain properties of the
Fourier transform, we can express (2.47) as

Xs fð Þ ¼
X1
n¼�1

F x tð Þδ t � nTsð Þf g ¼
X1
�1

X fð Þ � δ f � nFsð Þ ð2:48Þ

In Eq. (2.48), the sampling frequency isFs ¼ 1
Ts
. The convolution of X( f ) with an

impulse δ( f� nFs) results in shifting the spectrum of X( f ) to nFs, that is, X( f� nFs).
Therefore, we have

Xs fð Þ ¼
X1
n¼�1

X f � nFsð Þ ð2:49Þ
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Fig. 2.9 Illustration of ideal sampling
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Equation (2.49) implies that the Fourier transform of the sampled signal is an
infinite sum of the Fourier transform of the continuous-time signal, replicated at
integer multiples of the sampling frequency. By knowing the spectrum of the
continuous-time signal, we can determine the upper limit for the sampling interval
or equivalently and the lower limit on the sampling frequency. Since the continuous-
time signal must be recovered from its samples, we must find a way to recover or
reconstruct the continuous-time signal from its samples.

Sampling or Nyquist Theorem A continuous-time signal that is band limited to
|f| � fc can be recovered or reconstructed exactly from its samples taken
uniformly at a rate Fs � 2fc. The sampling frequency Fs ¼ 2fc is called the Nyquist
frequency. In terms of the sampling interval, the Nyquist theorem implies 1

Ts
� 2f c or

Ts � 1
2f c
. That is, that the sampling interval must be less than or equal to the inverse

of twice the maximum frequency of the continuous-time signal to be sampled.
From the statement of the sampling theorem, we notice that it pertains to

continuous-time signals with finite bandwidth, that is, signals that are band limited.
A continuous-time signal that is band limited to |f| � fc is the same thing as saying
that its Fourier transform satisfies the condition

H fð Þj j ¼ K, fj j � f c
0, otherwise

�
ð2:50Þ

where K is a constant. This type of magnitude response is known as the brick wall
type of response and is an ideal case. But no physically realizable system can have
such a brick wall type of frequency spectrum. So in practice, to limit the frequency
spectrum to a specified frequency range, one must prefilter the continuous-time
signal and then sample it.

Reconstruction of an Ideally Sampled Signal The continuous-time signal can be
recovered or reconstructed exactly from its samples by passing the samples through
an ideal lowpass filter having a cutoff frequency equal to half the sampling fre-
quency. In order to prove the statement, let h(t) be the impulse response of the ideal
lowpass filter. Then its response y(t) to the sampled signal xs(t) is the convolution of
the sampled signal and the impulse response:

y tð Þ ¼ xs tð Þ � h tð Þ ð2:51Þ
Using (2.46) in (2.51), we have

y tð Þ ¼
X1
n¼�1

x nTsð Þδ t � nTsð Þ
( )

� h tð Þ

¼
X1
n¼�1

x nTsð Þ δ t � nTsð Þ � h tð Þf g ð2:52Þ
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Since the convolution of δ(t� nTs) and h(t) equals h(t� nTs), Eq. (2.52) results in

y tð Þ ¼
X1
n¼�1

x nTsð Þh t � nTsð Þ ð2:53Þ

The impulse response of the ideal lowpassfilter band limited to fc can be shown to be

h tð Þ ¼ 2f c
sin 2πf ctð Þ
2πf ct

¼ 2f csinc 2f ctð Þ ð2:54Þ

The sinc function is defined as

sinc xð Þ ¼ sin πxð Þ
πx

ð2:55Þ

Using Eqs. (2.54) in (2.53), the reconstructed signal is found to be

y tð Þ ¼ 2f c
X1

n¼�1
x nTsð Þ sin 2πf c t � nTsð Þð Þ

2πf c t � nTsð Þ ð2:56Þ

The sinc function is unity at the sampling instants with an amplitude equal to the
sample values of the signal. At other instants the signal amplitude is interpolated by
the filter to reconstruct the continuous-time signal exactly. Thus, a continuous-time
signal is recovered or reconstructed from its samples by filtering the sampled signal
through an ideal lowpass filter whose cutoff frequency equals half the Nyquist
frequency at most.

Aliasing Distortion What if the sampling frequency does not meet the Nyquist
criterion? What happens when the sampling frequency is less than twice the max-
imum frequency of the continuous-time signal to be sampled? When a continuous-
time signal is under-sampled, meaning the sampling frequency is below the Nyquist
frequency, a distortion known as aliasing distortion occurs, because of which the
continuous-time signal cannot be recovered from its samples. The frequencies above
the folding frequency are aliased as lower frequencies. The folding frequency
corresponds to half the sampling frequency. For instance, a frequency f 1 þ Fs

2 present

in the continuous-time signal will appear as a frequency Fs
2 � f 1, which is lower than

the frequency f1. Thus, a frequency higher than the folding frequency if present will
alias itself as a lower frequency. This is the aliasing distortion. This is depicted in
Fig. 2.10. In Fig. 2.10a the spectrum of a band-limited continuous-time signal with a
maximum frequency fc is shown. Figure 2.10b shows the spectrum of the sampled
signal, where the sampling frequency is much higher than 2fc. There is no overlap
between the replicas of the spectra. Therefore, the continuous-time signal can be
recovered by filtering the sampled signal by an ideal lowpass filter with a cutoff
frequency fc. Figure 2.10c depicts the case where the sampling frequency is less than
twice the maximum frequency of the continuous-time signal. Because of the overlap
of adjacent spectra, the spectrum in the frequency range �fc � f � fc is distorted and
is the cause for the aliasing distortion.
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Fig. 2.10 An illustration of aliasing distortion: (a) spectrum of a continuous-time signal. (b)
Oversampling case. (c) Undersampling case
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As a second example, let us consider a continuous-time sinusoid of frequency
5 Hz. It is sampled at a rate of 20 per second. A plot of the sampled signal is shown in
the top plot in Fig. 2.11a as a line plot for easier visualization. In the bottom plot of
Fig. 2.11a a sinusoid at a frequency of 15 Hz sampled at 20 Hz is shown. The two
plots look identical even though the two frequencies are different. The sinusoid at
15 Hz has a frequency higher than half of the sampling frequency of 20 Hz. It aliases
itself as 15–10 ¼ 5 Hz signal component. This aliasing frequency is the same as that
of the sinusoid at 5 Hz. Hence, the two sampled signals look alike. This is further
ascertained by the frequency spectra, which are shown in Fig. 2.11b as top and
bottom plots, respectively. Similarly, a third example of undersampling and
oversampling of a continuous-time signal is illustrated in Fig. 2.12 and is self-
explanatory.

2.7 Conversion of Continuous-Time Signals to Digital
Signals

So far in our discussion we have treated discrete-time signals as having a continuum
of amplitudes, meaning that the amplitudes of the discrete-time signals have infinite
accuracy in amplitude. As a result all our computations such as convolution sum,
etc., were performed with infinite accuracy. This ideal scenario changes when we
deal with processing discrete-time signals with computers – hardware or software.
There are two issues involved here. First, we have to convert the discrete-time
signals into digital signals, which are approximations to signals with continuum of
amplitudes. This is known as analog-to-digital (A/D) conversion. The degree of
approximation depends on the word length available for digital representation of the
amplitudes. The larger the word length, the better the approximation. The second
issue deals with the accuracy of arithmetic operations. Errors due to limited accuracy
of arithmetic operations manifest as noise. This is also the case with A/D conversion.
In this chapter we will deal with A/D conversion and resulting errors. In a later
chapter we will analyze the effect of arithmetic errors due to finite precision
arithmetic operations.

The process of converting an analog signal to digital signal is depicted in Fig. 2.13.
The input continuous-time signal is first sampled, and the sampled value is held until it is
converted to a digital number. The sample and hold (S/H) functional block samples the
input signal at a predetermined uniform rate and holds the sample value until it is
converted to a digital representation. Once the conversion is completed, the S/H acquires
the next sample and so on. The process of S/H is illustrated in Fig. 2.14, where an analog
signal is sampled and held constant until the next sample arrives. The second block,
namely, the quantizer block, represents the sampled value to the nearest allowed level.
This process is called quantization. There are two types of quantizers, namely, scalar
and vector quantizers. A scalar quantizer accepts a single analog sample and outputs a
quantized value that approximates the input analog sample. A vector quantizer, on the
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Fig. 2.11 Second example of aliasing distortion: (a) top plot, sampled 5 Hz sinusoid at a sampling
frequency of 20 Hz; bottom plot, sampled 15 Hz sinusoid at a sampling frequency of 20 Hz. (b) Top
plot, spectrum of 5 Hz signal at 20 Hz sampling rate; bottom plot, spectrum of 15 Hz signal sampled
at 20 Hz rate. The 15 Hz signal appears as a 5 Hz signal
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Fig. 2.12 A third example of aliasing distortion: (a) top plot, 3800 Hz signal at a sampling rate of
8000 Hz; bottom plot, same 3800 Hz signal sampled at a rate of 4000 Hz. (b) Top plot, spectrum of
the signal at 8000 Hz sampling rate; bottom plot, spectrum of the same signal at 4000 Hz sampling
rate. The 3800 Hz appears as 200 Hz signal
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other hand, accepts a vector of analog samples and outputs a vector of discrete samples
that is close to the input vector. We will only deal with scalar quantizers here.

The design of a scalar quantizer amounts to dividing the input range of the analog
signal amplitude into L + 1 levels and determining the corresponding L reconstruc-
tion or output levels. The relationship between the number of reconstruction levels L
and the number of bits B of the quantizer is L ¼ 2B. The A/D converter has a fixed
voltage or current amplitude limits for its input. For instance, it can have an input
voltage limited to	1 V or 0 to 1 volt. If the number of binary digits (bits) allowed in
an A/D converter is B bits, then there are L ¼ 2B number of levels between the
minimum and maximum input amplitude range. The quantizer assigns the current
sample value a level that is closest to the analog sample value. Denote the L + 1 input
decision intervals by {Dj, 1 � j � L + 1} and the corresponding L output levels by
{Rk, 1� k� L}. The quantizer maps an input analog sample x to its nearest neighbor
and is formally expressed as

Q xð Þ ¼ bx ¼ Rk ð2:57Þ

x(t)

S/H Quantize Coder

x[n]
xq (t) xg [n]ˆ

Fig. 2.13 A practical A/D converter model

6

4

2

0

-2

-4

-6
0 0.1 0.2 0.3 0.4 0.5 0.6

t

A
m

pl
itu

de

0.7

analog
S/H
sampled value

0.8 0.9 1

Fig. 2.14 Example of S/H function

2.7 Conversion of Continuous-Time Signals to Digital Signals 47



In general, the lower and upper boundaries of the input decision intervals are
defined by

D1 ¼ xmin&DLþ1 ¼ xmax ð2:58Þ
Let us assume that the output levels are chosen so that the following is satisfied.

R1 < R2 < R3� � �� � �RL ð2:59Þ
For a given input analog signal, the decision boundaries and the corresponding

output levels are chosen such that the mean square error (MSE) between the analog
and the quantized samples is a minimum. The MSE is expressed as

MSE ¼ E
�
x� bx�2n o

¼
Z DLþ1

D1

�
x� bx�2px xð Þdx ð2:60Þ

In the above equation, E denotes the statistical average or expectation and px(x)
the probability density function (pdf) of the input analog samples. Because the
quantized output value is constant equal to Rk over the interval [Dk,Dk + 1), (2.60)
can be rewritten as

MSE ¼
XL
m¼1

Z Dmþ1

Dm

x� Rmð Þ2px xð Þdx ð2:61Þ

From (2.61), we notice that the MSE is a function of both the decision boundaries
and the output levels. Therefore, the minimum value of the MSE in (2.61) can be
found by differentiating the MSE with respect to both the decision boundaries and
the output levels and setting them to zero and then solving the two equations. Thus,

∂MSE

∂Di
¼ Di � Ri�1ð Þ2px Dið Þ � Di � Rið Þ2px Dið Þ ¼ 0 ð2:62aÞ

∂MSE

∂Ri
¼ 2

Z Diþ1

Di

x� Rið Þpx xð Þdx ¼ 0, 1 � i � L ð2:62bÞ

From (2.62a), we have

Di � Ri�1ð Þ2 ¼ Di � Rið Þ2 ð2:63Þ
Due to the fact that Ri > Ri � 1, we determine the decision boundaries after

simplifying (2.63) as

Di ¼ Ri þ Ri�1

2
ð2:64Þ

The output levels are obtained from (2.62b) as
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Ri ¼
RDiþ1

Di
xpx xð ÞdxRDiþ1

Di
px xð Þdx

ð2:65Þ

The implications of the optimal quantizer are that the decision boundaries lie at
the midpoints of the corresponding output levels and the optimal output levels are
the centroids of the decision intervals. Since these two quantities are interdependent,
there is no closed-form solution to the two Eqs. (2.64) and (2.65). The solution is
obtained by iteration. Also, note that the design of an optimal quantizer requires a
priori knowledge of the pdf of the input analog samples. In other words, the optimal
scalar quantizer is a function of the pdf of the input analog samples. This type of
quantizer is known as the Lloyd-Max quantizer. The decision intervals and the
corresponding output levels of a Lloyd-Max quantizer are nonuniform. Moreover,
the Lloyd-Max quantizer is dependent on the input signal. Therefore, each new
signal must have its own quantizer for optimal performance. However, a closed-form
solution exists for a uniform quantizer, which we will describe next. The design of a
uniform quantizer is simple and is the reason for its widespread use in image and
video compression standards.

Uniform Quantizer If the pdf of the input analog samples is uniform, there exists a
closed-form solution to the decision boundaries and the output levels for the Lloyd-
Max quantizer. Under this condition, we will find the decision intervals and the
output levels will all be equal. Hence the quantizer is known as the uniform
quantizer. Obviously, a uniform scalar quantizer is optimum for analog samples
that have uniform pdf. A uniform pdf implies

px xð Þ ¼ 1
xmax � xmin

¼ 1
DLþ1 � D1

ð2:66Þ

Substituting (2.66) for the pdf in (2.65), the output levels of a scalar uniform
quantizer are found to be

Ri ¼ Diþ1 þ Di

2
ð2:67Þ

Using (2.67) in (2.64), the following relationship is found

Diþ1 � Di ¼ Di � Di�1 ¼ Δ, 2 � i � L ð2:68Þ
From the above equation, it is clear that the interval between two consecutive

decision boundaries is the same and equals the quantization step sizeΔ. For instance,
if the input amplitude range is between xmin and xmax, then for a B-bit quantizer, the
step size is Δ ¼ xmax�xmin

2B
. The value assigned by the quantizer to an analog sample

then lies half way between two consecutive levels. Therefore, the error or difference
between a sample and its quantized value ranges between	Δ

2. Larger the value of B
smaller is the quantization error. Finally, the coder block assigns a B-bit binary code
to the quantized level. Thus, a sample is converted to a digital number.
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Example 2.10 This example shows how to design a B-bit uniform quantizer based
on an input sinusoid of specified amplitude, frequency, and sampling frequency. It
then quantizes the sinusoid and calculates the resulting SNR in dB. The MATLAB
M-file for this example is named Example2_10.m. The number of bits of quantiza-
tion used in this example is 4. The amplitude range is 	1. The resulting SNR is
found to be 23.07 dB. The actual input and the corresponding quantized values are
shown in the top plot in Fig. 2.15. The quantization error sequence is shown in the
bottom plot of Fig. 2.15. The input-output characteristic of the 4-bit uniform
quantizer for the sinusoid in this example is shown in Fig. 2.16. As required, there
are 16 steps between the amplitude range of 	1.

Coding the Quantized Values There are two ways to code the assigned level into a
binary number. One way is to use what is called the sign-magnitude representation.
In this method the magnitude of the sample value is represented by a b-bit binary
number and a sign bit as the most significant bit (MSB) to indicate its sign. Thus,
there are B ¼ b + 1 bits in this digital representation. In the second method called
two’s complement, positive fractions are represented as in the sign-magnitude form.
A negative fraction is represented in two’s complement form as follows: first the
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Fig. 2.15 Actual and quantized values of the sinusoid in Example 2.10 using a 4-bit uniform
quantizer: top, input sinusoid in black stems and the quantized samples in red dashed stems; bottom,
corresponding error sequence
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magnitude is represented in binary number, the bits are complemented, and then a
1 is added to the least significant bit (LSB) to get the two’s complement represen-
tation. For instance, let us represent the decimal fraction �0.875 in the two
abovementioned formats. In sign-magnitude format, we first represent the magnitude
of the decimal fraction in binary fraction, which is 0.87510¼ 0.11102. Then a “1” bit
is inserted in the MSB position to get the sign-magnitude representation:
�0.87510 ¼ 1.11102. The “1” in the MSB corresponds to a negative value, and a
“0” in the MSB corresponds to a positive value. The same decimal value in two’s
complement form is obtained by complementing each bit of the magnitude and then
adding a “1” to the LSB. So, the complement of 0.87510 is 1.00012. Adding a “1” to
the LSB gives the number 1.00012 + 0.00012 ¼ 1.00102. Thus, the two’s comple-
ment representation of�0.87510 is 1.00102. As an example of a 3-bit A/D converter,
Fig. 2.17 shows the input-output characteristics using two’s complement represen-
tation. As can be seen from the figure, all input values greater than or equal to 7Δ

2 are
assigned the same value of 3Δ. Similarly, all input values less than or equal to � 9Δ

2
are assigned the same value �4Δ.

2.8 Performance of A/D Converters

A/D converters come with different bit widths. Some are 8-bit converters, some are
12-bit converters, and others are 14- or 16-bit converters. We mentioned earlier that
the output of an A/D converter is an approximation to the input samples. The degree
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Fig. 2.16 Input-output characteristic of the 4-bit uniform quantizer of Example 2.10
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of approximation is a function of the bit width of the A/D converter. Because of the
approximation carried out by an A/D converter, errors occur between the analog
samples and the digital samples. This type of error is random and so is considered as
noise. That is, there is no definite analytical expression to describe the errors sample
by sample. It is, therefore, convenient and proper to describe the error due to
quantization in terms of its averages. The most commonly used measure to describe
noise is the variance. In order to estimate the variance of the noise due to quantiza-
tion, one has to know its distribution. Here, by distribution we mean the probability
of occurrence of the amplitudes of the noise due to quantization. In practice it is
found that the quantization error is uniformly distributed between the range �Δ

2;
Δ
2

� 	
.

That is to say that all amplitudes in this interval have the same probability of
occurrence. Mathematically speaking, the uniform distribution is expressed as

p eð Þ ¼ 1
Δ
, � Δ

2
� e � Δ

2
ð2:69Þ

with e corresponding to the possible amplitude of the quantization error. The mean
or average value of the quantization error μe is obtained from

μe ¼
Z Δ

2

�Δ
2

ep eð Þde ¼ 1
Δ

Z Δ
2

�Δ
2

ede ¼ 1
2Δ

e2
��Δ2
�Δ

2
¼ 0 ð2:70Þ

So, the mean value of the quantization error is zero. The variance σ2e of the
quantization error is obtained from

σ2e ¼
Z Δ

2

�Δ
2

e� μeð Þ2p eð Þde ¼ 1
Δ

Z
�
Δ2

Δ
2

e2de ¼ 1
3Δ

e3
��Δ2
�Δ

2
¼ Δ2

12
ð2:71Þ
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From Eq. (2.71), we notice that the variance of the noise due to quantization is
proportional to the square of the step size. In terms of the word length B of the A/D
converter, Eq. (2.71) amounts to

σ2e ¼
xmax � xminð Þ22�2B

12
ð2:72Þ

The quantization noise variance of the A/D converter decreases exponentially
with increasing bit width. The quantization noise variance alone is not enough to
judge its effect on the processed signal. It depends on the power or variance of the
analog signal being processed digitally. In other words, the effect of the noise due to
quantization depends on its variance relative to the signal variance. This is defined
by the signal-to-noise ratio (SNR) and is usually expressed in decibel or dB for short.
If the amplitude of the analog signal is assumed to be uniformly distributed in the
range {xmin, xmax}, then its variance is found to be

σ2x ¼
xmax � xminð Þ2

12
ð2:73Þ

Then the SNR in dB of the A/D converter with B-bit bit width is defined as

SNR ¼ 10log10
σ2x
σ2e


 �
¼ 10log10

xmax�xminð Þ2
12

xmax�xminð Þ2
12 2�2B

 !

 6:02B, dB ð2:74Þ

From Eq. (2.74), we observe that the SNR in dB increases linearly with B. If B
is increased by 1 bit, then the SNR increases by approximately 6 dB. That is to
say that each additional bit in the A/D converter yields an improvement of about
6 dB in the resulting SNR.

MATLAB Examples We can simulate A/D converters using the MATLAB
Simulink system. Before building a hardware system, it is wise to first simulate it
to assess its performance. If the system does not meet the target performance, one
can fine-tune the design parameters and rerun the simulation to verify its perfor-
mance. Thus, simulation not only saves time and energy but also guarantees
performance. Simulink is a very useful tool in simulating algorithms and hardware
systems. We will first demonstrate the sample and hold operation, using Simulink.

S/H Example Using Simulink Figure 2.18 shows the block diagram simulating the
S/H function. It consists of a continuous-time signal source, a pulse generator as the
sampler, S/H block, and a time scope to display the signals. In order to draw the
block diagram, first start the Simulink by clicking the Simulink Library on the
toolbar menu on the MATLAB window or type simulink in the workspace. A
Simulink Library Browser appears. Click the arrow pointing downward next to the
icon showing simulink diagram on the toolbar, and select New Model. A new
window appears. Select the DSP System Toolbox and then Sources. A list of sources
appears on the right side as shown in Fig. 2.19. Let us choose the Sine Wave source
and drag it to new untitled window. Double-click the Sine Wave block, and specify
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Fig. 2.18 Block diagram of sample and hold function using Simulink

Fig. 2.19 Simulink Library Browser



the parameters as shown in Fig. 2.20. Next, under Simulink, choose Sources and then
Pulse Generator and drag it to the untitled window. Double-click the Pulse Gener-
ator and fill in the blanks as shown in Fig. 2.21. Next, choose DSP System Toolbox
and then Signal Operations. From the list of blocks that appear on the right side,
choose the Sample and Hold block, and drag it to the untitled window. Double-click
the block, and fill in the blanks as shown in Fig. 2.22. Finally, choose Sinks under
DSP System Toolbox. From the list of sinks, choose Time Scope, and drag it to the
untitled window. Double-click the Time Scope. A time scope appears as shown in
Fig. 2.23. Figure 2.23 also shows the three time displays. This window was captured
after simulation. To display three signals in three rows, click View, and choose
Layout from the time scope window. By choosing Configuration Properties under
View in the toolbar, we can label the three displays. Now we have all the sub-blocks
and the corresponding parameters. We need to connect them in the order shown in
Fig. 2.18. To connect the output of one block to the input of a second block, first
click the output node, and then move the mouse to the input node of the second block
while pressing the left mouse button. Thus, we have the complete system. Next, save
the diagram with a name. To start the simulation, click the green button with an
arrow pointing to the right on the toolbar. If everything is syntactically correct,
MATLAB performs the simulation, and the various signals are displayed on the time
scope, as indicated in Fig. 2.23. In this example the simulation time is chosen to be
1 s. One can change the simulation time to suit the needs. In this example the input
continuous-time signal is a sine wave with a frequency of 5 Hz and amplitude unity.
Since the simulation time is chosen to be 1 s, there are five cycles of the sine wave, as
displayed on the topmost display. The middle display displays the pulse train of the
pulse generator. The pulse period is 0.05 s. Therefore, there are 20 pulses in 1 s, as
can be seen in the display. The bottommost display is the sample and hold signal.

Fig. 2.20 Block parameters
for sine wave source
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Fig. 2.21 Block parameters for pulse generator source

Fig. 2.22 Block parameters
for sample and hold function
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The analog signal is sampled at the rising edge of the pulse and held for about 45 ms
duration. The pulse period is 50 ms, and the pulse width is 5 ms. So the S/H block
holds the sample value for approximately 45 ms. Since there are 20 pulses in 1 s,
there are 20 samples in that duration, as seen in Fig. 2.23.

Simulation of A/D Converter Using Simulink An A/D converter as shown in
Fig. 2.13 first samples the input continuous-time signal and holds until the
conversion is completed. We have simulated this sample and hold process as
described above. Next, we will expand on this and include a quantizer to
complete the A/D conversion process. Figure 2.24 shows the block diagram of
an A/D converter using Simulink. As can be seen from the figure, we have
included two input signal sources: a sine wave signal generator and a random
signal generator. The sine wave function generates a continuous-time signal with
an amplitude unity and a frequency of 5 Hz as shown in Fig. 2.25. The random
signal generator produces a uniformly distributed random signal with amplitudes
between �1 and +1 and is also a continuous function of time as seen in Fig. 2.26,
which lists the parameters of the random signal generator. A manual switch is
used to switch the input source between sine wave and random signal. Before
starting the simulation, we have to double-click the switch to change the input

Fig. 2.23 Time scope
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Fig. 2.24 Block diagram of an A/D converter using Simulink

Fig. 2.25 Parameters of the
sine wave generator of
Fig. 2.24
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source. The S/H block has the same parameters as that used in the S/H example.
The quantizer has 6 bits of quantization, and its parameters are shown in
Fig. 2.27. Three outputs are generated in the simulation, namely, the output of
S/H, the output of the quantizer, and the difference between these two signals.
They are stored as vectors in the workspace with names as indicated in Fig. 2.24.
The time scope displays the chosen input signal on the top plot, the pulse
generator output on the middle plot, and the quantization error on the bottom
plot, as shown in Fig. 2.28a. In this figure the input source is the sine wave. In
Fig. 2.28b the random input signal is shown. With 1 min of simulation, the SNR
due to quantization is found to be 36.36 dB for the sine wave and 36.11 dB for the
random signal. These numbers agree with the SNRs obtained from analysis when
the A/D bit width is 6 bits.

2.9 Summary

In this chapter we started with the mathematical description of discrete-time signals
in general and some of the useful discrete-time signals in particular. Next we
described linear time-invariant (LTI) discrete-time systems. Specifically, we

Fig. 2.26 Parameters of the
random signal generator of
Fig. 2.24
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described how an LTI system is characterized in terms of its impulse response and
how its response to any given input discrete-time signal is computed via convolution
sum. We then established the condition that the impulse response must satisfy for the
LTI system to be stable. Next we introduced an alternative method of describing an
LTI discrete-time system, namely, the linear difference equation with constant
coefficients. We showed how the response of an LTI discrete-time system to a
specified input sequence could be obtained in closed-form solution. Several exam-
ples were included to nail the concept. Since discrete-time signals are mostly
obtained from continuous-time or analog signals, we stated the sampling theorem
also called Nyquist’s theorem and showed how the analog signals can be recovered
or reconstructed from their discrete-time counterparts. If the Nyquist sampling
criterion is not satisfied, aliasing distortion will occur, and it cannot be removed.
We exemplified this notion using a few examples. The sampling theorem that we
talked about pertains to lowpass signals. Often, bandpass signals are encountered,
especially in the field of communications. These signals are centered at a very high
frequency with a narrow bandwidth. The sampling rate of these bandpass signals
will be very high if Nyquist’s condition is used. Instead, one can sample a bandpass
signal at a much lower rate without incurring aliasing distortion. We verified this
statement using an example. The next logical thing to do is to describe the process of
converting an analog signal to digital signal. We described the A/D converter
function by function with plots to illustrate the results. Since A/D conversion
involves the approximation of analog samples using fixed number bits of represen-
tation, errors occur between the analog and digital values. These errors propagate
through the discrete-time system and manifest as noise in the output. We, therefore,
derived mathematical formula to measure the performance of an A/D converter. This
formula expresses the signal-to-noise ratio of an A/D converter in terms of the
number of bits used in the A/D converter. Finally we simulated the S/H operation

Fig. 2.27 Parameters of the uniform quantizer of Fig. 2.24
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Fig. 2.28 Time scope display of signals used in Fig. 2.24: (a) sine wave, (b) random signal
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as well as the complete A/D conversion using MATLAB’s Simulink system. In the
next chapter, we will deal with Z-transform and its use in describing LTI discrete-
time systems. We will show what role the Z-transform plays in the analysis and
design of discrete-time systems.

2.10 Problems

1. Give a few good reasons why we always deal with linear systems even if the
actual systems are nonlinear.

2. Is the sequence, x[n] ¼ αnu[n], j α j ≺ 1 absolutely summable?
3. Is the sequence x[n] ¼ n2αnu[n], j α j ≺ 1 absolutely summable?
4. Consider the discrete-time system described by y[n] ¼ αx2[n] with α a real

constant. Will you use this system to amplify a sinusoidal signal? If not, why?
Explain.

5. Find the fundamental period of the sequence x[n] ¼ cos(0.8nπ + 0.25π).
6. What is the period of the sequence x n½ � ¼ sin 2πx100

1000 n
� 	þ sin 2πx150

1000 n
� 	

?
7. If x[n], y[n], and g[n] represent three finite-length sequences of lengths N, M,

and L, respectively, with the first sample of each sequence occurring at n ¼ 0,
what is the length of the sequence x[n] � y[n] � g[n]?

8. Evaluate the linear convolution of x[n] with itself, where x[n]¼ {1, �1, 0, 1, �1},
0 � n � 4.

9. Determine if the system described by y[n] ¼ α + x[n + 1] + x[n] + x[n � 1] + x
[n � 2] is (a) linear, (b) causal, (c) shift-invariant, and (d) stable.

10. Determine if the system described by y[n] ¼ x[n + 1] + x[n] + x[n � 1] + x
[n � 2] is causal.

11. Consider the two discrete-time LSI systems whose impulse responses are described

by h1 n½ � ¼ 1, 0 � n � N � 1
0, otherwise

�
and h2 n½ � ¼ 1, � N � 1ð Þ � n � 0

0, otherwise

�
. If a unit

step sequence is applied to both systems, what will be their responses?
12. Obtain the total solution for n � 0 of the discrete-time system described by y

[n]� 0.4y[n� 1]� 0.05y[n� 2]¼ 1.5 cos (10πn)u[n], with initial conditions y
[�1] ¼ 1, y[�2] ¼ 0.

13. Determine the impulse response of the system described in Problem 12 above.
14. Determine the rise time of the discrete-time system described in Problem 12.

You may use MATLAB to solve the problem.
15. Find the impulse response and step response of the discrete-time system

described by y[n] � 0.7y[n � 1] + 0.1y[n � 2] ¼ x[n] � 0.7x[n � 1].
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