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Preface

The field of digital signal processing is well matured and has found applications in
most commercial as well as household items. It started in the 1960s when computers
were used only in the academic institutions. Moreover, these computers were built
around vacuum tubes with limited memory and slow processing power. This situa-
tion was not conducive to rapid advancements in digital signal processing theory. As
the computer technology advanced due to the invention of microprocessors and
semiconductor memories, the field of digital signal processing also simultaneously
progressed. Today, digital signal processing is used in a myriad of fields such as
communications, medicine, forensics, imaging, and music, to name a few. It is,
therefore, necessary for an aspirant to learn the basics of digital signal processing so
as to be able to apply his or her knowledge in this field to career advancement.

There are many excellent textbooks on digital signal processing in the market.
This book, though, is meant to serve working professionals who are looking for
online courses to complete certificate programs in areas such as electrical engineer-
ing, systems engineering, communications, and embedded systems. Since these
professional engineers are time-constrained, it is important that the textbook they
are supposed to follow should be easy to understand, brief, and up to the point, and
should contain the necessary supplements as aids to understanding the materials.
With these factors in mind, this book is based on my online course in digital signal
processing at the University of California Extension Program, San Diego. This book
uses MATLAB tools to make understanding of the materials easier. In my experi-
ence in teaching this online course, I found that students come from different fields,
but mostly from digital communications – hardware and software. Therefore, I find it
appropriate to include applications of digital signal processing in digital
communications. The students are required to have a college-level math background
to fully understand the topics discussed in this book.

After a brief introduction to areas such as audio/speech processing, digital
communications, and digital image processing, Chap. 2 starts with the discussion
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on discrete-time signals and systems. It characterizes the various discrete-time
signals and systems in mathematical terms followed by examples to clarify the
subject matter. Chapter 2 also describes the process of converting continuous-time
signals to discrete-time sequences. The Z-transform is introduced in Chap. 3. Since
Z-transform is very useful in both analysis and design of discrete-time systems, its
properties are elaborated with several examples. Next the representation of discrete-
time signals and systems in the frequency domain is discussed in Chap. 4. Here, the
connection between the Z-transform and discrete-time Fourier transform is
explained. Several examples are worked out to make the subject matter clearer.
Since digital signal processing implies computational methods, Chapt. 5 introduces
the concept of discrete Fourier transform. It also deals with the relationship between
discrete-time Fourier transform and discrete Fourier transform. Again, MATLAB-
based examples are included.

Once the signals and systems are described in the time and frequency domains,
Chap. 6 then deals with the design of infinite impulse response (IIR) digital filters. It
treats the design of IIR digital filters based on analytical methods as well as on
computer-based techniques. In addition, real-life systems are simulated using
MATLAB/Simulink tool. Continuing further, Chap. 7 discusses the design of finite
impulse response (FIR) digital filters using both the analytical and computer-based
methods. Many examples are included to aid the students in understanding the
material better. It is not enough just to learn the design of IIR and FIR digital filters.
A professional engineer must know how to implement these filters in various real-
time applications. Therefore, Chap. 8 is included, which deals with the signal flow
graphs of digital filters. It describes both canonical and noncanonical structures to
implement IIR and FIR digital filters. Knowing how to draw the signal flow graphs
of digital filters makes one to implement them either in software or hardware. Even
though discrete Fourier transform (DFT) is introduced in Chap. 5, it does not deal
with the efficient implementation of the DFTs. Chapter 9 describes efficient com-
putational methods to calculate the DFT of a sequence. It further deals with short-
time Fourier transform, zoom FFT, etc.

So far these chapters describe discrete-time signals and systems and various
design techniques. In Chap. 10, the application of digital signal processing methods
in wireless communications in general and digital communications in particular is
discussed. The chapter deals with reducing the intersymbol interference, pulse
shaping, detection of binary data using matched filters, channel equalization,
phase-locked loop, orthogonal frequency division multiplexing, and software-
defined radio, all using digital signal processing. Examples based on MATLAB
are presented along with SIMULINK-based digital communications system. Codes
for all MATLAB and SIMULINK.

I thank Tony Babaian for giving me the opportunity to teach the online courses
titled DSP I and DSP for wireless communications. My sincere thanks to Sveteslav
Maric for editing the book draft. I also thank the students for their feedback on the
contents of the application of DSP in wireless communications. I am indebted to

vi Preface



Mathworks for their continued support in providing MATLAB license, which
enabled me to develop this and my other books. My thanks go to Springer Publishing
Company and their staff for publishing my book. I am extremely grateful to my wife
Vasú, for suggesting to write this book. Without her kind and gentle encouragement,
I would not have been able to even think of writing this book, let alone completing it.

San Diego, CA, USA K.S. Thyagarajan
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Chapter 1
Introduction

The field of digital signal processing is well matured and has found applications in
most commercial as well as household items. It started in the 1960s when computers
were used only in the academic institutions. Moreover, these computers were built
around vacuum tubes with limited memory and slow processing power. This situa-
tion was not conducive to rapid advancements in digital signal processing theory. As
the computer technology advanced due to the invention of microprocessors and
semiconductor memories, the field of digital signal processing also simultaneously
progressed. Today, digital signal processing is used in a myriad of fields such as
communications, medicine, forensic, imaging, and music to name a few. It is,
therefore, necessary for an aspirant to learn the basics of digital signal processing
so as to be able to apply his or her knowledge in this field to career advancement.

1.1 What Is Digital Signal Processing

A signal can be considered, for example, as a voltage or current that varies as a
function of time. A digital signal, on the other hand, can be any sequence of numbers
that can be stored in a computer memory or a piece of hardware. Or, it may be
acquired in real time from a signal source. If this sequence of numbers is related or
meaningful, then, it is a useful signal or just signal. Figure 1.1 shows a signal
sequence. If the sequence of numbers is random, it can be considered as noise. In
Fig. 1.2 a random sequence is shown. Therefore, digital signal processing refers to
any operation performed on the digital signal. This processing may be carried out in
real time or non-real time depending on the application. The type of digital signal
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processing depends on the particular application in hand. Filtering is a typical signal
processing operation in which unwanted components or features can be removed or
filtered out from an input digital signal. Consider an example of a signal, which
consists of components of two sinusoidal frequencies at 1500 Hz and 4000 Hz,
respectively, as shown in Fig. 1.3a. We want to remove the unwanted component at
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4000 Hz. We then have to filter it out using a digital filter. The filtered signal will
then have only the 1500 Hz component present. Figure 1.3b shows this exactly.

In digital image processing, for example, one can increase or decrease the
sharpness by a suitable filtering operation. Figure 1.4a is an example of a black
and white image lacking in sharpness. The same image after sharpening using a

Fig. 1.3 Filtering as an example of digital signal processing. (a) Input signal consisting of 1500
and 4000 Hz sinusoidal components. (b) Filtered signal consisting of only the 1500 Hz sinusoid
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filtering operation is shown in Fig. 1.4b. One can notice the image details more
clearly in Fig. 1.4b.

Another digital signal processing operation may be to estimate the frequency
spectrum of a signal. This is useful in speech compression. An example of
frequency spectrum is shown in Fig. 1.5. The signal shown in Fig. 1.3a is used

Fig. 1.4 An example of digital image sharpening using an appropriate filtering operation. (a)
Original image lacking in sharpness, (b) sharpened image

Fig. 1.5 Frequency spectrum of the signal in Fig. 1.3a. There are two frequencies present, one at
1500 Hz and the other at 4000 Hz
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as input in this example. It consists of two sinusoids at frequencies of 1500 Hz
and 4000 Hz, respectively. The corresponding spectrum is shown in Fig. 1.5. As
can be seen, there are two frequencies present in the signal, one at 1500 Hz and
the other at 4000 Hz. Note that the spectrum is symmetric about 5000 Hz, which
is half the sampling frequency. We will discuss the sampling process in detail
later in the book. The amplitude of the 1500 Hz component relative to that of the
4000 Hz component is 0.4 as shown in the figure. As mentioned, there are
numerous operations to choose from in processing a digital signal. It all depends
on a particular application at hand.

1.2 A Few Applications of Digital Signal Processing

As mentioned above, there are numerous areas where digital signal processing is
used. We will describe here a few applications of digital signal processing that will
motivate the readers to go deeper into it.

1.2.1 Audio/Speech Processing

One of the most widely used aspects of speech in communications is speech
compression. As landline and wireless telephony are ubiquitous, voice bandwidth
is constrained to a minimum of 4 kHz to conserve bandwidth or, equivalently, to
accommodate more subscribers. A voice with this bandwidth is quite intelligible and
discernible. One of the voice compression methods uses what is known as linear
prediction. Since there is a high correlation from sample to sample in speech signals,
it is more efficient to store or transmit the difference between a sample and its
predicted value rather than storing or transmitting the actual sample values. The
predicted value of a current sample is obtained as a linear combination of the
previously predicted samples. This, therefore, forms a feedback loop and can be
considered a digital filtering operation.

In another form of speech compression, a bank of filters is used to separate the
speech signal into different frequency bands or subbands and then coding each
subband with a different number of bits of quantization based on the importance of
each subband. This is known as sub-band coding. Of course, sub-band coding uses
digital signal processing. One form of an efficient speech compression system
extracts features of a speech signal first and then encodes the extracted features for
storage or transmission. This process uses digital signal processing. At the receiving
side, these features are used to synthesize speech, which again uses heavily digital
signal processing. In music too various digital signal processing methods are used to
produce sound effects. These are just a few cases where digital signal processing is
involved in audio/speech signals.

1.2 A Few Applications of Digital Signal Processing 5



1.2.2 Digital Communications

In digital communications, a signal such as voice or music to be transmitted is first
converted to PCM (pulse code modulation) signals, which can then be transmitted as
such or can be used to modulate a carrier signal. If no carrier modulation is used, the
binary signal transmission is called baseband transmission. In baseband
transmission, a sequence of binary data consisting of zeros and ones is transmitted
as a sequence of two waveforms. The binary 0 corresponds to the waveform s0(t),
0� t� Tb, and the binary 1 corresponds to the waveform s1(t), 0� t� Tb, where Tb
is the duration of each bit of data. During the transmission of the baseband signals
through a channel, the data is corrupted by electrical noise. An optimal baseband
receiver correlates the received signal with a replica of each waveform and decides
which binary symbol was transmitted, by comparing the outputs of the two corre-
lators. Instead of the correlator, one can also use what is known as matched filter to
recover the transmitted binary data. Both correlators and matched filters can be
realized as digital filtering operations.

Though the abovementioned receiver operation seems perfect, there is a problem
due to finite bandwidth of the transmission channel. As a result, the sequence of
transmitted binary waveforms can interfere with neighboring waveforms. This
interference is called the inter-symbol interference (ISI). One way of minimizing
the ISI is to design proper waveforms corresponding to the binary zero and one.
These waveforms can be sampled versions and stored in memory. Another ISI
mitigation method is to use linear equalizers, where the nonlinear group delay of
the channel is equalized or linearized using digital FIR filters. Similar digital signal
processing operations are used extensively in spread spectrum communications
systems.

1.2.3 Digital Image Processing

Digital images and video are used worldwide through the Internet. Modern cameras
are mostly digital cameras, while film-based cameras have all but disappeared.
Similarly, digital TV transmission has replaced analog TV. Therefore, digital signal
processing tools are an essential part of digital image and video. Digital signal
processing as applied to images is used for image enhancement, image restoration,
image compression, and image analysis/computer vision, to name a few.

Contrast Enhancement Captured images may suffer from poor lighting condi-
tions, low contrast, and noise. In order to correct these defects and render a cleaner
and more pleasing image, digital signal processing is a must. The effect of contrast
enhancement of an image is demonstrated in Fig. 1.6. The low-contrast image is
shown in Fig. 1.6a, b shows the same image after contrast enhancement. Clearly, one
can see the image details much better in the enhanced image.
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Image Restoration Image restoration refers to that process by which a blurred
image is restored to its original focused condition. Image blurring may be due to the
relative motion of camera and object or due to improper lens setting. Deblurring or
image restoration involves inverse filtering and is a digital signal processing
operation. An example of image restoration is depicted in Fig. 1.7. Figure 1.7a is
the blurred image due to camera movement, and the restored image is shown in
Fig. 1.7b.

Image Compression As the proverb “a picture is worth a thousand words” goes,
digital image and video carry a lot of binary data. It is almost impossible to store or
transmit these image and video data in raw format, especially when these are
bounced around the Internet nonstop 24/7. Similarly, high-definition video carries
an enormous amount of data and requires high compression for broadcasting. Image
and video compression involves digital signal processing methods. In Fig. 1.8a, the

Fig. 1.6 Image contrast enhancement. (a) Original image with low contrast. (b) Contrast-enhanced
image

Fig. 1.7 An example of image deblurring. (a) Original blurred image. (b) Restored image
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original uncompressed image is shown, and the corresponding compressed/
decompressed image is shown in Fig. 1.8b. The quality of the reconstructed image
or video depends on the amount and method of compression.

Image Analysis In order for a computer to recognize an object in a scene, it has to
first segment the image into object and background. Image segmentation involves
detecting object boundaries. An example of object boundary detection is illustrated
in Fig. 1.9. In Figure 1.9a, the original image is seen, and its detected boundaries are

Fig. 1.8 Image compression. (a) Original uncompressed black and white image with 8 bits/pixel.
(b) Compressed/decompressed image

Fig. 1.9 Image boundary detection. (a) An original color image. (b) Its detected boundaries
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shown in Fig. 1.9b. Once the object boundaries are detected, extracting certain
features and comparing them to those stored in a database identify the object inside
the detected boundary. All these operations involve some form of digital signal
processing.

1.2.4 Digital Signal/Image Processing in Medicine

Digital signal processing is an inseparable aid in medicine. A patient’s heart
health is determined from his/her electrocardiogram (ECG). It may be difficult to
completely assess the heart condition in terms of artery blockage or ventricular
volume and blood dynamics purely from a raw ECG. It has to be processed in
such a way so as to reveal hidden details that may otherwise not be visible to the
naked eye. Digital signal processing is the solution. Another example of the
application of digital signal processing in medicine is the ultrasound image
processing. Ultrasound images are noisy and preclude correct detection of fetal
defects. These images need to be properly preprocessed for further consideration.
Echocardiogram technique is another tool used in monitoring heart condition.
Similar to the ultrasound images, echocardiograms are also noisy and of low
resolution. One can enhance an echocardiogram for proper visualization purpose.
Such an example is shown in Fig. 1.10. The original echocardiogram is shown in
Fig. 1.10a and its enhanced version in Fig. 1.10b.

Fig. 1.10 An example of echocardiogram image processing: (a) Original image. (b) Enhanced
image
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1.3 A Typical Digital Signal Processing System

A typical digital signal processing system is shown in Fig. 1.11. The first component
is a signal source, which is a source of analog signal. Since the signal to be processed
is a digital signal, we have to first convert the input analog signal into a digital signal.
This is achieved by an analog-to-digital converter or ADC, for short. An ADC is also
called a DAQ for digital acquisition. The ADC samples the analog signal, holds each
sample at its value until it is converted to a digital value, and then moves to the next
sample and so on. The analog sample is represented as a B-bit binary number. The
number of bits of binary representation is unique to each ADC. The accuracy of
representing the analog sample value depends on B. For instance, an analog value of
0.723 when represented by a 4-bit binary number is equivalent to 0.6875. When the
same number is represented with 8 bits, it is equivalent to 0.72265625. We will
discuss in detail A/D conversion in a later chapter.

Once the analog signal is converted to a digital signal, it is then processed by the
digital signal processor, which outputs to a digital-to-analog converter, which, in
turn, feeds it to the analog signal sink. Similar to ADC, digital-to-analog converters
are available commercially as chips. The whole process may be carried out in real
time or non-real time, depending on the application in hand. The signal processing
may be performed either by a special hardware or by a DSP chip. There are several
DSP chips available in the market. For a given application, the DSP algorithm can be
loaded into the chip. Therefore, the DSP chip is flexible. On the other hand, a special
purpose DSP hardware is fixed for a particular application. In addition to DSP chips,
one can also use field-programmable gate arrays (FPGAs) to implement a given
signal processing algorithm.

After having introduced digital signal processing with a few applications, we will
now deal with a brief introduction to continuous-time signals and systems. One may
be wondering why the topic of continuous-time signals and systems is necessary
here. There are several legitimate reasons to discuss continuous-time signals and
systems. Many discrete-time signals are generated from continuous-time signals.
These include speech, music, video, seismic signals, electrocardiogram, etc. Many of
the properties of continuous-time systems are directly applicable to the discrete-time
domain. More importantly, many of the tools used to analyze continuous-time
signals and systems are applicable to the discrete-time domain. This aspect is
particularly useful in digital filter design, as we will see later in the book.

However, since our interest is in the discrete-time domain, we will describe only
briefly the main results of continuous-time signals and systems here.

analog signal
source

analog to
digital

converter

digital to
analog

converter

analog signal
sink

digital signal
processor

Fig. 1.11 A block diagram of a typical digital signal processing system
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1.4 Continuous-Time Signals and Systems

What follows is a brief description of mathematical representation of continuous-
time signals and systems.

1.4.1 Continuous-Time Signals in the Time Domain

A continuous-time signal is denoted by x(t) or y(t), etc. and is defined over the
interval � 1 � t � 1. The signal may be purely real, imaginary, or complex.
Further, the signal amplitude is a continuum. From here on, we will refer to a
continuous-time signal as simply analog signal for convenience. An analog signal
that is a linear combination of signals can be described as

x tð Þ ¼
XN
i¼1

αi xi tð Þ, �1 < t < 1 ð1:1Þ

The constants αi in Eq. (1.1) may be real or complex. Let us look at some useful
signals encountered in the continuous-time domain.

Sinusoidal Signals A real sinusoidal waveform is described by

x tð Þ ¼ A cos 2πftð Þ, �1 < t < 1 ð1:2Þ
In the above equation, A is the amplitude, and f is the frequency of the sinusoid in

Hz or cycles per second. Note that x(t) above is a periodic signal with a period T ¼ 1
f

because cos 2πf t þ Tð Þð Þ ¼ cos 2πf t þ 1
f

� �� �
¼ cos 2πft þ 2πð Þ ¼ cos 2πftð Þ.

As opposed to a real sinusoidal signal, a complex exponential signal is described by

x tð Þ ¼ Bei ωtþϕð Þ, �1 < t < 1 ð1:3Þ
In Eq. (1.3), the amplitude B may be real or complex, ω ¼ 2πf is the angular

frequency in radians/sec, and ϕ is the phase offset in radians.

Unit Impulse or Dirac Delta Function A unit impulse or simply Dirac delta
function is denoted by δ(t) and defined as

δ tð Þ ¼ 0, t 6¼ 0
1, t ¼ 0

�
, such that

Z 1

�1
δ τð Þdτ ¼ 1 ð1:4Þ

The unit impulse is a hypothetical signal but is useful in characterizing
continuous-time signals and systems. One way of visualizing the unit impulse is to
consider a rectangular pulse in the time domain of width τ seconds and amplitude 1

τ so
that the area under the pulse is unity. If the pulse width is decreased, its amplitude
will increase inversely keeping the area under the pulse still unity. In the limit as the
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pulse width approaches zero, its amplitude will approach infinity with the area under
the pulse still unity. Any given analog signal can be represented in terms of the Dirac
delta function as

x tð Þ ¼
Z 1

�1
x τð Þδ τ � tð Þdτ ð1:5Þ

Unit Step Function A unit step function u(t) is defined as

u tð Þ ¼ 1, t � 0
0, t < 0

�
ð1:6Þ

The unit step function is useful in defining the time interval over which a function
is valid as well as characterizing the rise and fall times of linear time-invariant
systems.

1.4.2 Continuous-Time Systems

A continuous-time system is one that accepts an input signal x(t) to produce an
output signal y(t). Mathematically, we can describe a continuous-time system as

y tð Þ ¼ L x tð Þf g ð1:7Þ

Linear System A system is said to be linear if it satisfies the superposition rule. In
other words, if the response of the system to a linear combination of input signals is
the same linear combination of individual responses, then the system is said to be
linear. Otherwise, it is nonlinear. That is, if yi tð Þ ¼ L xi tð Þf g, then

L
XN
i¼1

αi xi tð Þ
( )

¼
XN
i¼1

αiL xi tð Þf g ¼
XN
i¼1

αiyi tð Þ ð1:8Þ

The beauty of a linear system is that it can be characterized in closed-form
expressions, whereas a nonlinear system typically involves iterative solution. How-
ever, it is important to note that nonlinear systems are useful, and many real-world
systems are nonlinear. They are linearized so that they can be analyzed easily.

Time-Invariant System A system is said to be time-invariant if a delayed input
results in a delayed response. That is, if y tð Þ ¼ L x tð Þf g, then the system is time-
invariant if

L x t � τð Þf g ¼ y t � τð Þ, for all τ ð1:9Þ
Otherwise, the system is time-variant.
Before we go any further, let us work out a couple of examples to nail the concept.
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Example 1.1 Consider the continuous-time system y(t) ¼ tx(t). Is the system
(a) linear? (b) time-invariant?

Solution If x(t) ¼ αx1(t) + βx2(t) with α and β constants, then the response of the
systems is

y tð Þ ¼ t αx1 tð Þ þ βx2 tð Þð Þ ¼ αtx1 tð Þ þ βtx2 tð Þ ¼ αy1 tð Þ þ βy2 tð Þ ð1:10Þ
Since the superposition rule is satisfied, the given system is linear. To test if the

system is time-invariant, we first delay the system response by τ so that

y t � τð Þ ¼ t � τð Þx t � τð Þ ð1:11Þ
If we simply delay the input to the system, the system will respond with

L x t � τð Þf g ¼ tx t � τð Þ 6¼ y t � τð Þ ð1:12Þ
Therefore, the system is not time-invariant. That is, it is time-variant. From this

example we observe that a system may be linear but not necessarily time-invariant.

Example 1.2 Consider the system y(t) ¼ |x(t)|. Is the system (a) linear, (b) time-
invariant?

Solution To test linearity, apply the superposition rule:

L αx1 tð Þ þ βx2 tð Þf g ¼ αx1 tð Þ þ βx2 tð Þj j 6¼ α x1 tð Þj j þ β x2 tð Þj j ð1:13Þ
Since the superposition rule failed, the given system is nonlinear. To test for time-

invariance, check

L x t � τð Þf g ¼ x t � τð Þj j ¼ y t � τð Þ ð1:14Þ
Since the delayed input produces delayed response, the system is time-invariant.

Again, we observe that a system may be nonlinear but can be time-invariant.

Linear Convolution The response to any input signal of a linear, time-invariant
(LTI) system can be obtained in terms of what is known as the impulse response of
the LTI system. When the input to an LTI system is a unit impulse, its response is
denoted by h(t), that is, L δ tð Þf g ¼ h tð Þ. A signal x(t) can be represented in terms of
the unit impulse as shown in Eq. (1.5). Another way of looking at Eq. (1.5) is that the
signal x(t) is expressed as a linear combination of unit impulses with strength
corresponding to the signal amplitude at the respective time instants. Therefore, if
we apply this signal as input to an LTI system, its response can be expressed as

L x tð Þf g ¼ L
Z 1

�1
x τð Þδ t � τð Þdτ

� �
¼

Z 1

�1
x τð ÞL δ t � τð Þf gdτ ð1:15Þ

In the above equation, the system operator is taken inside the integral because the
integral is a linear operator. However, since the system is time-invariant,
L δ t � τð Þf g ¼ h t � τð Þ. Therefore,
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y tð Þ ¼
Z 1

�1
x τð Þh t � τð Þdτ ð1:16Þ

Equation (1.16) is known as the convolution integral. The impulse response of an
LTI system is unique to each system, and therefore, the system response to a given
input signal is unique to that system. It is customary to denote the convolution of two
signals by the symbol �. Thus, Eq. (1.16) can be represented as

y tð Þ ¼ x tð Þ � h tð Þ ¼
Z 1

�1
x τð Þh t � τð Þdτ ¼

Z 1

�1
x t � τð Þh τð Þdτ ð1:17Þ

Example 1.3 Compute the unit step response of the LTI system with its impulse
response h(t) ¼ e�0.5tu(t).

Solution Since we are looking for the response to a unit step function, the input to
the system is u(t). Then, from the convolution integral, the unit step response is
found to be

y tð Þ ¼
Z 1

�1
x t � τð Þh τð Þdτ ¼

Z t

0
e�0:5τdτ ¼ 2 1� e�0:5t

� �
, t � 0 ð1:18Þ

Since the input is zero for t < 0, the output is also zero for t < 0. From (1.18) we
observe that the unit step response starts from zero at t ¼ 0 and reaches a final value
of 2. The rise time of an LTI system is defined as the time it takes for its step response
to change from 10% to 90% of its final value. For this system using Eq. (1.18), we
find the rise time to be about 1.093 s.

Causality AnLTI system is said to be causal if its impulse response h(t)¼ 0 for t < 0.
In other words, an LTI system cannot anticipate future input, or equivalently, it
cannot produce a response before an input is applied. Using this criterion, we find the
system in Example 1.3 to be causal.

Stability Another important property of an LTI system is its stability. An LTI
system is said to be stable in the bounded input, bounded output (BIBO) sense if
its impulse response is absolutely integrable. That is, the LTI system is stable in the
BIBO sense if Z 1

�1
h τð Þj jdτ < 1 ð1:19Þ

If an LTI system is unstable, then a bounded input signal will result in an output
that will eventually grow out of bound. Such a system will be useless.

Example 1.4 Is the system described in Example 1.3 stable?

Solution We need to evaluate the integral of the absolute of the impulse response
and verify that it is finite in magnitude.
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Z 1

�1
h τð Þj jdτ ¼

Z 1

0
e�0:5τdτ ¼ �e�0:5τ

0:5

����
1

0

¼ 2 < 1 ð1:20Þ

Since the impulse response is absolutely integrable, the system is stable. The
implication is that as long as the input is of finite amplitude, the system response will
also be of finite amplitude.

LTI System and Differential Equation An LTI system in the time domain can
be characterized by a linear differential equation with constant coefficients, as
described by

y tð Þ þ
Xp
n¼1

bn
dny tð Þ
dtn

¼
Xq
m¼0

am
dmx tð Þ
dtm

, q � p ð1:21Þ

If the system is time-variant, then the coefficients {bn} and {am} will be depen-
dent on t. Otherwise, they are constants. When the input is zero, the corresponding
solution is called the complementary solution and refers to the impulse response of
the LTI system. When an input is applied, we can assume the solution or response to
be of the same form as the input and determine the exact response. This is called the
particular solution. We will not discuss further the differential equation. Later we
will deal with linear difference equation, which governs a discrete-time system.

1.4.3 Frequency Domain Representation of Signals
and Systems

So far we have described an LTI system in the time domain. We can also describe the
same system equivalently in the frequency domain. Frequency domain representa-
tion of signals and systems is more helpful in the analysis and design of such
systems. We are more used to visualizing a signal in terms of its frequency than in
terms of its time-domain behavior. We will first look at the frequency domain
representation of signals and then the systems.

Fourier Series A periodic signal can be expressed as a sum of sinusoidal signals whose
frequencies are integer multiples of a fundamental frequency. Let x(t) be a periodic signal
with period T. Note that x(t) is periodic with period T if x(t + nT) ¼ x(t), n 2 Z. The
Fourier series expansion of x(t) is given by

x tð Þ ¼
X1
n¼�1

cne
�jnω0t ð1:22Þ

where ω0 ¼ 2πf0, f 0 ¼ 1
T. The Fourier series coefficients {cn} are obtained from
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cn ¼ 1
T

Z T
2

�T
2

x tð Þejnω0tdt ð1:23Þ

Note that if x(t) is a real function, the cn and c�n must be complex conjugate of
each other.

Fourier Transform If a signal is not periodic, then it can be represented in the
frequency domain by an integral involving continuous sinusoidal frequencies known
as the Fourier transform, as given below:

X fð Þ ¼
Z 1

�1
x tð Þe�j2πftdt, �1 < f < 1 ð1:24Þ

The function X( f ) is in general complex and represents the amplitude and phase
of the sinusoidal component at the frequency f. The time-domain signal x(t) can be
recovered from its Fourier transform by its inverse Fourier transform:

x tð Þ ¼
Z 1

�1
X fð Þej2πftdf ð1:25Þ

Thus, x(t) and X( f ) form a Fourier transform pair.

Some Properties of the Fourier Transform
When dealing with LTI systems, one can use some features or properties of the
Fourier transform to solve the system more easily and elegantly. Therefore, we will
list some useful properties of the Fourier transform without proof.

Scaling If x(t) $ X( f ), then I ax tð Þf g ¼ aX fð Þ, where a is a constant.
Linearity If x1(t)$ X1( f ) and x2(t)$ X2( f ), then the Fourier transform of a linear
combination of x1(t) and x2(t) is a linear combination of the respective Fourier
transforms:

I ax1 tð Þ þ bx2 tð Þf g ¼ aX1 fð Þ þ bX2 fð Þ.
Convolution in the Time Domain The Fourier transform of the convolution of x(t)
and h(t) is the product of the respective Fourier transforms:I x tð Þ⨂h tð Þf g ¼ X fð ÞH fð Þ.
Convolution in the Frequency Domain The Fourier transform of the product of
two time-domain functions is the convolution of the respective Fourier transforms

I x tð Þh tð Þf g ¼ X fð Þ⨂H fð Þ.
Modulation If x(t) $ X( f ), then x tð Þe2πf 0t $ X f � f 0ð Þ. That is, multiplying a
signal in the time domain by a complex sinusoid of a fixed frequency is equivalent to
shifting its Fourier transform by that frequency.

Fourier Transform of a Derivative of a Signal The Fourier transform of the
derivative of a signal in the time domain is the Fourier transform of the signal

multiplied by j2πf. That is, I dx tð Þ
dt

n o
¼ j2πfX fð Þ.
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Transfer Function From the Fourier transform property of convolution in the time
domain, we obtain the Fourier transform of the output of an LTI system in terms of
its input and impulse response as

Y fð Þ¼I y tð Þf g¼I x tð Þ � h tð Þf g ¼ X fð ÞH fð Þ ð1:26Þ
The transfer function of the LTI system is defined as the ratio of the Fourier

transforms of its output to input:

H fð Þ � Y fð Þ
X fð Þ ð1:27Þ

If we take the Fourier transform of Eq. (1.21) using the differentiation property of
the Fourier transform and obtain the ratio of the output to input, we obtain

H fð Þ ¼ a0 þ j2πfð Þa1 þ � � � þ j2πfð Þqaq
1þ j2πfð Þb1 þ j2πfð Þ2b2 þ � � � þ j2πfð Þpbp

ð1:28Þ

We can also express the transfer function above in terms of ω as

H ωð Þ ¼ a0 þ jωð Þa1 þ jωð Þ2a2 þ � � � þ jωð Þqaq
1þ jωð Þb1 þ jωð Þ2b2 þ � � � þ jωð Þpbp

ð1:29Þ

We observe from Eqs. (1.28) or (1.29) that the transfer function of an LTI system
is a rational polynomial in ω.

Laplace Transform The Laplace transform of a continuous-time signal x(t), t � 0
is defined as

X sð Þ ¼
Z 1

0
x tð Þe�stdt ð1:30Þ

The Laplace variable s in Eq. (1.30) is complex and is expressed as s ¼ σ + jω.
Laplace transform is very useful in the analysis of continuous-time systems. The
signal x(t) can be recovered from the inverse Laplace transform. Since the inverse
Laplace transform involves complex integral, it is seldom used in practice. Instead,
one uses partial fraction expansion to determine the inverse Laplace transform.

Example 1.5 Find the Laplace transform of x(t) ¼ e�at cos (ω0t)u(t).

Solution Using the definition, the Laplace transform of the above signal is

X sð Þ ¼
Z 1

0
e�at cos ω0tð Þe�stdt ð1:31Þ

By expressing the cosine function in terms of two complex exponential functions,
we have

X sð Þ ¼ 1
2

Z 1

0
e� sþa�jω0ð Þtdt þ 1

2

Z 1

0
e� sþaþjω0ð Þtdt ð1:32Þ
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After evaluating the two integrals and some algebraic manipulation, we arrive at

X sð Þ ¼ sþ a

s2 þ 2asþ a2 þ ω0
2ð Þ ð1:33Þ

From the Laplace transform of the signal x(t), we observe that it is a rational
function of the Laplace variable s. Similarly, if we replace jω by the Laplace variable
s in Eq. (1.29), we find that the transfer function of an LTI system to be a rational
polynomial in s.

Example 1.6 Find the response to the input x(t) ¼ e�0.5tu(t) of the LTI system
whose impulse response is given by h(t) ¼ e�0.25tu(t) using Laplace transform.

Solution We have to first find the Laplace transforms of the input and impulse
response. Using the definition of Laplace transform, we have X sð Þ ¼ 1

sþ0:5, and

H sð Þ ¼ 1
sþ0:25. Since the given system is LTI, the Laplace transform of the response

of the system equals the product of the Laplace transforms of the input signal and the
impulse response. Therefore,

Y sð Þ ¼ L y tð Þf g ¼ X sð ÞH sð Þ ¼ 1
sþ 0:5ð Þ sþ 0:25ð Þ ¼

1
s2 þ 0:75sþ 0:125

ð1:34Þ

Next, we have to express the system response in partial fractions and determine
the residues. So the system response in partial fractions is expressed as

Y sð Þ ¼ A

sþ 0:5
þ B

sþ 0:25
ð1:35Þ

In the above equation, A and B are called the residues. The residues are determined by
first multiplying Y(s) by the respective pole factors, cancelling the corresponding pole
factor, and then evaluating the remaining function at the corresponding pole. Thus,

A ¼ sþ 0:5ð ÞY sð Þjs¼�0:5 ¼
1

sþ 0:25

����
s¼�0:5

¼ �4 ð1:36aÞ

and

B ¼ sþ 0:25ð ÞY sð Þjs¼�0:25 ¼
1

sþ 0:5

����
s¼�0:25

¼ 4 ð1:36bÞ

Finally, the system response in the time domain is the inverse Laplace transform
of Y(s). Since Y(s) is the sum of two functions, the response y(t) is the sum of the
corresponding time-domain functions, as given by

y tð Þ ¼ L�1 A

sþ 0:5

� �
þ L�1 B

sþ 0:25

� �
¼ �4e�0:5tu tð Þ þ 4e�0:25tu tð Þ ð1:37Þ
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1.5 Summary

We have introduced the idea of digital signal processing in this chapter and briefly
reviewed the areas where DSP is widely used. Some useful applications are
discussed with examples to motivate the reader to go deeper into the field of DSP.
Since practical digital signals are obtained from the analog counterparts, the descrip-
tion of continuous-time signals and systems is of necessity. Therefore, a brief
introduction to signals and linear time-invariant systems in the continuous-time
domain is introduced here with examples.

With the introduction of the basic tools for the analysis of continuous-time signals
and LTI systems, we will move on to discuss discrete-time signals and systems in the
next chapter.

1.6 Problems

1. Express the time-domain periodic pulse train p(t) ¼ 1, � 0.5 � t � 0.5 with
period 1 s in Fourier series.

2. Determine the Fourier transform of the function x(t) ¼ e�αtu(t).
3. Find the Fourier transform of the time-domain function x(t) ¼ e�0.25t cos (500t)u(t).
4. Find the poles and zeros of the function H sð Þ ¼ sþ1

s3þ2:5s2þ6sþ2:5. Is the system
stable?

5. Find the frequency response of the system in Problem 4.
6. Find the step response of the system H sð Þ ¼ 1

s3þ4s2þ5sþ2 using Laplace transform
method.
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Chapter 2
Discrete-Time Signals and Systems

2.1 Introduction

Continuous-time or analog signals are processed using analog devices such as
amplifiers, filters, etc. It is impossible to process signals multiplexed from
various sources using a single hardware system in the analog domain. On the
other hand, digital signals can be processed using both special-purpose hardware
and software systems. Worldwide use of Internet, mobile communications, etc.
demands all kinds of data such as video, audio, graphics, etc. In order to receive
this information on a single device, computer, for instance, it is impossible to use
analog signals and techniques. In order to be able to design and implement
digitally based systems, it is absolutely necessary to have an understanding of
digital signals and systems. Digital signals are discrete in time and amplitude.
However, we will assume discrete-time signals to have a continuum of amplitude
in order to be able to analyze such signals and systems mathematically. In this
chapter we will describe typical discrete-time signals mathematically and then
use them to describe and analyze linear time-invariant discrete-time systems. To
help the readers understand the mathematical details, we will work out examples
followed by MATLAB-based examples. Since digital signals are obtained from
analog sources, we will also discuss the conversion of continuous-time signals
into digital signals using analog-to-digital converters (ADC).

Electronic supplementary material: The online version of this article (https://doi.org/10.1007/
978-3-319-76029-2_2) contains supplementary material, which is available to authorized users.
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2.2 Typical Discrete-Time Signals

A discrete-time signal is denoted by x[n], y[n], etc. and is defined over the interval
�1 < n < 1 , n 2 Z. The amplitude of a discrete-time signal is a continuum, while
its argument n is an integer. If a discrete-time signal is obtained from a continuous-
time signal, then the argument of the discrete-time signal is an integer multiple of the
sampling interval. We will discuss the sampling process later in the chapter. A
discrete-time signal is also referred to as a sequence. When a discrete-time signal
is processed by a computer in software or hardware, the signal amplitudes are
represented by numbers, and so the signal is a digital signal. Even though discrete-
time signals are processed by a computer, we will still assume their amplitudes to be
a continuum in our discussion.

There are several discrete-time signals that are useful in characterizing other
discrete-time signals as well as systems similar to those used in the continuous-
time domain. We will describe them here briefly.

Unit Impulse Sequence A unit impulse sequence is denoted by δ[n] and is defined
as

δ n½ � ¼ 1, n ¼ 0
0, n 6¼ 0

�
ð2:1Þ

A unit impulse in the discrete-time is similar to the Dirac delta function in the
continuous-time except that the unit impulse sequence is physically realizable.

Unit Step Sequence A unit step sequence is denoted by u[n] and is defined as

u n½ � ¼ 1, n � 0
0, n < 0

�
ð2:2Þ

The unit step sequence plays a similar part in the analysis of discrete-time systems
as its continuous-time counterpart.

Exponential Sequence A real exponential sequence is defined as

x n½ � ¼ αnu n½ �, αj j < 1 ð2:3Þ
In (2.3), α is a real constant.

Real Sinusoidal Sequence A real sinusoidal sequence is defined as

x n½ � ¼ A cos nΩ0 þ ϕð Þ, �1 < n < 1, n2Z ð2:4Þ
In Eq. (2.4), A is the amplitude,Ω0 ¼ 2π f 0

Fs
is the normalized frequency in rad, f0 is

the frequency in Hz, Fs is the sampling frequency in Hz, and ϕ is the phase offset
in rad.
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Complex Exponential Sequence A complex exponential sequence is described by

x n½ � ¼ Aαnexp �jnΩ0ð Þu n½ �, αj j < 1 ð2:5Þ
In Eq. (2.5), the amplitude A may be complex, and α is a real constant.

Periodic Sequence A sequence x[n] is said to be periodic with period N if x[n + kN]¼ x
[n], where k is an integer. From the definition we can easily verify that the sinusoidal
sequence in (2.4) is periodic with period N ¼ kFs

f 0
.

2.3 Discrete-Time Systems

A discrete-time system, L :f g, is one that accepts an input sequence x[n] to produce
an output sequence y[n]. It can be formally written as

y n½ � ¼ L x n½ �f g ð2:6Þ

Linearity A discrete-time system is said to be linear if it satisfies the superposition
rule. In other words, a discrete-time system is linear if the following condition holds:

y n½ � ¼ L αx1 n½ � þ βx2 n½ �f g ¼ αy1 n½ � þ βy2 n½ �, ð2:7Þ
where y1 n½ � ¼ L x1 n½ �f g and y2 n½ � ¼ L x2 n½ �f g. So, a linear discrete-time system
responds to a linear combination of input sequences with the same linear combina-
tion of individual responses. Linear discrete-time systems are most useful because
they can be solved analytically. If the above condition stated in (2.7) is not valid,
then the discrete-time system is nonlinear. Nonlinear systems in general don’t have
closed-form solution and must be solved iteratively. Hence linear systems are
preferred in practice though many practical systems may be nonlinear.

Time- or Shift-Invariant Discrete-Time Systems A discrete-time system is said to
be time- or shift-invariant if a delayed input results in a delayed response:

L x n� m½ �f g ¼ y n� m½ �,m2Z ð2:8Þ

Impulse Response As in the continuous-time system, the response of a discrete-
time system to a unit impulse sequence is called the impulse response and is denoted
by h[n]. The impulse response is formally defined as

h n½ � ¼ L δ n½ �f g ð2:9Þ
The impulse response is unique to a given discrete-time linear system and is very

useful in calculating the system response to any given input. It is also very useful in
the design of digital filters. We will deal with the design of digital filters later in
the book.
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Causality A discrete-time system is causal if it is non-anticipatory. That is to say
that if the response of a discrete-time system at the current time index, n, does not
depend on the input at a future time instant, then the system is causal.

Let us understand what we have discussed so far clearly by going through the
following examples.

Example 2.1 A discrete-time system is defined by the following difference
equation:

y n½ � ¼ x nþ 1½ � � 2x n½ � þ x n� 1½ � ð2:10Þ
Is it (a) linear? (b) Is it time-invariant? (c) Is it causal?

Solution Let me make it clear. A discrete-time system may be characterized by a
linear difference equation just as we described a continuous-time system by a
differential equation.

(a) Let the input be a linear sum of two input sequences: x[n] ¼ ax1[n] + bx2[n],
where a and b are constants. Then the response of the system can be written using
(2.10) as

y n½ � ¼ a x1 nþ 1½ � � 2x1 n½ � þ x1 n� 1½ �ð Þ
þb x2 nþ 1½ � � 2x2 n½ � þ x2 n� 1½ �ð Þ

¼ ay1 n½ � þ by2 n½ �
ð2:11Þ

In the above equation, y1 n½ � ¼ L x1 n½ �f g and y2 n½ � ¼ L x2 n½ �f g. Since the super-
position rule is satisfied, the given discrete-time system is linear.

(b) From the given difference equation, we notice that delaying the input sequence
by an integer M produces a response, which is exactly the delayed version of the
response by the same integer M. Hence the system is time- or shift-invariant.
Note that if the coefficients a and b are dependent on the time index n, then the
system will no longer be shift-invariant!

(c) We notice from the given system’s input-output relationship that the response of
the system at the current time index n depends on the input at the next future
input. Therefore, the system is anticipatory and hence is non-causal.

Example 2.2 Determine if the discrete-time system y[n]¼ K + x[n] + 0.75x[n� 1],
where K is a constant, is (a) linear, (b) time-invariant, and (c) causal?

Solution
(a) If we apply the superposition rule, we observe that it is not satisfied due to the

constant K. Hence the system is not linear. However, it is piecewise linear.
(b) Since the delayed input produces the same delayed response, the system is time-

invariant. It can also be inferred from the fact that the coefficients in the given
input-output relationship are constants, independent of the time index.

(c) The system response at the current time index n does not depend on the input
sequence at future time instants. Hence the system is causal.
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Stability A discrete-time system is said to be stable if a bounded input produces a
bounded output. Equivalently, we can impose the stability condition on the impulse
response. We will look at it after we define the convolution sum. This definition of
stability is called bounded-input bounded-output (BIBO) stability.

Example 2.3 Is the system described in Example 2.1 stable in the BIBO sense?

Solution If we assume that the absolute value of the input sequence is finite, that is, |
x[n]| � M for all n, then we see that the output sequence value is also finite:

y n½ �j j � x nþ 1½ � � 2x n� 1½ � þ x n½ �j j � 4M < 1 ð2:12Þ
Hence the system is stable.

2.4 Convolution Sum

The response of an LTI discrete-time system to any given input sequence can be
obtained in terms of its impulse response sequence and the input sequence by what is
called the convolution sum. We first observe that a given sequence x[n] can be
represented as an infinite sum of unit impulses:

x n½ � ¼
X1
k¼�1

x k½ �δ n� k½ � ð2:13Þ

Equation (2.13) follows from the definition of the unit impulse. So, the right-hand
side of (2.13) is zero except for k ¼ n, in which case, the right-hand side is simply x
[n]. Having expressed the input sequence in terms of the unit impulse sequence, we
next determine the response of the LTI system as

y n½ � ¼ L x n½ �f g ¼ L
X1
k¼�1

x k½ �δ n� k½ �
( )

ð2:14Þ

Since the system is linear, the system operator can be taken inside the summation
as

y n½ � ¼
X1
k¼�1

L x k½ �δ n� k½ �f g ð2:15Þ

That is, the response is the linear sum of the responses to individual impulses
δ[n � k]. However, x[k] is a constant, and since the system is linear, the response to
constant times an input is equal to the constant times the response to the input.
Therefore, (2.15) can be rewritten as
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y n½ � ¼
X1
k¼�1

x k½ �L δ n� k½ �f g ð2:16Þ

We have also assumed the system to be time-invariant. Therefore,
L δ n� k½ �f g ¼ h n� k½ �. Hence,

y n½ � ¼
X1
k¼�1

x k½ �h n� k½ � ð2:17Þ

Equation (2.17) is known as the convolution sum of the sequences x[n] and h[n]
and is usually abbreviated as x[n]⨂ h[n]. In (2.17), if we substitute m ¼ n � k, then
we can also write the convolution sum as

y n½ � ¼
X1

m¼�1
h m½ �x n� m½ � ð2:18Þ

Procedure to Calculate the Convolution Sum
We can list a graphical procedure to calculate the convolution sum given in
Eq. (2.17) as follows:

1. Flip the impulse response h[n] about the origin, and label the abscissa with the
integer variable k.

2. Multiply the input sequence and the flipped impulse response sequence point by
point, and sum them over the entire interval. This sum gives the response at n¼ 0.

3. Slide the flipped impulse response to the right one sample at a time.
4. Multiply the input sequence and the flipped impulse response sequence point by

point, and sum them over the entire interval. The sum gives the system response
at subsequent time instants.

5. For negative integer values of n, repeat steps 3 and 4, except that the impulse
response sequence is slid to the left instead of right.

Example 2.4 Consider the LTI discrete-time system with an impulse response h
[n] ¼ αnu[n], |α| < 1. Determine its unit step response.

Solution Using the graphical interpretation of the convolution sum, we first label the
abscissa with the index k. Next we flip the impulse response about the ordinate. This is
shown in black color in Fig. 2.1a with no shift. In the same plot, the input sequence in
red color is shown, which is a unit step. There is only one sample that overlaps the two
sequences for n ¼ 0, and the corresponding product of the two sequences results in the
response at n ¼ 0. As can be seen from Fig. 2.1b, any shift of the impulse response
sequence to the left, that is, for n < 0, will leave no overlapping of the two sequences.
Hence the system response will be zero for n < 0. Figure 2.1c shows the flipped impulse
response shifted to the right by 3, that is, n¼ 3. Now there are four overlapping samples.
Wemultiply the overlapping samples and sum them to obtain the response at n¼ 3. This
can be continued for each shift of the impulse response to the right. To obtain the
response in closed form, we resort to the convolution sum in Eq. (2.17).
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y n½ � ¼
X1
k¼�1

x k½ �h n� k½ � ¼
Xn
k¼0

αn�k ¼ /n
Xn
k¼0

α�k ð2:19Þ

In (2.19) since the input is zero for n < 0, the lower limit of the summation is zero.
Also, the response is zero for n < 0. The upper limit is n corresponding to the current
time instant. The sequence on the right-hand side of (2.19) is an exponentially
decreasing sequence. After simplifying (2.19) we get the unit step response of the
system,

y n½ � ¼ αnþ1 � 1
α� 1

, n � 0 ð2:20Þ

The impulse response and the system response are shown in Figs. 2.2a and b,
respectively. The impulse response sequence is assumed to be (0.75)nu[n]. The
rise time of the LTI system is defined as that interval in which the step response
changes from 10% to 90% of its final response. The final value of the response is
found to be 4.

Causality Revisited Earlier we said that an LTI system is causal if it is
non-anticipatory. We can also impose causality on the impulse response of the
LTI system. To this end, recall that the convolution sum represents the response of
an LTI discrete-time system to an input sequence. If the input to an LTI discrete-time
system is assumed to be zero for n less than zero, then the response y[n] in terms of
the impulse response h[n] is written as

y n½ � ¼ x n½ � � h n½ � ¼
X1
k¼0

x k½ �h n� k½ � ð2:21Þ

For instance, let us evaluate the response at n ¼ 1. Expanding the summation on
the right-hand side of (2.21), we have

y 1½ � ¼ x 0½ �h 1½ � þ x 1½ �h 0½ � þ x 2½ �h �1½ � þ x 3½ �h �2½ � þ � � � ð2:21aÞ
Since the system is assumed to be causal, y[n¼ 1] should not be dependent on x[n] for

n > 1. However, x[n] is the input sequence and is not zero. Therefore, h[�1] ¼ h
[�2] ¼ � � � ¼ 0. That is to say that h[n] ¼ 0 for n < 0. Generalizing, we say that for the
system to be causal, h[n � k] ¼ 0, for k > n. Otherwise it will be anticipatory. Let
m¼ n� k. Then, for the system to be causal, k > n⟹m < 0. Hence for the system to be
causal, h[n]¼ 0 for n < 0, which implies that the upper limit of the summation in (2.21) is
n. An LTI discrete-time system is causal if and only if its impulse response is zero for
n < 0. Otherwise it is non-causal.

Stability in Terms of the Impulse Response An LTI discrete-time system is stable
in the BIBO sense if its response is finite for a finite input. Let the input sequence x
[n] be bounded, that is, |x[n]| � M < 1 , for all n. Using the convolution sum in
(2.17), we can bound the output as given below:
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y n½ �j j ¼
X1
k¼�1

x k½ �h n� k½ �
�����

����� ¼ X1
k¼�1

x n� k½ �h k½ �
�����

����� � M
X1
k¼�1

h k½ �j j ð2:22Þ

From (2.22) we see that the absolute value of the response is finite if and only ifX1
n¼�1

h n½ �j j < 1 ð2:23Þ

Thus, an LTI discrete-time system is stable in the BIBO sense if and only if its
impulse response sequence is absolutely summable.

Example 2.5 An LTI discrete-time system is described by y[n]¼ x[n] + 0.5y[n�1],
y[�1] ¼ 0. Determine if the system is stable in the BIBO sense.

Solution First, we need to find the impulse response of the system. Using x
[n] ¼ δ[n], in the above system definition and the fact that y[�1] ¼ 0, we obtain
the following:

y 0½ � ¼ δ 0½ � þ 0:5y �1½ � ¼ 1;
y 1½ � ¼ δ 1½ � þ 0:5y 0½ � ¼ 0:5;
y 2½ � ¼ 0:5y 1½ � ¼ 0:52;
y 3½ � ¼ 0:5y 2½ � ¼ 0:53, . . .
y n½ � ¼ 0:5y n� 1½ � ¼ 0:5n

ð2:24Þ

Thus, we find the impulse response sequence to be h[n] ¼ 0.5nu[n]. For this
system to be stable, the impulse response sequence must be absolutely summable:X1

n¼�1
h n½ �j j ¼

X1
k¼0

0:5nj j ¼
X1
k¼0

0:5n ¼ 1
1� 0:5

¼ 2 < 1

Since the impulse response sequence is absolutely summable, the above system is
stable.

2.5 Linear Difference Equation

So far we have defined an LTI discrete-time system in terms of its impulse response,
which fully defines the system. The response to any input sequence can then be
obtained by convolving the input and impulse response sequences. Alternatively,
one can also describe an LTI discrete-time system by a linear difference equation
with constant coefficients. More specifically, an LTI discrete-time system can be
described by

Xp
k¼0

bky n� k½ � ¼
Xq
j¼0

a jx n� j½ �, b0 ¼ 1 ð2:25Þ
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The order of the difference equation (2.25) is the maximum of p and q. In
Eq. (2.25), if not all bk

’s are zero then the corresponding difference equation is
called a recursive equation. It uses both feed-forward and feedback to compute the
output at each time instant. On the other hand, if all but b0 are zero, then the resulting
equation is termed non-recursive difference equation. To make it clearer, let us
rewrite (2.25) as

y n½ � ¼
Xq
j¼0

a jx n� j½ � �
Xp
k¼1

bky n� k½ � ð2:26Þ

At each time instant n, the response is obtained by finding the weighted sum of
the previous p output samples and then subtracting it from the weighted sum of the
input samples, which involves the current and previous q input samples. In order to
use the previous input and output samples, we need to store them. More specifically,
we need to store p previous output samples and q previous input samples and retrieve
them to compute the present output sample. Let us clarify this by an example.

Example 2.6 Draw a signal flow diagram to compute the response of the 2nd-order
LTI discrete-time system described by the following recursive equation:

y n½ � ¼ a0x n½ � þ a1x n� 1½ � � b1y n� 1½ � � b2y n� 2½ � ð2:27Þ
A signal flow diagram shows how the signals flow or propagate from the input to

the output. It uses adders, multipliers, and delays. Each delay element corresponds to
one sampling interval. Lines with arrows indicate the direction of signal flow.
Figure 2.3 depicts the signal flow diagram to compute the output for a given input
described by (2.27). An adder is depicted by a circle with a plus sign inscribed in it.

x[n] y[n]

y[n-1]

y[n-2]

a0

a1

b1

b2

unit
delay

+

+
+

+

-

unit
delay

unit
delay

Fig. 2.3 A signal flow diagram corresponding to the difference equation (2.27)
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A triangle pointing in the direction of the signal flow indicates a multiplier with the
coefficient shown by the side of the triangle. A unit delay is depicted by a rectangle.
The various elements are interconnected by straight lines with arrows indicating the
direction of the signal flow.

The signal flow diagram shown in Fig. 2.3 is not the most efficient in terms of
delay elements. It uses three delay elements. The difference equation in (2.27) uses
output samples corresponding to two previous sampling intervals. Hence, it is
possible to use a total of only two unit delays, which is more efficient than using
three unit delays. We will discuss signal flow graphs in more detail in a later chapter.

Solving Linear Difference Equations Instead of computing the response of an LTI
discrete-time system at each time instant by solving the difference equation recur-
sively, one can also obtain the system response in closed form by means of analytical
solution to the difference equation. The general solution to a constant coefficient
linear difference equation consists of two parts: complementary solution yC[n] and
particular solution yP[n]. The complementary solution is the response to zero input,
and the particular solution is the response to a specified input. Thus, the total solution
to a linear difference equation with constant coefficients can be expressed as

y n½ � ¼ yC n½ � þ yP n½ � ð2:28Þ
The complementary solution is obtained by (1) setting the input to zero,

(2) assuming a solution of the type αn, (3) substituting the solution in the zero
input difference equation (2.25), and (4) solving for α. For a pth-order linear
difference equation with constant coefficients, the complementary solution then
takes the form

yC n½ � ¼
Xp
i¼1

aiαi
n ð2:29Þ

The particular solution is assumed to be some constant times the input. The
constant of proportionality is determined by substituting the particular solution in
the difference equation and solving the resulting equation. Finally, the constants in
the complementary solution are determined using the initial conditions in the total
solution. Let us illustrate the above statements by the following example.

Example 2.7 Solve the following difference equation when the input is a unit step
sequence:

y n½ � ¼ x n½ � þ 0:25y n� 1½ � þ 0:125y n� 2½ �,with y �1½ � ¼ 1, y �2½ � ¼ �1

Solution Let the complementary solution be yC[n] ¼ αn. Substituting yC[n] for y[n]
in the above difference equation with x[n] ¼ 0, we get

αn ¼ 0:25αn�1 þ 0:125αn�2
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Or,

1 ¼ 0:25α�1 þ 0:125α�2⟹α1 ¼ 0:5, α2 ¼ �0:25

Therefore, the complementary solution is yC[n]¼ a(0.5)n + b(�0.25)n. Since the input
is a unit step sequence, the particular solution is assumed to be yP[n]¼ cu[n]. To find the
value of the constant c, substitute yP[n] for y[n]in the given difference equation with the
input x[n] ¼ u[n]. We, therefore, have

cu n½ � ¼ u n½ � þ c� 0:25u n� 1½ � þ c� 0:125u n� 2½ �⟹c ¼ 1:6

Therefore, the total solution to the given difference equation is expressed as

y n½ � ¼ 1:6u n½ � þ a 0:5ð Þn þ b �0:25ð Þn

Finally, use the initial conditions to solve for the two constants in the comple-
mentary solution. Thus, the two equations involving the constants a and b are

y �1½ � ¼ 1 ¼ a 0:5ð Þ�1 þ b �0:25ð Þ�1 þ 1:6⟹2a� 4b ¼ �0:6

y �2½ � ¼ �1 ¼ a 0:5ð Þ�2 þ b �0:25ð Þ�2 þ 1:6⟹4aþ 16b ¼ �2:6

The solution to the above two equations gives a ¼ � 5
12 and b ¼ � 7

120. The overall
solution to the given difference equation is, therefore,

y n½ � ¼ � 5
12

0:5ð Þn � 7
120

�0:25ð Þn þ 1:6, n � 0

Note that the difference equation and the total solution give the same value of
1.125 at n¼ 0. Figure 2.4 shows stem plots of the response to a unit step sequence of
the system in Example 2.7 using both the difference equation and the total solution.
They appear to be identical. This shows that one can compute the response of an LTI
discrete-time system either directly from the given difference equation or from the
total solution obtained by analytical means.

Example 2.8 Let us consider the case where the input has the same form as one of
the terms in the complementary solution. Specifically, we want to solve the differ-
ence equation of an LTI discrete-time system described by

y n½ � � 0:8y n� 1½ � þ 0:15y n� 2½ � ¼ 0:5ð Þnu n½ �, y �1½ � ¼ 1, y �2½ � ¼ 0 ð2:30Þ
Let the complementary solution be yC[n] ¼ αn. Substituting the complementary

solution in (2.30) with input being zero, we have

αn � 0:8αn�1 þ 0:15αn�2 ¼ 0 ð2:31aÞ
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or,

α2 � 0:8αþ 0:15 ¼ 0, ð2:31bÞ
which gives α1 ¼ 0.5 and α2 ¼ 0.3.

Since one of the terms in the complementary solution, namely, α1, has the same
form as the input, the particular solution must be assumed to be

yP n½ � ¼ βn 0:5ð Þnu n½ � ð2:32Þ
The complementary solution and the particular solution must be linearly inde-

pendent. That is why the particular solution in (2.32) is used instead. To determine β,
we solve Eq. (2.30) with y[n] replaced with βn(0.5)nu[n]:

βn 0:5ð Þn � 0:8β n� 1ð Þ 0:5ð Þn�1 þ 0:15β n� 2ð Þ 0:5ð Þn�2 ¼ 0:5n ð2:33aÞ
Or,

βn� 0:8β n� 1ð Þ
0:5

þ 0:15β n� 2ð Þ
0:52

¼ 1⟹β ¼ 2:5 ð2:33bÞ

Fig. 2.4 Stem plots showing the system response to a unit step in Example 2.7. Top plot: response
using the difference equation. Bottom plot: response obtained from the total solution
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Therefore, the total solution to the difference equation (2.30) is

y n½ � ¼ a 0:5ð Þn þ b 0:3ð Þn þ 2:5n 0:5ð Þn, n � 0 ð2:34Þ
To find the values for the constants in (2.34), use the initial conditions:

y �1½ � ¼ 1 ¼ a

0:5
þ b

0:3
þ 2:5 �1ð Þ

0:5
ð2:35aÞ

y �2½ � ¼ 0 ¼ a

0:52
þ b

0:32
þ 2:5 �2ð Þ

0:52
ð2:35bÞ

The solution to (2.35a) and (2.35b) results in a ¼ 0 and b ¼ 1.8. Thus, the
solution to Eq. (2.30) is

y n½ � ¼ 1:8 0:3ð Þn þ 2:5n 0:5ð Þn, n � 0 ð2:36Þ
Figure 2.5 shows the response calculated using the difference equation (2.30) in

the top plot and the response obtained from the total solution in the bottom plot.
They seem to be identical.

Fig. 2.5 Stem plots showing the system response to the input in Example 2.8. Top plot: response
using the difference equation. Bottom plot: response obtained from the total solution
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Example 2.9 An LTI discrete-time system is described by the following difference
equation with initial conditions:

y n½ � � 1:5y n� 1½ � þ 0:5625y n� 2½ � ¼ x n½ �, y �1½ � ¼ 1, y �2½ � ¼ 0

Determine the total solution to the above difference equation if x[n] ¼ cos (0.2n)
u[n].

Solution Let the complementary solution be yC[n] ¼ αn. Then, with x[n] ¼ 0, the
difference equation becomes

αn � 1:5αn�1 þ 0:5625αn�2 ¼ 0: ð2:37aÞ
Or,

αn�2 α2 � 1:5αþ 0:5625
� � ¼ 0⟹α1 ¼ α2 ¼ 0:75 ð2:37bÞ

Since the two roots of the characteristic equation are the same, the two terms of
the complementary solution are αn and nαn and are linearly independent. Thus,

yC n½ � ¼ aαn þ bnαn ð2:38Þ
Next we assume the particular solution to be

yP n½ � ¼ A cos 0:2nþ φð Þu n½ � ¼ Re Ae j 0:2nþφð Þ
n o

u n½ � ð2:39Þ

Note that we have introduced a phase term in the argument of the cosine function
of the particular solution. An LTI system will respond to a sinusoidal input of a
certain frequency with the same sinusoid but with different amplitude and phase. In
order to evaluate the constants of the particular solution, we substitute (2.39) in the
given difference equation. Therefore, we have

Re Ae j 0:2nþφð Þ � 1:5Ae j 0:2nþφ�0:2ð Þ þ 0:5625Ae j 0:2nþφ�0:4ð Þ
n o
¼ Re e j0:2n

� � ð2:40Þ
Rearranging (2.40), we get

A cos φð Þ � 1:5 cos φ� 0:2ð Þ þ 0:5625 cos φ� 0:4ð Þ½ � cos 0:2nð Þ
� A sin φð Þ � 1:5 sin φ� 0:2ð Þ þ 0:5625 sin φ� 0:4ð Þ½ � sin 0:2nð Þ
¼ cos 0:2nð Þ ð2:41Þ

From (2.41), we obtain the following two equations:

A cos φð Þ � 1:5 cos φ� 0:2ð Þ þ 0:5625 cos φ� 0:4ð Þ½ � ¼ 1 ð2:42aÞ

A sin φð Þ � 1:5 sin φ� 0:2ð Þ þ 0:5625 sin φ� 0:4ð Þ½ � ¼ 0 ð2:42bÞ
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Solving the Eqs. (2.42a) and (2.42b) for A and φ, we get A ¼ 10.8225 and
φ ¼ � 1.024592 rad, respectively. The total solution is, therefore,

y n½ � ¼ a 0:75ð Þn þ bn 0:75ð Þn þ 10:8225 cos 0:2n� 1:024592rð Þ ð2:43Þ
Using the given initial conditions in the above equation and solving the resulting

two equations, we find the system response to be

y n½ � ¼ �4:8955 0:75ð Þn � 2:8912� n 0:75ð Þn
þ 10:8225 cos 0:2n� 1:024592ð Þ, n� 0 ð2:44Þ

The responses obtained by recursively solving the difference equation and from
the total solution to the difference equation are plotted as stem plots and are shown in
Fig. 2.6. They seem to agree.

Convolution of Finite-Length Sequences Consider the two finite-length
sequences {x[n]}, 0 � n � N � 1 and {h[n]}, 0 � n � M � 1. Since the two
sequences are of finite length, the convolution of these two sequences will result in a
sequence that is also of finite length. In fact, the length of the convolution of the
sequences of lengths M and N isM + N� 1. We can demonstrate this by an example.
In Fig. 2.7 top plot is shown the two sequences to be convolved. For the sake of
simplicity, the sequences are shown in solid lines though they are discrete. The
bottom plot of Fig. 2.7 shows {x[k]} as well as the flipped sequences {h[�k]},

Fig. 2.6 Response of the LTI system of Example 2.9 plotted as stem plots
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{h[M � k]}, and {h[M + N � 1 � k}. From the figure we observe that the
convolution is zero for n < 0 and n > M + N � 1. Hence, the length of the
convolution of two sequences of length M and N is M + N � 1.

Figure 2.8 shows the convolution of a length-9 triangular sequence and a length-
11 unit amplitude pulse sequence resulting in a length- 11 + 9–1 ¼ 19 sequence.

Fig. 2.7 Graphical
illustration of the
convolution of two finite-
length sequences. Top plot:
length M and N sequences.
Bottom plot: flipped and
shifted sequence for shifts
0, M, and M + N � 1,
respectively
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Fig. 2.8 Convolution of a length-9 triangular sequence and length-11 unit amplitude pulse
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2.6 Sampling a Continuous-Time Signal

So far we have assumed explicitly the availability of discrete-time signals without
reference to their origin. However, many discrete-time signals originate from their
continuous-time counterparts. It is, therefore, necessary to understand how discrete-
time signals are obtained from continuous-time signals and the implications thereof.
It must be pointed out that the processed discrete-time signals must be converted
back to their continuous-time versions. For example, one has to understand how
many samples per second are necessary so that the discrete-time signal can be
converted back to its continuous-time version without any impairment. Too many
samples per second mean that the digital signal processor has to carry out a lot of
arithmetic operations per second. This may impose undue constraints on the proces-
sor speed. On the other hand, fewer samples per second may cause serious distor-
tions, which cannot be tolerated. Thus, one must determine the correct number of
samples per second required for distortionless recovery of the continuous-time signal
from the discrete-time signal. This can be achieved only by mathematical reasoning.
In the following we will consider the process of sampling a continuous-time signal to
obtain the discrete-time version and its implications. We will further ascertain the
correct sampling interval for a given continuous-time signal.

Ideal Sampling A discrete-time signal is obtained from a continuous-time signal by
sampling the continuous-time signal precisely at regular or uniform intervals of time.
The sampled signal xs(t) can be expressed mathematically as

xs tð Þ ¼ x tð Þjt¼nTs
, n2Z ð2:45Þ

where Ts is the sampling interval. Figure 2.9 illustrates the ideal sampling process.
The continuous-time signal is shown in cyan color and the sampled signal in red
stems. At each sampling instant, the amplitude of the discrete-time signal corre-
sponds to that of the continuous-time signal. Since the interval between any two
samples is the same, the sampling is called uniform sampling. We also notice that the
width of each sample is zero. Therefore, this type of sampling is called ideal
sampling or impulse sampling. In practice, there is no such thing as ideal sampling.
Each sample has a finite width, though very small. This type of sampling is called
non-ideal sampling and has some implications, which we will consider later.

Our first task is to establish an upper limit on the sampling interval. In other words,
what is the largest value of Ts and yet the continuous-time signal can be recovered from
the sampled signal without any distortion? In order to answer this question, we must
resort to the frequency domain representation of the signals under consideration. To this
end we can rewrite Eq. (2.45) in terms of Dirac delta functions as

xs tð Þ ¼
X1
n¼�1

x tð Þδ t � nTsð Þ ð2:46Þ

2.6 Sampling a Continuous-Time Signal 39



Note that the unit impulse is zero except at time instants t¼ nTs, at which instants
its strength equals the sample value of the continuous-time signal. We can now
express the Fourier transform of the sampled signal in terms of the Fourier transform
of the continuous-time signal. Since the Fourier transform is the frequency domain
representation of a signal, we will be able to determine the upper limit on the
sampling interval. To this end, let X( f ) be the Fourier transform of the
continuous-time signal x(t). Then the Fourier transform of the sampled signal can
be written as

Xs fð Þ ¼ F xs tð Þf g ¼ F
X1

n¼�1
x tð Þδ t � nTsð Þ

( )
ð2:47Þ

Using the linearity and convolution in the frequency domain properties of the
Fourier transform, we can express (2.47) as

Xs fð Þ ¼
X1
n¼�1

F x tð Þδ t � nTsð Þf g ¼
X1
�1

X fð Þ � δ f � nFsð Þ ð2:48Þ

In Eq. (2.48), the sampling frequency isFs ¼ 1
Ts
. The convolution of X( f ) with an

impulse δ( f� nFs) results in shifting the spectrum of X( f ) to nFs, that is, X( f� nFs).
Therefore, we have

Xs fð Þ ¼
X1
n¼�1

X f � nFsð Þ ð2:49Þ
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Fig. 2.9 Illustration of ideal sampling
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Equation (2.49) implies that the Fourier transform of the sampled signal is an
infinite sum of the Fourier transform of the continuous-time signal, replicated at
integer multiples of the sampling frequency. By knowing the spectrum of the
continuous-time signal, we can determine the upper limit for the sampling interval
or equivalently and the lower limit on the sampling frequency. Since the continuous-
time signal must be recovered from its samples, we must find a way to recover or
reconstruct the continuous-time signal from its samples.

Sampling or Nyquist Theorem A continuous-time signal that is band limited to
|f| � fc can be recovered or reconstructed exactly from its samples taken
uniformly at a rate Fs � 2fc. The sampling frequency Fs ¼ 2fc is called the Nyquist
frequency. In terms of the sampling interval, the Nyquist theorem implies 1

Ts
� 2f c or

Ts � 1
2f c
. That is, that the sampling interval must be less than or equal to the inverse

of twice the maximum frequency of the continuous-time signal to be sampled.
From the statement of the sampling theorem, we notice that it pertains to

continuous-time signals with finite bandwidth, that is, signals that are band limited.
A continuous-time signal that is band limited to |f| � fc is the same thing as saying
that its Fourier transform satisfies the condition

H fð Þj j ¼ K, fj j � f c
0, otherwise

�
ð2:50Þ

where K is a constant. This type of magnitude response is known as the brick wall
type of response and is an ideal case. But no physically realizable system can have
such a brick wall type of frequency spectrum. So in practice, to limit the frequency
spectrum to a specified frequency range, one must prefilter the continuous-time
signal and then sample it.

Reconstruction of an Ideally Sampled Signal The continuous-time signal can be
recovered or reconstructed exactly from its samples by passing the samples through
an ideal lowpass filter having a cutoff frequency equal to half the sampling fre-
quency. In order to prove the statement, let h(t) be the impulse response of the ideal
lowpass filter. Then its response y(t) to the sampled signal xs(t) is the convolution of
the sampled signal and the impulse response:

y tð Þ ¼ xs tð Þ � h tð Þ ð2:51Þ
Using (2.46) in (2.51), we have

y tð Þ ¼
X1
n¼�1

x nTsð Þδ t � nTsð Þ
( )

� h tð Þ

¼
X1
n¼�1

x nTsð Þ δ t � nTsð Þ � h tð Þf g ð2:52Þ
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Since the convolution of δ(t� nTs) and h(t) equals h(t� nTs), Eq. (2.52) results in

y tð Þ ¼
X1
n¼�1

x nTsð Þh t � nTsð Þ ð2:53Þ

The impulse response of the ideal lowpassfilter band limited to fc can be shown to be

h tð Þ ¼ 2f c
sin 2πf ctð Þ
2πf ct

¼ 2f csinc 2f ctð Þ ð2:54Þ

The sinc function is defined as

sinc xð Þ ¼ sin πxð Þ
πx

ð2:55Þ

Using Eqs. (2.54) in (2.53), the reconstructed signal is found to be

y tð Þ ¼ 2f c
X1

n¼�1
x nTsð Þ sin 2πf c t � nTsð Þð Þ

2πf c t � nTsð Þ ð2:56Þ

The sinc function is unity at the sampling instants with an amplitude equal to the
sample values of the signal. At other instants the signal amplitude is interpolated by
the filter to reconstruct the continuous-time signal exactly. Thus, a continuous-time
signal is recovered or reconstructed from its samples by filtering the sampled signal
through an ideal lowpass filter whose cutoff frequency equals half the Nyquist
frequency at most.

Aliasing Distortion What if the sampling frequency does not meet the Nyquist
criterion? What happens when the sampling frequency is less than twice the max-
imum frequency of the continuous-time signal to be sampled? When a continuous-
time signal is under-sampled, meaning the sampling frequency is below the Nyquist
frequency, a distortion known as aliasing distortion occurs, because of which the
continuous-time signal cannot be recovered from its samples. The frequencies above
the folding frequency are aliased as lower frequencies. The folding frequency
corresponds to half the sampling frequency. For instance, a frequency f 1 þ Fs

2 present

in the continuous-time signal will appear as a frequency Fs
2 � f 1, which is lower than

the frequency f1. Thus, a frequency higher than the folding frequency if present will
alias itself as a lower frequency. This is the aliasing distortion. This is depicted in
Fig. 2.10. In Fig. 2.10a the spectrum of a band-limited continuous-time signal with a
maximum frequency fc is shown. Figure 2.10b shows the spectrum of the sampled
signal, where the sampling frequency is much higher than 2fc. There is no overlap
between the replicas of the spectra. Therefore, the continuous-time signal can be
recovered by filtering the sampled signal by an ideal lowpass filter with a cutoff
frequency fc. Figure 2.10c depicts the case where the sampling frequency is less than
twice the maximum frequency of the continuous-time signal. Because of the overlap
of adjacent spectra, the spectrum in the frequency range �fc � f � fc is distorted and
is the cause for the aliasing distortion.
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Fig. 2.10 An illustration of aliasing distortion: (a) spectrum of a continuous-time signal. (b)
Oversampling case. (c) Undersampling case
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As a second example, let us consider a continuous-time sinusoid of frequency
5 Hz. It is sampled at a rate of 20 per second. A plot of the sampled signal is shown in
the top plot in Fig. 2.11a as a line plot for easier visualization. In the bottom plot of
Fig. 2.11a a sinusoid at a frequency of 15 Hz sampled at 20 Hz is shown. The two
plots look identical even though the two frequencies are different. The sinusoid at
15 Hz has a frequency higher than half of the sampling frequency of 20 Hz. It aliases
itself as 15–10 ¼ 5 Hz signal component. This aliasing frequency is the same as that
of the sinusoid at 5 Hz. Hence, the two sampled signals look alike. This is further
ascertained by the frequency spectra, which are shown in Fig. 2.11b as top and
bottom plots, respectively. Similarly, a third example of undersampling and
oversampling of a continuous-time signal is illustrated in Fig. 2.12 and is self-
explanatory.

2.7 Conversion of Continuous-Time Signals to Digital
Signals

So far in our discussion we have treated discrete-time signals as having a continuum
of amplitudes, meaning that the amplitudes of the discrete-time signals have infinite
accuracy in amplitude. As a result all our computations such as convolution sum,
etc., were performed with infinite accuracy. This ideal scenario changes when we
deal with processing discrete-time signals with computers – hardware or software.
There are two issues involved here. First, we have to convert the discrete-time
signals into digital signals, which are approximations to signals with continuum of
amplitudes. This is known as analog-to-digital (A/D) conversion. The degree of
approximation depends on the word length available for digital representation of the
amplitudes. The larger the word length, the better the approximation. The second
issue deals with the accuracy of arithmetic operations. Errors due to limited accuracy
of arithmetic operations manifest as noise. This is also the case with A/D conversion.
In this chapter we will deal with A/D conversion and resulting errors. In a later
chapter we will analyze the effect of arithmetic errors due to finite precision
arithmetic operations.

The process of converting an analog signal to digital signal is depicted in Fig. 2.13.
The input continuous-time signal is first sampled, and the sampled value is held until it is
converted to a digital number. The sample and hold (S/H) functional block samples the
input signal at a predetermined uniform rate and holds the sample value until it is
converted to a digital representation. Once the conversion is completed, the S/H acquires
the next sample and so on. The process of S/H is illustrated in Fig. 2.14, where an analog
signal is sampled and held constant until the next sample arrives. The second block,
namely, the quantizer block, represents the sampled value to the nearest allowed level.
This process is called quantization. There are two types of quantizers, namely, scalar
and vector quantizers. A scalar quantizer accepts a single analog sample and outputs a
quantized value that approximates the input analog sample. A vector quantizer, on the
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Fig. 2.11 Second example of aliasing distortion: (a) top plot, sampled 5 Hz sinusoid at a sampling
frequency of 20 Hz; bottom plot, sampled 15 Hz sinusoid at a sampling frequency of 20 Hz. (b) Top
plot, spectrum of 5 Hz signal at 20 Hz sampling rate; bottom plot, spectrum of 15 Hz signal sampled
at 20 Hz rate. The 15 Hz signal appears as a 5 Hz signal
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Fig. 2.12 A third example of aliasing distortion: (a) top plot, 3800 Hz signal at a sampling rate of
8000 Hz; bottom plot, same 3800 Hz signal sampled at a rate of 4000 Hz. (b) Top plot, spectrum of
the signal at 8000 Hz sampling rate; bottom plot, spectrum of the same signal at 4000 Hz sampling
rate. The 3800 Hz appears as 200 Hz signal
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other hand, accepts a vector of analog samples and outputs a vector of discrete samples
that is close to the input vector. We will only deal with scalar quantizers here.

The design of a scalar quantizer amounts to dividing the input range of the analog
signal amplitude into L + 1 levels and determining the corresponding L reconstruc-
tion or output levels. The relationship between the number of reconstruction levels L
and the number of bits B of the quantizer is L ¼ 2B. The A/D converter has a fixed
voltage or current amplitude limits for its input. For instance, it can have an input
voltage limited to	1 V or 0 to 1 volt. If the number of binary digits (bits) allowed in
an A/D converter is B bits, then there are L ¼ 2B number of levels between the
minimum and maximum input amplitude range. The quantizer assigns the current
sample value a level that is closest to the analog sample value. Denote the L + 1 input
decision intervals by {Dj, 1 � j � L + 1} and the corresponding L output levels by
{Rk, 1� k� L}. The quantizer maps an input analog sample x to its nearest neighbor
and is formally expressed as

Q xð Þ ¼ bx ¼ Rk ð2:57Þ

x(t)

S/H Quantize Coder

x[n]
xq (t) xg [n]ˆ

Fig. 2.13 A practical A/D converter model
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In general, the lower and upper boundaries of the input decision intervals are
defined by

D1 ¼ xmin&DLþ1 ¼ xmax ð2:58Þ
Let us assume that the output levels are chosen so that the following is satisfied.

R1 < R2 < R3� � �� � �RL ð2:59Þ
For a given input analog signal, the decision boundaries and the corresponding

output levels are chosen such that the mean square error (MSE) between the analog
and the quantized samples is a minimum. The MSE is expressed as

MSE ¼ E
�
x� bx�2n o

¼
Z DLþ1

D1

�
x� bx�2px xð Þdx ð2:60Þ

In the above equation, E denotes the statistical average or expectation and px(x)
the probability density function (pdf) of the input analog samples. Because the
quantized output value is constant equal to Rk over the interval [Dk,Dk + 1), (2.60)
can be rewritten as

MSE ¼
XL
m¼1

Z Dmþ1

Dm

x� Rmð Þ2px xð Þdx ð2:61Þ

From (2.61), we notice that the MSE is a function of both the decision boundaries
and the output levels. Therefore, the minimum value of the MSE in (2.61) can be
found by differentiating the MSE with respect to both the decision boundaries and
the output levels and setting them to zero and then solving the two equations. Thus,

∂MSE

∂Di
¼ Di � Ri�1ð Þ2px Dið Þ � Di � Rið Þ2px Dið Þ ¼ 0 ð2:62aÞ

∂MSE

∂Ri
¼ 2

Z Diþ1

Di

x� Rið Þpx xð Þdx ¼ 0, 1 � i � L ð2:62bÞ

From (2.62a), we have

Di � Ri�1ð Þ2 ¼ Di � Rið Þ2 ð2:63Þ
Due to the fact that Ri > Ri � 1, we determine the decision boundaries after

simplifying (2.63) as

Di ¼ Ri þ Ri�1

2
ð2:64Þ

The output levels are obtained from (2.62b) as
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Ri ¼
RDiþ1

Di
xpx xð ÞdxRDiþ1

Di
px xð Þdx

ð2:65Þ

The implications of the optimal quantizer are that the decision boundaries lie at
the midpoints of the corresponding output levels and the optimal output levels are
the centroids of the decision intervals. Since these two quantities are interdependent,
there is no closed-form solution to the two Eqs. (2.64) and (2.65). The solution is
obtained by iteration. Also, note that the design of an optimal quantizer requires a
priori knowledge of the pdf of the input analog samples. In other words, the optimal
scalar quantizer is a function of the pdf of the input analog samples. This type of
quantizer is known as the Lloyd-Max quantizer. The decision intervals and the
corresponding output levels of a Lloyd-Max quantizer are nonuniform. Moreover,
the Lloyd-Max quantizer is dependent on the input signal. Therefore, each new
signal must have its own quantizer for optimal performance. However, a closed-form
solution exists for a uniform quantizer, which we will describe next. The design of a
uniform quantizer is simple and is the reason for its widespread use in image and
video compression standards.

Uniform Quantizer If the pdf of the input analog samples is uniform, there exists a
closed-form solution to the decision boundaries and the output levels for the Lloyd-
Max quantizer. Under this condition, we will find the decision intervals and the
output levels will all be equal. Hence the quantizer is known as the uniform
quantizer. Obviously, a uniform scalar quantizer is optimum for analog samples
that have uniform pdf. A uniform pdf implies

px xð Þ ¼ 1
xmax � xmin

¼ 1
DLþ1 � D1

ð2:66Þ

Substituting (2.66) for the pdf in (2.65), the output levels of a scalar uniform
quantizer are found to be

Ri ¼ Diþ1 þ Di

2
ð2:67Þ

Using (2.67) in (2.64), the following relationship is found

Diþ1 � Di ¼ Di � Di�1 ¼ Δ, 2 � i � L ð2:68Þ
From the above equation, it is clear that the interval between two consecutive

decision boundaries is the same and equals the quantization step sizeΔ. For instance,
if the input amplitude range is between xmin and xmax, then for a B-bit quantizer, the
step size is Δ ¼ xmax�xmin

2B
. The value assigned by the quantizer to an analog sample

then lies half way between two consecutive levels. Therefore, the error or difference
between a sample and its quantized value ranges between	Δ

2. Larger the value of B
smaller is the quantization error. Finally, the coder block assigns a B-bit binary code
to the quantized level. Thus, a sample is converted to a digital number.
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Example 2.10 This example shows how to design a B-bit uniform quantizer based
on an input sinusoid of specified amplitude, frequency, and sampling frequency. It
then quantizes the sinusoid and calculates the resulting SNR in dB. The MATLAB
M-file for this example is named Example2_10.m. The number of bits of quantiza-
tion used in this example is 4. The amplitude range is 	1. The resulting SNR is
found to be 23.07 dB. The actual input and the corresponding quantized values are
shown in the top plot in Fig. 2.15. The quantization error sequence is shown in the
bottom plot of Fig. 2.15. The input-output characteristic of the 4-bit uniform
quantizer for the sinusoid in this example is shown in Fig. 2.16. As required, there
are 16 steps between the amplitude range of 	1.

Coding the Quantized Values There are two ways to code the assigned level into a
binary number. One way is to use what is called the sign-magnitude representation.
In this method the magnitude of the sample value is represented by a b-bit binary
number and a sign bit as the most significant bit (MSB) to indicate its sign. Thus,
there are B ¼ b + 1 bits in this digital representation. In the second method called
two’s complement, positive fractions are represented as in the sign-magnitude form.
A negative fraction is represented in two’s complement form as follows: first the
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Fig. 2.15 Actual and quantized values of the sinusoid in Example 2.10 using a 4-bit uniform
quantizer: top, input sinusoid in black stems and the quantized samples in red dashed stems; bottom,
corresponding error sequence
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magnitude is represented in binary number, the bits are complemented, and then a
1 is added to the least significant bit (LSB) to get the two’s complement represen-
tation. For instance, let us represent the decimal fraction �0.875 in the two
abovementioned formats. In sign-magnitude format, we first represent the magnitude
of the decimal fraction in binary fraction, which is 0.87510¼ 0.11102. Then a “1” bit
is inserted in the MSB position to get the sign-magnitude representation:
�0.87510 ¼ 1.11102. The “1” in the MSB corresponds to a negative value, and a
“0” in the MSB corresponds to a positive value. The same decimal value in two’s
complement form is obtained by complementing each bit of the magnitude and then
adding a “1” to the LSB. So, the complement of 0.87510 is 1.00012. Adding a “1” to
the LSB gives the number 1.00012 + 0.00012 ¼ 1.00102. Thus, the two’s comple-
ment representation of�0.87510 is 1.00102. As an example of a 3-bit A/D converter,
Fig. 2.17 shows the input-output characteristics using two’s complement represen-
tation. As can be seen from the figure, all input values greater than or equal to 7Δ

2 are
assigned the same value of 3Δ. Similarly, all input values less than or equal to � 9Δ

2
are assigned the same value �4Δ.

2.8 Performance of A/D Converters

A/D converters come with different bit widths. Some are 8-bit converters, some are
12-bit converters, and others are 14- or 16-bit converters. We mentioned earlier that
the output of an A/D converter is an approximation to the input samples. The degree
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2.8 Performance of A/D Converters 51



of approximation is a function of the bit width of the A/D converter. Because of the
approximation carried out by an A/D converter, errors occur between the analog
samples and the digital samples. This type of error is random and so is considered as
noise. That is, there is no definite analytical expression to describe the errors sample
by sample. It is, therefore, convenient and proper to describe the error due to
quantization in terms of its averages. The most commonly used measure to describe
noise is the variance. In order to estimate the variance of the noise due to quantiza-
tion, one has to know its distribution. Here, by distribution we mean the probability
of occurrence of the amplitudes of the noise due to quantization. In practice it is
found that the quantization error is uniformly distributed between the range �Δ

2;
Δ
2

� 	
.

That is to say that all amplitudes in this interval have the same probability of
occurrence. Mathematically speaking, the uniform distribution is expressed as

p eð Þ ¼ 1
Δ
, � Δ

2
� e � Δ

2
ð2:69Þ

with e corresponding to the possible amplitude of the quantization error. The mean
or average value of the quantization error μe is obtained from

μe ¼
Z Δ

2

�Δ
2

ep eð Þde ¼ 1
Δ

Z Δ
2

�Δ
2

ede ¼ 1
2Δ

e2
��Δ2
�Δ

2
¼ 0 ð2:70Þ

So, the mean value of the quantization error is zero. The variance σ2e of the
quantization error is obtained from

σ2e ¼
Z Δ

2

�Δ
2

e� μeð Þ2p eð Þde ¼ 1
Δ

Z
�
Δ2

Δ
2

e2de ¼ 1
3Δ

e3
��Δ2
�Δ

2
¼ Δ2

12
ð2:71Þ
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From Eq. (2.71), we notice that the variance of the noise due to quantization is
proportional to the square of the step size. In terms of the word length B of the A/D
converter, Eq. (2.71) amounts to

σ2e ¼
xmax � xminð Þ22�2B

12
ð2:72Þ

The quantization noise variance of the A/D converter decreases exponentially
with increasing bit width. The quantization noise variance alone is not enough to
judge its effect on the processed signal. It depends on the power or variance of the
analog signal being processed digitally. In other words, the effect of the noise due to
quantization depends on its variance relative to the signal variance. This is defined
by the signal-to-noise ratio (SNR) and is usually expressed in decibel or dB for short.
If the amplitude of the analog signal is assumed to be uniformly distributed in the
range {xmin, xmax}, then its variance is found to be

σ2x ¼
xmax � xminð Þ2

12
ð2:73Þ

Then the SNR in dB of the A/D converter with B-bit bit width is defined as

SNR ¼ 10log10
σ2x
σ2e


 �
¼ 10log10

xmax�xminð Þ2
12

xmax�xminð Þ2
12 2�2B

 !

 6:02B, dB ð2:74Þ

From Eq. (2.74), we observe that the SNR in dB increases linearly with B. If B
is increased by 1 bit, then the SNR increases by approximately 6 dB. That is to
say that each additional bit in the A/D converter yields an improvement of about
6 dB in the resulting SNR.

MATLAB Examples We can simulate A/D converters using the MATLAB
Simulink system. Before building a hardware system, it is wise to first simulate it
to assess its performance. If the system does not meet the target performance, one
can fine-tune the design parameters and rerun the simulation to verify its perfor-
mance. Thus, simulation not only saves time and energy but also guarantees
performance. Simulink is a very useful tool in simulating algorithms and hardware
systems. We will first demonstrate the sample and hold operation, using Simulink.

S/H Example Using Simulink Figure 2.18 shows the block diagram simulating the
S/H function. It consists of a continuous-time signal source, a pulse generator as the
sampler, S/H block, and a time scope to display the signals. In order to draw the
block diagram, first start the Simulink by clicking the Simulink Library on the
toolbar menu on the MATLAB window or type simulink in the workspace. A
Simulink Library Browser appears. Click the arrow pointing downward next to the
icon showing simulink diagram on the toolbar, and select New Model. A new
window appears. Select the DSP System Toolbox and then Sources. A list of sources
appears on the right side as shown in Fig. 2.19. Let us choose the Sine Wave source
and drag it to new untitled window. Double-click the Sine Wave block, and specify
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Fig. 2.18 Block diagram of sample and hold function using Simulink

Fig. 2.19 Simulink Library Browser



the parameters as shown in Fig. 2.20. Next, under Simulink, choose Sources and then
Pulse Generator and drag it to the untitled window. Double-click the Pulse Gener-
ator and fill in the blanks as shown in Fig. 2.21. Next, choose DSP System Toolbox
and then Signal Operations. From the list of blocks that appear on the right side,
choose the Sample and Hold block, and drag it to the untitled window. Double-click
the block, and fill in the blanks as shown in Fig. 2.22. Finally, choose Sinks under
DSP System Toolbox. From the list of sinks, choose Time Scope, and drag it to the
untitled window. Double-click the Time Scope. A time scope appears as shown in
Fig. 2.23. Figure 2.23 also shows the three time displays. This window was captured
after simulation. To display three signals in three rows, click View, and choose
Layout from the time scope window. By choosing Configuration Properties under
View in the toolbar, we can label the three displays. Now we have all the sub-blocks
and the corresponding parameters. We need to connect them in the order shown in
Fig. 2.18. To connect the output of one block to the input of a second block, first
click the output node, and then move the mouse to the input node of the second block
while pressing the left mouse button. Thus, we have the complete system. Next, save
the diagram with a name. To start the simulation, click the green button with an
arrow pointing to the right on the toolbar. If everything is syntactically correct,
MATLAB performs the simulation, and the various signals are displayed on the time
scope, as indicated in Fig. 2.23. In this example the simulation time is chosen to be
1 s. One can change the simulation time to suit the needs. In this example the input
continuous-time signal is a sine wave with a frequency of 5 Hz and amplitude unity.
Since the simulation time is chosen to be 1 s, there are five cycles of the sine wave, as
displayed on the topmost display. The middle display displays the pulse train of the
pulse generator. The pulse period is 0.05 s. Therefore, there are 20 pulses in 1 s, as
can be seen in the display. The bottommost display is the sample and hold signal.

Fig. 2.20 Block parameters
for sine wave source
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Fig. 2.21 Block parameters for pulse generator source

Fig. 2.22 Block parameters
for sample and hold function
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The analog signal is sampled at the rising edge of the pulse and held for about 45 ms
duration. The pulse period is 50 ms, and the pulse width is 5 ms. So the S/H block
holds the sample value for approximately 45 ms. Since there are 20 pulses in 1 s,
there are 20 samples in that duration, as seen in Fig. 2.23.

Simulation of A/D Converter Using Simulink An A/D converter as shown in
Fig. 2.13 first samples the input continuous-time signal and holds until the
conversion is completed. We have simulated this sample and hold process as
described above. Next, we will expand on this and include a quantizer to
complete the A/D conversion process. Figure 2.24 shows the block diagram of
an A/D converter using Simulink. As can be seen from the figure, we have
included two input signal sources: a sine wave signal generator and a random
signal generator. The sine wave function generates a continuous-time signal with
an amplitude unity and a frequency of 5 Hz as shown in Fig. 2.25. The random
signal generator produces a uniformly distributed random signal with amplitudes
between �1 and +1 and is also a continuous function of time as seen in Fig. 2.26,
which lists the parameters of the random signal generator. A manual switch is
used to switch the input source between sine wave and random signal. Before
starting the simulation, we have to double-click the switch to change the input

Fig. 2.23 Time scope
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Fig. 2.24 Block diagram of an A/D converter using Simulink

Fig. 2.25 Parameters of the
sine wave generator of
Fig. 2.24
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source. The S/H block has the same parameters as that used in the S/H example.
The quantizer has 6 bits of quantization, and its parameters are shown in
Fig. 2.27. Three outputs are generated in the simulation, namely, the output of
S/H, the output of the quantizer, and the difference between these two signals.
They are stored as vectors in the workspace with names as indicated in Fig. 2.24.
The time scope displays the chosen input signal on the top plot, the pulse
generator output on the middle plot, and the quantization error on the bottom
plot, as shown in Fig. 2.28a. In this figure the input source is the sine wave. In
Fig. 2.28b the random input signal is shown. With 1 min of simulation, the SNR
due to quantization is found to be 36.36 dB for the sine wave and 36.11 dB for the
random signal. These numbers agree with the SNRs obtained from analysis when
the A/D bit width is 6 bits.

2.9 Summary

In this chapter we started with the mathematical description of discrete-time signals
in general and some of the useful discrete-time signals in particular. Next we
described linear time-invariant (LTI) discrete-time systems. Specifically, we

Fig. 2.26 Parameters of the
random signal generator of
Fig. 2.24
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described how an LTI system is characterized in terms of its impulse response and
how its response to any given input discrete-time signal is computed via convolution
sum. We then established the condition that the impulse response must satisfy for the
LTI system to be stable. Next we introduced an alternative method of describing an
LTI discrete-time system, namely, the linear difference equation with constant
coefficients. We showed how the response of an LTI discrete-time system to a
specified input sequence could be obtained in closed-form solution. Several exam-
ples were included to nail the concept. Since discrete-time signals are mostly
obtained from continuous-time or analog signals, we stated the sampling theorem
also called Nyquist’s theorem and showed how the analog signals can be recovered
or reconstructed from their discrete-time counterparts. If the Nyquist sampling
criterion is not satisfied, aliasing distortion will occur, and it cannot be removed.
We exemplified this notion using a few examples. The sampling theorem that we
talked about pertains to lowpass signals. Often, bandpass signals are encountered,
especially in the field of communications. These signals are centered at a very high
frequency with a narrow bandwidth. The sampling rate of these bandpass signals
will be very high if Nyquist’s condition is used. Instead, one can sample a bandpass
signal at a much lower rate without incurring aliasing distortion. We verified this
statement using an example. The next logical thing to do is to describe the process of
converting an analog signal to digital signal. We described the A/D converter
function by function with plots to illustrate the results. Since A/D conversion
involves the approximation of analog samples using fixed number bits of represen-
tation, errors occur between the analog and digital values. These errors propagate
through the discrete-time system and manifest as noise in the output. We, therefore,
derived mathematical formula to measure the performance of an A/D converter. This
formula expresses the signal-to-noise ratio of an A/D converter in terms of the
number of bits used in the A/D converter. Finally we simulated the S/H operation

Fig. 2.27 Parameters of the uniform quantizer of Fig. 2.24
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Fig. 2.28 Time scope display of signals used in Fig. 2.24: (a) sine wave, (b) random signal
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as well as the complete A/D conversion using MATLAB’s Simulink system. In the
next chapter, we will deal with Z-transform and its use in describing LTI discrete-
time systems. We will show what role the Z-transform plays in the analysis and
design of discrete-time systems.

2.10 Problems

1. Give a few good reasons why we always deal with linear systems even if the
actual systems are nonlinear.

2. Is the sequence, x[n] ¼ αnu[n], j α j ≺ 1 absolutely summable?
3. Is the sequence x[n] ¼ n2αnu[n], j α j ≺ 1 absolutely summable?
4. Consider the discrete-time system described by y[n] ¼ αx2[n] with α a real

constant. Will you use this system to amplify a sinusoidal signal? If not, why?
Explain.

5. Find the fundamental period of the sequence x[n] ¼ cos(0.8nπ + 0.25π).
6. What is the period of the sequence x n½ � ¼ sin 2πx100

1000 n
� 	þ sin 2πx150

1000 n
� 	

?
7. If x[n], y[n], and g[n] represent three finite-length sequences of lengths N, M,

and L, respectively, with the first sample of each sequence occurring at n ¼ 0,
what is the length of the sequence x[n] � y[n] � g[n]?

8. Evaluate the linear convolution of x[n] with itself, where x[n]¼ {1, �1, 0, 1, �1},
0 � n � 4.

9. Determine if the system described by y[n] ¼ α + x[n + 1] + x[n] + x[n � 1] + x
[n � 2] is (a) linear, (b) causal, (c) shift-invariant, and (d) stable.

10. Determine if the system described by y[n] ¼ x[n + 1] + x[n] + x[n � 1] + x
[n � 2] is causal.

11. Consider the two discrete-time LSI systems whose impulse responses are described

by h1 n½ � ¼ 1, 0 � n � N � 1
0, otherwise

�
and h2 n½ � ¼ 1, � N � 1ð Þ � n � 0

0, otherwise

�
. If a unit

step sequence is applied to both systems, what will be their responses?
12. Obtain the total solution for n � 0 of the discrete-time system described by y

[n]� 0.4y[n� 1]� 0.05y[n� 2]¼ 1.5 cos (10πn)u[n], with initial conditions y
[�1] ¼ 1, y[�2] ¼ 0.

13. Determine the impulse response of the system described in Problem 12 above.
14. Determine the rise time of the discrete-time system described in Problem 12.

You may use MATLAB to solve the problem.
15. Find the impulse response and step response of the discrete-time system

described by y[n] � 0.7y[n � 1] + 0.1y[n � 2] ¼ x[n] � 0.7x[n � 1].
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Chapter 3
Z-Transform

3.1 Z-Transform Definition

You may be asking what is the need to know Z-transform. What is Z-transform, anyway?
Before we define it, let us know its use. Z-transform is very useful in the analysis of
discrete-time signals and systems. We will see later that it is extremely powerful in the
design of digital filters. It tells us everything about an LTI discrete-time system – its
stability, its frequency response, the filter structure, etc. Therefore, it is a must for us to
know what Z-transform is. By the way, Z-transform plays a similar role for the discrete-
time signals and systems as does Laplace transform for the continuous-time counterparts.

Z-transform is a mapping of discrete-time sequences from the time domain into a
complex variable domain. This complex variable for certain specific values can be
considered as a frequency variable. Specifically, the Z-transform of a sequence x[n],
denoted X(z), is defined as

X zð Þ ¼ Ζ x n½ �f g ¼
X1
n¼�1

x n½ �z�n ð3:1Þ

So, it is an infinite sum of the product of the sequence and the complex variable
z raised to negative n. The Z-transform of a sequence exists only if the absolute of the
summation on the right-hand side of (3.1) converges to a finite value. That is,

X1
n¼�1

x n½ �z�n

�����
����� �

X1
n¼�1

x n½ �z�nj j < 1 ð3:2Þ
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For a given sequence x[n], its Z-transform will exist, in general, for a certain range
of values of the complex variable z. This range of values of z over which the
Z-transform exists, i.e., Eq. (3.2) is satisfied, is called the region of convergence
(ROC). As we will see later, the unit circle in the z-plane plays an important role in
digital filters. In the complex z-plane, the unit circle is defined as those values of z
satisfying the condition |z|¼ 1. Having defined the Z-transform, let us determine the
Z-transform of some useful discrete-time signals before we go any further.

Z-Transform of an Impulse Sequence The Z-transform of a unit impulse
sequence δ[n] is obtained from (3.1) as

Ζ δ n½ �f g ¼
X1
n¼�1

δ n½ �z�n ¼ 1 ð3:3Þ

since the unit impulse function is zero everywhere except at n ¼ 0 at which it is
unity. Thus, the Z-transform of a unit impulse sequence is a constant independent of
z. Therefore, its ROC is the entire z-plane, meaning that it exists over the entire
z-plane.

Z-Transform of a Unit Step Sequence Let us find the Z-transform of the unit step
sequence u[n] using the definition in (3.1):

Ζ u n½ �f g ¼
X1

n¼�1
u n½ �z�n ¼

X1
n¼0

z�n ¼ lim
n!1

1� z� nþ1ð Þ

1� z�1
ð3:4Þ

The limiting value in (3.4) is finite only for values |z| > 1, in which case the
Z-transform of the unit step sequence is

Ζ u n½ �f g ¼ 1
1� z�1

, zj j > 1 ð3:5Þ

From (3.5), we infer that the ROC of the Z-transform of the unit step sequence is
outside the unit circle in the z-plane.

Z-Transform of a Real Causal Exponential Sequence Consider the exponential
sequence αnu[n], where α is a real constant. This sequence is causal because it is zero
for n less than zero. Its Z-transform from the definition is

Ζ αnu n½ �f g ¼
X1
n¼�1

αnu n½ �z�n ¼
X1
n¼0

αnz�n ¼
X1
n¼0

αz�1
� �n ð3:6Þ

Observe that the summation in the above equation is a geometric series. If |αz�1| < 1
or, equivalently, if |z| > |α|, then the summation in (3.6) converges, and so the
Z-transform of an exponential sequence is

Ζ αnu n½ �f g ¼ 1
1� αz�1

, zj j > αj j ð3:7Þ
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From (3.7), it is clear that the ROC of the Z-transform of a real causal exponential
sequence is outside the circle of radius |α|.

Z-Transform of a Modulated Cosine Sequence We consider a modulated cosine
sequence x[n] ¼ rn cos (nω0)u[n], where r is a real positive constant. It is called a
modulated cosine sequence because the amplitude of the cosine sequence is not
constant but increases or decreases exponentially depending on whether r is greater
than or less than unity. Using the definition in (3.1), we have

Ζ rn cos nω0ð Þu n½ �f g ¼
X1
n¼�1

rn cos nω0ð Þu n½ �z�n ¼
X1
n¼0

rn cos nω0ð Þz�n ð3:8Þ

To obtain a closed-form expression for (3.8), we consider
cos nω0ð Þ ¼ Re e jnω0f g. We can, therefore, write (3.8) as

Ζ rn cos nω0ð Þu n½ �f g ¼ Re Ζ rne jnω0u n½ �� �� � ¼ Re
X1
n¼0

rne jnω0z�n

( )
ð3:9Þ

Or,

Z rn cos nω0ð Þu n½ �f g ¼ Re
X1
n¼0

rejω0z
�1

� �n
( )

ð3:9aÞ

Since e jω0j j ¼ 1, for values of |z| > |r|, the right-hand side of (3.9a) converges to
1

1�re jω0 z�1. Therefore,

Ζ rn cos nω0ð Þu n½ �f g ¼ Re
1

1� re jω0z�1

	 

ð3:10Þ

Since the denominator of Eq. (3.10) is complex, we multiply the numerator and
denominator of (3.10) by the complex conjugate of the denominator. Then, the
denominator becomes purely real because

1� re jω0z�1
� �

1� re�jω0z�1
� � ¼ 1� 2rz�1 cos ω0ð Þ þ r2z�2 ð3:11Þ

The real part of the numerator is the real part of 1� re�jω0z�1, which is 1 � rz�1

cos (ω0). Hence,

Ζ rn cos nω0ð Þu n½ �f g ¼ 1� rz�1 cos ω0ð Þ
1� 2rz�1 cos ω0ð Þ þ r2z�2

, zj j > r ð3:12Þ

Again, the ROC of the Z-transform of the modulated cosine sequence is outside
the circle of radius r in the z-plane.

Z-Transform of a Modulated Sine Sequence We are looking for the Z-transform
of the sequence rn sin (nω0)u[n]. We can use the same procedure used for the
Z-transform of the modulated cosine sequence except that we take the imaginary
part in Eq. (3.9) because sin nω0ð Þ ¼ Im e jnω0f g. After simplification, we arrive at
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Ζ rn sin nω0ð Þu n½ �f g ¼ rz�1 sin ω0ð Þ
1� 2rz�1 cos ω0ð Þ þ r2z�2

, zj j > r ð3:13Þ

From (3.13), the ROC of the Z-transform of a modulated sine sequence is found
to be outside a circle of radius r in z-plane. Table 3.1 lists the Z-transforms of the
sequences discussed above along with the corresponding ROC.

Example 3.1: Z-Transform of an Anticausal Exponential Sequence We want to
find the Z-transform of the sequence x[n] ¼ � anu[�n � 1]. This sequence is
anticausal because it exists for n less than 0. Using the definition of the Z-transform,
we have

X zð Þ ¼
X1

n¼�1 x n½ �z�n ¼ �
X�1

n¼�1
anz�n ¼ �

X1
n¼1

a�nzn

Note that

�
X1
n¼1

a�nzn ¼ � a�1zþ a�2z2 þ � � � þ a�nzn þ � � �� �

which can be rewritten as

�
X1
n¼1

a�nzn ¼ �a�1z 1þ a�1zþ a�2z2 þ � � � þ a�nzn þ � � �� �

Therefore, the Z-transform of the anticausal exponential sequence is

X zð Þ ¼ �a�1z
X1
n¼0

a�1z
� �n ¼ � a�1z

1� a�1z
, zj j < aj j

The above equation can also be expressed as

X zð Þ ¼ 1
1� az�1

, zj j < aj j

Thus, the ROC of an anticausal exponential sequence is inside a circle of radius |a|,
whereas the ROC of a causal exponential sequence is outside the circle of radius |a|.

Table 3.1 Z-Transform of
useful sequences

Sequence Z-transform ROC

δ[n] 1 Everywhere

u[n] 1
1�z�1 |z| > 1

αnu[n] 1
1�αz�1 |z| > |α|

rn cos (nω0)u[n] 1�rz�1 cos ω0ð Þ
1�2rz�1 cos ω0ð Þþr2z�2

|z| > r

rn sin (nω0)u[n] rz�1 sin ω0ð Þ
1�2rz�1 cos ω0ð Þþr2z�2

|z| > r
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Example 3.2: Z-Transform of a Finite-Length Exponential Sequence We want
to find the Z-transform of an exponential sequence that is of finite duration in a
closed form. Specifically, let the sequence be

x n½ � ¼ an,L � n � M � 1
0, otherwise

	

Then, its Z-transform is obtained from

X zð Þ ¼
XM�1

n¼L

anz�n ¼ aLz�L þ aLþ1z� Lþ1ð Þ þ � � � þ aM�1z� M�1ð Þ

By extracting the term aLz�L, the above equation results in

X zð Þ ¼ aLz�L
XM�L�1

n¼0

az�1
� �n ¼ aLz�L 1� aM�Lz� M�Lð Þ

1� az�1
¼ aLzL � aMz�M

1� az�1

As the sequence is of finite length, the summation is always finite everywhere in
the z-plane except at z¼ 0 and z¼1, provided |a| is finite. IfM > L� 0, the ROC is
the entire z-plane except z¼ 0. On the other hand, if L is negative and M is positive,
the ROC is also the entire z-plane except at z¼ 0 and z¼1. For the third possibility
of both L and M negative, the region of convergence is again the entire z-plane
except z ¼ 1.

3.2 Properties of Z-Transform

By using the properties of the Z-transform, it will be much more elegant and simple
to analyze discrete-time signals and systems. We will list a few properties of the
Z-transform with proofs.

Scaling by a Constant What happens to the Z-transform of a sequence if it is
multiplied by a constant? More specifically, we are looking for the Z-transform of ax
[n] in terms of the Z-transform of x[n]. Thus,

Ζ ax n½ �f g ¼
X1
n¼�1

ax n½ �z�n ¼ a
X1
n¼�1

x n½ �z�n ¼ aX zð Þ ð3:14Þ

In other words, the Z-transform of a sequence scaled by a constant equals the
Z-transform of the original sequence scaled by that constant. Here the constant may
be real or complex. We also observe that the ROC of the Z-transform of the scaled
sequence is the same as that of the original sequence.

Linearity The Z-transform is linear, meaning that it satisfies the superposition rule.
In other words, the Z-transform of a linear combination of sequences is the same
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linear combination of the individual Z-transforms. In mathematical terms, the
following equation expresses the linearity:

Ζ ax1 n½ � þ bx2 n½ �f g ¼
X1
n¼�1

ax1 n½ � þ bx2 n½ �f gz�n ð3:15Þ

Since the summation operation is linear, Eq. (3.15) in conjunction with (3.14), we
have

Ζ ax1 n½ � þ bx2 n½ �f g ¼ a
X1
n¼�1

x1 n½ � z�n þ b
X1
n¼�1

x2 n½ �z�n

¼ aX1 zð Þ þ bX2 zð Þ
ð3:16Þ

Of course, the above equation holds in the ROC common to both Z-transforms.

Time Shifting What happens to the Z-transform of a sequence when the sequence
is shifted in time by an integer number of samples? So,

Ζ x n� m½ �f g ¼ z�mX zð Þ,m2Z ð3:17Þ
The proof is simple. Using the definition of the Z-transform, we have

Ζ x n� m½ �f g ¼
X1
n¼�1

x n� m½ �z�n ð3:18Þ

Let k ¼ n � m in Eq. (3.18). Therefore, n ¼ k + m. Eq. (3.18) becomes

Ζ x
�
n� m

� � ¼
X1
k¼�1

x k½ �z� mþkð Þ ¼ z�m
X1
k¼�1

x k½ �z�k ¼ z�mX zð Þ ð3:19Þ

From the time-shifting property, we observe that a shift in time is equivalent to
multiplying the corresponding Z-transform by the complex variable z raised to the
negative power of the time shift.

Conjugation We may not have explicitly stated that the discrete-time sequence can
be real or complex. The conjugation property states that the Z-transform of the
complex conjugate of a sequence is the complex conjugate of the Z-transform as a
function of the complex conjugate of z, that is,

Ζ x⋇ n½ �f g ¼ X⋇ z⋇ð Þ ð3:20Þ
In the above equation, the symbol * denotes complex conjugation.

Proof Using the definition of Z-transform, we have

Ζ x⋇ n½ �f g ¼
X1
n¼�1

x⋇ n½ �z�n ð3:21Þ
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Since {x⋇}⋇ ¼ x, we can rewrite (3.21) as

Ζ x⋇ n½ �f g ¼
X1

n¼�1
x n½ � z⋇ð Þ�n

( )⋇

¼ X⋇ z⋇ð Þ ð3:22Þ

Time Reversal The Z-transform of a time-reversed sequence is the Z-transform of
the original sequence as a function of z�1. That is,

Ζ x �n½ �f g ¼ X
1
z

� 
ð3:23Þ

Proof Notice that time reversal corresponds to negative n as the time index. Now
from the definition of the Z-transform, we have

Ζ x �n½ �f g ¼
X1
n¼�1

x �n½ �z�n ð3:24Þ

In Eq. (3.24) let m ¼ � n. Then, the Z-transform of the time-reversed sequence
becomes

Ζ x �n½ �f g ¼
X�1

m¼1
x m½ �zm ¼

X1
m¼�1

x m½ � z�1
� ��m ¼ X

1
z

� 
ð3:25Þ

Hence, the result.

Multiplication by an Exponential Sequence If a sequence x[n] is multiplied by an
exponential sequence αn, the resulting Z-transform can be obtained by simply
replacing the variable z in X(z) by z

α. That is,

Ζ αnx n½ �f g ¼ X
z

α

� �
ð3:26Þ

Proof Using the definition of the Z-transform, we obtain

Ζ αnx n½ �f g ¼
X1
n¼�1

αnx n½ �z�n ¼
X1
n¼�1

x n½ � z

α

� ��n
¼ X

z

α

� �
ð3:27Þ

Differentiation Rule The Z-transform of a sequence multiplied by the time index n
equals the negative of the differential with respect to z of the Z-transform multiplied
by z:

Ζ nx n½ �f g ¼ �z
dX zð Þ
dz

ð3:28Þ
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Proof First, from the definition of the Z-transform, we have

Ζ nx n½ �f g ¼
X1
n¼�1

nx n½ �z�n ð3:29Þ

Observe that

d

dz
z�nð Þ ¼ �nz� nþ1ð Þ⟹nz�n ¼ �z

d

dz
z�nð Þ ð3:30Þ

Using (3.30) in (3.29), we find that

Ζ nx n½ �f g ¼
X1

n¼�1
x n½ � �z

d

dz
z�nð Þ

	 

ð3:31Þ

However, since differentiation operation is linear and here it is with respect to z,
we can rewrite (3.31) as

Ζ nx n½ �f g ¼ �z
d

dz

X1
n¼�1

x n½ �z�n

( )
¼ �z

dX zð Þ
dz

ð3:32Þ

Convolution The Z-transform of the convolution of two sequences is the product of
their Z-transforms:

Ζ x n½ � � h n½ �f g ¼ X zð ÞH zð Þ ð3:33Þ

Proof From the definition of the Z-transform, we have

Ζ x n½ � � h n½ �f g ¼
X1

n¼�1

X1
k¼�1

x k½ �h n� k½ �
( )

z�n ð3:34Þ

Replace n � k by m in the above equation and interchange the order of summa-
tion. Then,

Ζ x n½ � � h n½ �f g ¼
X1
k¼�1

x k½ �
X1

m¼�1
h m½ �z� mþkð Þ

( )

¼
X1
k¼�1

x k½ �z�k

( ) X1
m¼�1

h m½ �z�m

( )
¼ X zð ÞH zð Þ ð3:35Þ

In Table 3.2 we summarize the properties of the Z-transform for convenience.

Having defined the properties of the Z-transform, let us apply them to solve a few
problems to demonstrate their use and elegance.
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Example 3.3 Find the Z-transform and the corresponding ROC of the sequence nrn

cos (nω0)u[n].

Solution Since the factor n occurs in the sequence, we can use the differentiation
property. Therefore,

Ζ nrn cos nω0ð Þu n½ �f g ¼ �z
d

dz
Ζ rn cos nω0ð Þu n½ �f gf g ð3:36Þ

Using the Eq. (3.12) in (3.36), we have

Ζ nrn cos nω0ð Þu n½ �f g ¼ �z
d

dz

1� rz�1 cos ω0ð Þ
1� 2rz�1 cos ω0ð Þ þ r2z�2

	 

ð3:37Þ

After differentiation and simplification of Eq. (3.37), we arrive at

Ζ nrn cos nω0ð Þu n½ �f g
¼ r3z�3 cos ω0ð Þ � 2r2z�2 1þ cos 2 ω0ð Þð Þ þ 5rz�1 cos ω0ð Þ � 2

1� 2rz�1 cos ω0ð Þ þ r2z�2ð Þ2
ð3:38Þ

From Eq. (3.36), we infer that the ROC is outside the circle of radius r: |z| > r.

Example 3.4 Find the Z-transform and the ROC of the sequence αnu[�n].

Solution Let X(z) ¼ Ζ{u[n]}. From the time reversal property of the Z-transform,

we find that Ζ u �n½ �f g ¼ X 1
z

� �
. Next, using the property, multiplication by an

exponential sequence, we get Ζ αnu �n½ �f g ¼ X 1
z=α

� �
¼ X α

z

� �
. It is easy to see that

the ROC is defined by |z| < |α|, that is, the ROC is inside a circle of radius |α| in the
z-plane.

Table 3.2 Properties of the Z-transform

Property Sequence Z-Transform

Scaling by a constant ax[n] aX(z)

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z)

Time shifting x[n � m], m 2 Z z�mX(z)

Conjugation x∗[n] X∗(z∗)

Time reversal x[�n] X 1
z

� �
Multiplication
By an exponential sequence

αnx[n] X z
α

� �
Differentiation nx[n] �z dX zð Þ

dz

Convolution x[n] ⨂ h[n] X(z)H(z)

3.2 Properties of Z-Transform 73



Example 3.5 Find the Z-transform and the ROC of the sequence n2αnu[n].

Solution Let us define the sequence x[n] ¼ αnu[n]. Then, from the differentiation
property of the Z-transform, we can write

Ζ n2x n½ �� � ¼ �z
d

dz
Ζ nx n½ �f g½ � ¼ �z

d

dz
�z

dX zð Þ
dz

	 

¼ z

dX zð Þ
dz

þ z
d2X zð Þ
dz2

	 

ð3:39Þ

Since X zð Þ ¼ 1
1�αz�1 , zj j > αj j, Eq. (3.39) reduces to

Ζ n2αnu n½ �� � ¼ αz�1 1þ αz�1ð Þ
1� αz�1ð Þ3 ð3:40Þ

The ROC is |z| > |α|.

3.3 Z-Transform and Difference Equation

An LTI discrete-time system is governed by a constant coefficient linear difference
equation, as seen in the previous chapter. We obtained the response of an LTI
discrete-time system to a given input sequence in closed form by solving the
corresponding difference equation. In this section we will describe how
Z-transform can be used for the same purpose. To this end, consider a pth-order
LTI discrete-time system described by a constant coefficient linear difference
equation

y n½ � ¼
Xq
i¼0

aix n� i½ � �
Xp
k¼1

bky n� k½ � ð3:41Þ

By taking the Z-transform on both sides of Eq. (3.41), we have

Ζ y n½ �f g ¼ Ζ
Xq
i¼0

aix n� i½ � �
Xp
k¼1

bky n� k½ �
( )

ð3:42Þ

We make use of the scaling and linearity properties of the Z-transform to rewrite
(3.42) as

Ζ y n½ �f g ¼
Xq
i¼0

aiΖ x n� i½ �f g �
Xp
k¼1

bkΖ y n� k½ �f g ð3:43Þ

Denoting Y(z)¼ Ζ{y[n]} and X(z)¼ Ζ{x[n]} and using the time-shifting property
of the Z-transform, the LTI discrete-time system in the Z-domain is described by
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Y zð Þ ¼
Xq
i¼0

aiz
�iX zð Þ �

Xp
k¼1

bkz
�kY zð Þ ð3:44Þ

By collecting the like terms on the same side, we finally transform the difference
Eq. (3.41) into

Y zð Þ
Xp
k¼0

bkz
�k

( )
¼ X zð Þ

Xq
i¼0

aiz
�i

( )
ð3:45Þ

In systems theory, the ratio of the Z-transform of the output of an LTI discrete-
time system to its input is called the transfer or system function. Thus, the transfer
function of the LTI discrete-time system described by (3.41) is found from (3.45) to
be

H zð Þ ¼ Y zð Þ
X zð Þ ¼

a0 þ a1z�1 þ a2z�2 þ � � � þ aqz�q

b0 þ b1z�1 þ b2z�2 þ � � � þ bpz�p
, b0 ¼ 1 ð3:46Þ

The system or transfer function is seen to be a rational polynomial in the complex
variable z�1. The order of the system is the maximum of p and q. A proper transfer
function is defined as that for which p > q. Let us familiarize ourselves with transfer
functions by solving a couple of examples.

Example 3.6 Find the transfer function in the Z-domain of the LTI discrete-time
system described by the following difference equation:

y n½ � ¼ 2x n½ � þ 2:6x n� 1½ � þ 0:78x n� 2½ � þ 0:05x n� 3½ �
þ 1:5y n� 1½ � � 0:47y n� 2½ � � 0:063y n� 3½ � ð3:47Þ

Solution Apply Z-transform on both sides of (3.47) and we get

Y zð Þ ¼ 2X zð Þ þ 2:6z�1X zð Þ þ 0:78z�2X zð Þ þ 0:05z�3X zð Þ
þ 1:5z�1Y zð Þ � 0:47z�2Y zð Þ � 0:063z�3Y zð Þ ð3:48Þ

Then, by collecting the like terms and taking the ratio of the output to input
transforms, we arrive at the system function as given in Eq. (3.49):

H zð Þ ¼ Y zð Þ
X zð Þ ¼

2þ 2:6z�1 þ 0:78z�2 þ 0:05z�3

1� 1:5z�1 þ 0:47z�2 þ 0:063z�3
ð3:49Þ

It is clear that the transfer function is a rational polynomial in z�1 of order 3. The
difference equation given in this example involves current and previous samples of
both the input and output and so is a recursive equation. The corresponding transfer
function is seen from Eq. (3.49) to be a rational polynomial, that is, both the
numerator and denominator are polynomials.
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Example 3.7 Determine the transfer function in the Z-domain of the LTI system
described by the following difference equation:

y n½ � ¼
XN
k¼0

akx n� k½ � ð3:50Þ

Solution We notice from the above equation that no previous output samples are
used in computing the current output sample but only the current and previous input
samples. So, what happens to the system function? By taking the Z-transform on
both sides of (3.50) and then taking the ratio of output to input transforms, we get

H zð Þ ¼ Y zð Þ
X zð Þ ¼

XN
k¼0

akz
�k ð3:51Þ

In this example we find that the transfer function is just an Nth-order polynomial.
Equivalently, the transfer function in (3.51) is also a rational polynomial with the
denominator equal to 1. Incidentally the system in Eq. (3.50) is called a non-
recursive system whose transfer function is a polynomial of order N.

3.4 Poles and Zeros

We saw from previous discussions and examples that the transfer function of an LTI
discrete-time system in the Z-domain is a rational polynomial in z or z�1. Therefore,
we can express the numerator and denominator polynomials of the transfer function
in terms of their respective factors. Consider a pth-order transfer function of an LTI
discrete-time system as given in Eq. (3.46). In terms of the factors of the poly-
nomials, (3.46) can be rewritten as

H zð Þ ¼
Qq
i¼1

1� αiz�1ð Þ
Qp
j¼1

1� β jz�1
� � , p > q ð3:52Þ

From Eq. (3.52), we notice that the transfer function is zero whenever z ¼ αi,
1� i� q. These are the roots of the numerator polynomial and are called the zeros of
the transfer function. Corresponding to the degree q of the numerator of the transfer
function, there are q zeros. On the other hand, when a factor in the denominator of
(3.52) approaches zero, the transfer function approaches infinity, and the
corresponding roots of the denominator are called the poles of the transfer function.
That is, the poles are defined by the condition

H zð Þjz!β j
! 1, 1 � j � p ð3:53Þ
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So, what is the use of knowing the poles and zeros of a transfer function of an LTI
discrete-time system? Indeed it is a valid question. The stability of an LTI discrete-
time system can be determined from its poles. Each pole factor (1� βiz

�1) gives rise
to an exponential sequence in the discrete-time domain of the type β n

i u n½ �. We have
seen this result earlier. Therefore, for this sequence to converge, the poles must
satisfy |βi| < 1. In other words, all poles must be less than unity in magnitude. The
unit circle in the Z-domain is the border between stable and unstable regions. Apart
from stability, poles and zeros effect in the design of digital filters, as we will see
later.

Let us work out a few more examples to get familiar with poles and zeros.

Example 3.8 Find and plot the zeros and poles of the transfer function
H zð Þ ¼ 1

1�0:25z�2.

Solution Rewrite the transfer function in terms of z, which is H zð Þ ¼ z2

z2�0:25. Since
the numerator is a second-degree polynomial, it has two zeros; in this case both zeros
are located at the origin. The denominator factors into (z � 0.5)(z + 0.5). Therefore,
the poles are at z ¼ 0.5 and z ¼ � 0.5. The poles and zeros are plotted as shown in
Fig. 3.1. It is customary to denote the zeros by open circles and the poles by crosses.
The unit circle is also shown in the figure. Since the poles are situated inside the unit
circle, the given system is stable in the BIBO sense. This establishes the fact that
Z-transform is very useful in determining the stability of an LTI discrete-time system.

3.5 Inverse Z-Transform

The forward Z-transform maps a given discrete-time sequence into the Z-domain.
More specifically, the Z-transform maps a discrete-time sequence into complex poles
and zeros in the Z-domain. If we cannot recover the sequence from the Z-domain

Im(z)

Re(z)

pole at -0.5 pole at 0.5

unit circle

2 zeros

x x

Fig. 3.1 Pole-zero plot for
Example 3.1
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back to the discrete-time domain, then there is no use for the Z-transform. The effort
we put in so far to learn the Z-transform is a shear waste. Fortunately, the inverse
mapping from the Z-domain to the discrete-time domain does exist. The formal
definition of the inverse Z-transform of a given Z-transform X(z) is given below:

x n½ � ¼ Ζ�1 X zð Þf g ¼ 1
2πj

I
X zð Þzn�1dz, j ¼

ffiffiffiffiffiffiffi
�1

p
ð3:54Þ

The integral in Eq. (3.54) is called a contour integral, and the contour C is
traversed counterclockwise. What have we gotten into? Who knows how to evaluate
contour integrals? Are we opening Pandora’s box here? There is a way out of this
mess though. Indeed, we can compute the inverse Z-transform using partial fraction
expansion. The idea is to express a given function of z in terms of a sum of simple
fractions. Each fraction consists of one pole. Then, the inverse Z-transform is the
sum of the inverse Z-transforms of the individual fractions. Of course, there are cases
where the poles are not simple and multiple poles may exist. How do we then find the
inverse Z-transform? Let us cross the bridge when we come to it.

Partial Fraction Expansion for Simple Poles The Z-transform of a sequence x[n]
is a rational polynomial in z�1 and can be expressed as

X zð Þ ¼ N zð Þ
D zð Þ ð3:55Þ

where N(z) and D(z) are polynomials of degree q and p, respectively. Let us assume
the case of a proper function, meaning that p > q. By factoring D(z) into its poles, we
can express (3.55) as

X zð Þ ¼
Xp
i¼1

Ri

1� piz�1
ð3:56Þ

In the above equation, Ri are called the residues and pi are, of course, the poles.
Assuming for the time being that the residues are known, then the inverse Z-trans-
form is given by

x n½ � ¼
Xp
i¼1

Rip
n
i u n½ � ð3:57Þ

Note that each pole factor corresponds to a sequence pn
i u n½ � $ 1

1� piz�1
, hence

the inverse Z-transform given in (3.57). It looks nice and dandy. How do we
determine the residues? Let us look into it. A residue at a particular pole is
determined by first multiplying the given function by that pole factor and then
evaluating the remaining function at the value of the pole in question. More
precisely, the residues are given by
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Ri ¼ 1� piz
�1

� �
X zð Þ��

z¼pi
, 1 � i � p ð3:58Þ

After finding the residues, the discrete-time sequence is obtained from (3.57).
This method of partial fraction expansion is easier than the method indicated in
(3.54)!

Example 3.9 Find the inverse Z-transform of the function in Example 3.6.

Solution The given function is X zð Þ ¼ 1
1�0:25z�2. From Example 3.8, the given

function in terms of its pole factors is X zð Þ ¼ 1
1�0:5z�1ð Þ 1þ0:5z�1ð Þ. Since the given

function is proper and has two simple poles, its partial fraction expansion takes the
form:

X zð Þ ¼ R1

1� 0:5z�1
þ R2

1þ 0:5z�1
ð3:59Þ

The residue corresponding to the pole at 0.5 is found from

R1 ¼ 1� 0:5z�1
� �

X zð Þ��
z¼0:5

¼ 1
1þ 0:5z�1

����
z¼0:5

¼ 0:5 ð3:60Þ

Note that we must first cancel the pole factor corresponding to the residue in
question and then substitute the pole for z in the remaining function. Similarly, the
second residue is obtained from

R2 ¼ 1þ 0:5z�1
� �

X zð Þ��
z¼�0:5

¼ 1
1� 0:5z�1

����
z¼�0:5

¼ 0:5 ð3:61Þ

Having found the two residues, the sequence corresponding to the given function
is

x n½ � ¼ 0:5 0:5ð Þnu n½ � þ 0:5 �0:5ð Þnu n½ � ð3:62Þ
It can be easily verified that the Z-transform of the sequence in Eq. (3.62) is the

same as that given in the problem statement.

Partial Fraction Expansion of an Improper Function with Simple Poles Consider
an improper function where the degree of the numerator polynomial is greater than
or equal to that of the denominator. More specifically, let

X zð Þ ¼ N zð Þ
D zð Þ ð3:63Þ

where, the degree of the numerator polynomial q is greater than or equal to the
degree of the denominator polynomial p. First we have to divide N(z) by D(z) until
the remainder fraction becomes a proper function as given in Eq. (3.64a):
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X zð Þ ¼
Xq�p

i¼0

aiz
�i þ N 0 zð Þ

D zð Þ ð3:64aÞ

After division, the degree of N
0
(z) is less than p: deg(N

0
(z)) < p. Next, we have to

express the remainder function in partial fraction and then obtain the inverse as
before. From (3.64a), we find the inverse Z-transform of X(z) to be

x n½ � ¼
Xq�p

i¼0

aiδ n� i½ � þ
Xp
j¼1

R jp
n
j u n½ �, ð3:64bÞ

where Rj are the residues of the poles pj. It will be clearer if we work out an example.

Example 3.10 Find the inverse transform of the function given below:

X zð Þ ¼ 2þ 0:75z�1 þ 0:625z�2 � 0:375z�3 � 0:125z�4

1� 0:25z�1 � 0:125z�2
ð3:65Þ

Solution Since the degree of the numerator is greater than that of the denominator,
the given function is an improper function. So, we have to divide the numerator by
the denominator until the remainder has a degree less than that of the denominator.
Then we get

X zð Þ ¼ 1þ z�1 þ z�2 þ 1
1� 0:25z�1 � 0:125z�2

ð3:66Þ

The remainder function can be expanded in partial fraction and is obtained as
follows:

1
1� 0:5z�1ð Þ 1þ 0:25z�1ð Þ ¼

A

1� 0:5z�1ð Þ þ
B

1þ 0:25z�1ð Þ ð3:67aÞ

A ¼ 1
1þ 0:25z�1ð Þ

����
z¼0:5

¼ 2
3

ð3:67bÞ

B ¼ 1
1� 0:5z�1ð Þ

����
z¼�0:25

¼ 1
3

ð3:67cÞ

Therefore, the given function is rewritten in terms of its partial fractions as

X zð Þ ¼ 1þ z�1 þ z�2 þ
2=3

1� 0:5z�1 þ
1=3

1þ 0:25z�1 ð3:68Þ

The inverse Z-transform of the function in (3.68) is the sum of the inverse
transforms. Thus,

x n½ � ¼ Ζ�1 X zð Þf g ¼ δ n½ � þ δ n� 1½ � þ δ n� 2½ � þ 2
3

0:5ð Þnu n½ � þ 1
3

�0:25ð Þnu n½ �
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Partial Fraction Expansion of a Function with Complex Poles There is another
scenario wherein there are poles that are complex (not purely real). How do we
handle this situation? Remember that the Z-transform of a real sequence is a real
rational function in the variable z�1, meaning that the coefficients of the polynomials
are real. Therefore, if there is a complex pole, it must occur with its conjugate.
Otherwise, the coefficients of the polynomials cannot be real. Similarly, the residues
of the pair of complex poles must also be complex conjugates. As an example,
consider the following function with a pair of complex conjugate poles. Then it can
be expressed in partial fractions as

X zð Þ ¼ A

1� re jθz�1
þ A∗

1� re�jθz�1
ð3:69Þ

The residue in Eq. (3.69) is complex and can be expressed in magnitude-phase
form as A ¼ |A|e jφ. The inverse transform is obtained by adding the inverse trans-
forms of the two terms on the right-hand side of (3.69), which is

x n½ � ¼ 2 Aj jrn cos nθ þ φð Þu n½ � ð3:70Þ

Example 3.11 Find the inverse Z-transform of the function given below:

X zð Þ ¼ 1� 0:433z�1

1� 0:866z�1 þ 0:25z�2

Solution The poles are found to be complex conjugates, and one of them is
p ¼ 0:433þ j0:25 ¼ 0:5e jπ6. Since the given function is a proper function, we can
express it as

X zð Þ ¼ A

1� 0:5e jπ6z�1
þ A∗

1� 0:5e�jπ6z�1
ð3:71Þ

The residue A is found from

A ¼ 1� 0:433z�1

1� 0:5e�jπ6z�1

����
z¼0:5e jπ6

¼ 0:5 ð3:72Þ

Since A is real, its complex conjugate is itself. After adding the two inverse
transforms, we arrive at

x n½ � ¼ 0:5ð Þn cos n
π

6

� �
u n½ � ð3:73Þ

Partial Fraction Expansion of a Function with Multiple-Order Poles So far we
have described how to determine the inverse Z-transform of a function with either
simple or complex poles. There is a third possibility in that the poles of multiple-
order can occur. To make the statement clear, if there is a pole at z ¼ p of order k,
then the corresponding pole factor in the denominator of the Z-function will be of the
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type (1� pz�1)k. The partial fraction expansion corresponding to this multiple-order
pole will take the form

X zð Þ ¼
Xk
j¼1

R j

1� pz�1ð Þj ð3:74Þ

Note that not just the kth-order pole but poles of order one up to k occur in the
expansion. The k residues are obtained using what is known as L’Hospital rule.
According to this rule, the residues in (3.74) are described by

R j ¼ 1

k � jð Þ! �pð Þk�j

dk�j

d z�1ð Þk�j 1� pz�1
� �k

X zð Þ
���
z¼p

ð3:75Þ

Though the formula looks rather formidable, we will see that it is not so in
practice. To prove, let us work out an example.

Example 3.12 Find the partial fraction expansion of the function

X zð Þ ¼ 1

1� 0:5z�1ð Þ 1� 0:75z�1ð Þ2 ð3:76Þ

Solution Because there is a pole of order two at z ¼ 0.75, we can write the partial
fraction expansion of the given function as

X zð Þ ¼ R1

1� 0:5z�1ð Þ þ
R2

1� 0:75z�1ð Þ þ
R3

1� 0:75z�1ð Þ2 ð3:77Þ

The residue corresponding to the simple pole is found as before and is given by

R1 ¼ 1� 0:5z�1
� �

X zð Þ��
z¼0:5

¼ 1

1� 0:75z�1ð Þ2
�����
z¼0:5

¼ 4 ð3:78Þ

The other two residues are given by

R2 ¼ 1

2� 1ð Þ! �0:75ð Þ2�1

d

dz�1

1
1� 0:5z�1

� ����
z¼0:75

¼ �4
3

� 
0:5

1�0:5z�1ð Þ2
���
z¼0:75

¼ �6
ð3:79Þ

R3 ¼ 1� 0:75z�1
� �2

X zð Þ
���
z¼0:75

¼ 3 ð3:80Þ

From the partial fraction expansion, we can find the inverse Z-transform as
follows: the inverse Z-transform of the first partial fraction is 4(0.5)nu[n]. Similarly,
the second partial fraction gives rise to �6(0.75)nu[n]. It can be shown using the
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differentiation rule that the terms (n + 1)(0.75)nu[n] and 1
1�0:75z�1ð Þ2 form a Z-transform

pair. Therefore, we have

x n½ � ¼ 4 0:5ð Þnu n½ � � 6 0:75ð Þnu n½ � þ 3 nþ 1ð Þ 0:75ð Þnu n½ � ð3:81Þ

3.6 MATLAB Examples

Let us work out some more examples to capture the essence of the discussions we
have had so far. Though the MATLAB tool is very useful in solving problems
related to discrete-time signals and systems, it is a good idea to strengthen our
analytical ability as well. We are going to solve a few more problems relating to the
Z-transform using both analytical method and MATLAB tools.

Example 3.13 Given the functionH zð Þ ¼ zþ1:7
zþ0:3ð Þ z�0:5ð Þ, find its inverse Z-transform.

Solution First we will rewrite the given function in terms of the complex variable z
�1, which results in

H zð Þ ¼ z�1 þ 1:7z�2

1þ 0:3z�1ð Þ 1� 0:5z�1ð Þ ¼
z�1 þ 1:7z�2

1� 0:2z�1 � 0:15z�2
ð3:82Þ

Since the degree of the numerator is equal to the degree of the denominator, H(z)
is an improper function. Therefore, we have to divide the numerator by the denom-
inator until the remainder function is a proper function. This gives us the following
function:

H zð Þ ¼ �11:333þ 11:33� 1:26667z�1

1þ 0:3z�1ð Þ 1� 0:5z�1ð Þ ð3:83Þ

Next, we express the remainder function in partial fraction expansion. The result
is

H zð Þ ¼ �11:333þ 5:83
1þ 0:3z�1

þ 5:5
1� 0:5z�1

ð3:84Þ

The inverse Z-transform of (3.84) is the sum of the inverse Z-transforms of the
individual terms. The first term is a constant, and its inverse Z-transform is that
constant times the impulse sequence. The second and the third terms correspond to
exponential sequences. Thus,

h n½ � ¼ Ζ�1 H zð Þf g ¼ �11:333δ n½ � þ 5:83 �0:3ð Þnu n½ � þ 5:5 0:5ð Þnu n½ � ð3:85Þ
In order to solve this problem using MATLAB, we must have the Signal

Processing Toolbox. Assuming we have the DSP System Toolbox installed, the
function residuez is used to calculate the residues, poles, and the quotients of a given
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Z-transform. The proper way to call this function in the MATLAB workspace is as
follows: [R,P,K] ¼ residuez(B,A). R denotes the residues, P the poles, and K the
quotients, all as 1D vectors. The arguments of the residuez function are B and A. B is
a vector of coefficients of the numerator polynomial of H(z) in ascending powers
of z�1, and A is a vector of coefficients of the denominator polynomial, also in
ascending powers of z�1. So, corresponding to (3.82), the vector B ¼ [0 1 1.7].
The first element is zero because the constant term is zero. The next element 1 is
the coefficient of z�1, and the element 1.7 is the coefficient of z�2. In the same
manner, the vector A ¼ [1 � 0.2 � 0.15]. In MATLAB syntax, the elements of a
vector are separated by at least one space. Next, we type this equation “[R,P,
K] ¼ residuez(B,A)” and press return. We get the results that tally with our
analytical results. One more thing about using MATLAB is that it has a function
named isstable, which can be used to test if a given LTI discrete-time system is
stable or not. The arguments of this function are the coefficients of the poly-
nomials B and A. The function returns a “1” if the system is stable and a “0” if
unstable. The MATLAB file to solve this problem is named Example3_11.m.
Figure 3.2 shows the pole-zero plots of H(z) in Example 3.13.

Example 3.14 An LTI discrete-time system is described by the following differ-
ence equation: y[n] ¼ 3x[n] + 0.4y[n � 1] + 0.05y[n � 2]. Determine its (a) transfer
function, (b) impulse response, and (c) step response.
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Fig. 3.2 Pole-zero plot of H(z) of Example 3.13
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Solution The Z-transform of the above difference equation is found to be

Y zð Þ ¼ 3X zð Þ þ 0:4z�1Y zð Þ þ 0:05z�2Y zð Þ ð3:86Þ
Then the transfer function of the said LTI system is the ratio of Y(z) to X(z):

H zð Þ ¼ Y zð Þ
X zð Þ ¼

3
1� 0:4z�1 � 0:05z�2

ð3:87Þ

The impulse response is the inverse Z-transform of H(z). Since the degree of the
numerator polynomial of H(z) in z�1 is less than that of its denominator, H(z) is a
proper function. Therefore, its partial fraction expansion consists of two terms
corresponding to the two poles. The poles of H(z) are the roots of its denominator
polynomial and are found to be at 0.5 and �0.1. Thus, the partial fraction expansion
of H(z) is

H zð Þ ¼ A

1� 0:5z�1
þ B

1þ 0:1z�1
ð3:88Þ

The residues at the poles are A ¼ (1 � 0.5z�1)X(z)|z ¼ 0.5 ¼ 2.5 and
B ¼ (1 + 0.1z�1)X(z)|z ¼ � 0.1 ¼ 0.5. The impulse response is the inverse
Z-transform of H(z), which is

h n½ � ¼ 2:5 0:5ð Þnu n½ � þ 0:5 �0:1ð Þnu n½ � ð3:89Þ
Next, we have to compute the step response of the system. In this case, the input is

a unit step function and the output is called the step response. To determine the step
response using the Z-transform method, we simply multiply the transfer function H
(z) by the Z-transform of the input. This arises from the property of the convolution
in the discrete-time domain of the Z-transform. The Z-transform of a unit step
sequence was found to be 1

1�z�1. Therefore,

Y zð Þ ¼ H zð ÞX zð Þ ¼ 3
1� 0:5z�1ð Þ 1þ 0:1z�1ð Þ 1� z�1ð Þ

¼ R1

1� z�1ð Þ þ
R2

1� 0:5z�1ð Þ þ
R3

1þ 0:1z�1ð Þ
ð3:90Þ

The residues are found to be R1 ¼ 5.454, R2 ¼ � 2.5, and R3 ¼ 0.0455.
Therefore, the unit step response of the given system is

y n½ � ¼ 5:454u n½ � � 2:5 0:5ð Þnu n½ � þ 0:0455 �0:1ð Þnu n½ � ð3:91Þ
We have already seen the use of the MATLAB function residuez to calculate the

residues, poles, and the quotients of a function of z. MATLAB has two more useful
functions to calculate the impulse response and step response of an LTI discrete-time
system. These functions are, respectively, impz(B,A) and stepz(B,A), where B and A
are the vectors of coefficients of the numerator and denominator polynomials of a
given function of z as explained before. In this problem, we use both analytical
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solutions and MATLAB functions to compare the results. Figure 3.3a is a pole-zero
plot of the transfer function of the discrete-time system in Example 3.14. The pole-
zero plot of the system response Y(z) is shown in Fig. 3.3b. The impulse response
using the closed-form solution is compared with that obtained by solving the given
difference equation, and the results are plotted as shown in Fig. 3.4. The impulse
response obtained from using the MATLAB function impz is shown in the top plot of
Fig. 3.5. It seems to agree with both response sequences shown in Fig. 3.4. Finally,
Fig. 3.6 plots the step response of the system: the top plot is using the closed-form
solution and the bottom plot using the difference equation. As a comparison, the
bottom plot of Fig. 3.6 is obtained using the MATLAB function stepz. Again, all
three plots are in agreement. The MATLAB file named Example3_12.m is used to
solve the problem.

Example 3.15 Let us consider the LTI discrete-time system of Example 3.14 and
calculate its response to an input sinusoid x[n] ¼ cos (0.4n)u[n] using MATLAB.

Solution The Z-transform of the input sinusoidal sequence is a second-order
function as given by

X zð Þ ¼ Ζ cos 0:4nð Þu n½ �f g ¼ 1� cos 0:4ð Þz�1

1� 2 cos 0:4ð Þz�1 þ z�2
ð3:92Þ

The Z-transform of the output sequence is the product of X(z) and H(z):

Y zð Þ ¼ 1� cos 0:4ð Þz�1

1� 2 cos 0:4ð Þz�1 þ z�2

� 
3

1� 0:4z�1 � 0:05z�2ð Þ
� 

ð3:93Þ

In MATLAB, we can convert the product X(z)H(z) into a single function using
the built-in function sos2tf. The arguments for this function are (1) the coefficients of
the numerator and denominator polynomials of the two second-order sections as a
matrix and (2) the gain. For this example, the coefficient matrix is a 2 � 6 matrix.
The first row contains the coefficients of the numerator polynomial of X(z) followed
by the coefficients of the denominator polynomial of X(z). The second row consists
of the coefficients corresponding to H(z). Thus:

C ¼ 1 � cos 0:4ð Þ 0
1 0 0

1 �2 cos 0:4ð Þ 1
1 �0:4 �0:05

� �
and the gain G ¼ 3:

ð3:94aÞ
The MATLAB function returns the coefficients of the numerator polynomial of

Y(z) as Nr ¼ [3 �2.7633 0 0] and that of the denominator polynomial as
Dr ¼ [1 �2.2422 1.6869 �0.3079 �0.05]. Using these coefficients, we can
express the output Z-transform as

Y zð Þ ¼ 3� 2:7633z�1

1� 2:2422z�1 þ 1:6869z�2 � 0:3079z�3 � 0:05z�4
ð3:94bÞ
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Fig. 3.3 Pole-zero plots of H(z) and Y(z) of Example 3.12: (a) pole-zero plot of H(z), (b) pole-zero
plot of Y(z)
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Then we use the function residuez to calculate the residues of the output
Z-transform. The partial fraction expansion takes the form:

Y zð Þ ¼ 0:2788þ j0:7317
1� 0:9211þ j0:3893ð Þz�1

þ 0:2788� j0:7317
1� 0:9211� j0:3893ð Þz�1

þ �1:6004
1� 0:5z�1

þ 0:0428
1þ 0:1z�1

ð3:95Þ

Once the residues are determined, the sum of the inverse Z-transform of each partial
fraction gives the response in the discrete-time domain. Denote the two complex
conjugate poles by p1, 2 ¼ |p|e	jθ and the corresponding residues by R1, 2 ¼ |R|e	jφ.
Then the response of the system to the sinusoidal input is written as

y n½ � ¼ 2 Rj j cos nθ þ φð Þu n½ � þ R3 0:5ð Þnu n½ � þ R4 �0:1ð Þnu n½ � ð3:96Þ
where R3 ¼ � 1.6004 and R4 ¼ 0.0428. The system response is shown in Fig. 3.7.
As a comparison, the response obtained by recursively solving the difference
equation is plotted in the bottom plot of Fig. 3.7. The M-file to solve this problem
is named Example3_13.m.

Example 3.16 As another example of the use of MATLAB, let us specify the zeros
and poles of an LTI discrete-time system and then obtain the transfer function. We
will also calculate the impulse and step responses of the system in question. For this
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Fig. 3.6 Step response of the discrete-time system of Example 3.12: top plot, closed-form solution;
bottom plot, solution obtained by solving recursively the difference equation of Example 3.12
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system there are five zeros, all at 0. There is a real pole at 0.85 and two pairs of
complex conjugate poles at 0:5e	jπ3, 0:5e	j π12. The gain K ¼ 1.

Solution The MATLAB function zp2tf accepts the zeros, poles, and the gain and
returns the coefficients of the numerator and denominator polynomials of the transfer
function. The zeros and poles must be column vectors. Thus, the function call is [Nr,
Dr] ¼ zp2tf(Z,P,K). For the specified poles and zeros, we have a fifth-order transfer
function as given by

H zð Þ ¼ 1
1� 2:3159z�1 þ 2:229z�2 � 1:202z�3 þ 0:374z�4 � 0:0531z�5

ð3:97Þ

Having found the transfer function, next we call the function impz with Nr and Dr
as its arguments. This will plot the impulse response of the transfer function.
Similarly, we call the function stepz with the same arguments Nr and Dr, which
will plot the step response. If we want the transfer function in cascades of first-
and/or second-order sections, we can use the function zp2sos with arguments Z, P,
and K. It will return a matrix of coefficients of the transfer function in second-order
sections. The actual function call is [SOS, G]¼ zp2sos(Z,P,K). For this example, we
will get two second-order sections and one first-order section. The matrix of coef-
ficients SOS is of size 3 � 6 with each row corresponding to the numerator and

10

5

-5

0

0 10 20 30

A
m

pl
itu

de
A

m
pl

itu
de

40

Sample n

Output from inverse Z-transform

Output from difference Eqn.

50 60 70

5

-5

0

0 10 20 30 40 50 60 70

Fig. 3.7 Plot of the response of the system in Example 3.13 to a sinusoidal input. Top plot:
response using MATLAB tool. Bottom plot: response by recursively solving the difference
equation
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denominator polynomials of the respective section, and G is the overall gain. The
three sections are cascaded. Let the sections be denoted by Hi(z), i ¼ 1, 2, 3. Using
the matrix of coefficients SOS obtained, we have

H1 zð Þ ¼ 1
1� 0:85z�1

ð3:98aÞ

H2 zð Þ ¼ 1
1� 0:9569z�1 þ 0:25z�2

ð3:98bÞ

H3 zð Þ ¼ 1
1� 0:5z�1 þ 0:25z�2

ð3:98cÞ

G ¼ 1 ð3:98dÞ
Thus, the overall system as a cascade is described by

H zð Þ ¼ GH1 zð ÞH2 zð ÞH3 zð Þ ð3:99Þ
Note that the order in which the sections are cascaded is not important. The pole-

zero plot is shown in Fig. 3.8. It shows five zeros at z ¼ 0, two pairs of complex
conjugate poles, and a real pole, as specified in the problem. The impulse and step
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Fig. 3.8 Pole-zero plot of the transfer function of Example 3.16
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responses are shown in the top and bottom plots of Fig. 3.9. The M-file named
Example3_14.m is used to solve this problem.

Example 3.17 Consider a sixth-order FIR filter, whose transfer function is specified
below

H zð Þ ¼ 0:0033þ 0:059z�1 þ 0:2492z�2 þ 0:377z�3 þ 0:2492z�4 þ 0:059z�5

þ 0:0033z�6

Compute the impulse and step responses of the FIR filter and also determine its
rise time. Then express the given transfer function in cascades of first- and/or
second-order functions. Plot the poles and zeros of the FIR filter. Use MATLAB
to solve the problem.

Solution As we saw earlier, to calculate the step response, we call the MATLAB
function [h, n] ¼ stepz(B,A), where B is the vector of coefficients of the numerator
polynomial in ascending order of z�1 and A the corresponding denominator
polynomial, as shown below.

B ¼ 0:0033; 0:059; 0:2492; 0:377; 0:2492; 0:059; 0:0033½ �
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Fig. 3.9 Impulse and step responses of the system in Example 3.16
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A ¼ 1; 0; 0; 0; 0; 0; 0½ �
In MATLAB, the elements of the vectors will be separated by a space and not

comma. For the FIR filter, A is the vector of the same size of B with all elements
equal to zero except the first element. By calling the function stepz(B,A) without
output arguments, MATLAB will plot the step response.

To express the FIR transfer function in a cascaded form, we will have to call the
function [sos,g]¼ tf2sos(B,A). Again, the vectors B and A are defined as above. For
this example, when the above function is invoked, it returns the matrix

sos ¼
1 15:6764 39:2434
1 0:3995 0:0255
1 1:803 1

1 0 0
1 0 0
1 0 0

2
4

3
5

and the gain g ¼ 0.0033. In the above matrix, each row corresponds to a first- or
second-order transfer function. The first three elements are the coefficients of the
numerator polynomial, and the second three elements correspond to the denominator
polynomial, both in ascending powers of z�1. Because the given transfer function
corresponds to an FIR filter, the denominator polynomials have the first element
equal to unity and the rest to zero. Thus, the three second-order transfer functions are

H1 zð Þ ¼ 1þ 15:6764z�1 þ 39:2434z�2

H2 zð Þ ¼ 1þ 0:3995z�1 þ 0:0255z�2

H3 zð Þ ¼ 1þ 1:803z�1 þ z�2

The transfer function of the cascaded FIR filter will then take the form

H zð Þ ¼ gH1 zð ÞH2 zð ÞH3 zð Þ
Note that the order in which the individual sections are cascaded does not affect

the overall response. However, when this cascaded filter is implemented with finite
precision hardware, then the ordering of the sections matters.

To obtain the pole-zero plot of the FIR filter in a single section, we can invoke the
MATLAB function zplane(B,A), which will plot the zeros and poles of the transfer
function with numerator polynomial B and denominator polynomial A. The zeros
will be shown as open circles and the poles as crosses along with the unit circle in the
z-plane. Similarly, the function call zplane(sos) will plot the poles and zeros of the
cascaded filter. Last but not the least, the step response of the cascaded FIR filter is
obtained by calling the function with input and output arguments [s,n] ¼ stepz(sos),
where sos is the matrix of coefficients of the polynomials of the second-order
sections. Note that since the input argument in the above function call does not
have the gain factor, the step response will be 1/gain times the response of the single-
section FIR filter. To obtain the same amplitude range, the step response of the
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cascaded FIR filter must be scaled by the gain factor. Finally, the rise time of the FIR
filter is obtained by calling the function R ¼ risetime(step_response,
sample_instants), where step_response is the step response of the FIR filter and
sample_instants is the set of time indices over which the step response was calcu-
lated. By calling simply risetime(step_response), MATLAB plots the step response
and shows the rise time graphically. The pole-zero plots of the FIR filter with single
and cascaded section are shown in Figs. 3.10 and 3.11, respectively. For the single
section, all the poles are located at the origin. The step response of the FIR filter with
single section is shown in Fig. 3.12 as a stem plot. Figure 3.13 shows the step
response of the cascaded FIR filter scaled by the gain factor. The two step responses
seem identical. The rise time plot of the FIR filter is shown in Fig. 3.14. Note that
MATLABmarks the two points corresponding to the 10% and 90% of the final value
(steady state) of the step response. The rise time is found to be 2.6548 samples. The
M-file Example3_17.m is used to solve this problem.

Example 3.18 In this example we will deal with an IIR digital filter, whose transfer
function is described by

H zð Þ ¼ N zð Þ
D zð Þ

¼ 0:0162þ 0:808z�1 þ 0:1615z�2 þ 0:1615z�3 þ 0:808z�4 þ 0:0162z�5

1� 1:506z�1 þ 1:8316z�2 � 1:2374z�3 þ 0:5447z�4 � 0:1156z�5
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Fig. 3.10 Pole-zero plot of the sixth-order FIR filter of Example 3.17 as a single section
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As we did in the previous example, we will use MATLAB to plot the poles and
zeros of H(z). We will then compute the impulse and step responses of the IIR filter
followed by finding the cascade and parallel forms of the given transfer function.

Solution By calling the MATLAB function zplane(B,A), we obtain the pole-zero
plot of the transfer function of the IIR filter, where the two vectors are defined as

B ¼ 0:0162; 0:808; 0:1615; 0:1615; 0:808; 0:0162½ �

A ¼ 1;�1:506; 1:8316;�1:2374; 0:5447;�0:1156½ �
Note that in MATLAB, there will be no commas but only space(s) between the

elements of the vectors B and A. The commas are included here for clarity. One can
verify in MATLAB if the given IIR filter is stable or not using the statement isstable
(B,A). If the filter is stable, the function returns a 1 and if it is unstable, it will return a
0. In this example, the filter is stable. The impulse and step responses are calculated
in the same manner as indicated in the previous example. To obtain the cascade
realization, we call the function [sos,g] ¼ tf2sos(B,A). The function returns the
coefficients of the numerator and denominator polynomials of the first- and/or
second-order functions and the overall gain. For this example, the following
second-order sections are obtained.

sos ¼
1 49:6799 0
1 0:4792 0:0789
1 �0:2825 0:2552

1 �0:437 0
1 �0:6747 0:3566
1 �0:3943 0:7418

2
4

3
5

From the above equation, we can write the three second-order sections as

H1 zð Þ ¼ 1þ 49:6799z�1

1� 0:437z�1

H2 zð Þ ¼ 1þ 0:4792z�1 þ 0:0789z�2

1� 0:6747z�1 þ 0:3556z�2

H3 zð Þ ¼ 1� 0:2825z�1 þ 0:2552z�2

1� 0:3943z�1 þ 0:7418z�2

and the gain is g ¼ 0.0162. The impulse response of the IIR filter in a single section
is computed by invoking the MATLAB function [h,n] ¼ impz(B,A), where n is a
vector of the sample index and h is the impulse response of the filter defined at the
points in n. Similarly, the impulse response of the cascaded IIR filter can be found
using the function call [h,n] ¼ impz(sos). However, due to the gain factor, the actual
impulse response of the cascaded IIR filter is g times the impulse response h obtained
through the above function call. The step response of the single-section and cascaded
IIR filters are obtained in the manner as indicated in the previous example.
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To obtain the parallel form, we use the function call [R,P,K] ¼ residuez(B,A),
where B and A are the vectors as defined above. The vector R contains the residues
corresponding to the poles P, and K is a vector of quotients. If the given transfer
function is an improper function, then the vector K contains the quotients. Other-
wise, it is an empty vector. The poles of the transfer function of the given IIR filter
are found to be

p1,2 ¼ 0:1971	 j0:8384

p3,4 ¼ 0:3374	 j0:4927

p5 ¼ 0:4370

Since the filter order is 5, there are two sets of complex conjugate poles and one
real pole. The corresponding residues are given by

r1, 2 ¼ � 0.5324 	 j0.0695, r3, 4 ¼ � 0.1370 	 j0.6067, r5 ¼ 1.4951
Since the transfer function is improper, the quotient K ¼ �0.1401. Thus, the

parallel form of the IIR filter has two second-order sections corresponding to the two
complex conjugate poles and one first-order section corresponding to the real pole.
In addition, the IIR filter in parallel form has a constant corresponding to the quotient
K. In order to convert the complex conjugate pole factor into a second-order transfer
function, we invoke the same residuez function but with different arguments. For
instance, to convert the first pair of complex conjugate poles to a second-order
transfer function, we use the function call [b,a] ¼ residuez(R(1:2), P(1:2), 0). The
residuez function takes the first pair of the complex conjugate residues and poles
and returns the coefficients of the numerator and denominator polynomials of the
second-order transfer function in the vectors b and a, respectively. Here, we have to
use zero for K. To obtain the transfer function corresponding to the real pole, we have
to use the function call [b,a]¼ residuez([R(5) 0], [P(5) 0], 0). Since there is only one
real pole, the pole vector P has the first element corresponding to the real pole, and the
second element is zero. Similar vector is used for the residue. Of course, K corre-
sponds to zero. The details can be found in the M-file Example3_18.m. Using these
call functions, we obtain the following individual transfer functions of the IIR filter in
parallel form.

H1 zð Þ ¼ �1:0647þ 0:0934z�1

1� 0:3943z�1 þ 0:7418z�2

H2 zð Þ ¼ �0:2740þ 0:6903z�1

1� 0:6747z�1 þ 0:3566z�2

H3 zð Þ ¼ 1:4951
1� 0:4370z�1

The fourth section is a constant equal to K, which is�0.1401 (Figs. 3.15 and 3.16).
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Fig. 3.15 Pole-zero plot of the IIR filter in Example 3.18
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Fig. 3.16 Pole-zero plot of the IIR filter in Example 3.18 in cascaded form
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Having determined the individual transfer functions of the parallel form of the IIR
filter, we then draw the pole-zero plot of all the sections. This is shown in Fig. 3.17.
The impulse responses of the given IIR filter corresponding to the single, cascade,
and parallel forms are shown in Fig. 3.18 in the top, middle, and bottom plots,
respectively. As seen from the figure, the three plots are in agreement. For the
cascade form, the impulse response obtained from the function call impz must be
multiplied by the gain factor g. In the case of the parallel form, the impulse responses
of the individual sections must be added to obtain the true impulse response. This is
due to the fact that the sections operate in parallel, which implies that the input is the
same for all the sections and the individual outputs are summed to obtain the true
output. In the case of an improper transfer function, the impulse response
corresponding to the quotients is expressed as

K 1ð Þδ n½ � þ K 2ð Þδ n� 1½ � þ � � � þ K Lð Þδ n� L½ �
In this example, the quotient K is a scalar, and therefore there is only the first term

and is equal to K for n ¼ 0 and zero for all other sample indices n.
Next, we compute the step response of the individual sections of the parallel form

using the function stepz. The input arguments are the coefficients of the numerator
and denominator polynomials of the individual sections. The true step response is
then the sum of the individual step responses. For the scalar quotient K, the step
response is simply K times the unit step function. That is, the step response
corresponding to K is simply equal to K for all sample indices n. Figure 3.19 depicts
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Fig. 3.17 Pole-zero plot of the IIR filter in Example 3.18 in parallel form
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the step responses for the three cases. Again, all three plots seem to be identical.
Again, the step response obtained using the function stepz must be multiplied by the
gain factor g in the case of the cascade form. The rise time plots for all the three cases
are shown in Figs. 3.20, 3.21, and 3.22, which are obtained by simply calling the
function risetime with step response as its input argument. The rise time is found to
be 1.6464 samples for all the three cases.

3.7 Summary

As mentioned earlier, Z-transform plays an important role in the analysis of discrete-
time signals and systems. We defined the Z-transform of a sequence and its ROC.
Z-transform is a mapping of a discrete-time sequence onto a complex plane. The
Z-transform of several important sequences such as the impulse, unit step, real, and
complex exponential sequences was determined along with their ROCs. Next we
introduced poles and zeros of the Z-transform of sequences and illustrated how the
ROC is related to the poles. We also dealt with LTI discrete-time systems in the
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Fig. 3.18 Impulse responses of the IIR filter in Example 3.18: top, single section; middle, cascade
form; bottom: parallel form
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Z-domain and defined what is known as the system or transfer function. The transfer
function in the Z-domain tells everything about an LTI discrete-time system.
Z-transform without the ability to recover a sequence in the discrete-time domain
is of no value. The inverse Z-transform enables us to reconstruct a sequence from its
Z-transform. Though the inverse Z-transform involves contour integration in the
Z-domain, simpler methods, such as partial fraction expansion, exist. We worked out
several examples of calculating the response of an LTI discrete-time system to a
given input using partial fraction expansion method. Depending on the nature of the
poles, partial fraction expansion method differs. Again, a few examples are included
in this chapter to clarify the methods. Finally, the use of MATLAB in calculating the
zeros and poles of a transfer function was established by way of examples. We also
mentioned that Z-transform is very useful in the design of LTI discrete-time systems.
We will defer to a later chapter to elucidate this statement. The next chapter describes
the discrete-time Fourier transform (DTFT), which is a frequency domain represen-
tation of discrete-time signals and systems. We will establish the connection between
the Z-transform and the DTFT as well.
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Fig. 3.19 Step responses of the IIR filter in Example 3.18: top, single section; middle, cascade
form; bottom, parallel form
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3.8 Problems

1. Find the Z-transform and the ROC of the sequence x[n] ¼ (0.5)n u[n].
2. Find the Z-transform and the ROC of the sequence x[n] ¼ (�0.5)n u[n � 2].

3. Find the poles and zeros of the Z-transform X zð Þ ¼ 7þ3:6z�1

1þ0:9z�1þ0:18z�2. Does this
function correspond to a convergent sequence?

4. Find the poles and zeros of the Z-transformX zð Þ ¼ 1�z�2

1�0:25z�1�0:125z�2. Does this
function correspond to a convergent sequence?

5. Determine the inverse Z-transform corresponding the function

X zð Þ ¼ 4:5�1:3z�1þ1:4z�2

1�0:3z�1ð Þ 1þ0:5z�1þ0:9z�2ð Þ.
6. Determine the inverse Z-transform corresponding to the function

X zð Þ ¼ 1:5�0:125z�1

1þ0:375z�1�0:0625z�2.
7. The impulse response of an LTI discrete-time system is given by h[n]¼ (0.2)n u[n]. If

the input to this system is x[n] ¼ (0.3)n u[n], calculate the output using
Z-transform method.
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Fig. 3.22 Plot of the step response of the IIR filter of Example 3.18 in parallel form showing the
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8. The impulse response of an LTI discrete-time system is given by h[n]¼ (�0.2)n

u[n]. If the input to this system is x[n] ¼ (0.3)n u[n], calculate the output using
Z-transform method.

9. Consider the causal LTI discrete-time system described by y[n] ¼ 3x[n] + 0.4y
[n � 1] + 0.05y[n � 2]. (a) Determine its transfer function and (b) compute the
response of the system to a unit step input.

10. Find the impulse response and step response of the LTI discrete-time system

whose transfer function is given by H zð Þ ¼ 1þz�1

1�0:4z�1�0:05z�2.
11. Find the step response of the LTI discrete-time system whose transfer function is

described by H zð Þ ¼ 1�0:5z�1

1�0:7z�1þ0:1z�2.
12. An LTI discrete-time system is described by y[n] � 0.7y[n � 1] + 0.1y

[n � 2] ¼ x[n] � 0.6x[n � 1]. Determine its (a) transfer function in the
Z-domain, (b) its impulse response, and (c) step response.

13. The Z-transform of a causal sequence x[n], n � 0 is denoted by X(z). Show that
x 0½ � ¼ lim

z!1X zð Þ. This is known as the initial value theorem.

14. Determine the DC value of the LTI system whose transfer function is described

by H zð Þ ¼ 1þ6z�1þ15z�2þ20z�3þ15z�4þ6z�5þz�6

1�2:38z�1þ2:91z�2�2:06z�3þ0:88z�4�0:21z�5þ0:022z�6. Hint: The DC value
corresponds to z ¼ 1.

15. For the same transfer function in Problem 14, find the initial and final values.
The final value is given by x 1½ � ¼ lim

z!1
z� 1ð ÞX zð Þ.
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Chapter 4
Frequency Domain Representation
of Discrete-Time Signals and Systems

4.1 Introduction

Signals, continuous-time, or discrete-time occur in the time domain. We, therefore,
described rather elaborately discrete-time signals and systems in the time domain.
For easier and more efficient ways to analyze such signals and systems, we next
introduced the Z-transform, which is an alternative representation of discrete-time
signals and systems. The Z-transform maps a discrete-time signal or an LTI discrete-
time system from the discrete-time domain into a complex plane. In this plane, the
discrete-time signals and systems are represented by their poles and zeros. There is
another domain in which a discrete-time signal or equivalently an LTI discrete-time
system can be represented. This domain is the frequency domain. We can visualize a
signal more easily in the frequency domain than in the time domain. For instance, a
sum of sinusoidal signals with differing frequencies is hard to identify in the time
domain individually. On the other hand, such a signal can be easily identified
individually in the frequency domain. This is illustrated in Figs. 4.1a and b. The
discrete-time signal is shown in Fig. 4.1a. It consists of three sinusoids at frequencies
13, 57, and 93 Hz with amplitudes 1, 1.5, and 2, respectively, at a sampling
frequency of 500 Hz. It is hard to discern the individual sinusoids from the figure.
Figure 4.1b shows the discrete-time Fourier transform (DTFT) representation of the
signal in Fig. 4.1a. One can clearly distinguish the three components in frequency
and relative amplitude. The DTFT also greatly aids in the design of LTI discrete-time
systems. This chapter deals with the representation of discrete-time signals and
systems in the frequency domain. More specifically, we will define a mapping
known as the discrete-time Fourier transform that characterizes discrete-time signals
and systems in the frequency domain. As a consequence, we will show the
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relationship between the Z-transform and DTFT. We will also observe that the
DTFT characterizes an LTI discrete-time system in the frequency domain.
Because of this property, we can define the filtering operations. Filters such as
lowpass, highpass, bandpass, bandstop, etc., can be characterized more effi-
ciently in the frequency domain. It further leads us to the design of such filters
(Tables 4.1, 4.2 and 4.3).

Table 4.1 Typical discrete-
time sequences and
corresponding DTFTs

Sequence Discrete-time Fourier transform

δ[n] 1

1, � 1 ≺ n ≺ 1 X1
k¼�1

2πδ Ωþ 2πkð Þ

u[n] 1
1� e�jΩ þ

X1
k¼�1

πδ Ωþ 2πkð Þ

e jnΩ0 X1
k¼�1

2πδ Ω�Ω0 þ 2πkð Þ

αnu[n], |α| ≺ 1 1
1�αe�jΩ

Table 4.2 Properties of discrete-time Fourier transform

Property Sequence DTFT

Linearity ax1[n] + bx2[n] aX1(e
jΩ) + bX2(e

jΩ)

Time reversal x[�n] X(e�jΩ)

Time shifting x[n � N], N 2 Z e�jNΩX(e jΩ)

Modulation e jnΩ0x n½ � X e j Ω�Ω0ð Þ� �
Differentiation nx[n]

j
dX e jΩð Þ

dΩ

Convolution in the time domain x[n] ⨂ h[n] X(e jΩ)H(e jΩ)

Convolution in freq. domain x[n]h[n] X(e jΩ) ⨂ H(e jΩ)

Energy conservation X1
n¼�1

x n½ �j j2 1
2π

Z π

�π
X e jΩ� ��� ��2dΩ

Table 4.3 DTFT of ideal filters

Filter type Cutoff frequencies DTFT, H(e jΩ)

Lowpass Ωc
sin nΩcð Þ

nπ , �1 < n < 1
Highpass Ωc 1�Ωc

π
, n ¼ 0

� sin nΩcð Þ
nπ

, otherwise

8><
>:

Bandpass Ω1 and Ω2
sin nΩ2ð Þ

nπ � sin nΩ1ð Þ
nπ , �1 < n < 1

Bandstop Ω1 and Ω2 1�Ω2 �Ω1

π
, n ¼ 0

sin nΩ1ð Þ
nπ

� sin nΩ2ð Þ
nπ

, otherwise

8><
>:
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4.2 Discrete-Time Fourier Transform

The DTFT of a sequence x[n] is defined as

X e jΩ� � ¼ X1
n¼�1 x n½ �e�jnΩ ð4:1Þ

In Eq. (4.1), the frequency variable Ω is a normalized frequency expressed in
radians and is continuous. Actually,Ω ¼ 2πf

Fs
, where f is the frequency in Hz and Fs is

the sampling frequency in Hz. Also notice that the DTFT of a discrete-time signal is,
in general, complex. From the definition of the DTFT, it is implicit that the signal in
the time domain is discrete, while its DTFT in the frequency domain is continuous.
One other important fact about the DTFT is that it is a periodic function with period
2π. Why? Because

X e j Ωþ2πkð Þ
� �

¼
X1
n¼�1

x n½ �e�jn Ωþ2πkð Þ ¼
X1

n¼�1
x n½ �e�jnΩ ¼ X e jΩ� �

, k2Z ð4:2Þ

The DTFT in Eq. (4.1) exists only if the summation on the right-hand side is
finite. This implies that the sequence x[n] must be absolutely summable. Otherwise
the DTFT of the sequence does not exist, meaning that there is no representation of
the sequence in the frequency domain. As we noted from the definition, the DTFT of
a sequence is complex. Therefore, it can be expressed in magnitude – phase form:

X e jΩ� � ¼ X e jΩ� ��� ��e jθ Ωð Þ ð4:3Þ

4.2.1 DTFT and Z-Transform

Since both DTFT and Z-transform are complex functions, it is easy to relate the two
as

X e jΩ� � ¼ X zð Þjz¼e jΩ ð4:4Þ
In other words, the DTFT of a sequence is its Z-transform evaluated on the unit

circle in the Z-domain. Since we have already discussed the Z-transform, we can
easily determine the DTFT of discrete-time sequences and LTI discrete-time systems
from the corresponding Z-transforms.

Example 4.1 Find the DTFT of the sequence (�0.5)nu[n].

Solution First let us use the definition of DTFT. Then,

X e jΩð Þ ¼P1
n¼�1 x n½ �e�jnΩ ¼ P1

n¼0 �0:5ð Þne�jnΩ ¼ P1
n¼0 �0:5e�jΩð Þn

¼ 1
1þ 0:5e�jΩ

ð4:5Þ
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The Z-transform of the given sequence has been found to be X zð Þ ¼ 1
1þ0:5z�1.

Therefore, its DTFT is

X e jΩ� � ¼ 1
1þ 0:5z�1

����
z¼e jΩ

¼ 1
1þ 0:5e�jΩ ð4:6Þ

Because the DTFT is complex, we can express it in magnitude-phase form.
Multiply the numerator and denominator of (4.5) by the complex conjugate of the
denominator to obtain

X e jΩ� � ¼ 1þ 0:5e jΩ

1þ 0:5e�jΩð Þ 1þ 0:5e jΩð Þ ¼
1þ 0:5 cos Ωð Þð Þ þ j0:5 sin Ωð Þ

1:25þ cos Ωð Þ ð4:7Þ

Therefore,

X e jΩ� ��� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:25þ cos Ωð Þp , � π � Ω � π and ð4:8aÞ

θ Ωð Þ ¼ tan �1 0:5 sin Ωð Þ
1þ 0:5 cos Ωð Þ

� 	
, � π � Ω � π ð4:8bÞ

Figure 4.2 shows the plots of the magnitude in dB and phase in degrees of the
DTFT in Eqs. 4.8a and 4.8b. The magnitude in dB is 20log10(|X(e

jΩ)|).
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Fig. 4.2 DTFT of the sequence in Example 4.1: Top plot: magnitude in dB of the DTFT,
Bottom plot: phase in degrees
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4.2.2 DTFT of Some Typical Sequences

Let us find the DTFT of some useful sequences that we encounter often in the
discrete-time signals and systems.

DTFT of the Unit Impulse Using the definition of the DTFT, we have

DTFT δ n½ �f g ¼
X1
n¼�1

δ n½ �e�jnΩ ¼ 1, 8Ω ð4:9Þ

As expected, the DTFT of the unit impulse sequence is unity for all frequencies.

DTFT of a Constant The DTFT of a sequence with unit value for all discrete-time
instants is

DTFT 1f g ¼
X1
n¼�1

e�jnΩ ¼
X1
k¼�1

2πδ Ωþ 2πkð Þ, kEZ ð4:10Þ

The DTFT of 1 consists of a sequence of impulses of strength 2π, one impulse in
each period.

DTFT of the Unit Step Sequence The DTFT of the unit step sequence can be
shown to be

DTFT u n½ �f g ¼ 1
1� e�jΩ þ

X1
k¼�1

πδ Ωþ 2πkð Þ, kEZ ð4:11Þ

DTFT of a Complex Exponential Sequence The DTFT of the complex exponen-
tial sequence e jnΩ0 is given by

DTFT e jnΩ0

 � ¼

X1
k¼�1

2πδ Ω� Ω0 þ 2πkð Þ, kEZ ð4:12Þ

As can be seen from the above equation, the DTFT of a complex exponential
sequence is a sequence of impulses of strength 2π at multiples of the frequency of the
complex exponential sequence.

DTFT of a Real Exponential Sequence The DTFT of a real exponential sequence
αnu[n] is found to be

DTFT αnu n½ �f g ¼ 1
1� αe�jΩ , αj j < 1, � π � Ω � π ð4:13Þ
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4.3 Inverse Discrete-Time Fourier Transform

The discrete-time signal is recovered from its DTFT by the process of inverse DTFT.
Unlike the inverse Z-transform, inverse DTFT is much simpler to perform. Since the
DTFT of a sequence is periodic with period 2π, it can be expanded in a Fourier
series. The coefficients of the Fourier series of the DTFT are the samples of the
sequence in question. Therefore, the sequence in question is given by

x n½ � ¼ 1
2π

Z π

�π
X e jΩ� �

e jnΩdΩ ð4:14Þ

In practice, it may be simpler to obtain the inverse DTFT (IDTFT) using partial
fraction expansion and then identifying the individual terms with the corresponding
IDTFT. In doing so, we will also use the properties of the DTFT to further simplify
the process of IDTFT.

4.4 Properties of DTFT

Let us briefly list the properties of the DTFT. These properties will come in handy
when we solve complex problems in the frequency domain.

Linearity DTFT is a linear transform, which implies that the DTFT of a linear
combination of sequences is the same linear combination of the individual DTFTs.
In other words,

DTFT ax1 n½ � þ bx2 n½ �f g ¼ aX1 e jΩ� �þ bX2 e jΩ� � ð4:15Þ
The proof is simple. Since the DTFT involves a summation, which is a linear

operation, the DTFT is linear.

Time Reversal The DTFT of a time-reversed sequence x[�n] is a function of the
negative frequency:

DTFT x �n½ �f g ¼ X e�jΩ� � ð4:16Þ
Proof: By definition,

DTFT x �n½ �f g ¼
X1
n¼�1

x �n½ �e�jnΩ ¼
X1

m¼�1
x m½ �e�jm �Ωð Þ ¼ X e�jΩ� � ð4:17Þ

The significance of the time-reversal property is that the unit circle is traversed in
clockwise direction. Note that for the non-time-reversed sequence, the unit circle is
traversed in the counterclockwise direction in the DTFT domain.
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Time Shift The DTFT of a time-shifted sequence is the DTFT of the sequence with
a phase shift. That is,

DTFT x n� N½ �f g ¼ e�jNΩX e jΩ� �
,NEZ ð4:18Þ

Proof: DTFT x n� N½ �f g ¼
X1
n¼�1

x n� N½ �e�jnΩ

Let m ¼ n � N in the above equation. Then, we can write (4.18) as

DTFT x n� N½ �f g ¼
X1

m¼�1
x m½ �e�j mþNð ÞΩ ¼ e�jNΩ

X1
m¼�1

x m½ �e�jmΩ

¼ e�jNΩX e jΩð Þ
ð4:19Þ

So, according to the time-shift property, a shift in time is equivalent to a phase
shift in the frequency.

Frequency Shift The DTFT of a modulated sequence is equivalent to a frequency
shift. More specifically,

DTFT e jnΩ0x n½ �
 � ¼ X e j Ω�Ω0ð Þ
� �

ð4:20Þ

Proof: Note that multiplying a sequence by a complex exponential sequence is
called modulation. Using the definition of DTFT, we can write

DTFT e jnΩ0x n½ �
 � ¼
X1
n¼�1

x n½ �e jnΩ0e�jnΩ ¼
X1
n¼�1

x n½ �e�jn Ω�Ω0ð Þ

¼ X e j Ω�Ω0ð Þ
� �

ð4:21Þ

Differentiation in the Frequency Domain This property is described by the
following equation:

DTFT nx n½ �f g ¼ j
dX e jΩð Þ
dΩ

ð4:22Þ

Proof: By definition, DTFT nx n½ �f g ¼
X1
n¼�1

nx n½ �e�jnΩ:

We can write ne�jnΩ ¼ j ddΩ e
�jnΩ. Substituting this for ne�jnΩ in the above

equation and taking the derivative outside the summation, we get

DTFT nx n½ �f g ¼ j
d

dΩ

X1
n¼�1

x n½ �e�jnΩ

( )
¼ j

dX e jΩð Þ
dΩ

ð4:23Þ
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Convolution in the Time Domain The DTFT of the convolution of two sequences
is the product of the individual DTFTs. That is,

DTFT x n½ � � h n½ �f g ¼ X e jΩ� �
H e jΩ� � ð4:24Þ

Proof: Using the definition of DTFT and convolution sum, we have

DTFT x n½ � � h n½ �f g ¼
X1

n¼�1

X1
k¼�1

x k½ �h n� k½ �
( )

e�jnΩ ð4:25Þ

By interchanging the order of summation and replacing n – k by m, we can write
(4.25) as

DTFT x n½ � � h n½ �f g ¼
X1
k¼�1

x k½ �
X1

m¼�1
h m½ �e�j mþkð ÞΩ

( )

¼
X1
k¼�1

x k½ �e�jkΩ

( ) X1
m¼�1

h m½ �e�jmΩ

( )

¼ X e jΩð ÞH e jΩð Þ

ð4:26Þ

Convolution in the Frequency Domain The duality of the convolution in the time
domain is that the DTFT of the convolution of two DTFTs is the product of the two
corresponding sequences. Another way of stating is that the DTFT of the product of
two sequences is the convolution of the corresponding DTFTs. Thus,

DTFT x n½ �h n½ �f g ¼ X e jΩ� �
⨂H e jΩ� � ð4:27Þ

Proof: By definition,

DTFT x n½ �h n½ �f g ¼
X1
n¼�1

x n½ �h n½ �e�jΩ ð4:28Þ

Now, substitute the IDTFT of h[n] for h[n] in Eq. (4.28), and change the order of
summation and integration to obtain

DTFT x n½ �h n½ �f g ¼
X1
n¼�1

x n½ � 1
2π

Zπ

�π

H e jθ
� �

e jnθ

8<
:

9=
;e�jnΩ

¼ 1
2π

Zπ

�π

H e jθ
� � X1

n¼�1
x n½ �e�jn Ω�θð Þ

( )
dθ

¼ 1
2π

Zπ

�π

H e jθ
� �

X e j Ω�θð Þ
� �

dθ

ð4:29Þ
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Energy Conservation One other property of DTFT is that the energy in a sequence
is conserved, meaning that one can compute the energy in a sequence either in the
discrete-time domain or in the frequency domain. They are identical. Sometimes it is
much easier to determine the signal energy in the frequency domain than in the
discrete-time domain and vice versa. The statement implies that

X1
n¼�1

x n½ �j j2 ¼
X1
n¼�1

x n½ �x⋇ n½ � ¼ 1
2π

Z π

�π
X e jΩ� ��� ��2dΩ ð4:30Þ

From the above equation, we observe that the sum of the magnitude squared of a
sequence, which is its energy, is the same as the area under the magnitude squared of
its DTFT in one period.

Enough of the properties of the DTFT; let us look at a few examples to familiarize
ourselves with what we have learned so far.

Example 4.2 Find the DTFT of the sequence α|n|, |α| < 1.

Solution From the definition of DTFT,

DTFT α nj j
 � ¼
X1

n¼�1
α nj je�jnΩ ¼

X1
n¼1

αe jΩ� �n þX1
n¼0

αe�jΩ� �n ð4:31Þ

Since |α| < 1, the two summations on the right-hand side converge. So,

DTFT α nj j
 � ¼ αe jΩ

1� αe jΩ þ 1
1� αe�jΩ ¼ 1� α2

1þ α2 � 2α cos Ωð Þ ð4:32Þ

Since the given sequence is real and even, its DTFT is purely real.

Example 4.3 Find the DTFT of αnu[n � 1], |α| < 1.

Solution We can rewrite the given sequence as α(αn � 1u[n � 1]). The sequence
within the parenthesis is the same sequence αnu[n] shifted by one sample to the right.
We can, therefore, use the time-shifting property to obtain

DTFT αnu n� 1½ �f g ¼ αDTFT αn�1u n� 1½ �
 � ¼ αe�jΩ

1� αe�jΩ ð4:33Þ

In magnitude-phase representation, the DTFT of the given sequence is

DTFT αnu n�1½ �f gj j ¼ αj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2�2αcos Ωð Þp ,θ Ωð Þ¼�Ω� tan�1 αsinΩ

1�αcosΩ

� 	

ð4:34Þ

Example 4.4 Find the DTFT of the sequence nαnu[n], |α| < 1.

Solution Because of the factor n appearing in the given sequence, we can use the
differentiation property to obtain
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DTFT nαnu n½ �f g ¼ j
d

dΩ
DTFT αnu n½ �f g ¼ j

d

dΩ
1

1� αe�jΩ

� 
¼ αe�jΩ

1� αe�jΩð Þ2
ð4:35Þ

The magnitude of the DTFT is αj j
1þα2�2α cos Ωð Þ, and the phase is

�Ω� 2 tan �1 α sinΩ
1�α cosΩ

� �
Example 4.5 Find the DTFT of the finite-length sequence

x n½ � ¼ 1, 0 � n � N � 1
0, otherwise

�
ð4:36Þ

Solution Using the definition of the DTFT, we can write

X e jΩ� � ¼ X1
n¼�1

x n½ �e�jΩ ¼
XN�1

n¼0

e�jΩ ¼ 1� e�jNΩ

1� e�jΩ ð4:37Þ

We can simplify the above equation as

X e jΩ� � ¼ e�jNΩ
2 e jNΩ

2 � e�jNΩ
2

� �
e�jΩ2 e jΩ2 � e�jΩ2

� � ¼ e�j N�1ð ÞΩ2 sin NΩ
2

� �
sin Ω

2

� � ð4:38Þ

Observe that the given finite-length sequence is a rectangular window, and so its
DTFT is a function with side lobes. One other thing we notice here is that the
sequence is limited in the time domain, and so it is not limited in the frequency
domain!

Example 4.6 Find the DTFT of the sequence y[n] ¼ x[n] ⨂ x⋇[�n].

Solution As a result of the convolution property, the DTFT of y[n] equals the
product of the DTFTs of x[n] and x⋇[�n]. First, let us find the DTFT of the sequence
x⋇[�n], which by definition, is

DTFT x⋇ �n½ �f g ¼
X1

n¼�1
x⋇ �n½ �e�jnΩ ¼

X1
n¼�1

x �n½ �e jnΩ

( )⋇

ð4:39Þ

In (4.39), substitute m ¼ � n to get

DTFT x⋇ �n½ �f g ¼
X1

m¼�1
x m½ �e�jmΩ

( )⋇

¼ X⋇ e jΩ� � ð4:40Þ

Therefore, we have

DTFT x n½ �⨂x⋇ �n½ �f g ¼ X e jΩ� �
X⋇ e jΩ� � ¼ X e jΩ� ��� ��2 ð4:41Þ
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Thus, the DTFT of the convolution of a sequence with its own time-reversed
conjugate is the magnitude squared of the DTFT of the sequence. We also notice that
the square of the magnitude function is real and even!

4.5 Frequency Domain Representation of LTI
Discrete-Time Systems

It is customary to describe an LTI discrete-time system in terms of a linear difference
equation with constant coefficients. In order to describe such a system in the
frequency domain, we must determine its transfer function in the frequency domain.
Consider an LTI discrete-time system described by the following difference equa-
tion, where the coefficients are constants:

y n½ � ¼
Xq
j¼0

a jx n� j½ � �
Xp
k¼1

bky n� k½ �, p > q ð4:42Þ

By applying the DTFT on both sides of (4.42) and making use of the time-shifting
property of the DTFT, we get

Y e jΩ� � ¼ X e jΩ� �Xq
m¼0

ame
�jmΩ � Y e jΩ� �Xp

n¼1

bne
�jnΩ ð4:43Þ

We can then express the transfer function of the LTI discrete-time system in the
frequency domain as

H e jΩ� � ¼ Y e jΩð Þ
X e jΩð Þ ¼

a0 þ a1e�jΩ þ a2e�j2Ω þ � � �� � � þ aqe�jqΩ

1þ b1e�jΩ þ b2e�j2Ω þ � � �� � � þ bpe�jpΩ ð4:44Þ

As expected, the transfer function of an LTI discrete-time system in the frequency
domain is a rational function in the variable e jΩ. Recall that the system described by
(4.42) in the discrete-time domain or equivalently by (4.44) in the frequency domain
is a recursive system. Hence its transfer function is a rational polynomial in the
variable e jΩ. On the other hand, a non-recursive system will have a transfer function
where the denominator is identically equal to 1.

Example 4.7 The impulse response of an LTI discrete-time system is given by h
[n]¼ 0.5nu[n]. If the input to this system is x[n]¼ 0.75nu[n], find the response of the
system using the DTFT.

Solution Since the given system is LTI, its response is the convolution of its
impulse response sequence and the input sequence. In the frequency domain, the
DTFT of the system response is the product of the DTFT of its impulse response and
the input. First, we find the DTFT of the impulse response and the input from our
previous discussion. Therefore,
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H e jΩ� � ¼ DTFT h n½ �f g ¼ 1
1� 0:5e�jΩ ð4:45aÞ

X e jΩ� � ¼ DTFT x n½ �f g ¼ 1
1� 0:75e�jΩ ð4:45bÞ

The DTFT of the system output is

Y e jΩ� � ¼ DTFT y n½ �f g ¼ DTFT h n½ � � x n½ �f g ¼ H e jΩ� �
X e jΩ� �

¼ 1
1� 0:5e�jΩð Þ 1� 0:75e�jΩð Þ ð4:46Þ

The time domain response is the IDTFT of (4.46). One way to find the IDTFT is
to express (4.46) in partial fractions and then identify each fraction with a real
exponential sequence. So,

Y e jΩ� � ¼ A

1� 0:5e�jΩ þ B

1� 0:75e�jΩ ð4:47Þ

The residues are given by

A ¼ 1� 0:5e�jΩ� �
Y e jΩ� ���

e jΩ¼0:5
¼ �2 ð4:48aÞ

B ¼ 1� 0:75e�jΩ� �
Y e jΩ� ���

e jΩ¼0:75
¼ 3 ð4:48bÞ

Note that IDTFT 1
1�0:5e�jΩ


 � ¼ 0:5nu n½ � and IDTFT 1
1�0:75e�jΩ


 � ¼ 0:75nu n½ �.
Therefore, the response of the given LTI discrete-time system is

y n½ � ¼ �2 0:5ð Þnu n½ � þ 3 0:75ð Þnu n½ � ð4:49Þ

Example 4.8 An LTI discrete-time system consists of a cascade of two systems
h1[n] and h2[n], where

h1 n½ � ¼ δ n½ � þ δ n� 1½ � and ð4:50aÞ

h2 n½ � ¼ βnu n½ �, βj j < 1 ð4:50bÞ
Determine the value of β such that the magnitude of the overall frequency

response of the system is unity.

Solution In a cascade connection, the output of the first system is the input to the
second system and so on. This implies that the overall impulse response is the
convolution of the impulse response of the individual sections. Therefore, the
DTFT of the overall system is the product of the individual DTFTs. Thus,

4.5 Frequency Domain Representation of LTI Discrete-Time Systems 119



H e jΩ� � ¼ H1 e jΩ� �
H2 e jΩ� � ¼ 1þ e�jΩð Þ

1� βe�jΩ ð4:51Þ

The magnitude of the overall frequency response is given by

H e jΩ� ��� �� ¼ 1þ cosΩð Þ � j sinΩ
1� β cosΩð Þ þ jβ sinΩ

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosΩ

1þ β2 � 2β cosΩ

s
⟹β ¼ �1 ð4:52Þ

An LTI discrete-time system whose magnitude of the frequency response is a
constant is known as an allpass system.

4.5.1 Steady State Response of LTI Discrete-Time Systems

We have seen earlier that the particular solution of a linear difference equation
with constant coefficients is proportional to the input sequence. The complemen-
tary solution is, in general, a decaying function. So, when the complementary
solution or the transient response disappears, only the particular solution
remains. This is called the steady state response of the system. In particular,
when the input to an LTI discrete-time system is a sinusoidal sequence of a
specified frequency, its response in the steady state is the same input sinusoid
except that its amplitude and phase are modified by the value of the transfer
function at that frequency. We can, therefore, express the steady state response of
an LTI discrete-time system to an input sinusoid e jnΩ0 as

yss n½ � ¼ H e jΩ0
� ��� ��e jΩ0 n�τð Þ ð4:53Þ

From Eq. (4.53) we notice that the amplitude of the output sinusoid is the
magnitude of the transfer function at the input frequency and the lagging phase
angle equals τ times the input frequency. If the phase response is linear, then the
phase delay equals the negative of the phase angle divided by the input frequency. If
the phase angle represented by θ(Ω) is linear, then the phase delay or simply the
delay is expressed by

τ ¼ � θ Ωð Þ
Ω0

samples ð4:54Þ

Recall that the transfer function H(e jΩ) is the DTFT of the impulse response h[n]
of an LTI discrete-time system. Since the impulse response is unique to a given
system, the corresponding frequency response is also unique to the system.
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Example 4.9 The impulse response of an LTI discrete-time system is given by

h n½ � ¼ 0:5nu n½ � ð4:55Þ
Find the steady state response of the system if the input is x n½ � ¼ cos nπ

6

� �
u n½ �.

Solution The frequency response or the transfer function of the given system is the
DTFT of its impulse response:

H e jΩ� � ¼ DTFT h n½ �f g ¼ DTFT 0:5nu n½ �f g ¼ 1
1� 0:5e�jΩ ð4:56Þ

The transfer function in magnitude-phase form of the given system is found to be

H e jΩ
� ��� �� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:25� cosΩ
p ð4:57aÞ

θ Ωð Þ ¼ � tan �1 0:5 sinΩ
1� 0:5 cosΩ

� 	
, rad ð4:57bÞ

Since the input is a unit amplitude sinusoid at a frequency π
6 rad, the steady state

response of the given system is given by

yss n½ � ¼ H e jπ6
� ��� �� cos nπ

6
� θ

π

6

� �� �
u n½ � ð4:58Þ

From Eqs. (4.57a) and (4.57b), we find that H e jπ6ð Þ�� �� � 1:6138, and the phase
angle is θ π

6

� � � �0:415283r or � 23:79∘. Therefore, the steady state response of the
given system to the input sinusoid is

yss n½ � ¼ 1:6138 cos
nπ

6
� 23:79∘

� �
u n½ � ð4:59Þ

The input and the system response are plotted as a function of the sample index
and shown in Fig. 4.3 as top and bottom plots, respectively, using MATLAB. The
system response is obtained by calling the function conv. It accepts two sequences as
vectors and returns a sequence that is of length equal to the sum of the lengths of the
impulse response and input minus one. However, we plot the response in length
equal to the input sequence. As can be seen from the figure, the system response is
the same sinusoid as the input with a change in its amplitude. We also notice a delay
of one sample in the output sequence due to the phase shift in the transfer function,
which agrees with the analytical result. The M-file for this problem is named
Example4_9.m.

Group Delay When the phase response of an LTI discrete-time system is not
linear, then its phase delay is not constant but is a function of the input frequency.
When a group of sinusoidal frequencies is present in the input, it is customary to
find the phase delay over this group of frequencies. It is called the group delay
and is defined as

4.5 Frequency Domain Representation of LTI Discrete-Time Systems 121



τgd ¼ � dθ Ωð Þ
dΩ

ð4:60Þ

Let us illustrate the calculation of group delay by way of an example.

Example 4.10 Calculate the group delay of the system in Example 4.9 and plot the
result.

Solution The phase response of the given system is shown in Eq. (4.57b). Then, the
group delay is given by

τgd ¼ � d

dΩ
� tan �1 0:5 sinΩ

1� 0:5 cosΩ

� 	� 
ð4:61Þ

To obtain the derivative in Eq. (4.61), first let us rewrite (4.57b) as

tan θ Ωð Þ ¼ �0:5 sinΩ
1� 0:5 cosΩ

ð4:62Þ

Now differentiate (4.62) with respect to Ω. Therefore,
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Fig. 4.3 Steady state response of the system in Example 4.9 due to a sinusoidal input. Top plot:
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1
cos 2θ

dθ

dΩ
¼ � 1� 0:5 cosΩð Þ 0:5 cosΩð Þ þ 0:5 sinΩð Þ 0:5 sinΩð Þ

1� 0:5 cosΩð Þ2 ð4:63Þ

From (4.62), we get

cos θ Ωð Þ ¼ 1� 0:5 cosΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:25� cosΩ

p : ð4:64Þ

Using (4.64) in (4.63) and after algebraic manipulation, we obtain

dθ Ωð Þ
dΩ

¼ 0:25� 0:5 cosΩ
1:25� cosΩ

ð4:65Þ

Using Eq. (4.65) in (4.61), we finally obtain the expression for the group delay as

τgd ¼ � 0:25� 0:5 cosΩð Þ
1:25� cosΩ

ð4:66Þ

The group delay in (4.66) is shown in Fig. 4.4 top plot as a function of Ω in the
interval 0� Ω � π. The MATLAB function to evaluate the group delay is grpdelay.
It accepts the coefficients of the numerator and denominator polynomials of the
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Fig. 4.4 Group delay of the system in Example 4.9. Top plot: group delay obtained from equation
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transfer function, both in ascending powers of e�jΩ. The group delay calculated
using the MATLAB function is shown in the bottom plot in Fig. 4.4. They seem to
agree completely. The M-file named Example4_10.m is used to solve this problem.

4.5.2 Concept of Filtering

A filter is meant to remove unwanted frequency components and pass other fre-
quency components of interest from an input signal. The effect of filtering is easily
visualized in the frequency domain. We know from earlier discussion that the DTFT
of the response of an LTI discrete-time system to an input sequence is the product of
the DTFTs of the input and impulse response as given by

Y e jΩ� � ¼ X e jΩ� �
H e jΩ� � ð4:67Þ

The shape of X(e jΩ) can be altered by a proper design of the shape of H(e jΩ).
Since the transfer function H(e jΩ) of the filter is a rational polynomial in e�jΩ, the
design of a filter amounts to determining the order and coefficients of the poly-
nomials. Because the transfer function in the frequency domain is a complex
function, there are two factors to be considered in the design of a filter, namely,
the magnitude and phase. One can design a filter to have a certain shape of the
magnitude without any concern for the resulting phase response. The resulting phase
may be linear or nonlinear. Nonlinear phase response may not be tolerated in some
applications, while other applications may tolerate nonlinear phase. For instance,
nonlinear phase in filtering of speech or music will not have any noticeable effect in
hearing. But nonlinear phase can cause a contour effect in processing images.
Though a filter may be designed to satisfy only the magnitude of the frequency
specifications, the resulting nonlinear phase can be corrected so that the overall
phase is linear yet satisfying the magnitude specifications. We will consider the
design of LTI discrete-time filters in detail in later chapters.

Types of Filter Specifications Depending on the shape of the magnitude of the
frequency response, a filter may be classified as lowpass, highpass, bandpass, or
bandstop filter. In the ideal case, a lowpass filter passes all frequencies of interest
with unity gain and rejects the rest of the frequencies completely.

Ideal Lowpass Filter The ideal lowpass filter can be described by

HLP e jΩ� � ¼ 1, Ωj j � Ωc

0,Ωc < Ωj j � π

�
ð4:68Þ

Figure 4.5a shows the frequency response specified in Eq. (4.68). Observe from
(4.68) that the phase response is assumed to be zero. In equation (4.68), Ωc is called
the cutoff frequency. Since the frequency response is periodic with period 2π, the
frequency response of the ideal lowpass filter is zero in the intervals�π �Ω < �Ωc
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and Ωc < Ω � π. Using the inverse DTFT, we can determine the corresponding
impulse response of the ideal lowpass filter as

hLP n½ � ¼ 1
2π

Zπ

�π

H e jΩ� �
e jnΩdΩ ¼ 1

2π

ZΩc

�Ωc

e jnΩdΩ ¼ sin nΩcð Þ
nπ

, �1 < n < 1

ð4:69Þ
As can be seen from (4.69), the impulse response of the ideal lowpass filter is of

infinite duration. It has a main lobe and side lobes with decreasing amplitudes. As an
example, the impulse response of an ideal lowpass filter with a cutoff frequency of
0.4π is shown in the top plot of Fig. 4.6 over the index from�31 to 31. Its frequency
response is shown in Fig. 4.7 in the top plot over the frequency range 0 to π, π being
half the sampling frequency. Because the impulse response is truncated, the
corresponding frequency response has ripples in both the passband and stopband
regions. We will discuss this effect later in the book.

Ideal Highpass Filter A highpass filter rejects all frequencies up to the cutoff
frequency and passes the rest of the frequencies as described by

HHP e jΩ� � ¼ 0, Ωj j < Ωc

1,Ωc � Ωj j � π

�
ð4:70Þ

The ideal frequency response of the highpass filter is shown in Fig. 4.5b. The
corresponding impulse response can be obtained using the inverse DTFT as shown
below:

π-π Ωc-Ωc

1
HHP(ejΩ)

Ω
Ωc-Ωc π-π

Ω

1 HLP(ejΩ)

Ω

π-π Ω2Ω1-Ω1-Ω2

1
HBP(ejΩ)

Ω
Ω1 Ω2-Ω1-Ω2 π-π

1 HBS(ejΩ)

(a) (b)

(c) (d)

Fig. 4.5 Frequency responses of ideal LP, HP, BP, and BS filters. (a) Lowpass filter, (b) highpass
filter, (c) bandpass filter, (d) bandstop filter
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hHP n½ � ¼ 1
2π

Zπ

�π

H e jΩ� �
e jnΩdΩ ¼ 1

2π

Z�Ωc

�π

e jnΩdΩþ
Zπ

Ωc

e jnΩdΩ

2
64

3
75 ð4:71Þ

After evaluating the integral, we find the impulse response to be

hHP n½ � ¼ � sin nΩcð Þ
nπ

þ sin nπð Þ
nπ

, �1 < n < 1 ð4:72Þ

The second term in (4.72) equals 1 at n ¼ 0 and zero at all other values of n. The
first term at n¼ 0 is �Ωc

π , and for all other values of n, it follows the expression given
there. Therefore, the impulse response of the ideal highpass filter in the discrete-time
domain takes the form

hHP n½ � ¼
1�Ωc

π
, n ¼ 0

� sin nΩcð Þ
nπ

, otherwise

8><
>: ð4:73Þ
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The bottom plot in Fig. 4.6 shows the impulse response of an ideal highpass filter
with a cutoff frequency of 0.6π, and the bottom plot in Fig. 4.7 shows the
corresponding frequency response. In MATLAB, the frequency response is obtained
using the fft function. It performs the discrete Fourier transform of the discrete-time
sequence. The details of the function fft will be discussed in a later chapter.

Ideal Bandpass Filter A bandpass filter passes all frequencies within a band of
frequencies called the passband and rejects the frequencies outside the passband.
The frequency characteristic of an ideal bandpass filter is described by

HBP e jΩ� � ¼ 0, Ωj j < Ω1

1,Ω1 � Ωj j � Ω2

0,Ω2 < Ωj j � π

8<
: ð4:74Þ

Figure 4.5c below illustrates the frequency response of the ideal bandpass filter
described in (4.74). As before, we use the inverse DTFT to find the corresponding
impulse response, which is
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hBP n½ � ¼ 1
2π

Zπ

�π

H e jΩ� �
e jnΩdΩ ¼ 1

2π

Z�Ω1

�Ω2

e jnΩdΩþ 1
2π

ZΩ2

Ω1

e jnΩdΩ ð4:75Þ

After evaluating the integral in (4.75), we obtain the impulse response of the ideal
bandpass filter as

hBP n½ � ¼ sin nΩ2ð Þ
nπ

� sin nΩ1ð Þ
nπ

, �1 < n < 1 ð4:76Þ

Using (4.76), the impulse response of a bandpass filter with band edges at 0.3π
and 0.6π is illustrated in the top plot in Fig. 4.8. The corresponding frequency
response is depicted in the top plot in Fig. 4.9.

Ideal Bandstop Filter Contrary to the bandpass filter, a bandstop filter rejects a
band of frequencies and passes the rest of the frequencies in an input signal. An ideal
bandstop filter has the frequency response given by
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HBS e jΩ� � ¼ 1, Ωj j � Ω1

0,Ω1 < Ωj j < Ω2

1,Ω2 � Ωj j � π

8<
: ð4:77Þ

Figure 4.5d illustrates the frequency response of the ideal bandstop filter defined
in (4.77). The impulse response corresponding to (4.77) is obtained from the inverse
DTFT and is given by

hBS n½ � ¼ 1
2π

Z�Ω2

�π

e jnΩdΩþ
ZΩ1

�Ω1

e jnΩdΩþ
Zπ

Ω2

e jnΩdΩ

8<
:

9=
; ð4:78Þ

After evaluating the integral in (4.78) and with some algebraic manipulation, we
obtain the impulse response of the ideal bandstop filter and is given by

hBS n½ � ¼
1� Ω2 � Ω1ð Þ

π
, n ¼ 0

sin nΩ1ð Þ
nπ

� sin nΩ2ð Þ
nπ

, otherwise

8><
>: ð4:79Þ
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With this brief introduction to filtering, let us look at an example to further
understand the concept of filtering. In Fig. 4.8, the bottom plot shows the impulse
response of an ideal bandstop filter whose lower and upper cutoff frequencies are
0.4π and 0.7π, respectively. Its frequency response appears in the bottom plot in
Fig. 4.9.

Example 4.11 Consider a discrete-time sequence that is a sum of two sinusoidal
sequences at frequencies of 100 and 1200 Hz with a sampling frequency of 4000 Hz.
Filter this sequence by a lowpass filter with a cutoff frequency of 500 Hz. Show that
the 1200 Hz sinusoid is rejected by the filter.

Solution Since we have not yet learned to design a discrete-time filter, we will use
the built-in function in MATLAB. As we will see in a later chapter, there are several
types of filters available in the literature to choose. For the time being, let us pick a
filter type called the Butterworth filter. Of course, one can design a lowpass,
highpass, etc., filter belonging to the Butterworth type. Since the problem asks for
a lowpass filter, we will design a lowpass Butterworth discrete-time or digital filter.
The MATLAB function to design a lowpass Butterworth filter is butter. This
function accepts the filter order and a cutoff frequency normalized to half the
sampling frequency. It returns the coefficients of the numerator and denominator
polynomials of the transfer function of the filter. So, the actual function call to
MATLAB is [B,A]¼ butter(N,Wc), where N is the filter order, Wc is the normalized
cutoff frequency, and B and A are the vectors of coefficients of the numerator and
denominator polynomials, respectively, of the transfer function of the Butterworth
filter. In this example, Wc equals 500/2000, which is 0.25. Once the lowpass filter
has been designed, we next generate a sequence that is the sum of two sinusoids at
100 and 1200 Hz. The sinusoid at a frequency of 100 Hz is equivalent to a
normalized frequency of 0.05. Remember that the normalization factor is half the
sampling frequency. Since the normalized cutoff frequency is 0.25, the 100 Hz
sinusoid is within the passband of the filter and so will be present in the output
without any attenuation. On the other hand, the sinusoid at a frequency of 1200 Hz
has a normalized frequency of 0.6, which is outside the passband of the lowpass
filter. Therefore, this component must be absent in the output. So far we have
designed a filter and generated the input sequence. Next we must filter the input
sequence by the filter. The MATLAB function filter accepts the two polynomials B
and A and the input sequence as arguments and returns the filtered sequence as a
vector. We can then plot the input and the filtered sequences to verify if the 1200 Hz
signal is absent in the filtered output. As we have seen earlier, it is easier to visualize
the frequencies in the frequency domain than in the discrete-time domain. We will,
therefore, use the MATLAB function fft to compute the frequency domain repre-
sentation of the input and output sequences. The complete MATLAB code for this
problem is in the M-file named Filtering_example.m. The magnitude of the fre-
quency response of the lowpass digital filter is plotted as a function of the frequency
in Hz and is shown in Fig. 4.10. The magnitude at the cutoff frequency of 500 Hz is
0.707. Next, the input and filtered sequences are plotted and shown in Fig. 4.11. The
top plot is the input sequence and the bottom plot is the filtered sequence. As can be
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seen, it is not easy to say which is which. So, we plot the magnitude of the frequency
spectrum of the input and filter output sequences and are shown in the top and
bottom plots in Fig. 4.12. The input spectrum has two peaks corresponding to the
100 and 1200 Hz sinusoids, whereas the output spectrum has only one peak at
100 Hz. This confirms that the lowpass filter has passed the 100 Hz sinusoid and
rejected the other component in the input.

Example 4.12 Let us consider a communications problem. We want to design a
bandpass filter to separate the higher of the two carrier frequencies present in an
amplitude modulated (AM) signal. The two carrier frequencies are 540 and 850 kHz.
The modulating signal is a sinusoid at a frequency of 5 kHz. We want to show the
results.

Solution The AM radio frequencies range from 540 kHz to 1700 kHz. These are the
carrier frequencies. The message is contained in the modulating signal, which is
limited to 5 kHz bandwidth. An AM signal in the continuous-time domain can be
expressed by

xAM tð Þ ¼ Ac 1þ km tð Þð Þ cos ωctð Þ ð4:80Þ
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In (4.80), Ac is the amplitude of the carrier signal, k ¼ Am
Ac

is the modulation

index, Am is the amplitude of the modulating signal, and ωc ¼ 2πfc is the carrier
frequency in radian/s. The AM signal is a bandpass signal with a center frequency
fc and a bandwidth of 10 kHz. The frequencies above the carrier frequency are
called the upper sideband, and those below the carrier frequency are called the
lower sideband. In this example, there are two carrier frequencies present, and we
want to filter out the lower carrier frequency component. We can express the sum
of the two carriers as

x tð Þ ¼ A1 1þ k1m tð Þð Þ cos ωc1tð Þ þ A2 1þ k2m tð Þð Þ cos ωc2tð Þ ð4:81Þ
For the sake of argument, we assume the two modulation indices to be different.

First, we have to convert the analog signal to a discrete-time signal by sampling
it. The highest frequency present in the signal in Eq. (4.81) is fc2 + fm, where
fc2 ¼ 850 kHz and fm ¼ 5 kHz. Let us choose a sampling frequency Fs ¼ 3
( fc2 + fm) ¼ 2.565 MHz. The sampled AM signal is then written as

x n½ � ¼ A1 1þ k1m nTð Þð Þ cos nΩc1ð Þ þ A2 1þ k2m nTð Þð Þ cos nΩc2ð Þ, ð4:82Þ
where Ωc1 ¼ ωc1

Fs
and Ωc2 ¼ ωc2

Fs
. The next task is to design a bandpass digital filter

with a center frequency fc2, lower edge frequency W1 ¼ fc2 � fm, and upper edge
frequency of W2 ¼ fc2 + fm, both edge frequencies normalized to half the sampling
frequency. The MATLAB function butter(N,W) designs a Butterworth bandpass
filter of order 2N and band edge frequencies as a vector W. Note that if the frequency
argument is a scalar, it designs a lowpass filter as we did in the previous example.
The function returns the coefficients of the numerator and denominator polynomials
of the Butterworth bandpass filter of order 2N. Finally, we filter the signal in (4.82)
through the designed BP filter to pass the higher carrier frequency and reject the
lower frequency. The results are shown in Figs. 4.13, 4.14, and 4.15. Figure 4.13
shows the AM signal in (4.82) in the discrete-time and frequency domains. For the
sake of clarity, the signal in the discrete-time is plotted as a continuous function. In
the bottom plot of Fig. 4.13, the spectrum is plotted between zero and half the
sampling frequency. As can be seen from the figure, there are two carrier frequencies
present in the AM signal. The magnitude of frequency response of the bandpass filter
is shown in Fig. 4.14. The bandpass filtered AM signal in discrete-time and fre-
quency domains is shown in Fig. 4.15. From the bottom plot of Fig. 4.15, we see that
only the higher carrier frequency component is present at the output of the bandpass
filter. It is important to mention that a Butterworth bandpass filter is chosen as an
example. One can choose a different type of filter such as Chebyshev or elliptic to
achieve the same result with a lower order.

Example 4.13 Image filtering example As another example, we will consider
filtering an image to see its effect on the image. Specifically, we will use a finite
impulse response (FIR) lowpass filter to filter a gray-scale image. So, design a
lowpass FIR filter of order 14 with a cutoff frequency of 0.1, and then filter a
gray-scale image with the designed filter, and display the original and filtered
images.
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Solution An FIR filter has an impulse response, which is of finite length as opposed to
an infinite impulse response (IIR) filter, which has an infinite duration. We can use the
MATLAB function fir1, which accepts the filter order and cutoff frequency normalized
to half the sampling frequency as arguments. It returns the impulse response of the filter
as a vector. Thus, we use the MATLAB statement h ¼ fir1(N,w). As is, this function
designs a lowpass FIR filter using Hamming window. We will later learn about the
windowing techniques. For now, it is enough to know that we can design a lowpass FIR
filter using the above statement. Once the filter has been designed, we read an image
using the MATLAB function imread. This function can read an image with different
formats, which can be found in the MATLAB. If the image read is an RGB (color)
image, then we convert it to a gray-scale image using the MATLAB function rgb2gray.
This gray-scale image is then filtered through the designed lowpass FIR filter via the
MATLAB function imfilter, which accepts the input 2D image and the 2D filter impulse
response and returns the filtered image as a 2Dmatrix. The details of this function can be
obtained from MATLAB. Finally, the image can be displayed using the MATLAB
function imshow. The MATLAB codes are listed in the M-file named
Image_filtering_example.m. First, the magnitude of the frequency response of the
designed lowpass FIR filter is plotted as a surface plot and shown in Fig. 4.16. The
two frequencies range from zero to half the sampling frequency in radians. The input
gray-scale image is shown in Fig. 4.17, and the lowpass filtered image is shown in
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domain. Bottom plot: filtered signal in the frequency domain
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Fig. 4.16 Surface plot of the 2D lowpass FIR filter with a normalized cutoff frequency of 0.1

Fig. 4.17 Original gray-scale image
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Fig. 4.18. The original image has finer details as seen in Fig. 4.17. The effect of lowpass
filtering is to smooth or blur the image. The amount of blurring depends on the cutoff
frequency. From Fig. 4.18, we notice the loss of details on the bikes, helmets, etc.

4.5.3 Calculation of DTFT Using MATLAB

So far we used analytical tools to determine the DTFT of discrete-time signals and
systems. In the previous chapter, we learned to characterize LTI discrete-time
systems in terms of their transfer functions in the Z-domain. In general, the transfer
function of an LTI discrete-time system is a rational polynomial in the complex
variable z. There are two types of LTI discrete-time systems or filters. If the
denominator polynomial is not just a constant, then the corresponding filter is called
an IIR (infinite impulse response) filter. An IIR filter has both numerator and
denominator polynomials in z. On the other hand, if the denominator polynomial
of the transfer function is identically equal to 1, then the filter is termed an FIR (finite
impulse response) filter. We have also established the relationship between the
Z-transform and the DTFT. More specifically, the DTFT of a discrete-time signal
x[n] can be obtained from its Z-transform through

X e jΩ� � ¼ X zð Þjz¼e jΩ ð4:83Þ

Fig. 4.18 Image in Fig. 4.12 filtered through the lowpass FIR filter of Fig. 4.11. The effect of
lowpass filtering is to smudge the image as is evident from the figure
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The same rule applies to the LTI discrete-time systems. Once the Z-transform is
given, the corresponding DTFT can be determined by simply using (4.83). If we
want to compute the DTFT at a set of values of Ω, then we can use MATLAB to
compute the DTFT at those points. More specifically, MATLAB has the function
freqz to compute the DTFT. The arguments of the freqz function are the vectors of
coefficients of the numerator and denominator polynomials of the Z-transform of a
discrete-time signal or system. There are other parameters that are optional. For more
information about the function freqz, one may obtain them by typing “help freqz” in
the MATLAB workspace. Let us consider the following example.

Example 4.14 Calculate and plot the DTFT of the discrete-time sequence
described by

x n½ � ¼ 0:75n cos
nπ

8

� �
u n½ � ð4:84Þ

Solution Using the Z-transform property, we obtain

X zð Þ ¼ 1� 0:75z�1 cos π
8

� �
1� 1:5z�1 cos π

8

� �þ 9
16 z

�2
¼ B zð Þ

A zð Þ ð4:85Þ

From (4.85), we find the vectors to be B ¼ 1� 0:75 cos π
8

� �
0

� �
and

A ¼ 1� 1:5 cos π
8

� �
9
16

� �
. Note that both vectors must be of the same size. Next,

we call the function [X,W] ¼ freqz(B,A,256). The function returns the DTFT of x
[n] in X over 256-point vector W, uniformly distributed in the interval [0, π]. Note
that π corresponds to half the sampling frequency. The normalized magnitude and
phase of the DTFT are shown in the top and bottom plots in Fig. 4.19. The
MATLAB code is listed in the M-file Example4_14.m.

Example 4.15 Calculation of the DTFT of a Finite-Length Sequence Using
MATLAB In the previous example, we considered calculating the DTFT of an
infinite-length sequence. Using MATLAB, we can also compute the DTFT of a
finite-length sequence by calling the same function freqz. In this case, the
Z-transform of a finite-length sequence has only the numerator polynomial in z�1

with the denominator polynomial being identically equal to 1. Therefore, the func-
tion call takes the form

H;W½ � ¼ freqz h;Nð Þ ð4:86Þ
where h is the finite-length sequence, H is its DTFT at the N points W, uniformly
distributed over the interval [0, π]. We will, therefore, compute the DTFTs of the
impulse responses of the ideal filters that we discussed above using (4.86) in
MATLAB and plot the normalized magnitudes and phase responses. The DTFTs
of the ideal lowpass, highpass, bandpass, and bandstop filters are shown in
Figs. 4.20, 4.21, 4.22, and 4.23, respectively. As can be seen from the plots, the
phase functions are wrapped around 2π. However, the actual phase is a continuous
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Fig. 4.19 DTFT of the sequence in (4.84) using MATLAB
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Fig. 4.20 DTFT of a finite-length lowpass filter
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Fig. 4.21 DTFT of a finite-length highpass filter
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Fig. 4.22 DTFT of a finite-length bandpass filter
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function of the frequency. We can unwrap the phase in MATLAB using the function
unwrap. In Figure 4.24 is shown the unwrapped phase of the bandstop filter as an
example. The M-file named Example4_15.m is used to solve this problem.

Example 4.16 MATLAB Example to Determine Cascade and Parallel Forms
of IIR Filter Given the transfer function of an IIR filter in the frequency domain,
determine the cascade and parallel forms using MATLAB. Compute the impulse and
step responses of the three forms of the IIR filter. Also, generate a white Gaussian
noise, and filter it through the IIR filter, and plot the DTFT of the filtered noise.

Solution The given frequency domain transfer function of the IIR filter is
described by

H e jΩð Þ
¼ b0 þ b1e�jΩ þ b2e�j2Ω þ b3e�j3Ω þ b4e�j4Ω þ b5e�j5Ω þ b6e�j6Ω þ b7e�j7Ω þ b8e�j8Ω

a0 þ a1e�jΩ þ a2e�j2Ω þ a3e�j3Ω þ a4e�j4Ω þ a5e�j5Ω þ a6e�j6Ω þ a7e�j7Ω þ a8e�j8Ω

which is an eighth-order IIR filter, where the numerator and denominator poly-
nomials are given by

B¼ 0:0789;�0:0457;�0:0418;�0:0172;0:1319;�0:0172;�0:0418;�0:0457;0:0789½ �

A ¼ 1;�1:0003; 2:0927;�1:5789; 2:1993;�1:1056; 1:0185;�0:2907; 0:2016½ �
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Fig. 4.23 DTFT of a finite-length bandstop filter
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To find the cascade form, we use the function call [sos,g] ¼ tf2sos(B,A), which
returns the coefficients of the numerator and denominator polynomials of the first-
and or second-order sections. The overall gain factor is g ¼ 0.0789. For this
example, since the filter order is 8, there are four second-order sections and are
found to be

Hc1 e jΩ� � ¼ 1þ 1:6647e�jΩ þ e�j2Ω

1þ 0:2247e�jΩ þ 0:4951e�j2Ω

Hc2 e jΩ� � ¼ 1� 1:8278e�jΩ þ e�j2Ω

1� 0:7172e�jΩ þ 0:5357e�j2Ω

Hc3 e jΩ� � ¼ 1þ 1:0562e�jΩ þ e�j2Ω

1þ 0:66e�jΩ þ 0:8613e�j2Ω

Hc4 e jΩ� � ¼ 1� 1:4722e�jΩ þ e�j2Ω

1� 1:1677e�jΩ þ 0:8825e�j2Ω

To obtain the parallel form, we first have to convert the transfer function to the
residues, poles, and quotients. This is achieved by calling [R,P,K] ¼ residuez(B,A),
where B and A are the coefficients of the numerator and denominator polynomials of
the given transfer function. Once the residues, poles, and the quotients are obtained,
the transfer functions of the individual sections of the parallel form are determined
using the same residuez function but with input arguments R and P and with K ¼ 0.
The details of the MATLAB commands can be found in the M-file Example 4_16.m.
The four sections of the parallel form obtained are given by the following.

10

0

-10

-20

-30

-40

-50

-60

-70
0 0.5 1 1.5

Normalized frequency

Unwraped phase of BSF

P
ha

se
 r

ad

2 2.5 3 3.5

Fig. 4.24 Unwrapped phase response of the bandpass filter whose frequency response is shown in
Fig. 4.23

142 4 Frequency Domain Representation of Discrete-Time Signals and Systems



Hp1 e jΩ� � ¼ �0:0874þ 0:1263e�jΩ

1� 1:1677e�jΩ þ 0:8825e�j2Ω

Hp2 e jΩ� � ¼ �0:1069� 0:1396e�jΩ

1þ 0:66e�jΩ þ 0:8613e�j2Ω

Hp3 e jΩ� � ¼ �0:0991� 0:4192e�jΩ

1� 0:7172e�jΩ þ 0:5357e�j2Ω

Hp4 e jΩ� � ¼ �0:0191þ 0:564e�jΩ

1þ 0:2247e�jΩ þ 0:4951e�j2Ω

with K¼ 0.3914. Once the cascade and parallel forms have been determined, we can
then calculate the impulse and step responses using the functions impz and stepz.
Again, the details are found in the abovementioned M-file. Finally, we generate the
white Gaussian noise using the function call x¼ sigma x randn(256,1), where sigma
is the standard deviation. This will generate a Gaussian random vector of dimension
256x1. In order to determine the filtered noise, we first calculate the DTFT of the
noise and the filter transfer function and then multiply the two point by point. To
determine the DTFT of a vector, we can use the function freqz. This product gives
the DTFT of the filtered noise. Having determined all the required items, we then
plot the various functions as follows.

The magnitude of the DTFT of the given IIR filter is shown in Fig. 4.25, which
also includes the DTFTs of the cascade and parallel forms. All three are identical.
From the figure, we notice that the given IIR filter is a bandpass filter. The phase
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Fig. 4.25 Magnitude of the DTFT of the IIR filter of Example 4.16
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responses of all the three forms of the IIR filter are shown in Fig. 4.26. Figure 4.27
depicts the unwrapped phase responses. The impulse responses of the three forms of
the IIR filter are shown as stem plots in Fig. 4.28. All three responses are identical.
Similarly the step responses of the three IIR filters are shown in Fig. 4.29, which are
again, identical. Because the filter is a bandpass filter, it does not pass DC and is clear
from the plots in Fig. 4.29. Note that the unit step is a constant after n¼ 0. The steady
state response of the bandpass to a constant input will be zero. Finally, a white
Gaussian noise is applied to the IIR filters, and the corresponding responses are
calculated using the DTFT. Since the given filter is LTI, the DTFT of the output of
the filter to a given input is the product of the DTFTs of the filter and its input. First
we compute the DTFT of the input noise sequence and then multiply it point by point
with the DTFT of the filter to obtain the DTFT of the output. The white Gaussian
sequence in the discrete-time domain is shown in Fig. 4.30. The magnitudes of the
DTFTs of the Gaussian noise and the filter output are shown in the top and bottom
plots in Fig. 4.31. Because the input noise is white, its DTFT appears flat over the
frequency range between zero and half the sampling frequency. In the figure, half the
sampling frequency corresponds to π. The DTFT of the filtered noise appears
bandpass in shape because the filter is bandpass.
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Fig. 4.26 Phase of the DTFT of the IIR filter of Example 4.16
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4.6 Summary

We have described the mapping of discrete-time signals and systems in the fre-
quency domain using what is known as the discrete-time Fourier transform. The
DTFT of discrete-time signals is periodic with period 2π and is a continuous function
of the normalized frequency Ω in radians. Because the DTFT is periodic, its inverse
is the discrete-time sequence. In other words, the inverse DTFT (IDTFT) of the
DTFT of a sequence is the coefficients of the Fourier series expansion of the given
DTFT. We described how to determine the DTFT of several commonly encountered
sequences. We also learned the properties of DTFT, which are useful in the deter-
mination of the DTFT of more complex sequences. Several examples are worked out
to illustrate the definition and the use of the properties of the DTFT. As the discrete-
time system is concerned, the DTFT of an LTI discrete-time system gives rise to its
frequency domain transfer function. We further observed that the DTFT of a
sequence or an LTI discrete-time system results in a rational polynomial. Examples
are given to illustrate the process of obtaining the IDTFT. In particular, we used the
partial fraction expansion to determine the response of an LTI discrete-time system
to a specific input sequence. We further described the concept of filtering through the
DTFT. In particular, we defined the characteristics of ideal lowpass, highpass,
bandpass, and bandstop filters in terms of the DTFT. To understand the significance
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of filtering, we showed a few examples of lowpass and bandpass filtering using
MATLAB. Further, we used an image-filtering example to demonstrate the effect of
lowpass filtering of a gray-scale image using MATLAB functions.

The next chapter deals with the discrete version of the frequency domain repre-
sentation of discrete-time signals and systems, known as the discrete Fourier
transform (DFT). As we will see in detail, DFT deals with the frequency domain
representation of finite-length sequences. It is also a computational tool to calculate
the DFT of finite-length sequences. DFT can be used to perform filtering operations.
There is a computationally efficient algorithm known as the fast Fourier transform
(FFT), which is widely used in practice. We will describe two aspects of the FFT
algorithm and show how much saving in the number of arithmetic operations is
achieved in comparison with the brute force method of calculating the DFT.

4.7 Problems

1. Find the DTFT of the sequence x n½ � ¼ 0:5 nj j, nj j � 7
0, otherwise

�
.

2. Find the DTFT of the sequence x n½ � ¼ α nj j, nj j � M
0, otherwise

�
.

3. Determine the DTFT of the following sequences:

(a) x[n] ¼ 2nαnu[n], with |α| < 1.
(b) g[n] ¼ αnu[n + 1], |α| < 1
(c) h[n] ¼ βnu[n � 1], |β| < 1

4. Find the DTFT of the sequence x[n] ¼ Bβn cos (nΩ0 + θ)u[n], where B, β, Ω0,
and θ are real constants and |β| < 1.

5. Find the DTFT of the sequence described by x[n] ¼ u[n + 1] � u[n � 4].
6. Determine the DTFT of the finite-length sequence

x n½ � ¼ cos nπ
2N

� �
, � N � n � N

7. If x n½ � ¼ 1� nj j
N
, � N � n � N

0, otherwise

(
, what is its DTFT?

8. Find the IDTFT of X e jΩð Þ ¼ �αe�jΩ

1�αe�jΩð Þ2 , αj j � 1.

9. Determine the sequence whose DTFT is given by H(e jΩ) ¼ cos (4Ω).
10. If x[n]$ X(e jΩ) with x[n] a real sequence, find in terms of the sequence x[n], the

sequence y[n] whose DTFT is given by Y(e jΩ) ¼ X(e j4Ω).
11. If X(e jΩ) is the DTFT of a real sequence x[n], then what is the IDTFT of the

function G e jΩð Þ ¼ 1
2 X e

jΩ=3Þ þ X �e
jΩ=3Þ

� i�h
.

12. Given an N-point sequence {x[n]}, 0� n� N� 1, obtain the M-point sequence
{y[n]} withM > N, by appending the sequence {x[n]} with M-N zeros. Find the
DTFT Y(e jΩ) of y[n] in terms of the DTFT X(e jΩ) of the sequence x[n].
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13. Consider the sequences (a) x[n]¼ 2n,� N� n� N, (b) g n½ � ¼
0, for n even
1
nπ

, for n odd

(
.

Determine which of the above sequences has real-valued DTFT and which has
the imaginary-valued DTFT without computing the DTFT.

14. The transfer function of an LTI discrete-time system is given by
H e jΩð Þ ¼ 1

1�αe�jΩ , αj j � 1. Calculate its response to an input x[n] ¼ βnu[n],
|β| ≺ 1 using DTFT. Note that α and β are different.

15. The transfer function of an LTI discrete-time system is given by
H e jΩð Þ ¼ 1

1�0:75e�jΩ. Calculate its response to an input x[n] ¼ 0.5nu[n]
using DTFT.
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Chapter 5
Discrete Fourier Transform

5.1 Introduction

Discrete Fourier transform (DFT) is a frequency domain representation of finite-
length discrete-time signals. It is also used to represent FIR discrete-time systems in
the frequency domain. As the name implies, DFT is a discrete set of frequency
samples uniformly distributed around the unit circle in the complex frequency plane
that characterizes a discrete-time sequence of finite duration. DFT is also intrinsi-
cally related to the DTFT, as we will see in this chapter. Because DFT is a finite set
of frequency samples, it is a computational tool to perform filtering and related
operations. There is an efficient algorithm known as the fast Fourier transform (FFT)
to perform filtering of long sequences, power spectrum estimation, and related tasks.
We will learn about the FFT in this chapter as well.

5.2 Definition of DFT

The DFT of an N-point or length-N sequence x[n] is defined as

X kð Þ ¼
XN�1

n¼0

x n½ �e�j 2π
Nð Þnk, 0 � k � N � 1 ð5:1Þ

It is customary to use the notationWN � e�j 2π
Nð Þ. We can, therefore, rewrite (5.1) as
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X kð Þ ¼
XN�1

n¼0

x n½ �WN
nk, 0 � k � N � 1 ð5:2Þ

From the definition, it is clear that the DFT of an N-point sequence is indeed
discrete and has the same length as the sequence. Remember that 2π corresponds to
the sampling frequency. So, the DFT is a set of frequency samples spaced uniformly
over one sampling frequency. We also observe that the DFT is periodic with period
N because of the fact that

X k þ Nð Þ ¼
XN�1

n¼0

x n½ �WN
n kþNð Þ ¼

XN�1

n¼0

x n½ �WN
nke�j2nπ ¼ X kð Þ ð5:3Þ

5.3 Relationship Between DTFT and DFT

Recall the definition of DTFT of an N-point sequence x[n], which is

X e jΩ� � ¼ XN�1

n¼0

x n½ �e�jnΩ ð5:4Þ

If we sample the DTFT at N points equally spaced around the unit circle e jΩ, we
get

X kð Þ ¼ X e jΩ� ���
Ω¼2π

N k
¼

XN�1

n¼0

x n½ �e�j2πN nk, 0 � k � N � 1, ð5:5Þ

which is the DFT of the N-point sequence. Thus, the DFT of an N-point sequence is
the DTFT of that sequence sampled at N points equally spaced around the unit circle
in the frequency domain. In other words, the DFT is the sampled version of the
DTFT with the samples spaced uniformly around the unit circle in the frequency
domain.

Example 5.1 Find the DFT of the sequence x[n] ¼ 0.5n, 0 � n � N � 1 and
compare it with the DTFT of the same sequence.

Solution Using the definition of the DFT, we can write

X k½ � ¼
XN�1

n¼0

0:5nW nk
N , 0 � k � N � 1 ð5:6Þ

By collecting the two factors inside the summation in Eq. (5.6), we can express
the DFT as
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X kð Þ ¼
XN�1

n¼0

0:5W k
N

� �n
, 0 � k � N � 1 ð5:7Þ

The right-hand side of (5.7) is a geometric series and, so, can be written in closed
form as

X kð Þ ¼ 1� 0:5W k
N

� �N
1� 0:5W k

N

, 0 � k � N � 1 ð5:8Þ

We can express the DFT in (5.8) in magnitude-phase form as given below:

X kð Þj j ¼
1� 0:5W k

N

� �N��� ���
1� 0:5W k

N

�� �� ¼ 1� 0:5Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:25� cos 2πk

N

� �q , 0 � k � N � 1 ð5:9aÞ

θ kð Þ ¼ � tan �1 0:5 sin 2πk
N

� �
1� 0:5 cos 2πk

N

� � , 0 � k � N � 1 ð5:9bÞ

The magnitude and phase of the DFT of the sequence in Example 5.1 are shown
in Figs. 5.1a, b, respectively. The plots also show the DTFT of the same sequence. It
is evident that the DFT is the sampled version of the DTFT. The sequence length
chosen is 32 samples.

5.4 Inverse DFT

The process of recovering a sequence from its DFT is called the inverse discrete
Fourier transform (IDFT). If the IDFT does not exist, then there is no use for the
DFT. Fortunately, the IDFT does exist and is defined as

x n½ � ¼ 1
N

XN�1

k¼0

X kð ÞW�nk
N , 0 � n � N � 1 ð5:10Þ

Proof To prove that the IDFT is indeed x[n], let us substitute for X(k) in (5.10) to get

x n½ � ¼ 1
N

XN�1

k¼0

XN�1

m¼0

x m½ �Wmk
N

( )
W�nk

N , 0 � n � N � 1 ð5:11Þ

By interchanging the order of summation in (5.11), we have
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x n½ � ¼
XN�1

m¼0

x m½ � 1
N

XN�1

k¼0

Wk m�nð Þ
N

( )
, 0 � n � N � 1 ð5:12Þ

But the inner summation results in

1
N

XN�1

k¼0

Wk m�nð Þ
N ¼ 1, if m ¼ nþ rN, r2Z

0, otherwise

�
ð5:13Þ

Therefore, the right-hand side of (5.12) equals x[n], hence, the result.

5.5 Effect of Sampling the DTFT on the Reconstructed
Sequence

We saw in Chap. 2 that the effect of sampling a continuous-time signal is to replicate
the frequency spectrum of the continuous-time signal in the frequency domain. So, if
the continuous-time signal is strictly band-limited, then the replicated spectra do not
overlap in the frequency domain. Therefore, there is no aliasing distortion, and the
continuous-time signal can be recovered exactly from the corresponding discrete-
time sequence. The duality of this result is as follows. If we sample the frequency
spectrum or DTFT of a discrete-time sequence at a finite set of points equally spaced
around the unit circle in the complex plane, then the reconstructed sequence using
IDFT is a replicated version of the original sequence. If the length of the original
sequence is equal or smaller than the number of frequency samples, then the
reconstructed sequence from the IDFT will have no distortion. Let us prove this
result as follows. Consider a sequence x[n], whose DTFT is given by

X e jΩ� � ¼ DTFT x n½ �f g ¼
X1
n¼�1

x n½ �e�jnΩ ð5:14Þ

If we sample X(e jΩ) at M points spaced uniformly around the unit circle, we will
have an M-point DFT sequence. Denote this sequence by Y(k). Therefore,

Y kð Þ ¼ X e jΩ� ��
Ω¼2πk

M
¼

X1
n¼�1

x n½ �e�jn2πkM , 0 � k � M � 1 ð5:15Þ

The sequence y[n] can be found by performing the IDFT of Y(k), which is

y n½ � ¼ IDFT Y kð Þf g ¼ 1
M

XM�1

k¼0

Y kð ÞW�nk
M ð5:16Þ

Using Eq. (5.15) in (5.16), we can rewrite (5.16) as
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y n½ � ¼ 1
M

XM�1

k¼0

X1
p¼�1

x p½ �W pk
M

( )
W�nk

M ð5:17Þ

By interchanging the order of summation in (5.17), we obtain

y n½ � ¼
X1
p¼�1

x p½ � 1
M

XM�1

k¼0

W� n�pð Þk
M

( )
ð5:18Þ

However, since

1
M

XM�1

k¼0

W�k n�pð Þ
M ¼ 1, if p ¼ nþ mM

0, otherwise

�
ð5:19Þ

we have

y n½ � ¼
X1

m¼�1
x nþ mM½ � ð5:20Þ

Thus we find that the reconstructed sequence y[n] is the sum of the replicas of the
sequence x[n] shifted by integer multiples of the number of frequency samples. If the
sequence x[n] is time-limited to N�M, then y[n] is exactly equal to x[n] between 0 and
M-1. Otherwise, the replicas overlap and cause distortion in the sequence y[n]. Let us
illustrate the idea of frequency sampling by the following example.

Example 5.2 Find the M-point DFT of an N-point sequence of your choice. Then
calculate the M-point IDFT and compare the two sequences to see if there is any
distortion.

Solution Let the sequence be described by

x n½ � ¼ sin 0:2πnð Þ þ 2 cos 0:3πnð Þ, 0 � n � N � 1 ð5:21Þ
We can use the MATLAB to calculate the DTFT of the sequence in (5.21). The

function to use is freqz, which accepts the coefficients of the polynomials of the
numerator and denominator of a transfer function. However, in this example since
the sequence is of finite length, its DTFT is just a polynomial with the coefficients
corresponding to the given sequence. To calculate the DTFT, we use the statement
[H,W] ¼ freqz(x,A,N,

0
whole

0
). The DTFT is returned in H at N points uniformly

spaced around the unit circle. Here A is a vector of the same size as the sequence and
is all zeros except the first element, which is unity. W is the set of N normalized
frequency points between zero and 2π. Next we sample the DTFT at M equally
spaced points around the unit circle. This is done by retaining every N/M samples of
the DTFT that we just calculated. The M-point sequence is recovered by performing
the inverse DFT of the M samples of the DTFT. The IDFT of the M-point DFT X can
be computed using the MATLAB function ifft. The actual function call is y¼ ifft(X).

156 5 Discrete Fourier Transform



The two sequences can then be compared to see if there is distortion in the sequence
y. The thirty-two-point sequence in (5.21) is plotted and shown in the top plot in
Fig. 5.2. The sequence obtained from the IDFT of the DFT of the thirty-two-point
sequence with M¼ 32 is shown in the bottom plot of Fig. 5.2. Since N¼M, we find
no distortion in the recovered sequence. Next, the sequence obtained from eight-
point IDFT is shown in the bottom plot of Fig. 5.3. As can be seen from the figure,
since M < N, there is a significant distortion in the sequence y[n]. For N ¼ 32 and
M¼ 8, the sequence in the discrete-time domain is obtained by adding the replicas of
the original sequence shifted left by 0, M, 2 M, and 3 M as given by

y n½ � ¼ x n½ � þ x nþM½ � þ x nþ 2M½ � þ x nþ 3M½ �, 0 � n � M � 1 ð5:22Þ
The sequence obtained from (5.22) is plotted and shown in the bottom figure of

Fig. 5.4. As a comparison, the top plot in Fig. 5.4 is the same as that shown in the
bottom plot in Fig. 5.3. This shows that when M < N, distortion occurs in the
reconstructed sequence because of overlapping of the replicas. This is further
demonstrated by plotting the magnitude of the spectrum of the sequence obtained
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Fig. 5.2 Thirty-two-point IDFT from the thirty-two-point sequence: top plot, actual sequence of length
32; bottom plot, sequence obtained from thirty-two-point DFT of the sequence in Example 5.2
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from (5.22), which is shown in the bottom plot in Fig. 5.5. In comparison to the
spectrum of the original sequence shown in the top plot in Fig. 5.5, we observe that
the spectrum of the sequence obtained by summing the replication of the original
sequence is quite different, implying that there is distortion due to the fact that
M < N.

5.6 Circular Convolution

The convolution we described earlier is called linear convolution. In linear convo-
lution the two sequences to be convolved can be of finite length or of infinite length.
To linearly convolve two sequences, one of the sequences is time-reversed or flipped
around the origin and slid left or right one sample at a time, and the product of the
sequences is summed. Also, the linear convolution of two sequences of the same
length-N results in a sequence of length 2N � 1. Circular convolution is meant for
finite-length sequences. In circular convolution, the two sequences to be convolved
are of the same length. If not, the sequence of smaller length is zero-padded to be of
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Fig. 5.3 Eight-point IDFT from the thirty-two-point sequence: top plot, actual sequence of length
32; bottom plot, sequence obtained from eight-point DFT of the sequence in Example 5.2
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the same length. The circular convolution of the two sequences of the same length-N
results in a sequence, which is also of length N. In circular convolution, one
sequence is shifted circularly over the other sequence one sample at a time, the
two are multiplied, and the product summed to yield the convolved sequence.
Circular shift implies that the circular convolution is periodic with period N,
which is the length of the sequences. Having described circular convolution quali-
tatively, let us give the formal definition of circular convolution.

Definition of Circular Convolution The circular convolution of two N-point
sequences is another N-point sequence and is defined as

y n½ � ¼
XN�1

k¼0

x k½ �h < n� k>N½ �, 0 � n � N � 1 ð5:23Þ

In Eq. (5.23), the notation <n � k>N refers to modulo-N operation. For instance,
five modulo four is < 5>4 ¼ 5� 5

4

� �
4 ¼ 5� 4 ¼ 1. To distinguish from linear
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Fig. 5.4 Calculation of the sequence using equation 5.20: top plot, sequence obtained by IDFT of
the DFT samples; bottom plot, sequence obtained from Eq. (5.20)
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convolution, we will use the symbol
L

to denote circular convolution. We can,
therefore, write (5.23) in terms of the symbol for circular convolution as

y n½ � ¼ x n½ �
M

h n½ � ð5:24Þ

Matrix Representation of Circular Convolution The circular convolution in
Eq. (5.23) can also be represented in matrix form as given below:

y n½ � ¼

h 0½ � h N � 1½ � h N � 2½ � . . . . . . :h 1½ �
h 1½ � h 0½ � h N � 1½ � . . . . . . . . . . . . :h 2½ �
h 2½ � h 1½ � h 0½ � . . . . . . . . . . . . . . . . . . h 3½ �

. . . . . . . . . . . . . . . . . . . . . . . . . . . :
h N � 1½ � h N � 2½ � . . . . . . . . . . . . ::h 0½ �

2
66664

3
77775

x 0½ �
x 1½ �
⋮
⋮

x N � 1½ �

2
66664

3
77775 ð5:25Þ

We will explain the circular convolution of two finite-length sequences by an
example.
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Example 5.3 Calculate the circular convolution of the sequences x[n] ¼ [1 2 3 4]
and h[n] ¼ [4 3 2 1].

Solution From Eq. (5.23), we can write the circular convolution as

y 0½ � ¼ x 0½ �h 0½ � þ x 1½ �h 3½ � þ x 2½ �h 2½ � þ x 3½ �h 1½ � ¼ 1∗4þ 2∗1þ 3∗2þ 4∗3 ¼ 24

y 1½ � ¼ x 0½ �h 1½ � þ x 1½ �h 0½ � þ x 2½ �h 3½ � þ x 3½ �h 2½ � ¼ 22

y 2½ � ¼ x 0½ �h 2½ � þ x 1½ �h 1½ � þ x 2½ �h 0½ � þ x 3½ �h 3½ � ¼ 24

y 3½ � ¼ x 0½ �h 3½ � þ x 1½ �h 2½ � þ x 2½ �h 1½ � þ x 3½ �h 0½ � ¼ 30

The following figure is a graphical representation of computing the circular
convolution of the two sequences in Example 5.3. Here, the sequence h[n] is rotated
counterclockwise one sample at a time, multiplied point by point by x[n], and then
the product added to obtain the circular convolution at sample index n. The process
is continued until the N-point circular convolution is completed (Fig. 5.6).

The same can also be obtained via matrix equation, which is

�y ¼
4 1
3 4

2 3
1 2

2 3
1 2

4 1
3 4

2
64

3
75

1
2
3
4

2
664

3
775 ¼

24
22
24
30

2
664

3
775 ð5:26Þ

5.7 Properties of the DFT

As in Z-transform and DTFT, one can exploit the properties of the DFT in solving
problems with elegance and efficiency. In this section we will describe some
properties of the DFT with proof where necessary.

Linearity The DFT is a linear transform. That means that the following equation
holds

Y kð Þ ¼ DFT αx1 n½ � þ βx2 n½ �f g ¼ αX1 kð Þ þ βX2 kð Þ ð5:27Þ
In the above equation, both {x1[n]} and {x2[n]} are N-point sequences,

Xi[k] ¼ DFT{xi[n]}, i ¼ 1, 2, and α and β are constants.

Circular Time-Shifting If an N-point sequence x[n] is circularly shifted in time by
n0, then the DFT of the time-shifted sequence is described by

DFT x
	
< n� n0>N


 � ¼ Wkn0
N X kð Þ, n02Z ð5:28Þ
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Proof From the definition of DFT, we have

DFT x
	
< n� n0>N


 � ¼
XN�1

n¼0

x n� n0½ �W nk
N ð5:29Þ

By using m ¼ n � n0 in the above equation, we can rewrite (5.29) as

DFT x
	
< n� n0>N


 � ¼
XN�1�n0

m¼�n0

x m½ �W mþn0ð Þk
N ¼ Wn0k

N X kð Þ ð5:30Þ

Circular Frequency-Shifting If the DFT of an N-point sequence is circularly
shifted by an integer k0, then the corresponding discrete-time sequence is given by
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Fig. 5.6 Graphical representation of the computation of circular convolution of the two sequences
specified in Example 5.3
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IDFT X < k � k0>N½ �f g ¼ W�nk0
N x n½ �, 0 � n � N � 1 ð5:31Þ

The proof is similar to that used for circular time-shifting property.

Circular Convolution Theorem The DFT of the circular convolution of two
N-point sequences is the product of the two DFTs, that is,

Y kð Þ ¼ DFT x n½ �
M

h n½ �
n o

¼ X kð ÞH kð Þ, 0 � k � N � 1 ð5:32Þ

The proof is similar to that given for the linear convolution.

Modulation The modulation theorem states that the IDFT of the circular convolu-
tion of two N-point DFTs results in the product of the corresponding discrete-time
sequences. In other words,

IDFT
1
N

XN�1

l¼0

X l½ �H < k � l>N½ �
( )

¼ x n½ �h n½ �, 0 � n � N � 1 ð5:33Þ

Proof Using the definition of IDFT, we can write the IDFT of the circular convo-
lution found on the left-hand side of (5.33) as

IDFT
1
N

XN�1

l¼0

X l½ �H < k � l>N½ �
( )

¼ 1
N

XN�1

k¼0

1
N

XN�1

l¼0

X l½ �H < k � l>N½ �
( )

W�nk
N

ð5:34Þ
By interchanging the summation order, we can rewrite (5.34) as

IDFT
1
N

XN�1

l¼0

X l½ �H < k � l>N½ �
( )

¼ 1
N

XN�1

l¼0

X l½ � 1
N

XN�1

k¼0

H < k � l>NW
�nk
N

	 �( )

ð5:35Þ
Substitute m ¼ k � l in the above equation, which results in

IDFT
1
N

XN�1

l¼0

X l½ �H < k � l>N½ �
( )

¼ 1
N

XN�1

l¼0

X l½ � 1
N

XN�1�l

m¼�l

H m½ �W�n mþlð Þ
N

( )

¼ 1
N

XN�1

l¼0

X l½ � � 1
N

XN�1�l

m¼�l

H m½ �W�nm
N

( )
W�nl

N

¼ 1
N

XN�1

l¼0

X l½ �W�nl
N

( )
1
N

XN�1�l

m¼�l

H m½ �W�nm
N

( )
¼ x n½ �h n½ �

ð5:36Þ
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Energy Conservation (Parseval’s Theorem) This property states that the energy
of a sequence in the discrete-time domain is conserved in the frequency domain. The
implication is that one can calculate the energy in a sequence either in the time
domain or equivalently in the DFT domain. The result is the same. In mathematical
terms, Parseval’s theorem implies

XN�1

n¼0

x n½ �j j2 ¼ 1
N

XN�1

k¼0

X k½ �j j2 ð5:37Þ

Proof To be sure that the above statement is true, let us write the energy of an
N-point sequence as

XN�1

n¼0

x n½ �j j2 ¼
XN�1

n¼0

x n½ �x∗ n½ � ð5:38Þ

In (5.38), replace x[n] by its IDFT, so we can rewrite (5.38) as

XN�1

n¼0

x n½ �j j2 ¼
XN�1

n¼0

1
N

XN�1

k¼0

X k½ �W�nk
N

( )
x∗ n½ � ð5:39Þ

Interchanging the order of summation in (5.39), we have

XN�1

n¼0

x n½ �j j2 ¼ 1
N

XN�1

k¼0

X k½ �
XN�1

n¼0

x∗ n½ �W�nk
N

( )
¼ 1

N

XN�1

k¼0

X k½ �
XN�1

n¼0

x n½ �W nk
N

( )∗

¼ 1
N

XN�1

k¼0

X k½ � � X∗ k½ � ¼ 1
N

XN�1

k¼0

X k½ �j j2
ð5:40Þ

The following Table lists the properties of DFT for easy reference (Table 5.1).

Table 5.1 Properties of DFT

Property Length-N sequence N-point DFT

x[n] X[k]

h[n] H[k]

Linearity ax[n] + bh[n] aX[k] + bH[k]

Circular time-shifting x[hn � n0iN] Wkn0
N X k½ �

Circular frequency-shifting W�nk0
N x n½ � X[hk � k0iN]

Circular convolution XN�1

m¼0

x m½ �h n� mh iN
	 � X[k]H[k]

Modulation x[n]h[n] 1
N

XN�1

m¼0

X m½ �H k � mh iN
	 �

Parseval’s theorem XN�1

n¼0

x n½ �j j2 ¼ 1
N

XN�1

k¼0

X k½ �j j2
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Example 5.4 Compute the circular convolution of the sequences in Example 5.3
using the circular convolution property of DFT.

Solution Let y[n] be the circular convolution of x[n] and h[n], which are of length
4. Therefore, y[n] is also of length 4. The DFT of y[n] is given by

Y k½ � ¼ X k½ �H k½ �, 0 � k � 3 ð5:41Þ
To compute X[k] and H[k], we can use the matrix equation for the DFTs. The

DFT of the four-point sequence x[n] can be expressed in matrix equation as

X ¼ W nk
4


 �
x ð5:42Þ

In (5.42), W nk
4


 �
is a 4� 4 DFTmatrix with the row index corresponding to n and

column index corresponding to k. So,

W nk
4


 � ¼
1 1
1 �j

1 1
�1 j

1 �1
1 j

1 �1
�1 �j

2
64

3
75 ð5:43Þ

Using (5.43) in (5.42), we get

X ¼
1 1
1 �j

1 1
�1 j

1 �1
1 j

1 �1
�1 �j

2
64

3
75

1
2
3
4

2
664

3
775 ¼

10
�2þ 2j
�2

�2� 2j

2
664

3
775 ð5:44Þ

Similarly, the DFT of h[n] using the matrix equation is given by

H ¼
1 1
1 �j

1 1
�1 j

1 �1
1 j

1 �1
�1 �j

2
64

3
75

4
3
2
1

2
664

3
775 ¼

10
2� 2j
2

2þ 2j

2
664

3
775 ð5:45Þ

Then, by circular convolution property, the DFT of y[n] is given by

Y ¼ XH ¼
X 0½ �H 0½ �
X 1½ �H 1½ �
X 2½ �H 2½ �
X 3½ �H 3½ �

2
664

3
775 ¼

100
8j
�4
�8j

2
64

3
75 ð5:46Þ

The inverse DFT of Y will give us the sequence y[n], which is the circular
convolution of x[n] and h[n]. Therefore, we have

y n½ � ¼ W nk
4


 ��1
Y k½ � ð5:47aÞ

The DFT matrix is orthogonal, which means that the inverse of the DFT matrix is
its own conjugate transpose, that is,
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W nk
4


 ��1 ¼ W nk
4


 �⋇T ð5:47bÞ
Therefore, we have

y n½ � ¼ IDFT Yf g

¼ 1
4

W nk
4


 �∗T
Y ¼ 1

4

1 1
1 j

1 1
�1 �j

1 �1
1 �j

1 �1
�1 j

2
64

3
75

100
8j
�4
�8j

2
664

3
775 ¼

24
22
24
30

2
664

3
775 ð5:47cÞ

This is what we got by carrying out the circular convolution in the discrete-time
domain.

5.8 Linear Convolution Using Circular Convolution

We mentioned that since DFT is discrete, meaning that it is defined over a finite set
of points, it is amenable to digital computation. Then, how can we use DFT to
perform linear convolution? The answer is as follows. Let us consider two sequences
x[n] of length M and h[n] of length N. Then the linear convolution of x[n] and h[n] is
a sequence of length L¼M + N-1. The circular convolution of two sequences of the
same length is a sequence, also, of the same length. Therefore, to perform the linear
convolution of x[n] and h[n], we must make the lengths of the two sequences equal
to L. This is achieved by appending the sequence x[n] with L-M zeros and h[n] with
L-N zeros. Once the lengths of the sequences are made equal, we can compute the
DFTs of the two L-point sequences, multiply them point by point, and then perform
the inverse DFT to obtain the linear convolution.

Example 5.5 Compute the linear convolution of the two sequences in Example 5.3
using circular convolution.

Solution The two sequences in Example 5.3 are of length 4. Therefore, the linear
convolution will result in a sequence of length 7. We must first make the lengths of
the sequences equal to 7 by appending three zeros to each sequence. We can use the
matrix equation as in (5.25) to obtain the linear convolution. It is given by

y n½ � ¼

4 0 0 0 1 2 3
3 4 0 0 0 1 2
2 3 4 0 0 0 1
1 2 3 4 0 0 0
0 1 2 3 4 0 0
0 0 1 2 3 4 0
0 0 0 1 2 3 4

2
666666664

3
777777775

1
2
3
4
0
0
0

2
666666664

3
777777775
¼

4
11
20
30
20
11
4

2
666666664

3
777777775
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The DFT is also performed using FFT algorithm. The FFT algorithm is efficient
when the sequence length is an integer power of 2. In this example, since the length
of the linear convolution is 7, which is not an integer power of 2, we will use
8, instead. So, the two zero-padded sequences are

xe n½ � ¼ 1 2 3 4 0 0 0 0½ �, he n½ � ¼ 4 3 2 1 0 0 0 0½ �
We, then, compute the DFTs of length-8 xe[n] and he[n] using the FFT algorithm.

As mentioned before, the MATLAB function fft computes the DFT of a sequence.
After computing the DFTs, we have to multiply them point by point to obtain the
DFT of the linear convolution of the two zero-appended sequences. The discrete-
time sequence is then found by taking the IDFT of the DFT product. Again, this is
achieved by the inverse FFT. The corresponding MATLAB function is ifft. The
eight-point DFTs of the two zero-padded sequences are shown in Fig. 5.7. The DFT
of the circular convolution of the two zero-padded sequences are shown in the top
plot in Fig. 5.8, and the linear convolution using circular convolution is shown in the
bottom plot of Fig. 5.8. The first seven samples are the valid samples of the linear
convolution.
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Fig. 5.7 DFTs of the zero-padded sequences in Example 5.5: top plot, DFT of the sequence xe[n];
bottom plot, DFT of the sequence he[n]
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5.9 Linear Convolution of a Finite-Length Sequence
with an Infinite-Length Sequence

In the previous section, we described how to use circular convolution to achieve
linear convolution of two finite-length sequences. This was fine and dandy because
the lengths of the two sequences were assumed to be small, and so padding with
zeros was okay. In practice, one of the sequences to be convolved is relatively small,
such as an FIR filter, and the other sequence is relatively very long. In such cases,
zero-padding the smaller-length sequence is not computationally efficient. It also
introduces a long delay in the output because one has to wait until all the samples of
the input sequence are acquired. Is there a way out of this situation? The answer is
yes. Remember, the reason for using circular convolution to enable linear con-
volution is the computational efficiency of the FFT algorithm. We will describe
two algorithms to compute the linear convolution of a relatively small sequence
with an infinitely long sequence, which are called overlap and add and overlap
and save methods.
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Fig. 5.8 Linear convolution via circular convolution: top plot, DFT of the circular convolution of
xe[n] and he[n]; bottom plot, sequence corresponding to the linear convolution
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5.9.1 Overlap and Add

A qualitative statement of the overlap and add method is as follows. In this method,
the longer sequence is divided into nonoverlapping segments, and each segment is
circularly convolved with the smaller-length sequence. Of course, we must zero-pad
the smaller-length sequence and the segmented sequence to make the length
conforming to the linear convolution. As a result of the linear convolution, the
length of the output will be larger than the segment length. Therefore, it will overlap
with the next segment. The overlapping samples are added to produce the correct
linear convolution, hence, the name overlap and add. Let us now describe the
procedure in detail. Let x[n] be the infinitely long input sequence, and let h[n] be
the length-N sequence. Divide the input sequence into nonoverlapping blocks of
length M samples each, where M > N. We can, therefore, express the input sequence
in terms of the segmented blocks, as given by

x n½ � ¼
X1
m¼0

xm n� mM½ � ð5:48Þ

where the segmented sequences are given by

xm n½ � ¼ x nþ mM½ �, 0 � n � M � 1
0, otherwise

�
ð5:49Þ

We next perform the linear convolution of each segment xm[n] with h[n]. The
overall output can be expressed as

y n½ � ¼
XN�1

k¼0

h k½ �x n� k½ � ð5:50Þ

Using Eq. (5.48) in (5.50), we can rewrite (5.50) as

y n½ � ¼
XN�1

k¼0

h k½ �
X1
m¼0

xm n� k � mM½ � ð5:51Þ

By interchanging the order of summation in (5.51), we have

y n½ � ¼
X1
m¼0

XN�1

k¼0

h k½ �xm n� k � mM½ �
( )

¼
X1
m¼0

ym n� mM½ � ð5:52Þ

where

ym n½ � ¼ h n½ �⨂xm n½ � ¼
XN�1

k¼0

h k½ �xm n� k � mM½ � ð5:53Þ
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So, we have expressed the linear convolution of x[n] and h[n] as an infinite sum of
the linear convolutions of the nonoverlapping segments xm[n] and h[n]. The length
of each linear convolution is L ¼ M + N -1. There are, therefore, N-1 samples that
extend beyond each segment. These last N-1 samples fall into the first N-1 samples
of the next segment. Therefore, these samples must be added to the first N-1 samples
of the linear convolution of the next segment and so on. We must mention the fact
that the linear convolution of each segment is computed using circular convolution
via FFT for computational efficiency. The lengths of the two sequences in the
circular convolution must be the same. Therefore, we must zero-pad the length-N
sequence with M-1 samples and the length-M sequence with N-1 samples so that
both sequences are of length L ¼ M + N-1. Figure 5.9 shows the input and output
sequences indicating which samples overlap in the output so that they are added to
produce the correct result. We can list the steps involved in the calculation of the
linear convolution of an infinitely long input sequence with a short sequence using
the overlap-add method as follows:

1. Segment the long input sequence x[n] into nonoverlapping blocks of length M
samples long. Call each segment as xm[n], m ¼ 0, 1, 2, etc.

2. Append the length-N sequence h[n] with M-1 zeros.
3. Compute the L-point DFT of the zero-padded sequence h[n]. This is a one-time

computation.
4. For each M, append the input segment xm[n] with N-1 zeros to make its length

L ¼ M + N-1, and then compute its L-point DFT.

Fig. 5.9 Diagram illustrating the input segmentation and forming the output sequence by adding
the overlapping samples
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5. Multiply the two L-point DFTs point by point and perform the IDFT of the
product to produce the output segment ym[n].

6. Write the output segments sequentially by adding the last N-1 samples of the
previous output segment to the first N-1 samples of the current output segment
and so on.

To make the procedure clearer, let us work out an example.

Example 5.6 Consider an input sequence, which is a sum of two sinusoids of
frequencies 200 and 1100 Hz and amplitudes 1.5 and 2, respectively. The sampling
frequency is 5000 Hz. Let the length of the input sequence be 2048 samples. Filter
this sequence through an FIR lowpass filter of order 14 and a cutoff frequency of
625 Hz.

Solution Using the specifications, the input sequence is expressed as

x n½ � ¼ 1:5 cos
2π∗200n
5000

 �
þ 2 cos

2π∗1100n
5000

 �
, 0 � n � 2047 ð5:54Þ

Next we need to design a lowpass FIR filter with a cutoff frequency of 625 Hz.
We will defer the discussion on FIR filter design to a later chapter. For now, we will
use the MATLAB function fir1, which accepts as input the cutoff frequency nor-
malized to half the sampling frequency, filter order, and window function. Since we
have not learnt FIR filter design, we will not discuss windowing method or windows
here. The MATLAB function call to design a lowpass FIR filter of order 14 and a
normalized cutoff frequency of 625/2500 ¼ 0.25 is B ¼ fir1(14,0.25,window
(@hamming,15)). The filter impulse response is returned in B, which is of length
15. The filtering of the long input sequence through a short FIR filter using the
overlap and add technique can be carried out in MATLAB using the function fftfilt. It
accepts the FIR filter impulse response B and the input sequence x and returns the
filtered sequence using the overlap and add technique. Or we can write a routine
based on the above-listed procedure to carry out the overlap-add method of linear
convolution. The MATLAB code to perform the overlap and add filtering is in the
M-file named Overlap_add.m. Figure 5.10 shows the plots of the input and filtered
sequences as top and bottom plots, respectively, over the first 256 samples.
The corresponding frequency spectra are shown in Fig. 5.11. From the figures, it
is clear that the FIR filter has passed the 200 Hz component and rejected the 1100 Hz
component.

5.9.2 Overlap and Save

This is an alternative method of linear convolution of a long sequence with a
relatively short length FIR filter using circular convolution. Unlike the overlap and
add method, the input sequence in the overlap and save method is segmented into
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overlapping blocks of length M samples. The last N-1 samples of the previous block
overlap the first N-1 samples of the current block and so on. Here, N is the length of
the FIR filter impulse response. Since we are performing linear convolution of each
length-M block and length-N filter, the length of each output block is L ¼ M + N-1
samples. Because we are using circular convolution to perform linear convolution,
both the FIR filter impulse response and the input blocks must be padded with
appropriate number of zeros to make the length equal to the length of the linear
convolution, which is L. However, the first input block is padded with N-1 zeros at
the front, while the rest of the blocks overlap with adjacent blocks over N-1 samples
at the beginning, as shown in Fig. 5.12. Because of this overlap, the first N-1 samples
in the output blocks are discarded, as shown in Fig. 5.12.

The procedure for the overlap and save method is as follows:

1. Insert N-1 zeros at the beginning of the input sequence x[n].
2. Segment the zero-padded input sequence into overlapping blocks xm[n] of length

L ¼M + N -1 samples, where the last N-1 samples of the previous block overlap
with the first N-1 samples of the current block, and so on.

3. Append the length-N FIR filter h[n] with M-1 zeros to make its length L.
4. Compute the L-point DFT H[k], of h[n].
5. For each M:
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Fig. 5.10 Result of overlap and add filtering of the input sequence in Example 5.6. Top plot, first
256 samples of the 2048-length input sequence; bottom plot, first 256 samples of the filtered
sequence
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(a) Compute the L-point DFT Xm[k].
(b) Calculate Ym[k] ¼ H[k]Xm[k], 0 � k � L � 1.
(c) Compute the IDFT ym[n] ¼ IDFT{Ym[k]}, 0 � n � L � 1.
(d) Discard the first N-1 samples of each ym[n].

6. Form the true output sequence y[n] by concatenating the last M samples in each
output block ym[n].

We will make it clear by working out an example.

Example 5.7 The input sequence and the FIR filter for this example are the same as
in Example 5.6. We have to filter the long input sequence through a short FIR filter
using overlap and save method.

Solution Let us use the input block length to be 64 and N ¼ 15. The first block is
zero-padded with 14 zeros followed by 50 samples to make its length 64. The
subsequent blocks overlap as shown in Fig. 5.12. The FIR filter impulse response
is appended with M – 1 ¼ 49 zeros to make its length equal to 64. The DFT of the
FIR filter impulse response is computed and is one time only. The rest of the
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Fig. 5.11 Frequency spectra of the input and filtered sequences of Example 5.6. Top plot, input
frequency spectrum showing two frequency components at 200 and 1100 Hz; bottom plot,
frequency spectrum of the filtered sequence containing only the 200 Hz component
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calculations follow the procedure listed above. The input sequence and the
filtered sequence are plotted over the first 256 samples and shown in the top
and bottom plots in Fig. 5.13. The corresponding frequency spectra are shown in
Fig. 5.14. The results of overlap and save method are in perfect agreement with
those obtained from the overlap and add method. The MATLAB codes for this
example are in the M-file named Overlap_save.m.

5.9.3 DFT Leakage

The DFT, as we have described above, represents an N-point discrete-time sequence in
the frequency domain precisely at the discrete frequencies kf s

N , 0 � k � N � 1, where fs
is the sampling frequency. In the DSP jargon, kf sN are the frequency bins. One reason for
using DFT is to determine the spectrum of a discrete-time signal. If a frequency in the
input signal does not coincide with one of the DFT bins, then the magnitude of the DFT
of that particular signal will not be an impulse-like in shape. Instead, it will spread over
the entire DFT bins. That is to say that the energy of the input discrete-time sequence in a
particular frequency will leak into other neighboring bins. It smears the impulse-like
frequency over the entire frequency bins. Therefore, the corresponding spectrum is only
approximate. This is what is called the DFT leakage. Since we do not know the exact
frequencies contained in a discrete-time sequence, we can only obtain an approximate

Fig. 5.12 Diagram illustrating the input segmentation and forming the output sequence by
discarding the first N-1 samples
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spectrum of an input sequence. However, one can minimize the DFT leakage and obtain
a better approximation to the spectrum by windowing the finite-length input sequence
using a suitable window function. We will illustrate this phenomenon by an example
using MATLAB.

Example 5.8 Illustration of DFT leakage

Consider a sinusoid at a frequency of 10 Hz. First, we sample the sinusoid at a
frequency fs and retain N ¼ 64 samples. Choose f s ¼ fN

4:5, compute the DFT of the
sampled sinusoid, and plot the magnitude of the computed DFT. Next, choose a
different sampling frequency, for instance, f s1 ¼ fN

4 , and compute the DFT over the
same 64 points and plot its magnitude. Compare the two DFTs.

Solution The sinusoidal sequence is described by x n½ � ¼ sin 2πfn
f s

� �
, 0 � n � 63.

The DFT of the sinusoid is computed using the MATLAB function X ¼ fft(x). The
M-file to solve this problem is named Example5_8.m. The input sinusoid sampled at
fs and fs1 is shown in Fig. 5.15 in the top and bottom plots, respectively. The
magnitudes of the corresponding DFTs are shown in Fig. 5.16 in the top and bottom
plots, respectively. We see the leakage of energy into neighboring DFT bins in the
top plot of Fig. 5.16, which is due to the fact that the input frequency does not
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Fig. 5.13 Result of overlap and save filtering of the input sequence in Example 5.7. Top plot, first
256 samples of the 2048-length input sequence; bottom plot, first 256 samples of the filtered
sequence
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correspond to a DFT bin. We see no leakage in the bottom plot of Fig. 5.16 because
the input frequency of 10 Hz corresponds to the fifth DFT bin, which is

4∗f s1
N ¼ 10 Hz. By windowing the input sinusoid with a Kaiser window with

β ¼ 3.75, we are able to minimize the DFT leakage. This is clear from the plot in
Fig. 5.17.

5.10 Discrete Transforms

Discrete Fourier transform is a method of representing finite-length sequences in the
frequency domain. It is also used to perform filtering of both finite and long duration
sequences. There are efficient methods to compute the DFT, which we will consider
in another chapter. In general, frequency domain transforms used in digital signal
and image processing fall under the category of unitary transforms. Let a finite-
length sequence be denoted by {x[n]}, 0 � n � N � 1. In vector form, the sequence
is described by
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Fig. 5.14 Frequency spectra of the input and filtered sequences of Example 5.7. Top plot, input
frequency spectrum showing two frequency components at 200 and 1100 Hz; bottom plot,
frequency spectrum of the filtered sequence containing only the 200 Hz component
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x ¼ x n½ �; 0 � n � N � 1½ �T ð5:55Þ
In (5.55), the superscript T denotes the transpose operation. The linear transfor-

mation of x[n] can then be represented in vector form by

y ¼ Ax ð5:56aÞ
Or in expanded form, the linear transformation in (5.56a) can be written as

y k½ � ¼
XN�1

n¼0

a k; n½ �x n½ �, 0 � k � N � 1 ð5:56bÞ

5.10.1 Unitary Transform

The linear transformation described in (5.56a) or (5.56b) is termed unitary if the
following condition is satisfied:
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Fig. 5.15 Input sinusoidal sequence of Example 5.8: top, sampling frequency is 142.2 Hz; bottom,
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A�1 ¼ A∗T ð5:57Þ
That is, if the inverse of the matrix A is its own conjugate transpose, then the

linear transformation in (5.56a) is unitary. Otherwise it is non-unitary. The unitary
matrix A is called the kernel matrix, and its elements may be real or complex. The
vector y is known as the transformed vector, and its elements are referred to as the
transform coefficients.

Example 5.9 Consider a four-point DFT. Is it a unitary transform?

Solution From our earlier definition of the DFT of an N-point sequence, it is given by

X k½ � ¼
XN�1

n¼0

x n½ �W nk
N , 0 � k � N � 1 ð5:58Þ

For N ¼ 4, the DFT kernel matrix is found to be
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Fig. 5.16 Magnitude of the DFT of the input sinusoid: top, sampling frequency is 142.2 Hz;
bottom, sampling frequency of 160 Hz
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a k; n½ �f g ¼ W nk
4


 � ¼ e�j2π4 nk
n o

¼
1 1 1 1
1 � j � 1 j
1 � 1 1 � 1
1 j � 1 � j

2
664

3
775 ð5:59Þ

The rows of the kernel matrix in (5.59) correspond to the frequency points
{k, 0 � k � N � 1} and the columns to the time index n. The conjugate transpose
of the matrix in (5.59) is given by

W nk
4


 �∗T ¼
1 1 1 1
1 j � 1 � j
1 � 1 1 � 1
1 � j � 1 j

2
664

3
775 ð5:60Þ

The product of the matrices in (5.59) and (5.60) results in
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W nk
4


 �
W nk

4


 �∗T ¼
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

2
664

3
775 6¼ I ð5:61Þ

Therefore, the DFT as defined above is not unitary. However, the DFT matrix
1ffiffiffiffi
N

p W nk
N


 �
is unitary. For instance, if we redefine the four-point DFT matrix as

1ffiffiffi
4

p W nk
4


 �
, then it is easy to see that the product of the two matrices in (5.61) with a

factor 1ffiffi
4

p introduced in each matrix results in a 4 � 4 identity matrix.

5.10.2 Orthogonal Transform

A linear transform is said to be orthogonal if it satisfies the condition

A�1 ¼ AT ð5:62Þ
From (5.62), it is clear that the elements of the kernel matrix must be real. In other

words, a linear transform is orthogonal if its coefficients are real and its inverse is its
own transpose. It must be pointed out that a unitary transform need not be
orthogonal. For instance, consider the 2 � 2 matrix given by

A ¼ 4
5

3=4 �j
j �3=4

� �
ð5:63Þ

Then, its conjugate transpose takes the form

A∗T ¼ 4
5

3=4 �j
j �3=4

� �
ð5:64Þ

From (5.63) and (5.64), it is found that AA∗T ¼ I. Therefore it is unitary.
However, we find that

AAT ¼ 16
25

�7=16 j3=2
j3=2

�7=16

� �
6¼ I ð5:65Þ

Therefore, the unitary transform in (5.63) is not orthogonal, which proves the
statement.

5.10.3 Discrete Cosine Transform

Given a finite-length sequence {x[n], 0 � n � N � 1}, its discrete cosine transform
(DCT) is defined as
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X k½ � ¼ α k½ �
XN�1

n¼0

x n½ � cos 2nþ 1ð Þπk
2N

� �
, 0 � k � N � 1 ð5:66Þ

In (5.66), α[k] is defined as

α k½ � ¼
1ffiffiffiffi
N

p , for k ¼ 0ffiffiffiffi
2
N

r
, for 1 � k � N � 1

8>><
>>: ð5:67Þ

The elements of the N-point DCT kernel matrix are given by

aDCT k; n½ � ¼
1ffiffiffiffi
N

p , for k ¼ 0 and 0 � n � N � 1ffiffiffiffi
2
N

r
cos

2nþ 1ð Þπk
2N

� �
, 0 � k, n � N � 1

8>><
>>: ð5:68Þ

For example, the 4� 4 DCT kernel matrix is determined from (5.68) and is given by

ADCT ¼ 1
2

1 1 1 1ffiffiffi
2

p
cos

π

8

� � ffiffiffi
2

p
cos

3π
8

 � ffiffiffi
2

p
cos

5π
8

 �
0

ffiffiffi
2

p
cos

7π
8

 �
ffiffiffi
2

p
cos

π

4

� � ffiffiffi
2

p
cos

3π
4

 � ffiffiffi
2

p
cos

5π
4

 � ffiffiffi
2

p
cos

7π
4

 �
ffiffiffi
2

p
cos

3π
8

 � ffiffiffi
2

p
cos

9π
8

 � ffiffiffi
2

p
cos

15π
8

 � ffiffiffi
2

p
cos

21π
8

 �

2
666666664

3
777777775
ð5:69Þ

The sequence {x[n], 0 � n � N � 1} can be obtained from the unitary transform
coefficients as follows:

x ¼ A∗Ty ð5:70Þ
In the case of DCT, the sequence is obtained by simply pre-multiplying the

transformed vector by the transpose of the NxN DCT matrix.

Energy Conservation and Compaction Properties of Unitary
Transforms Consider an N-point sequence as a vector x, its transformed vector y
using the unitary transform A. Let Ex and Ey denote the energies in the two vectors.
Then,

Ey ¼ yk k2 ¼ y∗Ty ¼ x∗TA∗TAx ¼ x∗TIx ¼ x∗Tx ¼ xk k2 ¼ Ex ð5:71Þ
The above equation implies that the energy in the finite-length discrete-time

sequence is preserved in the transform domain. This is the energy conservation
property of a unitary transform.
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Even though the energy is preserved in the transform domain, the amount of
energy contained in each transform coefficient is different. That is to say that the
energy is unevenly distributed in the transform coefficients. Some coefficients may
carry more energy than other coefficients. To be more specific, the variance in the
transform coefficients can be defined as

E y� μxk k2
n o

¼ E y� yxð Þ∗T y� μxð Þ
 � ¼
XN�1

k¼0

σ2y ð5:72Þ

where, μy is the vector of mean values of the vector y. Using (5.56a) in (5.72), we
obtain

XN�1

k¼0

σ2y ¼ E A x� μxð Þ½ �∗T A x� μxð Þ½ �
 � ð5:73Þ

But,

A x� μxð Þ½ �∗T ¼ x� μxð Þ∗TA∗T ð5:74Þ
where μx is the vector of mean values of the vector x. Therefore, (5.73) reduces to

XN�1

k¼0

σ2y ¼ E x� μxð Þ∗TA∗TA x� μxð Þ
 � ¼
XN�1

n¼0

σ2x ð5:75Þ

Thus, the sum of the variances of the transform coefficients equals the sum of the
variances of the elements of the input vector.

5.10.4 Hadamard Transform

The DFT and DCT transforms use sinusoids as basis functions. The Hadamard
transform uses rectangular basis functions. The kernel matrix of Hadamard trans-
form for a two-point sequence is defined as

AH ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
ð5:76Þ

Therefore, the transformed vector can be determined to be

y ¼ AHx ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
x 0½ �
x 1½ �

� �
¼ 1ffiffiffi

2
p x 0½ � þ x 1½ �

x 0½ � � x 1½ �
� �

ð5:77Þ

It is easy to verify that Hadamard transform is orthogonal. An interesting property
of Hadamard transform is that higher-order transforms can be generated recursively
as follows: Given the NxN Hadamard kernel matrix, the 2Nx2N Hadamard kernel
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matrix is obtained by replacing the elements of the NxN matrix by the NxN kernel
matrix, that is,

AH2N ¼ AHN AHN

AHN 2AHN

� �
ð5:78Þ

A 4 � 4 Hadamard matrix is obtained using (5.76) in (5.78) and is described by

AH4 ¼ 1
2

1 1
1 �1

1 1
1 �1

1 1
1 �1

1 1
1 �1

2
64

3
75 ð5:79Þ

Example 5.10 Given an N-point sequence, compute its DCT and Hadamard
transform. Also compute the inverse DCT and inverse Hadamard transform and
compare the sequence obtained from the inverse transform with the input sequence.
Also plot the percent of total energy contained in each transform coefficient against
the sample index. Use MATLAB to solve the problem.

Solution The input sequence used in this example is described by

x n½ � ¼ 1:5 sin 2πf 1n
f s

� �
� 0:5 cos 2πf 2n

f s

� �
þ sin 2πf 3n

f s

� �
, 0 � n � 63,where

f1 ¼ 10 Hz, f2 ¼ 23 Hz, f3 ¼ 33 Hz, and fs ¼ 100 Hz. The DCT of the input sequence
is obtained in MATLAB by calling the function dct with input argument x and
output argument X_dct. The function call to compute the Hadamard transform is
X_h ¼ fwht(x). The corresponding inverse transforms are obtained using the func-
tions idct and ifwht, respectively. The M-file to solve this problem is named
Example5_10.m. The energy of the input signal contained in each transform coeffi-
cient is the absolute square of the respective transform coefficients. The input
sequence and its DCT and IDCT are shown as stem plots in Fig. 5.18 in the top,
middle, and bottom plots, respectively. Similarly, Fig. 5.19 shows the input
sequence, Hadamard transform, and the inverse Hadamard transform as stem plots
in the top, middle, and bottom plots, respectively. Finally, the percentage of total
energy contained in each transform coefficient is plotted against the frequency index
for the two transforms and is shown as bar chart in Fig. 5.20. From the figure, we
observe that the DCT contains most of the energy in a fewer transform coefficients
than what the Hadamard transform does. That means that the DCT has a better
energy compaction property than the Hadamard transform. The total energy of the
input sequence is expressed as

E ¼
XN�1

n¼0

x n½ �j j2

It is also equal to the sum of the absolute square of the DCT as obtained from
MATLAB and is given below.
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E ¼
XN�1

n¼0

x n½ �j j2 ¼
XN�1

k¼0

Xdct k½ �j j2

For the Hadamard transform, it is found that

E ¼
XN�1

n¼0

x n½ �j j2 ¼ N
XN�1

k¼0

XHadamard k½ �j j2

5.11 Summary

The DFT plays an important role in digital signal processing. We defined the N-point
DFT of a sequence and established its relationship to the discrete-time Fourier
transform. Some useful properties of DFT were described, and some examples
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worked out to elucidate the usefulness of these properties. Circular convolution was
defined, and we showed how it can be computed using the DFT. Since LTI discrete-
time systems employ linear convolution, we showed how linear convolution could
be accomplished via circular convolution. In processing real-time signals, one first
acquires the signal in digital form and then processes it. In such cases, it is more
meaningful to process the input signal as it evolves. To this end, we showed how
linear convolution of such a real-time signal could be computed by segmenting the
input sequence into smaller-length blocks and then circularly convolving the blocks.
Two methods – overlap and add and overlap and save – were explained with
examples. We introduced the concept of unitary and orthogonal transforms. In fact
DFT is a unitary transform. Two orthogonal transforms, namely, DCT and
Hadamard transforms, were introduced. These transforms play an important role in
speech and image data compression as they compact the total energy in the input
sequence or image into the transform coefficients in an unevenly manner. We will
illustrate the energy compaction property of unitary and orthogonal transforms in a
later chapter. In the next chapter, we will deal with the design of IIR digital filters.
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5.12 Problems

1. If the convolution ~y n½ � ¼
XN�1

k¼0

~x k½ �~h n� k½ �, where ~x n½ � and ~h n½ � are both periodic

with period N, show that ~y n½ � is also periodic with period N.
2. Determine the N-point DFT of x[n] ¼ αn, 0 � n � N-1.
3. Determine the five-point DFT of x n½ � ¼ 0:25n, 0 � n � 4.
4. Show that the circular convolution is (a) commutative and (b) associative.
5. Let {x[n]} ¼ {�3, 2, �1, 4} and {h[n]} ¼ {1, 3, 2, �2} be two length-4

sequences for 0 � n � 3. Compute the circular convolution of x[n] and
h[n] using the matrix equation.

6. Let x[n] and X[k] be the N-point DFT pairs. Find the sequence whose DFT is given
by Y k½ � ¼ αX k � m1h iN

	 �þ βX k � m2h iN
	 �

, where m1 and m2 are positive
integers less than N.

7. Find the N-point DFT of the sequence x n½ � ¼ sin 2 2nπ
N

� �
, 0 � n � N � 1.
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8. If X[k], 0 � k � N � 1 is the DFT of the sequence x[n], 0 � n � N � 1, then

express the 2 N-point DFT of the sequence h n½ � ¼ x n½ �, 0 � n � N � 1
0,N � n � 2N � 1

�
.

9. Let X[k], 0 � k � N � 1 be the DFT of the sequence x[n], 0 � n � N � 1.
Determine the MN-point DFT of the sequence y n½ � ¼
x

n

M

h i
, n ¼ 0,M, 2N, � � � N � 1ð ÞM

0, otherwise

(
in terms of X[k].

10. Let x[n] be an N-point sequence whose DFT is X[k], 0� k� N� 1 with N even.

If X 2j½ � ¼ 0 for 0 � j � N
2 � 1, show that x n½ � ¼ �x nþ N

2

� �
N

h i
.

11. What is the DFT of the sequence g[n]¼ (�1)nx[n] if x[n], 0� n� N� 1, N and
X[k], 0 � k � N � 1 form a DFT pair with N even.

12. The circular cross-correlation of the twoN-point sequences x[n], 0� n� N� 1 and

y[n], 0 � n � N � 1 is defined as Cxy k½ � ¼
XN�1

n¼0

x n½ �y n� kh iN
	 �

, 0 � k � N � 1.

Determine Cxy[k] in terms of the DFTs of x[n] and y[n].
13. Consider the sequence x[n], 0 � n � N � 1 with its N-point DFT denoted by X

[k], 0 � k � N � 1. Let g n½ � ¼ x 3n½ �, 0 � n � N
3 � 1, where it is assumed that N

is divisible by 3. Find the N
3 � point DFT of g[n] in terms of X[k].

14. Given an N-point sequence x[n], 0 � n � N � 1, define a zero-padded sequence

y n½ � ¼ x n½ �, 0 � n � N � 1

0, N � n � 2N � 1

(
. Express the 2 N–point DFT Y[k] in terms of

X[k].
15. We want to compute the linear convolution of a length-35 filter sequence with

an input sequence of length 2000. (a) Determine the smallest number of DFTs
and IDFTs needed to compute the linear convolution using the overlap-add
method. (b) Repeat (a) for overlap-save method.
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Chapter 6
IIR Digital Filters

6.1 Introduction

In this chapter we will describe the design of infinite impulse response (IIR) digital
filters. The impulse response of an IIR digital filter has an infinite extent or length or
duration, hence the name IIR filters. Design of an IIR filter amounts to the determi-
nation of its impulse response sequence {h[n]} in the discrete-time domain or to the
determination of its transfer function H(e jΩ) in the frequency domain. The design
can also be accomplished in the Z-domain. In fact, this is the most commonly used
domain. The theory of analog filters preceded that of digital filters. Elegant design
techniques for analog filters in the frequency domain were developed much earlier
than the development of digital filters. As a result, we will adopt some of the
techniques used to design analog filters in designing an IIR digital filter. In order
to facilitate the design of an IIR digital filter, one must specify certain parameters of
the desired filter. These parameters can be in the discrete-time domain or in the
frequency domain. Once the parameters or specifications are known, the task is to
come up with either the impulse response sequence or the transfer function that
approximates the specifications of the desired filter as closely as possible. In the
discrete-time domain, one of the design techniques is known as the impulse invari-
ance method. In the frequency domain, the design will yield a Butterworth or
Chebyshev or elliptic filter. These three design procedures will result in a closed-
form solution. Similarly, the impulse invariance technique will also result in a
closed-form solution to the design of IIR digital filters. In addition to these analytical
methods, an IIR digital filter can also be designed using iterative techniques. These
are called the computer-aided design. Let us first describe the impulse invariance
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method of designing an IIR digital filter. We will then deal with the design in the
frequency domain and the computer-aided design.

6.2 Impulse Invariance Technique

This technique implies that the impulse response of the desired IIR digital filter is the
sampled version of the impulse response of an appropriate analog filter. Therefore,
one has to specify either the transfer function of an appropriate analog filter or its
impulse response. It is customary to specify the transfer function of an analog filter in
terms of the Laplace variable s. The analog transfer function HA sð Þ ¼ N sð Þ

D sð Þ is a

rational polynomial in the Laplace variable s with the degree of the numerator
polynomial less than or equal to that of the denominator. In order to determine the
impulse response hA(t) of the analog filter, we must find the inverse Laplace
transform of the corresponding transfer function. In practice though, the inverse
Laplace transform is found by first expressing the given analog transfer function in
partial fraction form, then finding the time-domain function corresponding to each
pole factor, and then adding the terms. We can enumerate the steps involved in the
impulse invariance method as follows:

Impulse Invariance Design Procedure Given the analog filter transfer function
HA(s), do the following.

1. Express the transfer function in partial fraction form as given by

HA sð Þ ¼
XN
i¼1

Ai

sþ pi
, ð6:1Þ

where�pi are the poles, Ai are the corresponding residues, and N is the filter order. If
a pole is complex, it will occur with its conjugate. Combine the two complex
conjugate poles with the corresponding complex conjugate residues and express as
a second-order function.

2. Find the corresponding time-domain analog function. Each term in Eq. (6.1) will
correspond to the time-domain function

Ai

sþ pi
$ Aie

�pitu tð Þ ð6:2Þ

3. Add all the N time-domain functions in the partial fraction expansion to obtain
hA(t).

4. Convert the analog impulse response to the impulse response h[n] of the IIR
digital filter by sampling hA(t) with appropriate sampling interval T. Thus,
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h n½ � ¼ hA tð Þjt¼nT ¼
XN
i¼1

Aie
�pinT n � 0 ð6:3Þ

To make it clearer, consider the following example.

Example 6.1 Design an IIR digital filter using the impulse invariance method. The
analog filter transfer function is given asHA sð Þ ¼ sþ2

s2þ2sþ10. Use a sampling frequency
of 4 Hz.

Solution Since the given analog transfer function is of order 2, there are two poles.
The poles correspond to the roots of the denominator of the analog transfer function.
That is,

s2 þ 2sþ 10 ¼ 0⟹ sþ 1ð Þ2 þ 9 ¼ 0⟹s1,2 ¼ �1� j3

In terms of the pole factors, we have

HA sð Þ ¼ A

sþ 1� j3
þ A∗

sþ 1þ j3

The residues are found from

A ¼ sþ 1� j3ð ÞHA sð Þjs¼�1þj3 ¼
sþ 2

sþ 1þ j3

����
s¼�1þj3

¼ 1þ j3
j6

¼ 3� j

6

and A∗ ¼ 3þj
6 . The impulse response of the analog filter is the inverse Laplace

transform of its transfer function. From the partial fractions, we have

3�jð Þ=6

sþ 1� j3
⟹

3� j

6
e� 1�j3ð Þtu tð Þ

Similarly, the inverse Laplace transform of the second factor in the partial fraction
expansion is found to be

3þjð Þ=6

sþ 1þ j3
⟹

3þ j

6
e� 1þj3ð Þtu tð Þ

By combining the two complex conjugate terms in the partial fraction expansion,
we can express the impulse response of the analog filter as

hA tð Þ ¼ e�t cos 3t þ 1
3
sin 3t

� �
u tð Þ ð6:4Þ

Alternatively, we can use the fact that

L e�t cos 3tð Þu tð Þf g ¼ sþ 1
s2 þ 2sþ 10
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L e�t sin 3tð Þu tð Þf g ¼ 3
s2 þ 2sþ 10

and rewrite H(s) as

sþ 2
s2 þ 2sþ 10

¼ sþ 1
s2 þ 2sþ 10

þ
1
3

� �
3

s2 þ 2sþ 10

and then identify each term with the respective time-domain function as shown
above. Finally, the impulse response of the desired digital filter is obtained by
sampling the impulse response in Eq. (6.4) at intervals of ¼¼ 0.25 s and is given by

h n½ � ¼ e�0:25n cos 0:75nð Þ þ 1
3
sin 0:75nð Þ

� �
u n½ � ð6:5Þ

In order to compare the frequency responses of the analog and digital filters, we
need to express the impulse response h[n] in the Z-domain. By taking the
Z-transform of Eq. (6.5) and with some algebraic manipulation, we get

H zð Þ ¼ 1� 0:3929z�1

1� 1:1397z�1 þ 0:6065z�2
ð6:6Þ

In Fig. 6.1, the impulse responses of the digital and analog filters are shown in the
top and bottom plots, respectively. The impulse response of the digital filter is seen
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Fig. 6.1 Impulse response of the digital filter in Example 6.1 obtained using the impulse invariance
method. Top plot: impulse response of the digital filter. Bottom plot: impulse response of the analog
filter
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to be the sampled version of that of the analog filter. The frequency response of both
filters is shown in Fig. 6.2. The two are not identical. Guess why? Because the
continuous-time impulse response of the analog filter is sampled to obtain the
discrete-time impulse response, we will expect aliasing distortion if the frequency
response of the analog time-domain function is not band limited. In fact, the
frequency response of the analog filter is of infinite extent, though it decays as the
frequency increases. Therefore, no matter how large the sampling frequency is, there
will be some aliasing distortion. We can also use the MATLAB function impinvar to
design the digital filter using the impulse invariance method. The actual function call
is [Bz,Az] ¼ impinvar(B,A,Fs), where B and A are the coefficient vectors
corresponding to the numerator and denominator polynomials of the analog filter
transfer function, both in ascending order of the Laplace variable s, Fs is the
sampling frequency, and Bz and Az are the coefficient vectors of the numerator
and denominator polynomials of the transfer function of the digital filter, both in
ascending powers of the variable z�1. The frequency response of the digital filter
obtained using the MATLAB function impinvar is also shown in Fig. 6.2. As
expected, the frequency responses of the digital filters obtained using MATLAB
and analysis are identical (Fig. 6.2).
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6.3 Design of IIR Digital Filters in the Frequency Domain

Instead of designing an IIR digital filter in the time domain, one can design in the
frequency domain. In fact, the design in the frequency domain makes more sense
than designing an IIR digital filter in the discrete-time domain because (a) we are
more accustomed to changes in frequencies than to changes in time functions and
(b) design techniques are more elegant and powerful in the frequency domain. When
designing an IIR digital filter in the frequency domain, it is customary to design a
lowpass filter. Other types of filters, namely, highpass, bandpass, and bandstop
filters, can be designed by suitable frequency transformations. As we pointed out
earlier, the theory of analog filters preceded that of digital filters. As a consequence,
various types of analog filter transfer functions are used in the design of IIR digital
filters. For instance, by converting an analog Butterworth filter into an IIR digital
filter, we have an IIR Butterworth digital filter. However, in order to preserve the
shape of the frequency response of an analog Butterworth filter in the digital filter
domain, one has to start with an analog Butterworth filter transfer function and use an
appropriate transformation to convert it to the digital domain. This technique is
known as the bilinear transformation, which we will describe next.

6.3.1 Digital Filter Frequency Specifications

It is not possible to meet the characteristics of an ideal lowpass filter, be it analog or
digital. By ideal we mean a brick wall type. Therefore, one has to specify tolerance
limits to the frequency specifications. Then one can come up with an approximation
to the frequency specifications. The approximation is achieved by a proper transfer
function. So, let us first look at the frequency specifications of an IIR digital filter.
Figure 6.3 shows a typical magnitude response of a digital lowpass filter. The
parameter δp is called the peak passband ripple and δs the peak stopband ripple.
Instead of the actual magnitude of the frequency response, it is also common to
express the magnitude in decibels (dB). More specifically, the attenuation or loss
function in dB is related to the magnitude of the frequency response by

A Ωð Þ ¼ �20log10 H e jΩ� ��� �� dB ð6:7Þ
The peak passband and stopband ripples in dB are denoted by αp and αs,

respectively, and are related to the actual ripples δp and δs by

αp ¼ �20log10 1� δp
� �

dB ð6:8aÞ

αs ¼ �20log10δs dB ð6:8bÞ
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As shown in the figure, Ωp and Ωs are called the passband and stopband edges,
respectively. The transition band or width is then expressed as ΔΩ ¼ Ωs � Ωp.
In terms of the actual frequencies, the passband and stopband edges are written as
Ωp ¼ 2πf p

Fs
andΩs ¼ 2πf s

Fs
, respectively, where fp in Hz is the passband edge, fs in Hz is

the stopband edge, and Fs in Hz is the sampling frequency. The following example
will clarify the definition of the ripples in actual values and in dB.

Example 6.2 Find the peak ripples δp and δs corresponding to the peak passband
ripple αp ¼ 0.24 dB and minimum stopband attenuation αs ¼ 49 dB.

Solution
αp ¼ �20log10 1� δp

� �
⟹log10 1� δp

� � ¼ �αp
20

¼ �0:012

Therefore,

1� δp ¼ 10�0:012⟹δp ¼ 1� 10�0:012 ¼ 0:0272528

Corresponding to the minimum attenuation, we have

αs ¼ �20log10δs⟹δs ¼ 10�0:05αs ¼ 10�0:05∗49 ¼ 0:00354813

Fig. 6.3 A typical specification of a lowpass digital filter in the frequency domain. The ordinate is
the magnitude of the desired frequency response, and the abscissa is the frequency 2πf

Fs
; π corresponds

to half the sampling frequency
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6.3.2 Design Using Bilinear Transformation

In this method, one starts with a specific analog filter transfer function such as
Butterworth, elliptic, etc., and then converts it to an IIR digital filter of the same type.
The analog filter’s transfer function is in terms of the Laplace variable s. The process
of conversion from the analog domain to the digital filter domain is carried out using
the bilinear transformation. This transformation maps the frequency axes in the
analog domain into that in the digital filter domain. Equivalently, the Laplace
variable s is transformed into the z variable. More specifically, the bilinear transfor-
mation is defined as

s ¼ 1
T

1� z�1

1þ z�1

� �
ð6:9Þ

In the above equation, T is the sampling interval. Before we embark on the design
procedure, let us look at the transformation in Eq. (6.9) more closely. Let us see how
the complex s-plane in the analog domain is mapped into the complex z-plane in the
digital filter domain. To this end, we have to express the complex variable z in terms
of the complex variable s. From Eq. (6.9), the inverse relationship can be found to be

z ¼ 1þ T
2s

� �
1� T

2s
� � ð6:10Þ

The complex variable in the analog domain is described as

s ¼ σ þ jω ð6:11Þ
where the variable of the real axis (abscissa) is σ and the variable of the imaginary
axis (ordinate) is the sinusoidal frequency ω. Substituting for s from (6.11) in (6.10),
we can write (6.10) as

z ¼ 1þ T
2 σ þ jωð Þ

1� T
2 σ þ jωð Þ ¼

1þ T
2σ

� �þ jT2ω

1� T
2σ

� �� jT2ω
ð6:12Þ

The square of the magnitude of z from (6.12) is found to be

zj j2 ¼ 1þ T
2σ

� �2 þ T
2ω
� �2

1� T
2σ

� �2 þ T
2ω
� �2 ð6:13Þ

From Eq. (6.13) we observe that

zj j2 ¼
< 1, for σ < 0
1, for σ ¼ 0

> 1, for σ > 0

8<: ð6:14Þ
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The interpretation of (6.14) is as follows: When σ is negative, we are in the left
half of the complex s-plane, which is mapped on to the interior of the unit circle in
the complex z-plane. When σ is positive, we are in the right half of the complex
s-plane, which is mapped on to the exterior of the unit circle in the complex z-plane.
The entire imaginary axis in the complex s-plane corresponds to σ ¼ 0, which is
mapped on to the circumference of the unit circle in the complex z-plane as shown in
Fig. 6.4. In fact, the positive frequencies are mapped on to the upper half of the
circumference of the unit circle in counterclockwise manner, and the negative
frequencies in the s-plane are mapped on to the lower half of the circumference of
the unit circle in clockwise direction in the z-plane (refer to Eq. 6.15). We have to
make sure that a stable analog filter will result in a stable digital filter when the
bilinear transformation is used. How do we verify this? An analog filter is stable in
the BIBO sense if all its poles are on the left half of the s-plane. We just observed that
the entire left half of the s-plane maps into the interior of the z-plane. It is well known
that an IIR digital filter is stable in the BIBO sense if all its poles are inside the unit
circle in the z-plane. Thus, the bilinear transform maintains the stability in the
Z-domain. The only remaining thing is to see how the imaginary axis in the
s-plane is related to the points on the unit circle in the z-plane. Our intuition indicates
that the relationship between the frequencies in the analog and digital filter domains
is not linear because of the presence of the denominator factor in Eq. (6.10). When
s ¼ jω, the variable in the complex z-plane takes the form z ¼ e jΩ, and so

e jΩ ¼ 1þ jT2Ω
1� jT2Ω

¼ e j tan �1 ωT
2ð Þ

e�j tan �1 ωT
2ð Þ ¼ e j2 tan �1 ωT

2ð Þ⟹ω ¼ 2 tan �1 ωT

2

� �
ð6:15Þ

As can be seen from (6.15), the relationship between the frequency variables Ω
andω is nonlinear. Therefore, the frequencies in the analog domain are warped in the

s-plane z-plane

σ

jω Im(z)

Re(z)

unit circle

Fig. 6.4 Bilinear mapping of the s-plane onto the z-plane
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z-plane. As pointed out in the previous section, the frequency specifications corre-
spond to the desired IIR digital filter. Because of the warping effect just described,
the specified frequencies for the digital filter must be prewarped using the inverse
relationship in (6.15), which is

ω ¼ 2
T
tan

Ω
2

� �
ð6:16Þ

Once the frequency specifications for the analog filter are obtained from those for
the digital filter via (6.16), we must determine the order of the chosen analog filter.
Of course, we must then determine the transfer function of the analog filter whose
order has been just determined. As mentioned earlier, a wealth of analog filter design
exists in the literature. We can, therefore, use such information to come up with the
transfer function of the required analog filter. Once the analog filter transfer function
expressed in the Laplace variable s is found, we replace s in the analog filter transfer
function by the term on the right-hand side of the bilinear transform of Eq. (6.9) to
obtain the transfer function of the IIR digital filter. Thus,

H zð Þ ¼ HA sð Þj
s¼1

T

1�z�1ð Þ
1þz�1ð Þ

ð6:17Þ

We enumerate the design procedure used in converting an analog filter into an IIR
digital filter using the bilinear transform method as follows: Given the frequency
domain specifications of a lowpass IIR digital filter, do the following.

1. Choose an appropriate analog filter type such as, Butterworth, Chebyshev, etc.
2. Prewarp the critical frequencies of the digital filter using Eq. (6.16).
3. Determine the required order of the analog filter.
4. Determine the corresponding analog filter transfer function.
5. Convert the analog filter transfer function into the digital filter transfer function

via Eq. (6.17).

6.3.3 Butterworth Lowpass IIR Digital Filter

A Butterworth lowpass filter is also known as the maximally flat filter because its
magnitude of the frequency response has the largest number of derivatives with
respect to ω equal to zero at zero frequency. In other words, the magnitude of its
frequency response is as flat as possible at DC. An Nth-order lowpass analog
Butterworth filter with a cutoff frequency ωc has the magnitude squared of frequency
response expressed as

HA ωð Þj j2 ¼ 1

1þ ω
ωc

	 
2N ð6:18Þ
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Note that at ω ¼ ωc, the magnitude squared of the frequency response of the
Butterworth lowpass analog filter is half or is�3 dB. Therefore, the cutoff frequency
here is also called the half power frequency or 3 dB frequency. Typical specifications
in the frequency domain for a lowpass filter are the passband edge ωp, stopband edge
ωs, passband ripple, and minimum stopband attenuation, both in dB. The magnitude
squared of the Butterworth lowpass filter function in (6.18) drops to

HA ωp

� ��� ��2 ¼ 1

1þ ωp

ωc

	 
2N ¼ 1
1þ ε2

ð6:19Þ

at the passband edge frequency. The passband ripple α in dB is related to ε by

�20log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε2
p
� �

¼ α dB⟹ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100:1α � 1

p
ð6:20Þ

The actual minimum stopband attenuation is related to the attenuation in dB by

A ¼ 100:05AdB ð6:21Þ
The filter order N is related to ε, A, ωp, and ωs through the following:

1
k
� ωs

ωp
ð6:22aÞ

1
k1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p

ε
ð6:22bÞ

N ¼
log10

1
k1

	 

log10

1
k

� �
2666

3777 ð6:23Þ

Finally, in order to find the Nth-order transfer function of the analog lowpass
Butterworth filter, we need to know the cutoff frequency. This can be found from
Eq. (6.19) as

ωc ¼ ε�
1
Nωp ð6:24Þ

Alternatively, the cutoff frequency can also be found from

HA ωsð Þj j2 ¼ 1

1þ ωs
ωc

	 
2N ¼ 1

A2 ð6:25Þ

With the filter order and the cutoff frequency known, the corresponding lowpass
Butterworth filter transfer function is determined from
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HA sð Þ ¼ 1

DN
s
ωc

	 
 ð6:26Þ

where DN(s) is the Nth-order Butterworth polynomial. Butterworth polynomials can
be found in standard textbooks on analog filter design. We can also express the
analog filter transfer function in (6.26) in terms of its pole factors as given by

HA sð Þ ¼ ωc
NQN

m¼1
s� pmð Þ

ð6:27Þ

where the poles are described by

pm ¼ ωce
j Nþ2m�1ð Þπ

2Nð Þ, 1�m�N ð6:28Þ
It should be mentioned that the coefficients of the polynomials of the transfer

function are real. Therefore, if a pole is complex, it should occur with its complex
conjugate. Finally, the desired IIR digital filter transfer function is found from
Eq. (6.17). Let us look at an example to clarify the design procedure described
thus far.

Example 6.3 Design an IIR lowpass Butterworth digital filter with the following
frequency specifications: passband edge Ωp ¼ π

4, stopband edge Ωs ¼ π
2, passband

ripple αp ¼ 0.5 dB, and a minimum stopband attenuation of 20 dB.

Solution Because the given specifications are for the digital filter, we have to first
prewarp the critical frequencies of the digital filter using Eq. (6.16). Since the
sampling frequency is not specified, we can omit the scaling factor 2

T in Eq. (6.16).
This is the same as normalizing the frequencies in the analog domain by twice the
sampling frequency. This will not affect the critical frequencies of the digital filter
because the frequencies in the analog domain will be re-warped after applying the
bilinear transformation to the analog filter transfer function. Therefore, the passband
edge and the stopband edge frequencies of the analog filter without the 2/T factor are

ωp ¼ tan
Ωp

2

� �
¼ tan

π

8

	 

� 0:414214 ð6:29aÞ

ωs ¼ tan
Ωs

2

� �
¼ tan

π

4

	 

¼ 1 ð6:29bÞ

Corresponding to the passband ripple and minimum stopband attenuation, we
have

ε2 ¼ 100:1αp � 1 ¼ 100:05 � 1 ¼ 0:122018 ð6:30aÞ
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20log10A ¼ 20⟹A ¼ 10 ð6:30bÞ
Next we find the filter order as follows:

1
k
¼ ωs

ωp
¼ 1

0:414214
¼ 2:41421 ð6:31aÞ

1
k1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p

ε
¼ 28:4843 ð6:31bÞ

N ¼ log10 28:4843ð Þ
log10 2:41421ð Þ
� 

¼ 3:8002d e ¼ 4 ð6:31cÞ

Note that in Eq. (6.31c), we need to round the number to the integer that is greater
than or equal to the number within the ceiling operator. Having determined the
required order of the Butterworth lowpass filter, we need to determine the cutoff
frequency of the lowpass filter, which is obtained from (6.24):

ωc ¼ ε�
1
Nωp ¼ 0:538793 ð6:32Þ

The poles of the fourth-order Butterworth lowpass analog filter are found from
Eq. (6.28):

pm ¼ ωce
jπ 4þ2m�1ð Þ

8 , 1 � m � 4 ð6:33Þ
We notice from (6.33) that p1 and p4 are complex conjugates of each other and,

similarly, p2 and p3 are complex conjugates of each other. Using (6.27) with
algebraic simplification, we obtain the analog transfer function of the lowpass
Butterworth filter as

HA sð Þ ¼ H0

s2 þ a1sþ a2ð Þ s2 þ b1sþ b2ð Þ ð6:34Þ

where the constants are H0 ¼ 0.0842722, a1 ¼ 0.412374, a2 ¼ 0.290297,
b1 ¼ 0.995558, and b2 ¼ 0.290297. We finally obtain the transfer function of the
desired IIR digital Butterworth lowpass filter using Eq. (6.17), which is given in
(6.35) after algebraic manipulation:

H zð Þ ¼ 0:0217 1þ 4z�1 þ 6z�2 þ 4z�3 þ z�4ð Þ
1� 0:8336z�1 þ 0:5156z�2ð Þ 1� 0:6209z�1 þ 0:12189z�2ð Þ ð6:35Þ

We can also use MATLAB to design the lowpass Butterworth digital filter. The
MATLAB function butter designs either an analog or a digital filter of the type
Butterworth. The actual function call is [z,p,k] ¼ butter(N,wc,’s’), where N is the
lowpass filter order, wc is the cutoff frequency, z is a vector of zeros, p is a vector of
poles, k is a gain constant, and the letter s within single quotes implies that the filter is

6.3 Design of IIR Digital Filters in the Frequency Domain 201



analog. If this argument is missing, then it is a digital filter. Next, we apply the bilinear
transform to the designed filter using the MATLAB function bilinear. This function
converts the analog filter to a digital filter. The actual function call is [zd,pd,kd]¼ bilin-
ear(z,p,Fs), where z and p are the zeros and poles of the analog filter, respectively, Fs is
the sampling frequency, and zd, pd, and kd are, respectively, the zeros, poles, and gain
of the digital filter. Since the sampling frequency is not specified in the problem,wewill
use a value½ for the sampling frequency. This makes the normalization factor 2/T¼ 1,
as we wanted. Finally, we will convert the zeros and poles of the digital filter into the
transfer function using the MATLAB function zp2tf. The actual function call is [Nd,
Dd] ¼ zp2tf(zd,pd,kd). The magnitude of the frequency response of the desired IIR
lowpass Butterworth digital filter is plotted for frequencies between 0 and half the
sampling frequency and is shown in Fig. 6.5. The figure also shows the frequency
response of the Butterworth digital filter that was designed usingMATLAB. Due to the
differences in the accuracy of arithmetic calculations, we notice some discrepancy
between the two frequency responses.

6.3.4 Chebyshev Type I Lowpass IIR Digital Filter

A Chebyshev type I filter has an equiripple characteristic in the passband and falls
off monotonically in the stopband. More specifically, an Nth-order Chebyshev type I
analog lowpass filter with a passband edge ωp has the transfer function whose
magnitude square is described by
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Fig. 6.5 Frequency response of a fourth-order lowpass Butterworth IIR digital filter obtained using
the bilinear transformation
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HA ωð Þj j2 ¼ 1

1þ ε2T2
N

ω
ωp

	 
 ð6:36Þ

where the Nth-order Chebyshev polynomial is defined as

TN xð Þ ¼ cos N cos �1 xð Þð Þ, xj j � 1
cosh Ncosh�1 xð Þ� �

, xj j > 1

�
ð6:37Þ

From Eq. (6.37), we observe that the Chebyshev polynomial alternates between
+1 and �1 in the interval between �1 and +1 N times, and for |x| > 1, it increases
monotonically. Therefore, the lowpass Chebyshev filter’s frequency response has
ripples in the passband. The filter order can be determined from the following
equations.

HA ωsð Þj j2 ¼ 1

1þ ε2T2
N

ωs
ωp

	 
 ¼ 1

A2 ⟹T2
N

ωs

ωp

� �
¼ A2 � 1

ε2
ð6:38Þ

where ωs is the stopband edge and A is the minimum stopband attenuation. Since
ωs > ωp, we have from (6.38)

TN
1
k

� �
¼ cosh Ncosh�1 1

k

� �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p

ε
� 1

k1
ð6:39Þ

where we have used the fact that

1
k
¼ ωs

ωp
ð6:40Þ

From Eqs. (6.39) and (6.40), we determine the value of N as

N ¼
cosh�1 1

k1

	 

cosh�1 1

k

� � ¼
ln 1

k1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k1

	 
2
� 1

r !

ln 1
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

� �2 � 1
q� � ð6:41Þ

Once the filter order is found, the transfer function of the lowpass Chebyshev type
I analog filter in terms of its poles are obtained from

HA sð Þ ¼ H0QN
n¼1

s� pnð Þ
ð6:42Þ

where H0 is a normalization factor and the poles are

pn ¼ σn þ jωn, 1 � n � N ð6:43aÞ
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σn ¼ �ωpa1 sin
2n� 1ð Þπ

2N

� �
, 1 � n � N ð6:43bÞ

ωn ¼ ωpa2 cos
2n� 1ð Þπ

2N

� �
, 1 � n � N ð6:43cÞ

a1 ¼ γ2 � 1
2γ

ð6:43dÞ

a2 ¼ γ2 þ 1
2γ

ð6:43eÞ

γ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p

ε

 !1
N

ð6:43fÞ

Similar to the lowpass Butterworth filter, the lowpass Chebyshev type I analog
filter has no zeros in the finite s-plane. Hence the numerator is just a constant.
Finally, we apply the bilinear transformation to the analog filter to obtain the transfer
function of the lowpass Chebyshev type I IIR digital filter. The procedural steps in
the design of a lowpass Chebyshev type I filter are similar to those used for the
Butterworth filter except to use the appropriate equations.

Example 6.4 Design a lowpass IIR Chebyshev type I digital filter using bilinear
transformation. Use the same frequency specifications as in Example 6.3.

Solution First, we have to prewarp the critical frequencies of the digital filter.
Therefore, we have

ωp ¼ tan
Ωp

2

� �
¼ tan

π

8
¼ 0:414214

ωs ¼ tan
Ωs

2

� �
¼ tan

π

4
¼ 1

Corresponding to 0.5 dB passband ripple, we have

ε2 ¼ 100:1∗0:5 � 1 ¼ 0:122018

We already know that the minimum stopband attenuation A is 20 dB or 10 in
actual value. From (6.39) and (6.40), we determine 1

k1
¼ 28:4843 and 1

k ¼ 2:41421.

Using these values in (6.41), we find the filter order N¼ d2.6444e ¼ 3. Note that the
order of the lowpass Chebyshev type I analog filter is less than that of the
Butterworth filter for the same frequency specifications. We now determine the
poles of the Chebyshev type I analog filter using Eq. (6.43) and are given by
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p1 ¼ �0:1297þ j0:4233 ð6:44aÞ

p2 ¼ �0:2595 ð6:44bÞ

p3 ¼ p∗1 ¼ �0:1297� j0:4233 ð6:44cÞ
From these poles we obtain the analog transfer function of the lowpass

Chebyshev type I filter as

HA sð Þ ¼ H0

sþ 0:2595ð Þ s2 þ 0:2594sþ 0:196ð Þ ð6:45Þ

After applying the bilinear transformation with 2
T ¼ 1 to the analog filter function

in (6.45) and with some algebraic manipulation, we get

H zð Þ ¼ HA sð Þj
s¼1�z�1

1þz�1
¼ 0:5455 1þ 3z�1 þ 3z2 þ z�3ð Þ

1� 0:5879z�1ð Þ 1� 1:1049z�1 þ 0:6435z�2ð Þ ð6:46Þ

The magnitude of the frequency response of the lowpass Chebyshev type I IIR
digital filter is shown in Fig. 6.6. As mentioned above, the magnitude has ripples in
the passband and decreases monotonically in the stopband. It is found that the
minimum stopband attenuation for the third-order lowpass Chebyshev type I filter
is 24.7 dB. Compare this with that for the Butterworth filter, which is 3 dB less! We
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Fig. 6.6 Frequency response of a third-order lowpass Chebyshev type I IIR digital filter obtained
using the bilinear transformation. The frequency specifications are the same as in Example 6.3
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can also design the Chebyshev type I digital filter using MATLAB. To design an
Nth-order lowpass analog Chebyshev type I filter, we use the function cheby1. The
actual function call is [z,p,k] ¼ cheby1(N,ap,wp,’s’), where the arguments are the
filter order, passband ripple in dB, passband edge, and the letter s in single quote to
imply analog filter. The function returns the zeros, poles, and gain of the analog
filter, in that order. As in Example 6.3, we pass the zeros, poles, and the gain of the
analog filter to the function bilinear to obtain the zeros, poles, and the gain of the
digital filter. Finally, the transfer function of the Chebyshev type I lowpass IIR
digital filter is obtained using the function zp2tf. As a comparison to the results
obtained from the analysis, the magnitude of the frequency response of the
Chebyshev type I digital filter designed using MATLAB is also shown in Fig. 6.6.
It is identical to the analytical result. The MATLAB code for this example is in the
M-file named Example6_4.m.

6.3.5 Chebyshev Type II Lowpass IIR Digital Filter

The Chebyshev type II lowpass filter is similar to that of the type I filter except that
the magnitude square of the frequency response falls off monotonically in the
passband and alternates in the stopband. Another difference is that the type II
Chebyshev lowpass analog filter has zeros in the finite s-plane as well. The magni-
tude square of the frequency response of type II Chebyshev lowpass analog filter is
expressed as

HA ωð Þj j2 ¼ 1

1þ ε2
TN

ωs
ωp

	 

TN

ωs
ωð Þ

24 352 ð6:47Þ

The corresponding transfer function can be expressed in terms of zeros and poles
as

HA sð Þ ¼ H0

QN
m¼1

s� zmð Þ
QN
m¼1

s� pmð Þ
ð6:48Þ

The zeros are described as

zm ¼ j
ωs

cos 2m�1ð Þπ
2N

	 
 , 1 � m � N ð6:49Þ
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As can be seen from (6.49), the zeros lie on the imaginary axis. Further, if the
filter order N is odd, then the zero is at infinity form ¼ Nþ1ð Þ

2 . It implies that that zero
factor is absent. The poles are described as follows:

pm ¼ σm þ jωm, 1 � m � N ð6:50Þ
where

σm ¼ ωsαmð Þ
α2m þ β2m
� � ,ωm ¼ ωsβmð Þ

α2m þ β2m
� � , ð6:51aÞ

αm ¼ �ωpE1 sin
2m� 1ð Þπ

2N

� �
, βm ¼ �ωpE2 cos

2m� 1ð Þπ
2N

� �
ð6:51bÞ

ε1 ¼ γ2 � 1ð Þ
2γ

, ε2 ¼ γ2 þ 1ð Þ
2γ

, γ ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p	 
1
N ð6:51cÞ

The filter order N is determined from Eq. (6.41), as in type I case. The following
example will illustrate the design of type II Chebyshev filter.

Example 6.5 Design a type II Chebyshev lowpass IIR digital filter using the same
specifications as in Example 6.3.

Solution Since the frequency specifications are the same as for the Chebyshev type
I filter, we obtain the filter order for type II Chebyshev filter N ¼ 3. The transfer
function of the lowpass analog filter is found to be

HA sð Þ ¼ K0
s2 þ 1:3333

s3 þ 1:4054s2 þ 0:9421sþ 0:4020
ð6:52Þ

where K0 is a normalization constant. Note that since the filter order is an odd
number, the numerator has only two finite zeros, as expected. Finally, the transfer
function of the type II Chebyshev lowpass IIR digital filter is derived from that of the
analog filter using the normalized bilinear transform and is given by

H zð Þ ¼ 1þ 1:2857z�1 þ 1:2857z�2 þ z�3

1� 0:6020z�1 þ 0:4957z�2 � 0:0359z�3
ð6:53Þ

The magnitude of the frequency response of the lowpass digital filter in (6.53) is
plotted against normalized frequency and is shown in Fig. 6.7. As a comparison, the
frequency response of the filter designed using MATLAB is also plotted and is
shown in the same figure in dotted red line. They are identical. It is also found that
the attenuation is only 20 dB at the stopband edge. The MATLAB function used in
the design is cheby2. The steps involved here are similar to the ones in Example 6.4.
See the MATLAB M-file named Example6_5.m.
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6.3.6 Elliptic Lowpass IIR Digital Filter

An elliptic filter, also known as a Cauer filter, exhibits ripples in both the passband
and stopband. For the same given frequency specifications of a lowpass filter, an
elliptic filter has the smallest filter order. Assuming the frequency specifications of a
lowpass elliptic analog filter to be passband edge ωp, passband ripple ε, stopband
edge ωs, and minimum stopband attenuation A, the magnitude square of the fre-
quency response can be described by

HA ωð Þj j2 ¼ 1

1þ ε2E2
N

ω
ωp

	 
 , ð6:54Þ

where EN(ω) is a rational function of order N. The theory of elliptic filter approx-
imation is quite involved, and so we will not deal with it here. Instead, we will resort
to the MATLAB. However, it is necessary to determine the filter order satisfying the
given frequency specifications in order to come up with the transfer function using
the MATLAB function ellip. For the specifications mentioned above, the order of a
lowpass elliptic analog filter is given approximately by

N ffi 2log10
4=k1ð Þ

log10
1=ρð Þ , ð6:55Þ
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Fig. 6.7 Frequency response of a third-order lowpass Chebyshev type II IIR digital filter obtained
using the bilinear transformation. The frequency specifications are the same as in Example 6.3
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where

k1 ¼ εffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1

p , ð6:56aÞ

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
, ð6:56bÞ

k ¼ ωp

ωs
, ð6:56cÞ

ρ0 ¼
1�

ffiffiffiffi
k0

p

2 1þ
ffiffiffiffi
k0

p	 
 , ð6:56dÞ

ρ ¼ ρ0 þ 2 ρ0ð Þ5 þ 15 ρ0ð Þ9 þ 150 ρ0ð Þ13 ð6:56eÞ

Example 6.6 Design an elliptic lowpass IIR digital filter using the same specifica-
tions as in Example 6.3.

Solution Corresponding to the passband ripple of 0.5 dB, we find

�20log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε2
p
� �

¼ �0:5⟹ε ffi 0:34931

Therefore, k1 ffi 0.035107. Using the passband and stopband edges, we have
k ¼ tan π

8 . Next, we find k
0 ffi 0.91018, ρ0 ¼ 0.011762, and ρ ffi ρ0 ¼ 0.011762.

Using the values of k1 and ρ in (6.55), we get N ¼ d2.1318e ¼ 3. So, a third-order
elliptic filter will satisfy the given specifications. We use the MATLAB function
ellip, which accepts the filter order, passband ripple in dB, minimum stopband
attenuation in dB, passband edge, and the letter s in single quotes. We can use either
the statement [z,p,k] ¼ ellip(N,rp,rs,wp,’s’), which calculates the zeros, poles, and
the gain, or the statement [Na,Da] ¼ ellip(N,rp,rs,wp,’s’), which calculates the
transfer function. With either the analog transfer function or the zeros-poles-gain,
we call the function bilinear to calculate the transfer function of the corresponding
digital filter, as we did in the previous examples. Figure 6.8 shows the magnitude of
the frequency response of a third-order lowpass IIR elliptic digital filter. In Fig. 6.9,
the magnitude of the frequency responses of the Butterworth, Chebyshev types I and
II, and the elliptic filters for the same specifications as in Example 6.3 are shown. As
expected, the elliptic filter has the smallest transition width, meaning that it has the
steepest response between the passband and stopband. The M-file to solve this
problem is named Example6_6.m.
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Fig. 6.8 Frequency response of a third-order lowpass elliptic IIR digital filter obtained using the
bilinear transformation. The frequency specifications are the same as in Example 6.3
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Fig. 6.9 Frequency responses of a third-order lowpass Butterworth, Chebyshev type I and II, and
elliptic IIR digital filters obtained using the bilinear transformation. The frequency specifications are
the same as in Example 6.3
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6.4 Design of IIR Digital Filters Using Frequency
Transformation

So far we have discussed the design of a lowpass IIR digital filter. Lowpass filter is
not the only type used in practice. Filters such as highpass, bandpass, and bandstop
filters are also often used. If we have a prototype lowpass IIR digital filter, we can
then convert it to another lowpass, highpass, bandpass, or bandstop filter by using a
suitable spectral transformation directly in the digital domain. Thus, the method is to
replace the complex variable z in the prototype lowpass IIR digital filter HP(z) by the
spectral transformation function f

�bz� as described by

H zð Þ ¼ HP zð Þj
z¼f
�bz�, ð6:57Þ

where the spectral transformation function is defined as

f
�bz� ¼ �

YM
m¼1

bz � λm
1� λ∗mbz
� �

, λmj j < 1 ð6:58Þ

In (6.58), λm may be real or complex, and if complex, it has to occur with its
conjugate. For lowpass and highpass conversion, M equals 1, and for bandpass and
bandstop, it is 2.

6.4.1 Lowpass-to-Lowpass Conversion

Let us look at converting a lowpass IIR digital filter into another lowpass IIR digital
filter. Let the cutoff frequency of the prototype lowpass digital filter HLP(z) be Ωc.
We want to transform this prototype filter to another lowpass filter H0�bz� with a
cutoff frequency Ω̂c. Then the spectral transformation will be given by

z ¼ f
�
ẑ
� ¼ ẑ � λ

1� λẑ
ð6:59Þ

where λ is real. We can find the correspondence betweenΩ and bΩ as follows. We can
rewrite (6.59) as

z ¼ 1� λbz�1bz�1 � λ
) z�1 ¼ bz�1 � λ

1� λbz�1
ð6:60Þ

Then, when z ¼ e jΩ, bz ¼ e jbΩ and we have, from (6.60)
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e�jΩ ¼ e�jbΩ�λ

1�λe�jbΩ ¼ e�jbΩ2 � λe jbΩ2
e jbΩ2 � λe�jbΩ2 ¼ e

�j2 tan �1 1þλ
1�λ½ � tan bΩ2	 
	 
 ð6:61Þ

Therefore,

Ω ¼ 2 tan �1 1þ λ

1� λ

� �
tan

bΩ
2

 ! !
) tan

Ω
2
¼ 1þ λ

1� λ

� �
tan

bΩ
2

ð6:62Þ

The constant λ is found from (6.62) by using the respective cutoff frequencies and
is given by

λ ¼
tan Ωc=2ð Þ � tan bΩc

.
2

	 

tan Ωc=2ð Þ þ tan bΩc

.
2

	 
 ¼
sin Ωc�bΩc

2

� �
sin ΩcþbΩc

2

� � ð6:63Þ

Having found the constant in (6.63), we next replace z�1 in the prototype lowpass

filter by
�bz�1�λ

���
1�λbz�1

� to obtain the transfer function of the new lowpass IIR digital

filter. Let us demonstrate the process of spectral transformation by the following
example.

Example 6.7 Design a lowpass Chebyshev type I IIR digital filter with a passband
edge of 0.35π, passband ripple of 0.5 dB, stopband edge of π

2, and a minimum
stopband attenuation of 20 dB using the lowpass-to-lowpass spectral transformation
of the digital filter designed in Example 6.4.

Solution From Eq. (6.63), the constant is found to be

λ ¼ sin 0:25π�0:35π
2

� �
sin 0:25πþ0:35π

2

� � ¼ �0:193364 ð6:64aÞ

Therefore, the lowpass-to-lowpass transformation takes the form

f z�1
� � ¼ 0:19336 þ z�1

1þ 0:19336z�1
ð6:64bÞ

The transfer function of the prototype lowpass digital filter is given in Eq. (6.46),
which is

HP zð Þ ¼ 0:5455 1þ z�1ð Þ3
1� 0:5879z�1ð Þ 1� 1:1049z�1 þ 0:6435z�2ð Þ ð6:65Þ
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By applying the lowpass-to-lowpass spectral transformation to (6.65), we get the
transfer function of the new lowpass IIR digital filter of the same Chebyshev type I
filter as given below:

H zð Þ ¼ HP zð Þj
z�1¼ z�1�λð Þ

1�λz�1ð Þ

¼ K
1þ z�1ð Þ3

1� 0:445139z�1ð Þ 1� 0:63008z�1 þ 0:576549z�2ð Þ ð6:66Þ

The magnitude of the frequency response of the filter in (6.66) is shown in
Fig. 6.10a, which is type I Chebyshev characteristic. The figure also shows the
magnitude of the frequency response of the prototype filter for comparison. As can
be seen from the figure, the new filter has the same characteristic of the prototype
filter except that the passband edge is different, as desired. One can also use
MATLAB to solve this problem. The MATLAB function iirlp2lp applies the
lowpass-to-lowpass spectral transformation of Eq. (6.60). We must pass the coeffi-
cients of the numerator and denominator polynomials of the prototype lowpass IIR
digital filter along with the passband edge of the prototype filter and the passband
edge of the desired lowpass filter as arguments to the function iirlp2lp. The function
returns the coefficients of the numerator and denominator polynomials of the desired
lowpass IIR digital filter along with those of the spectral transformation function.
Figure 6.10a also shows the magnitude of the frequency response of the desired
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Fig. 6.10a Magnitude of the frequency response of the lowpass type I Chebyshev IIR digital filter
of Example 6.7. It also shows the frequency responses of the prototype filter and the filter obtained
using MATLAB for comparison
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lowpass IIR digital filter. It agrees perfectly with our analytical result. In Fig. 6.10b,
the phase responses of the prototype and the desired lowpass filters are shown. The
phase response of an IIR digital filter is, in general, nonlinear. Figure 6.10b proves
it. The M-file named Example6_7.m is used to solve this problem.

6.4.2 Lowpass-to-Highpass Conversion

The spectral transformation used to convert a prototype lowpass IIR digital filter
into a highpass digital filter of the same characteristics as the prototype filter is
expressed by

z�1 ¼ � bz�1 þ λ

1þ λbz�1
ð6:67Þ

The negative sign in (6.67) is due to the fact that what happens in the lowpass
filter atΩ¼ 0 happens in the highpass filter atΩ¼ π. IfΩc is the cutoff frequency of
the prototype lowpass filter and bΩc is that of the highpass filter, then from (6.67), we
get the value for λ as
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Fig. 6.10b Phase responses of the prototype lowpass and desired lowpass IIR digital filters of
Example 6.7
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λ ¼ �
cos ΩcþbΩc

2

� �
cos Ωc�bΩc

2

� � ð6:68Þ

We will consider the following example to illustrate the procedure.

Example 6.8 Design a highpass Chebyshev type I IIR digital filter with a passband
edge of 0.35π using the lowpass-to-highpass spectral transformation of the digital
filter designed in Example 6.4.

Solution Using the given specifications in (6.68), we calculate

λ ¼ � cos 0:25πþ0:35π
2

� �
cos 0:25π�0:35π

2

� � ¼ �0:59511 ð6:69aÞ

Having found λ, the lowpass-to-highpass frequency transformation is given by

f z�1
� � ¼ 0:59511 � z�1

1� 0:59511z�1
ð6:69bÞ

Next we obtain the transfer function of the highpass digital filter as

Hhp zð Þ ¼ HP zð Þj
z�1¼� z�1þλ

1þλz�1
ð6:70Þ

The magnitude of the frequency response of the highpass Chebyshev type I
digital filter is shown in Fig. 6.11a. For the sake of reference, the frequency response
of the prototype lowpass digital filter is also plotted in the same figure. Similar to
what we did in the previous example, we use the MATLAB function iirlp2hp to
design the same highpass filter. The arguments to this function are the numerator and
denominator polynomial coefficients, the passband edges of the prototype lowpass
filter, and the desired highpass filter. It returns the numerator and denominator
coefficients of the transfer function of the highpass filter along with those of the
lowpass-to-highpass spectral transformation function. The magnitude of the fre-
quency response of the highpass digital filter designed using MATLAB is also
plotted for comparison and is shown in Fig. 6.11a. The phase responses of the
prototype lowpass and the desired highpass IIR digital filters are shown in
Fig. 6.11b. As mentioned before, the phase response of an IIR digital filter is
nonlinear. This fact is again ascertained by Fig. 6.11b. The M-file named Exam-
ple6_8.m is used to solve this problem.

6.4.3 Lowpass-to-Bandpass and Bandstop Conversion

The spectral transformation in the digital domain from a lowpass prototype IIR
digital filter with a passband edge Ωp to a bandpass digital filter whose lower and
upper passband edges are Ωp1 and Ωp2, respectively, is described by
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Fig. 6.11a Magnitude of the frequency response of the highpass type I Chebyshev IIR digital filter
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f zð Þ ¼ �
z�2 � 2λρ

1þρz
�1 þ ρ�1

1þρ

1� 2λρ
1þρ z

�1 þ ρ�1
1þρ z

�2

 !
, ð6:71Þ

where the constants are defined as

λ ¼
cos Ωp1þΩp2

2

	 

cos Ωp2�Ωp1

2

	 
 , ð6:72aÞ

ρ ¼ cot
Ωp2 � Ωp1

2

� �
tan

Ωp

2

� �
ð6:72bÞ

The conversion from lowpass-to-bandpass filter is accomplished by the following
equation:

HBP zð Þ ¼ HLP zð Þjz�1¼f zð Þ ð6:73Þ

The lowpass-to-bandstop spectral transformation is given by

f zð Þ ¼
z�2 � 2λ

1þρz
�1 þ 1�ρ

1þρ

1� 2λ
1þρ z

�1 þ 1�ρ
1þρ z

�2

 !
, ð6:74Þ

where

λ ¼
cos Ωp1þΩp2

2

	 

cos Ωp2�Ωp1

2

	 
 , ð6:75aÞ

ρ ¼ tan
Ωp2 � Ωp1

2

� �
tan

Ωp

2

� �
ð6:75bÞ

The desired bandstop IIR digital filter is then found by replacing each z�1 in the
prototype lowpass IIR digital filter by the function specified in (6.74). We will now
illustrate the design of bandpass and bandstop IIR digital filters using the spectral
transformations described in Eqs. (6.71) and (6.74), respectively, by the following
two examples.

Example 6.9 Design a bandpass Chebyshev type I IIR digital filter with lower and
upper passband edges of 0.35π and 0.5π, respectively, using the lowpass-to-
bandpass spectral transformation of the digital filter designed in Example 6.4.

Solution Using the passband edge frequencies of the lowpass prototype filter and
the bandpass filter, we find λ ¼ 0.24008 and ρ ¼ 1.72532. The lowpass-to-bandpass
frequency transformation then takes the form
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f z�1
� � ¼ �0:26614 þ 0:30397z�1 � z�2

1� 0:30397z�1 þ 0:26614z�2
ð6:76aÞ

Then, the transfer function of the desired bandpass filter is obtained as described by

HBP zð Þ
¼ 0:2551� 0:7653z�2 þ 0:7653z�4 � 0:2551z�6

1� 1:2663z�1 þ 2:8186z�2 � 2:0775z�3 þ 2:332z�4 � 0:8535z�5 þ 0:5559z�6
,

ð6:76bÞ
where f(z) is defined in Eq. (6.71). The magnitude of the frequency response of the
bandpass filter is shown in Fig. 6.12a. We can also use MATLAB to convert a
prototype lowpass IIR digital filter to a desired bandpass filter. In particular, we use
the function iirlp2bp, which accepts the coefficients of the numerator and denomi-
nator polynomials of the transfer function of the prototype lowpass IIR digital filter
as well as the passband edge of the prototype filter and the lower and upper passband
edges of the bandpass filter. It returns the coefficients of the transfer function of the
bandpass filter along with those of the lowpass-to-bandpass spectral transformation
function. The details are found in the MATLAB code in the M-file named Exam-
ple6_9.m. For the sake of comparison, Fig. 6.12a also shows the magnitude of the
frequency response of the bandpass filter designed using MATLAB. The phase
response of the designed bandpass IIR digital filter is shown in Fig. 6.12b. As the
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Fig. 6.12a Magnitude of the frequency response of the bandpass type I Chebyshev IIR digital filter
of Example 6.9. It also shows the frequency responses of the bandpass filter designed using
MATLAB for comparison

218 6 IIR Digital Filters



bandpass filter is an IIR digital filter, its phase response is nonlinear and is verified by
the plot in Fig. 6.12b. The figure also shows the unwrapped phase response of the
bandpass filter. Note that the unwrapped phase is a continuous function of the
frequency.

Example 6.10 Design a bandstop Chebyshev type I IIR digital filter with lower and
upper passband edges of 0.35π and 0.6π, respectively, using the lowpass-to-
bandstop spectral transformation of the digital filter designed in Example 6.4.

Solution From Eqs. (6.75a) and (6.75b), we obtain λ ¼ 0.08492 and ρ ¼ 0.17157.
With these values, the lowpass-to-bandstop frequency transformation is found to be

f z�1
� � ¼ 0:70711� 0:14497z�1 þ z�2

1� 0:14497z�1 þ 0:70711z�2

The transfer function of the desired bandstop filter is then obtained by replacing z�1

in the prototype filter by the above function f(z�1) and is found to be

HBS zð Þ
¼ 15:7527� 8:0267z�1 þ 48:6215z�2 � 16:1305z�3 þ 48:6215z�4 � 8:0267z�5 þ 15:7527z�6

1� 0:3769z�1 þ 1:4871z�2 � 0:4033z�3 þ 0:9488z�4 � 0:1132z�5 þ 0:1368z�6

The magnitude of the frequency response of the desired bandstop IIR digital filter
is shown in Fig. 6.13a. As in the previous example, we can also design a bandstop
IIR digital filter using MATLAB. It is similar to the design of a bandpass filter. The
MATLAB function to use is iirlp2bs. The arguments to the function are the same as

5

4

3

2

0

1

-1

-2

-3

-4

-5
0 0.5 1 1.5

Normalized frequency rad

P
ha

se
 r

ad

2 2.5 3 3.5

Phase angle
unwrapped phase

b

Fig. 6.12b Phase response of the designed bandpass IIR digital filters of Example 6.9
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those for the bandpass case. The MATLAB code is in the M-file named Exam-
ple6_10.m. Figure 6.13a also shows the magnitude of the frequency response of the
bandstop IIR digital filter designed using MATLAB. The phase response of the
designed bandpass IIR digital filter is shown in Fig. 6.13b. As can be seen from the
figure, the phase response of the bandstop IIR digital filter is also nonlinear.

The following Table 6.1 lists the transformation type and the corresponding
frequency transformation function along with the respective parameters for easy
reference.

6.5 Computer-Aided Design of IIR Digital Filters

The design techniques we have seen so far are analytical. That is, these techniques
give analytical or closed-form expressions for the poles or transfer functions in the
analog domain to approximate ideal lowpass filter characteristics. Each type of filter
tries to approximate the ideal characteristics in a unique way. For instance,
Butterworth filter approximates the ideal lowpass characteristics in as flat as possible
in the passband and falls off monotonically in the stopband. Chebyshev filter on the
other hand, approximates the ideal lowpass characteristics in an equiripple manner.
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Fig. 6.13a Magnitude of the frequency response of the bandstop type I Chebyshev IIR digital filter
of Example 6.10. It also shows the frequency responses of the bandstop filter designed using
MATLAB for comparison
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Table 6.1 Spectral transformations to convert a lowpass IIR digital filter into another LP, HP, BP,
and BS IIR digital filters

Conversion type Spectral transformation f(z�1) Parameters

LP to LP z�1 � λ

1� λz�1
λ ¼

sin Ωc�bΩc
2

� �
sin ΩcþbΩc

2

� �
LP to HP � λþ z�1

1þ λz�1
λ ¼ �

cos ΩcþbΩc
2

� �
cos Ωc�bΩc

2

� �
LP to BP

�
z�2 � 2λρ

1þ ρ
z�1 þ ρ� 1

1þ ρ

1�
2λρ
1þ ρ

z�1 þ ρ� 1
1þ ρ

z�2

0BB@
1CCA λ ¼

cos Ωp2þΩp1

2

	 

cos Ωp2�Ωp1

2

	 

ρ ¼ cot

Ωp2 �Ωp1

2

� �
tan Ωp

2

	 

LP to BS

z�2 � 2λ
1þ ρ

z�1 þ 1� ρ

1þ ρ

1�
2λ

1þ ρ
z�1 þ 1� ρ

1þ ρ
z�2

λ ¼
cos Ωp2þΩp1

2

	 

cos Ωp2�Ωp1

2

	 

ρ ¼ tan

Ωp2 �Ωp1

2

� �
tan Ωp

2
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Fig. 6.13b Phase response of the designed bandstop IIR digital filter of Example 6.10
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These analog filters are converted to the corresponding digital filters using the
bilinear transformation. Other types of digital filters are designed using spectral
transformations either in the analog or digital domain. These are also based on
analytical solutions.

In addition to these elegant techniques, one can also design an IIR digital filter
directly in the digital domain using iterative solutions. Because this technique
involves numerical computations, it is called computer-aided design technique. In
computer-aided design of an IIR digital filter, one fixes the filter order N and assumes
a transfer function of the type

H zð Þ ¼

PM
j¼0

b jz�j

PN
k¼0

akz�k

,M � N ð6:77Þ

The end result is the determination of the real coefficients in (6.77) so that the
frequency response H(e jΩ) meets that of the specified response G(e jΩ) in a certain
manner. Typically, a cost function involving the above two functions is minimized.
The general cost function to be minimized over a set of frequency points is expressed
as the sum of the pth power of the weighted absolute difference between the desired
and realized frequency responses, as

ε ¼
XL
l¼1

W e jΩl
� �

G e jΩl
� �� H e jΩl

� �� ��� ��p ð6:78Þ

The most commonly used value for p is 2, and the resulting solution is called the
least squares solution. Another cost function is the maximum of the weighted
absolute difference between the desired and realized frequency responses. Let us
not go into the details of the iterative procedure to determine the filter coefficients.
Instead, we will use MATLAB to solve the problem. MATLAB has the function
named yulewalk that designs an IIR digital filter of a given order and a set of
frequency points in the interval between 0 and 1 along with the corresponding
magnitudes of the frequency response. Depending on the frequency specifications,
it can design a lowpass, highpass, bandpass, or bandstop IIR digital filter. Let us
illustrate the computer-aided design using MATLAB by an example.

Example 6.11 Design a fifth-order IIR lowpass digital filter with a passband ripple
of 0.1 dB, minimum stopband attenuation of 40 dB, passband edge of π

4, and
stopband edge of π

2 using MATLAB.

Solution The MATLAB function yulewalk accepts the filter order N, a vector of
frequencies in the interval [0,1] and the corresponding magnitudes of the desired
frequency response, in that sequence. It returns the vectors B and A of the coeffi-
cients of the numerator and denominator polynomials of the digital filter transfer
function. The approximation will be better if we supply enough frequency points and
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corresponding magnitudes. First we have to convert the passband ripple and the
stopband attenuation in dB to actual values. Therefore, the passband ripple and
stopband attenuation in actual values are

δp ¼ 1� 10�
αp
20 ¼ 0:011447 and δs ¼ 10�

αs
20 ¼ 0:01:

Let us choose the frequency points between 0 and 1 as given by

F ¼ 0; Ωp

8 ;
Ωp

4 ;
Ωp

2 ;
3Ωp

4 ;Ωp; 0:4;Ωs; 0:6; 0:7; 0:8; 1
h i

,where Ωp and Ωs are normal-

ized by π.
Let the corresponding magnitudes be specified as

M ¼ 1þ δp
2
; 1þ 3δp

4
; 1; 1; 1� δp

2
; 1� 3δp

4
; 2δs; δs; 0:1δs; 0:1δs; 0:05δs; 0:00001

� �
Next, we call the function [B,A] ¼ yulewalk(5,F,M), which returns the coeffi-

cients of the transfer function of the IIR digital filter. The transfer function is found to
be

H zð Þ ¼ 0:0290
1þ 2:089z�1 þ 3:0407z�2 þ 3:0389z�3 þ 2:0844z�4 þ 0:9971z�5

1� 1:8307z�1 þ 2:1003z�2 � 1:3981z�3 þ 0:6005z�4 � 0:1192z�5

The magnitude of the frequency response in dB of the designed filter is plotted
against the normalized frequency and is shown in Fig. 6.14. Figure 6.15 shows the
magnitude of the frequency response of Chebyshev I, elliptic, and Butterworth filters
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Fig. 6.14 Magnitude in dB of the frequency response of the fifth-order IIR digital filter of Example
6.11 designed using computer-aided technique
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with the same specifications as given in Example 6.11 as a comparison to the
computer-aided designed filter. It is found that the minimum stopband attenuation
for the computer-aided designed filter is 52.08 dB, 48.34 dB for the elliptic,
44.04 dB for the Chebyshev I, and 38.28 dB for the Butterworth filter. The elliptic
filter is found to have the smallest transition width or, equivalently, the sharpest
response between the passband and stopband edges, as anticipated.

6.6 Group Delay

The steady-state response of an LTI discrete-time system to a sinusoidal input e jnΩ0

can be written in terms of the frequency response of the LTI system as

y n½ � ¼ H e jΩ0
� �

e jnΩ0 ð6:79Þ
Since the frequency response is a complex function of the frequency, the system

response in (6.79) can be expressed as
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Fig. 6.15 Magnitude of the frequency responses of elliptic, Chebyshev I, and Butterworth IIR
digital filters, satisfying the specifications in Example 6.11. For the sake of comparison, the
magnitude of the frequency response of the filter designed using computer-aided technique is
also shown
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y n½ � ¼ H e jΩ0
� ��� ��e jΩ0 n�n0ð Þ ð6:80Þ

Thus, the LTI discrete-time system introduces a phase delay or phase lag
n0Ω0 rad, which amounts to a time delay

τ ¼ phase delay

Ω0
¼ n0Ω0

Ω0
¼ n0 samples ð6:81Þ

If the phase response of the LTI discrete-time system is not linear, then different
frequency components will produce different time delays. If an input sequence
consists of several different frequency components, then the LTI system will intro-
duce different amount of delay to the components and the overall effect is a
distortion called phase distortion. In general, an IIR filter has a nonlinear phase
response due to the fact that it has both zeros and poles. Because of the nonlinearity
in phase response of an IIR digital filter, we can define the group delay as

τg ¼ � dθ Ωð Þ
dΩ

, ð6:82Þ

where θ(Ω) is the phase response of the IIR filter. This group delay refers to the delay
of a group of frequency components present in an input signal. Consider a stable
second-order transfer function given by

H zð Þ ¼ b0 þ b1z�1 þ b2z�2

a0 þ a1z�1 þ a2z�2
, ð6:83Þ

where the coefficients of the polynomials are real. The frequency response
corresponding to (6.83) is expressed as

H e jΩ� � ¼ b0 þ b1e�jΩ þ b2e�j2Ω

a0 þ a1e�jΩ þ a2e�j2Ω ð6:84Þ

Therefore, the phase response can be written as

θ Ωð Þ ¼ � tan �1 b1 sinΩþ b2 sin 2Ω
b0 þ b1 cosΩþ b2 cos 2Ω

� �
þ tan �1 a1 sinΩþ a2 sin 2Ω

a0 þ a1 cosΩþ a2 cos 2Ω

� �
ð6:85Þ

From Eqs. (6.82) and (6.85), we obtain the group delay of a second-order IIR
filter transfer function as

τg ¼
b21 þ 2b22
� �þ b1 b0 þ 3b2ð Þ cos Ωð Þ þ 2b0b2 cos 2Ωð Þ
b20 þ b21 þ b22
� �þ 2b1 b0 þ b2ð Þ cos Ωð Þ þ 2b0b2 cos 2Ωð Þ

( )

� a21 þ 2a22
� �þ a1 a0 þ 3a2ð Þ cos Ωð Þ þ 2a0a2 cos 2Ωð Þ
a20 þ a21 þ a22
� �þ 2a1 a0 þ a2ð Þ cos Ωð Þ þ 2a0a2 cos 2Ωð Þ

( )
ð6:86Þ
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Let us consider the following example to illustrate how the group delay of a
second-order IIR filter looks like.

Example 6.12 Calculate the group delay over the interval [0, π] of the Butterworth
IIR digital filter of Example 6.3. Also compute its response to an input sequence

x n½ � ¼ sin
26πn
1000

� �
þ sin

266πn
1000

� �
þ cos

666πn
1000

� �� �
u n½ � ð6:88Þ

Solution The transfer function of the fourth-order Butterworth IIR digital filter was
found to be

H zð Þ ¼ 1þ 2z�1 þ z�2

1� 0:8336z�1 þ 0:5156z�2

� �
1þ 2z�1 þ z�2

1� 0:6209z�1 þ 0:12189z�2

� �
ð6:89Þ

By substituting the values of the coefficients of the numerator and denominator
polynomials of each of the second-order functions in (6.89) in (6.86), we determine
the group delay of the IIR filter over the frequency interval [0, π]. We can also use
the MATLAB function grpdelay to calculate the group delay. The actual function
call is Gd ¼ grpdelay(B,A,W), where B and A are the vectors of the coefficients of
the numerator and denominator polynomials of the transfer function, W is the set of
frequency points in the interval [0, π], and Gd is the corresponding group delay in
samples. But, before we use the grpdelayMATLAB function, we need to convert the
two second-order sections to a single transfer function. This is accomplished by the
function sos2tf. So, we use the statement [B,A] ¼ sos2tf([B1 A1; B2 A2],G), where
B1 and A1 are the coefficients of the numerator and denominator polynomials of the
first section, B2 and A2 correspond to the second section of the transfer function, and
G is the gain. The function returns the coefficients of the numerator and denominator
polynomials of the overall transfer function. Once we obtain the overall transfer
function, we can then calculate the group delay. Figure 6.16 shows the phase
response of the filter described by (6.89). The group delay is shown in Fig. 6.17.
The figure shows the plots obtained using both analytical equation and MATLAB
function for the sake of comparison. As expected, both the phase and group delay of
the IIR digital filter are nonlinear.

To demonstrate the effect of nonlinear phase of the IIR filter on its input, we
calculate the response of the IIR filter to the input sequence specified in (6.88). The
response can be calculated either using the difference equation or using the
MATLAB functions fft and ifft. The difference equation corresponding to the overall
transfer function can be described by

y n½ � ¼ x n½ � þ 4x n� 1½ � þ 6x n� 2½ � þ 4x n� 3½ � þ x n� 4½ �
þ 1:4545y n� 1½ � � 1:1551y n� 2½ � þ 0:4217y n� 3½ �
� 0:0628y n� 4½ �: ð6:90Þ

The initial conditions are assumed to be zero, and the input sequence corresponds
to (6.88). We compute the response for a set of consecutive values for n. The other
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Fig. 6.16 Phase response of the Butterworth IIR digital filter of Example 6.12

4.5

4

3.5

3

2.5

2

1.5

1

0.5
0 0.5 1 1.5 2

Normalized Frequency(rad)

Group delay

Analytical
Matlab

G
ro

up
 d

el
ay

2.5 3 3.5

Fig. 6.17 Group delay of the IIR digital filter of Example 6.12
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method is to find the DFTs of the filter frequency response and the input sequence
over the same set of values of the frequency variable, multiply the two point by
point, and then find the inverse DFT. The input and the response are plotted and
shown in the upper and lower plots, respectively, in Fig. 6.18. Because of the
nonlinear nature of the group delay, we observe some phase distortion in the output
sequence. The M-file to solve this problem is named Example6_12.m.

6.6.1 Group Delay Equalization

We learnt from the previous section that an IIR filter, in general, has a nonlinear
phase response and, as a consequence, has a varying group delay. Some applications
require a constant group delay when filtering a signal with an IIR digital filter. In this
section we will describe a procedure to obtain a constant group delay out of an IIR
filter without altering its magnitude of frequency response. Such a process or
procedure is called equalization of the group delay.

An allpass filter is an IIR filter with its zeros being the inverse of its poles. The
poles of an allpass filter must lie inside the unit circle in the Z-domain for it to be
stable. Because the poles and zeros of an allpass filter are inverses of each other, the
magnitude of its frequency response is constant over the entire frequency interval.
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Fig. 6.18 Response of the filter in Example 6.12 to the input sequence in (6.88). Top plot: input
sequence. Bottom plot: output sequence
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However, the locations of the poles can be adjusted so that the group delay is
constant or approximately a constant. The design of such an allpass filter will be
carried out using MATLAB. More specifically, the designed IIR digital filter is
cascaded with an allpass filter, and then the poles and zeros of the allpass filter are
adjusted so that the overall group delay approximates a constant value. The group
delay of the IIR filter along with the order of the allpass filter and a set of frequency
points over which the overall group delay is a constant are the arguments to the
MATLAB function iirgrpdelay. It returns the coefficients of the numerator and
denominator polynomials of the allpass filter along with a group delay offset. We
will make the procedure clear by working out an example.

Example 6.13 Design a fourth-order elliptic IIR digital filter with a passband ripple
of 1 dB, passband edge of 0.3π, and a minimum stopband attenuation of 35 dB, and
then equalize its group delay in the passband using an eighth-order allpass digital
filter.

Solution First we design the elliptic IIR digital filter by calling the MATLAB
function ellip, whose input arguments are filter order, passband ripple in dB,
minimum stopband attenuation in dB, and the passband edge, in that order. The
specified passband edge must be normalized by π, which corresponds to half the
sampling frequency. The ellip function returns the zeros, poles, and the quotients of
the elliptic filter. Before we design the allpass filter, we must convert the zeros and
poles of the IIR elliptic filter to second-order sections using the MATLAB function
zp2sos. This function returns the coefficients of the numerator and denominator
polynomials of the second-order sections along with the gain factor. Next we call the
function dfilt.df2sos, which accepts the second-order sections SOS and returns a
direct form II filter object, H. For the time being, let us not worry about the terms
direct form I or direct form II. We will discuss these in a later chapter. The group
delay of this IIR digital filter is next calculated using the MATLAB function
grpdelay. This group delay of the elliptic IIR filter along with the order of the allpass
filter and frequency points is input to the function iirgrpdelay, which returns the
coefficients of the numerator and denominator polynomials of the allpass filter. The
allpass filter is then converted to direct form II and then cascaded with the IIR filter
using the MATLAB function cascade. The details of the MATLAB code can be
found in the M-file named Example6_13.m. We can invoke the filter visualization
tool fvtool to obtain the various plots and filter characteristics. The information
obtained using the fvtool is given in the form of figures. Figure 6.19 shows the
plot of the equalized group delay, which is seen to be a constant in the passband with
a small ripple. As a comparison, the group delay of the fourth-order elliptic IIR
digital filter is also shown in the figure. The overall frequency response and that of
the allpass filter are shown in Fig. 6.20. As stated earlier, the magnitude of the
frequency response of the allpass section remains fairly constant, and so the response
of the IIR filter is unaltered. We can also use the fvtool to obtain the pole-zero plot of
the overall filter and is shown in Fig. 6.21. The impulse response of the cascaded
filter and its step response are shown in Figs. 6.22 and 6.23, respectively. A further
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advantage of using the fvtool function is that we can obtain filter coefficients as well
as the cost of implementing the overall filter in terms of additions and multiplications
operations, which are shown in Figs. 6.24 and 6.25, respectively.
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Fig. 6.19 Overall group delay of the cascaded IIR and allpass filters of Example 6.13
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6.7 Simulation Using Simulink

Thus far we have learnt the design of an IIR digital filter using both analytical and
computer-aided techniques. We have shown several examples using MATLAB to
illustrate these design methods. In this section we will apply an IIR digital filtering
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Fig. 6.21 Overall pole-zero plot of the filter in Example 6.13
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process to modulate and demodulate an amplitude-modulated (AM) signal, which is
used in AM radio broadcast. We will use MATLAB’s Simulink to simulate the
generation of an AM signal. An AM signal is an analog signal wherein a voice or
music signal (modulating waveform) modulates the amplitude of a high-frequency
signal (a carrier wave). The modulating signal is also called a message waveform.
The carrier wave is of much higher frequency than the maximum frequency of the
message signal. The frequency range of an AM broadcast is from 550 kHz to
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Fig. 6.23 Overall step response of the filter in Example 6.13

Fig. 6.24 Coefficients of the digital filter second-order sections of Example 6.13
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1600 kHz. Each broadcast program has a specified carrier frequency with a band-
width of 10 kHz. An AM waveform can be described by

xAM tð Þ ¼ Ac 1þ m tð Þð Þ cos 2πf ctð Þ, ð6:91Þ
where Ac is the amplitude of the carrier waveform, m(t) is the message waveform,
and fc is the carrier frequency. The magnitude of the message waveform m(t) must be
less than or equal to 1. If the message waveform is a pure sinusoid

m tð Þ ¼ Am sin 2πf mtð Þ, ð6:92Þ
then Am

Ac
� 1 is called the modulation index. If the message waveform is a baseband

signal with a maximum frequency fm 
 fc, then the modulated waveform xAM(t) is a
bandpass signal with center frequency fc and bandwidth 2fm. From (6.91) and (6.92),
we can deduce that the modulated waveform can be described by

xAM tð Þ ¼ Ac cos ωctð Þ þ m

2
sin ωc þ ωmð Þtð Þ þ m

2
sin ωc � ωmð Þtð Þ, ð6:93Þ

where m is the modulation index. As can be seen from the above equation, the AM
signal has a component at the carrier frequency and two sidebands, one above and
one below the carrier frequency. Thus, the modulated AM signal is a bandpass signal
with a bandwidth equal to twice the message bandwidth.

From Eq. (6.91), we find that the AM signal is generated by multiplying a carrier
waveform by a message waveform and then adding a carrier signal to the product. In
order to recover the message waveform from the AM signal, we can multiply the AM
signal by a locally generated carrier signal of the same frequency and phase and then
filter it with a lowpass filter of bandwidth equal to that of the message signal. The
process of recovering a message waveform from the AM signal is known as

Fig. 6.25 Details of filter implementation cost in terms of arithmetic operations
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demodulation. We will demonstrate the processes of modulation and demodulation
of an AM signal using Simulink in the following example.

Example 6.14 Show modulation and demodulation of an AM signal with a carrier
frequency of 100 kHz. Use a 10 kHz sinusoid as the modulating waveform. Use
MATLAB’s Simulink as the simulation tool.

Solution Since we are going to perform the simulation in digital form, we have to
sample the modulated waveform. The minimum sampling frequency must be twice
the maximum frequency of the modulated signal. As pointed out earlier, the largest
frequency in the modulated AM signal is fmax ¼ fc + fm ¼ 100 + 10 ¼ 110 kHz.
Therefore, the minimum sampling frequency must be 220 kHz. However, to be on
the safe side, we will use a sampling frequency of fs ¼ 2.2fmax ¼ 242 kHz.

To start the Simulink, type “Simulink” in the workspace and press return. A new
window appears, as shown in Fig. 6.26. Click “File,” then “New,” and then “Model.”
A new blank window will appear in which we will create the block diagram of the
AM modulator. Next, click “Sources” from the “Libraries” menu. A set of sources

Fig. 6.26 Simulink Library Browser
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blocks appears on the right side, as shown in Fig. 6.27. Drag the box named “Sine
Wave” to the Model window. Double-click the block, and a new window named
“Source block parameters: sine wave” appears as shown in Fig. 6.28. Fill in the
parameters as shown in the figure. Use “Time based” in “Sine type” and “Use
simulation time” in “Time(t)” parameters. Choose an amplitude of 0.75, bias of
1, a frequency of 10,000, 0 rad for phase, and a “Sample Time” of 4.1322e-06. This
sample time corresponds to the inverse of 2.2 times 110 kHz. As shown in Fig. 6.29,
under Communication System Toolbox – Modulation, click “Analog Passband
Modulation,” and drag the box named “DSB Modulator Passband” to the Model
window. Then double-click the new block. A new window (Fig. 6.30) named
“Function Block Parameters: DSB AM Modulator” appears. Enter 0 for the “Input
signal offset” parameter, 100,000 for the “Carrier frequency (Hz),” and 0 for “Initial
Phase (rad),” and click “Apply” and then “OK.” Next, click “Sinks” under
“Simulink.” A set of sinks appears as shown in Fig. 6.31. Drag the box named
“Scope” to the Model window. Drag the same box again to the Model window or
you can copy the box already dragged and paste it. So, we have two “Scopes.” So far,

Fig. 6.27 Simulink Library Browser-Source-Sine Wave
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we have dragged the blocks necessary to perform the modulation of a carrier signal
by a low frequency sinusoidal waveform. Next, we have to include the blocks
necessary to perform demodulation to recover the message waveform. As shown
in Fig. 6.32, drag the box named “DSB AM Demodulator Passband” to the Model
window. Double-click the Demodulator Box, and a window named “Function Block
Parameters: DSB AM Demodulator Passband” will appear. Fill in the parameters as
shown in Fig. 6.33. Note that the lowpass filter passes the message waveform and
rejects the components at twice the carrier frequency. Here we have chosen an
eighth-order lowpass Butterworth filter with a cutoff frequency of 12 kHz because
the message waveform is of frequency 10 kHz. Finally, we have to connect all the
blocks as shown in Fig. 6.34. From the figure we see that we have an input sinusoid
fed to the DSB modulator as well as to a scope for viewing, the output of the
modulator is fed to the input of the demodulator and a scope, and finally the output of
the demodulator is fed to a scope. Once the diagram is saved, click the green circle

Fig. 6.28 Source block
parameters: sine wave
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Fig. 6.30 Function Block
Parameters: DSB AM
Modulator

Fig. 6.29 DSB AM Modulator Passband block from Simulink Library Browser
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with a right-pointing arrow to start the simulation. If there is no error, MATLAB will
execute the signal flow block diagram, and the results will be displayed on the
respective scopes. Figure 6.35 is the picture of the scope displaying the modulating
waveform. In Fig. 6.36, the AM signal is shown, where we see the amplitude of the
carrier being modulated by the message waveform. The demodulated signal is
shown in Fig. 6.37, which is the same as the message waveform. The purpose of
this simulation example is to illustrate the application of an IIR lowpass digital filter
in communications. You can also change the filter type and order to see its effect on
the demodulated signal.

6.8 Summary

In this chapter we have learnt IIR digital filters in general and how to design such
filters in particular. We discussed three methods of designing IIR digital filters,
namely, the impulse invariance technique, bilinear transformation, and computer-

Fig. 6.31 Scope from Simulink Library Browser: Sinks
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aided technique. The goal of the impulse invariance technique is to preserve the
shape of the impulse response of a specified analog filter in the discrete-time domain.
As we are more familiar with signals in the frequency domain than in the time
domain, analog filters are designed to satisfy specifications in the frequency domain.
In other words, analog filters are designed to meet frequency responses with some
tolerances in the passband and stopband. Since elegant techniques exist in the
literature for the design of analog filters in the frequency domain, it is redundant to
invent such techniques for the design of IIR digital filters. Therefore, simple
translation of the existing frequency domain design methods for the analog filters
is used for the design of IIR digital filters. One such method is the bilinear transform,
which preserves the characteristics of the analog filters in the digital domain.
However, due to the nonlinear nature of the bilinear transform, critical frequencies
in the digital domain have to be prewarped so that the final IIR digital filter will have
the correct critical frequencies. We also described spectral transformations in the
digital domain used to convert a prototype lowpass IIR digital filter to another

Fig. 6.32 DSB AM Demodulator Passband block from Simulink Library Browser
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Fig. 6.34 Overall DSB AM Modulator-Demodulator block diagram

Fig. 6.33 Function Block
Parameters: DSB AM
Demodulator Passband from
Simulink Library Browser
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lowpass or highpass or bandpass or bandstop filter. The third technique is called
computer-aided design technique because this technique uses iterative computations.
The basic idea behind computer-aided design is to assume the transfer function of a
given order IIR digital filter and then iteratively alter the filter coefficients so that the
cost of an objective function is minimized. We also discussed the equalization of the
group delay of an IIR digital filter under computer-aided design techniques. Several
examples, both analytical and MATLAB-based were shown to solidify the under-
standing of the design of IIR digital filters. Finally, the use of IIR digital filter in
communications was illustrated using MATLAB’s Simulink tool. More specifically,

Fig. 6.35 Scope displaying
the modulating input signal

Fig. 6.36 Scope displaying
the DSB AM signal
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we simulated amplitude modulation and demodulation and exemplified the use of
lowpass IIR digital filter in the recovery of the message waveform. In the next
chapter, we will study the design of another class of digital filters known as finite
impulse response (FIR) filters.

6.9 Problems

1. Determine the peak ripple values δp and δs for the peak passband ripple of
0.14 dB and minimum stopband attenuation of 68 dB.

2. Corresponding to δp¼ 0.015 and δs¼ 0.04, find the peak passband ripple αp and
minimum stopband attenuation αsin dB.

3. Determine the transfer function of the digital filter using the impulse invariance
method corresponding to the analog filter whose transfer function in the Laplace
domain is described by H sð Þ ¼ 17

s2þ2sþ17. Use a sampling interval T ¼ 0.1 sec.
4. The transfer function of the digital filter obtained using the impulse invariance

method is found to beH zð Þ ¼ 0:2z�1

1�0:8z�1þ0:15z�2. If the sampling interval is 0.25 sec,
find the transfer function of the corresponding analog filter.

5. Using the bilinear transformation, find the digital filter transfer function
corresponding to the transfer function of the analog filter

Ha sð Þ ¼ 2S2þs�1
sþ4ð Þ s2þ2sþ10ð Þ. Use T ¼ 0.25 sec.

6. Convert the analog transfer H sð Þ ¼ 1
1þ3:2361sþ5:2361s2þ5:2361s3þ3:2361s4þs5 into an

IIR digital filter using the bilinear transformation. Use a sampling frequency of
5 kHz. Plot the magnitude of the frequency responses.

Fig. 6.37 Scope displaying
the demodulated signal
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7. The transfer functionH zð Þ ¼ 0:1966 1þ3z�1þ3z�2þz�3ð Þ
1þ0:1541z�1þ0:4691z�2�0:0506z�3 was obtained using the

bilinear transformation of a corresponding analog filter. Determine the analog
filter transfer function using a sampling interval of 0.25 ms.

8. Design a Butterworth lowpass IIR digital filter of order N ¼ 3 to have a cutoff
frequency of 0.3π. Use MATLAB to solve the problem.

9. Starting with the lowpass digital filter obtained in the previous problem as the
prototype, design a bandstop digital filter with band edge frequencies 0.4π and
0.7π using the spectral transformation in the Z-domain.

10. Design a lowpass elliptic IIR digital filter with a peak-to-peak passband ripple of
0.1 dB, minimum stopband attenuation of 45 dB, and a passband edge frequency
of 0.4π rad using MATLAB. Plot the magnitude of the frequency response in dB
against normalized frequency in rad.

11. Using the transfer function obtained in the previous problem as the prototype
filter, design a bandstop IIR digital filter with stopband edges at 0.3π rad and
0.5π rad, respectively. Plot the magnitude of the frequency response of the
bandstop digital filter.

12. Design a Butterworth digital lowpass filter with a sampling frequency of 10 kHz,
3 dB frequency of 1 kHz, and a minimum stopband attenuation of 40 dB at the
frequency 3.5 kHz. First determine the filter order using (6.23), and then design
the filter using bilinear transform. You can use MATLAB to solve the problem.

13. For the same filter specifications as in the previous problem, design a type
1 Chebyshev digital filter using the bilinear transform. To determine the filter
order, use Eq. (6.42). Plot the magnitude of the frequency response in dB, and
compare it with that of the Butterworth filter in Problem 12.

14. Using the same filter order and passband and stopband frequencies as in
Problem 12, design a lowpass digital filter using the MATLAB function
yulewalk. Compare its frequency response with those in Problems 12 and 13.

15. Equalize the group delay of the filter in Problem 13 using MATLAB.
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Chapter 7
FIR Digital Filters

7.1 Types of Linear-Phase FIR Filters

A finite impulse response (FIR) digital filter, as the name implies, has an impulse
response sequence that is of finite duration as opposed to an IIR digital filter, which
has an impulse response that is of infinite duration. Therefore, the Z-transform of the
impulse response of an FIR digital filter in general can be written as

H zð Þ ¼
XN�1

n¼0

h n½ �z�n ð7:1Þ

If the impulse response sequence {h[n]}, 0 � n � N � 1 satisfies certain
requirements, then the corresponding FIR filter will have linear-phase response. In
fact, an important aspect of an FIR digital filter is its linear-phase characteristics.
Depending on the value of the filter length N and the nature of the impulse response
whether symmetric or asymmetric, we can define four types of linear-phase FIR
digital filters.

Type I FIR Filter If the filter order M is even (or the filter length N ¼ M + 1 is
odd) and the impulse response is symmetric, then the FIR filter is termed type I
linear-phase FIR filter. In this case, we can express the impulse response
sequence as

h n½ � ¼ h M � n½ �, 0 � n � M, ð7:2Þ
and its frequency response is found to be
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H e jΩ� � ¼XMþ1

n¼0

h n½ �e�jnΩ ¼
XM2�1

n¼0

h n½ � e�jnΩ þ e�j M�nð ÞΩ
n o

þ h
M

2

� �
e�jM2Ω: ð7:3Þ

After simplification of (7.3), we have the frequency response of type I FIR filter as

H e jΩ� � ¼ e�jM2Ω h
M

2

� �
þ 2

XM2
n¼1

h
M

2
� n

� �
cos nΩð Þ

8<:
9=; ¼ e�jM2Ω bH e jΩ� �

, ð7:4Þ

where bH e jΩ� �
is a real function ofΩ. From Eq. (7.4), we find that the phase response

of type I FIR filter is linear with a delay of M/2 samples.

Type II FIR Filter An FIR filter is said to be type II if its degree or order M is odd
and its impulse response sequence is symmetric, as defined in (7.2). Using Eq. (7.2)
in (7.3), we can express the frequency response of type II FIR filter after simplifi-
cation as

H e jΩ� � ¼ e�jM2Ω 2
XMþ1

2

n¼1

h
M þ 1

2
� n

� �
cos n� 1

2

� �
Ω

� �8<:
9=; ð7:5Þ

Again, the quantity within the braces is real, and the phase response is linear with
a delay of M

2 samples.

Type III FIR Filter In this case the filter order or degree is even, and the impulse
response is asymmetric as defined by

h n½ � ¼ �h M � n½ �, 0 � n � M ð7:6Þ
The frequency response of type III FIR filter can be shown to be

H e jΩ� � ¼ je�jM2Ω 2
XM2
n¼1

h
M

2
� n

� �
sin nΩð Þ

8<:
9=; ð7:7Þ

The quantity within the braces in (7.7) is real, and the phase response is linear
with a delay of M

2 samples.

Type IV FIR Filter The type IV FIR filter has an odd degree, and its impulse
response is asymmetric as defined in (7.6). Using these facts, we can express its
frequency response as

H e jΩ� � ¼ je�jM2Ω 2
XMþ1

2

n¼1

h
M þ 1

2
� n

� �
sin n� 1

2

� �
Ω

� �8<:
9=; ð7:8Þ

As can be seen from (7.8), the quantity within the braces is real, and so the phase
response is linear with a delay of M

2 samples.
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7.2 Linear-Phase FIR Filter Design

The design of an FIR digital filter amounts to the determination of its impulse
response sequence. In order for the FIR filter to have linear-phase response, the
corresponding impulse response must be one of the four types defined earlier. We
will stick to type I FIR filter design in the following discussion. There are two types
of design techniques, namely, window-based design and computer-aided design. We
will consider both techniques in this chapter.

7.2.1 Lowpass FIR Filter Design

The frequency response of an ideal lowpass filter with a cutoff frequency Ωc can be
described by

HI e jΩ� � ¼ 1, Ωj j � Ωc

0, � π � Ωc � Ω � Ωc þ π

�
ð7:9Þ

The sequence which gives rise to (7.9) corresponds to the inverse DTFT (IDTFT)
of (7.9), which is obtained from the definition of IDTFT

hI n½ � ¼ 1
2π

Zπ
�π

HI e jΩ� �
e jnΩdΩ ¼ sin nΩcð Þ

nπ
¼ Ωc

π
sinc

nΩc

π

� �
, �1 � n � 1,

ð7:10Þ
where the sinc function is defined as

sinc xð Þ ¼ sin πxð Þ
πx

ð7:11Þ

As can be seen from Eq. (7.10), the duration of the impulse response sequence of
an ideal lowpass digital filter is infinite. But we are looking for an FIR filter, which
has a finite duration impulse response. So, the only way to limit the duration of the
impulse response in (7.10) is to truncate it abruptly to a finite length. Note that the
sinc function is symmetric about the origin. Since we are looking for a linear-phase
FIR filter, we can abruptly truncate the impulse response sequence in (7.10) to �M
samples about the origin. This will result in an impulse response sequence of length
N¼ 2M + 1 samples. It is important to remember that even though we have obtained
the impulse response of a linear-phase FIR filter corresponding to an ideal lowpass
filter, the resulting frequency response will not be identical to that of the ideal
lowpass filter. Why? Because we have limited the duration of the FIR filter to a
finite length. There are a couple of observations. One, the abrupt truncation is
equivalent to multiplying the ideal impulse response sequence by a rectangular
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window of length N ¼ 2M + 1 samples centered at n ¼ 0. Thus, we can write the
impulse response of the desired FIR filter as

h n½ � ¼ hI n½ �wR n½ �, �M � n � M, ð7:12Þ
where the rectangular window of length 2M + 1 is described by

wR n½ � ¼ 1, �M � n � M
0, otherwise

�
ð7:13Þ

Because we multiply the ideal impulse response by the rectangular window, the
design technique is called windowing technique. The second observation is that the
truncated impulse response approaches the ideal impulse response as the window
length increases. Is rectangular window the only window available for the design of
an FIR filter, or are there other windows with desirable properties? We will deal with
the types of windows, their properties, and their effects on the frequency response of
an FIR filter in the sections to follow. One other thing in the abovementioned design
is that the resulting FIR filter is non-causal because its impulse response is not zero
for n < 0. However, since the impulse response sequence is of finite duration, we can
shift it to the right by M samples so that the impulse response of the causal FIR filter
can be described by

h n½ � ¼ hI n�M½ �wR n�M½ �, 0 � n � 2M ð7:14Þ

Example 7.1 Design a lowpass, length-9 FIR filter that approximates an ideal
lowpass filter whose normalized cutoff frequency is π

2 rad.

Solution The impulse response of the ideal lowpass filter from Eq. (7.10) is

hI n½ � ¼ Ωc

π
sinc

nΩc

π

� �
¼ 1

2
sinc

n

2

	 

¼ 1

2

sin nπ
2

� �
nπ
2

, �1 � n � 1 ð7:15Þ

The impulse response of the length-9, causal FIR filter is then obtained by
multiplying the ideal impulse response sequence by the rectangular window of
length 9 and shifting the resulting sequence to the right by four samples. Thus, the
desired impulse response is

h n½ � ¼ 1
2

sin n�4ð Þπ
2

	 

n�4ð Þπ
2

, 0 � n � 8 ð7:16Þ

The length-9 impulse response of the lowpass filter is shown in Fig. 7.1. Its
magnitude of frequency response in dB and phase response are shown in Fig. 7.2a, b,
respectively. As expected, the phase response is linear due to the symmetry of the
impulse response. However, we see ripples in both the passband and stopband of the
frequency response. What if we increase the filter length to, say, 25? The impulse
response of length-25 lowpass filter is shown in Fig. 7.3. Even if we increase the
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filter length to 25, we still see the ripples in the frequency response, as shown in
Fig. 7.4a. The phase response is still linear, as can be seen from Fig. 7.4b. However,
the ripple width in the magnitude response near zero frequency gets smaller but
increases toward the passband edge. This is depicted in Fig. 7.5, which shows the
magnitude of the frequency response for length 9 and length 25, respectively. The
reason for this is explained in the next section. The M-file for this problem is named
Example7_1.m.

7.2.2 Gibbs Phenomenon

In the last section, we introduced the design of a linear-phase lowpass FIR filter by
simply truncating the impulse response of an ideal lowpass filter to a finite length.
This simple or abrupt truncation is equivalent to multiplying the ideal, infinite-length
impulse response by a rectangular window of finite-length sequence as in Eq. (7.12).
From the multiplication property of the DTFT in the discrete-time domain of
discrete-time signals, we know that the DTFT of the truncated impulse response is
the convolution of the DTFTs of the ideal impulse response and that of the rectan-
gular window. The DTFT of a rectangular window of finite length is a sinc function. As
we saw in the previous example, the sinc function has a main lobe and an infinite
number of side lobes as shown in Fig. 7.6. However, the amplitudes of the side lobes
decrease as the frequency increases. Therefore, if we convolve the ideal frequency

Fig. 7.1 Ideal impulse response of the lowpass FIR filter simply truncated to length 9
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Fig. 7.2 Frequency response of length-9 FIR filter of Example 7.1. (a) Magnitude response in dB,
(b) phase response
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response of a lowpass filter with that of the rectangular window, which is a sinc function,
we will get ripples in both the passband and stopband. This rippling effect in the
frequency response is termed Gibbs phenomenon. No matter what the filter length is,
there will always be ripples in both the passband and stopband. As the filter length
increases, the ripple width gets smaller near the zero frequency but increases toward the
passband edge, as depicted in Fig. 7.7. The question is how can we design a linear-phase
FIR lowpass filter with a better approximation to the ideal brick wall response? The
answer lies in the proper choice of a window. Remember that in using a rectangular
window, the transition region narrows as the filter length is increased, but the minimum
stopband attenuation does not change. Therefore, we must come up with a window
whose frequency response has a main lobe only. This may not be a realizable window.
However, if we can reduce the amplitudes of the side lobes, we can reduce the ripples in
the resulting FIR filter. Fortunately, there exist several windows with each having a
unique feature. Some windows have no independent control on the transition width and
minimum stopband attenuation. These are called fixed windows. A variable window, on
the other hand, has independent control on both the transition width and minimum
stopband attenuation. We will look at both types of windows.

Fig. 7.3 Impulse response of the length-25 FIR filter of Example 7.1 with the same cutoff
frequency

7.2 Linear-Phase FIR Filter Design 251



0a

b

0 0.5 1 1.5

Length-9
Length-25

Length-9
Length-25

2 2.5 3 3.5
Frequency(rad)

0 0.5 1 1.5 2 2.5 3 3.5
Frequency(rad)

P
ha

se
(d

eg
)

M
ag

ni
tu

de
 (

dB
)

0

-200

-400

-600

-800

-1000

-1200

-10

-20

-30

-40

-50

-60

-70

-80

-90

Fig. 7.4 Frequency response of length-25 FIR filter of Example 7.1. (a) Magnitude response in dB,
(b) phase response

252 7 FIR Digital Filters



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5

Frequency(rad)

Length-9
Length-25

M
ag

ni
tu

de

2 32.5 3.5

Fig. 7.5 Magnitude of the frequency responses of length-9 and length-25 FIR filters of Example
7.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 2 31.5 2.5

Frequency(rad)

Length-25
Length-55

M
ag

ni
tu

de

3.5

Fig. 7.6 Frequency responses of length-25 and length-55 rectangular windows

7.2 Linear-Phase FIR Filter Design 253



7.2.3 Windowed Lowpass Linear-Phase FIR Filter Design

With the length of the filter specified, a lowpass, linear-phase FIR filter
corresponding to an ideal lowpass filter is obtained by multiplying the ideal impulse
response by a suitable window of the same length as that of the desired filter and
shifting the resulting impulse response by half of the filter order. Remember that we
are dealing with type I linear-phase FIR filter. So, what is a suitable window? For a
given filter length, we must get a minimum stopband attenuation larger than that
obtainable from a rectangular window of the same length. This is possible by
smoothly tapering the window. Let us look at some desirable windows in the
following.

7.2.3.1 Bartlett Window

The Bartlett window of length N ¼ 2M + 1 is described by

w n½ � ¼ 1� n

M þ 1
, �M � n � M

0, otherwise

(
ð7:17Þ

As can be seen from (7.17), the Bartlett window tapers off linearly.
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7.2.3.2 Haan Window

A length N ¼ 2M + 1 Haan window is described by

w n½ � ¼
1
2

1þ cos
nπ

M

	 
	 

, �M � n � M

0, otherwise

(
ð7:18Þ

Since the cosine function varies more smoothly than a linear function, the Haan
window tapers off more smoothly than the Bartlett window.

7.2.3.3 Hamming Window

The Hamming window of length N ¼ 2M + 1 is described by

w n½ � ¼ 0:54þ 0:46 cos
nπ

M

	 

, �M � n � M

0, otherwise

(
ð7:19Þ

From Eq. (7.19), we notice that the Hamming window is not zero at �M; instead
it is 0.08. This makes it even smoother than the Bartlett window.

7.2.3.4 Blackman Window

The Blackman window of length 2M + 1 is defined as

w n½ � ¼ 0:42þ 0:5 cos
nπ

M

	 

þ 0:08 cos

2nπ
M

� �
, �M � n � M

0, otherwise

8<: ð7:20Þ

Blackman window function is zero at �M and is smoother than the Hamming
window function. The four windows described above are shown in Figs. 7.8 and 7.9
for a length of 17. As can be seen from the figures, Blackman window is the
smoothest. The corresponding DTFTs of the windows are shown in Figs. 7.10,
7.11, 7.12, 7.13, and 7.14. The Blackman window has the largest minimum stopband
attenuation of 60 dB, while the rectangular window only offers 14 dB of minimum
stopband attenuation. On the contrary, the rectangular window has the smallest
transition width, while the Blackman window has the largest transition width. The
windows described thus far are called fixed windows, because for a given filter
length, the minimum obtainable stopband attenuation and the transition width are
fixed. We will look at another type of window, which has the potential of trade-off
between transition width and minimum stopband attenuation. Before we discuss
further, let us revisit Example 7.1 and use fixed windows to see how they compare
with the rectangular window.
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The following table lists these window functions for readers’ easy reference
(Table 7.1).

Example 7.2 Repeat Example 7.1, but use the fixed windows and compare the
resulting frequency responses.

Solution To recapitulate Example 7.1, we have to design a length-9 lowpass FIR
digital filter by truncating the impulse response of an ideal lowpass filter with a cutoff
frequency of π

2 rad. The length-9 impulse response sequence is then multiplied by the
fixed windows mentioned above, which will result in windowed impulse response
sequences. The DTFT of the windowed impulse response sequence will be the fre-
quency response of the lowpass FIR filter. Depending on the chosen window, the
minimum stopband attenuation and the transition width of the FIR filter will be different.
As we saw earlier, the FIR filter using Blackman windowwill have the largest minimum
stopband attenuation in dB and the widest transition width. The FIR filter using the
rectangular window will have the narrowest transition width and smallest stopband
attenuation in dB. The other fixed windows will have these values in between the
rectangular and Blackman windows. These are clearly seen from Fig. 7.15. The M-file
named Example7_2.m is used to solve this problem.

Fig. 7.8 Bartlett and Haan windows of length 17 in the discrete-time domain
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7.2.3.5 Determination of FIR Filter Order

In the previous two examples, we assumed a value for the lowpass FIR filter order. In
order to meet the given frequency specifications with as small a filter order as necessary,
we will use a set of formulas. More specifically, we will use Kaiser’s, Bellanger’s, and
Hermann’s empirical formulas to determine the required FIR filter order. The frequency
specifications of a lowpass filter used in these formulas are the (a) normalized passband
edge frequency Ωp, (b) normalized stopband edge frequency Ωs, (c) peak passband
ripple δp, and (d) peak stopband ripple δs. With these parameters being specified, we can
use these formulas to calculate the filter order as follows.

Kaiser’s Formula According to this formula, the required order N of a lowpass
FIR filter with the above frequency specifications is calculated from

N ffi �20log10
ffiffiffiffiffiffiffiffi
δpδs

p� �� 13
14:6 Ωs�Ωpð Þ

2π

: ð7:21Þ

Since the filter order is an integer, one has to round the value in (7.21) up to the
nearest integer.

Fig. 7.9 Hamming and Blackman windows of length 17 in the discrete-time domain
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Fig. 7.10 DTFT of Bartlett window of length-17 samples

Fig. 7.11 DTFT of Haan window of length-17 samples
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Fig. 7.12 DTFT of Hamming window of length-17 samples

Fig. 7.13 DTFT of Blackman window of length-17 samples
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Fig. 7.14 DTFT of rectangular window of length-17 samples

Table 7.1 Window functions used for the design of FIR filters

Window name Window function

Rectangular
w n½ � ¼ 1, �M � n � M

0, otherwise

�
Bartlett

w n½ � ¼ 1� nj j
M þ 1

, �M � n � M0, otherwise

�
Haan

w n½ � ¼
1
2

1þ cos
nπ

M

	 
n o
, �M � n � M

0, otherwise

(
Hamming

w n½ � ¼ 0:54þ 0:46 cos
nπ

M

	 

, �M � n � M

0, otherwise

(
Blackman

w n½ � ¼ 0:42þ 0:5 cos
nπ

M

	 

þ 0:08 cos

2nπ
M

� �
, �M � n � M

0, otherwise

8<:
The length of the window is assumed to be 2M + 1, M an integer
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Bellanger’s Formula Bellanger’s formula for the filter order takes the form

N ffi 2log10 10δpδs
� �

3 Ωs�Ωpð Þ
2π

� 1 ð7:22Þ

As we did in Kaiser’s formula, the value in (7.22) must be rounded up to the
nearest integer equal to or larger than the value in (7.22).

Hermann’s Formula This formula for the filter order is given by

N ffi
D1 δp; δs
� �� F δp; δs

� � Ωs�Ωpð Þ
2π

� �2
Ωs�Ωpð Þ
2π

, ð7:23Þ

where the parameters are defined by

D1 δp; δs
� � ¼ a1 log10δp

� �2 þ a2 log10δp
� �þ a3

n o
log10δs

� a4 log10δp
� �2 þ a5 log10δp

� �þ a6
n o ð7:24Þ

F δp; δs
� � ¼ b1 þ b2 log10 δp

� �� log10 δsð Þ� � ð7:25Þ

Fig. 7.15 Frequency response of length-9 windowed lowpass FIR filter of Example 7.2
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The coefficients in (7.24) and (7.25) are as follows: a1 ¼ 0.005309,
a2 ¼ 0.07114, a3 ¼ � 0.4761, a4 ¼ 0.00266, a5 ¼ 0.5941, a6 ¼ 0.4278,
b1 ¼ 11.01217, and b2 ¼ 0.51244. It must be mentioned that these formulas are
only empirical. In Table 7.2, the FIR filter order corresponding to the
abovementioned formulas is shown.

Let us try an example to calculate the filter order and compare the results.

Example 7.3 Determine the order of the FIR filter with the following specifications:
passband edge at 1.5 kHz, stopband edge at 2 kHz, sampling frequency of 8 kHz,
peak passband ripple αp¼ 0.1 dB, and minimum stopband attenuation of αs¼ 40 dB.

Solution We have to first convert the dBs to actual numbers to enter them in the
filter order formulas. So,

δp ¼ 1� 10�0:05αp ¼ 1� 10�0:005 ¼ 0:0114469, ð7:26Þ

δs ¼ 10�0:05αs ¼ 10�2 ¼ 0:01 ð7:27Þ
From Kaiser’s formula, we get

N ffi
�20log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0114469∗0:01

p	 

� 13

14:6 2000�1500ð Þ
8000

2666
3777 ¼ 28:9459 ¼ 29 ð7:28Þ

If we use the same values in Bellanger’s formula, we get N ¼ 31. Hermann’s
formula results in N ¼ 30. So, Kaiser’s formula gives the least value for the filter
order. Note that Ω ¼ 2πf

Fs
, where Fs is the sampling frequency.

7.2.3.6 Adjustable Window Functions

The fixed windows we described earlier don’t have the freedom to control both the
minimum stopband attenuation and transition width for a specified filter length.
There are a couple of window functions that can control both the minimum stopband

Table 7.2 Formulas to
calculate the order of an FIR
filter

Window name FIR filter order

Kaiser
N ffi �20log10

ffiffiffiffiffiffi
δpδs

pð Þ�13

14:6 Ωs�Ωpð Þ=2π
Bellanger

N ffi 2log10 10δpδsð Þ
3 Ωs�Ωpð Þ=2π � 1

Hermann
N ffi D1 δp ;δsð Þ�F δp ;δsð Þ Ωs�Ωpð Þ

2π

� 2
Ωs�Ωpð Þ=2π

δp and δs are, respectively, the passband and stopband ripples; Ωp

is the passband edge, and Ωs is the stopband edge. The parameters
in Hermann’s formula are defined in (7.24) and (7.25)
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attenuation and the transition width for a given filter length. These windows are
Dolph-Chebyshev window and Kaiser window. Let us take a look at these two
adjustable window functions.

7.2.3.6.1 Dolph-Chebyshev (DC) Window

The DC window function of length 2M + 1 is defined as

w n½ � ¼ 1
2M þ 1

1
γ
þ 2

XM
k¼1

T2M β cos
kπ

2M þ 1

� �� �
cos

2nkπ
2M þ 1

� �( )
, �M � n � M,

ð7:29Þ
where γ is the relative amplitude of the side lobe, that is,

γ ¼ amplitude of side lobe

amplitude of main lobe
, ð7:30Þ

β ¼ cosh
1
2M

cosh�1 1
γ

� �� �
, ð7:31Þ

and the kth-order Chebyshev polynomial in the variable x is given by

Tk xð Þ ¼ cos k cos �1 xð Þð Þ, xj j � 1
cosh kcosh�1 xð Þ� �

, xj j > 1

�
ð7:32Þ

Unlike the fixed window functions, the order of the DC window is determined
from

N ¼ 2:05αs � 16:4
2:285 ΔΩð Þ , ð7:33Þ

where αs is the minimum stopband attenuation in dB, and ΔΩ ¼ Ωs � Ωp is the
transition width with Ωp being the passband edge and Ωs the stopband edge.

Example 7.4 Determine the lowpass FIR filter order with a passband edge at 0.23π,
stopband edge at 0.5π, and a minimum stopband attenuation of 40 dB. Use the
Dolph-Chebyshev window.

Solution From Eq. (7.33), we find

N ¼ 2:05∗40� 16:4
2:285 0:5π � 0:23πð Þ ffi 33:85 ¼ 34 ð7:34Þ

Therefore, the filter length is 35.
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Example 7.5 Compare the frequency responses of length-21 Dolph-Chebyshev
windows for γ ¼ 10 dB and 30 dB. Design a length-21 LP FIR filter with a cutoff
frequency of 0.3π using Dolph-Chebyshev window. Compare the frequency
responses of the LPFs for the two values of γ listed.

Solution A relative sidelobe amplitude of 10 dB is equal to an actual value of
3.1623. Similarly, γ ¼ 30 dB ) 31.6228. Using these values, we can calculate β,
which, for M ¼ 10, are 0.9922 and 0.9882, respectively. We then calculate the
length-21 Dolph-Chebyshev windows for the two cases. The frequency responses of
the Dolph-Chebyshev windows for γ ¼ 10 and 30 dB are plotted as a function of
the normalized frequency in rad and are shown in Fig. 7.16. From the figure we
clearly notice the minimum sidelobe values to be 10 and 30 dB, respectively. The
impulse response of the ideal LPF with a cutoff frequency of Ωc ¼ 0.23π is given in
Eq. (7.10). After multiplying the impulse response by the respective windows, we
obtain the windowed impulse response of the LPF. The Dolph-Chebyshev window
and the corresponding windowed impulse response of the LP FIR filter for the two
values of γ are shown in Figs. 7.17 and 7.18, respectively. In each figure, the top plot
is the window function, and the bottom plot is the windowed impulse response.
Finally, the frequency response of the LP FIR filter for the two cases is shown in
Fig. 7.19. The minimum stopband attenuation corresponding to γ ¼ 30 dB is larger
than that corresponding to the 10 dB case, while the transition width is larger for

Fig. 7.16 Frequency response of length-21 Dolph-Chebyshev window for the two values of the
relative amplitude of the sidelobe of 10 and 30 dB
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γ ¼ 30 dB compared to the other case. The MATLAB M-file used to solve this
problem is named Example7_5.m.

7.2.3.6.2 Kaiser Window

A length-2M + 1 Kaiser window function is defined as

w n½ � ¼
I0 β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

M

� �2q� �
I0 βð Þ , �M � n � M ð7:35Þ

In (7.35), β is an adjustable parameter and is given by

β ¼
0:1102 αs � 8:7ð Þ, αs > 50
0:5842 αs � 21ð Þ0:4 þ 0:07886 αs � 21ð Þ, 21 � αs � 50
0, αs < 21

8<: ð7:36Þ

and I0(x) is the modified zeroth-order Bessel function, which is described by

Fig. 7.17 Length-21 Dolph-Chebyshev window for γ ¼ 10 dB. Top plot, Dolph-Chebyshev
window; bottom plot, windowed impulse response of the LP FIR filter of Example 7.5
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I0 xð Þ ¼ 1þ
X1
m¼1

x
2

� �m
m!

 !2

ð7:37Þ

For the Kaiser window, the FIR filter order is evaluated from

N ¼ αs � 8
2:285ΔΩ

ð7:38Þ

Example 7.6 For the same specifications as in Example 7.4, determine the order of
the FIR filter if Kaiser window is used.

Solution Substituting the values for the relevant parameters in Eq. (7.38), we find

N ¼ 40� 8
2:285 0:5π � 0:23πð Þ ¼ 16:5 ¼ 17 ð7:39Þ

Therefore, the filter length is 18. Note the difference in the filter order between
Kaiser and DC window functions (Table 7.3)!

Fig. 7.18 Length-21 Dolph-Chebyshev window for γ ¼ 30 dB. Top plot, Dolph-Chebyshev
window; bottom plot, windowed impulse response of the LP FIR filter of Example 7.5
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Example 7.7 Design a LP FIR filter with a passband edge at Ωp ¼ 0.3π, stopband
edge at Ωs ¼ 0.5π, and a minimum stopband attenuation of 60 dB using Kaiser
window. Compare this with the LP FIR filter of the same length using Dolph-
Chebyshev window.

Solution The transition widthΔΩ¼ 0.5π � 0.3π ¼ 0.2π. Then from (7.38), we find
the FIR filter order to be 37. Therefore, the FIR filter length is 38. From Eq. (7.36),
we obtain the parameter β ¼ 5.6533. Figure 7.20 shows the plot of the Kaiser
window of length 38 along with that of the windowed impulse response of the LP
FIR filter. Figure 7.21 plots the Dolph-Chebyshev window of length 38 as well as the
corresponding windowed impulse response of the LP FIR filter. The relative
sidelobe amplitude parameter for the Dolph-Chebyshev window is set at
γ ¼ 30 dB. The frequency response of the LP FIR filter using Kaiser window of
length 38 is shown in Fig. 7.22 along with that using the same length Dolph-

Fig. 7.19 Frequency response of the LP FIR filter of Example 7.5 using a length-21 Dolph-
Chebyshev window

Table 7.3 Filter order for
adjustable windows

Window type Filter order

Kaiser N ¼ αs�8
2:285ΔΩ

Dolph-Chebyshev N ¼ 2:056αs�16:4
2:285ΔΩ

αs is the minimum stopband attenuation in dB and transition width
isΔΩ¼Ωs�Ωp andΩs is the stopband edge andΩp the passband
edge, both in radians
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Chebyshev window with γ ¼ 30 dB. As seen from the figure, the Kaiser window
achieves a larger minimum stopband attenuation (60 dB, as specified) than that
achieved by the Dolph-Chebyshev window of the same filter length at the expense of
a larger transition width. We can increase the minimum stopband attenuation
achievable by the Dolph-Chebyshev-windowed LP FIR filter by increasing the
value of γ.

7.2.4 Design of a Highpass Linear-Phase FIR Filter

The frequency response of an ideal highpass filter with a cutoff frequency Ωc is
described by

Hhp e jΩ� � ¼ 0, Ωj j � Ωc

1,Ωc � Ωj j � π

�
ð7:40Þ

Fig. 7.20 A length-38 Kaiser window of Example 7.7. Top plot, Kaiser window; bottom plot,
windowed impulse response
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Its impulse response is obtained from

hhp n½ � ¼ 1
2π

Z�Ωc

�π

e jnΩdΩþ
Zπ
Ωc

e jnΩdΩ

8<:
9=; ¼ δ n½ �

� Ωc

π

� �
sinc

nΩc

π

� �
, �1 � n � 1

ð7:41Þ

As in the case of the lowpass FIR filter design, the impulse response of the
desired highpass filter is obtained by multiplying the ideal impulse response by a
suitable window of a given length and then shifting the resulting impulse
response sequence by M ¼ N�1

2 samples to the right. We have assumed the filter
length to be odd. The following example illustrates the design of a windowed
highpass FIR digital filter.

Example 7.8 Design a length-21 highpass FIR filter with a cutoff frequency of
Ωc ¼ 0.5π using fixed windows, and plot the respective frequency responses.

Fig. 7.21 A length-38 Dolph-Chebyshev window with γ ¼ 30 dB. Top plot, Dolph-Chebyshev
window; bottom plot, windowed impulse response
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Solution The impulse response of the ideal highpass filter is given in Eq. (7.41)
with the cutoff frequency specified in Example 7.8. We multiply the ideal
impulse response by the four fixed windows of length-21 samples point by
point to obtain the impulse response of the corresponding FIR filter. MATLAB
has the function window(@hamming, N), which will generate the Hamming
window of length-N samples. Similarly, we can generate the other fixed windows
by using the appropriate name for the windows. Figures 7.23 and 7.24 display the
windowed impulse response of the highpass FIR filter. The magnitude in dB of
the frequency response of the highpass filters is shown in Fig. 7.25. As a
comparison, the frequency response of the highpass FIR filter using rectangular
window is also plotted in Fig. 7.25. As expected, rectangular window has the
smallest minimum stopband attenuation, while the Blackman window achieves
the largest minimum stopband attenuation. The M-file named Example7_8.m is
used to solve this problem.

7.2.5 Design of a Bandpass Linear-Phase FIR Filter

The frequency response of an ideal bandpass filter whose lower and upper cutoff
frequencies are, respectively, Ω1 and Ω2 is defined as

Fig. 7.22 Frequency response of length-38 LP FIR filter using Kaiser window. The plot also shows
the frequency response of the LP filter using the same length Dolph-Chebyshev window
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Hbp e jΩ� � ¼ 0, Ωj j < Ω1

1,Ω1 � Ωj j � Ω2

0,Ω2 < Ωj j � π

8<: ð7:42Þ

The corresponding impulse response is found using the IDTFT and is given by

hbp n½ � ¼ 1
2π

Zπ
�π

Hbp e jΩ� �
dΩ ¼ Ω2

π

� �
sinc

nΩ2

π

� �
� Ω1

π

� �
sinc

nΩ1

π

� �
, �1 � n � 1

ð7:43Þ

Again, the impulse response of the desired bandpass FIR filter is derived by
multiplying the ideal impulse response in (7.43) by a suitable window function of
specified length (assumed odd) and then shifting the resulting sequence byM ¼ N�1

2
samples to the right.

Example 7.9 Design a bandpass FIR filter with passband edges at Ω1 ¼ 0.4π,
Ω2 ¼ 0.6π, transition width ΔΩ ¼ 0.1π, and a minimum stopband attenuation of
30 dB. Use Kaiser window.

Fig. 7.23 Bartlett- and Haan-windowed impulse response of a length-21 highpass FIR filter
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Fig. 7.24 Hamming- and Blackman-windowed impulse response of a length-21 highpass FIR filter

Fig. 7.25 Magnitude in dB of the frequency response of the FIR filter in Example 7.8 for the fixed
window functions



Solution From Eq. (7.38) we find the FIR filter order to be 31 and the filter length to
be 32. For the given specifications, we find β ¼ 2.1166. The Kaiser window of
length 32 is calculated using Eq. (7.35) and the impulse response of the ideal
bandpass filter from Eq. (7.43). The impulse response of the desired bandpass FIR
filter is then the point-by-point product of the window function and the ideal impulse
response sequence. The length-32 ideal impulse response and the windowed impulse
response are shown in the top and bottom plots in Fig. 7.26, respectively. Figure 7.27
shows the magnitude in dB of the frequency response of the bandpass FIR filter. It is
seen that the minimum stopband attenuation is 30 dB, as specified. The MATLAB
M-file to solve this problem is named Example7_9.m.

Fig. 7.26 Impulse response of length-32 FIR bandpass filter of Example 7.9. Top plot, ideal
impulse response of the bandpass filter; bottom plot, windowed impulse response of the bandpass
FIR filter using Kaiser window
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7.2.6 Design of a Bandstop Linear-Phase FIR Filter

The ideal bandstop digital filter can be described in the frequency domain by

Hbs e jΩ� � ¼ 1, Ωj j � Ω1

0,Ω1 < Ωj j < Ω2

1,Ω2 � Ωj j � π

8<: ð7:44Þ

Using (7.44) in the definition of the IDTFT, we obtain the impulse response of the
ideal bandstop filter as

hbs n½ � ¼ δ n½ � þ Ω1

π

� �
sinc

nΩ1

π

� �
� Ω2

π

� �
sinc

nΩ2

π

� �
, �1 � n � 1 ð7:45Þ

The corresponding FIR filter’s impulse response is obtained by multiplying the
ideal impulse response in (7.45) by a suitable window of a specified length (odd) and
shifting the resulting sequence byM ¼ N�1

2 samples to the right. Let us consider the
following example to design a bandstop linear-phase FIR filter using a window
function.

Fig. 7.27 Magnitude in dB of the frequency response of the bandpass FIR filter of Example 7.9
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Example 7.10 Design a bandstop FIR filter with passband edges at Ω1 ¼ 0.3π and
Ω2 ¼ 0.7π, transition width ΔΩ ¼ 0.1π, and a minimum stopband attenuation of
30 dB. Use Kaiser window.

Solution The FIR filter order is found to be 31 and so the filter length is 32. The
Kaiser window parameter is determined to be β ¼ 2.1166. The ideal impulse
response of the bandstop filter is given in Eq. (7.45). The length-32 Kaiser window
with the above-listed parameter is obtained from (7.35), and the impulse response of
the desired FIR bandstop filter is the point-by-point product of the ideal impulse
response and the Kaiser window function. Figure 7.28 shows the ideal and win-
dowed impulse responses in the top and bottom plots, respectively. The magnitude
in dB of the frequency response of the bandstop FIR filter is shown in Fig. 7.29. The
minimum stopband attenuation is seen to be 30 dB as specified in the problem. The
M-file named Example7_10.m is used to solve this problem (Table 7.4).

Fig. 7.28 Impulse response of length-32 FIR bandstop filter of Example 7.10. Top plot, ideal
impulse response of the bandstop filter; bottom plot, windowed impulse response of the bandstop
FIR filter using Kaiser window
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7.3 Computer-Aided Design of Linear-Phase FIR Filters

As we learnt in the computer-aided design of IIR digital filters, there exists such an
algorithm for the design of linear-phase FIR digital filters as well. One such
algorithm is called Parks-McClellan algorithm and is an iterative procedure. Let
the desired frequency response be denoted byD(Ω) and the frequency response of an
Mth-order linear-phase FIR filter be described by

H e jΩ� � ¼ e�jM2Ωe jφ bH Ωð Þ, ð7:46Þ

Fig. 7.29 Magnitude in dB of the frequency response of the bandstop FIR filter of Example 7.10

Table 7.4 Impulse responses of ideal filters

Filter type Ideal impulse response

Lowpass Ωc
π

� �
sinc nΩc

π

� �
, �1 < n < 1

Highpass δ n½ � � Ωc
π

� �
sinc nΩc

π

� �
, �1 < n < 1

Bandpass Ω2
π

� �
sinc nΩ2

π

� �� Ω1
π

� �
sinc nΩ1

π

� �
, �1 < n < 1

Bandstop δ n½ � þ Ω1
π

� �
sinc nΩ1

π

� �� Ω2
π

� �
sinc nΩ2

π

� �
, �1 < n < 1
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where bH Ωð Þ is a real function ofΩ and φ¼ � π. Note that the frequency response in
(7.46) corresponds to one of the four types of linear-phase FIR filters defined in Sect.
7.1. Define the weighted error function by

ε Ωð Þ � W Ωð Þ bH Ωð Þ � D Ωð Þ
	 


ð7:47Þ

where W(Ω) is a positive weighting function, which is chosen to adjust the relative
size of the peak errors in the specified bands. Parks-McClellan algorithm iteratively
adjusts the impulse response of the FIR filter until the maximum of the absolute
value of ε(Ω) is minimized. This iterative procedure known as Remez exchange
algorithm is a highly efficient iterative procedure to arrive at the optimal result.
MATLAB has the function firpm, which designs a linear-phase FIR filter of specified
order, frequency bands, corresponding magnitudes, and a weighting function based
on Parks-McClellan algorithm. Another computer-aided technique is called the
optimal least squares technique, which approximates the desired frequency response
by that of an Mth-order linear-phase FIR filter by minimizing the mean square error
between the frequency responses of the FIR filter and the desired filter response.
Again, MATLAB has a function called firls, which designs a linear-phase FIR filter
of specified order, frequency bands of interest, and a weighting function based on the
least mean square error procedure. We will use these two functions to design a
linear-phase FIR filter as shown in the following example.

Example 7.11 Design a linear-phase lowpass FIR filter of order 20 with nor-
malized frequency band edges at 0, 0.1, 0.3, and 1.0 with corresponding ampli-
tudes of 1, 1, 0, and 0, respectively. Use a weighting factor of 0.25 in the
passband and 1 in the stopband. Compare the frequency responses of the FIR
filters designed with and without the weighting function.

Solution We will use MATLAB to solve this problem. As pointed out, we invoke the
MATLAB function h ¼ firpm(M,F,A), where M is the filter order, which is 20, F is a
vector of frequency band edges [0 0.1 0.3 1.0], A ¼ [1 1 0 0], and h is a length-M + 1
impulse response of the linear-phase FIR filter. Note that 0.1 and 0.3 are the normalized
passband and stopband frequency edges. These edges actually correspond to 0.1π and
0.3π, respectively. In order to use the specified weighting function, we have to call the
function h1¼ firpm(M,F,A,W), whereW¼ [0.25 1.0] is the weight vector and the rest of
the arguments have the same meaning as in the previous invocation of the function. The
weight vector W must be half the length of F. The output argument h1 is the impulse
response of the linear-phase FIR filter designed using a weighting function in the Parks-
McClellan iterative algorithm.

We next use the optimal least squares method of designing a length-21 linear-phase
FIR filter to approximate the same specifications as used with Parks-McClellan method.
Now we have to invoke the MATLAB function hls ¼ firls(M,F,A), where the output
argument hls is the impulse response of the FIR filter corresponding to the least squares
method. The other arguments are the same as used in the Parks-McClellan case.
Similarly, the function call with a weighting vector W is hls1 ¼ firls(M,F,A,W).
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Figure 7.30 shows the plots of the impulse response of the FIR filters for the two iterative
design procedures without the weighting vectors. Though they appear identical, we can
notice some differences. The corresponding frequency responses are shown in Fig. 7.31.
We observe from Fig. 7.31 that theminimum stopband attenuation is about 40 dB for the
Parks-McClellan case and about 50 dB for the least squares case. The impulse response
and frequency response of the FIR filters for the two design procedures with the
specified weighting vector are shown in Figs. 7.32 and 7.33, respectively. With the
specified weighting vector, the minimum stopband attenuation is about the same for both
design methods, which is seen to be about 50 dB.

Let us compare the results obtained from the computer-aided design of length-21
lowpass FIR filter with that obtained using Kaiser-windowed lowpass FIR filter.
Since the FIR filter order is fixed at 20, we need to determine the parameter β in order
to compute the Kaiser window. Since the minimum stopband attenuation for the
Parks-McClellan case is 40 dB, let us specify the minimum stopband attenuation for
the Kaiser window to be 40 dB also. Then we find β ¼ 3.3953. The passband edge
for the windowed filter is the same as that specified for the Parks-McClellan case,
which is 0.1π. With the passband edge being known, we have the ideal impulse
response of the lowpass filter, which, when multiplied by the Kaiser window, gives
the windowed impulse response of length-21 lowpass FIR filter. The magnitude in
dB of the frequency response of the Kaiser-windowed lowpass FIR filter is shown in
Fig. 7.34 along with those of the FIR filter obtained using Parks-McClellan and least

Fig. 7.30 Impulse response of length-21 linear-phase FIR filter of Example 7.11 designed by the
two computer-aided design procedures without a weighting vector
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Fig. 7.31 Frequency response of length-21 linear-phase FIR filter of Example 7.11 corresponding
to the impulse responses in Fig. 7.30

Fig. 7.32 Impulse response of length-21 linear-phase FIR filter of Example 7.11 designed by the
two computer-aided design procedures with the weighting vector as specified in the problem
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Fig. 7.33 Frequency response of length-21 linear-phase FIR filter of Example 7.11 corresponding
to the impulse responses in Fig. 7.32

Fig. 7.34 Frequency response of length-21 FIR lowpass filter using Kaiser window. It is compared
with those of the filters obtained using Parks-McClellan and least squares method
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squares methods. The transition width is the smallest for the Kaiser-windowed filter,
while the minimum stopband attenuation is the largest for the least squares case.
Note that the filter length obtained using Eq. (7.38) is 24, which would have
achieved minimum stopband attenuation greater than 40 dB. The MATLAB M-file
for this problem is named Example7_11.m.

Example 7.12 Notch Filter A notch filter passes all frequencies except a single
specified frequency. In other words, it creates a notch in its frequency response.
Notch filters are useful in eliminating a specified frequency from the input. For
instance, it can be used to filter out the 60 Hz AC power frequency from the input
audio/speech signal. An ideal notch filter is specified in the digital filter frequency
domain by

H e jΩ� � ¼ 0, Ωj j ¼ Ω0

1, otherwise

�
ð7:48Þ

The corresponding impulse response can be obtained from the IDTFT of the
frequency function in (7.48). To make the IDTFT process easier, we can rewrite
(7.48) as

H e jΩ� � ¼ 1� 1
2
δ Ω� Ω0ð Þ � 1

2
δ Ωþ Ω0ð Þ, � π � Ω � π ð7:49Þ

Then, the impulse response of the ideal digital notch filter with a notch frequency
Ω0 is found from

h n½ � ¼ 1
2π

Zπ
�π

H e jΩ� �
e jnΩdΩ ð7:50Þ

From the DTFT pairs, we know that δ n½ � ,DTFT 1 and

IDTFT δ Ω� Ω0ð Þf g ¼ 1
2π

Zπ
�π

δ Ω� Ω0ð Þe jnΩdΩ ¼ e jnΩ0

2π
ð7:51aÞ

IDTFT δ Ωþ Ω0ð Þf g ¼ 1
2π

Zπ
�π

δ Ωþ Ω0ð Þe jnΩdΩ ¼ e�jnΩ0

2π
ð7:51bÞ

By using the above results, we can write the impulse response of the ideal notch
filter as

h n½ � ¼
1� 1

2π
, n ¼ 0

� cos nΩ0ð Þ
2π

, nj j > 0

8><>: ð7:52Þ
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Since the impulse response of the ideal digital notch filter is of infinite duration, it
has to be truncated to �2M samples by using an appropriate window function. For
this example, let us choose the notch frequency to be 1500 Hz and the sampling
frequency to be 10,000 Hz. Let us also fix the FIR filter length to 35. We can use
either a fixed or an adjustable window to limit the impulse response to a length 35. It
is found that a length-35 Blackman-Harris window results in a good attenuation at
the chosen notch frequency. The Blackman-Harris window and the corresponding
windowed impulse response of the notch filter are shown in the top and bottom
plots in Fig. 7.35. The frequency response of the resulting notch filter is shown in
Fig. 7.36, which indicates an attenuation of 30 dB at the notch frequency. To make
it more practical, let us generate an input sequence consisting of two sinusoids at
frequencies of 1500 and 2500 Hz and corresponding amplitudes of 2 and 1. We
then filter this input sequence through the 35-point FIR notch filter that we just
designed. We can use the MATLAB function conv to convolve the input and the
impulse response sequences. As we know from the linear convolution that the
output sequence will have a length equal to the sum of the lengths of the input and
impulse response sequences minus one. To get the output length equal to the input
length, we can state y ¼ conv(x,h,’same’). The MATLAB code is in the M-file

Fig. 7.35 Impulse response of the FIR notch filter of Example 7.12. Top plot, length-35 Blackman-
Harris window function; bottom plot, windowed impulse response
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named Example7_12.m. Figure 7.37 shows the input sequence and the filtered
sequence in the top and bottom plots, respectively. The corresponding DTFTs are
shown in Fig. 7.38. The top plot in Fig. 7.38 shows the two frequency components
at 1500 and 2500 Hz, respectively. The bottom plot has only one component at
2500 Hz, implying that the notch filter has eliminated the 1500 Hz signal from the
input. To exemplify further, we can play the sequences as sound using the
MATLAB function sound(x,Fs), where x is the audio sequence and Fs is the
sampling frequency. It is found that the filtered sequence sounds as 2500 Hz signal.

Example 7.13 Audio Filtering Using Simulink In this example we will use
MATLAB’s Simulink to simulate filtering an audio signal with an FIR filter. We
call it a simulation because we start with sampling an analog audio signal, then
converting it to a digital signal, and then filtering it with an FIR filter, and finally
dumping both the input and output signals in the workspace. The whole processing
steps will be based on a block diagram. Each block can be configured to perform a
specified task with the options for choosing the right parameters. Figure 7.39 shows
the overall block diagram of the audio-filtering operation. It consists of two sine
wave signal generators, whose frequencies are 4 kHz and 1 kHz, respectively. The
parameters of the 4 kHz sine wave generator are shown in Fig. 7.40a, b. The
amplitude of the 4 kHz sine wave is 0.5, the sampling frequency is chosen to be
10 kHz, and the output data type is real (floating point). Similar parameters are
chosen for the second sine wave generator at a frequency of 1 kHz. Next, the two

Fig. 7.36 Magnitude in dB of the frequency response of the notch filter of Example 7.12
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sine waves are added using an analog adder block. The output signal from the adder
is then quantized by a uniform quantizer to 8-bit accuracy. Since we have not learnt
quantization, we will not discuss the quantizer block further. Our objective in this
example is to simulate an FIR filter. Therefore, we pass the signal from the quantizer
through an FIR filter. Figure 7.41 lists the parameters of the FIR filter used in the
example. The critical parameters are filter type is FIR, filter order is 30, passband
edge is 1 kHz, stopband edge is 2 kHz, and the minimum stopband attenuation is
60 dB. The frequency response of the designed FIR filter is depicted in Fig. 7.42.
Once the block parameters are specified and the blocks connected, we can run the
simulation. The simulation time is chosen as 1 s. When the simulation is completed,
the input and filtered output signals are stored in the workspace in the variables
input_from_AudioFiltering and output_from_AudioFiltering, respectively.

In order to confirm that the filter has, indeed, filtered out the unwanted
component at 4 kHz, we run another simulation, whose block diagram is
shown in Fig. 7.43. As can be seen from the figure, the stored signals are read
by the two blocks named Signal From Workspace. The DFT of the two signals
are performed by the blocks named Magnitude FFT of input and Magnitude FFT

Fig. 7.37 Input and output sequences of the notch filter of Example 7.12. Top plot, input sequence
consisting of 1500 and 2500 Hz sinusoids; bottom plot, filtered sequence
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Fig. 7.38 Frequency response of the input and output sequences of the notch filter of Example
7.12. Top plot, DFT of the input sequence; bottom plot, DFT of the filtered sequence

Fig. 7.39 Simulink block diagram of audio filtering in Example 7.13
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Fig. 7.40 Parameters of the 4 kHz sine wave generator: (a) main parameters, (b) data types

Fig. 7.41 Parameters of the lowpass filter block



Fig. 7.42 Magnitude in dB of the frequency response of the lowpass FIR filter

Fig. 7.43 Simulink block diagram to compute the DFT and to display the magnitude in dB on a
scope
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of output, respectively. The parameters of the Magnitude FFT block are shown in
Fig. 7.44. These two blocks will perform the DFTs using FFTs and then output
the magnitudes in dB. The two magnitudes are finally displayed on the frequency
displays. The magnitude in dB of the DFT of the input audio signal is shown in
Fig. 7.45a. It consists of two main components at frequencies 1 kHz and 4 kHz
with a magnitude of about 35 dB. The DFT of the filtered output signal is shown
in Fig. 7.45b, where we see the peak (about 35 dB) at 1 kHz as expected. The
4 kHz frequency component seems to be removed, because it appears about
34 dB below that of the 1 kHz signal. The MATLAB file that creates the input
and filtered sequences is named Example7_13a.slx. The file to compute the DFTs
of the sequences stored in the workspace is named Example7_13b.slx.

Example 7.14 Image Filtering Using a 2D FIR Filter So far we have played with
filtering time-domain signals using FIR filters. A time-domain signal has one dimension
(1D), namely, the time. An intensity (B&W or gray-scale) image is a two-dimensional
signal in the spatial domain. Actually, we are dealing with a digital image, which is
discrete in the two spatial axes and consists of discrete points in the 2D space. Therefore,
we can consider a gray-scale image as a 2D array of picture elements, each picture
element being an integer number. A picture element is called a pixel for short. Each pixel
in a gray-scale image can range between 0 and 255 if it is an 8-bit digital picture. A color
image has three-component images, all having the same size. A color picture that is
viewable has red, green, and blue (RGB) components. In this example, we will deal with
a gray-scale image. The problem is to design a lowpass FIR filter with a cutoff frequency
of 0.1π in both the horizontal and vertical dimensions using a suitable window. We also
want to design a highpass FIR filter with a cutoff frequency of 0.4π in both dimensions.
We then want to filter a gray-scale image through these two filters and display the
original and the filtered images to see the effect.

Since digital image processing is not the theme of this book, we will skip the
description about it and use MATLAB to solve the problem. As we have already
learnt the design of lowpass and highpass FIR filters with windows, we will assume
that we have both lowpass and highpass 1D FIR filters of a specified order.

Fig. 7.44 Parameters of the
FFT magnitude block

288 7 FIR Digital Filters



Fig. 7.45 Display on the scope: (a) magnitude in dB of the frequency response of the input signal
consisting of 1 kHz and 4 kHz, (b) magnitude in dB of the frequency response of the filtered output,
which only has the 1 kHz component
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The question is how do we convert these 1D filters to 2D filters. One method is to do
the outer product of the 1D impulse responses. Thus the impulse response of a 2D
FIR filter in terms of two 1D length-N FIR filters is given by

h2D m; n½ � ¼ h1D n½ �ht
1D n½ �, 0 � m � N � 1, 0 � n � N � 1 ð7:53Þ

Thus, the 2D FIR filter is an NxN array. Note that the number of rows need not be
the same as the number of columns. In Eq. (7.53), h1D[n] is an N� 1 column vector,
and t denotes matrix transpose operation. The other method of designing a 2D filter
is to come up with a true 2D impulse response function. We will not discuss this
method any further. Using Eq. (7.53), we design the lowpass and highpass FIR
filters. Figure 7.46 shows the surface plot of the impulse response of the 21 � 21
lowpass FIR filter. To obtain a surface plot, we can call the MATLAB function surf.
The details can be found in the M-file named Example7_14.m. The impulse response
of the 21 � 21 highpass FIR filter is shown in Fig. 7.47. To ensure that the filters
correspond to lowpass and highpass, we plot the magnitude of the frequency
responses of the lowpass and highpass FIR filters and show in Figs. 7.48 and 7.49,
respectively. Next we use these two filters to process a gray-scale image. The image
we choose is called the Cameraman and is available in MATLAB. To read an image
into an array, MATLAB has the function called imread. This function will read the
image with a pre-specified image format and store it in an array. To filter the image,
we invoke the MATLAB function B ¼ imfilter(A,h), where A is the input image and
h is the 2D filter. So, we invoke this function twice to perform lowpass and highpass
filtering of the image. Each filtered image, of course, has to be stored in a separate
array. To display an image, we have to use the MATLAB function imshow. The
original image is shown in Fig. 7.50. Figures 7.51 and 7.52 show the lowpass and

Fig. 7.46 Surface plot of the 2D lowpass FIR filter of Example 7.14
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Fig. 7.47 Surface plot of the 2D highpass FIR filter of Example 7.14

Fig. 7.48 Magnitude of the frequency response of the 2D lowpass FIR filter of Example 7.14
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Fig. 7.49 Magnitude of the frequency response of the 2D highpass FIR filter of Example 7.14

Fig. 7.50 Original gray-scale Cameraman 8-bit image



highpass filtered images, respectively. As can be seen from Fig. 7.51, the effect of
lowpass filtering an image is to blur it – the smaller the cutoff frequency, the larger
the blur. On the other hand, a highpass filter sharpens the image. It removes the DC
values and retains only the edges.

Example 7.15 An FIR Differentiator A differentiator performs the operation of
differentiation of an input signal. Its frequency response can be defined as

H e jΩ� � ¼ jΩ, � π � Ω � π ð7:54Þ
Using the definition of the IDTFT, we can show the impulse response of an ideal

differentiator to be

h n½ � ¼
0, n ¼ 0
�1ð Þn
n

, nj j > 0

(
ð7:55Þ

The impulse response of the corresponding FIR differentiator is the truncated
version of the ideal impulse response in (7.55). In order to increase the minimum

Fig. 7.51 Lowpass filtered Cameraman image using the 2D lowpass FIR filter of Example 7.14

7.3 Computer-Aided Design of Linear-Phase FIR Filters 293



stopband attenuation, we will have to window the impulse response in (7.55) by a
suitable window function. So, we will use a fixed window of length 21. Figure 7.53
plots the ideal and windowed impulse responses of the differentiator. The magnitude
of the frequency response of the length-21 FIR differentiator is shown in Fig. 7.54. It
corresponds to a linear function as specified. In order to verify that the filter is indeed
a differentiator, let us filter a rectangular pulse of width-20 samples. When we
differentiate a rectangular pulse of finite width, we will expect an impulse with
positive amplitude at the rising edge and an impulse with negative amplitude at the
falling edge. This is exactly what we see in Fig. 7.55, which shows the input
rectangular pulse in the top plot and the output of the differentiator in the bottom
plot. Consider another input, which is a triangular pulse. Since the two sides of the
triangle have constant slopes – one positive and the other negative – the result of
differentiating the triangular pulse is a positive pulse on the left side and a negative
rectangular pulse on the right side of the triangle. This is what we see in Fig. 7.56.
The MATLAB code for this example can be found in the M-file named Exam-
ple7_15.m.

Fig. 7.52 Highpass filtered Cameraman image using the 2D highpass FIR filter of Example 7.14
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Fig. 7.53 Impulse response of a differentiator. Top plot, ideal impulse response; bottom plot,
windowed impulse response
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Fig. 7.54 Magnitude of the frequency response of a length-21 windowed FIR differentiator of
Example 7.15



Example 7.16 Comparison of SNR of an FIR Using Different Windows In this
example we would like to filter a noisy input signal corrupted by a white Gaussian
noise through a lowpass FIR filter and compute the resulting signal-to-noise ratio
(SNR) at the filter output. We want to compare the SNR in dB of the FIR filter using
Bartlett, Hann, Hamming, Blackman, and rectangular window functions.

Solution Let the filter order of the lowpass FIR filter be 16. Then the filter length is
17. Let the input signal be defined by

s n½ � ¼ 2 sin
2πf 1
f s

n

� �
þ cos

2πf 2
f s

n

� �
� 1:5 sin

2πf 3
f s

n

� �
, 0 � n � 1023

where f1 ¼ 133 Hz, f2 ¼ 205 Hz, f3 ¼ 223 Hz, and the sampling frequency is
fs ¼ 1000 Hz. For a cutoff frequency of Ωc rad, the impulse response of the ideal
lowpass filter is obtained using the IDTFT and is given by

hI n½ � ¼ Ωc

π

� �
sinc

nΩc

π

� �
, �1 < n < 1

Fig. 7.55 Filtering a rectangular pulse through the differentiator of Example 7.15
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By multiplying the ideal impulse response sequence by a window function of
length N¼ 17, we get the impulse response of the lowpass FIR filter of length 17 and
is described by

h n½ � ¼ hI n½ �w n½ �, � 8 � n � 8

To make the filter causal, we need to shift the impulse response of the FIR filter
described above by eight samples to the right. Therefore, the desired impulse
response of the lowpass FIR filter that approximates an ideal lowpass filter is
found to be

hd n½ � ¼ hI n� 8½ �w n� 8½ �, 0 � n � 16

As mentioned earlier, the window function is generated in MATLAB by the function
window(@Bartlett,17), which creates the Bartlett window of length 17. Similarly, other
windows can be generated by using the appropriate window names in the function. The
details of the program can be found in the M-file named Example7_16.m. In addition to
the signal, we have to generate a white Gaussian noise sequence. This is achieved by the
function call sigma � randn(1,1024), which generates a Gaussian random vector of

Fig. 7.56 Filtering a triangular pulse through the differentiator of Example 7.15
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length 1024 with a standard deviation of sigma. The signal is added to the noise and the
sum is input to the FIR filter. The filtering operation can be achieved by using the
function conv(x,h,’same’), where x is the input sequence and h is the impulse response of
the FIR filter. By using the value ‘same’, the filtered output sequence will have the same
length as that of the input sequence. One last thing is that by using the MATLAB
function rng(‘default’), the noise sequence will be the same every time the program is
run. Once the filtering operation is completed, the output SNR in dB is obtained by the
equation

SNR ¼ 10log10
var xð Þ

var x� yð Þ
� �

, dB

where var(x) denotes the variance of the sequence x. The M-file for this problem also
calculates the step responses for comparison.

Let us display the various plots and compare the results. The input signal plus noise
sequence and the filtered sequence for the rectangular window is shown in Fig. 7.57 in
the top and bottom plots, respectively. The filtered outputs corresponding to the Bartlett,
Hann, Hamming, and Blackman windows are shown in Figs. 7.58 and 7.59. The names
of the windows appear in the plot titles. Since it is difficult to compare the results in the
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Fig. 7.57 Output of FIR filter using rectangular window: Top, input sequence; bottom, output
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discrete-time domain, we show the DTFTs of the filter outputs. Specifically, the DTFTs
of the input signal plus noise and the filtered output corresponding to the rectangular
window are shown in the top and bottom plots of Fig. 7.60, respectively. The DTFTs of
the filter output for the other windows are shown in Figs. 7.61 and 7.62. As can be seen
from Fig. 7.60, filtering removes the out-of-band noise. The SNRs are shown in the
following table. Since the rectangular window has the smallest transition width, it rejects
the maximum out-of-band noise at the filter output. The table also shows the rise time
corresponding to the different windows. The step responses are displayed in Fig. 7.63
and the rise time plot in Fig. 7.64 and Table 7.5.

7.4 Discrete-Time Hilbert Transformer

Hilbert transformer is used in analog communications and speech processing. In
amplitude modulation (AM), the message waveform modulates a carrier in its
amplitude. The result is that the spectrum of the baseband message waveform is
shifted to the carrier frequency. This produces what is called a double-sideband AM
signal. The bandwidth of the double-sideband AM signal is twice the bandwidth of
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Fig. 7.58 Outputs of FIR filter using Bartlett and Hann windows: Top, Bartlett; bottom, Hann
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the message signal. If either the upper or lower sideband is filtered out, the band-
width of the resulting AM signal is only half of the bandwidth of the double-
sideband AM signal. This saves the transmitted spectrum of the AM signal. Inci-
dentally, if only one of the sidebands is retained, the AM signal is called a single-
sideband AM (SSB-AM) signal. An SSB-AM signal can be generated using the
Hilbert transformer (HT). Let us consider the discrete-time version of the HT here.

The ideal HT in the frequency domain is characterized by the following DTFT
function.

H e jΩ� � ¼ þj, � π < Ω < 0
�j, 0 < Ω < π

�
ð7:56Þ

From (7.56), it is observed that the magnitude of the DTFT of the HT is constant
except at Ω ¼ 0 and π, where it is zero. The phase of the DTFT of the HT is �π

2.
The corresponding impulse response or the discrete-time function of the HT is the
IDTFT of the DTFT of the HT. Thus,
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Fig. 7.59 Outputs of FIR filter using Hamming and Blackman windows: top, Hamming; bottom,
Blackman
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h n½ � ¼ 1
2π

Zπ
�π

H e jΩ� �
e jnΩdΩ ¼ 1

2π

Z0
�π

je jnΩdΩþ 1
2π

Zπ
0

�je jnΩdΩ ð7:57Þ

After evaluating the two integrals and adding them, we obtain the discrete-time HT as

h n½ � ¼ 1� cos nπð Þ
nπ

¼
0, n even,
2
nπ

, n odd

(
ð7:58Þ

The ideal HT in the discrete-time domain is of infinite duration and is, therefore,
not physically realizable. However, by truncating it to�M samples, the resulting HT
is realizable by shifting it to the right by M samples. Instead of truncating it abruptly,
we can use any of either fixed or adjustable windows. Once the HT of order
N ¼ 2M + 1, in the discrete-time domain, is determined, the HT of a given sequence
can be found by convolving the given sequence with the HT. Let us get back to the
SSB-AM for a second before we go further. The SSB-AM signal can be described by
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Fig. 7.60 DTFT of the output of FIR filter using rectangular window: top, DTFT of input
sequence; bottom, DTFT of output sequence using rectangular window
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xSSB n½ � ¼ x n½ � þ jbx n½ � ð7:59Þ
The signal in (7.59) is also known as an analytic signal. In the above equation,

both x[n] andbx n½ � are real signals.bx n½ � is the Hilbert transform of the signal x[n]. The
magnitude of the DTFT of the signal in (7.59) is odd, meaning, it is zero in the
interval [π, 2π]. Remember that the magnitude of the DTFT of a discrete-time signal
is periodic in period 2π and is symmetric about π. The reason for discussing HT here
is to point out that it can be realized in the discrete-time domain using FIR filtering.
We will illustrate the idea by an example.

Example of Hilbert Transformer in the Discrete-Time Domain Obtain a length-
17 HT and compute its DTFT using MATLAB. Use a suitable window of length 17.
Create a discrete-time sequence and find its HT. Plot the magnitude and phase of the
input sequence, and compare it with that of the HT of the sequence.

Solution The length-17 HT is obtained from (7.58) by retaining 17 samples cen-
tered at zero. This amounts to multiplying the HT in (7.58) by a rectangular window.
If we use another suitable window w[n], the HT will take the form
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h n½ � ¼ 1� cos nπð Þ
nπ

� �
w n½ �, � 8 � n � 8

The ideal and windowed HTs are shown in Fig. 7.65 in the top and bottom plots,
respectively. The magnitude of the DTFT of length-17 HT using Blackman window
is shown in Fig. 7.66. As expected, the magnitude of the DTFT of the HT is wide but
is zero at DC and half the sampling frequency.
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Fig. 7.64 Plot showing the step response of the FIR filter of Example 7.16 along with rise time for
the rectangular window

Table 7.5 Signal-to-noise
ratio and rise time of the
lowpass FIR filter of Example
7.16

Window SNR(dB) Rise time (samples)

Bartlett 11.445 1.9677

Hann 10.891 2.0118

Hamming 10.058 2.1003

Blackman 10.611 2.0007

Rectangular 12.054 2.0573
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The input sequence to the HT is described by

x n½ � ¼ cos
2πf m
f s

n

� �
cos

2πf c
f s

n

� �
, 0 � n � 511

where fm ¼ 123 Hz, fc ¼ 488 Hz, and fs ¼ 2000 Hz. The HT of x[n] is then
found by convolving the input sequence with the length-17 HT sequence. The
input sequence and its HT are shown in the top and bottom plots of Fig. 7.67,
respectively, over the first 128 samples. The magnitudes of the corresponding
DTFTs are shown in Fig. 7.68. Both DTFTs show the double sidebands centered
at the carrier frequency. Both spectra are also symmetric about half the sampling
frequency. The phase functions of the two DTFTs are displayed in the top and
bottom plots of Fig. 7.69. To verify the statement that the magnitude of the DTFT
of an analytic signal is asymmetric about half the sampling frequency, we form
the analytic signal

z n½ � ¼ x n½ � þ jy n½ �
where x[n] is the input sequence as defined above and
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y n½ � ¼ HT x n½ �f g ¼ x n½ �⋇h n½ �
Then the DTFT of {z[n]} is determined. The magnitudes of the DTFTs of the input

sequence x[n] and its HT z[n] are shown in the top and bottom plots of Fig. 7.70,
respectively. The bottom plot has only one side of the spectrum, and the other half above
the sampling frequency is zero. This proves the statement. Finally, the Hilbert transform
is also performed using the MATLAB function hilbert. For the sake of comparison, the
magnitudes of the DTFTs of the input sequence and the analytic sequence using
MATLAB function are shown in the top and bottom plots of Fig. 7.71, respectively.
From Figs. 7.70 and 7.71, we find that the HT performed using the MATLAB function
and the codes in M-file Hil_tra.m are identical.

7.5 Summary

Now we know how to design FIR filters to meet the frequency specifications of a
lowpass or highpass or bandpass or bandstop filter. Due to the existence of large
sidelobes in a rectangular window, the resulting FIR filter has small minimum

1

0.8

0.6

0.4

0.2

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 800 1000
Frequency, Hz

FFT of x + jy

FFT of input sequence x
N

or
m

al
iz

ed
 m

ag
ni

tu
de

N
or

m
al

iz
ed

 m
ag

ni
tu

de

1200 1400 1600 1800 2000

1

0.8

0.6

0.4

0.2

0

Fig. 7.70 Magnitudes of the input sequence and its analytic signal: top, magnitude of the DTFT of
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stopband attenuation. We circumvented this problem by choosing a proper window
function. There are two types of windows – fixed and adjustable windows. Fixed
windows, as the names imply, cannot control both the minimum stopband attenua-
tion and transition width. For a given order, these two parameters are fixed. On the
other hand, an adjustable window can trade off transition width for minimum
stopband attenuation and vice versa. In addition to these two analytical window
functions, we also described computer-aided windowed FIR filter design techniques.
The computer-aided design arrives at the optimal impulse response of an FIR filter
by iteratively minimizing an error function, which could be based on Parks-
McClellan or least squares technique. Several examples, including MATLAB-
based examples, were worked out to make the learning more efficient. The next
thing for us to learn is how to realize the digital filters – IIR and FIR – in software or
hardware. In the next chapter, we will describe these digital filters in terms of signal
flow graphs, which are very useful in the realization process. Some of these
structures may be more robust structures to coefficient quantization due to limited
word length. We will also study the effect of limited coefficient word lengths on the
resulting frequency response of the filters.
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7.6 Problems

1. Find the smallest length of the lowpass FIR filter corresponding to the specifi-
cations ωp ¼ 0.42π, ωs ¼ 0.58π, δp ¼ 0.002, and δs ¼ 0.008.

2. Design a 12th-order lowpass FIR filter to approximate the ideal filter response
having a passband edge at 1.5 kHz using rectangular and Hamming windows.
Use a sampling frequency of 10 kHz.

3. Design a 15th-order highpass FIR filter to have a cutoff frequency of 0.4π rad
using Blackman window, and plot its frequency response.

4. Design a bandpass FIR filter with the smallest length using the method based on
fixed window to meet the following specifications: ω1 ¼ 0.4π, ω2 ¼ 0.55π,
δp ¼ 0.02, and δs ¼ 0.006.

5. Design a lowpass FIR filter with a passband edge at 0.3π, stopband edge at 0.5π,
and minimum stopband attenuation of 40 dB using Kaiser window. It is enough
you show the ideal filter impulse response, the filter order, and the
corresponding parameters of the Kaiser window.

6. Find the impulse response of the digital notch filter specified by

H e jwð Þj j ¼ 0,w1 � wj � w2j
1, otherwise

�
. Note that the frequency response of the digital

filter is periodic with period 2π.
7. Design a bandstop FIR filter with the smallest length to meet the following

specifications: lower passband edge Ωp1 ¼ 0.25π, Ωp2 ¼ 0.6π, Ωs1 ¼ 0.45π,
Ωs2 ¼ 0.8π, δp1 ¼ 0.005, δp2 ¼ 0.01, and δs ¼ 0.05, where δp1 and δp2 are,
respectively, the ripple in the lower and upper passbands.

8. Determine the filter order of the lowpass FIR filter having a passband edge of
0.3π, stopband edge of 0.6π, and a minimum stopband attenuation of 60 dB
using Dolph-Chebyshev and Kaiser adjustable windows.

9. Show that an ideal bandstop digital filter can be realized as the sum of an ideal
lowpass and highpass filters.

10. Show that an ideal bandpass digital filter can be realized as a cascade of lowpass
and highpass digital filters.

11. Design a linear-phase lowpass FIR filter with the following specifications:
passband edge at 500 Hz, stopband edge at 1200 Hz, maximum passband
attenuation of 0.3 dB, minimum stopband attenuation of 45 dB, and a
sampling frequency of 5000 Hz. Use Bartlett, Hamming, Haan, and
Blackman window functions for the design. Plot the impulse responses and
the magnitude responses in dB of the designed filters. Use MATLAB to solve
the problem.

12. Repeat Problem 11 to design a linear-phase highpass FIR filter satisfying the
following specifications: passband edge at 1200 Hz, stopband edge at 500 Hz,
maximum passband attenuation of 0.3 dB, minimum stopband attenuation of
45 dB, and a sampling frequency of 5000 Hz.

13. Repeat Problem 11 using Kaiser window function.
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14. Design a linear-phase FIR notch filter using a suitable window function to
approximate an ideal notch filter of order 30 with a notch frequency of 60 Hz
and a sampling frequency of 500 Hz. Plot the impulse response and magni-
tude of the frequency response in dB of the designed filter. Generate a signal
consisting of 60 Hz and 130 Hz sinusoids, filter it through the notch filter,
and plot the DTFT of the input and filtered signals. Verify that the notch filter
rejects the 60 Hz component in the input signal. Use MATLAB to solve the
problem.

15. Design a linear-phase lowpass FIR filter of lowest order based on windowing
technique to meet the following specifications: passband edge at 0.25π rad,
stopband edge at 0.4π rad, and a minimum stopband attenuation of 45 dB. Find
out which window function will meet the given specifications.
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Chapter 8
Digital Filter Structures

8.1 Signal Flow Graph

What we have learnt so far is how to design either an IIR or FIR digital filter to satisfy a
given set of specifications in the frequency domain. We have also seen examples based
on MATLAB wherein filtering operations are carried out by specific functions. We
really don’t know how these functions really work. If you are a S/W or H/W engineer
and want to implement a digital filter in software or hardware, you should be able to
describe the flow of signal from the input to the output. Thus, a digital filter structure
describes the flow of signal as it propagates from the input to the output sample by
sample. This filtering operation is described by a signal flow graph, which is a block
diagram with blocks corresponding to the arithmetic operations of addition, multiplica-
tion, and unit delays. The blocks are connected by lines with arrows pointing in the
direction of signal flow. In digital filter terminology, an adder has two inputs and one
output, as shown in Fig. 8.1a. Similarly, a multiplier accepts an input signal and
multiplies it by a coefficient a to produce an output, as shown in Fig. 8.1b. A unit
delay block is a register, which can hold a sample from its input. The sample can be read
from its output after one sample interval. Figure 8.1c illustrates a unit delay element.
Note that the unit delay operation in the Z-domain is denoted by z�1. Finally, Fig. 8.1d
shows how a signal is tapped into. So, these are the basic building blocks of a digital
filter structure. Let us look at a simple example.
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Example 8.1 Draw a signal flow graph to solve the LTI discrete-time system
described by

y n½ � ¼ x n½ � � ay n� 1½ �, n � 0 ð8:1Þ

Solution The above equation is familiar to us, which is a recursive linear difference
equation. The signal flow graph consists of one adder, one unit delay, and a
multiplier. The current output sample is obtained by multiplying the previous output
sample by �a and then adding it to the current input sample. Or the current output
sample may be obtained by multiplying the previous output sample by the constant a
and then subtracting it from the current input sample. Both are the same. Before the
next sample arrives, the current output sample is fed to the unit delay. Figure 8.2 is
the signal flow graph, which represents Eq. (8.1). At the time index n¼ 0, the sample
value in the register corresponds to the initial condition. It must be pointed out that

+
x[n]

a b

c

d

y[n]

g[n]=x[n]+y[n] x[n] y[n]=a x[n]
a

x[n] x[n-1]
z-1

x[n] x[n]

x[n]

Fig. 8.1 Blocks in a signal flow graph: (a) adder, (b) multiplier, (c) unit delay, and (d) signal
branch

x[n] y[n]

a

+

z-1

-

Fig. 8.2 Signal flow graph
of Example 8.1
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all arithmetic operations are performed with infinite accuracy. But in practice, the
word lengths are finite, and so the arithmetic operations will not be exact. This
inaccuracy in arithmetic operations will propagate from the input to the output and
can be considered as noise. There are three sources of error in the filtering operation.
The first is the error introduced in converting an analog signal into a digital signal.
This error is actually outside of the signal flow graph. We have already established
the error performance of an analog-to-digital converter in Chap. 2. The second
source of error is in the word length used to represent the coefficients of the
multipliers in the signal flow graph. The larger the word lengths of the multiplier
coefficients, the smaller the inaccuracies in representing them. We will see the effect
of finite word lengths of the coefficients on the filter later in this chapter. The third
source of error is due to the inaccuracies of arithmetic operations because of finite
word length.

8.2 IIR Digital Filter Structures

8.2.1 Direct Form I and II Structures

A given linear difference equation can be manipulated to form different signal flow
graphs, each having specific features relating to filter coefficient sensitivity due to
limited word length, efficiency of computations, etc. It is therefore important to
study digital filter structures. For instance, consider the second-order transfer func-
tion described by

H zð Þ ¼ Y zð Þ
X zð Þ ¼

b0 þ b1z�1 þ b2z�2

1þ a1z�1 þ a2z�2
¼ N zð Þ

D zð Þ ð8:2Þ

Define W(z) as

W zð Þ ¼ X zð ÞN zð Þ ¼ X zð Þ b0 þ b1z
�1 þ b2z

�2
� � ð8:3Þ

In the discrete-time domain, Eq. (8.3) corresponds to

w n½ � ¼ b0x n½ � þ b1x n� 1½ � þ b2x n� 2½ � ð8:4Þ
Figure 8.3a is the signal flow graph to compute w[n] from x[n] sample by sample.

Note that it uses two unit delays, two adders, and three multipliers. Next the
Z-transform of the output in terms of W(z) is

Y zð Þ ¼ X zð ÞN zð Þ
D zð Þ ¼ W zð Þ

D zð Þ ð8:5Þ

Therefore, the output in the discrete-time domain is expressed by
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y n½ � ¼ w n½ � � a1y n� 1½ � � a2y n� 2½ � ð8:6Þ
In Fig. 8.3b the signal flow diagram for computing y[n] from w[n] is shown. As

can be seen from the figure, it uses two adders, two multipliers, and two unit delays.
Since our objective is to compute y[n] from x[n], we combine the two signal flow
graphs in Fig. 8.3a, b, which is shown in Fig. 8.3c. This filter structure is known as
Direct Form I structure and is noncanonical in delays meaning that it uses more
number of delay elements than the order of the digital filter.

Though delay elements are not expensive from the point of view of hardware
implementation, it is still a quest to find a structure that uses as many delays as the
filter order is. In fact, it is feasible to realize such a canonical structure and is called
Direct Form II digital filter structure. Let us see how we can achieve this. Using
Eq. (8.2), define
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w[n] y[n]
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c

Fig. 8.3 A second-order Direct Form I IIR digital filter structure: (a) calculation of w[n] from the
input x[n], (b) calculation of the output y[n] from w[n], and (c) calculation of y[n] from x[n]
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W zð Þ ¼ X zð Þ
D zð Þ ) w n½ � ¼ x n½ � � a1w n� 1½ � � a2w n� 2½ � ð8:7Þ

Figure 8.4a describes Eq. (8.7). Then, the Z-transform Y(z) of the output in terms
of W(z) is described by

Y zð Þ ¼ W zð ÞN zð Þ ) y n½ � ¼ b0w n½ � þ b1w n� 1½ � þ b2w n� 2½ � ð8:8Þ
The signal flow graph corresponding to Eq. (8.8) is depicted in Fig. 8.4b. By

combining Fig. 8.4a, b, we get the overall Direct Form II filter structure of the
second-order transfer function of (8.2) as shown in Fig. 8.4c. The only difference
between Direct Form I and II structures is in the number of delay elements. Direct
Form II structure uses two delays corresponding to the filter order, which is
2, whereas Direct Form I uses four delays.
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Fig. 8.4 A second-order Direct Form II IIR digital filter structure: (a) calculation of w[n] from the
input x[n], (b) calculation of the output y[n] from w[n], and (c) calculation of y[n] from x[n]
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We can generalize the filter structure for an Nth-order IIR digital filter as follows.
Consider the transfer function of an Nth-order IIR digital filter described by

H zð Þ ¼ Y zð Þ
X zð Þ ¼

N zð Þ
D zð Þ ¼

b0 þ b1z�1 þ b2z�2 þ � � �� � � þ bNz�N

1þ a1z�1 þ a2z�2 þ � � �� � � þ aNz�N
ð8:9Þ

By definingW(z)¼ X(z)N(z), we obtain the signal flow graph for w[n] in terms of
x[n], as shown in Fig. 8.5a. The output is Y(z)D(z) ¼ W(z), whose signal flow graph
in terms of w[n] is shown in Fig. 8.5b. Then by combining the two signal flow graphs
of W(z) and Y(z), we obtain the Direct Form I filter structure, as shown in Fig. 8.5c.
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Fig. 8.5 An Nth-order Direct Form I IIR digital filter structure: (a) calculation of w[n] in terms of x
[n], (b) calculation of y[n] in terms of w[n], and (c) overall input-output
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To obtain the Direct Form II structure, we express

W zð ÞD zð Þ ¼ X zð Þ, ð8:10aÞ
and the output

Y zð Þ ¼ W zð ÞN zð Þ ð8:10bÞ
Figures 8.6a, b, c show the signal flow graphs of the general Nth-order Direct

Form II digital filter structure. As can be seen from the figure, the Direct Form II is
canonic in the number of delays.
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Example 8.2 Draw the Direct Form II signal flow graph for the transfer function
described by

H zð Þ ¼ 3z2 � 0:6z
z2 � 0:8zþ 0:15

ð8:11Þ

Solution First we rewrite the given transfer function in terms of z�1 as

H zð Þ ¼ 3� 0:6z�1

1� 0:8z�1 þ 0:15z�2
ð8:12Þ

Define

W zð Þ ¼ X zð Þ
1� 0:8z�1 þ 0:15z�2

) w n½ �

¼ x n½ � þ 0:8w n� 1½ � � 0:15w n� 2½ � ð8:13Þ
Then,

Y zð Þ ¼ W zð Þ 3� 0:6z�1
� � ) y n½ � ¼ 3w n½ � � 0:6w n� 1½ � ð8:14Þ

Figure 8.7 shows the Direct Form II structure corresponding to the transfer
function in Example 8.2.

8.2.2 Parallel Structure

The transfer function of an Nth-order IIR digital filter can be expressed as a sum of
the first- and/or second-order functions using partial fraction expansion. Thus the
overall transfer function is written in the form

0.8

x[n] w[n] y[n]

-0.6

-0.15

3

z-1

z-1

+

+ +

Fig. 8.7 Direct Form II
structure of the transfer
function in Example 8.2
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H zð Þ ¼ N zð Þ
D zð Þ ¼ H1 zð Þ þ H2 zð Þ þ � � � þ Hp zð Þ ð8:15Þ

We then realize each transfer function in Direct Form I or II, where the input to
each transfer function is the same and the outputs are added to obtain the overall
response as shown in Fig. 8.8. One advantage in realizing a transfer function in
parallel form is that the arithmetic error due to finite word length is restricted to each
block. It must be pointed out that if a pole is complex, it must occur with its
conjugate because the coefficients of the transfer function are real. So, after
expressing the transfer function in partial fractions, the complex conjugate terms
must be combined and expressed as a second-order function.

Example 8.3 Implement the following transfer function in parallel form:

H zð Þ ¼ 1þ z�1

1þ 0:5z�1ð Þ 1� 0:25z�1ð Þ ð8:16Þ

Solution We observe that the given transfer function is a proper function. There-
fore, by expressing the above transfer function in partial fractions, we have

H zð Þ ¼ A

1þ 0:5z�1ð Þ þ
B

1� 0:25z�1ð Þ , ð8:17Þ

where the residues are found from

A ¼ H zð Þ 1þ 0:5z�1
� ���

z�1¼�2
¼ 1� 2

1þ 0:5
¼ �2

3
, ð8:18aÞ

+

+
x[n]

y[n]
H1(z)

H2(z)

Hp(z)

Fig. 8.8 Parallel form
structure of an IIR digital
filter
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B ¼ H zð Þ 1� 0:25z�1
� ���

z�1¼4
¼ 1þ 4

1þ 2
¼ 5

3
ð8:18bÞ

Figure 8.9 shows the parallel form structure of the transfer function in Eq. (8.16),
which consists of two first-order transfer functions.

Example 8.4 Realize the digital filter transfer function described by

H zð Þ ¼ 1þ 2z�1 þ z�2

1� z�1 þ 0:5z�2 � 0:125z�3
ð8:19Þ

in parallel form.

Solution The denominator is a third-order polynomial. Therefore, we have to factor
it into first- and/or second-order polynomials. The poles are obtained by finding the
roots of the denominator. To make the task easier, we can use the MATLAB function
to find the residues, the poles, and the quotients of the transfer function in (8.19).
Specifically, we call the function [r,p,k] ¼ residuez(B,A), where B ¼ [1 2 1 0] is
the vector of coefficients of the numerator and A ¼ 1 �1 0:5 �0:125½ � is the
vector of coefficients of the denominator in Eq. (8.19). With these input arguments,
the MATLAB function returns the residues, the poles, and the quotients in the
vectors r, p, and k, respectively. In this example, the poles are found to be 0.5,
0.25 + j0.433013, and 0.25–j0.433013. One of the poles is real and the other two are
complex conjugate of each other. We now express the given transfer function in
partial fraction as

H zð Þ ¼ A

1� 0:5z�1
þ B

1� 0:25þ j0:433013ð Þz�1

þ B∗

1� 0:25� j0:433013ð Þz�1

ð8:20Þ

+

+

+Z-1

Z-1

-0.5

0.25

5/3

x[n]
y[n]
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Fig. 8.9 Parallel form realization of the transfer function in Example 8.3
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The residues are found to be A¼ 9, B¼ � 4� j0.5774, and B∗¼ � 4 + j0.5774.
The residues are returned in the vector r by the MATLAB function. Since two poles
are complex conjugate of each other, we need to combine them into a single second-
order function. Thus, the given transfer function in partial fractions is

H zð Þ ¼ 9
1� 0:5z�1

þ �8þ 2:5z�1

1� 0:5z�1 þ 0:25z�2
ð8:21Þ

We can now realize each term on the right-hand side of (8.21) in Direct Form II
and then add the two outputs to obtain the overall response, as shown in Fig. 8.10

8.2.3 Cascade Structure

In parallel form realization, we expressed the given transfer function as a sum of
first- and/or second-order functions, realized each function in Direct Form I or II and
then added the individual outputs to obtain the overall response. The input to each
section in the parallel structure is the same and is the input to the system. Another
way of realizing the same given transfer function is to express it as a product of first-
and/or second-order functions, realize each term in the product in Direct Form I or II,
and then connect them in tandem. This implies that the input to the first block is the
overall input, the input to the second block is the output of the first block, and so
on. The output of the final block is the overall response of the system. More
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Fig. 8.10 Parallel form realization of the transfer function in Example 8.4 as first- and second-order
sections
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specifically, we express the given transfer function of an IIR digital filter as a product
of p functions as given by

H zð Þ ¼ H1 zð ÞH2 zð Þ� � �� � �Hp zð Þ ð8:22Þ
Each individual function on the right-hand side of (8.22) may be first- and/or

second-order function. Figure 8.11 is a cascade realization of the transfer function in
(8.22).

Example 8.5 Show a cascade structure to realize the transfer function as given
below:

H zð Þ ¼ K 1þ z�1ð Þ3
1þ 0:25z�1ð Þ 1� 0:25z�1ð Þ 1þ 0:5z�1ð Þ , ð8:23Þ

where the constant K is chosen so that the transfer function has a value 1 at DC.

Solution We can express the given transfer function as a product of three first-order
functions as

H zð Þ ¼ K
1þ z�1

1þ 0:25z�1

� �
1þ z�1

1� 0:25z�1

� �
1þ z�1

1þ 0:5z�1

� �
ð8:24Þ

We can determine the value of the constant from

H zð Þjz�1¼1 ) K ¼ 0:1758 ð8:25Þ
Figure 8.12 depicts a cascade realization of the transfer function in (8.23) as three

first-order functions.

x[n] y[n]
H1(z) H2(z) Hp(z)

Fig. 8.11 Realization of an IIR digital filter in cascade form

x[n] y[n]

z-1 z-1 z-1

-0.25 0.25 -0.5

0.1758

++ + + + +

Fig. 8.12 Cascade realization of the transfer function of an IIR digital filter in Example 8.5
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8.3 FIR Filter Structures

An FIR digital filter of order N has the transfer function described by

H zð Þ ¼
XN
n¼0

h n½ �z�n ð8:26Þ

There are N + 1 number of elements in its impulse response sequence. The FIR
filter can be realized in two obvious forms, namely, direct form and cascade form.
There is another possible structure known as polyphase structure for the realization
of an FIR filter. We have seen before that an FIR filter, in general, has a linear-phase
response. The impulse response of a linear-phase FIR filter has even or odd sym-
metry, which can be exploited to our advantage in reducing the number of multi-
pliers. In this section, we will focus our effort in learning the possible structures of an
FIR digital filter.

8.3.1 Direct Form Structure of an FIR Filter

The direct form structure of an FIR filter is a straightforward implementation of the
transfer function in (8.26), where all the multipliers correspond to the elements of its
impulse response sequence. To exemplify further, consider a fourth-order FIR filter,
whose transfer function is given by

H zð Þ ¼ Y zð Þ
X zð Þ ¼ h 0½ � þ h 1½ �z�1 þ h 2½ �z�2 þ h 3½ �z�3 þ h 4½ �z�4 ð8:27Þ

The direct form structure of the FIR digital filter in Eq. (8.27) is shown in
Fig. 8.13, where the multipliers are exactly the filter’s coefficients or impulse
response. The response to an input can be written from (8.27) as

z-1z-1 z-1 z-1

h[0]

h[1] h[2] h[3] h[4]

+ + + +

x[n]

y[n]

Fig. 8.13 Direct form structure of a fourth-order FIR digital filter
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y n½ � ¼ h 0½ �x n½ � þ h 1½ �x n� 1½ � þ h 2½ �x n� 2½ �
þ h 3½ �x n� 3½ � þ h 4½ �x n� 4½ � ð8:28Þ

An FIR digital filter is non-recursive and so the output depends only on its current
and past input samples, as seen from (8.28). This means that there is no feedback
from its output, which is also seen from Fig. 8.13.

8.3.2 Cascade Structure of an FIR Digital Filter

A cascade structure corresponds to a transfer function expressed as a product of first-
and/or second-order sections. The transfer function of an Nth-order FIR digital filter
in Eq. (8.26) can also be written as

H zð Þ ¼ h 0½ �
YK
k¼1

Hk zð Þ, ð8:29Þ

where

Hk zð Þ ¼ 1þ a1,kz
�1 ð8:30aÞ

if Hk(z) is a first-order function or

Hk zð Þ ¼ 1þ a1,kz
�1 þ a2,kz

�2 ð8:30bÞ
if Hk(z) is a second-order function. If the order N is even, then K ¼ N/2 and all
sections are of second-order. If N is odd, then K ¼ (N + 1)/2 with one first-order
function and the rest second-order functions. An example of a cascade structure of a
sixth-order FIR digital filter is shown in Fig. 8.14. Since the filter order 6 is an even
number, there are three second-order sections in the cascade structure.
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+ +
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x[n]

y[n]h[0]

Fig. 8.14 Cascade structure of a sixth-order FIR digital filter
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8.3.3 Linear-Phase FIR Filter Structure

Digital filters with linear-phase response are preferred in signal processing applica-
tions because they do not introduce phase distortions in the processed signal. Though
human ears are tolerant to phase distortions in speech and music signals, digital
images are susceptible to such distortions. A filter with nonlinear-phase response
causes contour effect in image processing. Having said that, an FIR digital filter with
a linear-phase response has either even or odd symmetry in its impulse response
sequence. If the order is N, then due to symmetry, it only needs either (N + 2)/2 if N
is even or (N + 1)/2 if N is odd, number of multipliers for the direct form structure.
For example, consider a sixth-order linear-phase FIR digital filter. It has a length
of 7. We can describe its transfer function as

H zð Þ ¼ h 0½ � þ h 1½ �z�1 þ h 2½ �z�2 þ h 3½ �z�3 þ h 4½ �z�4

þ h 5½ �z�5 þ h 6½ �z�6 ð8:31Þ

Because of the even symmetry of the impulse response of the FIR digital filter in
(8.31), we can rewrite H(z) as

H zð Þ ¼ h 0½ � 1þ z�6
� �þ h 1½ � z�1 þ z�5

� �þ h 2½ � z�2 þ z�4
� �þ h 3½ �z�3 ð8:32Þ

From Eq. (8.32), we notice that there are only four multipliers instead of seven
multipliers. What if the FIR filter’s order was 7? We will still require four multipliers
as seen from

H zð Þ ¼ h 0½ � 1þ z�7ð Þ þ h 1½ � z�1 þ z�6
� �

þ h 2½ � z�2 þ z�5
� �þ h 3½ � z�3 þ z�4ð Þ ð8:33Þ

The direct form structures corresponding to the filter orders 6 and 7 are shown in
Fig. 8.15a, b, respectively.

8.3.4 Polyphase FIR Filter Structure

Before we describe a polyphase filter structure, it is important to mention the fact that
polyphase filters are used in sample rate conversion. To increase the sample rate of
an input sequence, we insert zero-valued samples between two consecutive input
samples and then interpolate the in-between sample values. This process will
upsample the input or increase the input sample rate. An advantage of a polyphase
filter structure is that it avoids multiplying zero-valued samples in the interpolation
process. To decrease the input sample rate, we have to decimate or throw away every
few samples. This decimation process is called downsampling. Another advantage
of a polyphase filter structure is to avoid multiplications of the samples that will
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eventually be discarded at the output. Having said that, let us define polyphase
decomposition of an FIR transfer function and then arrive at the structure. Consider a
length-9 FIR digital filter function whose transfer function is described by

H zð Þ ¼
X8
n¼0

h n½ �z�n ð8:34Þ

Fig. 8.15 Direct form structure of a linear-phase FIR filter with even symmetry: (a) FIR filter’s
order is 6; (b) FIR filter’s order is 7
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We can rewrite Eq. (8.34) as

H zð Þ ¼ h 0½ � þ h 3½ �z�3 þ h 6½ �z�6
� �þ z�1 h 1½ � þ h 4½ �z�3 þ h 7½ �z�6

� �
þ z�2 h 2½ � þ h 5½ �z�3 þ h 8½ �z�6

� � ð8:35Þ

Note that each bracketed factor is a sixth-order polynomial but with only three
terms. Let us define the following polyphase components:

E0 zð Þ ¼ h 0½ � þ h 3½ �z�1 þ h 6½ �z�2 ð8:36aÞ

E1 zð Þ ¼ h 1½ � þ h 4½ �z�1 þ h 7½ �z�2 ð8:36bÞ

E2 zð Þ ¼ h 2½ � þ h 5½ �z�1 þ h 8½ �z�2 ð8:36cÞ
We observe from the above three equations that

E0 z3
� � ¼ h 0½ � þ h 3½ � z�1

� �3 þ h 6½ � z�2
� �3 ¼ h 0½ � þ h 3½ �z�3 þ h 6½ �z�6 ð8:37aÞ

E1 z3
� � ¼ h 1½ � þ h 4½ �z�3 þ h 7½ �z�6 ð8:37bÞ

E2 z3
� � ¼ h 2½ � þ h 5½ �z�3 þ h 8½ �z�6 ð8:37cÞ

In terms of the three, polyphase components in Eqs. (8.36a), (8.36b), and (8.36c),
we can express the eighth-order FIR filter transfer function in (8.34) as

H zð Þ ¼ E0 z3
� �þ z�1E1 z3

� �þ z�2E2 z3
� � ð8:38Þ

Equation (8.38) is known as the polyphase decomposition of the FIR digital filter
transfer function H(z) with three polyphase components. In general, the polyphase
decomposition of an FIR digital filter of length N with L polyphase components is
given by

H zð Þ ¼
XL�1

m¼0

z�mEm zL
� �

, ð8:39Þ

where

Em zð Þ ¼
XN�1

Lb c

n¼0

h nLþ m½ �z�n, 0 � m � L� 1 ð8:40Þ

In Eq. (8.40), bxc is the flooring operation. Figure 8.16 shows the polyphase
structure of an eighth-order FIR filter with three parallel sections corresponding to
three polyphase components.
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Example 8.6 Design a lowpass FIR filter of order 8 with a cutoff frequency of 0.3π
using Blackman window. Decompose the transfer function in a three-component
polyphase sections. Upsample by a factor of 2 and downsample by a factor of 4 of a
sinusoidal sequence of frequency 100 Hz. Use a sampling frequency of 4 kHz.

Solution We invoke the MATLAB function w ¼ blackman(9) to generate the
Blackman window of length-9 samples. We then design the lowpass FIR filter by
calling the MATLAB function fir1(8,0.3,w), which returns the impulse response of
the windowed lowpass FIR filter. Note that the fir1 function accepts the cutoff
frequency in the interval between 0 and 1 with 1 corresponding to half the sampling
frequency. Since π corresponds to half the sampling frequency, we have to use 0.3 as
the cutoff frequency in the MATLAB function. Once the impulse response of the
lowpass FIR filter is determined, we can write the three polyphase components as
given in Eq. (8.40) and the transfer function as in Eq. (8.39). We can evaluate the
frequency response of the polyphase FIR filter as the sum of its polyphase compo-
nents. In MATLAB, these are given, respectively, by

e0 ¼ h 0½ � 0 0 h 3½ � 0 0 h 6½ � 0 0½ �, ð8:41aÞ

e1 ¼ 0 h 1½ � 0 0 h 4½ � 0 0 h 7½ � 0½ �, ð8:41bÞ

e2 ¼ 0 0 h 2½ � 0 0 h 5½ � 0 0 h 8½ �½ � ð8:41cÞ
The frequency response of the lowpass FIR digital filter is the sum of the

frequency responses of the polyphase components. Figure 8.17 shows the magnitude
in dB of the frequency response of the FIR digital filter as a function of the frequency
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Fig. 8.16 Polyphase structure of an eighth-order FIR filter with three parallel sections
corresponding to three polyphase components
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in rad. It also shows the magnitude in dB of the frequency response of the same FIR
digital filter as a single unit. They are identical. Next we generate a length-64
sinusoidal signal of the specified frequency and sampling frequency. To increase
its rate by 2, we first insert two zero-valued samples between consecutive samples of
the input sequence and then filter it by the polyphase components. In MATLAB, we
can use the function conv(x,h,’same’) to filter the sequence x by the filter h and the
output sequence will have the same length as the input sequence. By filtering the
zero-padded input sequence through the polyphase components and adding the
outputs, we obtain the overall output with its rate doubled. The zero-padded input
sequence and the filtered sequence are shown in Fig. 8.18 in the top and bottom
plots, respectively. In order to down sample the upsampled sequence by a factor of
4, we discard every 4 samples between the filtered outputs. The input sequence and
the upsampled-by-2/downsampled-by-4 are shown in the top and bottom plots of
Fig. 8.19. MATLAB has the function upfirdn(x,h,U,D), where x is the input
sequence, h is the FIR filter impulse response, U is the upsampling factor, and D
is the downsampling factor. In Fig. 8.20 the input sequence and upsampled-by-2/
downsampled-by-4 using upfirdn function in the top and bottom plots, respectively,
are shown. They seem to match the results in Fig. 8.19.
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Fig. 8.17 Magnitude in dB of the frequency response of the polyphase FIR filter in Example 8.6
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8.4 Finite Word Length Effect

In all our discussions so far, we have not paid any attention to the implementation of
an IIR or FIR digital filter in hardware. We implicitly assumed that the coefficients of
digital filters are represented exactly and that all arithmetic operations are performed
with infinite accuracy. This is not a typical scenario in practice. Most real-time
digital filters are implemented using either special-purpose hardware or DSP chips.
These hardware systems have finite word lengths or bit widths for the representation
of the filter coefficients as well as for carrying out arithmetic operations. That being
the case, one must as a hardware engineer first ascertain that the designed digital
filter will meet the given specifications with a chosen hardware platform. In other
words, one must determine the minimum word length for the filter coefficients by
simulation before implementing it in hardware. In a similar manner, one must
determine the minimum word length used in the arithmetic operations so that the
error or noise due to arithmetic inaccuracies in the output is acceptable. Before we
delve into this task, let us familiarize ourselves with the binary representation of
numbers since this is the number system used in computers.
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Fig. 8.18 Sampling rate increase by a factor of 2. Top plot, zero-padded input sequence; bottom
plot, filtered signal with a sampling rate increase by a factor of 2
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8.4.1 Fixed-Point Binary Representation

We are accustomed to decimal number system. It consists of ten symbols and an
integer uses these symbols with place value. Thus, an integer decimal number 10875
is equivalent to

1087510 ¼ 5∗100 þ 7∗101 þ 8∗102 þ 0∗103 þ 1∗104 ð8:42Þ
A decimal number such as 12.8432 is equivalent to

12:843210 ¼ 1∗101 þ 2∗100 þ 8∗10�1 þ 4∗10�2 þ 3∗10�3 þ 2∗10�4 ð8:43Þ
That is, the digits to the right of the decimal point have the place values 10�d,

d 2 Z. In a similar manner, the symbols used in the binary system are “0” and “1.”An
integer binary number 1101011 is equivalent to a decimal number given by

11010112 ¼ 1∗20 þ 1∗21 þ 0∗22 þ 1∗23 þ 0∗24 þ 1∗25 þ 1∗26

¼ 10710 ð8:44Þ
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Fig. 8.19 Downsampling by a factor of 2: top plot, original input sequence; bottom plot,
upsampled-by-2/downsampled-by-4 sequence
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Unlike the decimal system, a decimal number can be represented in the binary
system in three different ways, namely, in one’s complement or two’s complement,
or sign-magnitude form. A binary number can be in fixed-point or floating-point
format. We will look into the fixed-point binary format in this section. As the name
implies, a fixed-point binary number is a fraction with the binary point always fixed.
The digit to the left of the binary point represents the sign of the fraction.

Sign-Magnitude Format In the sign-magnitude format, a positive fraction has a
“0” bit to the left of the binary point, while a negative fraction has a “1” bit to the left
of the binary point. Thus,

0:110112 ¼ 0:8437510 ð8:45aÞ

1:110112 ¼ �0:8437510 ð8:45bÞ

One’s Complement Format In this fixed-point binary format, a positive fraction is
represented in the same manner as in the sign-magnitude format. A negative fraction
is represented as follows: First its magnitude is represented as a positive fraction.
Then all the bits are complemented (1’s to 0’s and 0’s to 1’s) bit by bit to obtain the
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Fig. 8.20 Upsampled-by-2/downsampled-by-4 of the input sequence using the MATLAB function
upfirdn with the filter in Example 8.6
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1’s complement. For example, we want to represent the decimal fraction�0.87510 in
binary 1’s complement format. First, the magnitude is 0.87510 ¼ 0.1112. Then by
complementing bit by bit the binary fraction of 0.875, we get �0.87510 ¼ 1.0002.

Two’s Complement Format This format is similar to the one’s complement
format except that a “1” bit is added to the least significant bit (LSB) after performing
one’s complement. So, the decimal fraction �0.87510 in two’s complement format
will be

�0:87510 ¼ 1:0002 þ 0:0012 ¼ 1:0012 ð8:46Þ

8.4.2 Floating-Point Binary Representation

The range of values that can be represented using fixed-point binary format is limited
as compared to that using the floating-point binary representation. In the normalized
floating-point format, a positive number is represented by

x10 ¼ M2�E, ð8:47Þ
where M is called the mantissa and E the exponent. The mantissa is a binary fraction
between �1

2 � M < 1, and E is an integer. For instance, we want to represent the
decimal number 67 in floating-point binary format. The exponent is determined by

E ¼ log1067
log22

� �
¼ 7 ¼ 1112 ð8:48Þ

The mantissa is obtained by

M ¼ 67

27
¼ 0:5234375 ¼ 0:10000112 ð8:49Þ

Therefore, we have a 3-bit exponent of 1112 and an 8-bit mantissa of 0.10000112.
According to the 32-bit IEEE format, the most significant bit (MSB) is the sign bit,
the next 8 bits are the exponent, and the last 23 bits form the mantissa. The exponent,
however, is offset by 127. In this IEEE format, a decimal number x in binary
floating-point format takes the form

x10 ¼ �1ð Þs E Mð Þ, ð8:50Þ
where s is the sign, 0 for positive value and 1 for negative value, and M is a fraction.
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8.4.3 Filter Coefficient Sensitivity

When the coefficients of an IIR or FIR digital filter are realized in finite word length
fixed-point representation, the realized coefficients are not exactly the same as when
realized with full precision. These coefficient inaccuracies will alter the realized
frequency response as well as the poles and zeros. Therefore, before implementing
the digital filter in hardware, one must evaluate the effect of the bit width assigned to
the coefficients. That is, one must determine if the frequency specifications of the
filter are met for a given bit width and ensure that the resulting IIR digital filter is
stable. We can use MATLAB to do the simulation. Specifically, the MATLAB
function fi is used to represent a decimal fraction with a given number of bits. To
demonstrate the finite word length effect on the filter frequency response, let us
design a fifth-order Butterworth IIR digital filter and assign a total of 5 bits with
4 bits for the fraction to represent each of its coefficients. We can realize the designed
filter either as a single section or as cascaded sections. In Fig. 8.21a the pole-zero
plot of the fifth-order IIR Butterworth digital filter realized as a single section with
full precision coefficients is shown. The pole-zero plot with 5-bit coefficients is
shown in Fig. 8.21b. As can be seen from the figures, the five zeros corresponding to
the full precision are split up with a pair lying outside the unit circle. As far as the
poles are concerned, they are unchanged. Fortunately though, none of the poles is on
the unit circle and so the filter is stable. Let us look at the frequency response of the
Butterworth filter with coefficients in 5-bit fixed-point representation. Figure 8.22a
shows the frequency response of the filter as a single section with 5-bit coefficients
as well as with full precision. The frequency response seems to match the desired
frequency response fairly closely. As a comparison, Fig. 8.22b shows the magnitude
of the frequency response of the fifth-order Butterworth IIR digital filter realized as a
single section with coefficient word lengths of 8 bits. It appears that 8 bits for the
coefficients make a perfect match to the full precision case. The following table lists
the values of the numerator and denominator coefficients of the fifth-order
Butterworth IIR digital filter with full precision and 5-bits coefficients (Table 8.1).

When the same fifth-order Butterworth filter is realized as a cascade of first- and
second-order sections, we get the numerator and denominator coefficients as shown
in Table 8.2. Since some of the coefficients have magnitudes greater than unity, we
assign 2 bits to the integer part and 4 bits to the fractional part of the coefficients. The
resulting frequency response of the filter is shown in Fig. 8.23a. The frequency
response corresponding to 6-bit coefficients nearly matches that with full precision
coefficients. In Fig. 8.23b the magnitude of the frequency response of the
Butterworth filter realized as cascaded sections with 8-bit precision coefficients,
which is a perfect match to the full precision case is shown.

Next, let us try an elliptic IIR filter of order 5 with a passband ripple of 0.1 dB and
a minimum stopband attenuation of 40 dB. The coefficients of the filter with full
precision and 6-bit precision are listed in Table 8.3. The corresponding pole-zero
plots of the elliptic IIR filter realized as a single section are shown in Fig. 8.24a, b,
respectively, for full precision and 6-bit precision of the coefficients. The magnitude
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Fig. 8.22 Magnitude of the frequency response of the fifth-order Butterworth IIR digital filter
realized as a single section: (a) 5-bit coefficients; (b) 8-bit coefficients

338 8 Digital Filter Structures



of the frequency response of the IIR elliptic filter with 6-bit coefficients is shown in
Fig. 8.25a. Figure 8.25b shows the magnitude response for coefficient word lengths
of 8 bits. The same elliptic filter is also realized in cascaded form. The magnitude of
the frequency response for 6-bit and 8-bit coefficient word lengths are shown in
Fig. 8.26a, b, respectively. In this case, 6-bit coefficient word length meets the
frequency specifications better than those of the single section realization.

Finally, let us see how the limited coefficient word length affects an FIR digital
filter. To this end, let us design a 12th-order linear-phase FIR digital filter to
approximate an ideal lowpass filter with a passband edge of π

2. We will use
Blackman-Harris window. The MATLAB function fir1(N,wn,wind) is invoked to
design the FIR filter, where N is the filter order, wn is the normalized passband edge,
and wind is the window function of length N + 1. The impulse response coefficients
of the lowpass FIR filter are listed in Table 8.4 for 6-bit and 8-bit coefficient word
lengths, respectively. The filter with 8-bit word length for the coefficients meets the
desired specifications exactly, as can be seen from Fig. 8.27a, b. The MATLAB
M-file for this example is named Filter_coefft_sensitivity.m.

Example 8.7 Simulation of Filtering Using Simulink In this example we will do a
simulation of digital filtering using fixed-point arithmetic with the aid of MATLAB’s
Simulink. The block diagram of the filtering operations is shown in Fig. 8.28.

Table 8.1 Numerator and denominator coefficients of fifth-order Butterworth IIR digital filter as a
single section

Numerator coefficients Denominator coefficients

Full precision 5-bit precision Full precision 5-bit precision

0.0528 0.0625 1.0000 0.9375

0.2639 0.2500 0.0000 0.0000

0.5279 0.5000 0.6334 0.6250

0.5279 0.5000 0.0000 0.0000

0.2639 0.2500 0.0557 0.0625

0.0528 0.0625 0.0000 0.0000

Table 8.2 Numerator and
denominator coefficients of
fifth-order Butterworth IIR
digital filter as cascaded
sections

Section

Numerator coefficients Denominator coefficients

Full 6-bit Full 6-bit

1 1.0000 1.0000 1.0000 1.0000

0.9989 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

2 1.0000 1.0000 1.0000 1.0000

2.0018 1.9375 0.0000 0.0000

1.0018 1.0000 0.1056 0.1250

3 1.0000 1.0000 1.0000 1.0000

1.9993 1.9375 0.0000 0.0000

0.9993 1.0000 0.5279 0.5000
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Fig. 8.23 Magnitude of the frequency response of the fifth-order Butterworth IIR digital filter
realized as cascaded sections: (a) fixed-point 6-bit coefficients; (b) fixed-point 8-bit coefficients
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It consists of a sinusoidal source of a specified frequency. The output of the
sinusoidal source is in floating-point format. The block also allows us to specify
the sampling rate. We can also choose a random signal source, which can output
either a uniformly distributed random sequence or a Gaussian random sequence in
floating-point format. In Fig. 8.28 we see a manual switch to switch between the
input sources. To change the switch position, one has to double-click it and save the
diagram before starting the simulation. The signal output is then converted to fixed-
point format before it is filtered. This is achieved by the block named Data Type
Conversion. Its parameters are shown in Fig. 8.29. In this example, we have chosen a
word length of 10 bits with 7 bits for the fraction. This block allows other formats
such as integer, double, etc. The converted data is then applied to the input of either
an FIR or IIR digital filter via a switch, as shown in Fig. 8.28. The filter order,
passband edge, etc. can be specified by double-clicking the blocks named Lowpass
FIR Filter and Lowpass IIR Filter and then entering the values in the appropriate
fields. In Fig. 8.30a, b the parameters chosen for the FIR and IIR filters, respectively,
are shown. Finally, the time-domain input and output are displayed on the respective
scopes. We have also included a power spectrum analyzer to display the power
spectrum of the filtered signal. Now we are ready to start the simulation. Figure 8.31a
shows the input sinusoidal signal with unit amplitude at a frequency of 1000 Hz and
a sampling frequency of 8 kHz. The FIR filtered signal is shown in Fig. 8.31b, which
is identical to the input except for a tiny difference in the amplitude. The power
spectrum of the FIR filtered signal is depicted in Fig. 8.31c, which has a peak at
1 kHz corresponding to the input. Note that the spectrum is shown over the
frequency range �4 kHz to +4 kHz. That is why we see two peaks at �1 kHz. For
the same sinusoidal input, the output of the IIR filter is shown in Fig. 8.31d. The
corresponding power spectrum can be seen in Fig. 8.31e. Even though the IIR output
power spectrum has a peak at 1 kHz, it has more peaks than those of the FIR output.
The same filtering operations are repeated using the uniformly distributed random
sequence as input. The input random sequence is shown in Fig. 8.32a. The FIR
filtered output sequence and its power spectrum are shown in Fig. 8.32b, c, respec-
tively. Since the FIR filter is a lowpass filter, we see the frequency components from
DC to 1 kHz having much higher values than the rest of the frequency components.
Similar observations are made from Fig. 8.32d, e, which correspond to the output
from the IIR filter. The Simulink file to solve this example is named
Filter_fixed_point.slx.

Table 8.3 Numerator and denominator coefficients of fifth-order elliptic IIR digital filter as a
single section

Numerator coefficients Denominator coefficients

Full precision 6-bit precision Full precision 6-bit precision

0.1052 0.0938 1.0000 1.0000

0.3192 0.3125 �0.2291 �0.2500

0.5248 0.5313 1.1785 1.1875

0.5248 0.5313 �0.3114 �0.3125

0.3192 0.3125 0.3204 0.3125

0.1052 0.0938 �0.0600 �0.0625
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Fig. 8.24 Pole-zero plot of a fifth-order elliptic IIR digital filter realized as a single section: (a) full
precision for the coefficients; (b) 6-bit fixed-point representation of the coefficients
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Fig. 8.25 Magnitude of the frequency response of the fifth-order elliptic IIR digital filter realized as
a single section: (a) 6-bit coefficients; (b) 8-bit coefficients
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Fig. 8.26 Magnitude of the frequency response of the fifth-order elliptic IIR digital filter realized as
cascaded sections: (a) fixed-point 6-bit coefficients; (b) fixed-point 8-bit coefficients
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8.4.4 Error Due to Finite Word Length Arithmetic

In this section we will discuss the effect due to finite word length arithmetic on the
output of both IIR and FIR digital filters. First let us analyze the first- and second-
order sections of an IIR digital filter and then give an example based on MATLAB.

First-Order IIR Filter
Consider the first-order IIR digital filter shown in Fig. 8.33. Figure 8.33a shows the
first-order filter with arithmetic performed with infinite precision, and Fig. 8.33b
shows the same filter with finite precision arithmetic. The finite precision arithmetic
results in an error at each sample and is modeled as a noise source denoted by e
[n]. This error propagates through the filter and appears as additive noise at the
output as indicated in the figure. This noise at the multiplier output is assumed to be
uniformly distributed with a variance σ2e . It can be shown that the variance of the
noise at the output with an impulse response sequence he[n] is related to the noise
due to the multiplier by

σ2ye ¼ σ2e
X1
n¼0

he n½ �j j2 ð8:51Þ

From Fig. 8.33b, we find that the transfer function of the noise due to the
multiplier is the same as the transfer function of the first-order IIR digital filter.
That is,

He zð Þ ¼ H zð Þ ¼ 1
1� az�1

ð8:52Þ

Therefore, the impulse response corresponding to the noise transfer function is
given by

Table 8.4 FIR filter
coefficients with 6-bit and
8-bit word lengths for the
coefficients

Full precision 6-bit precision 8-bit precision

0.0000 0.0000 0.0000

0.0004 0.0000 0.0000

0.0000 0.0000 0.0000

�0.0231 �0.0313 �0.0234

0.0000 0.0000 0.0000

0.2720 0.2813 0.2734

0.5014 0.5000 0.5000

0.2720 0.2813 0.2734

0.0000 0.0000 0.0000

�0.0231 �0.0313 �0.0234

0.0000 0.0000 0.0000

0.0004 0.0000 0.0000

0.0000 0.0000 0.0000
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Fig. 8.27 Magnitude of the frequency response of the 12th-order linear-phase FIR digital filter
realized as a single section: (a) fixed-point 6-bit coefficients; (b) fixed-point 8-bit coefficients
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Fig. 8.28 Block diagram of digital filtering simulation

Fig. 8.29 Specification details of data type conversion block



he n½ � ¼ h n½ � ¼ anu n½ � ð8:53Þ
The variance of the output noise due to finite precision arithmetic is then obtained

using (8.51) and is given by

σ2ye ¼ σ2e
X1
n¼0

anj j2 ¼ σ2e
1� a2

, a < 1 ð8:54Þ

Fig. 8.30 Parameters of the filter blocks in Fig. 8.28: (a) FIR filter parameters; (b) IIR filter
parameters
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Second-Order IIR Filter
Next, let us consider the second-order IIR digital filter, which is shown in Fig. 8.34
along with the noise model. In this case also, the noise transfer functions for both
multipliers are the same as the signal transfer function, which is

Hea zð Þ ¼ Heb zð Þ ¼ H zð Þ ¼ 1

1þ az�1 þ bz�2 ð8:55Þ

Assuming both multiplier noise sources to have the same varianceσ2e , the variance
of the noise at the output due to both multipliers is found to be

σ2ye ¼ 2σ2e
X1
n¼0

h n½ �j j2 ð8:56Þ

Fig. 8.30 (continued)
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Fig. 8.31 Results of digital filtering simulation using Simulink: (a) input sinusoid of frequency
1 kHz; (b) FIR filtered output sequence; (c) power spectrum of the FIR filtered sequence; (d) IIR
filtered output sequence; (e) power spectrum of the IIR filtered sequence
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Fig. 8.31 (continued)
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Note that the two noise sources are independent. As an example, if a ¼ 0.6 and
b ¼ 0.0225, the transfer function in (8.55) can be expressed in partial fraction form
as given by

H zð Þ ¼ 1:0774
1þ 0:5598z�1

� 0:0774
1þ 0:0402z�1

ð8:57Þ

The corresponding impulse response is obtained by identifying each term on the
right-hand side of (8.57) with a causal exponential sequence, which is

h n½ � ¼ 1:0774 �0:5598ð Þnu n½ � � 0:0774 �0:0402ð Þnu n½ � ð8:58Þ
Since the impulse response in (8.58) is convergent, we find that

X1
n¼0

h n½ �j j2 � 1:6966 ð8:59Þ

Therefore, the variance of the output noise due to the two multipliers is found
from (8.56) and (8.59) to be

σ2ye � 2σ2e∗1:6966 ð8:60Þ

MATLAB Example: Fixed-Point Implementation of an IIR Digital Filter
Let us consider an example using MATLAB to compute the variance of the noise at
the output of an Nth-order IIR digital filter using finite precision arithmetic opera-
tions. We will design Butterworth and elliptic IIR digital filters of order N and then
compute the responses to a specified input. The filtering operation will be achieved

Fig. 8.31 (continued)
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Fig. 8.32 Results of digital filtering simulation using Simulink: (a) uniformly distributed random
sequence; (b) FIR filtered output sequence; (c) power spectrum of the FIR filtered sequence; (d) IIR
filtered output sequence; (e) power spectrum of the IIR filtered sequence
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Fig. 8.32 (continued)
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using fixed-point arithmetic with specified word length. Further, the designed filters
will be implemented in either a single Direct Form II structure or a cascade form. The
MATLAB tool to implement fixed-point arithmetic is fimath. The details for this
example are given in the M-file “Emulate_IIR_fixed_pt.m”. The signal-to-noise
ratios (SNR) for the two types of filters are listed in the following Table. For all
the cases, the word lengths for the filter coefficients are set to a total of signed 10 bits.
The fractional bit lengths will depend on the maximum absolute value of the filter
coefficients. The arithmetic operations are performed with a word length of 10 bits
(Table 8.5).

Figure 8.35 shows the magnitude of the frequency response of the seventh-order
Butterworth IIR digital filter. The filtered outputs with full precision and 10-bit

Fig. 8.32 (continued)
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y[n]+ye[n]

+

e[n]

+

a

z-1

x[n]

y[n]

(a) (b)

Fig. 8.33 Signal flow graph of a first-order IIR digital filter: (a) full precision arithmetic operation;
(b) finite precision arithmetic operation

8.4 Finite Word Length Effect 355



precision are shown in the top and bottom plots of Fig. 8.36. The corresponding
spectra are shown in Fig. 8.37. As can be seen in the bottom plot, noise due to
arithmetic errors is spread over the entire band of frequencies. The error between the
full precision and finite precision outputs is shown in the top plot of Fig. 8.38. Its
histogram and spectrum are shown in the middle and bottom plots, respectively. For
the cascade realization of the seventh-order Butterworth filter, the arithmetic error,
its histogram, and spectrum are shown in Fig. 8.39.

The same M-file is used to perform the filtering operation using a seventh-order
elliptic IIR digital filter. The word lengths for the filter coefficients and arithmetic
operations are the same as those used for the Butterworth filter. The results are
shown in Figs. 8.40, 8.41, 8.42, 8.43, and 8.44. The same M-file also generates a
zero-mean Gaussian noise with standard deviation of 0.5 and filters it using fixed-
point arithmetic. For this case, all the word length specifications are the same as
those used for the input signal. Figure 8.45 shows the spectrum of the filtered noise
using a single structure, where the top plot corresponds to full precision arithmetic
and the bottom plot corresponds to fixed-point implementation. The error sequence,
its histogram, and the spectrum are shown in the top, middle, and bottom plots,
respectively, in Fig. 8.46. The same quantities are shown in Figs. 8.47 and 8.48 for

+

+

-a

z-1

y[n]+ye[n]

+

x[n]

ea[n]

+

-b

eb[n]

z-1

Fig. 8.34 Signal flow graph of a second-order IIR digital filter with noise sources due to the two
multipliers

Table 8.5 SNR for IIR
digital filters

Filter type Single structure Cascade structure

Butterworth 39.79 dB 24.56 dB

Elliptic 22.36 dB 40.46 dB
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the cascade structure. These results are obtained using a seventh-order Butterworth
lowpass IIR digital filter. Similar results are shown for the elliptic IIR digital filter in
Figs. 8.49, 8.50, 8.51, and 8.52.

MATLAB Example: Fixed-Point Implementation of an FIR Digital Filter
This example is similar to the previous example except that it deals with an FIR
digital filter. In particular, we design a lowpass FIR digital filter of order 11 using
Blackman window and then represent the filter coefficients in fixed-point represen-
tation with a word length of 8 bits. As before, the fractional word length will depend
on the maximum magnitude of the filter coefficients. This filter is then used to filter
either a signal or a zero-mean Gaussian random sequence. Both the signal and the
noise are represented in fixed-point format with a word length of 8 bits. The
magnitude of the frequency response of the lowpass FIR filter is shown in
Fig. 8.53. The filtered signal is shown in Fig. 8.54, where the top plot represents
the lowpass filtered signal with full precision and the bottom plot corresponds to the
filtered signal using fixed-point arithmetic. The resulting signal-to-noise ratio due to
finite precision arithmetic is found to be 26.94 dB. The spectra of the two filtered
sequences are shown in Fig. 8.55. As can be seen from the figure, the arithmetic error
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Fig. 8.45 Spectrum of filtered noise due to arithmetic error using a single structure Butterworth IIR
digital filter: top, spectrum of full precision filtered noise; bottom, spectrum of finite precision
filtered noise
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appears as noise over the whole frequency range. Figure 8.56 illustrates the error
sequence, its histogram, and spectrum in the top, middle, and bottom plots, respec-
tively. As a final step, a zero-mean Gaussian noise sequence in fixed-point format is
input to the FIR filter, and the results are shown in Figs. 8.57, 8.58, and 8.59. These
figures are self-explanatory. The details for this example are given in the M-file
“Emulate_FIR_fixed_pt.m”.

8.4.5 Limit Cycles in IIR Digital Filters

Finite precision arithmetic may cause unstable conditions in IIR digital filters. This
will result in oscillation or periodic response for some specific inputs such as zero
input with nonzero initial conditions or constant inputs. These oscillations are known
as limit cycles. Limit cycles occur only in IIR digital filters and are due to the
presence of feedbacks. There are two types of limit cycles possible in IIR digital
filters, and they are called granular and overflow limit cycles. In granular limit cycle,
the amplitude of oscillation is small, while the amplitude may be large in overflow
limit cycle.
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We will illustrate the occurrence of limit cycles by an example using MATLAB.
First we have to design an IIR digital filter. In this example, we will design either an
elliptic or Butterworth lowpass IIR digital filter of order 4 with a cutoff frequency of
0.1π. For the elliptic filter, we will use a passband ripple of 0.1 dB and a minimum
stopband attenuation of 50 dB. Once the specified filter is designed, we can convert it
to second-order sections using the function tf2sos. Next, we convert the second-
order sections to Direct Form II structures using the MATLAB function dfilt.df2sos.
Now we have to represent the Direct Form II filter coefficients in fixed-point format.
This is done by invoking the function set(hd,’arithmetic’,’fixed’) where, hd is the
Direct Form II filter obtained in the previous step. Finally, we call the function
Res ¼ limitcycle(hd) to detect the presence of the limit cycle in the IIR digital filter.
MATLAB detects the presence of limit cycles by performing Monte Carlo simula-
tion using random initial states and zero input vectors of length twice that of the
impulse response. One can set these numbers to any desired values. The M-file for
this example is named Test_limit_cycle.m. The magnitude of the frequency response
of the fourth-order elliptic IIR digital filter is shown in Fig. 8.60. When the M-file is
run, it reports an overflow limit cycle, which is shown in Fig. 8.61. When the M-file
is run again, we get a different overflow limit cycle shown in Fig. 8.62. When the
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Fig. 8.47 Spectrum of filtered noise due to arithmetic error using a cascade structure Butterworth
IIR digital filter: top, spectrum of full precision filtered noise; bottom, spectrum of finite precision
filtered noise
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same M-file is run again, we get a granular limit cycle. Two different runs result in
granular limit cycles and are shown in Figs. 8.63 and 8.64 for the elliptic IIR digital
filter. When a fourth-order IIR Butterworth digital filter is used, the results are
different from those of the elliptic filter. The magnitude of the frequency response
of the lowpass IIR Butterworth digital filter is shown in Fig. 8.65, and the
corresponding limit cycle obtained is shown in Fig. 8.66.

8.5 FIR Lattice Structure

Before we close this chapter, we will describe another structure to realize FIR digital
filters. More specifically, we will learn how to realize an FIR filter in lattice form. To
this end, consider the structure shown in Fig. 8.67, which is a second-order FIR filter
in lattice form. The general form of the transfer function of a second-order FIR
digital filter is given by

Output error due to finite precision arithmetic

Histogram of output error

Spectrum of output error

Frequency, Hz

N
or

m
al

iz
ed

 m
ag

ni
tu

de
P

ro
ba

bi
lit

y
A

m
pl

itu
de

Bin value

index n

0.05

0.06

1

0.5

0
0 500 1000 1500 2000 2500

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

0.04

0.02

0

0 50 100 150 200 250 300

0

-0.05

Fig. 8.48 Histogram of the error sequence due to arithmetic error using a cascade structure
Butterworth IIR digital filter: top, error sequence; middle, histogram; bottom, spectrum of the
error sequence

8.5 FIR Lattice Structure 365



H zð Þ ¼ b0 þ b1z
�1 þ b2z

�2 ð8:61Þ
The task is then to find the values of the multipliers g1 and g2 in terms of the

coefficients of H(z) in (8.61). These multipliers are also called the reflection coeffi-
cients. From the lattice structure depicted in Fig. 8.67, we relate the variables in the
Z-domain as follows.

X0 zð Þ ¼ b0X zð Þ ð8:62aÞ

Y0 zð Þ ¼ X0 zð Þ ð8:62bÞ

X1 zð Þ ¼ X0 zð Þ þ g1z
�1Y0 zð Þ ð8:63aÞ

Y1 zð Þ ¼ g1X0 zð Þ þ z�1Y0 zð Þ ð8:63bÞ
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X2 zð Þ ¼ X1 zð Þ þ g2z
�1Y1 zð Þ ð8:64aÞ

Y2 zð Þ ¼ g2X1 zð Þ þ z�1Y1 zð Þ ð8:64bÞ

Y zð Þ ¼ X2 zð Þ ð8:65Þ
Using (8.62a) and (8.62b) in (8.63), we have
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Fig. 8.66 Overflow limit cycle of the IIR Butterworth digital filter

Fig. 8.67 Signal flow diagram of a second-order FIR lattice structure
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X1 zð Þ ¼ b0X zð Þ 1þ g1z
�1

� � ð8:66aÞ

Y1 zð Þ ¼ b0X zð Þ g1 þ z�1
� � ð8:66bÞ

Similarly, by using (8.66) in (8.64), we get

X2 zð Þ ¼ b0X zð Þ 1þ g1 1þ g2ð Þz�1 þ g2z
�2

	 
 ð8:67aÞ

Y2 zð Þ ¼ b0X zð Þ g2 þ g1z
�1 1þ g2ð Þ þ z�2

	 
 ð8:67bÞ
and

Y zð Þ ¼ X2 zð Þ ¼ b0X zð Þ 1þ g1 1þ g2ð Þz�1 þ g2z
�2

	 
 ð8:68Þ
The overall transfer function is found from (8.68) and is given by

Y zð Þ
X zð Þ ¼ b0 1þ g1 1þ g2½ �z�1 þ g2z

�2
� � ð8:69Þ

Since the transfer function in (8.69) must be the same as the transfer function in
(8.61), we then find the reflection coefficients in the lattice structure in terms of the
impulse response sequence of the FIR filter by solving the following equations.

b0g1 1þ g2ð Þ ¼ b1 ð8:70aÞ

b0g2 ¼ b2 ) g2 ¼
b2
b0

ð8:70bÞ

Therefore,

g1 ¼
b1

b0 1þ g2ð Þ ¼
b1

b0 þ b2
ð8:71Þ

By generalizing the lattice structure in Fig. 8.67 to a pth-order FIR filter, we can
write the intermediate sequences in recursive equations as described by

X0 zð Þ ¼ b0X zð Þ ð8:72aÞ

Y0 zð Þ ¼ X0 zð Þ ð8:72bÞ

Xi zð Þ ¼ Xi�1 zð Þ þ giz
�1Yi�1 zð Þ ð8:72cÞ
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Yi zð Þ ¼ giXi�1 zð Þ þ z�1Yi�1 zð Þ, 1 � i � p ð8:72dÞ

Y zð Þ ¼ Xp zð Þ ð8:72eÞ
The general form of the transfer function of a pth-order FIR filter takes the form

H zð Þ ¼ b0 þ b1z
�1 þ b2z

�2 þ � � � þ bpz
�p ð8:73Þ

Then, there exists a procedure to determine the reflection coefficients {gi, 1� i�p}
in the lattice structure as described below.

1. By extracting the coefficient b0, express H(z) as H(z) ¼ b0Ap(z). Determine the
pth multiplier by first determining Bp(z) ¼ z�pAp(z

�1) and then evaluating

gp ¼ lim
z!1Bp zð Þ

2. For i ¼ p : � 1 : 2

	
Ai�1 zð Þ ¼ Ai zð Þ � giBi zð Þ

1� g2i

Bi�1 zð Þ ¼ z� i�1ð ÞAi�1 z�1ð Þ

gi�1 ¼ lim
z!1Bi�1 zð Þ


Note that when the argument of Ai or Bi is z, then the corresponding polynomial is
in descending power of z�1. When the argument is z�1 in Ai or Bi, then the
corresponding polynomial will be in ascending power of z. For this procedure to
work properly, the reflection coefficients in the lattice structure should satisfy the
condition |gk| 6¼ 1, 1 � k � p.

Example 8.8 Determine the reflection coefficients of the lattice structure realizing
the FIR transfer function of (10.61) using the above procedure.

Solution From the given transfer function, we obtain

A2 zð Þ ¼ 1þ b1
b0

z�1 þ b2
b0

z�2

Therefore,

B2 zð Þ ¼ z�2A2 z�1
� � ¼ z�2 1þ b1

b0
zþ b2

b0
z2

� �
¼ z�2 þ b1

b0
z�1 þ b2

b0
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And

g2 ¼ lim
z!1B2 zð Þ ¼ b2

b0

Following the above procedure, we next find

A1 zð Þ ¼ 1� g22
� �þ b1

b0
1� g2ð Þz�1

1� g22

B1 zð Þ ¼ z�1A1 z�1
� � ¼ z�1 1� g22

� �þ b1
b0

1� g2ð Þ
1� g22

Finally,

g1 ¼ lim
z!1B1 zð Þ ¼ b1

b0

1
1þ g2

¼ b1
b0 þ b2

Example 8.9 MATLAB Example
MATLAB has the function tf2latc to calculate the reflection coefficients of the lattice
form of an FIR digital filter. It takes the coefficients of the FIR filter transfer function
and returns the reflection coefficients of the corresponding lattice structure. The
coefficients correspond to the descending powers of z�1. The same MATLAB
function can also be used to determine the reflection coefficients of either a maxi-
mum or minimum phase FIR filter. The transfer function of a fourth-order FIR filter
is specified by

H zð Þ ¼ 2þ 23z�1 þ 73z�2 þ 43z�3 � 15z�4

We invoke the function G¼ tf2latc(B), whereB ¼ 2, 23, 73, 43, �15½ �
is the vector of coefficients of H(z). The reflection coefficients returned by
MATLAB are found to be 0.9698, 4.1782, �1.9502, and �7.5. The same function
can also be used to calculate the reflection coefficients of an IIR digital lattice filter.
The input arguments will be the coefficients of the numerator and denominator
polynomials of the transfer function of the IIR filter. Again, the coefficients corre-
spond to the respective polynomials in descending powers of z�1. In this example,
the IIR filter is a fourth-order Butterworth filter with a cutoff frequency of 0.3π. The
resulting transfer function is found to be

H zð Þ ¼ 0:0186þ 0:0743z�1 þ 0:1114z�2 þ 0:0743z�3 þ 0:0186z�4

1� 1:5704z�1 þ 1:2756z�2 � 0:4844z�3 þ 0:0762z�4

The vectors of coefficients of the numerator and denominator polynomials are

B ¼ 0:0186; 0:0743; 0:1114; 0:0743; 0:0186½ �
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A ¼ 1;�1:5704; 1:2756;�0:4844; 0:0762½ �
After the function call K ¼ tf2latc(B,A), the reflection coefficients are found to be

K ¼ �0:7459; 0:7158;�0:3669; 0:0762½ �
The M-file to solve this problem is named FIR_lattice.m.

8.6 Summary

We have described the signal flow graphs of both IIR and FIR digital filters as aids to
their implementations. Signal flow graphs allow us to come up with different
possible structures to realize the transfer function of a digital filter with each
structure having its own advantages and disadvantages. Specifically, we defined
three different structures for an IIR digital filter, namely, Direct Form I and II,
cascade form, and parallel form. The Direct Form I structure uses more number of
delay elements than the filter order and, so, is called a noncanonical structure. On the
other hand, a direct form II structure is canonical in the delay elements. The cascade
form involves the tandem connection of first- and/or second-order sections, which
can be in either Direct Form I or II. In the cascade form, the output of the first section
is the input to the second section and so on. The input to the first section is the overall
input, and the output of the last section is the overall output. The parallel form
consists of first- and/or second-order sections connected in parallel. The input to all
the sections is the same, and the outputs are added to obtain the true overall output.
An FIR filter can be realized in direct form or cascaded form. However, due to the
linearity in phase of an FIR filter, one can take advantage of the symmetry/
antisymmetry in its impulse response in reducing the number of multipliers. We
showed several examples to illustrate the development of signal flow graphs for both
FIR and IIR digital filters. We described fixed-point and floating-point representa-
tions of numbers used in implementing digital filters. Using fixed-point representa-
tion of numbers, we discussed the effect of finite word length coefficients on the
frequency response of the digital filters. This was solidified by a couple of examples
using MATLAB M-files and Simulink. Next we dealt with implementing digital
filters using fixed-point arithmetic operations. Practical digital filters use finite word
lengths to represent the filter coefficients and to perform arithmetic operations as
well. It is, therefore, important to ascertain the performance of the designed digital
filters before the actual implementation. To this end, we showed two examples based
on MATLAB that involve IIR and FIR digital filters. Finally, we briefly described
the limit cycle that may be present in IIR digital filters using finite word length
arithmetic. In the next chapter, we will learn the efficient computation of the DFT
through fast Fourier transform (FFT). Since DFT is used extensively in digital
signal processing applications, it is a must for us to know how to compute it
efficiently so that it can be used in real time.
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8.7 Problems

1. Develop the canonic Direct Form II signal flow graph to realize the transfer

function H zð Þ ¼ 3þ1:5z�1

1þ1:2z�1þ0:35z�2.
2. Realize the canonic Direct Form II structure of the transfer function

H zð Þ ¼ 2z2þz
z2�1:0zþ0:21.

3. Show the Direct Form II canonic realization of the transfer function

H zð Þ ¼ 3z2�0:6z
z2�0:8zþ0:15.

4. The three functionsH1 zð Þ ¼ 1�0:6z�1

1þ0:25z�1,H2 zð Þ ¼ 0:2þz�1

1þ0:3z�1, andH3 zð Þ ¼ 2
1þ0:25z�1 are

cascaded in that order. (a) Determine the transfer function of the overall system,
(b) determine the difference equation characterizing the overall system, and
(c) develop a parallel form realization of the overall system.

5. The transfer function of an IIR digital filter is expressed as the product of first-

and/or second-order functions H zð Þ ¼
YM
m¼1

Bm zð Þ
Am zð Þ, where the coefficients of the

numerator and denominator polynomials are real. Determine the number of
cascade realizations that are possible by pairing different poles and zeros as
well as different orderings of the sections.

6. A fifth-order elliptic lowpass IIR digital filter has the transfer function described

by H zð Þ ¼ 0:0447þ0:0547z�1þ0:0936z�2þ0:0936z�3þ0:0547z�4þ0:0447z�5

1�2:035z�1þ2:657z�2�1:9297z�3þ0:8727z�4�0:1791z�5 . (a) Express the
transfer function in factored form. (b) Determine two different cascade forms
of the transfer function. (c) Come up with two different parallel forms of the
transfer function. (d) Use MATLAB to solve the problem. (e) Realize each
second-order section in direct form II.

7. For the IIR filter in Problem 6, plot the magnitude of the frequency response in
dB using 8 bits to represent the coefficients of the transfer function in fixed-point
format. Compare the result with that using full precision for the coefficients. See
what happens if the coefficient word length is reduced to 6 bits. Use MATLAB
to solve the problem. Repeat the problem when the filter is realized in cascade
and parallel forms.

8. Implement the IIR filter of Problem 6 using fixed-point arithmetic. Use an input
signal x[n] ¼ sin (0.15πn)u[n]. Calculate the mean square error of the noise in
dB at the output due to finite word length arithmetic. Determine the minimum bit
width necessary for acceptable performance. Use full precision for the filter
coefficients. You need to use MATLAB to solve the problem.

9. Compare the output noise due to arithmetic errors that you calculated in Problem
8 with that when the IIR filter in Problem 6 is implemented in (a) cascade form
and (b) in parallel form.

10. Realize the FIR filter transfer function H(z) ¼ (1 + 0.4z�1)4(1 � 0.2z�1)2 in
(a) direct form and (b) cascade of three second-order sections.

11. In playing a DVD, it is determined that the time delay introduced by the FIR
filter used in the reconstruction of the audio signal should be no greater than
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6 ms for acceptable time synchronization with the video signal. If the sampling
frequency of the audio signal is 48 kHz, determine the maximum number of taps
in the FIR filter so as to satisfy the delay requirement.

12. The impulse response of a linear-phase lowpass FIR filter of order 12 has the
following sequence:

h n½ � ¼ 0:082, � 0:2251, � 0:3784, � 0:083, 0:6438, 1:4181, 1:75, 1:4181, 0:6438,
�0:083, � 0:3784, � 0:2251, 0:082

� �
.

What is the value of the frequency response of the filter at DC? If the fourth and
the tenth coefficients are changed so that the new DC value is unity, what are the
values of those coefficients?

13. Design a 16th-order lowpass FIR filter with a passband edge at 0.3π, stopband
edge at 0.6π, and a minimum stopband attenuation of 40 dB based on Parks-
McClellan method using MATLAB.

14. Design a 32nd-order bandpass FIR digital filter using Parks-McClellan method
to satisfy the following specifications: passband edges at 0.3π and 0.5π and
stopband edges at 0.1π and 0.7π.

15. The following diagram depicts an FIR filter used in the video-processing chip
made by the Texas Instruments, Inc. The coefficient k controls the magnitude of
the frequency response of the filter and is user-defined. (a) Find the input-output
relation in the discrete-time domain corresponding to the filter structure shown.
(b) Is the phase response of the FIR filter linear? (c) What is the group delay of
the filter in samples?

+ ×

×

× +

z-1 z-1 z-1z-1
x[n]

y[n]
-2

k

256

Signal flow graph of Problem 15
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Chapter 9
Fast Fourier Transform

9.1 Brute-Force Computation of DFT

As was defined in a previous chapter, the discrete Fourier transform (DFT) is the
sampled version of the discrete-time Fourier transform (DTFT), with a finite number
of samples taken around the unit circle in the Z-domain. DFT is very useful in the
analysis of discrete-time signals and linear time-invariant discrete-time systems. It is,
therefore, necessary to determine the computational complexity in performing an
N-point DFT of a sequence so that we may be able to come up with a more efficient
computational algorithm. To this end, let us first evaluate the computational com-
plexity of computing an N-point DFT using brute-force method. Consider an
N-point discrete-time sequence {x[n]}, 0 � n � N � 1, N 2 Z. Its DFT is given by

X k½ � ¼
XN�1

n¼0

x n½ �W nk
N , 0 � k � N � 1, ð9:1Þ

where

W nk
N � e�j2πN nk ð9:2Þ

From Eq. (9.2), we notice thatW nk
N is complex, and so X[k] is also complex. In

Eq. (9.1), there are N terms x n½ �W nk
N for each value of k in the summation.

Therefore, there are N number of complex multiplications for each k. Note that
the sequence x[n] may be real or complex. The summation then has N-1 number
of complex additions for each k. Therefore, to compute an N-point DFT, we need
N2 complex multiplications and N(N � 1) complex additions. In practice, N is
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very large. Therefore, the number of complex additions is very nearly equal to N2

. It is customary to represent the computational complexity by O(N2). In other
words, the number of arithmetic operations increases as the square of the length
of the sequence if we use the brute-force technique. Each arithmetic operation is
equal to one complex multiplication and one complex addition. For instance, a
256-point DFT needs 216 number of complex arithmetic operations. If the
sequence length is increased to 1024 points, then the computational load
becomes 220, which is more than a million! This becomes a problem for real-
time implementation of DFT. Fortunately there are algorithms, which require O
N
2log2N

� �
number of arithmetic operations to compute an N-point DFT. Such

algorithms are known as fast algorithms. One such fast algorithm is called the
fast Fourier transform (FFT) and is due to Cooley-Tukey fast algorithm.

9.2 Fast Fourier Transform

In this algorithm the sequence length N is assumed to be a positive integer power of
2. Hence the algorithm is known as radix-2 algorithm. There are two versions of the
fast algorithm, namely, decimation-in-time and decimation-in-frequency algorithms.
Both algorithms are fast algorithms meaning that they requireO N

2log2N
� �

operations.
We will describe both algorithms and evaluate their computational complexities.

9.2.1 Decimation-in-Time FFT

In order to describe the algorithm with a signal flow graph, we will consider an eight-
point sequence. In general, N is a positive integer power of 2. If not, we will append
zeros to the sequence to make its length a power of 2. As the name implies, we first
divide the input discrete-time sequence into even-numbered and odd-numbered
sequences as defined by

x1 n½ � ¼ x 2n½ �, 0 � n � N

2
� 1 ð9:3aÞ

x2 n½ � ¼ x 2nþ 1½ �, 0 � n � N

2
� 1 ð9:3bÞ

The DFT of the input sequence x[n] can be expressed as

X k½ � ¼
XN�1

n¼0

x n½ �W nk
N ¼

XN2�1

n¼0

x1 n½ �W2nk
N þ

XN2�1

n¼0

x2 n½ �W 2nþ1ð Þk
N , 0 � k � N � 1 ð9:4Þ
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However,

W2nk
N ¼ e�j 2π

Nð Þ2nk ¼ e
�j 2π

N=2

� �
nk � W nk

N
2
, ð9:5aÞ

and

W 2nþ1ð Þk
N ¼ W k

NW
2nk
N ¼ W k

NW
nk
N
2

ð9:5bÞ

Therefore, the N-point DFT of x[n] can be written as

X k½ � ¼
XN2�1

n¼0

x1 n½ �W nk
N
2
þW k

N

XN2�1

n¼0

x2 n½ �W nk
N
2

ð9:6Þ

We see that each summation on the right-hand side of Eq. (9.6) corresponds to the
DFT of an N

2-point sequence. By denoting

X1 k½ � ¼
XN2�1

n¼0

x1 n½ �W nk
N
2
, ð9:7aÞ

X2 k½ � ¼
XN2�1

n¼0

x2 n½ �W nk
N
2

ð9:7bÞ

we can write Eq. (9.4) as

X k½ � ¼ X1 k½ � þW k
NX2 k½ �, 0 � k � N � 1 ð9:8Þ

In Eq. (9.8), there is something more than meets the eye. We notice that

W
kþN

2ð Þ
N ¼ W k

NW
N
2
N ¼ W k

Ne
�j 2π

Nð ÞN2 ¼ W k
Ne

�jπ ¼ �W k
N ð9:9Þ

Therefore, the N-point DFT in terms of the two N-/2-point DFTs can be rewritten
as

X k½ � ¼ X1 k½ � þW k
NX2 k½ �, 0 � k � N

2
� 1 ð9:10Þ

X k þ N

2

� �
¼ X1 k½ � �W k

NX2 k½ �, 0 � k � N

2
� 1

Assuming that both N-/2-point sequences X1[k] and X2[k] are available, we find
from Eq. (9.10) that there are N/2 complex multiplications and N complex additions
in computing the N-point DFT. The task is not over yet. We need to calculate the two
N-/2-point DFTs. We can follow the same steps that we used in calculating X
[k]. That is, we divide x1[n] and x2[n] into the respective even- and odd-numbered
sequences of length N/4 and then compute the DFTs X1[k] and X2[k] in terms of the
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N-/4-point DFTs as in (9.10). The number of complex multiplications and additions
involved in computing the N-/2-point DFT X1[k] is N/4 and N/2, respectively.
Similarly there are N/4 complex multiplications and N/2 complex additions in the
computation of X2[k]. We can continue this process of dividing the input sequence
into two odd-numbered and even-numbered sequences and calculate the DFT in
terms of the two half-length DFTs until we are left with two points. The DFT of a
two-point sequence requires only additions and no multiplications. The conclusion is
this: For N ¼ 2m, there are m ¼ log2N stages; each stage has N/2 complex
multiplications and N complex additions. Therefore, the total number of complex
multiplications required in computing the N-point DFT using the decimation-in-time
FFT is N

2 log2N and the total number of complex additions is Nlog2N. Note that a
multiplication operation is costlier than an addition/subtraction operation. Thus the
decimation-in-time FFT algorithm is a fast algorithm. We will illustrate the compu-
tational procedure by a signal flow graph using an eight-point sequence for
simplicity.

Signal Flow Graph of an Eight-Point Decimation-in-Time FFT Algorithm

1. Divide the input sequence into even-numbered and odd-numbered sequences,
each of length four points. The even-numbered sequence is {x[0], x[2], x[4], x[6]},
and the odd-numbered sequence is {x[1], x[3], x[5], x[7]}. These two sequences
are the inputs to the two four-point DFT blocks, as shown in Fig. 9.1a.

2. Multiply the bottom half of the DFT {X[4],X[5],X[6],X[7]} by the corresponding
weights W0

8;W
1
8;W

2
8;W

3
8

� 	
. Add the top half of the DFT {X[0],X[1],X[2],X[3]}

to the weighted bottom half of the four-point DFT to obtain the first half of the
eight-point DFT samples. Subtract the weighted bottom four DTF samples from
the top four DFT samples to obtain the second half of the eight-point DFT
samples as shown in Fig. 9.1a.

3. Next, we perform the four-point DFT. Divide the four-point even-numbered
sequence into two two-point even- and odd-numbered sequences, which are,
respectively, {x[0], x[4]} and {x[2], x[6]}. Feed the two two-point sequences to
the two-point DFT blocks, as shown in Fig. 9.1b. Similarly, divide the four-point
odd-numbered sequence obtained in step 1 into two two-point even- and
odd-numbered sequences, which are {x[1], x[5]} and {x[3], x[7]}, respectively.
Feed the two sequences to the bottom two two-point DFT blocks. Multiply the
two DFT samples of the second DFT block by the weights W0

4;W
1
4

� 	
, and add

them to the DFT samples of the first two-point DFT block to obtain the output
points. The second two four-point DFT samples are obtained by subtracting the
two weighted DFT samples from the DFT samples of the first two-point DFT
block. Perform the same operations on the bottom two two-point DFT outputs.
These operations are shown in Fig. 9.1b. Note that the outputs of the first two
two-point DFT blocks are the inputs to the first four-point DFT block and the
outputs of the bottom two two-point DFT blocks are the inputs to the second four-
point DFT block.
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Fig. 9.1 Signal flow graph of an eight-point DFT using decimation-in-time FFT algorithm: (a) two
four-point DFTs, (b) four two-point DFTs, (c) eight-point DFT, (d) butterfly
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4. The last step is to obtain the four two-point DFT samples. As shown in Fig. 9.1c,
each second input sample is multiplied by the weightW0

2, which is actually equal
to unity. Thus, we simply add and subtract the first two samples of each pair of
input samples to obtain the two-point DFT samples. Figure 9.1c is the complete
signal flow graph of an eight-point decimation-in-time FFT algorithm.

What do we observe from the signal flow diagram of Fig. 9.1? The input
sequence {x[n]} is in bit-reversed order. What it means is that the indices of the
input sequence are obtained by reversing the bits of their binary representations.
This is depicted in Table 9.1. There are log28 ¼ 3 stages of computation. Each
stage has 8

2 ¼ 4 butterflies. The signal flow graph of a butterfly is shown in
Fig. 9.1d. Each butterfly has one complex multiplication and two complex
additions. Therefore, the number of complex multiplications for the eight-point
decimation-in-time FFT is #stages ∗ # Butterflies ¼ 12, and the number of
complex additions is #stages ∗ # Butterflies ∗ 2 ¼ 24.

9.2.2 Decimation-in-Frequency FFT

In this algorithm we divide the frequency points into even- and odd-numbered points
and perform the DFT of the input sequence. For a given N-point sequence {x[n]},
0 � n � N � 1, where N is an integer power of two, its even-numbered DFT points
can be expressed as

X 2k½ � ¼
XN�1

n¼0

x n½ �Wn2k
N ¼

XN2�1

n¼0

x n½ �Wn2k
N þ

XN2�1

n¼0

x nþ N

2

� �
W

nþN
2ð Þ2k

N , 0 � k

� N

2
� 1 ð9:11Þ

However, we observe that

Table 9.1 Ordering of an eight-point input sequence using bit reversal

Decimal no. Binary no. Bit-reversed Reordered decimal no.

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7
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Wn2k
N ¼ e�j 2π

Nð Þn2k ¼ e
�j 2π

N
2

� �
nk � W nk

N
2
, ð9:12Þ

W
nþN

2ð Þ2k
N ¼ Wn2k

N W Nk
N ¼ W nk

N
2
e�j 2π

Nð ÞNk ¼ W nk
N
2
e�j2πk ¼ W nk

N
2

ð9:13Þ

We can, therefore, rewrite the even-numbered DFT points in Eq. (9.11) as

X 2k½ � ¼
XN2�1

n¼0

x n½ � þ x nþ N

2

� �
 �
W nk

N
2
, 0 � k � N

2
� 1 ð9:14Þ

From Eq. (9.14), we deduce that the even-numbered DFT points are actually the
N-/2-point DFT of the sequence x n½ � þ x nþ N

2

� � �
, 0 � n � N

2 � 1. We also find
from (9.14) that the number of complex multiplications and additions required to
calculate the even-numbered DFT points is N/2 and N, respectively. We have only
found half the number of DFT points. The other half, namely, the odd-numbered
points, can be found from

X 2k þ 1½ � ¼
XN2�1

n¼0

x n½ �Wn 2kþ1ð Þ
N þ

XN2�1

n¼0

x nþ N

2

� �
W

nþN
2ð Þ 2kþ1ð Þ

N , 0 � k � N

2
� 1

ð9:15Þ
However, since

Wn 2kþ1ð Þ
N ¼ W n

NW
k
N
2
, ð9:16aÞ

W
nþN

2ð Þ 2kþ1ð Þ
N ¼ Wn 2kþ1ð Þ

N W Nk
N W

N
2
N ¼ �W n

NW
nk
N
2
, ð9:16bÞ

we have

X 2k þ 1½ � ¼
XN2�1

n¼0

x n½ � � x nþ N

2

� �
 �
W n

N

� �
W nk

N
2
, 0 � k � N

2
� 1 ð9:17Þ

From the above equation, it is clear that the odd-numbered DFT points correspond to

the DFT of the N-/2-point sequence x n½ � � x nþ N

2

� �� �
W n

N , 0 � n � N

2
� 1. Similar

to the even-numbered DFT points, the number of complex multiplications and additions
required to compute the odd-numbered DFT points is N/2 and N, respectively. In the next
step, we divide the N-/2-point DFTs into even- and odd-numbered points and calculate
the respective DFTs. We can continue this process until we are left with two points. The
total number of stages is log2N with each stage having N/2 multiplications and N
additions. Thus, the computational complexity of the decimation-in-frequency FFT
algorithm is the same as that of the decimation-in-time FFT algorithm. The signal flow
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graph of an eight-point decimation-in-frequency FFT algorithm can be obtained directly
from that of the decimation-in-time algorithm by simply transposing the signal flow
graph of Fig. 9.1c. To transpose a signal flow graph, we need to change the directions of
the arrows, adders will become branch-off points, and the branch-off points will become
adders. The multiplier weights will remain the same.

Example 9.1 CPU Time for Calculating an N-point DFT In this example, let us
compare the CPU time required to calculate an N-point DFT using brute force
against the FFT. In MATLAB, we can start and stop a stopwatch to determine
how long the CPU takes to compute an N-point DFT. Specifically the MATLAB
functions tic starts the stopwatch and toc stops the stopwatch. So, we start the
stopwatch just before starting to calculate the DFT and stop the stopwatch just
after finishing the calculation. The time taken by the CPU to calculate the DFT by
FFT and brute-force methods is plotted with respect to the DFT length N and is
shown in Fig. 9.2a. Here N is a positive integer power of 2. Note that the CPU
time is in microseconds for FFT computation and is in milliseconds for the brute-
force method. We also note that the data in Fig. 9.2a is for a sinusoidal input
sequence. In Fig. 9.2b, the CPU time when the input is a Gaussian random
sequence is shown. As expected, the CPU time varies as the square of the DFT
length N for the brute-force case and is approximately linear for the FFT case.
The MATLAB M-file fft_proc_time.m calculates the CPU time required to
compute the DFT of an input sequence using the brute-force method and FFT
technique.

9.2.3 Inverse FFT

We have seen a fast algorithm to compute an N-point DFT that takes only
O N

2 log2N
� �

number of multiplications instead of N2 number of multiplications
required by the brute-force method. Is there such a fast algorithm to compute the
inverse DFT? After all, what is the use of DFT without its inverse? First, let us look
at the inverse DFT of an N-point DFT, which is defined by

x n½ � ¼ 1
N

XN�1

k¼0

X k½ �W�nk
N , 0 � n � N � 1 ð9:18Þ

What we observe from Eq. (9.18) is that the right-hand side of the equation
without the scaling factor 1/N is identical to the DFT in Eq. (9.1) with the following
differences: the sequence is X[k] instead of x[n] and the multiplying factor is the
complex conjugate of that in (9.1). Therefore, we should be able to use the same flow
graphs, namely, decimation-in-time and decimation-in-frequency, to calculate the
inverse DFT. Since we are using N as a positive integer power of 2, the scaling factor
1/N can be incorporated as 1/2 at each stage of the signal flow graph. Further,
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Fig. 9.2 CPU time versus DFT length N: (a) input sequence is deterministic; (b) input sequence is
random
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division by 2 is equivalent to 1-bit right shift; there is really no multiplication
involved in incorporating the 1/N scale factor. Thus, the inverse DFT (IDFT) can
also be accomplished by the FFT algorithm.

9.3 Spectral Analysis of Discrete-Time Sequences

In this section we will discuss the power spectral density of discrete-time sequences.
Power spectral density is widely used in speech processing. It enables one to identify
the characteristics of speech signals such as voiced and fricative sounds and silence.
Speech compression is achieved by extracting these features and transmitting them
instead of transmitting the entire speech signal. At the receiver, the speech signal is
reconstructed using the transmitted features. Essentially, power spectrum of a
discrete-time sequence is its signature.

9.3.1 Autocorrelation of a Discrete-Time Sequence

The autocorrelation of a discrete-time sequence x[n] is defined as

cxx k½ � ¼
X1
n¼�1

x n½ �x n� k½ �, k ¼ 0, � 1, � 2, . . . ð9:19Þ

The interpretation from the above equation is that the autocorrelation at lag index
k is the sum of the product of the sequence and the same sequence shifted by k
samples to the right. We also notice that the autocorrelation is a maximum at zero lag
and equals the energy in the sequence. If the autocorrelation function falls off very
slowly with respect to the lag k, it means that adjacent samples of the sequence are
highly correlated. On the other hand, if the autocorrelation function falls off rapidly,
then the correlation between adjacent samples of the sequence is very low. That is to
say that adjacent samples of the sequence are uncorrelated. This is typical in noise
sequences.

It is interesting to see from (9.19) that the autocorrelation function looks very
similar to the linear convolution of a sequence with itself. In fact, by rewriting (9.19)
as

cxx k½ � ¼
X1

n¼�1
x n½ �x � k � nð Þ½ � ¼ x n½ �*x �n½ �, ð9:20Þ

we find that the autocorrelation of a sequence is, in fact, the linear convolution of the
sequence with its time-reversed version.
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9.3.2 Relation Between Autocorrelation and DTFT of a
Discrete-Time Sequence

The DTFT of the autocorrelation function in (9.20) denoted Cxx(e
jΩ) is

DTFT cxx n½ �f g � Cxx e jΩ� � ¼ DTFT x n½ �*x �n½ �f g ¼ X e jΩ� �
X e�jΩ� � ð9:21Þ

In the above equation we have used the fact that the DTFT of a time-reversed
discrete-time sequence is the complex conjugate of the DTFT of the original
sequence. Therefore, the DTFT of the autocorrelation function of a discrete-time
sequence is related to the DTFT of the sequence by

Cxx e jΩ� � ¼ X e jΩ� ��� ��2 ð9:22Þ
The power spectral density (PSD) of a discrete-time sequence is the square of the

magnitude of its DTFT. Therefore, the PSD of a discrete-time sequence is the DTFT
of the autocorrelation function of the sequence. Note that the autocorrelation is an
even function as seen from (9.19). Therefore, its DTFT is a real function.

9.3.3 Autocorrelation of Periodic Sequences

In the previous section, we dealt with aperiodic sequences. If a discrete-time
sequence is periodic, then its autocorrelation function is defined as follows. Let ~x
n½ � be a periodic sequence with period N. Then,

c~x ~x k½ � ¼ 1
N

XN�1

n¼0

~x n½ �~x n� k½ � ð9:23Þ

In the above equation, the shift is circular as opposed to linear shift used for
aperiodic sequences. It can be shown that the DFT of the autocorrelation function of
a periodic sequence to be

C~x ~x k½ � ¼ DFT c~x ~x n½ �f g ¼ X k½ �j j2
N

ð9:24Þ

where X[k] is the DFT of ~x n½ �. If a sequence is of finite duration, then it can be
considered to be periodic with period equal to the length of the sequence.

Example 9.2 Calculation of PSD Using MATLAB Let us demonstrate the idea of
the power spectral density using MATLAB. We can use the MATLAB function
cconv to calculate the circular convolution of two periodic sequences. Further, as we
found earlier, the autocorrelation of a periodic sequence can be computed as the
circular convolution of the sequence with its time-reversed version. Thus, the
autocorrelation using the MATLAB function is obtained by using the statement
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c¼ cconv(x,fliplr(x),N). The rest of the statements are found in the MATLABM-file
named Example 9_2.m. In this example, we generate either an amplitude-modulated
signal or random noise. We then calculate the corresponding autocorrelation func-
tion and its DFT. We also compute the DFT of the input sequence. The input signal
and its autocorrelation function are plotted as shown in Fig. 9.3 in the top and bottom
plots, respectively. In Fig. 9.4, the magnitude of the DFT of the autocorrelation in the
top plot and the square of the magnitude of the DFT of the sequence in the bottom
plot are shown. As seen in the figure, they are identical, proving the statement in
(9.24). Similar quantities are shown in Figs. 9.5 and 9.6 when the input is a Gaussian
random sequence.

9.3.4 Short-Time Fourier Transform

The Fourier transform of a signal gives the frequency contents of the signal. In
order to achieve this goal, it has to examine the signal in the time domain over the
entire time interval. A signal in real time evolves as time progresses. Consider an
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orchestra performing in front of an audience. Different instruments are played at
different time instants. These instruments produce different frequencies. If we
apply the Fourier transform to the entire program, all we will know is what
frequencies were present with what magnitudes. We will not know when the
different frequencies appeared and disappeared. In order to be able to pinpoint
the time instants at which different frequencies appear, we need to perform the
Fourier transform over short intervals of time. This is accomplished by what is
known as the short-time Fourier transform (STFT). The STFT is computed by
first segmenting an input sequence into overlapping blocks and then performing
the DFT on each block. The block lengths must be small so that the signal is
stationary over the block time intervals. That is, the signal frequencies do not
change over the block interval. The formal definition of STFT of a discrete-time
sequence is as follows: Let {x[n]} be the sequence whose STFT is to be com-
puted. Divide the sequence into blocks of lengths N samples. Then, the STFT of
the sequence is given by
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X e jΩ; n
� � ¼ XnþN�1

k¼n

x k½ �w n� k½ �e�jkΩ ð9:25Þ

In (9.25), w[n] is a suitable window of length N. As we see from (9.25), the STFT
is a function of both the frequency and time. Since the DFT is computed over short
intervals of time, the corresponding Fourier transform is called short-time Fourier
transform!

STFT is useful in characterizing speech signals. It enables one to recognize the
type of sound – voiced, fricative, etc. – using the frequency contents in each segment
of the speech signal. Let us work out an example based on MATLAB.

Example 9.3 Calculation of STFT Using MATLAB The MATLAB function to
compute the STFT of a discrete-time sequence is spectrogram. It accepts a sequence
and returns its STFT. Invoking just the function spectrogram with proper input
arguments will calculate the STFT of the input sequence and plot it with axes time
and frequency. The magnitude of the DFT will be shown using color map. In this
example, we will consider three types of signals: (1) an amplitude-modulated
(AM) signal, (2) a frequency-modulated (FM) signal, and (3) a chirp signal.
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A chirp signal is one in which the frequency varies with time. In this example, we
consider the frequency of the chirp signal to vary linearly with time. In particular, the
chirp signal in this example is described by

x n½ � ¼ cos Ω0n
2

� �
, n2Z ð9:26Þ

Since frequency is the time derivative of phase of a sinusoid, the instantaneous
frequency of the chirp signal in (9.26) varies linearly with time. The STFT of the
chirp signal obtained by running the M-file Example 9_3.m is shown in Fig. 9.7. The
power level of the frequencies present is indicated by varying colors. The same
M-file is used to compute the STFT of AM and FM signals as well. The STFTs of
AM and FM signals are shown in Figs. 9.8 and 9.9, respectively. We see from
Figs. 9.8 and 9.9 that the frequencies do not change with time, as we expected.
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9.4 Fixed-Point Implementation of FFT

So far we have used full precision arithmetic in calculating the DFT of discrete-time
sequences. In practice, especially in real-time processing, the arithmetic operations
are performed with finite precision. In addition, the DFT coefficients are also
represented with finite word lengths. These factors will affect the final results in
processing discrete-time signals using DFT.

There are two ways to deal with the effects of finite precision arithmetic. One, we
can use detailed analysis to predict the effect on the final output. The other is to
simulate the performance of the system with finite precision arithmetic. We will use
the latter approach to determine the effect of finite precision arithmetic on the output
DFT of discrete-time sequences. More specifically, we will use MATLAB tools to
solve this problem. The MATLAB M-file fi_FFT.m implements the decimation-in-
time FFT algorithm using finite precision fixed-point arithmetic. The length of the
sequence must be a positive integer power of two. The word length for the arithmetic
operations is defined by the variable WordLength_seq and that for the DFT coeffi-
cients by the variableWordLength_coef. The program also computes the DFT of the
input sequence with full precision and plots the error between the full precision and
finite precision DFTs. The input sequence represented with full precision and fixed-
point 8-bit precision is shown in the top and bottom plots in Fig. 9.10, respectively.
The plots show the first 64 points in the sequence whose length is 256 points.
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The magnitudes of the DFTs of the two sequences are shown in the top plot of
Fig. 9.11. As can be seen from the figure, there are some differences between the two
DFTs. The difference between the magnitudes of the DFTs is shown in the bottom
plot of Fig. 9.11. Again, the error in the DFT due to finite precision arithmetic is seen
to be random and has a maximum absolute value of 0.029. The word length used to
represent the multipliers in the FFT algorithm is 8 bits. When the coefficient word
length is reduced to 4 bits, the maximum absolute error increases to 0.183, which is
more than six times the maximum absolute error when the coefficient word length is
8 bits. The magnitude of the DFTs and the corresponding error are shown in
Fig. 9.12 for the case where the coefficient word length is 4 bits and the arithmetic
word length is 8 bits.

9.5 Sliding Discrete Fourier Transform

In computing the short-time Fourier transform, the long sequence is segmented into
either overlapping or non-overlapping blocks, and then the DFT is performed on
each finite-length block. In sliding DFT, the DFT is performed on a finite-length
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block of a long sequence with a window sliding one sample at a time. For the sake of
argument, let us consider the block length to be eight samples. At the time index n,
the samples in the block are labeled {x[n � 7], x[n � 6], . . . ., x[n]}. At the previous
time index n-1, the block sequence is denoted by {x[n� 8], x[n� 7], . . . ., x[n� 1]}.
This ordering of the sequence for n and n-1 is depicted in Fig. 9.13. Using the
definition of an eight-point DFT, we have

Xk n½ � ¼
Xn

m¼n�7

x m½ �W m�nþ7ð Þk
8 , 0 � k � 7 ð9:27Þ

Note that the DFT is now denoted by two indices – the frequency index k and the
time index n. The eight-point DFT at time index n-1 is described by

Xk n� 1½ � ¼
Xn�1

m¼n�8

x m½ �W m�nþ8ð Þk
8 , 0 � k � 7 ð9:28Þ

By expanding the summation in (9.28), we have
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Xk n� 1½ � ¼ x n� 8½ �W0
8 þ x n� 7½ �W k

8 þ x n� 6½ �W2k
8 þ . . .

þ x n� 1½ �W7k
8 ð9:29Þ

Therefore, from (9.27) and (9.29), we find

Xk n½ � �W�k
8 Xk n� 1½ � ¼ �x n� 8½ �W�k

8 þ x n½ �W7k
8 ð9:30Þ

However

W7k
8 ¼ W 8�1ð Þk

8 ¼ W8k
8 W�k

8 ¼ e�j2π8k8 W�k
8 ¼ W�k

8 ð9:31Þ
Therefore, using (9.31) in (9.30), we have

** * * * * * * *
nn-7 n-1n-8

Fig. 9.13 Block of eight samples used to calculate the SDFT at time indices n and n-1
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Xk n½ � ¼ W�k
8 Xk n� 1½ � þ x n½ � � x n� 8½ �ð Þ, 0 � k � 7 ð9:32Þ

What we see from (9.32) is that to compute the eight-point DFT of the sequence at
time index n, we need only one complex multiplication for each frequency index k
because we already have the eight-point DFT at time index n�1. Equation (9.32) is a
recursive equation to compute the eight-point DFT at time index n using the eight-
point DFT at the previous time index n-1 and the input samples at the current time
index n and the past sample at time index n-8. By generalizing the result in (9.32),
the N-point DFT of a long sequence at time index n is expressed as

Xk n½ � ¼ W�k
N Xk n� 1½ � þ x n½ � � x n� N½ �ð Þ, 0 � k � N � 1 ð9:33Þ

At each time index n, the window slides by one sample, hence the name sliding
discrete Fourier transform. SDFT is used in characterizing the time-varying spec-
trums of a signal and is very useful in speech processing. An implementation of the
recursive Eq. (9.33) is shown in Fig. 9.14. From Fig. 9.14 we can relate the input and
output by

Xk n½ � ¼ x n½ � � x n� N½ � þ Xk n� 1½ �f gW�k
N ð9:34Þ

By denoting the Z-transform of Xk[n] by Xk[z] and applying the Z-transform to
(9.34), we find

Xk z½ � ¼ X zð Þ � z�NX zð Þ þ z�1Xk zð Þ� 	
W�k

N ð9:35Þ
The digital filter transfer function is then obtained from (9.35) and is given by

Hk zð Þ � Xk zð Þ
X zð Þ ¼ 1� z�Nð ÞW�k

N

1�W�k
N z�1

ð9:36Þ

The frequency response of the transfer function of the IIR digital filter in (9.36)
for N ¼ 32 is shown in Fig. 9.15. As can be seen from the figure, the frequency
response of the IIR digital filter for each value of k is centered at πkN . The MATLAB

-1

x[n] + +

WN
-k

z-N
z-1

Xk[n]

Fig. 9.14 Block diagram of an IIR digital filter structure to implement the SDFT of a discrete-time
sequence with a block length N
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program to compute the frequency response of the SDFT digital filter is listed in the
M-file SDFT.m. The same program also computes the SDFT of a discrete-time
sequence and compares the result with that obtained by using the FFT routine on
each length-N segment of the sequence. As an example, the total length of the input
sequence used is 64 samples, and the DFT length used is 32 points. The input signal
is shown as stem plot in Fig. 9.16. In Fig. 9.17, the SDFT at time index 32 in dotted
red stems in the top plot is shown. The same plot also shows the DFT of that
sequence obtained using MATLAB’s fft routine. They seem to be identical. Similar
results are shown in the bottom plot of Fig. 9.17 at time index 47. Again the two are
in perfect agreement. As can be observed from the two plots in Fig. 9.17, there is
some difference in the two spectra because of the small block length. Remember that
SDFT is useful in characterizing a discrete-time sequence with time-varying spectral
characteristics. The same M-file also computes the SDFT of a chirp signal. Fig-
ure 9.18 displays the input chirp signal as a stem plot over the interval 0–63. The
corresponding SDFT at time indices of 32 and 128 are shown in the top and bottom
plots in Fig. 9.19, respectively. For the sake of comparison with the SDFT, the two
plots in Fig. 9.19 also show the 32-point DFTs at those time indices. Both SDFT and
DFT agree perfectly.
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9.6 Energy Compaction Property Revisited

The energy in a finite-length discrete-time sequence is the sum of the square of the
absolute value of the sequence. That is,

E ¼
XN�1

n¼0

x n½ �j j2 ð9:37Þ

The energy in the sequence can also be obtained from its DFT sequence
according to Parseval. This implies the following:

XN�1

n¼0

x n½ �j j2 ¼ 1
N

XN�1

k¼0

X k½ �j j2 ð9:38Þ

where {X[k]} is the DFT of the N-point sequence {x[n]}. What it really means is that
the energy in the finite-length discrete-time sequence is preserved in the DFT
domain. Having said that, let us try to understand what we mean by energy
compaction.

The right-hand side of (9.38) amounts to the total energy contained in the finite-
length sequence in terms of the DFT coefficients. But it does not tell us the
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percentage of the total energy carried by the individual DFT coefficient. Some of
them may carry a large percentage of the total energy while other coefficients may
carry insignificant percent of the total energy. How is that important to us? In fact, it
gives us the idea of data compression in the transform domain. Instead of using all
the DFT coefficients in the reconstruction of the sequence, we may set a few
coefficients to zero and then perform the inverse DFT to reconstruct the sequence.
When it comes to the transmission of these coefficients, the zero-valued coefficients
need not be sent to the receiver. Of course, we have to know which coefficients have
been set to zero. Assuming that the receiver knows which coefficients are zero
valued, then one needs to transmit only the non-zero-valued coefficients. For
instance, if the total number of DFT coefficients is N and only half of the coefficients
is significant, then we achieve 2:1 reduction in the amount of data to be transmitted.
There is more than meets the eye in dealing with data compression. Since the topic of
compression is not the objective of this book, we will not discuss it any further.
However, we will illustrate the energy compaction property of the DFT by an
example. Incidentally, energy compaction means what percentage of the total energy
in the finite-length sequence is contained or compacted in different coefficients. This
property depends on the type of frequency transform being used. Orthogonal
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transforms play an important role in speech and video compression schemes. The
discrete Fourier transform is an orthogonal transform. However, not all orthogonal
transforms are equally efficient in compacting the energy. There are other transforms
such as discrete cosine transform (DCT), discrete sine transform (DST), Karhunen-
Loeve transform (KLT), etc. that are more efficient in compacting the signal energy.
The interested reader should look at the references to learn more about data
compression.

MATLAB Example Let us consider two examples using MATLAB to determine
the energy compaction property of the DFT using a known finite-length discrete-
time sequence and a gray-scale image. The program details can be found in the
M-file Energy_prop_DFT.m. The length of the sequence is 128 samples. Figure 9.20
displays the percentage of the total energy in the DFT coefficients against the
frequency index. As seen from the figure, except for the first few coefficients, the
majority of the DFT coefficients contains insignificant percent of the total energy. By
using only the first 12 DFT coefficients in the reconstruction of the sequence, the
mean square error (MSE) is found to be about 0.2509, and the SNR is 13.54 dB. The
mean square error between the original sequence {x[n]} and its reconstructed
sequence ~x n½ �f g is defined as

MSE ¼ 1
N

XN�1

n¼0

x n½ � � ~x n½ �ð Þ2 ð9:39Þ
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Fig. 9.18 Input chirp sequence used in calculating the SDFT
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Figure 9.21 shows the original and the reconstructed sequence using the first
12 DFT coefficients in the top and bottom plots, respectively. The reconstructed
sequence appears to be very close to the input sequence.

The same input signal is used to compute the energy compaction property of
DCT. Figure 9.22 shows the percentage of energy contained in the DCT coefficients.
As compared to the DFT, the energy compaction property of DCT for 1D signal
appears to be different. The MSE between the original and reconstructed sequence
with 24 coefficients for the DCT case is found to be 0.1659, and the corresponding
SNR is 17.13 dB. The reconstructed signal appears to be quite similar to the original
signal as seen from Fig. 9.23.

In the image example, the gray-scale image cameraman.tif is used. Its size is
256 � 256 pixels. Since the image is a two-dimensional signal, a 2D DFT is applied
to the image. MATLAB has the function fft2 to compute the 2D DFT of an image. Its
input arguments are the 2D image and the number of pixels in the horizontal and
vertical dimensions. It returns the 2D DFT of the input image. In order to plot the
percentage of the total energy contained in each DFT coefficient with respect to the
frequency points in the horizontal and vertical dimensions, we use the MATLAB
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index n¼ 32; bottom, comparison at time index n¼ 128. The difference in the two spectra is due to
the time-varying frequency of the input chirp signal
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function surf to obtain a surface plot. This function accepts the points in the x- and
y-axes and the function value in the z-axis and plots them as a 3D plot. The input
cameraman image is shown in Fig. 9.24. The percentage of total energy in each DFT
coefficient is shown in Fig. 9.25 as a surface plot over the first 32 � 32 points for
easy visualization. It is found that the DC coefficient (DFT coefficient X[0,0]}
contains about 78% of the total energy. The image reconstructed using only the
first 64x64 DFT coefficients is shown in Fig. 9.26. Though one can identify the
image, it has a large amount of distortions. The resulting MSE and signal-to-noise
ratio (SNR) are found to be about 27.1643 and 7.22 dB, respectively. When using
the DCT on the same image, it is found that by using only the first 64 � 64 DCT
coefficients to reconstruct the image, the MSE and SNR are, respectively, 17.5604
and 11.01 dB. The surface plot depicting the percentage of energy contained in the
first 32 � 32 DCT coefficients is shown in Fig. 9.27. The reconstructed image using
the first 64 � 64 DCT coefficients is shown in Fig. 9.28. It is much clearer than that
for the DFT case. The resulting compression ratio is 16:1. The DCT appears to be
more efficient than the DFT in terms of compacting energy in the coefficients. It is
also a real transform, meaning that only real and not complex arithmetic operations
are needed. That is a reason why DCT is used extensively in image compression

Fig. 9.24 Original cameraman image

9.6 Energy Compaction Property Revisited 413



80

70

60

50

40

30

20

40

30

20

10

0 0
10

20

Frequency index k

Energy compaction in 2D DFT

Frequency index I

%
 to

ta
l e

ne
rg

y

30
40

10

0

Fig. 9.25 Surface plot depicting the percentage of total energy contained in the first 32 � 32 DFT
coefficients of the image in Fig. 9.22

Fig. 9.26 Reconstructed image of cameraman by using only the first 64� 64 2D DFT coefficients.
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standards. It must be pointed out that the same M-file Energy_prop_DFT.m is used
to compute the energy contained in 1D signal and image for both DFT and DCT
transforms.

9.7 Zoom FFT

The FFT that we have discussed so far computes the DFT of a sequence of length-N
samples. It gives a panorama of the frequency contents in the input sequence.
Sometimes it is desirable to get a closer look at the DFT of a sequence rather than
observing it from a distance. In other words, we may want to zoom in to the FFT of a
sequence. In this section, we will describe a method to compute the DFT of an
N-point sequence over a smaller range of frequency points K. For this to work
properly, we will assume that the length of the sequence is an integer multiple of K,
i.e., N ¼ RK.

The idea behind the zoom FFT is to express the given sequence in terms of its
downsampled sequences. We then compute the DFTs of the downsampled
sequences and obtain their weighted sum to get the zoomed-in FFT. There are R
number of downsampled sequences with each sequence being of length K samples.
These downsampled sequences are called the polyphase components. The R
downsampled sequences are described by

xi n½ � ¼ x iþ nR½ �, 0 � i � R� 1 ð9:40Þ
Downsampling by a factor of R is achieved by retaining every Rth sample in the

input sequence. Since the length of the input sequence is K times R, the length of
each downsampled sequence is K. For instance, if R ¼ 3 and K ¼ 8, the input
sequence will be of length 24. Then,

x0 n½ � ¼ x 0½ �; x 3½ �; x 6½ �; � � �; x 21½ �f g, ð9:41aÞ

x1 n½ � ¼ x 1½ �; x 4½ �; x 7½ �; � � �; x 22½ �f g, and ð9:41bÞ

x2 n½ � ¼ x 2½ �; x 5½ �; x 8½ �; � � �; x 23½ �f g ð9:41cÞ
The Z-transforms of the downsampled sequences can be obtained using the

Z-transform definition. For example, if R ¼ 3 and K ¼ 8, we have

Z x0 n½ �f g � X0 zð Þ ¼ x 0½ � þ x 3½ �z�1 þ x 6½ �z�2 þ � � � þ x 21½ �z�7 ð9:42aÞ

Z x1 n½ �f g � X1 zð Þ ¼ x 1½ � þ x 4½ �z�1 þ � � � þ x 22½ �z�7 ð9:42bÞ
Similarly, the Z-transform of the third downsampled sequence can be described by
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Z x2 n½ �f g � X2 zð Þ ¼ x 2½ � þ x 5½ �z�1 þ � � � þ x 23½ �z�7: ð9:42cÞ
In other words, the Z-transforms of the downsampled sequences are given by

Xr zð Þ ¼
XK�1

n¼0

xr r þ nR½ �z�n: ð9:42dÞ

The Z-transform of the input sequence can then be expressed in terms of those of
the downsampled sequences as

X zð Þ ¼
X2
m¼0

z�mXm z3
� � ð9:43Þ

In general, the Z-transform of the input length-N sequence is defined in terms of
the Z-transforms of the downsampled sequences as

X zð Þ ¼
XR�1

m¼0

z�mXm zR
� �

, ð9:44Þ

where

Xm zð Þ ¼
XNþ1

Rb c

n¼0

x mþ nR½ �z�n, 0 � m � R� 1: ð9:45Þ

What we have done so far is to express the Z-transform of the given sequence in
terms of the Z-transforms of its downsampled sequences. But our task is to zoom
into the DFT of the input sequence. That is, we want to compute the DFT of the input
sequence by evaluating its Z-transform over K equally spaced frequency points
along the unit circle in the Z-domain starting from the frequency point i. The K
frequency points are given by

zk ¼ e j2πN k � W�k
N , i � k � iþ K � 1 ð9:46Þ

Thus, the zoom DFT of the input sequence is described by

X k½ � ¼
XR�1

n¼0

W nk
N Xn W�kR

N

� �
, i � k � iþ K � 1, ð9:47Þ

where the K-point DFTs are given by

Xi l½ � ¼
XK�1

m¼0

x iþ mR½ �Wml
K , 0 � l � K � 1: ð9:48Þ
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From (9.47), it is seen that the DFT of the input sequence over K frequency points
is the weighted sum of the DFTs of the downsampled sequences. Let us clarify the
above discussion by an example. What else can clear the doubt better than a simple
example?

Example 9.4 For the given N-point sequence, obtain the R downsampled
sequences, and then calculate the DFT of the input sequence over K frequency
points. Plot the DFTs of the input sequence and its zoomed-in DFT.

Solution Let the input sequence be described by

x n½ � ¼ cos 2πf c
f s

nþ β sin 2πf m
f s

n
� �� �

, 0 � n � N � 1:

Note that the above equation corresponds to an FM sequence, where fc is the
carrier frequency in Hz, fm is the modulating signal frequency, fs is the sampling
frequency, and β is the modulation index. For this example, fc ¼ 1000 Hz,
fm ¼ 105 Hz, fs ¼ 10000 Hz, and β ¼ 2.5. We also assume that there are R ¼ 3
downsampled sequences, each of length K ¼ 128 samples. Therefore, the length of
the input sequence is N¼ 3*128¼ 384 samples. We will use MATLAB to solve the
problem. More specifically, the M-file used for this example is named ZoomZoom.
m. The input sequence is shown in Fig. 9.29. Though the input is discrete in time, a
continuous line plot is used for a better visualization of the sequence. As expected,
the frequency of the sinusoidal sequence varies periodically. The magnitudes of the
DFTs of the three-downsampled sequences of length 128 samples each are shown in
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Fig. 9.29 Input FM sequence used in Example 9.4. The length of the sequence is 384 samples
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Fig. 9.30 in the top, middle, and bottom plots. The magnitude of the DFT of the
N-point input sequence is shown in the top plot of Fig. 9.31. It consists of many
sidebands. The zoomed-in or close-up of the DFT of the input sequence is shown in
the bottom plot of Fig. 9.31. It gives us a close-up look at the spectrum of the input
sequence. Incidentally, the zoomed-in DFT is calculated over K points starting from
the 10th-frequency point on the unit circle.

9.8 Chirp Fourier Transform

The DTFT of a finite-length sequence can be obtained from its Z-transform by
evaluating the Z-transform of the sequence on the unit circle in the z-domain. We
have seen this in detail in an earlier chapter. Instead of evaluating the Z-transform of
a finite-length sequence for values of z on the unit circle, one can also evaluate the
Z-transform on a spiral contour in the z-plane. Because the contour is a spiral, the
resulting Z-transform is known as the chirp Z-transform (CZT). The purpose behind
the CZT is to obtain the DTFT of a finite-length sequence over a limited range of
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Fig. 9.30 Magnitudes in dB of the DFTs of the three-downsampled sequences of length
128 samples each
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frequencies rather than the whole range between zero and half the sampling fre-
quency. If the contour is simply the unit circle, then evaluating the CZT over a
limited range of frequencies on the unit circle results in chirp Fourier transform
(CFT). There are some applications for the chirp Fourier transform, and therefore,
we will describe it here. Note that since the CZT is evaluated over a limited
frequency range, we actually zoom into the DTFT.

Consider a length-N sequence {x[n], 0 � n � N � 1}. Its Z-transform is given by

X zð Þ ¼
XN�1

n¼0

x n½ �z�n: ð9:49Þ

If we evaluate the Z-transform in (9.49) at points zk, 0 � k � K � 1, then

X zkð Þ ¼
XN�1

n¼0

x n½ �z�n
k , 0 � k � K � 1: ð9:50Þ

Let zk ¼ RU�k, 0 � k � K � 1,where R and U are complex variables. Equation
(9.50) can then be written as
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X zkð Þ ¼
XN�1

n¼0

x n½ �R�nUnk, 0 � k � K � 1: ð9:51Þ

Let us evaluate (9.51) on the unit circle in the z-domain and also assume that
R ¼ e jΩ0 . Then,

X e jΩk
� � ¼ XN�1

n¼0

x n½ �e�jnΩ0Unk, 0 � k � K � 1: ð9:52Þ

Note that we can express nk ¼ 1
2 n2 þ k2 � k � nð Þ2
h i

. Then,

X e jΩk
� � ¼ XN�1

n¼0

x n½ �e�jnΩ0U
n2
2 U

k2
2 U� k�nð Þ2

2 , ð9:53Þ

which can be rewritten as

X e jΩk
� � ¼ U

k2
2

XN�1

n¼0

x n½ �e�jnΩ0U
n2
2

n o
U� k�nð Þ2

2 , 0 � k � K � 1: ð9:54Þ

Define

g n½ � � x n½ �e�jnΩ0U
n2
2 : ð9:55Þ

In terms of (9.55), we can express the Z-transform of the input sequence as

X e jΩk
� � ¼ U

k2
2

XN�1

n¼0

g n½ �U� k�nð Þ2
2 , 0 � k � K � 1: ð9:56Þ

By interchanging k and n on both sides of (9.56), we obtain

X e jΩn
� � ¼ U

n2
2

XN�1

k¼0

g k½ �U� n�kð Þ2
2 ¼ U

n2
2 g n½ �*U�n2

2

h i
: ð9:57Þ

That is, the CZT of the N-point sequence is the convolution of the new sequence g[n]

and U�n2
2 followed by multiplication by the sequence U

n2
2 . This depicted as a block

diagram in Fig. 9.32.

Example 9.5 Let us elaborate the idea behind CZT by way of an example. This
example uses the same input sequence as used in the previous example. The
sequence is of length 1024 samples. We will use the MATLAB function czt,
which calculates the CZT of an input sequence. The actual function call is described
by y ¼ czt(x,N,w,a), where x is the sequence whose CZT is y, N is the number of
points over which the CZT is calculated, a is the starting point and is defined as
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a ¼ e j
2πf 1
f s , ð9:58Þ

and w is the set of points starting from f1, over which the CZT is calculated and is
given as

w ¼ e�j
2π f 2�f 1ð Þ

Nf s : ð9:59Þ
The M-file to run to solve this problem is named Chirpy.m. Let us chirp over the

frequencies from 950 to 1050 Hz. This range of frequencies is centered at the carrier
frequency of 1000 Hz. The normalized magnitude of the DFT of the input sequence is
shown in the top plot of Fig. 9.33 over the frequency range from zero to fs, and the
normalized magnitude of the CZT of the same input sequence is shown in the bottom
plot of Fig. 9.33 over the frequency range of 100 Hz with the starting frequency of
950 Hz. As can be seen from the figure, the CZT appears to zoom into the DFT of the
input sequence. This M-file also calculates the CZT of a Gaussian noise sequence with a
standard deviation of 1.25 over the same frequency range as used for the signal. The
normalized magnitudes of the DFT and CZT of the noise sequence are shown in the top
and bottom plots of Fig. 9.34, respectively.

9.9 Summary

This chapter deals with the signal flow graphs to implement the Cooley-Tukey fast
FFT algorithm. Two such algorithms are called decimation-in-time and decimation-
in-frequency fast algorithms. Next we discussed spectral analysis of discrete-time
signals using DFT. In particular, we learnt how to compute the power spectrum of a
finite-length discrete-time signal via its autocorrelation function. We further dealt
with short-time Fourier transform, which is useful in characterizing signals with
time-varying frequency. The MATLAB function spectrogram is a very useful tool in
computing the STFT of a discrete-time sequence. Since DFTs are not implemented

Fig. 9.32 Block diagram showing the calculation of the CZT of an N-point sequence as a filtering
operation

422 9 Fast Fourier Transform



with infinite precision in practice, we described a fixed-point implementation of the
DFT using MATLAB. Sliding DFT is more efficient in computing the DFT of an
N-point sequence because it can be achieved in a recursive manner. In fact, the
SDFT uses only one complex multiplication per frequency point due to its recursive
input-output relation. We then talked about the energy compaction property of DFT.
Orthogonal transforms compact the total energy in an input discrete-time signal or
images differently in different DFT and DCT coefficients. Typically, a large per-
centage of the total energy in the signal is compacted into a few first DFT or DCT
coefficients, while the rest of the coefficients contain an insignificant amount. This
leads to the idea of data compression in the frequency domain. We showed two
examples to illustrate the energy compaction property of DFT and DCT using
MATLAB. Zoom FFT is used in the fields like Radar and biomedicine. So, we
discussed how to calculate the zoom FFT of a given sequence in terms of its
downsampled sequences. We illustrated the idea of zoom FFT by an example
using MATLAB. Finally, we described the CZT of a sequence and showed how to
compute it for an input sequence using MATLAB. In the next chapter, we will
describe a few applications of digital signal processing methods in digital
communications.

1

0.8

0.6

0.4

0.2

0
0

950 960 970 980 990 1000
Frequency, Hz

Chirp FT of input sequence

FFT of input sequence
N

or
m

al
iz

ed
 m

ag
ni

tu
de

N
or

m
al

iz
ed

 m
ag

ni
tu

de

1010 1020 1030 1040 1050

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

0.8

0.6

0.4

0.2

0
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9.10 Problems

1. Determine the number of real multiplications and real additions required to
compute the N-point DFT of a sequence of length N using brute-force method.

2. Consider the linear convolution of the sequences {h[n]} of length N and {x[n]}
of length M via DFT algorithm. Find the total number of floating-point complex
multiplications and additions required using brute-force method to carry out the
DFT in calculating the above linear convolution.

3. The DFT of a 450-point sequence is to be computed over a length of 512 points.
How many zero-valued samples should be appended to make the sequence of
length, which is a power of two closest to 512? Determine the total number of
complex multiplications and additions required to compute the DFT of the zero-
padded sequence using (a) brute-force method and (b) FFT algorithm.

4. Consider a discrete-time sequence of length-N samples. If the frequency spacing
required in the DFT domain is 2 Hz and the sampling frequency is fs, determine
the value for N.

5. Given a sequence x[n] of length 3333 samples, we want to compute its DFT. The
total signal duration is 1.5 seconds. Determine (a) how many zero-valued
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Fig. 9.34 CZT of the Gaussian noise sequence used in Example 9.5. Top: normalized magnitude of
the DFT of the noise sequence. Bottom: normalized magnitude of the CZT of the noise sequence
from 950 to 1050 Hz. The standard deviation of the noise is 1.25
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samples must be appended to the sequence to compute its radix-2 FFT and
(b) what is the frequency resolution after the FFT is performed.

6. In Fig. 9.1c, the radix-2 FFT algorithm to compute the DFT of an eight-point
sequence is shown where the input is in bit-reversed order. Show the signal flow
graph corresponding to Fig. 9.1c with the input in normal order and the output in
bit-reversed order.

7. Repeat problem 6 wherein both the input and output are in normal order.
8. The number of complex multiplications required to compute the DFT of an

N-point sequence using the radix-2 FFT algorithm included multiplications by
�1. Calculate the exact number of complex multiplications required if only
non-unity complex multiplications are involved.

9. If we want to compute the linear convolution of a length-32 real sequence and a
length-13 real sequence using (a) direct computation of the linear convolution,
(b) computation of the linear convolution using a single circular convolution,
and (c) computation using radix-2 FFT algorithm, find the least number of real
multiplications required for each of the above cases. Exclude the number of
multiplications by factors such as �1, �j, and W0

N in calculating the number of
real multiplications in (c).

10. We want to use the overlap-add algorithm to filter an input sequence of length
1024 samples by a linear-phase FIR filter of length 24, where each linear
convolution of the short segments is performed using DFT and the DFTs are
calculated via radix-2 FFT algorithm. Determine (a) the necessary power-of-2
transform length which will give the minimum number of multiplications, and
(b) find the total number of multiplications required if direct convolution is used.

11. It is required to compute a 512-point DFT of a sequence of length 373 samples.
Find (a) the number of zero-valued samples to be appended to the sequence
before computing the DFT, (b) total number of complex multiplications and
additions required for the direct computation of all DFT samples, and (c) total
number of complex multiplications and additions needed to compute the DFT
using the FFT algorithm.

12. This problem relates to short-time Fourier transform using MATLAB. Record
your speech for a second or two, and then perform the STFT of the recorded
speech. Choose the appropriate length of the speech segments, and then perform
the FFT. See if you can identify the type of speech such as voiced or fricative
from the STFT.

13. Repeat problem 12 using the sliding discrete Fourier transform. Plot the mag-
nitude of the SDFT as a function of time and frequency.

14. Generate a discrete-time sequence of length 1024 samples consisting of say
three distinct frequencies and unequal amplitudes. Use a sampling frequency of
5 kHz. Then perform the zoom FFT of the sequence, and plot the magnitude of
the DFT. Compare this with the magnitude of the DFT of the original input
sequence.

15. Generate an FM sequence with a carrier frequency of 10 kHz, modulating
frequency of 1 kHz, and modulation index of 2. Compute the chirp FT of the
sequence, and plot the magnitude of the DFT obtained.
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Chapter 10
DSP in Communications

10.1 Introduction

What we have learnt so far is how to convert an analog signal into a digital signal and
to process it using digital filters. The field of digital signal processing has fully
matured and has found applications in diverse fields. In this chapter, we will
concentrate on the application of DSP in one particular field, namely, the field of
digital communications. Radio, telephony, and video are a few of the areas that are
completely enveloped by modern digital and wireless communications. Radio
broadcast started with analog communications. It used analog modulation tech-
niques such as amplitude modulation (AM) and frequency modulation (FM) to
transmit the message signal using radio frequencies (RF). These modulation
schemes use the message signal to modulate a carrier signal in its amplitude
(AM) or in its instantaneous frequency (FM) before transmission. Later digital
modulation methods were introduced to serve the same purpose as the analog
counterparts. Digital modulation plays an important role in modern wireless com-
munications. The art of making very large-scale integrated (VLSI) circuits has
evolved tremendously. This has enabled the design and fabrication of application-
specific integrated circuits (ASIC), which in turn enables the implementation of
complex digital techniques in achieving communications successfully as well as
lowering the cost. Digital communication systems have many advantages over the
analog counterparts. For instance, digital communications has greater immunity to
noise. It is also robust to channel impairments. Another advantage is that many
different data can be multiplexed and transmitted over a single channel. The various
data may include voice, video, and other data, for instance. Since binary digits (bits)
are used in digital communications, there is greater security in the transmitted data.

Electronic supplementary material: The online version of this article (https://doi.org/10.1007/
978-3-319-76029-2_10) contains supplementary material, which is available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2019
K. S. Thyagarajan, Introduction to Digital Signal Processing Using MATLAB
with Application to Digital Communications,
https://doi.org/10.1007/978-3-319-76029-2_10

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76029-2_10&domain=pdf


This is not feasible in analog communications. Even if there are errors in the received
data, they can be detected and corrected by employing what is known as the channel
coding, in which extra bits are added to the data bits. In analog communications, the
noise in the channel will distort the message signal and is, therefore, impossible to
recover the original signal. Even though digital modulation as such occupies a higher
bandwidth than analog modulation, source coding or data compression is used to
reduce the message bandwidth to start with. Digital communication link perfor-
mance can be improved by using encryption and channel equalization techniques.
Moreover, field programmable gate arrays (FPGA) enable the implementation of
digital modulation and demodulation functions purely in software. This has an
enormous implication because many handheld devices can perform a variety of
functions well in real time using software. These features are certainly a no-no in
analog communications.

In this chapter, we will describe a few DSP methods that are used in digital
communications. More specifically, we will describe how digital pulses can be
shaped at the transmitting side using DSP techniques to cancel what is known as
the inter-symbol interference (ISI). At the receiver, another DSP function, namely,
equalization, is used to mitigate the channel interference. In digital modulation, the
receiver has to detect in each bit interval whether a binary “1” or a binary “0” is
transmitted. This is achieved in an optimal fashion using the so-called matched filter
(MF) or equivalently a correlation filter. We will learn how to implement such filters
as well. We will also learn a few other DSP functions as applied to oversampled
ADC and DAC, digital modulation schemes, and phase-locked loop (PLL).

10.2 Sampling Rate Conversion

Before the transmission of a message signal such as voice or music using digital
modulation, the analog signal must be converted to a digital signal. As we have
seen earlier, the analog-to-digital conversion (ADC) is achieved by first sampling
the continuous-time signal at a minimum of Nyquist rate and then converting the
analog samples to digital numbers. Typical bit widths of an ADC are between
8 and 12 bits. In wireless communications, for instance, the channel bandwidth is
an extremely precious thing. Therefore, the service providers do whatever it takes
to reduce the data rate of every subscriber. The first thing to do here is to reduce
the bit width of the ADC. A one-bit ADC will be super. How is that possible? It is
possible by using a very high sampling rate. We will first learn how to change the
sampling rate and then describe the various DSP methods that incorporate
different sampling rates. This is what is called multi-rate digital signal
processing. That is, a digital signal processing that involves different sampling
rates is termed multi-rate digital signal processing. In multi-rate DSP, sampling
rates at certain points are increased from its native rate. This is known as
upsampling. At other points the sampling rate is decreased from its native rate.
This process is termed downsampling. Upsampling or downsampling may use
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either integer sampling rate or rational sampling rate. Before we discuss ADC
with a sampling rate higher than the Nyquist rate, we need to know the effect of
upsampling or downsampling on the sampled signal.

10.2.1 Upsampling

Let {x[n],� 1 < n < 1} be a sequence that is sampled at the Nyquist rate. If the
original sampling rate is increased by a positive integer factor M, then we can
express the upsampled sequence xu[n] in terms of the original sequence as described
by

xu n½ � ¼ x n=M½ �, n ¼ 0, �M, � 2M, � � �
0, otherwise

�
ð10:1Þ

From the above equation, we find that upsampling amounts to inserting M-1 zeros
between every two consecutive samples. To understand better the process of
upsampling, we need to describe the upsampled sequence in the Z-domain. The
Z-transform of the upsampled sequence is obtained using the definition of the
Z-transform and is given by

Xu zð Þ ¼
X1
n¼�1

xu n½ �z�n ð10:2Þ

In terms of the Z-transform of the original sequence, (10.2) reduces to

Xu z½ � ¼
X1
n¼�1

x
n

M

h i
z�n ð10:3Þ

Define m ¼ n
M and (10.3) becomes

Xu z½ � ¼
X1

m¼�1
x m½ �z�mM ¼

X1
m¼�1

x m½ � zM� ��m ¼ X zM
� � ð10:4Þ

The DTFT of the upsampled sequence can then be found by using z ¼ e jΩ in
(10.4), which is

Xu e jΩ� � ¼ X zð Þjz¼e jΩ ¼ X e jMΩ� � ð10:5Þ
The implication of (10.5) is that the spectrum of xu[n] is the same spectrum of x[n]

but repeated M times in the interval [0, 2π]. In other words, what happens to x[n] in
the frequency domain in the interval [0, 2π] happens M times to the upsampled
sequence in that interval. That is, there are M-1 images of the spectrum X(e jΩ) in the
spectrum of the upsampled sequence in the interval [0, 2π]. In order to preserve the
integrity of the original sequence, the upsampled sequence must be lowpass filtered
to reject the M-1 images.
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Example 10.1 In this example, we will consider a signal consisting of three
sinusoids of frequencies 950 Hz, 1800 Hz, and 1917 Hz, which is sampled at a
rate of 5000 Hz. This signal is then upsampled by a factor of M ¼ 6. We have to
compute the spectra of the original and upsampled sequences as well as the spectrum
of the lowpass filtered upsampled signal to verify that the images are removed from
the spectrum of the upsampled signal.

Solution The actual input signal before sampling is described by

x tð Þ ¼ sin 2πf 1tð Þ þ 2 sin 2πf 2tð Þ þ 1:75 sin 2πf 3tð Þ, t � 0 ð10:6Þ
where the frequencies are f1 ¼ 950Hz, f2 ¼ 1800Hz, and f3 ¼ 1917Hz. In Fig. 10.1 is
shown the stem plots of the input sequence, upsampled sequence, and upsampled
and lowpass filtered sequence in the top, middle, and bottom plots, respectively. As
seen in the middle plot, there are M-1 ¼ 5 zeros between every two consecutive
samples. The corresponding spectra are shown in Fig. 10.2. There are three frequen-
cies present in the spectrum of the original signal. Since the plot is over the interval

Fig. 10.1 Stem plots of the sequences: top, input sequence sampled as 5000 samples/sec; middle,
upsampled sequence using an upsampling factor of 6; bottom, lowpass filtered upsampled
sequence; every sixth sample is plotted
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[0, fs], we see the mirror image of the three frequencies in the top plot. The spectrum
of the upsampled sequence consists of M-1 ¼ 5 images in the interval between zero
and the sampling frequency. The bottom plot depicts the spectrum of the lowpass
filtered sequence wherein the images have been removed. Since there are M-1
images in the interval between zero and the sampling frequency, the frequency is
compressed. So, if Ωc is the cutoff frequency of the original sequence, the same
frequency will appear at Ωc

M . Therefore, to remove the images from the upsampled
sequence, we should use a lowpass filter having a cutoff frequency Ωc

M . The
MATLAB program used for this example is listed in the M-file named Example
10_1.m.

Upsampling Identity The upsampling process consists of first filtering the input
sequence by a lowpass filter and then increasing the sampling rate by the positive
integer factor M. It is equivalent to first upsampling the input sequence by the factor
M followed by lowpass filtering. These two processes are shown in Fig. 10.3.
Because of the identity of the two processes, one can use either one to realize
upsampling of a sequence. In both cases, the image spectra are removed.

Fig. 10.2 Spectra of the sequences in Example 10.1: top, spectrum of input sequence; middle,
spectrum of upsampled sequence; bottom, spectrum of lowpass filtered sequence
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10.2.2 Downsampling

Let us look at the process of reducing the sampling rate by a positive integer factor.
The process of reducing the sampling rate is called downsampling. Consider a
discrete-time sequence {x[n],� 1 < n < 1} which is assumed to be sampled at
the Nyquist rate. If this sequence is downsampled by an integer factor D, we can then
express the downsampled sequence xd[n] in terms of the original sequence as given
by

xd n½ � ¼ x nD½ �,D2Z ð10:7Þ
To understand better the effect of downsampling on the sequence, we will have to

describe the downsampled sequence in the frequency domain. The Z-transform of
the downsampled sequence is obtained from the definition of Z-transform and is
described by

Xd zð Þ ¼
X1
n¼�1

xd n½ �z�n ¼
X1
n¼�1

x nD½ �z�n ð10:8Þ

Let

x0 n½ � ¼ x n½ �, n ¼ 0, � D, � 2D, � � �
0, otherwise

�
ð10:9Þ

In terms of the new sequence, the Z-transform of the downsampled sequence
becomes

Xd zð Þ ¼
X1
n¼�1

x0 nD½ �z�n ð10:10Þ

By using m ¼ nD in the above equation, we have

Xd zð Þ ¼
X1

m¼�1
x0 m½ �z�m

D ¼
X1

m¼�1
x0 m½ � z

1
D

� ��m
¼ X0 z

1
D

� �
ð10:11Þ

We still haven’t expressed the Z-transform of the downsampled sequence in
terms of the Z-transform of the input sequence. In order to do that, let us define
another function given in (10.12):

g n½ � ¼ 1, n ¼ 0, � D, � 2D, � � �
0, otherwise

�
ð10:12Þ

Fig. 10.3 Upsampling identity
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The above sequence can be expressed as the inverse DTFT of the frequency
points, W kn

D ; 0 � k � D� 1
� �

, where, W k
D ¼ e�j2πkD , as given by

g n½ � ¼ 1
D

XD�1

k¼0

W kn
D ð10:13Þ

The sequence x
0
[n] can be expressed in terms of x[n] and g[n] as

x0 n½ � ¼ g n½ �x n½ � ð10:14Þ
Now using (10.13) and (10.14) in (10.11), we find that

X0 zð Þ ¼
X1

n¼�1
g n½ �x n½ �z�n ¼

X1
n¼�1

1
D

XD�1

k¼0

W nk
D

 !
x n½ �z�n ð10:15Þ

By interchanging the order of summation in (10.15), we have

X0 zð Þ ¼ 1
D

XD�1

k¼0

X1
n¼�1

x n½ � zW�k
D

� ��n ¼ 1
D

XD�1

k¼0

X zW�k
D

� � ð10:16Þ

Finally, using (10.16) in (10.11), we obtain the Z-transform of the downsampled
sequence as

Xd zð Þ ¼ 1
D

XD�1

k¼0

X z
1
DW�k

D

� �
ð10:17Þ

From (10.17), the DTFT of the downsampled sequence is determined to be

Xd e jΩ� � ¼ Xd zð Þjz¼e jΩ ¼ 1
D

XD�1

k¼0

X e j Ωþ2πk
Dð Þ� �

¼ 1
D

XD�1

k¼0

X e j Ω�2πk
Dð Þ� �

ð10:18Þ

From the above equation, we notice that the spectrum of the downsampled
sequence is the sum of the shifted and stretched versions of the spectrum of the
original sequence. Let us make it clearer by way of an example after we establish the
identity of downsampling.

Downsampling Identity The process of downsampling a sequence by a positive
integer factor D can be identified as first lowpass filtering the input sequence and
then downsampling. This identity is equivalent to first downsampling followed by
lowpass filtering. The two processes are shown in Fig. 10.4.

Example 10.2 Use the same sequence as in Example 10.1 and downsample it by a
factor of D ¼ 6. Compute the spectra of the original, downsampled, and filtered
sequences and plot them.

Solution The downsampling and filtering operations are done using the MATLAB
M-file named Example 10_2.m. The original, downsampled, and filtered sequences
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are shown in Fig. 10.5 in the top, middle, and bottom plots, respectively. We see
from the middle plot, the sequence corresponds to every sixth sample of the input
sequence. The corresponding spectra are shown in Fig. 10.6.

10.3 Oversampled ADC

As mentioned earlier, an ADC converts a continuous-time signal into a digital signal
by first sampling the input signal uniformly at Nyquist rate and then quantizing the
analog samples using a B-bit uniform quantizer. The typical bit width of an ADC is

Fig. 10.4 Downsampling identity

Fig. 10.5 Downsampling the sequence in Example 10.2: top, original sequence; middle, sequence
downsampled by a factor of 6; bottom, lowpass filtered downsampled sequence
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in the range of 8–14 bits. Since the sampling process may introduce aliasing
distortion, the input continuous-time signal is filtered by an antialiasing analog filter
before sampling. Because of a narrower transition bandwidth, the required analog
filter order will be very high. This makes the IC design more complex and it may also
lead to instability. In order to ease the requirements on the antialiasing analog filter,
one can increase the sampling rate much higher than the Nyquist rate. As we will see
below, this will increase the transition bandwidth, thereby lowering the antialiasing
filter order. As a result of lowering the filter order, the IC design becomes simpler
and more compact. Of course, the output of the ADC must be downsampled to bring
the sampling rate back to the Nyquist rate. Figure 10.7 shows the block diagram of
an oversampled ADC. The input continuous-time signal is first filtered by an analog
lowpass filter of a small order and then input to the ADC. The sampling rate of the
ADC is assumed to be M times the Nyquist sampling rate. The output of the ADC is
passed through an antialiasing digital filter before it is downsampled by the factor
M. In what follows, we will give a brief analysis of the oversampled ADC.

Fig. 10.6 Frequency spectra of the sequences in Fig. 10.5: top, spectrum of the original sequence;
middle, spectrum of the downsampled sequence; bottom, spectrum of the downsampled sequence
after lowpass filtering
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10.3.1 Transition Bandwidth Reduction

Let us assume the maximum frequency in the input continuous-time signal to be fm.
The corresponding Nyquist frequency is 2fm. If the actual sampling frequency Fs of
the ADC is M times the Nyquist frequency, then Fs ¼ 2Mfm. This amounts to the
frequency specification of the antialiasing analog filter as described by

Ha fð Þ ¼ 1, 0 � fj j � f m
0,Mfm < fj j < 1

�
ð10:19Þ

The above equation reveals the fact that the passband edge frequency of the
antialiasing filter is still the maximum frequency in the analog signal. However, the
stopband edge frequency has moved to M times the maximum frequency. Therefore,
the transition width, which is the difference between the stopband edge and passband
edge, has increased as given by

Δ f ¼ M � 1ð Þf m ð10:20Þ
If the transition width is large, the filter order will be smaller. That’s how the

oversampling eases the filter order requirement.

10.3.2 Analysis of Oversampled ADC

Let us go a bit deeper and see the effect of oversampling on the ADC. Let the
amplitude range of the input analog signal be

xa tð Þj j � xmax ð10:21Þ
The corresponding quantization step size of a B-bit ADC is expressed as

q ¼ xmax � xmin
2B

¼ 2xmax
2B

¼ xmax
2B�1 ð10:22Þ

The noise due to quantization is uniformly distributed in the range �q=2; q=2�½ , and
its variance is determined to be

σ2q ¼
q2

12
¼ x2max

12� 22B�2 ¼
x2max

3� 22B
ð10:23Þ

Fig. 10.7 Block diagram of an oversampled ADC
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The output of the ADC is filtered by an antialiasing digital filter, followed by
downsampling by the factor M. Let y[n] be the downsampled signal. Since the
downsampled signal has the same power as that of the signal before downsampling,
we have

σ2y ¼ Gσ2q ð10:24Þ

where G is the power gain of the antialiasing digital filter, and it is related to the
impulse response sequence of the digital filter. If the digital filter is an Nth-order FIR
filter, then

G ¼
XN
n¼0

h n½ �j j2 ð10:25Þ

The power gain can also be obtained from the frequency domain since the power
is conserved in both domains. Thus,

G ¼ 1
Fs

Z Fs
2

�Fs
2

H fð Þj j2df ¼ 1
Fs

ZFs2M

�Fs
2M

df ¼ 1
M

ð10:26Þ

Therefore, the variance of the noise due to quantization is reduced by the
oversampling factor, which is

σ2y ¼
σ2q
M

ð10:27Þ

This is really great! Not only does oversampling reduce the quantization noise, it
also spreads it over the frequency range 0; Fs

2

	 

. But the cutoff frequency of the

antialiasing digital filter is Fs
2M. Therefore, it rejects the noise in the range

Fs
2M;

Fs
2

	 

. This

reduction in the quantization noise is related to the reduction in the number of bits of
the ADC as compared to the ADC that does not use oversampling. Let BM and B
denote the bit widths of the ADCs with and without oversampling. Since the
quantization noise power must be the same in both ADCs for the sake of comparison,
the output noise powers can be expressed as

σ2q
M

¼ x2max
3�M � 22BM

¼ x2max
3� 22B

ð10:28Þ

From (10.28) we have

M � 22BM ¼ 22B ð10:29aÞ

BM ¼ B� 1
2
log2M ð10:29bÞ
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Thus, for the same given quantization noise power, an oversampled ADC needs a
bit width that is less than that required by the Nyquist sampled ADC by one half
times the logarithm to the base 2 of the oversampling factor.

Oversampling Factor Versus the Filter Order We can relate the oversampling
factor M to the filter order for a specific filter as follows. Consider a kth-order
Butterworth antialiasing analog filter with a cutoff frequency fm. The corresponding
magnitude of the frequency response is given by

Ha fð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

f m

� �2kr ð10:30Þ

The maximum error δ due to aliasing distortion will occur at the folding frequency
Fs
2 and is equal to

δ ¼ Ha
Fs

2

� ���� ���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Mfm

f m

� �2kr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2k

p ð10:31Þ

Then,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2k

p � δ ð10:32Þ

Or

1þM2k � δ�2⟹M � δ�2 � 1
� � 1

2k ð10:33Þ
For instance, if δ ¼ 0.005 and k ¼ 3, then from (10.33), we find that the

oversampling factor M ¼ d5.848e ¼ 6. If the filter order is reduced to 2, then for
the same maximum aliasing distortion, the oversampling ratio hikes up to 15. A
decrease by one in the filter order increases the oversampling ratio almost by a factor
of 3! The maximum aliasing error in dB can be expressed in terms of the
oversampling factor and the Butterworth filter order using (10.33) and is given by

δ ¼ �10log10 1þM2k
� �

dB ð10:34Þ
Figure 10.8 shows the maximum aliasing error in dB against the oversampling

factor for four values of the Butterworth filter order. As seen from the figure, the
oversampling factor increases as the Butterworth filter order decreases for a fixed
value of the maximum aliasing error.

Example 10.3 Let us work out an example using MATLAB to digest what we
learnt about oversampled ADC. We will use the same input signal that was used in
the previous example. The Nyquist sampling rate is 4000 Hz and the oversampling
factor used is 15. We will use a 5-bit ADC to quantize the analog samples.
The antialiasing digital filter is a fourth-order FIR filter with a normalized cutoff
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frequency of 1/M. The M-file to solve this problem is named Example 10_3.m. The
program designs a 5-bit uniform quantizer before quantizing the input signal.
Figure 10.9 depicts the input-output relationship of the quantizer as a step
function. The horizontal axis refers to decision regions and the vertical axis to the
reconstruction levels. The actual and 5-bit quantized input sequence is shown in
Fig. 10.10 as a stem plot. It appears that the 5-bit quantized version very nearly
approximates the full-precision signal. The downsampled versions of the full-
precision and 5-bit quantized version of the input signal are shown in Fig. 10.11 in
the top and bottom plots, respectively. In Fig. 10.12 is shown the spectra of the input
sequence, filtered output, and filtered downsampled output sequences in the top,
middle, and bottom plots, respectively. As seen from the figure, the folding fre-
quency of the downsampled signal reverts to 2000 Hz. As pointed out, the quanti-
zation noise of the ADC is uniformly distributed in the range�q

2. Figure 10.13 shows
the 5-bit quantizer noise sequence along with its histogram and spectrum in the top,
middle, and bottom plots, respectively. As expected, the histogram appears uniform
implying that the quantizer noise is uniformly distributed. The program also com-
putes the noise variances of the quantizer before and after filtering by the antialiasing
digital filter. The noise variance or power of the 5-bit quantizer is found to be 0.0081.
The corresponding SNR is 26.96 dB. The noise variance and the resulting SNR after
filtering are, respectively, 0.0037 and 30.33 dB. Because of oversampling, the
quantization noise power at the output of the antialiasing digital filter has decreased
by more than 3 dB!

Fig. 10.8 Oversampling factor versus the maximum aliasing error in dB for four different values of
the Butterworth analog filter order
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Fig. 10.9 Input/output relationship of a 5-bit uniform quantizer of Example 10.3 as a step function

Fig. 10.10 Full-precision and 5-bit quantized input sequence: top, full-precision; bottom, 5-bit
quantized sequence



10.4 Oversampled DAC

In the previous section, we described an oversampled ADC. The purpose of using a
sampling rate much higher than the Nyquist rate is to ease the requirements on the
antialiasing analog prefilter by increasing the transition width. Oversampling also
reduces the ADC bit width and rejects the out-of-band noise. After transmission and
reception of the digital signal, it must be converted back to the analog domain. Since
the sampling rate at the ADC is high, it has to be brought back to the Nyquist rate. A
block diagram of an oversampled DAC is shown in Fig. 10.14. Since the process of
downsampling introduces spectral images, the images must be removed using an
anti-imaging lowpass analog filter. The output of the anti-imaging lowpass analog
filter is the recovered analog signal. Let us exemplify the oversampled DAC
operation by an example using MATLAB.

Example 10.4 This example uses the same signal used in the previous example. To
be self-contained, the oversampled ADC is incorporated. Its output is then converted
to an analog signal. The anti-imaging lowpass analog filter is incorporated into the
DAC. The M-file to execute Example 10.4 is named Example 10_4.m. The input to

Fig. 10.11 Downsampled sequences: top, full-precision sequence; bottom: 5-bit quantized
sequence
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the DAC is a 5-bit quantized sequence that is oversampled by a factor of 6. The anti-
imaging filter is a second-order Butterworth filter. The input analog signal and the
DAC output signal are shown in Fig. 10.15 in the top and bottom plots, respectively.
They seem to be pretty close. The corresponding spectra are shown in Fig. 10.16.
Because of quantization, there appears some noise in the output spectrum. The SNR
between the input analog signal and the DAC output signal is found to be 25.36 dB.
In both oversampled ADC and DAC, DSP plays an important role in filtering the
sequences using digital filters.

10.5 Cancelation of Inter-Symbol Interference

In a digital communications system, messages are represented in binary format. Each
binary symbol is transmitted as a pulse. These pulses are first lowpass filtered at the
transmitter before transmission to confine them to a certain specified bandwidth. As
these pulses travel through the channel, they are distorted in their amplitude and
phase due to the channel reactance. As a result, the pulses expand in time and so

Fig. 10.12 Spectra of the sequences in Example 10.3: top, input sequence; middle, filtered output
sequences; bottom, filtered and downsampled sequence
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overlap between neighboring pulses. The heart of digital communications is in its
precise timing. If pulses from neighboring bit intervals overlap, then error occurs in
the detection of the actual transmitted pulse in each bit interval. That is to say that
interference between pulses occurs due to distortion in the transmitted pulses. This is
known as the inter-symbol interference (ISI). The transmitter/channel/receiver chain
can be modeled as a cascade of three LTI systems as described by

H fð Þ ¼ Ht fð ÞHc fð ÞHr fð Þ ð10:35Þ
where Ht( f ) represents the transmitter, Hc( f ) the channel, and Hr( f ) the receiver.
The ISI can be canceled or minimized by adjusting the transmitter and receiver
filters. Since the channel is not under our control, we cannot do anything with it. By a
proper choice of the transmitter, we can shape the transmitted pulses in such a way

Fig. 10.13 5-bit quantizer noise: top, noise sequence; middle, histogram of the quantizer noise;
bottom, spectrum of the quantizer noise

Fig. 10.14 Block diagram of an oversampled DAC
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that the ISI can be minimized. This process is known as pulse shaping and is
accomplished at the transmitter. Having taken care of the share of the transmitter,
the channel effect can be canceled or minimized by a proper choice of a filter at the
receiver. This is known as channel equalization. We have learnt phase and group
delay equalization in the chapter on IIR digital filters. However, when the channel
characteristics change slowly, then the equalizing digital filter coefficients should
also change. This results in adaptive equalizers at the receiver. In any case, digital
filtering is involved.

10.5.1 Pulse Shaping

According to Nyquist, if the overall system H( f ), from transmitter to receiver in
(10.35), amounts to an ideal filter with a cutoff frequency equal to half the trans-
mission symbol rate Rs, then there will be no ISI at the receiver. The ideal filter has
the characteristics

5

0

0 10 20 30

A
m

pl
itu

de
A

m
pl

itu
de

40 50 60 70
-5

5

0

0 50 100 150 200
Index n

Filtered D/A signal

Input analog signal

250 300 350 400
-5

Fig. 10.15 Input analog and DAC output analog signals: top, input analog signal; bottom, DAC
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H fð Þ ¼ 1, fj j � W0

0, otherwise

�
ð10:36Þ

where

W0 ¼ 1
2Ts

¼ Rs

2
ð10:37Þ

The corresponding impulse response of the ideal filter is given by

h tð Þ ¼ sin 2πW0tð Þ
πt

¼ 2W0sinc 2W0tð Þ, �1 < t < 1 ð10:38Þ

The problem with the above ideal filter is that its impulse response is not zero for
t < 0 and is, therefore, non-causal, meaning that it is not physically realizable as is. It
is also susceptible to small timing errors. In effect, what we mean by the above
statements is that the Nyquist bandwidth of the filter in (10.37) is not realizable. So,
what are we going to do? Fortunately, one can allow some excess bandwidth,
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Fig. 10.16 Spectra of the signals in Fig. 10.15: top, spectrum of the input analog signal; bottom,
spectrum of the DAC output analog signal
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thereby making the filter realizable. A small excess bandwidth is tolerable indeed.
This is accomplished by using a filter with a frequency response described by

HRC fð Þ ¼
1, fj j � 2W0 �W

cos 2
π

4
fj j þW � 2W0

W �W0

� 
, 2W0 �W < fj j � W

0, fj j > W

8>><>>: ð10:39Þ

Since the frequency response of the filter in (10.39) follows the square of a cosine
function, it is called the raised cosine (RC) filter. In the raised cosine filter, the
quantity W � W0 is the excess bandwidth and the roll-off factor is defined as

r ¼ W �W0

W0
ð10:40Þ

Corresponding to (10.39), the impulse response of the RC filter can be shown to
be

hRC tð Þ ¼ 2W0sinc 2W0tð Þ cos 2π W �W0ð Þtð Þ
1� 4 W �W0ð Þtð Þ2
" #

, �1 < t < 1 ð10:41Þ

Have we solved anything in using RC filter? Even though the impulse response of
the RC filter is non-causal, it decays very rapidly, and so it can be truncated without
incurring any penalty. Thus, the RC filter becomes causal and realizable. What we
are implying is that if the overall frequency response of the communications system
from transmitter to receiver corresponds to the raised cosine filter response, i.e.,

H fð Þ ¼ HRC fð Þ, ð10:42Þ
then there will be zero ISI because it satisfies Nyquist condition. One way to design
the transmitter and receiver filters is to use the following:

Ht fð Þj j ¼ Hr fð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HRC fð Þ

p
ð10:43Þ

If (10.43) is satisfied, the overall frequency response of the communications
system will not only satisfy Nyquist condition for zero ISI but will also be physically
realizable.

Figure 10.17 shows the impulse response of an analog RC filter over the time
interval�0.02� t� 0.02 sec for three roll-off factors of 0, 0.5, and 1. As can be seen
from the plots, the impulse response decays very rapidly for the roll-off factor 1. The
frequency response of the RC filter corresponding to the three roll-off factors is
shown in Fig. 10.18. The excess bandwidth is the largest for the case where the roll-
off factor is 1. By discretizing the impulse response of the analog RC filter, we can
obtain the impulse response of the corresponding digital filter. Figure 10.19 shows
the discrete version of the impulse response of the RC filter, and its frequency
response is shown in Fig. 10.20 for the same three values of the roll-off factor. For
the discrete-time version of the RC filter, the sampling frequency is assumed to be
4.5 times the Nyquist bandwidth. We further show in Fig. 10.21 the process of
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Fig. 10.20 Frequency response of the digital RC filter
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Fig. 10.19 Impulse response of the digital RC filter
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filtering a sequence of rectangular pulses with the RC filter. We see no interference
in the main lobe because of the RC shape of the lowpass filter. Even though there is
some overlapping of the pulses in adjacent symbol intervals, there is no significant
ISI due to the facts that the RC filter response decays very rapidly in the time domain
and due to sinc(x) nature of the impulse response. TheMATLABM-file to obtain the
impulse and frequency responses of the RC filter in both the continuous-time and
discrete-time domains is named Raised_cosine.m.

Simulink Example for Pulse Shaping In this example we simulate the process of
shaping a pulse sequence by a raised cosine filter using MATLAB’s Simulink.
Figure 10.22 shows the block diagram consisting of a pulse generator, whose output
is filtered by an RC filter and two scopes to display the respective signals. The
parameters of the pulse generator and RC filter are listed by the side of the respective
blocks, as shown in the figure. The simulation time is chosen to be 1 sec. After
starting the simulation, the respective outputs in the time domain are displayed on
the scopes and are shown in Figs. 10.23 and 10.24. The Simulink program is named
RC_filter.slx.

10.5.2 Equalization

Equalization is the process of correcting the ISI induced by the channel. There are
linear and nonlinear equalization techniques available in the literature. We will only
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Fig. 10.21 Processing a sequence of pulses through the RC filter
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Fig. 10.22 Block diagram to simulate RC filtering of a pulse sequence

Fig. 10.23 Input pulse sequence to the RC filter

450 10 DSP in Communications



deal with linear equalization procedures in this book. Mobile radio channel is
nonstationary, meaning that the channel characteristics keep changing from time to
time. This happens because the transmitted signal takes different paths as a result of
reflection from the nearby tall buildings, hills, towers, etc. Also, since the receiver is
not fixed, these reflected signals cause fading. This effect is known as multipath
fading. Due to the relative motion between the transmitter and the receiver, there is
the effect of Doppler spread in the received frequency. These impairments cause
severe inter-symbol interference, which results in a high rate of bit errors at the
receiver. As we saw earlier, if the overall system corresponds to a raised cosine filter
function, then there will be no ISI. Therefore, the product of the transmitter and
receiver filters equals the raised cosine filter response. In Fig. 10.25 is shown the

+Ht(f) Hc(f) Hr(f) He(f)
Input Output

Noise
n(t)

Fig. 10.25 Transmitter-receiver chain with an equalizing filter at the receiver to correct ISI due to
channel impairments

Fig. 10.24 RC-filtered sequence with no ISI
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transmitter-channel-receiver tandem. At the receiver, an equalizing filter is employed
to correct the channel impairments. The most common equalization filter is the
transversal filter, which is an FIR filter. Due to the non-stationarity of the channel,
the filter coefficients must be adapted to the changing statistics of the radio channel.

A block diagram of a linear adaptive transversal equalizer with 2 N + 1 taps is
shown in Fig. 10.26. The delay in each delay element corresponds to a symbol
duration. This type of equalizer is termed a symbol-spaced equalizer. The response
of the transversal filter y[k] can be expressed in terms of the input x[n] as

y k½ � ¼
XN
n¼�N

cnx k � n½ �, � N � k � N ð10:44Þ

In compact matrix form, (10.44) can be written as

y ¼ Xc ð10:45Þ
where

y ¼ y�N � � �� � �yN½ �T ð10:46aÞ

c ¼ c�N � � �c0� � �cN½ �T and ð10:46bÞ

X ¼

x�N � � �� � �� � �0
x�Nþ1 x�N � � �

⋮
⋮

0 0� � �� � �� � �xN

266664
377775 ð10:46cÞ

Fig. 10.26 A linear adaptive transversal filter as a channel equalizer
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The criterion for selecting the filter coefficients {cn} is based on minimizing an
objective function such as the mean square error (MSE) or absolute peak error. Since
the channel statistics are time-variant, these coefficients are frequently changed
using a suitable adaptation scheme. The number of taps in the transversal filter is
usually chosen to be larger than the number of symbols involved in the ISI.

Simulink Example for Equalization In order to get a better picture of equalization
to cancel ISI in digital communications, let us look at an example using MATLAB’s
Simulink. In this example, we consider an 8-ary QAM (quadrature amplitude
modulation) scheme. In QAM, the amplitude of a carrier is modulated using discrete
values. More specifically, the transmitted waveform is described by

xQAM tð Þ ¼ Ap tð Þ cos 2πf ctð Þ þ Bp tð Þ sin 2πf ctð Þ ð10:47Þ
where p(t) is a rectangular pulse of duration equal to the symbol duration, {A} and
{B} are the sets of amplitudes with M values each, and fc is the carrier frequency.
These amplitudes have M ¼ 2k discrete values corresponding to k-bit symbols. Let
us choose M ¼ 8. The simulation will be carried in the baseband, that is, no carrier
modulation will be used. The channel introduces additive white Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) of 20 dB. The channel is modeled as
a four-tap FIR filter whose impulse response is described by

he n½ � ¼ 1� 0:3z�1 þ 0:1z�2 þ 0:2z�3 ð10:48Þ
The adaptive transversal equalizer has 8 taps. The simulation uses least mean square

(LMS) algorithm to adaptively estimate the filter taps. The signal sets are typically
viewed as a constellation, where the two-dimensional vectors are described by

dm ¼ ffiffiffiffiffi
Es

p
A

ffiffiffiffiffi
Es

p
B

� � ð10:49Þ
where Es is the signal energy and {A} and {B} have M ¼ 8 discrete values. In
Fig. 10.27 is shown the block diagram of the 8-ary QAM system. The input to the
LMS adapter is the signal from the AWGN block, and the desired signal is the output
of the QAM modulator. The constellation diagrams of the signals before and after
equalization are shown in Fig. 10.28 for an SNR of 20 dB. When the SNR is
increased to 40 dB, the clusters appear more focused as seen from Fig. 10.29. The
Simulink file is named Adaptive_Equalizer.slx. For more details on the parameters
used in various blocks in Fig. 10.27, the reader may double-click each block to learn
and modify the parameters.

10.5.3 Matched Filter

In digital communications, PCM binary digits are represented by pulses for trans-
mission. In baseband communications, these pulses are transmitted as such, whereas
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in carrier communications, these pulses modulate a carrier using different modula-
tion schemes. We will consider baseband transmission here. The binary pulses may
take one of non-return to zero (NRZ), return to zero (RZ), and Manchester code.
Each one of these pulse types will affect the communications in terms of the DC
component, self-clocking, error detection, bandwidth compression, noise immunity,
etc. Our task here is to find out what is matched filter, why is it used in digital
communications, and can it be realized as a digital filter. As pointed out earlier, the

Fig. 10.28 Constellation diagram of the 8-ary QAM system in Fig. 10.27 showing the signal sets
before and after equalization for an SNR of 20 dB: left, before equalization; right, after equalization

Fig. 10.27 Block diagram to simulate an 8-ary QAM system with equalization using LMS
algorithm
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key factor in digital communications is the timing. The main task of the detector or
receiver is to determine in each bit interval which binary digit – a binary “0” or a
binary “1” – was transmitted. If there is no channel disturbance such as noise, then
there is no problem in deciding which bit is transmitted in a given bit interval.
However, the channel adds noise, namely, white Gaussian noise. Since the noise is
added to the transmitted signal, this channel-induced noise is called the additive
white Gaussian noise (AWGN). The received signal r(t) is the sum of the transmitted
signal and noise, as defined by

r tð Þ ¼ si tð Þ þ n tð Þ, i ¼ 1, 2; 0 � t � T ð10:50Þ
where T is the bit period and the transmitted signal takes the form

si tð Þ ¼ s1 tð Þ, 0 � t � T , for a binary
0
1

0

s2 tð Þ, 0 � t � T , for a binary
0
0

0

�
ð10:51Þ

The processing consists of first filtering the received signal r(t) followed by
sampling the filtered signal z(t) at the end of the bit period. Since the filter is LTI,
the filtered signal is expressed as

z tð Þ ¼ ai tð Þ þ n0 tð Þ ð10:52Þ
The sampled signal value z(T ) is then compared against a predetermined thresh-

old value to decide which binary bit was transmitted in that bit interval. The sampled
signal is described by

z Tð Þ ¼ ai Tð Þ þ n0 tð Þ ð10:53Þ
If the threshold value is denoted by γ, then the decision amounts to

Fig. 10.29 Constellation diagram of the 8-ary QAM system in Fig. 10.27 showing the signal sets
before and after equalization for an SNR of 40 dB: left, before equalization; right, after equalization
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bs tð Þ ¼ s1 tð Þ if z Tð Þ > γ
s2 tð Þ if z Tð Þ < γ

�
ð10:54Þ

Figure 10.30 depicts the receiver operation. The linear time invariant (LTI) filter
is implemented as a digital filter. The noise component in (10.53) is a zero-mean
Gaussian random variable with a standard deviation σ0. The probability density
function (pdf) of the noise component n0(T ) takes the form

p n0ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � n20
2σ20

� 
ð10:55Þ

Since z(T ) is the sum of Gaussian noise and a signal component, it is also a
Gaussian random variable with the same standard deviation as that of n0(T ) but with
a mean of ai(T ). Thus, depending on which binary digit is transmitted, the pdf of z(T )
is given by

p zjs1ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � z� a1ð Þ2
2σ20

 !
ð10:56aÞ

p zjs2ð Þ ¼ 1

σ0
ffiffiffiffiffi
2π

p exp � z� a2ð Þ2
2σ20

 !
ð10:56bÞ

The two conditional pdfs in (10.56a) and (10.56b) are illustrated in Fig. 10.31 for
the case a1 ¼ � a2 ¼ 2.

The objective of the detector is to detect which binary digit is transmitted in a
given bit interval with the least amount of average bit error. As seen from Fig. 10.30,
there are two variables to adjust so as to minimize the probability of a bit error. The
first variable is the linear filter. By choosing the right filter, the probability of a bit
error is minimized. This results in what is known as the matched filter (MF). The
second variable is the threshold. Choosing the optimal threshold further minimizes
the bit error probability. This results in maximum likelihood receiver.

Maximum Likelihood Receiver The decision threshold γ is chosen so as to
minimize the probability of a bit error. This is achieved by maximizing the likeli-
hood ratio

Fig. 10.30 Linear processing at the receiver to detect transmitted binary symbols
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if
p zjs1ð Þ
p zjs2ð Þ >

P s2ð Þ
P s1ð Þ , choose s1 tð Þ ð10:57aÞ

if
p zjs1ð Þ
p zjs2ð Þ <

P s2ð Þ
P s1ð Þ , choose s2 tð Þ ð10:57bÞ

In the above equations, P(s1) and P(s2) are the a priori probabilities of the binary
waveforms s1(t) and s2(t), respectively. Based on (10.57), the optimal threshold
corresponds to the intersection of the two conditional pdfs, which is given by

γ0 ¼
a1 þ a2

2
ð10:58Þ

With the threshold value being determined, the probability of a bit error is
determined as follows. The probability of making an error given s1 was transmitted
equals the area under the curve p(z|s1) from �1 to γ0, which is

p ejs1ð Þ ¼
Z γ0

�1
p zjs1ð Þdz ð10:59Þ

Similarly, the probability of making an error given s2 was transmitted equals the
area under the curve p(z|s2) from γ0 to 1, which is

Fig. 10.31 Conditional probability density functions of the linearly processed and sampled signal

10.5 Cancelation of Inter-Symbol Interference 457



p ejs2ð Þ ¼
Z 1

γ0

p zjs2ð Þdz ð10:60Þ

Since there are two symbols in the system, the average bit error is the weighted
sum of the two conditional error probabilities in (10.59) and (10.60), which is
expressed as

PB ¼ P s1ð Þp ejs1ð Þ þ P s2ð Þp ejs2ð Þ ð10:61Þ
If the binary symbols are equally likely, that is, if P s1ð Þ ¼ P s2ð Þ ¼ 1

2, then the
probability of a bit error reduces to

PB ¼
Z 1

γ0¼a1þa2
2

p zjs2ð Þdz ¼ 1

σ0
ffiffiffiffiffi
2π

p
Z 1

γ0

exp � z� a2ð Þ2
2σ20

 !
dz ð10:62Þ

By replacing z�a2
σ0

by x, the lower limit in (10.62) becomes a1�a2
2σ0

. Then the

probability of a bit error amounts to

PB ¼ 1ffiffiffiffiffi
2π

p
Z

a1�a2
2σ0

1
exp �x2

2

� 
dx ¼ Q

a1 � a2
2σ0

� 
ð10:63Þ

where Q(x) is called the complementary error function and is defined as

Q xð Þ ¼ 1ffiffiffiffiffi
2π

p
Z 1

x
exp �x2

2

� 
dx ð10:64Þ

In other words, the complementary error function equals the area under the
normal curve with zero mean and unit variance from x to 1. It does not have a
closed form solution but is found in most standard textbooks on digital communi-
cations. It is also available in MATLAB as a built-in function erfc.

Matched Filter From (10.63), we observe that larger the threshold value, smaller
the area under the normal curve or smaller the probability of a bit error. The matched
filter maximizes the argument of the complementary error function. Let the input to
the LTI filter in Fig. 10.30 be the sum of a known signal s(t) and an AWGN n(t). The
output of the filter at the end of the bit interval T equals

z Tð Þ ¼ ai Tð Þ þ n0 Tð Þ ð10:65Þ
Therefore, the signal-to-noise ratio at t ¼ T is

S

N

� 
T

¼ a2i
σ20

ð10:66Þ

What we need is a filter that maximizes the SNR in (10.66). The signal compo-
nent at the filter output can be related to the filter transfer function via Fourier
transform by
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a tð Þ ¼
Z 1

�1
H fð ÞS fð Þe j2πftdf ð10:67Þ

In (10.67), S(f) is the Fourier transform of the signal s(t). If we assume the
two-sided power spectral density of the output Gaussian noise to be N0

2 watts/Hz,
then the noise power at the output of the filter is given by

σ20 ¼
N0

2

Z 1

�1
H fð Þj j2df ð10:68Þ

Using (10.66, 10.67, and 10.68), the SNR at the end of the bit interval becomes

S

N

� 
T

¼
R1
�1 H fð ÞS fð Þe j2πfTdf

�� ��2
N0
2

R1
�1 H fð Þj j2df ð10:69Þ

Using Schwartz’s inequality, the numerator of (10.69) can be written asZ 1

�1
H fð ÞS fð Þe j2πfTdf

���� ����2 � Z 1

�1
H fð Þj j2df

Z 1

�1
S fð Þj j2df ð10:70Þ

Using (10.70) in (10.69), the expression for the SNR at t ¼ T takes the form

S

N

� 
T

� 2
N0

Z 1

�1
S fð Þj j2df ð10:72Þ

The maximum SNR is then equal to

max
S

N

� 
T

¼ 2
N0

Z 1

�1
S fð Þj j2df ¼ 2E

N0
ð10:73Þ

where the signal energy E is given by

E ¼
Z 1

�1
S fð Þj j2df ð10:74Þ

The equality holds in Schwartz’s inequality if the following condition is met:

H fð Þ ¼ H0 fð Þ ¼ KS* fð Þe�j2πfT ð10:75Þ
The interpretation of (10.75) in the time domain from the time reversal property

of the Fourier transform is that the impulse response of the matched filter is the time-
reversed and right-shifted version of the signal. Mathematically speaking, it amounts
to

h tð Þ ¼ Ks T � tð Þ, 0 � t � T
0, otherwise

�
ð10:76Þ
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From the above equation, we see that the filter impulse response is a replica of the
transmitted pulse waveform but for the amplitude and time reversing and shifting.
That is the reason the filter is known as the matched filter. Since the MF maximizes
the SNR at the end of the bit interval, the maximum SNR is written as

S

N

� 
T

¼ a1 � a2ð Þ2
σ20

¼ Ed
N0
2

¼ 2Ed

N0
ð10:77Þ

where energy difference in (10.77) stands for

Ed ¼
Z T

0
s1 � s2ð Þ2dt ð10:78Þ

Using (10.77) and (10.78), the probability of a bit error reduces to

PB ¼ Q
a1 � a2
2σ0

� 
¼ Q

ffiffiffiffiffiffiffiffi
2Ed

N0

r� 
ð10:79Þ

Correlation Filter Another interpretation of the MF is as follows. We can express
the response of the MF to the received signal at time t as

z tð Þ ¼
Z t

0
r τð Þs T � t þ τð Þdτ ð10:80Þ

At the end of the bit interval t ¼ T, the MF response becomes

z Tð Þ ¼
Z T

0
r τð Þs τð Þdτ, ð10:81Þ

which is what is known as the correlation of r(t) with s(t). Therefore, the MF is
also a correlation filter. To implement the MF as a correlation filter, we multiply the
received signal by a replica of the transmitted signal and integrate the product over
the bit interval. The output of the correlation filter at the end of the bit interval is the
same as that of the MF.

MF Example Let us consider a simple example based on MATLAB to determine
the impulse response and the filter response of a matched filter corresponding to a
binary signal set. Let the two signals be defined by

s1 n½ � ¼ 1, 0 � n � 9
0, otherwise

�
ð10:82aÞ

s2 n½ � ¼ �1, 0 � n � 9
0, otherwise

�
ð10:82bÞ

Figure 10.32 shows the signal s1[n] in the top plot and the impulse response of the
corresponding matched filter in the bottom plot. Note that the two sequences look
identical because the MF impulse response is flipped and shifted to the right by the
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bit duration, which is of length ten samples. Similarly, the signal s2[n] and the
corresponding MF impulse response are shown in Fig. 10.33. The responses of the
two matched filters to input signal plus noise are shown in Fig. 10.34, where the top
plot shows the MF response to the signal s1[n] plus noise and the bottom plot shows
the MF response to the signal s2[n] plus noise. The noise is a Gaussian noise with a
standard deviation of 0.25. As expected, the response is a maximum at the end of the
bit interval. The responses of the corresponding correlation filters to the two signals
are depicted in Fig. 10.35. The responses reach the maximum value at the end of the
bit interval. Therefore, the correlation filters are equivalent to the matched filters.
The M-file is named Matched_filter.m.

10.5.4 Phase-Locked Loop

Phase-locked loop, PLL for short, is a closed-loop control system. It acquires and
tracks the phase of an incoming carrier signal and follows it so as to enable coherent
demodulation. Analog modulation schemes may be amplitude modulation (AM) or
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Fig. 10.32 Signal s1[n] and its MF impulse response: top, signal s1[n]; bottom, corresponding MF
impulse response
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frequency modulation (FM). In either case, the message waveform can be recovered
using coherent demodulation. Coherent demodulation requires a replica of the
transmitted carrier to be available at the receiver. That is, the locally available carrier
must have the same frequency and phase as that of the received carrier. The aim of
the PLL is to enable coherent demodulation.

A PLL can be implemented either in analog form or digital form. We will first
describe the analog PLL and then discuss the digital version later. A PLL consists of
a phase detector, a loop filter, and a voltage-controlled oscillator (VCO). This is
shown in Fig. 10.36. The phase detector produces a signal, which is the difference in
phase between the incoming and locally generated signals. The loop filter filters the
output of the phase detector to pass the slowly varying phase component and reject
the high-frequency component. The VCO generates a replica of the incoming carrier
signal based on the output signal of the loop filter. The input to the VCO is a measure
of the difference in phase between that of the incoming signal and VCO output. This
input then drives the phase of the VCO output in the direction of the phase of the
incoming carrier. Since a PLL is a closed-loop system, the phase error tends to zero a
little after the start of the PLL. Once the phase error is zero, the PLL is said to be in
lock. Then it tracks the phase of the incoming carrier.
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Fig. 10.33 Signal s2[n] and its MF impulse response: top, signal s2[n]; bottom, corresponding MF
impulse response
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Analysis of a PLL As seen from Fig. 10.36, r(t) is the received signal; x(t) is the
output of the VCO; the output of the phase detector is e(t), which is the product of r
(t) and x(t); and v(t) is the output of the loop filter, which is the input to the VCO. Let
the incoming carrier signal be described by

r tð Þ ¼ sin 2πf ct þ θ tð Þð Þ ð10:83Þ
where the nominal frequency of the carrier is fc and θ(t) is its phase, which is a slowly
varying signal. Let the VCO output be defined as

x tð Þ ¼ 2 cos 2πf ct þ φ tð Þð Þ ð10:84Þ
The phase detector accepts both r(t) and x(t) as inputs and outputs the product of

the two input signals as described below.

e tð Þ ¼ r tð Þx tð Þ ¼ 2 sin ωct þ θ tð Þð Þ cos ωct þ φ tð Þð Þ ð10:85Þ
Using the trigonometric identity, the phase detector output can be written as
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deviation in both cases is 0.25
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e tð Þ ¼ sin θ tð Þ � φ tð Þð Þ þ sin 2ωct þ θ tð Þ þ φ tð Þð Þ ð10:86Þ
Since the aim of the PLL is to track the phase of the incoming signal, the loop

filter is designed to be a lowpass filter, which rejects the signal at twice the carrier
frequency and passes the lowpass signal sin(θ(t) � φ(t)). The VCO generates a
frequency deviation that is proportional to its input voltage v(t). When v(t) ¼ 0, the
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Fig. 10.35 Response of the correlation filter: top, response of correlation filter 1 to input signal
s1[n] plus noise; bottom, response of correlation filter 2 to input signal s2[n] plus noise. The standard
deviation of the noise is 0.25

Fig. 10.36 Block diagram
of a PLL
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VCO nominal frequency is ωc. Denoting the instantaneous frequency deviation from
ωc by Δω(t), we have

Δω tð Þ ¼ dϕ tð Þ
dt

¼ Kv tð Þ ð10:87Þ

where K is a VCO gain in rad/volt. Note that frequency is the derivative of the phase.
If the impulse response of the loop filter is denoted by g(t), then, since the loop filter
is LTI, its response is the convolution of its input and impulse response. That is,

v tð Þ ¼ e tð Þ*g tð Þ ð10:88Þ
Under locked condition, the phase error is very small and so

e tð Þ ’ θ tð Þ � φ tð Þ ð10:89Þ
Therefore, (10.87) becomes

Δω tð Þ ¼ K θ tð Þ � φ tð Þð Þ*g tð Þ ð10:90Þ
This gives rise to the linearized PLL, which is shown in Fig. 10.37. Using (10.87)

in (10.90), we have

dφ tð Þ
dt

þ Kφ tð Þ*g tð Þ ¼ Kθ tð Þ*g tð Þ ð10:91Þ

By applying the Laplace transform on both sides of (10.91) and using the
differentiation and convolution properties of the Laplace transform, (10.91) can be
written as

sΦ sð Þ þ KΦ sð ÞG sð Þ ¼ KΘ sð ÞG sð Þ ð10:92Þ
From (10.92) the closed-loop transfer function of the linearized PLL is expressed as

H sð Þ 	 Φ sð Þ
Θ sð Þ ¼

KG sð Þ
sþ KG sð Þ ð10:93Þ

Fig. 10.37 Linearized PLL
in the Laplace domain
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In (10.92) and (10.93), Θ(s) and Φ(s) are the Laplace transforms of θ(t) and φ(t),
respectively. The linearized PLL in the Laplace domain is shown in Fig. 10.37. For
s ¼ jω, the frequency response of the linearized PLL takes the form

H ωð Þ ¼ KG ωð Þ
jωþ KG ωð Þ ð10:94Þ

Steady-State Phase Error The Laplace transform of the phase error is given by

E sð Þ ¼ L e tð Þf g ¼ Θ sð Þ �Φ sð Þ ð10:95Þ
From (10.93),

Φ sð Þ ¼ KG sð ÞΘ sð Þ
sþ KG sð Þ ð10:96Þ

Using (10.96) in (10.95), the phase error in the Laplace domain is found to be

E sð Þ ¼ Θ sð Þ 1� KG sð Þ
sþ KG sð Þ

� �
¼ sΘ sð Þ

sþ KG sð Þ ð10:97Þ

The steady-state phase error is the phase error as t tends to infinity. Using one of
the properties of the Laplace transform, the steady-state phase error is obtained from

lim
t!1 e tð Þ ¼ lim

s!0
sE sð Þ ¼ lim

s!0

s2Θ sð Þ
sþ KG sð Þ ð10:98Þ

Step Phase Response Let us assume that the PLL is in phase lock. When a unit step
phase is then applied to the PLL at t ¼ 0, the input phase in the Laplace domain is
given by

Θ sð Þ ¼ 1
s

ð10:99Þ

If G(0) 6¼ 0, then the steady-state phase error becomes

lim
t!1 e tð Þ ¼ lim

s!0

1
s

s2

sþ KG sð Þ ¼ 0 ð10:100Þ

From (10.100), it is clear that the PLL tracks the input step phase.

PLL Response to a Frequency Step What happens if an abrupt step in the input
frequency occurs? Will the PLL be able to track a frequency step? Let us investigate.
Incidentally, a frequency step change could indicate a Doppler shift in the incoming
signal frequency. This shift may be due to a relative motion between the transmitter
and receiver. Since phase is the integral of the frequency, it changes linearly with
respect to time when the frequency change is a step function. Using the integral in
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time property of the Laplace transform, the input phase due to a frequency step
change Δω is given by

Θ sð Þ ¼ Δω
s2

ð10:101Þ

The steady-state phase error is found to be

lim
t!1 e tð Þ ¼ lim

s!0
sE sð Þ ¼ lim

s!0

s2 Δω
s2

sþ KG sð Þ ¼
Δω

KG 0ð Þ ð10:102Þ

The steady-state error depends on G(0). There are three possible types of loop
filter, which are allpass, lowpass, and lead-lag filters and are defined below in that
order.

G sð Þ ¼ 1⟹G 0ð Þ ¼ 1 ð10:103aÞ

G sð Þ ¼ β

sþ β
⟹G 0ð Þ ¼ 1 ð10:103bÞ

G sð Þ ¼ β

α

� 
sþ α

sþ β
⟹G 0ð Þ ¼ 1 ð10:103cÞ

In any case, G(0) ¼ 1. Therefore, the steady-state phase error becomes

lim
t!1 e tð Þ ¼ Δω

K
ð10:104Þ

and so the PLL tracks a step change in the input frequency. Even though the steady-
state phase error is a constant and not zero, the PLL tracks a step change in input
frequency with a constant phase error. Let us clarify the above discussion with a
couple of examples.

Example 10.5a Step Phase: In this example, let us calculate the response of the
PLL to a step phase input with the following specs. G sð Þ ¼ 1

sþ1, and the VCO

output is X sð Þ ¼ K
s V sð Þ. Since we are going to implement this PLL in S/W, we will

use a digital lowpass loop filter. The integrator, which models the VCO, in the
discrete-time domain is simply a delayed accumulator. Let the VCO gain K ¼ 0.1
and let the phase step of 0.95 rad be applied at the time index n ¼ 510. The input
phase, the VCO output phase, and the phase error are shown in Fig. 10.38 in top,
middle, and bottom plots, respectively. As seen from the figure, the VCO phase
undergoes a transient state and reaches a steady state after about ten sampling
intervals. Similarly, the phase error reaches a steady state after about ten sampling
intervals. The VCO input and output are shown in Fig. 10.39 in the top and bottom
plots, respectively.
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Example 10.5b Pulse Phase: In this example we consider an input pulse phase to
the PLL with the same loop filter and VCO as in the previous example. In Fig. 10.40
are shown the input phase, the VCO phase, and the phase error in the top, middle,
and bottom plots, respectively. The VCO phase is a distorted pulse and so is the
phase error. Similar to the previous case, the VCO input and output are shown in the
top and bottom plots of Fig. 10.41.

Example 10.5c Ramp Phase: As a third example, let the input to the PLL be a
ramp phase. The phase changes from 0 to 1 rad over 20 samples. Note that the
instantaneous frequency is the time derivative of the phase. Since the phase varies
linearly with time, the frequency will be a constant equal to the slope of the phase.
Figure 10.42 shows the input phase, the VCO phase, and the phase error in the top,
middle, and bottom plots, respectively. The VCO input and output are shown in the
top and bottom plots in Fig. 10.43. The M-file used for the three cases of Example
10.5 is named Example 10_5.m.

Simulink Example to Simulate a Linearized Analog PLL To get a hands-on
experience in working with PLL, let us look at simulating a linearized analog PLL
using MATLAB’s Simulink. In this example, the PLL functions in the baseband.

1

0.5

0
510 515 520 525 530 535 540 545 550 555 560

510 515 520 525 530 535 540 545 550 555 560

510 515 520 525 530 535
Time(s)

Phase Error

VCO phase

Input type: step phase
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

540 545 550 555 560

1

0.5

0

0.6

0.4

0.2

0

Fig. 10.38 Input phase and VCO phase in Example 10.5a: top, input step phase; middle, VCO
output phase; bottom, phase error
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Under the Communications System Toolbox, we will find the subsystem named
Synchronization, and under Synchronization, we have Components in which we will
find the block named Linearized Baseband PLL. This block has one input and three
outputs. The input is the signal whose phase is to be tracked. The three outputs are
the phase detector (PD), the loop filter (Filt), and the voltage-controlled oscillator
(VCO). The loop filter parameters to be entered in the PLL Block Parameters are the
coefficients of the numerator and denominator polynomials of the lowpass filter
transfer function. The coefficients correspond to the descending powers of the
Laplace variable s. The filter chosen is a third-order Butterworth analog filter with
a passband edge of 100 rad/s. The VCO parameter is its gain or input sensitivity in
Hz/V. The input to the PLL block is a baseband sinusoidal source, which is found
under Simulink – Source category. We have the option to use either sample based or
time based. We will use sample based as the parameter under “sine type.” We will
also choose 100 samples/period under “samples per period” and an offset of 10 sam-
ples. The sample time is 0.01 s. The reader can view all the parameter options
available as well as what are selected by double clicking each block in the simulation
diagram. We can also add white Gaussian noise to the signal and the sum is fed to
the PLL. Figure 10.44 shows the simulation block diagram used in this example.
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Fig. 10.39 Input and output phase of VCO in Example 10.5a: top, VCO input; bottom, VCO
output phase
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After connecting all the blocks, we need to save the diagram in a file. The simulation
time is chosen to be 10 s. To start the simulation, we have to click the green right
arrow. If there are no errors, the simulation will start, and the results will be
displayed on the respective scopes. First, let us simulate the PLL without noise.
The input signal is shown in Fig. 10.45. As seen from the figure, there are 10 cycles
over the 10 sec duration. The VCO output is shown in Fig. 10.46. As expected, it
takes a few samples before the locking condition occurs. Next, we add white
Gaussian noise with a power of 0.01 W and start the simulation. The VCO output
is shown in Fig. 10.47 when noise is added. Due to the presence of noise, the VCO
takes more time to track the incoming phase. The MATLAB file to simulate the
linearized analog PLL is named Linear_PLL.slx.

Digital Phase Lock Loop A digital phase lock loop (DPLL) achieves the same
purpose as the analog counterpart but with many advantages. A DPLL has a superior
performance over an analog PLL. It is able to acquire and track much faster than an
analog PLL. It is much more reliable and has lower size and cost. The VCO of an
analog PLL is highly sensitive to temperature and power supply variations. There-
fore, it needs not only an initial calibration but also frequent adjustments. This will
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Fig. 10.40 Input phase and VCO phase in Example 10.5b: top, input pulse phase; middle, VCO
output phase; bottom, phase error
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be a problem in consumer products such as a cellular phone. DPLL has no such
problem. The phase detector in an analog PLL uses analog multipliers, which are
sensitive to drift in DC voltage, whereas DPLL does not suffer from this problem.
An analog PLL does not function well at low frequencies because the lowpass loop
filter is analog. A larger time period is necessary for a better frequency resolution,
which in turn reduces the locking speed. DPLL does not have this problem either.
Moreover, since an analog PLL uses analog multipliers and analog filter, self-
acquisition is slow and unreliable. DPLL has a faster locking speed. With so many
advantages over an analog PLL, it is certainly desirable to use a DPLL instead. This
also gives us the motivation to look into DPLL.

A simple block diagram of a DPLL is shown below in Fig. 10.48. There are
different DPLLs available in the literature. One of them is called the Nyquist DPLL.
In this type of PLL, the input analog sinusoidal signal is uniformly sampled at least at
the Nyquist rate, and the analog samples are quantized to B-bits to form the input
digital signal. It is then digitally multiplied by the output of the digital-controlled
oscillator (DCO) to form the error sequence. This error sequence is then filtered by a
lowpass digital filter. The output of the lowpass digital filter then controls the DCO
frequency. Figure 10.49 shows the block diagram of a Nyquist DPLL.

510 515 520 525 530 535

Input to the VCO

VCO output phi

540 545 550 555 560

510 515 520 525 530 535
Index, n

540 545 550 555 560

A
m

pl
itu

de
A

m
pl

itu
de

1

0.5

0

-0.5

0.6

0.4

0.2

0

-0.2

Fig. 10.41 Input and output phase of VCO in Example 10.5b: top, VCO input; bottom, VCO
output phase
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Software-Based DCO Unlike the analog VCO, the DCO in the DPLL in Fig. 10.49
uses software or algorithm to generate the sinusoid. It uses the basic idea behind the
analog VCO in the following manner. In the continuous-time or analog domain, the
VCO output is described by

y tð Þ ¼ B cos ωct þ K

Z t

0
v τð Þdτ

� 
ð10:105Þ

In the discrete-time domain, we can write the above VCO output as

y n½ � ¼ B cos
2πf c
f s

nþ K
Xn�1

i¼0

v i½ �
 !

ð10:106Þ

where fs is the sampling frequency and the summation inside the argument of the
cosine function corresponds to the integral of the VCO input. The sequence in
(10.106) is then converted to a square wave, which is obtained by
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Fig. 10.42 Input phase and VCO phase in Example 10.5c: top, input ramp phase; middle, VCO
output phase; bottom, phase error
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y n½ � ¼ sq
2πf c
f s

nþ K
Xn�1

i¼0

v i½ �
 !

ð10:107Þ

where the function sq(x) is defined as

sq xð Þ ¼ 1, 0 � x < π
�1, π � x < 2π

�
ð10:108Þ

and it is periodic as indicated below.

sq xþ 2mπð Þ ¼ sq xð Þ,m2Z ð10:109Þ

An Example to Illustrate the Function in Equation 10.108 Let us illustrate the
conversion of the sequence in (10.107) into a square sequence using MATLAB. For
the sake of illustration, we choose the sinusoidal frequency to be 100 Hz with a
sampling frequency of 1000 Hz. Let the DCO gain be equal to 1 rad/volt. The
program to run is named SQ.m. The discrete square sequence is shown in Fig. 10.50
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Fig. 10.43 Input and output phase of VCO in Example 10.5c: top, VCO input; bottom, VCO
output phase
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Fig. 10.45 Input analog sinusoid

Fig. 10.44 Block diagram to simulate a linearized analog PLL using MATLAB’s Simulink

474 10 DSP in Communications



Fig. 10.46 VCO output with no input noise

Fig. 10.47 VCO output with a white Gaussian noise of 0.01 W of power



as a stem plot. The same sequence when the DCO gain is K ¼ 2 is shown in
Fig. 10.51 for comparison.

Simulink Example of a DPLL In this example, we will simulate a DPLL using
MATLAB’s Simulink. The block diagram for the simulation is shown in Fig. 10.52.
It is similar to the one used in the simulation of an analog PLL. The main difference
is in the PLL block. It is called charge-pump PLL. The phase detector outputs a
square waveform as opposed to a continuous-time signal. The loop filter is a lowpass
analog filter. The input signal is the same sinusoid used in the previous Simulink
example. The loop filter is a third-order Butterworth lowpass filter with a passband
edge of 10 rad/s. The VCO gain is 1.25 rad/volt. The block diagram for the
simulation is shown in Fig. 10.52. The details of the parameters can be found by
double clicking the respective block. The outputs of the phase detector, loop filter,
and the VCO are shown in Figs. 10.53, 10.54, and 10.55, respectively. The VCO
seems to track the incoming phase. The same three outputs are displayed in
Figs. 10.56, 10.57, and 10.58 when the input signal is corrupted by an additive
white Gaussian noise with a power of 0.01. Again, the VCO tracks the phase of the
incoming signal.

Fig. 10.48 Block diagram of a typical DPLL

Fig. 10.49 Block diagram of a Nyquist DPLL
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Fig. 10.50 The output sequence of the sq(x) function with the DCO gain equal to 1
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Fig. 10.51 The same output sequence of the sq(x) function with the DCO gain equal to 2
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Fig. 10.52 Simulation block diagram of a charge-pump PLL

Fig. 10.53 Output of the phase detector when no noise is present
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Fig. 10.54 Output of the loop filter when no noise is present

Fig. 10.55 Output of the VCO when no noise is present



Fig. 10.56 Output of the phase detector when AWGN with power 0.01 is present

Fig. 10.57 Output of the loop filter when AWGN with power 0.01 is present



10.5.5 OFDM

OFDM stands for orthogonal frequency-division multiplexing. It is also a
multicarrier modulation scheme. In a conventional frequency-division multiplexing,
data from different subscribers each modulate a subcarrier to form a non-overlapping
spectrum. These subcarriers then modulate a final carrier for transmission. The
problem with the conventional frequency-division multiplexing is the ISI at the
receiver due to the dispersive fading channel effect and requires complex equaliza-
tion. On the other hand, OFDM uses subcarriers that are orthogonal, which does not
cause ISI. It also supports high data rates. Therefore, OFDM has gained popularity
and is used in standards such as digital audio broadcasting and digital TV. It is also
used in high data rate transmission in mobile wireless channels. Remember that our
objective here is to show that DSP is used in OFDM.

OFDM Basics OFDM is a digital multicarrier modulation. The symbols from
different users to be transmitted simultaneously are denoted by {X(k), 0� k�N� 1}.
The OFDM signal in the time domain can be described by

x tð Þ ¼
XN�1

k¼0

X kð Þe j2πf k t, 0 � t � Ts ð10:110Þ

Fig. 10.58 Output of the VCO when AWGN with power 0.01 is present
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where Ts is the symbol duration, fk ¼ f0 + kΔf, and Δf is the sub-channel spacing. If
we choose the symbol duration and sub-channel spacing to satisfy TsΔf¼ 1, then the
subcarriers will be orthogonal. To prove this statement, let us use

ψ k tð Þ ¼ e j2πf k t, 0 � t � Ts, 0 � k � N � 1 ð10:111Þ
If the set {ψk(t), 0 � k � N � 1} is orthogonal, then the following condition must be
satisfied.

1
Ts

Z Ts

0
ψ k tð Þψ*

l tð Þdt ¼ δ k � lð Þ ð10:112Þ

Using (10.111) in (10.112), we obtain

1
Ts

Z Ts

0
e j2πf k te�j2πf l tdt ¼ 1

Ts

Z Ts

0
e j2π f k�f lð Þtdt ð10:113Þ

But,

f k � f l ¼ k � lð ÞΔf ¼ k � lð Þ
Ts

ð10:114Þ

Therefore, we have

1
Ts

Z Ts

0
ψ k tð Þψ*

l tð Þdt ¼ δ k � lð Þ ð10:115Þ

Thus, the subcarriers in the OFDM signal are orthogonal. This property also
enables us to demodulate the OFDM signal to obtain the transmitted symbols {X
(k), 0 � k � N � 1}. To demodulate, we multiply the received signal x(t) by e�j2πf k t

and integrate over the symbol interval. Thus,

1
Ts

Z Ts

0
x tð Þe�j2πf k tdt ð10:116Þ

Substituting for x(t) from (10.110), we have

1
Ts

Z Ts

0

XN�1

m¼0

X mð Þe j2πf mt

( )
e�j2πf k tdt ð10:117Þ

By interchanging the order of integration and summation in the above equation,
we get

XN�1

m¼0

X mð Þ 1
Ts

Z Ts

0
e j2π f m�f kð Þtdt

� �
¼
XN�1

m¼0

X mð Þδ m� kð Þ ¼ X kð Þ ð10:118Þ

Thus, the symbol corresponding to the kth user has been recovered. So far, our
discussion on OFDM has been on continuous-time or analog domain. But we are
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interested in the discrete-time domain. So, let us see how we can modulate and
demodulate the OFDM signal using DSP. To this end, let us sample uniformly the
OFDM analog signal described in (10.110) at intervals T ¼ Ts

N . Then the sampled
OFDM signal is described by

x n½ � ¼ x t ¼ nTð Þ ¼
XN�1

k¼0

X kð Þe j2πf kn
Ts
N ð10:119Þ

Without loss of generality, let f0 ¼ 0. Then,

f k ¼ kΔf ¼ k

Ts
ð10:120Þ

Using (10.120) in (10.119), we get the expression for the discrete version of the
OFDM signal as given by

x n½ � ¼
XN�1

k¼0

X kð Þe j2πn k
Ts

Ts
N ¼

XN�1

k¼0

X kð Þe j2πN nk ¼
XN�1

k¼0

X kð ÞW�nk
N ð10:121Þ

Thus, the OFDM sequence is the inverse DFT (IDFT) of the N-point DFT X
(k) except for the 1/N factor. Here, N corresponds to the number of users or
subscribers. As we know, the N-point DFT can be implemented efficiently using
the FFT algorithm. Note that X(k) may be complex.

MATLAB Example Let us exemplify the idea of OFDM using MATLAB. The
frequency response of the analog OFDM signal in (10.110) is obtained by taking the
Fourier transform of x(t) in (10.110) and is given below.

X fð Þ ¼
Z 1

�1
x tð Þe�j2πftdt ¼

Z Ts

0

XN�1

k¼0

ske
j2πf k t

( )
e�j2πftdt ð10:122Þ

In the above equation, we have used sk to represent the symbols used in OFDM to
avoid confusion with the Fourier transform of x(t), which is denoted by X(f). By
interchanging the integration and summation in (10.122) and after simplification, we
have

X fð Þ ¼
XN�1

k¼0

skTse
�jπ f�f 0ð ÞTs�kð Þsinc f � f 0ð ÞTs � k½ � ð10:123Þ

where we have used the facts fk ¼ f0 + kΔf and TsΔf ¼ 1. In this example the
following values are used: N ¼ 32, f0 ¼ 5000 Hz, and Δf ¼ 50. The M-file to run is
named OFDM_example.m. The 32 symbols are generated as random integers using
the MATLAB function randi(N,1,N). The function generates a 1xN integer vector
whose values range from 1 to N. The frequency response of the analog OFDM signal
is shown in Fig. 10.59, and the frequency response of the corresponding discrete-
time sequence is shown in Fig. 10.60. The M-file also recovers the symbols by
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Fig. 10.59 Frequency response of an analog OFDM with N ¼ 32
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performing the FFT on the discrete-time OFDM sequence. It is found that the
recovered symbols are identical to the transmitted symbols.

10.5.6 Software-Defined Radio

In this section, we will describe the process of sampling an RF bandpass signal at a
much lower frequency without incurring aliasing distortion so that the hardware in a
software-defined radio (SDR) can process the received signal without undue com-
putational burden. But before we take up this task, it is necessary to know what an
SDR is. There are a few definitions for the SDR in the literature as follows. The SDR
Forum, for instance, defines an SDR as one that receives fully programmable traffic
and control information and supports a broad range of frequencies, air interfaces, and
applications software. Not a useful definition, is it? Another definition of an SDR is
that it is a radio that performs in software its modulation, error correction, and
encryption functions, exhibits some control over the RF hardware, and can be
reprogrammed. A third definition is that an SDR can be defined mostly in software
and whose physical layer behavior can be significantly altered through software
changes. This definition makes more sense. Yet another definition of an SDR is that
it defines a fully configurable radio that can be programmed in software to
reconfigure the physical hardware. In other words, an SDR is a system that emulates
the functions of a hardware-defined radio to receive not just one type but several
types of modulated signals, such as AM, FM, etc.

Need for an SDR Wireless communications is evolving at a rapid rate from 2G to
3G to 4G and now to 5G, all within two decades. There is a high and ever-increasing
demand for wireless Internet connectivity for audio, video, etc. Integrated seamless
global coverage implies (a) the ability to roam globally and (b) be able to interface
with different systems and mobile standards to provide seamless service at a fixed
location. Because of these ever-increasing demands, fixed hardware-defined radio is
nearly impossible to accommodate all the abovementioned requirements, consider-
ing the fact that most consumer wireless devices are handheld. If a radio is defined
mostly by software, then it is flexible and can perform all the abovementioned tasks
seamlessly. It can easily adapt to changes by upgrading its software as often as is
necessary. A block diagram of an SDR is depicted in Fig. 10.61. As mentioned
earlier, we will only describe the ADC at the receiver front end in what follows.

Factors Influencing an SDR Following are the factors that influence the wide-
spread acceptance of SDR. It is multifunctional. For example, a Bluetooth-enabled
fax machine may be able to send a fax to a nearby laptop computer equipped with
SDR that supports the Bluetooth interface. Another factor is global mobility, which
is to be able to support standards, such as GSM, UMTS, CDMA, etc., as well as
military standards. Compactness and power efficiency are very important for an
SDR to be accepted. Obviously, SDR is compact because it has a small and fixed
hardware. It is power efficient especially when the number of functions is large. It
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must be easy to manufacture. Due to digitization of the signal taking place early in
the receiver chain, the hardware is made small and compact, and so it is power
efficient. Last but not the least important factor is the ease of upgrades. Since the
SDR uses software to perform most of the receiver functions, it requires only
software upgrade, which can be done without disrupting the current function. For
all these reasons, SDR is gaining popularity in wireless communications.

Sampling Bandpass Signals A bandpass signal is one, which is centered at a high
frequency with a narrow bandwidth. Bandpass signals are used typically in commu-
nications to carry message or information signals. These signals may be amplitude
modulated (AM), frequency modulated (FM), and digitally modulated as in PSK
(phase shift keying), FSK (frequency shift keying), etc. An AM signal in the
continuous-time domain is generated by multiplying a carrier signal with a modu-
lating or message waveform. Thus,

xAM tð Þ ¼ Acm tð Þ cos ωctð Þ ð10:124Þ
where Ac is the amplitude of the carrier signal, whose frequency is ωc rad/s, and m
(t) is the message waveform such as speech, music, etc. If the message waveform has
zero DC value, then the resulting AM signal has frequencies above and below the
carrier frequency, but no carrier frequency per se. Hence this AM signal is called a
double-sideband suppressed carrier (DSB-SC). Note that the message waveform is a
baseband signal, meaning that its frequency spectrum is centered at zero frequency.
When this message waveform modulates a carrier in its amplitude, the message
spectrum shifts to above and below the carrier frequency. The frequencies lying
above the carrier frequency are called the upper sideband, and those below the
carrier frequency are likewise called the lower sideband. A frequency-modulated
signal, on the other hand, is expressed as

xFM tð Þ ¼ Ac cos ωct þ φ tð Þð Þ ð10:125Þ
with

dφ tð Þ
dt

¼ βm tð Þ ð10:126Þ

Fig. 10.61 Block diagram of a software-defined radio
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Unlike in the AM, the amplitude of the carrier of the FM signal is constant, but its
frequency deviates from the carrier frequency, which is proportional to the message
waveform as described in (10.126). The parameter β controls the frequency devia-
tion. Again, the frequency spectrum of the FM signal is centered at the carrier
frequency with upper and lower sidebands. Therefore, it is also a bandpass signal.

An AM radio operates over the frequency range of 550 kHz to 1600 kHz. Each
carrier is separated by 10 kHz in frequency. For instance, if we were to sample an
AM signal with carrier frequency of 550 kHz at the Nyquist rate, then the minimum
required sampling frequency would be equal to twice the highest frequency, which is
2� (550 + 5) kHz¼ 1.1 MHz. Similarly, the minimum required sampling frequency
of the AM signal at the upper end of the AM spectrum would be 3.21 MHz. On the
other hand, FM radio has a carrier frequency range from 88 MHz to 108 MHz with a
channel separation of 300 kHz. The minimum required sampling frequencies for the
FM signal would be 176.3 MHz at the lower end of the FM spectrum and 216.3 MHz
at the upper end of the spectrum. These sampling frequencies are very high. These
high sampling rates put a heavy computational load on the whole SDR receiver. Is
there a way to sample these BP signals at a much lower frequency without incurring
aliasing distortions? Yes, there is a way out. Let us look into it.

Let the center frequency of a BP signal be fc Hz with a bandwidth B Hz. Then the
sampling frequency fs to be used must satisfy the following condition.

2f c � B

N þ 1
� f s �

2f c � B

N
ð10:127Þ

In (10.127), N is the number of replications of the spectrum of the BP signal in the
frequency range 2fc� B, which is due to the process of sampling. From (10.127), we
notice that the actual sampling frequency will be much less than the Nyquist
frequency. Further, one of the replications near the zero frequency can be filtered
and processed further with a much lower computational burden. Let us demonstrate
the statements by way of an example using MATLAB.

Example of BP Down Conversion of an AM Signal For the sake of argument,
consider an AM DSB-SC signal at a carrier frequency of 10 kHz. Let the message
waveform be a single sinusoid at a frequency of 1 kHz. Let us also choose the factor
in (10.127) to be N ¼ 3. Then, the sampling frequency must be, according to
(10.127), between 4.5 kHz and 6 kHz. Let us choose the BP sampling frequency
to be 5.250 kHz, which is midway between the two frequencies. Let us then compare
the signal sampled at 5.25 kHz with that sampled at 30 kHz, which is slightly higher
than the Nyquist frequency. The 10 kHz signal and the signal sampled at 5.25 kHz
are shown in Fig. 10.62. The corresponding spectra are shown in Fig. 10.63. As seen
from Fig. 10.63, the BP spectrum has shifted to a much lower frequency, thereby
reducing the computational load.

Example of BP Down Conversion of an FM Signal For the sake of argument, let
the carrier frequency of the FM signal to be used be 10 kHz and let the frequency of the
modulating signal be 1.0 kHz. Let the modulation index β ¼ 2. Then the bandwidth of
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the FM signal according to Carson’s empirical formula is given by 2(β + 1)fm¼ 6 kHz. If
we choose N ¼ 2, then according to (10.127), the BP sampling frequency must be
between 4.666 kHz and 7 kHz. Let the sampling frequency be 5.833 kHz. Then the FM
signals with sampling frequencies of 30 kHz and 5.833 kHz are shown in the upper and
lower plots in Fig. 10.64. The corresponding spectra are shown in Fig. 10.65. Due to
sampling the BP FM signal at a lower rate, the frequencies are shifted toward the zero
frequency. The M-file for both examples is named BP_downconversion.m.

10.6 Summary

The overall objective of this chapter has been to describe the application of digital
signal processing methods in digital communications. To this end, we started with a
brief introduction to multi-rate signal processing, which are upsampling and
downsampling of a discrete-time signal. With this description, we learnt the design
of oversampled ADC and DAC. Since an ADC is in the front and DAC at the end of
a digital communications system, we described them to start with. We used
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bottom, sampling frequency of 5.25 kHz
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MATLAB-based examples to illustrate these conversion techniques. Next we intro-
duced the method of optimal detection of a binary signal. That gave rise to the
discussion on inter-symbol interference. The processes to cancel ISI are pulse
shaping at the transmitting end and equalization at the receiver end. MATLAB-
based and Simulink examples were shown to help the reader understand these
techniques better. We then described matched filter and correlation filter used in
the optimal detection of binary symbols in digital communications. Phase-locked
loop is an important ingredient in any digital communications system. So, we
indulged a bit in describing linear PLL and exemplified the concept with
MATLAB-based examples. Orthogonal frequency modulation or multiplexing is a
bandwidth-efficient digital modulation scheme. Moreover, OFDM can be performed
very efficiently using FFT technique. We worked out a MATLAB-based example to
illustrate the orthogonality of the subcarriers used in OFDM. The chapter ended with
a discussion of software-defined radio. Since sampling takes place at the RF end of
an SDR, we showed an example, where AM and FM signals are sampled at a much
lower rate than the Nyquist rate and yet preserve the integrity of the signals.
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10.7 Problems

1. We want to transmit the word “Why me” using an 8-ary system. (a) Encode the
word “Why me” into a sequence of bits using 7-bit ASCII coding, followed by
an eighth bit for error detection per character. The eighth bit is chosen so that the
number of ones in the 8 bits is an even number. How many total bits are there in
the message? (b) Partition the bit stream into k¼ 3 bit segments. Represent each
of the 3-bit segments as an octal number (symbol). How many octal symbols are
there in the message? (c) If the system were designed with 16-ary modulation,
how many symbols would be used to represent the word “Why me”? (d) If the
system were designed with 256-ary modulation, how many symbols would be
used to represent the word “Why me”? Note: There is a space “Why” and “me.”

2. If you want to transmit 600 characters/s, where each character is represented by
its 7-bit ASCII codeword followed by an eighth bit for error detection, per
character as in Problem 1, using a multilevel PCM format with M ¼ 16 levels,
(a) what is the effective transmitted bit rate? (b) What is the PCM symbol rate?

3. A bipolar binary signal, si(t), is a + 1- or �1- V pulse during the interval (0, T).
AWGN having two-sided power spectral density of 0.5x10�3 W/Hz is added to
the signal. If the received signal is detected with a matched filter, determine the
maximum bit rate that can be sent with a bit error probability of PB � 10�4.

4. Bipolar pulse signals, si(t), i ¼ 1,2, of amplitude �1 V are received in the
presence of Gaussian noise with variance σ2 ¼ 0.2 V2. Determine the optimum
detection threshold, γ0, for matched filter detection if the a priori probabilities
are (a) P(s1) ¼ 0.5, (b) P(s1) ¼ 0.6, and (c) P(s1) ¼ 0.3. (d) Explain the effect of
the a priori probabilities on the value of γ0.

5. Determine the theoretical minimum system bandwidth needed for a 12 Mbits/s
signal using 16-level PCM without ISI.

6. A binary waveform of 9200 bits/s is converted to an octal waveform that is
transmitted over a system having a raised cosine roll-off filter characteristic. The
system has a conditioned or equalized response out to 2.3 kHz. (a) Determine
the octal symbol rate. (b) Calculate the roll-off factor of the filter characteristic.

7. A signal in the frequency range 500 to 3500 Hz has a peak-to-peak swing of
10 V. It is sampled at 8000 samples/s, and the samples are quantized to
128 evenly spaced levels. Calculate and compare the bandwidths and ratio of
peak signal power to rms quantization noise if the quantized samples are
transmitted either as binary pulses or as four-level pulses. Assume that the
system bandwidth is defined by the main spectral lobe of the signal.

8. A coherent BPSK system, which operates continuously, makes errors at the
average rate of 120 per day. The data rate is 1000 bits/s. The single-sided noise
power spectral density is N0 ¼ 10�9 W/Hz. (a) If the system is ergodic, what is
the average bit error probability? (b) If the value of the received average signal
power per bit is adjusted to be 10�5 W, will this received power be adequate to
maintain the error probability found in part (a)?
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9. If the main performance criterion of a digital communications system is the bit
error probability, find out which of the following two modulation schemes
would be selected for an AWGN channel: (a) binary coherent orthogonal
FSK with Eb/N0 ¼ 10 dB and (b) binary noncoherent orthogonal FSK with
Eb/N0 ¼ 12 dB. Show all the steps involved in the computations.

10. Calculate the probability of bit error for the coherent matched filter detection
of the equally likely binary FSK signals s1(t) ¼ 0.5 cos(2010πt) and
s2(t) ¼ 0.5 cos(2050πt), where the two-sided AWGN power spectral density
is N0/2 ¼ 10�3. Assume that the symbol duration is T ¼ 0.02 s.

11. A digital communications system uses MF detection of equally likely BPSK
signals, s1(t) ¼ √(2E/T) cos(ω0t) and s2(t) ¼ √(2E/T) cos(ω0t + π), and operates
in AWGN with a received Eb/N0 of 6.7 dB. Assume that E{z(T)} ¼ �√E.
(a) Find the minimum probability of bit error for this signal set and Eb/N0, and
(b) if the decision threshold is γ ¼ 0.15√E, find the probability of bit error.

12. A coherent orthogonal MFSK system with M ¼ 8 has the equally likely
waveforms si(t) ¼ A cos(2πfit), i ¼ 1,2,. . .,M, 0 � t � T, where T ¼ 0.25 ms.
The received carrier amplitude, A, is 1 mV, and the two-sided AWGN spectral
density, N0/2 ¼ 10�10 W/Hz. Calculate the probability of bit error.

13. Design a first-order delta modulator and calculate the SNR with and without the
lowpass filter at the decoder using (a) a sinusoid with amplitude and frequency
of your choice as the input and (b) the sinusoid in (a) plus a uniformly
distributed noise in the range [�1,1] with a standard deviation of �12 dB
with respect to the amplitude of the input sinusoid.

14. Consider a sine wave of frequency 1150 Hz with unit amplitude. Sample this
signal at a sampling frequency equal to 2.2 times the Nyquist frequency.
Quantize the samples to 3 bits using a uniform quantizer. Upsample this
sequence by a factor of 3 and then filter it with a suitable lowpass FIR filter.
This forms the input to the DAC. Plot the various sequences and the magnitude
of their FFTs. You may use the MATLAB code in Example 10.1.

15. Consider an ideal lowpass filter with a passband gain of A � 1 and a cutoff
frequency of Fc < fs/2. For what value of Fc is the power gain equal to one?

16. Consider the 10-bit oversampled ADC shown in Fig. 10.7 with analog inputs in the
range � 4. (a) Find the average power of the quantization noise of the quantized
input xq[n]. (b) Suppose a second-order Butterworth filter is used for the analog
antialiasing prefilter. The objective is to reduce the aliasing error by a factor of
ε¼ 0.001. Find the minimum required oversampling factor M. (c) Find the average
power of the quantization noise at the output, y[n], of the oversampling ADC.
(d) Suppose fs ¼ 1500 Hz. Sketch the ideal magnitude response of the digital
antialiasing filter H(z). (e) Design a linear-phase FIR filter of order 60 whose
frequency response approximates H(ejω) using Hanning window.

17. A 12-bit oversampled ADC oversamples by a factor of M ¼ 32. To achieve the
same average power of the quantization noise at the output, but without
oversampling, how many bits are required?

18. Suppose an analog signal in the range� 4 is sampled with a 10-bit oversampled
ADC with an oversampling factor of M ¼ 16. The output of the ADC is passed
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through an FIR filter H(z), where H(z) ¼ 1 � 2z�1 + 3z�2 � 2z�3 + z�4.
Determine (a) the quantization step size q, (b) the power gain of the filter H(z),
and (c) the average power of the quantization noise at the system output, y
[n]. (d) To get the same quantization noise power, but without using
oversampling, how many bits are required?

19. A transmitter transmits an unmodulated tone of constant energy (a beacon) to a
distant receiver. The receiver and transmitter are in motion with respect to each
other such that d(t) ¼ K[1�sin(nt)] + K0, where d(t) is the distance between the
transmitter and receiver and K, n, and K0 are constants. This relative motion will

cause a Doppler shift in the received transmitter frequency of ΔωD tð Þ ¼ ω0ν tð Þ
c ,

where ΔωD is the Doppler shift, ω0 the nominal carrier frequency, v(t) the
relative velocity between the transmitter and receiver, and c is the speed of
light. Assuming that the linearized loop equations hold and that the receiver’s
PLL is in lock (zero phase error) at t ¼ 0 show that an appropriately designed
first-order loop can maintain frequency lock.

20. Let us suppose that a transmitter and receiver are in relative motion as in
Problem 19. Assume that the linearized loop equations hold. Under this assump-
tion, determine the PLL phase error as a function of time for the allpass, and
lowpass loop filters of Equations (10.103a) and (10.103b). Demonstrate that the
validity of the assumption of the linearized loop equations depends on the value
of the gain K0.

21. A high-performance aircraft is transmitting an unmodulated carrier signal to a
ground terminal. The ground terminal is initially in phase lock with the signal.
The aircraft performs a maneuver whose dynamics are described by the accel-
eration, a(t)¼Kt2, where K is a constant. Assuming that the linearized equations
apply determine the minimum order of the PLL required to track the signal from
this aircraft.

22. Show that the loop bandwidth of a first-order PLL is given by Bloop ¼ H0/4,
where H0 is the loop gain.

23. Assume that the loop filter’s transfer function is given by
G sð Þ ¼ 1þ0:01s

1þs

with K ¼ 1. Determine (a) the closed-loop transfer function H(s) and (b) the
phase response to an input unit step phase. You may use MATLAB to solve this
problem.

References

1. Ansari R, Liu B (1993) Multirate signal processing. In: Mitra SK, Kaiser JF (eds) Handbook for
digital signal processing, Chapter 14. Wiley-Interscience, New York, pp 981–1084

2. Burns P (2003) Software defined radio. Artech House, Boston
3. Couch LW II (1983) Digital and analog communication systems. Macmillan, New York
4. Crochiere RE, Rabiner LR (1983) Multirate digital signal processing. Prentice Hall, Englewood

Cliffs
5. Fliege NJ (1994) Multirate digital signal processing. Wiley, New York

References 493



6. Freking ME (1994/2005) Digital signal processing in communication systems. Van Nostrand
Reinhold/Cambridge University Press, New York

7. Gardner FM (1979) Phaselock techniques, 2nd edn. Wiley, New York
8. Jayant NS, Knoll P (1984) Digital coding of waveforms. Prentice Hall, Englewood Cliffs
9. Kenington PB (2005) Software defined radio. Artech House, Boston

10. Lindsey WC, Simon MK (1977) Detection of digital FSK and PSK using a first-order phase-
locked loop. IEEE Trans Commun COM-25(2):200–2014

11. Lindsey WC, Simon MK (eds) (1977) Phase locked loops and their applications. IEEE Press,
New York

12. Luthra A, Rajan G (1991) Sampling rate conversion of video signals. SMPTE J 100:869–879
13. Mitra SK (2011) Digital signal processing: a computer-based approach, 4th edn. McGraw-Hill,

New York, NY
14. Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw-Hill,

New York
15. Pickholtz RL, Schilling DL, Milstein LB (1982) Theory of spread-spectrum communications –

a tutorial. IEEE Trans Commun COM30(5):855–884
16. Proakis JG (1983) Digital communications. McGraw-Hill, New York
17. Rappaport TS (2002) Wireless communications: principles and practice, 2nd edn. Prentice Hall,

Upper Saddle River
18. Reed JH (2002) Software radio – a modern approach to radio engineering. Prentice Hall, Upper

Saddle River
19. Schilling RJ, Harris SL (2012) Digital signal processing using MATLAB, 3rd edn. Cengage

Learning, Boston
20. Scholtz RA (1982) The origins of spread spectrum communications. IEEE Trans Commun

COM30(5):822–854
21. Sklar B (1988) Digital communications: fundamentals and applications. Prentice Hall, Engle-

wood Cliffs
22. Viterbi AJ (1966) Principles of coherent communications. McGraw-Hill, New York
23. Viterbi AJ (1995) CDMA: principles of spread spectrum communication, Addison-Wesley

Wireless Communications Series. Addison-Wesley Publisher, Reading

494 10 DSP in Communications



Index

A
Absolute peak error, 453
A/D conversion

coding the quantized values, 50–51
input-output characteristics, 51, 52
Lloyd-Max quantizer, 49
MSE, 48
optimal quantizer, 49
practical, 44, 47
quantization, 44
quantizer block, 44
scalar quantizer, 44, 47
S/H function, 44, 47
uniform quantizer, 49–51
vector quantizer, 44
voltage/current amplitude limits, 47

A/D converters, 59, 60
B-bit bit width, 53
bit widths, 51, 52
block diagram, 57, 58
distribution, 52
MATLAB, 53
parameters

of random signal generator, 57, 59
of sine wave generator, 58
of uniform quantizer, 59, 60

quantization error, 52
quantization noise variance, 53
Simulink (see Simulink)
SNR, 53
time scope display of signals, 59, 61
type of error, 52

Additive white Gaussian noise (AWGN), 453,
455, 458, 480, 481, 491, 492

Aliasing distortion, 42
Allpass filter, 228, 229
Allpass system, 120
Amplitude-modulated (AM) signal, 132, 134,

135, 232–234, 238, 241, 427
Analog filter’s transfer function, 196
Analog Passband Modulation, 235
Analog signals, 21
Analog-to-digital conversion (ADC), 435

communications (see Communications)
and DAC, 488
Nyquist rate, 429

Analytical and computer-aided techniques, 231
Anticausal exponential sequence

Z-transform, 68
Application-specific integrated circuits

(ASIC), 427
Autocorrelation, discrete-time sequences

AM sequence, 396, 397
definition, 394
and DTFT, 395
Gaussian random sequence, 398
periodic sequences, 395–399
time-reversed version, 394

B
Bandpass filter

DTFT, 127–129
Bandstop filter

DTFT, 128–130
Bartlett window, 254
Bellanger’s formula, 261
Bessel function, 265

© Springer International Publishing AG, part of Springer Nature 2019
K. S. Thyagarajan, Introduction to Digital Signal Processing Using MATLAB
with Application to Digital Communications,
https://doi.org/10.1007/978-3-319-76029-2

495

https://doi.org/10.1007/978-3-319-76029-2


Bilinear transformation
IIR digital filters

analog filter’s transfer function, 196, 198
BIBO sense, 197
complex variable in analog domain, 196
definition, 196
design procedure, 198
frequency specifications, 198
inverse relationship, 196
lowpass IIR digital filter, 198
prewarped, 198
s-plane onto the z-plane, 197

Blackman window, 255, 256, 270, 304, 310
Bounded-input bounded-output (BIBO)

stability, 25
Brick wall, 41
Brute-force computation

DFT, 385–386
Butterworth filter, 130, 131, 133, 189, 438
Butterworth lowpass IIR digital filter

cutoff frequency, 199
frequency response of fourth-order, 202
frequency specifications, 200–201
half power frequency, 199
magnitude squared, 199
MATLAB to design, 201, 202
Nth-order, 198
Nth-order transfer function, 199
passband edge frequency, 199
polynomials, 200

C
Cauer filter, 208
Causality

convolution sum, 28
discrete-time systems, 24

Channel coding, 428
Chebyshev filter, 189
Chebyshev type I lowpass IIR digital filter,

202–206
Chebyshev type II lowpass IIR digital filter,

206–208
Chirp Fourier transform (CFT), 420
Chirp Z-transform (CZT)

calculation, 422
DTFT, 419
Gaussian noise sequence, 422, 424
limited frequency range, 420
MATLAB function, 421
normalized magnitude, 422, 423
N-point sequence, 421, 422
unit circle, 421

Circular convolution, 158–161, 165–166
DFT, 163, 166–167

circular shift implies, 159
definition, 159, 160
finite-length sequences, 158
linear convolution (see Linear

convolution)
matrix form, 160–161
property, 165–166

Circular frequency-shifting
DFT, 162

Circular time-shifting
DFT, 161, 162

Communications
advantages, 427
analog modulation techniques, 427
binary waveform, 491
bipolar binary signal, 491
bipolar pulse signals, 491
bit error probability, 492
BPSK system, 491
digital modulation, 427, 428
digital signal processing, 427
DSP methods, 428
first-order delta modulator, 492
FPGA, 428
frequency range, 491
high-performance aircraft, 493
inter-symbol interference

digital communications system, 442
equalization, 449–455
matched filter, 453–464
OFDM, 481–484
phase-locked loop, 461–481
pulse shaping, 444–451
software-defined radio, 485–490
transmitter, 443

loop filter’s transfer function, 493
MF detection, 492
multi-rate signal processing, 488
orthogonal MFSK, 492
oversampled ADC

analog inputs, 492
analog signal, 492
analysis, 436–443
block diagram, 436
factor, 492
IC design, 435
Nyquist rate, 435
transition bandwidth reduction, 436

oversampled DAC, 441–445
phase-locked loop, 489
sampling rate

496 Index



ADC, 428
downsampling, 432–435
multi-rate digital signal processing, 428
Nyquist rate, 429
upsampling, 429–432

transmitter transmits, 493
wave of frequency, 492

Complementary error function, 458
Complex exponential sequence

discrete-time signals, 23
DTFT, 112

Complex poles, 81
Computer-aided design

IIR digital filters, 220–224
Conjugation

Z-transform, 70, 71
Constant

DTFT, 112
Continuous-time/analog signals, 21
Continuous-time domain, 22
Continuous-time signals

causality, 14
differential equation, 15
to digital signals

accuracy of arithmetic operations, 44
A/D conversion (see Analog-to-digital

(A/D) conversion)
discrete-time signal

aliasing distortion, 42–46
continuous-time versions, 39
ideally sampled signal reconstruction,

41–42
ideal sampling/impulse sampling, 39–41
Nyquist theorem, 41

linear convolution, 13, 14
linear system, 12
LTI system, 15
sinusoidal signals, 11, 12
stability, 14, 15
time-invariant system, 12, 13
unit step function, 12

Continuous-time system, 24
Continuous-time versions, 39
Contour integral, 78
Contrast enhancement, 6
Convolution

DTFT
frequency domain, 115
time domain, 115

Z-transform, 72
Convolution sum

causality revisited, 28
definition, 25

flipped impulse response, 26
graphical interpretation, 26, 27
impulse response, 28–30
procedure to calculate, 26
stability, 28, 30
time-invariant, 26
unit impulse, 25

Cooley-Tukey fast algorithm, 386
Correlation filter, 428
Cutoff frequency, 124, 199

D
Decimation-in-frequency FFT

CPU time vs. DFT length N, 392, 393
even-numbered DFT points, 391
N-point sequence, 390
odd-numbered DFT points, 391
signal flow graph, 391

Decimation-in-time FFT
DFT, 388
input discrete-time sequence, 386
N-point DFT, 387
signal flow graph, 386
signal flow graph of butterfly, 390
signal flow graph of eight-point, 388–390

Demodulated signal, 242
Demodulation, 233
Design of IIR digital filters

frequency domain
bilinear transformation, 196–198
Butterworth lowpass, 198–202
Chebyshev type I lowpass, 202–206
Chebyshev type II lowpass, 206–208
digital filter frequency specifications,

194–195
discrete-time domain because, 194
elliptic lowpass, 208–210
techniques, 194
time domain, 194

frequency transformation
lowpass-to-bandpass and bandstop

conversion, 215–220
lowpass-to-highpass conversion,

214–216
lowpass-to-lowpass conversion,

211–214
spectral transformation function, 211

DFT leakage, 174–179
Difference equation, 85

and Z-transform, 74–76
Differentiation rule

Z-transform, 71, 72

Index 497



Digital filter frequency specifications, 194–195
Digital filter structures

canonic Direct Form II signal flow, 380
cascade structure, 323–324
direct form I and II structures, 315–320
direct form II canonic realization, 380
fifth-order elliptic lowpass IIR digital

filter, 380
finite word length effect (see Finite word

length effect)
FIR (see FIR filter structures)
FIR lattice structure, 365–379
MATLAB M-files, 379
noncanonical structure, 379
parallel structure, 320–323
Parks-McClellan method, 381
signal flow graph, 313–315
Simulink, 379
symmetry/antisymmetry, 379

Digital phase lock loop (DPLL), 470, 471, 476
Digital signal processing

ADC, 10
audio/speech processing, 5
block diagram, 10
communications, 6
continuous-time signals, 10
contrast enhancement, 6
filtering, 3
filtering operation, 4
frequency spectrum, 4
image analysis, 8
image compression, 7
image restoration, 7
random/noise sequence, 2
sampling process, 5
sequence of numbers, 1
speech compression, 4

Digital signals, 21
Dirac delta functions, 22, 39
Direct Form II IIR digital filter structure,

317, 319
Discrete cosine transform (DCT)

definition, 180
energy conservation and compaction

properties of unitary transforms,
181–182

finite-length sequence, 180
and Hadamard transform, 183, 185
and IDCT, 183
input sequence, 183
and inverse Hadamard transform, 183
kernel matrix, 181
MATLAB, 183

N-point DCT kernel matrix, 181
sinusoids, 182

Discrete Fourier transform (DFT)
brute-force computation, 385–386
circular convolution (see Circular

convolution)
circular frequency-shifting, 162
circular time-shifting, 161, 162
definition, 151–152
discrete transforms (see Discrete

transforms)
and DTFT, 152–154

bottom plot, 157–159
continuous-time signal, 155
eight-point IDFT, 157, 158
frequency spectrum, 155
MATLAB to calculate, 156, 157
M-point sequence, 155, 156
N-point sequence, 156
original sequence and sequence,

158, 160
reconstructed sequence, 156
thirty-two-point IDFT, 157

energy conservation
(Parseval’s Theorem), 164

FFT, 151
FIR discrete-time systems, 151
inverse, 153–155
leakage, 174–179
linearity, 161
modulation theorem, 163
properties, 164
SDFT, 402–410

Discrete sine transform (DST), 409
Discrete transforms, 180–182

DCT (see Discrete cosine transform (DCT))
frequency domain transforms, 176
Hadamard transform, 182–185
linear transformation, 177
orthogonal transform, 180
unitary transforms, 176–180

Discrete-time Fourier transform (DTFT)
autocorrelation function, 395
calculate and plot, 138
characterization, 107
complex exponential sequence, 112
constant, 112
convolution

frequency domain, 115
time domain, 115

definition, 110
denominator polynomial, 137
and DFT, 152–153
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differentiation in frequency domain, 114
and discrete-time sequences, 109
discrete-time signals and systems, 137
energy conservation, 116
filters, 109
finite-length bandpass filter, 140
finite-length bandstop filter, 141
finite-length highpass filter, 140
finite-length lowpass filter, 139
finite-length sequence, 117, 138–141
FIR filter, 137
frequency shift, 114
freqz function, 138
ideal filters, 109
IIR filter, 137, 141–144
inverse, 113
linearity, 113
magnitude – phase form, 110
magnitude in dB, 111
phase in degrees, 111
properties, 109
real exponential sequence, 112
sequence, 116–118, 139
time-reversed sequence, 113
time-shifted sequence, 114
unit impulse, 112
unit step sequence, 112
unwrapped phase, 145
Z-transform, 109–111, 138

Discrete-time sequences
autocorrelation, 394

periodic sequences, 395–396
DTFT and autocorrelation, 395
power spectrum, 394
spectral density, 394
STFT, 396–401

Discrete-time signals, 39–44, 66
characterizing, 22
complex exponential sequence, 23
by computer, 22
continuous-time domain, 22
continuous-time signal (see Continuous-

time signal)
definition, 22
DTFT, 107, 111
frequency domain, 107
periodic sequence, 23
real exponential sequence, 22
real sinusoidal sequence, 22
unit impulse sequence, 22
unit step sequence, 22
visualization, 107, 108
Z-transform (see Z-transform)

Discrete-time systems, 30
causality, 24
constant, 24
convolution sum, 25–30
definition, 24
description, 23
frequency domain, 107
impulse response, 23
linear difference equation (see Linear

difference equation)
linearity, 23
stability, 25
time- or shift-invariant, 23

Dolph-Chebyshev window, 263–267,
269, 270

Double-sideband AM signal, 299
Downsampling, 327, 331, 333
DSB AM Demodulator Passband, 235,

236, 239
DSB AM Modulator Passband block, 237
DSB AM Modulator-Demodulator block

diagram, 240
DSB AM signal, 241

E
Electrocardiogram (ECG), 9
Elliptic filter, 189
Elliptic lowpass IIR digital filter, 208–210
Energy compaction property revisited

DCT, 410, 412
DFT coefficients, 407, 408, 410, 411
gray-scale image, 410
input and reconstructed sequences, 410, 411
MATLAB, 409
original cameraman image, 413
Parseval, 407
reconstructed image of cameraman,

413–415
surface plot depicting, 413–415
type of frequency, 408

Energy conservation (Parseval’s Theorem)
DFT, 164
DTFT, 116

Equalization of group delay, 228
Equalizers, 6

F
Fast Fourier transform (FFT)

CFT, 419–424
decimation-in-frequency, 390–393
decimation-in-time, 386–389
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Fast Fourier transform (FFT) (cont.)
decimation-in-time and decimation-in-

frequency algorithms, 386
energy compaction property revisited,

407–415
fixed-point implementation, 401–404
inverse, 392–394
radix-2 algorithm, 386
spectral analysis of discrete-time sequences

(see Discrete-time sequences)
zoom, 416–420

Field programmable gate arrays (FPGAs),
10, 428

Fifth-order Butterworth lowpass filter, 130, 131
Filtering

AM signal, 132–135
bandpass filter, 127–129
bandstop filter, 128–130
Butterworth filter, 130–132
frequency domain, 124
highpass filter, 125–127
ideal lowpass filter, 125–127
image filtering, 133–137
lowpass filter, 124, 125
nonlinear phase, 124
transfer function, 124

Finite impulse response (FIR), 133, 136, 137
Finite-length exponential sequence, 69
Finite-length sequences

DTFT, 117, 138
LTI discrete-time system, 37, 38

Finite word length effect
filter coefficient sensitivity, 336–348,

350, 353
finite word length arithmetic, 345, 348, 349,

352, 355–371
fixed-point binary representation, 333–335
floating-point binary representation, 335
limit cycles, 363–365, 372–375

FIR digital filters
bandpass, 310
bandstop, 310
Bartlett and Haan windows, 256, 271,

299, 302
Bartlett window, 258
Blackman window, 259, 305
Cameraman 8-bit image, 292–294
digital notch filter, 310
Dolph-Chebyshev window, 264–266, 269
frequency response, 250, 252, 261, 264,

267, 270, 272, 274, 276, 279, 280,
283, 285, 287, 291, 292, 295

frequency responses, 253

Gibbs phenomenon, 254
Haan window, 258
Hamming and Blackman windows, 257,

272, 300, 303
Hamming window, 259
highpass, 310
impulse response, 251, 273, 275, 278, 279,

282, 295
input and output sequences, 284
input sequence, 306–308
linear-phase

bandpass, 270–273
bandstop, 274–276
Bartlett window, 254, 255
Bellanger’s formula, 261
Blackman window, 255–256, 260
computer-aided design, 276–299
design techniques, 247
discrete-time Hilbert transformer,

299–308
Dolph-Chebyshev (DC) window,

263–265
Gibbs phenomenon, 249–251
Hamming window, 255
Hermann’s formula, 261, 262
highpass, 268–270
ideal lowpass filter, 254
Kaiser window, 265–268
Kaiser’s formula, 257
lowpass, 247–249
order, 257–262
type I, 245
type II, 246
type III, 246
type IV, 246
Z-transform, 245

lowpass, 249, 303, 310, 311
MATLAB, 309
notch filter, 311
parameters, 286, 288
rectangular pulse, 296
rectangular window, 260, 298, 301
Simulink block diagram, 285, 287
surface plot, 290, 291
triangular pulse, 297

FIR filter structures
cascade structure, 326
direct form structure, 325–326
linear-phase, 327, 328
polyphase, 327–334
transfer function, 325

FIR lattice structure, 365–379
Fixed-point implementation of FFT, 401–404
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Fixed windows, 251, 255, 256, 262, 269, 270
Flipped impulse response, 26
Folding frequency, 42
Fourier series, 15
Fourier transform

derivative of a signal, 16
frequency domain, 16
linearity, 16
modulation, 16
scaling, 16
time domain, 16
transfer function, 17

Frequency domain, LTI discrete-time system,
124–137

calculation of DTFT, 137–144
cascade connection, 119, 120
description, 118
filtering (see Filtering)
impulse response, 118–119
linear difference equation, 118
steady state response, 120–124
time-shifting property, 118
transfer function, 118

Frequency domain representation
DTFT, 114
Fourier series, 15
Fourier transform, 16
time-domain behavior, 15

Frequency modulation (FM), 427
Frequency shift

DTFT, 114
Frequency spectrum, 155
Freqz function, 138
Function Block Parameters

DSB AM Demodulator Passband, 240
DSB AM Modulator, 235, 237

G
Gaussian random vector, 143
Gaussian sequence, 144
Gibbs phenomenon, 251
Group delay

IIR digital filters
Butterworth IIR digital filter, 226
definition, 225
DFTs, 228
fourth-order Butterworth, 226
frequency response, 224
group delay equalization, 228–230
input sequence, 228
LTI system, 224
nonlinear phase, 226

phase delay or phase lag, 225
phase distortion, 225
phase response, 225
phase response of Butterworth, 226, 227
second-order IIR filter, 226
second-order IIR filter transfer

function, 225
LTI discrete-time systems, 121

H
Haan window, 255
Hadamard transform

DCT, 183, 184
input sequence, 183
and inverse, 183, 185
kernel matrix, 182
N-point sequence, 183
NxN kernel matrix, 183
property, 182
total energy of input sequence, 183
transformed vector, 182

Half power frequency, 199
Hamming window, 255, 270
Hermann’s formula, 261, 262
Highpass filter

DTFT, 125–127

I
Ideal lowpass filter

DTFT, 125–127
Ideally sampled signal reconstruction, 41
Ideal sampling/impulse sampling, 39, 40
IIR digital filters, 94, 99–104, 352, 356,

363, 379
Infinite impulse response (IIR) filter, 135, 137

cascade and parallel forms, 141, 143
eighth-order, 141
frequency domain transfer function, 141
gain factor, 142
Gaussian sequence, 144
impulse response, 144, 145
magnitude of DTFT, 143, 144, 147
parallel form, 142
phase of DTFT, 143, 144
step response, 144, 146
transfer functions, 142
unwrapped phase, 144, 145
White Gaussian noise sequence, 144, 146

Image analysis, 8
Image compression, 7
Image filtering, 133
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Image restoration, 7
Impulse invariance technique

analog transfer function, 190, 191
design procedure, 190–193
digital and analog filters, 192
frequency responses, 193
inverse Laplace transform, 191
Laplace transform, 190
MATLAB function impinvar, 193, 221
residues, 191
response, 190, 191
time-domain function, 192

Impulse response
discrete-time systems, 23
IIR filter, 101, 144, 145
LTI discrete-time systems, 88, 118, 121

Impulse sequence
Z-transform, 66

Imread, 290
Infinite impulse response (IIR) digital filters

Butterworth, 189
computer-aided design, 220–224
design (see Design of IIR digital filters)
group delay, 224–230
impulse invariance technique

transfer function, 190
simulation, Simulink, 231–238
technique (see Impulse invariance

technique)
Inter-symbol interference (ISI), 6, 428, 443
Inverse discrete Fourier transform (IDFT), 153
Inverse DTFT (IDTFT), 113
Inverse FFT (IFFT), 394
Inverse Z-transform, 78, 83, 84

contour integral, 78
definition, 78
partial fraction expansion (see Partial

fraction expansion)

K
Kaiser’s formula, 257, 261, 262
Kaiser’s formula, 257, 261, 262
Karhunen-Loeve transform (KLT), 409
Kernel matrix, 178–180, 182

L
Laplace transform, 17, 18, 465–467
Least significant bit (LSB), 51
Least squares solution, 222
Linear convolution

DFTs, 167
FFT algorithm, 167

finite-length sequence with infinite-length
sequence

FFT algorithm, 168
overlap and add method, 169–173
overlap and save method, 171–176
zero-padding, 168

matrix equation, 166
sequence of length, 166
using circular convolution, 167, 168
zero-padded sequences, 167

Linear difference equation
LTI discrete-time system

2nd-order, 31
characteristic equation, 36
complementary solution, 32–34, 36
constant coefficient, 32
definition, 30
description, 30
difference equation and total solution,

33–35
Finite-Length Sequences, 37–38
initial conditions, 36
length-9 triangular sequence and length-

11 unit amplitude pulse, 38
non-recursive difference equation, 31
particular solution, 32, 34, 36
recursive equation, 31
signal flow diagram, 31, 32
stem plots, 33–35, 37
unit step sequence, 32

Linear system, 12
Linear time invariant (LTI) filter, 456
Linearity

DFT, 161
discrete-time systems, 23
DTFT, 113
Z-transform, 69, 70

Lloyd-Max quantizer, 49
Lower sideband, 133
Lowpass filter

DTFT, 124, 125
Lowpass FIR Filter, 341
Lowpass IIR Filter, 341
LTI discrete-time system, 118–144

frequency domain (see Frequency domain,
LTI discrete-time system)

M
Matched filter (MF), 6, 428, 456
MATLAB function, 277, 282, 290, 298, 308,

309, 322, 323, 330, 334, 336, 339,
364, 378

MATLAB’s Simulink, 449, 453
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MATLAB tool
Z-transform

analytical method, 83
difference equation, 84–89
IIR digital filter, 94–104
inverse, 83, 84
pole-zero plot, 84, 89–92
sinusoidal sequence, 86–90
sixth-order FIR filter, 92, 94–96

Maximally flat filter, 198
Mean square error (MSE), 48, 453
M-file, 339, 355, 356, 363, 364, 373, 374, 379
Modulated cosine sequence

Z-transform, 67
Modulated sine sequence

Z-transform, 67, 68
Modulation theorem

DFT, 163
Most significant bit (MSB), 50, 51, 335
Multiple-order poles, 81
Multiplied by an exponential sequence

Z-transform, 71

N
Non-ideal sampling, 39
Non-recursive difference equation, 31
Non-return to zero (NRZ), 454
Nth-order Direct Form I IIR digital filter, 318
Nth-order Direct Form II IIR digital filter, 319
Nth-order FIR digital filter, 326
Nth-order IIR digital filter, 318, 320, 352
Nyquist frequency, 41, 42
Nyquist rate, 428, 429, 432, 434, 441,

471, 487, 489
Nyquist theorem, 41

O
Optimal least squares technique, 277
Optimal quantizer, 49
Original gray-scale image, 136
Orthogonal frequency-division multiplexing

(OFDM), 481–484
Orthogonal transform

discrete transforms, 180
Overlap and add method, 168, 170, 172, 173
Overlap and save method, 168, 171, 174–176
Oversampling factor vs. filter order, 438

P
Parks-McClellan algorithm, 276, 277, 381
Partial fraction expansion, 78–80

function with complex poles, 81

function with multiple-order poles, 81–83
simple poles

discrete-time sequence, 79
improper function, 79–80
inverse Z-transform, 78
residues, 78

Passband, 127
Periodic sequence

discrete-time signals, 23
Phase distortion, 225
Phase-locked loop (PLL)

analog form/digital form, 462
analysis, 463
block diagram, 464
DPLL, 470, 471, 476
frequency step, 466–468
function in equation, 473, 477
Laplace transform, 465, 466
lowpass filter, 464
MATLAB’s Simulink, 468, 470
modulation schemes, 461
software-based DCO, 472, 473
steady-state phase error, 465, 466
step phase response, 466
VCO, 462

Poles of transfer function, 76
Pole-zero plot, 84, 87

IIR filter, 99, 100
MATLAB tool, 89, 91
Z-transform, 76, 77

Polyphase components, 329–331
Polyphase filter, 327
Power spectral density (PSD), 395
Power spectrum

input sequence, 397
noise sequence, 399

Probability density function (pdf), 48
Proper transfer function, 75
Pulse generator source, 56

Q
Quantization, 44
Quantization error, 50, 52
Quantization noise variance, 53
Quantizer block, 44

R
Radix-2 algorithm, 386
Real causal exponential sequence

Z-transform, 66, 67
Real exponential sequence

discrete-time signals, 22
DTFT, 112
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Real sinusoidal sequence
discrete-time signals, 22

Recursive equation, 31
Region of convergence (ROC), 66

S
Sample and hold (S/H) function, 44, 47, 56

block diagram, 53, 54
Scalar quantizer, 44, 47
Scaling by a constant

Z-transform, 69
Schwartz’s inequality, 459
Short-time Fourier transform (STFT)

AM signal, 399, 400
block lengths, 397
calculation of MATLAB, 398, 399
characterizing speech signals, 398
chirp signal, 399, 400
definition, 397
FM signal, 399, 401
frequency and time, 398

Signal Operations, 55
Signal-to-noise ratio (SNR), 53, 439, 442,

453–455, 458–460, 492
Sign-magnitude, 50
Simulink, 350, 353

A/D converter simulation, 57, 59
IIR digital filters, 231–238
S/H example, 53–57
simulating algorithms and hardware

systems, 53
Simulink Library Browser, 53, 54,

234, 238, 239
Simulink Library Browser-Source-Sine

Wave, 235
Sinc function, 42
Sine wave source, 53, 55
Single-sideband AM (SSB-AM) signal,

300, 301
Sinusoidal sequence, 86, 120, 175, 177
Sinusoidal signals, 11, 12
Sixth-order FIR filter, 92–96
Sliding discrete Fourier transform (SDFT)

characterizing, 405
digital filter transfer function, 405
eight-point DFT, 403–405
vs. FFT, 406, 408, 410
finite-length block, long sequence, 403
IIR digital filter, 405, 406
IIR digital filter structure, 405
input chirp sequence, 406, 409
input discrete-time sequence, 406, 407
N-point DFT, 405

Software-defined radio (SDR)
AM DSB-SC signal, 487–489
bandpass signals, 486
block diagram, 486
definition, 485
factors, 485
FM signal, 487, 490
sampling, 485
wireless communications, 485

Source coding, 428
Stability, 14, 15

convolution sum, 28, 30
discrete-time systems, 25

Steady state response of LTI discrete-time
systems

decaying function, 120
definition, 120
group delay, 121–124
impulse response, 120, 121
phase angle, 120
phase delay, 120
phase response, 120
sinusoidal sequence, 120

Step responses
and calculation of impulse, 86, 88
discrete-time system, 89
IIR filter, 102–104, 144, 146
single-section IIR filter, 103

T
Time- or shift-invariant discrete-time

systems, 23
Time scope, 55, 57
Time shifting

Z-transform, 70
Time-invariant system, 12, 13
Time-reversed sequence

DTFT, 113
Z-transform, 71

Time-shifted sequence
DTFT, 114

Time shifting
property, 116
Z-transform, 70

Transfer function, 17, 75
Two’s complement, 50

U
Uniform quantizer, 49
Uniform sampling, 39
Unit impulse

discrete-time signals, 22
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DTFT, 112
Unit step sequence

discrete-time signals, 22
DTFT, 112
Z-transform, 66

Unitary transform, 176
discrete transforms, 177–180
energy conservation and compaction

properties, 181
Upper sideband, 133

V
Vector quantizer, 44
Very large-scale integrated (VLSI), 427

W
White Gaussian noise sequence, 144, 146
Windowing technique, 248, 311

Z
Zero-padded sequences, 167
Zeros of transfer function, 76
Zoom FFT

downsampled sequences, 416–419
input FM sequence, 418

input sequence, 417
magnitudes in dB, 419
N-point sequence, 416

Z-transform
anticausal exponential sequence, 68
conjugation, 70, 71
convolution, 72
CZT, 419
definition, 65–69
differentiation rule, 71, 72
finite-length exponential sequence, 69
impulse sequence, 66
inverse (see Inverse Z-transform)
linearity, 69, 70
MATLAB tool (see MATLAB tool)
modulated cosine sequence, 67
modulated sine sequence, 67, 68
multiplied by an exponential sequence, 71
pole-zero plot, 76–77
properties, 69, 72, 73
real causal exponential sequence, 66, 67
ROC of sequence, 73
scaling by a constant, 69
sequences, 68
time-reversed sequence, 71
time shifting, 70
unit step sequence, 66
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