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Abstract This chapter addresses the prediction of vibratory resonances in nons-
mooth structural systems viaNonsmooth Modal Analysis. Nonsmoothness in the tra-
jectories is induced by unilateral contact conditions in the governing (in)equations.
Semi-analytical and numerical state-of-the-art solutionmethods are detailed. The sig-
nificance of nonsmooth modal analysis is illustrated in simplified one-dimensional
space semi-discrete and continuous frameworkswhose theoretical and numerical dis-
crepancies are explained. This contribution establishes clear evidence of correlation
between periodically forced and autonomous unilaterally constrained oscillators. It
is also shown that strategies using semi-discretization in space are not suitable for
nonsmooth modal analysis. The spectrum of vibration exhibits an intricate network
of backbone curves with no parallel in nonlinear smooth systems.

The purpose of this chapter is to provide a general picture of the state-of-the-art
vibratory analysis of nonsmooth systems. This topic lies at the interface between
modal analysis of smooth nonlinear systems and nonsmooth contact dynamics dedi-
cated to the time-evolution of nonsmooth systems, undergoing impact or dry friction,
for instance. Some elementary concepts are succinctly recalled for the purpose of
completeness.

Terminology

Unless otherwise stated, the epithet discrete (as in “discrete systems” or “discrete set-
ting”) designates semi-discretization in space, while continuous refers to everything
else.
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1 Introduction to Nonlinear Modal Analysis

Mechanical systems, from those of large scale (buildings) to those of small scale
(MEMS switches), commonly undergo forced vibrations. The efficient and accurate
characterization of the response of such systems to an external periodic loading is
essential to ensure safe designs. It also has various other applications, such as retrofit,
damage detection or model reduction, to name a few. In this context, frequency-
response curves play a key role for the dynamicist: they indicate the energy level of
a periodic solution produced by an external periodic forcing of (angular) frequency
ω, as a function of ω. For nonlinear systems, computing these frequency-response
curves is not a straightforward task. Actually, they are known to depend, in a possibly
intricate manner, on the forcing amplitude, the forcing frequency, and the forcing
shape [48]. A brute-force time-domain approach consisting in solving the govern-
ing equations for various external forces and initial conditions is, in practice, not
conceivable for large-scale systems. Instead, modal analysis provides a means of
computing, for a much more reasonable cost, the so-called backbone curves that
shape the forced response curves. Such backbone curves correspond to the underly-
ing autonomous (i.e., unforced) and conservative (i.e., undamped) periodic solutions
of the governing differential equation.1 Autonomous periodic solutions of conser-
vative systems may seem “unrealistic” in the sense that no undamped systems are
observable in the physical world. Their investigation can yet provide germane infor-
mation on periodically-forced and slightly damped systems. Essentially, they extend
the concept of spectrum, defined for linear systems, to the nonlinear framework.
In particular, they show the energy-dependence of vibration frequencies. The above
statements are illustrated by considering afinite-dimensional system relevant to struc-
tural dynamics and governed by a linear Ordinary Differential Equation (ODE) of
the form

Mü(t) + Cu̇(t) + Ku(t) = fext(t), (1)

where u is the vector of generalized displacements, M is its positive-definite mass
matrix, C its damping matrix, K its positive-definite stiffness matrix and fext its
vector of external loadings. The backbone curves are trivially obtained by considering
the autonomous conservative counterpart Mü + Ku = 0 and its periodic solutions,
yielding vertical lines in the energy–frequency diagram at the eigenfrequencies of the
systemdefined as the square roots of the eigenvalues ofM−1K: in linear dynamics, the
frequency of vibration is independent of the magnitude of vibration. This can be seen
in Fig. 1 (top), which illustrates a typical Frequency-Energy Plot (FEP) for a two-
degrees-of-freedom (dof) linear oscillator. The forced frequency-response curves
are clearly aligned on the two backbone curves, which completely characterize the
spectrum of vibration. Let us now consider a smooth nonlinear system of the form

Mü(t) + f(u̇(t),u(t)) = fext(t), (2)

1Modal analysis can also be defined in the autonomous damped case, which is more complicated
and not further discussed here.
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where smooth refers to the smoothness of f with respect to u and u̇. Its dynamics
is unsurprisingly more subtle than the previous linear case, and systematic solu-
tion methods for characterizing the vibrations globally are not available [40, 90,
Sect. 1.3]. However, it is known that fixed points, periodic and quasi-periodic limit
cyclesmay exist, in the vicinity ofwhich itmaybe possible to approximate the nonlin-
ear dynamical response. In particular, the centre manifold theorem [40, 47], together
with Lyapunov’s centre theorem [9, p. 5], show that under sufficient regularity2 and
non-internal resonance conditions, two-dimensional invariant manifolds exist locally
in the phase space and are tangent to the linear modes of the system linearized at
the fixed points. Such two-dimensional invariant manifolds were later defined as
nonlinear normal modes of vibration [93, 111] in the vibration community. They
can be understood as curved extensions of linear modes that correspond to flat two-
dimensional invariant manifolds defined by one-parameter continuous families of
elliptic trajectories. However, the nonlinear framework encompasses many phenom-
ena that are not observed in linear systems, such as internal resonance, frequency–
energy dependence, emergence of subharmonics or chaos, and existence of isolated
loops in the FEP [49]. Again, the relevance of nonlinear modal analysis is illustrated
in Fig. 1 (bottom), depicting the forced response of a two-dof Duffing oscillator. The
response curveswarp around the backbone curves.As opposed to the linear spectrum,
the nonlinear backbone curves are frequency-dependent and stiffening is exhibited
here. The kink of the forced response in the neighborhood of ω2/3 corresponds to
a subharmonic resonance. The loop near ω1 corresponds to an internal resonance,
where the first nonlinear mode and the third subharmonic of the second nonlinear
mode interact.

Among all nonlinearities found in mechanics, unilateral and frictional contact
nonlinearities form a specific class in which nonsmoothness arises in the dynam-
ics [94]. Typically, the impact between two bodies induces velocity discontinuities
and acceleration impulses [2]. The present chapter focuses on the frictionless frame-
work. The governing equation can no longer be written in the form (2), where f
is a smooth function of u and u̇. However, classical analytical techniques available
for computing nonlinear modes [49] require smoothness of the governing equation.
Indeed, the invariant manifold approach is based on the Taylor series of the solution
written as a function of a pair of master coordinates [93]; the method of multiple
scales [73], as a subclass of perturbation methods, requires asymptotic expansions;
normal forms rely on the nonlinearity being an analytic function [45].When it comes
to nonsmoothness, such strategies no longer apply.

Nonsmooth modal analysis is the extension of nonlinear modal analysis to nons-
mooth systems. This is accomplished by computing nonsmooth modes, that is, fami-
lies of nonsmooth periodic solutions of the autonomous and conservative dynamics.
Even simplistic nonsmooth oscillators exhibit intricate responses [20, 103, 106]. The
regularizing approach, consisting in replacing nonsmoothness with smooth strong
nonlinearities [7, 15, 26, 44, 58, 92, 101, 114], has the adverse effect of introduc-

2Notably, the linearized flow should be invertible. For example, the equation ü + u3 = 0 has non-
trivial periodic solutions, but its linearized ODE ü = 0 does not.
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Fig. 1 Frequency–energy plot of a two-dof Duffing oscillator, linearized (top) and nonlinear (bot-
tom). [ ] Backbone curves. [ ] Forced-response. [ ] Subharmonic of the second mode

ing issues such as numerical stiffness [19, 77, 78] and is not further discussed in
this work. Another approach is to include nonsmoothness as such. Many investiga-
tions on the dynamics of forced vibro-impact oscillators [35, 83, 85, 117, 120] and
grazing bifurcations [20, 20, 30, 75, 81] or stability issues [60] are available. The
specific target of families of periodic solutions of a conservative nonsmooth problem
has emerged recently for space-discretized systems [59, 104, 107] or continuous
ones [41, 125].

Multiple applications which could benefit from nonsmooth modal analysis can
be listed: rotor-stator contact interactions in rotating machinery involving unilateral
contact occurrences between blades and casings [116], boiler tube dynamics with
a loose support [26, 76], grid-to-rod fretting [42], percussive drilling systems [79,
80], cutting tools [121] or, on a smaller scale, capsule systems (capsubots) [63, 64],
and electrostatically-driven and piezoelectric actuators [31, 69].The Sensitivity of an
atomic force microscope, in tapping mode, can be improved through understanding
of the response of impact oscillators [113]. Additional examples include impact
dampers implemented to reduce vibrations [62, 91] or fret-string contact interactions
within musical instruments [12, 16, 43]. More applications can be found in [7]. All
applications have in common the need to properly characterize nonsmooth vibratory
resonances.

The purpose of this chapter is to give a picture of the state-of-the-art nonsmooth
modal analysis.While the standard procedure inmechanical engineering is to approx-
imate continuous systems by n-dof systems, complications arise when contact is
involved. Nonsmooth modes of a continuous system have intricate relationships with
that of their semi-discretized counterparts, which raises open-ended questions. The
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available analytical and numerical methods for nonsmooth modal analysis are first
presented for finite-dimensional systems (Sect. 2) and continuous systems (Sect. 3).
The relationships between forced response and Nonsmooth Modes (NSMs) are then
illustrated in Sect. 4. The comparison between modal analysis of continuous sys-
tems and semi-discretized counterparts is addressed in Sect. 5, which concludes the
chapter.

2 Nonsmooth Modal Analysis of Discrete Oscillators

Consider the dynamics governed by a differential equation of the form (2), where
fext = 0. A contact condition, which prevents penetration between two colliding
bodies, is commonly expressed as a unilateral constraint g(u, t) ≥ 0, where g stands
for gap, that is, the distance between the bodies. This constraint is incorporated into
the dynamics via a Lagrange multiplier λ corresponding to the reaction force in the
outward normal direction of the contact surface. The non-sticking condition implies
that λ ≥ 0 and λ can be non-zero only if the gap is closed: g(u, t)λ(t) = 0. These
three conditions, known as the Signorini conditions [2], are commonly written in the
synthetic form 0 ≤ λ ⊥ g(u, t) ≥ 0. In the case of multiple unilateral constraints,
each gap function and its correspondingLagrangemultiplier can be stacked in vectors
g and λ, respectively; the inequalities and the orthogonality operator ⊥ are then
defined component-wise. Altogether, the autonomous dynamics now writes

{
Mü + f(u, u̇) − ∇u g(u, t)λ = 0 (3a)

0 ≤ λ ⊥ g(u, t) ≥ 0 (3b)

and nonsmooth modal analysis consists in finding continuous families of periodic
solutions to this problem. Equation (3a) should be read in a weak sense, since u is
only of regularity C0 because of the complementarity condition (3b). Various other
formalisms are available to describe the dynamics [2].

2.1 Necessity of an Impact Law

An aspect that does not always seem to be understood is that Problem (3), together
with some initial conditions u(0) and u̇(0), does not uniquely determine a solution.
For instance, consider a punctual ball of mass m located above a rigid ground and
subjected to gravity.When dropped from a given height, the ball first undergoes a free
flight uniquely determined by its initial position and initial velocity, together with
an ODE of the form mü + mg = 0 (Cauchy problem). It then reaches the ground:
from there, infinitely many solutions are possible, all satisfying Eq. (3) adapted to the
problem at hand. The ball could remain on the ground: u̇ = 0 and λ = mg. It could
also bounce with the same kinetic energy: u̇+ = −u̇− and λ = −2mu̇− at the impact
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Fig. 2 Two distinct
solutions to the problem of a
bouncing ball of the
form (3): uniqueness is not
guaranteed when an impact
law is not specified

time, where u̇− (respectively u̇+) denotes the normal pre-impact (respectively post-
impact) contact velocity. These two acceptable solutions are depicted in Fig. 2. This
non-uniqueness indicates that information is missing.3 To ensure well-posedness,
Eq. (3) is complemented with a constitutive impact law. If the latter does not lead
to an increase of kinetic energy, uniqueness is guaranteed as soon as the unilateral
constraints, the smooth nonlinear terms and the smooth external forces are analytic
functions [8, 87]. Nevertheless, evenwith impact laws, the continuity of the solutions
with respect to the initial conditions is not guaranteed in the case ofmultiple unilateral
constraints [8].

The necessity of an impact law holds for any unilateral constraint arising in sys-
tems semi-discretized in space, unless special treatment is enforced [51]. Numerical
strategies which do not explicitly include an impact law, such as [13, 122], produce
only one among infinitely many possible solutions.

Among possible impact laws, only conservative ones should be considered in the
framework of nonsmooth modal analysis, since autonomous periodic solutions are
sought. Themost common choice4 is Newton’s purely elastic impact law, u̇+ = −u̇−
at impact times. This choice, dictated by the periodicity condition, is incompatible
with lasting contact phases observed during collisions in the continuous framework.
This can be illustrated by considering the position of the contacting end of a one-
dimensional bar collidingwith a rigid obstacle, as depicted in Fig. 3. In the continuous
framework, contact phases last a finite amount of time, while the energy is preserved
(left plot). When the bar is discretized, the conservative impact law implies instan-
taneous bounces (right plot). For n-dof systems, lasting contact phases necessitate a
purely inelastic impact law of the form u̇+ = 0, leading to a loss of kinetic energy
incompatible with the conservative framework of modal analysis. Also, it is worth
mentioning that when subjected to an external load, a unilaterally-constrained system
can exhibit lasting contact phases after a countable infinity of impacts occurring in
finite time, for non-purely elastic impact laws [17, 66]. This phenomenon is called
chattering and is illustrated in Sect. 5.

For very specific initial conditions, systems governed by (3), togetherwith a purely
elastic impact law,may have solutionswith lasting contact phases, also called sticking

3As explained in Sect. 3, this results from the fact that shock waves, emanating from the contact
interface where bodies collide, are not properly described in the semi-discrete setting.
4Other strategies, consisting in redistributing energy or mass, have also been explored, (see
Sect. 5.2).
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Fig. 3 Displacement of the contacting with end of a bar colliding a rigid obstacle with no external
force. In the continuous framework, no impact law is needed for well-posedness and the contact
is lasting, even for energy-preserving motions. The discretized bar with a conservative impact law
exhibits chattering instead

Fig. 4 Possible gap-closing trajectories for conservative autonomous systems, in terms of the
normal velocity u̇

phases, despite the non-sticking condition on the contact force. Such trajectories
can be seen as one specific type of contact, as impact or grazing see Fig. 4. They
were investigated in [56] for a linear two-dof spring-mass system. An extension to
n degrees of freedom, general mass matrices and a single unilateral constraint is
proposed in [105]. In both cases, T -periodic trajectories with one lasting contact
phase were shown to exist only for isolated values of T . While they may seem of
purely theoretical interest, it was recently demonstrated that such trajectories play an
important role in the response spectrum of piecewise-linear impact oscillators [106,
Fig. 4]. No systematic results are presently available in the literature on periodic
motions with lasting contact phases of systems with additional smooth nonlinearities
or multiple unilateral constraints.

2.2 Quasi-analytical Techniques in Simple Cases

The systematic analytic derivation of NSM for n-dof systems has recently been
provided for a piecewise-linear spring–mass system with one Impact Per Period
(IPP) [59], as well as for any piecewise-linear system with a single linear unilateral
constraint and an arbitrary number of IPPs [104]. Preliminary investigations show
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that there exist strong relationships between the forced response of piecewise-linear
impact oscillators and backbone curves obtained using NSM, as detailed in Sect. 4.
Additional weak smooth nonlinearities do not seem to change the overall picture, as
succinctly discussed in Sect. 4.1. Extension to multiple unilateral constraints quickly
becomes tedious, because of the combinatorial nature of the sequence of unilateral
constraint activations.

We now derive the main ideas on how to carry out nonsmooth modal analysis on
n-dof piecewise-linear impact oscillators [104]. The generalized displacements and
velocities are denoted by u and u̇; the state x is such that x� = [u, u̇]� ∈ R

2n . The
unilateral constraint is assumed to be a linear function of the u. As a consequence,
there exists a vector w ∈ R

n and a constant g0 ∈ R such that g(u) = w�u + g0. The
elastic impact law can be written as [104, Sect. 4.2]

g(u) = 0 =⇒ x+ = Nx−, (4)

where N is similar to a reflection matrix with respect to a hyperplane of R2n (also
known as a Householder matrix), which depends only on w and the mass matrixM.
This describes the impact as a simple relationship in terms of the system state x.
In the same spirit, let S(σ )x denote the state after a free flight of duration σ from
a state x. A k IPP motion (k ∈ N

∗) is the succession of one free flight of duration
σ1 > 0, one impact, one free flight of duration σ2 > 0, one impact, and so on, k times.
Such a motion is depicted in Fig. 5. Starting from a post-impact state, the periodicity
condition reads as

x(0) = x(T ) = NS(σk)NS(σk−1)N . . .NS(σ1)x(0), (5)

where T = σ1 + · · · + σk . This condition comes with the k gap closure conditions
at impact times, that is,

g(x(0)) = 0, g(x(σ1)) = 0, g(x(σ1 + σ2)) = 0, . . . , g(x(σ1 + · · · + σk−1)) = 0.
(6)

The initial conditions x0, determining a motion x that satisfies conditions (5) and (6)
for some s = (σ1, . . . , σk), define an autonomous periodic motion, provided the gap
remains non-negative, in line with (3b). Finding such x0 reduces to determining a
vector λ ∈ R

k that satisfies [104]

�(s)λ = 0 and �(s)λ = g0j, (7)

with j = [1, . . . , 1]� ∈ R
k and where � and � are two k × k matrices, whose

expressions are known explicitly [104, Sect. 3.1] and depend on the parameters M,
K and w. The physical interpretation of vector λ is that it is proportional to the
pre-impact contact velocities. Several major consequences follow from (7):

• it suffices to find the k components of λ instead of the 2n unknown components
of x0;
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Fig. 5 Example of motion with 7 IPPs for a 5-dof system

Fig. 6 Projection of a 1 IPP NSM in the (un−1, un, vn) space for n = 5 (from [104]). This NSM is a
continuum of periodic nonsmooth trajectories with 1 IPP continuously connected to a linear grazing
mode (green ellipse). This two-dimensional manifold is invariant: if a motion starts on it, it will
remain on it as time unfolds. In particular, this manifold cannot be intersected by other trajectories
in the phase space

• � is invertible almost everywhere in R
k , so λ can be eliminated by combin-

ing (5) and (6). As a result, all the periodic solutions are governed by the equation
�(s)�(s)−1j = 0. The first step is to solve for s. Then, the corresponding ini-
tial state is recovered via x0(s) = ϕ(g0�(s)−1j), where ϕ is a known function
(see [104], not recalled here for conciseness);

• the skew-symmetry of � is such that �(s)�(s)−1j = 0 generically leads to k − 1
independent equations. As a result, the set of solutions is a curve inRk and periodic
orbits with k IPPs belong to a one-parameter continuous family, corresponding to
a two-dimensional manifold in the phase space (see Fig. 6). This feature is shared
by smooth nonlinear systems away from internal resonances.

The above methodology is summarized in Fig. 7. Each NSM corresponds to a back-
bone curve in terms of FEP. An example of such FEP is provided in Fig. 8 for a
two-dof spring-mass system (see Fig. 14), with up to seven IPPs. For one to three
IPPs, the spectrum was computed with the quasi-analytical method described above.
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Fig. 7 Summary of analytical nonsmooth modal analysis in the generic case for g0 
= 0. The
dependency of x0 to s is highlighted by the notation x0(s)

Fig. 8 Backbone curves of a two-dof impact oscillator with up to 7 IPPs. The two horizontal lines
correspond to the two linear grazing modes. Axes in log scale

Amultiple shootingmethodwas used for four to seven IPPs (see Sect. 2.3.2). Figure 8
displays no isolated branches. Indeed, all backbone curves can either [106]:

• diverge to unbounded energy, which corresponds to a singularity of �(s);
• be connected to a linear grazing mode (this is true in the case for 1 IPP);
• be connected to another backbone curve, with the junction then corresponding, to
a nonsmooth trajectory with impacts and grazing;

• converge to a motion with one Sticking Per Period (SPP).

In the neighborhood of a 1SPP, backbone curves seem to converge to the SPP as the
number of IPPs increases. This phenomenon is illustrated in Fig. 9. Convergence to
trajectories combining 1 IPP and 1SPP have also been observed. While very likely
to be true, there is no formal proof of such convergence.
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Fig. 9 Parallel sequences of NSMs with increasing IPP (1 → 3 → 5 → 7 and 2 → 4) converging
to a 1SPP motion. Convergence is shown via backbone curves (left) and in time domain (right)
(from [106])

As already reported [104, 107], seemingly independent backbone curvesmight be
connected through a vertical backbone curve: this additional non-generic feature was
referred to as a bridge. This occurs for isolated s, making �(s) singular. However,
such s and those leading to unbounded energy are distinct.

Stability analysis of k IPP motions is carried out in a straightforward fashion by
linearizing the kth return map on the hyperplane g(u) = 0. A perturbation of an
initial condition x0 propagates through the mapping

x0 + δx0 �→ NS(σk + δσk)N . . .NS(σ1 + δσ1)(x0 + δx0), (8)

where δσi is an unknown yet small change of duration of the i th free flight. The
first-order Taylor expansion of this assumed smooth mapping yields an equation of
the form

δx=NS(σk)N . . .NS(σ1)δx0+
( k∑

�=1

NS(σk) . . .NS′(σ�)N . . .NS(σ1)δσ�

)
x0. (9)

The unknowns δσ1, . . . , δσk are found by solving the linearized system g(u((σ1 +
δσ1) + · · · + (σ� + δσ�))) = 0 for � ∈ �1, k�. Ultimately, there exists a linear map-
ping between δx0 and δx through a matrix A(x0) such that

δx = A(x0)δx0. (10)

The eigenvalues of A(x0) determine the spectral stability of the periodic solutions
emanating from x0 [90, Summary 7.5].
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2.3 Numerical Techniques

The above (semi-)analytical developments provide essential insight in understand-
ing nonsmooth modes. They are inevitable for proving mathematical results, but are
limited to piecewise-linear systems. Numerical techniques take over for more chal-
lenging vibro-impact systems, for instance, with multiple unilateral constraints or
polynomial nonlinearities.

In the following, we restrict ourselves to two well-known procedures devoted to
periodic solutions: Harmonic Balance Method (HBM) and Shooting Method (SM).
HBM enforces periodicity exactly by construction, while contact conditions are only
approximated. In contrast, SMhandles contact conditions accurately, to the detriment
of periodicity. Other methods, such as multiple scales, invariant manifold approach
and alike, are not considered, as they essentially apply to smooth nonlinearities.

2.3.1 Harmonic Balance Method and Its Variants

For n-dof systems, setting the unilateral constraints apart, smooth dynamics is
described by ODEs in the form

f(u, u̇, ü, t) = 0, (11)

where f is a nonlinear function of the displacements u and velocities u̇. The unknown
displacement u is approximated by uh , which is defined as a linear combination of
N chosen shape functions stacked in a vector ϕ so that

u(t) ≈ uh(t) = Aϕ(t), (12)

where A is a n × N matrix of unknown coefficients. Equation (11) is approximately
solved by making the residual f(Aϕ,Aϕ̇,Aϕ̈, t) orthogonal to a well-chosen set of
M test functions φ for the usual inner product

∀k ∈ �1, M�,

∫ T

0
φk(t)f(Aϕ,Aϕ̇,Aϕ̈, t) dt = 0. (13)

Such integrals collectively form a system of nonlinear equations and can be evaluated
numerically if the integrand does not easily simplify. Choosing M = N , the nN
coefficients in A are then found using a root-finding algorithm such as Newton-
Raphson to solve the nN Eq. (13).

This method can be used to compute periodic responses to either forced or
autonomous ODEs. Equation (12) shows that the periodicity condition is transferred
to a condition on ϕ, which must therefore be periodic. In the case of a periodic
external force of angular frequency �, periodic solutions are expected to have a
frequency multiple of �, so T = 2π/� can be chosen, or T = 2pπ/�, p ∈ N

∗ to
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accommodate possible subharmonics [38, 53, 123]. In the autonomous case, T is
unknown and continuation procedures must be used [3].

The HBM is a well-established technique [54, 118] for finding approximations
of periodic solutions to (13). It is obtained by specifying

ϕ = φ = [
1 exp iωt . . . exp iNωt

]�
, (14)

with ω = 2π/T . While commonly producing accurate results for weak nonlineari-
ties, HBM is mostly used heuristically, and there is no proof that a truncated series
is a valid approximation of the exact solution [32]. Other shape and test functions
ϕ and φ shall be adopted. Another well-known method is the collocation method,
which corresponds to a low-order piecewise periodized polynomial for ϕ and

∀t ∈ [0, T ], φ(t) = [
δ(t − t1) . . . δ(t − tN )

]�
, (15)

where t1, . . . , tN are the collocations points. The Dirac deltas have the property to
transform the computation of the inner product (13) into the simple evaluation of
uh at the collocation points. The derivatives of uh are computed from the shape
functions if they are differentiable, through a finite difference scheme, for instance,
or via a conservative Simo scheme [5, 98].When orthogonal polynomials are chosen
as shape functions and the collocation points are the roots of one of the orthogonal
polynomials, the method is called orthogonal collocation or pseudospectral [10, 33]
and is reported to be efficient for dealing with sharp fronts [22].

For unilateral contact problems, HBM has mostly been implemented in conjunc-
tion with regularizing techniques [26, 38, 53, 116, 123] and the contact forces are
directly included in the governing ODE (11). A variant of HBM in which the trun-
cated Fourier series is replaced by wavelets has been proposed to compute periodic
solutions of a turbine blade with regularized contact conditions [99]. HBM with
regularized friction has been investigated in [46].

The unilateral contact conditions can also be treated without regularization, and
the problem reads as

⎧⎨
⎩

f(u, u̇, ü, t,λ) = 0 (16a)

0 ≤ g(u) ⊥ λ ≥ 0 (16b)

u(0) = u(T ), u̇(0) = u̇(T ). (16c)

Above, no impact law is specified. It is instead replaced by the periodicity conditions.
We are not aware of any formal proof of this supposed equivalence. However, within
HBM, the impact law with e = 1 is implied by the conservation of the total energy
in an autonomous problem with no simultaneous impacts, but it is unclear which
solutions are picked by the numerical procedure in other cases, such as in the presence
of external forces.

The Signorini conditions are transformed by means of a max operator, observing
that for any α > 0 [88], in the component-wise sense,
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0 ≤ λ ⊥ g(u) ≥ 0 ⇐⇒ λ − max(λ − αg(u), 0) = 0, (17)

and can be readily included in (11) at the cost of reducing the regularity of f [96].
The inner product (13) is computed numerically and the solution is found through a
semi-smooth Newton solver. An alternative is to implement HBM together with an
augmented Lagrangian in a case of unilateral conditions only [55] or a variation of the
augmented Lagrangian in the case friction [71]. Another possibility is to approximate
u and λwith adapted periodic shape functions and satisfy the Signorini conditions at
discrete times (collocation points), leading to a Linear or Nonlinear Complementary
Problem [68].

Another possible strategy could consist in adding a chosen nonsmooth function
with the same regularity as the expected solution (C0 in the case of impacts) as a
shape function; a faster convergence would then be expected, as in the dry frictional
case [52]. Irrespective of the chosen discretization, contact-induced nonlinearities
require a large number of harmonics (see Fig. 20).

2.3.2 Shooting Method

The Shooting Method is a well-known procedure capable of tracking periodic solu-
tions of ODEs in the form (11) [6, 70]. It consists in finding initial conditions (u0, u̇0)
such that they are recovered after a time integration over some interval [0, T ] for
some T > 0. The analytical method presented in Sect. 2.2 can be understood for one
IPP as a SM in which exact integration is performed through matrix exponentials.
In more general cases, time integration can be carried out either by event-driven
schemes or time-stepping methods [2]. Enforcing periodicity conditions reduces to
finding the roots of a vector function z(u0, u̇0, T ), bearing in mind that z might be
nonsmooth. In modal analysis, T is unknown and there are a priori 2n + 1 unknowns
for 2n independent equations: the solution space is a curve, which can be found, as
in the HBM, via numerical continuation. The multiple shooting method enlarges the
domain of attraction of the root-finding algorithm by splitting the integration domain,
increasing the robustness of the numerical procedure [90, 102].

This approach was applied to contact problems with regularized nonsmooth-
ness [84, 112]. It was also used to locate grazing [110]. The merits of SM for
nonsmooth modal analysis rely on the fact that efficient numerical schemes dedi-
cated to nonsmoothness, such as the Moreau–Jean scheme [2, 89], can be employed.
Convergence proofs exist for a few schemes [25].

For solutions with multiple impacts per period, period T can be replaced by the
succession of unknown free flight durations σ1, . . . , σk (see Sect. 2.2). Complement-
ing the set of equations with k − 1 additional conditions of gap closure (g(σ1) = 0,
. . . , g(σ1 + · · · + σk) = 0) imposes prescribed times of impact, which has the advan-
tage of eliminating the nonsmoothness without regularizing the contact conditions.
Again, continuation can be used to recover a backbone curve with a given number
of IPPs. The robust features of Manlab could be explored in this context [11, 109].
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One drawback of the shooting method is that it hardly captures unstable parts of
backbone curves, because of the time integration [22].

HBM and SM have been combined in the context of forced nonsmooth dynamics
in a hybrid method [89]. The linear part of the dynamics is captured by HBM, while
SM deals with the nonlinearities.

2.3.3 Gauss’ Principle

Another possibility would be to consider Gauss’ principle for translating the problem
of finding a periodic solution into an optimization problem [108]. This principle is
known to be equivalent to d’Alembert’s or Jourdain’s in the nonsmooth dynamics
framework [36]. The acceleration field ü solution to an ODE of the form (3) obeys
Gauss’ principle with the unilateral constraints

minG(ü) subject to g(u) ≥ 0, (18)

withG(ü) = (ü − a)�M(ü − a) and a = −M−1f(u, u̇). The idea is to seek periodic
solutions by replacing u with a truncated Fourier series uh , as in Eq. (12), and to
express Gauss’ principle in a weak sense in which the cost function is G(üh) ≈
Gh(A, t). This yields a problem of the form: find A solution to

min
A

(∫ T

0
Gh(A, t) dt

)
subject to ∀ti ∈ S, g(Aϕ(ti )) ≥ 0, (19)

where S is a chosen set of discrete times in the interval [0, T ]. This approach has
been adopted for a one-dof system in [74].

3 Nonsmooth Modal Analysis of Continuous Systems

Contact between two linear elastic media generates shock waves featuring discon-
tinuous stress and velocity fronts. For example, when a bar hits the rigid ground, a
shockwave emanates at the contact interface, propagates to the free surface of the bar
and reflects. The bar departs from the ground when the reflection of the shock wave
comes back to the contact interface. Mathematically, the dynamics is described by
a Partial Differential Equation (PDE), a solution of which is completely determined
by the initial displacement and velocity fields, even in the presence of unilateral con-
straints [57]: in contrast to the semi-discretized framework (see Sect. 2.1), no impact
law is needed for well-posedness. The situation is already quite sophisticated for
three-dimensional isotropic homogeneous linear elastic materials, where uncoupled
longitudinal and transverse waves propagate at distinct velocities. When a nonlinear
constitutive law is considered instead, the governing equations are still hyperbolic,
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Fig. 10 Fixed–free bar subjected to a unilateral constraint

but the longitudinal and transversewaves are coupled [27,Chap.4].Here,we focus on
one-dimensional homogeneous linear elastodynamics and explore solution methods
that do not rely on space semi-discretization techniques exposed in Sect. 2.

3.1 One-Dimensional Problem of Interest

The system of interest is a fixed–free bar, whose free end is subjected to a unilat-
eral constraint, as illustrated in Fig. 10. The displacement u is assumed to be small
compared to the length L of the bar. The dynamics is governed by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀x ∈ (0, L), t ∈ R, ∂2
t t u(x, t) = c2∂2

xxu(x, t) wave equation (20a)

∀t ≥ 0, u(0, t) = 0 Dirichlet condition (20b)

∀t ≥ 0, 0 ≤ −∂xu(L , t) ⊥ g0 − u(L , t) ≥ 0 Signorini condition (20c)

∀x ∈ (0, L), u(x, 0) = u0(x), v(x, 0) = v0(x) initial conditions, (20d)

where g0 denotes the gap at rest and c = √
E/ρ is the wave propagation speed,

defined from the Young modulus E and the density ρ of the material. It is worth
mentioning that the eigenfrequencies of the linear fixed–free bar are all multiples
of the first one, that is, ωk = kω1, k ∈ N

∗: any initial condition generates a periodic
motion and all linear frequencies satisfy an internal resonance condition.

3.2 Analytical Solution

A few analytical solutions of (20) are available for colliding bars [37] or vibrating
strings with an obstacle [12, 41] which share similar governing equations. New
ingredients are introduced below.

The general solution to (20a) is of the form u(x, t) = f (ct + x) + h(ct − x),
for x ∈ [0, L] and t ∈ R. In the weak sense, it suffices to require continuity and
piecewise C1-regularity for f and h. Condition (20b) implies that f = −h. Let ϕ

denote the derivative of f . It follows that

∀x ∈ [0, L], ∀t ∈ R, u(x, t) = f (ct + x) − f (ct − x) =
∫ ct+x

ct−x
ϕ(s) ds. (21)
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Condition (20c) implies that ∂xu(L , t) = 0 when the gap is open, in other words,
ϕ(x + L) = −ϕ(x − L), which means that ϕ is a 2L-antiperiodic function on R.
When the gap closes, it remains closed as long as ∂xu ≤ 0. In particular, ∂t u(L , t) =
0, which is equivalent to ϕ(ct + L) − ϕ(ct − L) = 0, or ϕ is 2L-periodic. Consider
a free phase over [0, t1]. On this interval, the displacement field is associated with
a 2L-antiperiodic function ϕ. Assume the gap is then closed over [t1, t1 + t2]. The
displacement field is then associated with a 2L-periodic function ϕ1. Introducing the
function ε, defined overR by 2L-antiperiodicity and the value 1 over [−L , L), it can
be shown that the periodicity condition reduces to the following condition on ϕ5:

∀x ∈ R, ϕ(x) = ε(x)ε(x + ct2)ϕ(x + c(t1 + t2)). (22)

The problem of finding (potential) periodic solutions with one contact phase per
period for the unilaterally constrainedbar hence reduces tofindingϕ solutions of (22).
The period is given by T := t1 + t2. Three additional conditions apply, which can
be understood as admissibility conditions [104, 105]:

• the contacting end of the bar must not penetrate the obstacle during the free flight:

∀t ∈ [0, t1], g0 −
∫ ct+L

ct−L
ϕ(s) ds ≥ 0; (23a)

• at x = L , the bar must remain in compression during the contact phase:

∀t ∈ [t1, t1 + t2], ϕ(ct + L) + ϕ(ct − L) ≤ 0; (23b)

• the gap must be closed at t1:

g0 −
∫ ct1+L

ct1−L
ϕ(s) ds = 0. (23c)

Equations (22) and (23) can either be solved collectively to find periodic solutions
or be used to check the correctness of a candidate periodic solution identified from
numerical methods.

An interesting direct consequence follows from the absolute value of (22): ∀x ∈
R, |ϕ(x)| = |ϕ(x + cT )|. Recall that ϕ is 2L-antiperiodic, so |ϕ| is 2L-periodic, and
also cT -periodic. This is possible only if cT/L is a rational, or if |ϕ| is constant.
Continua parametrized by T are hence possible only if |ϕ| is constant, meaning that
all backbone curves, which are not vertical lines, correspond to piecewise-linear
displacement fields, that is, piecewise-constant velocity fields.

Not only does it provide a sound mathematical basis, this approach was proven
successful for rediscovering the nonsmooth modes previously conjectured [125] (see
Fig. 11). The main backbone curves emanate from the linear eigenfrequencies of the

5This formula was established by Pierre Delezoide.
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Fig. 11 Backbone curves in the vicinity of the first two linear modes of the bar. ω1 is the first
linear mode of the fixed–free bar. Labels a©, b© and c© correspond to the first NSM, a subharmonic
backbone curve and the second NSM, respectively

Fig. 12 Functions ϕ corresponding to the first NSM, the first subharmonic of the first NSM and the
second NSM. The corresponding energies and frequencies are marked by the labels a©, b© and c©
in Fig. 11

fixed–free bar. The additional curves correspond to subharmonics of higher frequency
modes. The functions ϕ labeled a©, b© and c© in Fig. 11 are plotted in Fig. 12.

Among the solutions to (22) are the two main NSMs determined by ϕ1 and ϕ2.
Each of these functions is defined by its value over [−L , L] and its 2L-antiperiodicity
over R. For the first one,

ϕ1(x) = α

{
+1 x ∈ [−L , L − t2)

−1 x ∈ [2L − t2, L], (24)

where the duration of the contact phase t2 relates to T through T = 4L/c − t2. For
the second mode,
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Fig. 13 Displacement field on the first and second linear modes (top), and first and second nons-
mooth modes (bottom)

ϕ2(x) = α

{
+1 x ∈ [−L ,− 1

3 (L + 2ct2)) ∪ [ 13 (L − ct2), L − ct2)

−1 x ∈ [− 1
3 (L + 2ct2), 1

3 (L − ct2)) ∪ [L − ct2, L] , (25)

where t2 satisfies T = (4L/c − t2)/3. In both cases, the mode is parametrized by t2,
or equivalently, T or ω. The coefficient α is such that u(L , 0) = g0 and is not
explained for the sake of conciseness. The displacement field u, calculated from
ϕ using Eq. (21), is depicted for the first two linear and nonsmooth modes in Fig. 13
with appropriate labels. The first nonsmooth mode and its linear counterpart show
similar features: this also holds for the second mode, where both exhibit nodes of
vibration. However, standing waves in the linear setting become travelling waves in
the unilateral setting, where the characteristic lines are clearly identified.

The analytical approach developed above is limited to simple systems such as the
one considered. Numerical techniques capable of handling more general systems are
now exposed.
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3.3 Finite Volumes and the Wave Finite Element Method

Finite Volume Methods (FVMs) form a family of numerical methods widely used in
fluid mechanics [61] to solve PDEs. By construction, they are designed to enforce
conservation laws. They consist in discretizing the space domain into cells. As
opposed to other well-known numerical techniques such as the Finite Element
Method (FEM), the strong form of the PDE is considered and the unknown field is
averaged in every cell through volume integrals. Time evolutions are calculated via
fluxes on the cell boundaries. In the one-dimensional case, the wave equation (20a)
is recast into a system of two hyperbolic conservation laws:

{
∂tσ − E∂xv = 0 (26)

ρ∂tv − ∂xσ = 0, (27)

where v andσ are the velocity and stress fields, respectively. TheWaveFiniteElement
Method (WFEM) is a shock-capturing FVM, in which the time-discretization is
coupled to space in such a way that waves propagate along the characteristics lines
of the hyperbolic PDE [97]. The Dirichlet-type fixed boundary at x = 0 can be
dealt with straightforwardly using ghost cells [61]. The treatment of the unilateral
contact condition is more challenging: one possibility is to use the floating boundary
condition technique [97], which can be understood as a conditional switch between
free and fixed boundary conditions.

Finding periodic solutions of the colliding bar reduces to finding the initial stress
and velocity fields, in the form of constant averaged values in every cell, which prop-
agate along the characteristic lines, satisfy the clamped boundary condition at x = 0
and the switches between fixed and free boundaries at x = L such that the initial state
is recovered at time T after a prescribed number k of contact phases per period. The
analytical backbone curves in Fig. 11 are retrieved with this approach [125]. A more
complicated configuration in which, at x = 0, the Dirichlet condition is replaced
with a Robin condition of the form ∂xu(0, t) = αu(0, t) is also of interest, since the
internal resonance condition previously mentioned no longer holds. No analytical
results could be derived, but nonsmooth modes can be numerically computed.

Also, WFEM implies a projection step when penetration is predicted. This should
not be confused with an impact law, since the exact solution of a bouncing bar [23]
and the exact solutions in Fig. 13 are retrieved.6 The main drawbacks of semi-
discretization in space are not observed: in particular, there is no chattering, the
velocity of the contacting end undergoes a jump at gap openings, and the energy
is accurately preserved. Forced responses can be computed as well [125]. How-
ever, extension to higher dimensions looks challenging. Indeed, the description of
how a discontinuity (between two finite volumes) propagates, the so-called Riemann
problem, can no longer be solved exactly. Moreover, conservation laws in the multi-
dimensional framework raise a number of issues that are not well-understood [65].

6Presumably, in agreement with the continuous framework, no impact law is needed, because
information propagates accurately along the characteristic lines.
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3.4 Boundary Element Method

Problem (20) can be solved using a variant of the Boundary Element Method (BEM)
called the Time-Domain Boundary Element Method (TD-BEM) [100, 115]. BEM
is a weighted residual method, with a different weighting function chosen as the
fundamental solution u∗ of the PDE of interest. For the wave equation in one dimen-
sion, u∗ is defined as the displacement field in response to an impulse at an arbitrary
position ξ ∈ [0, L] and time τ ∈ R:

∀x ∈ [0, L], ∀t ∈ R,

∂2
xxu

∗(x, t, ξ, τ ) − 1

c2
∂2
t t u

∗(x, t, ξ, τ ) = δ(x − ξ)δ(t − τ). (28)

A fundamental solution to this PDE reads as [37, Sect. 1.1.8]:

u∗(x, t, ξ, τ ) = − c

2
H

(
c(t − τ) − |x − ξ |), (29)

where H is the Heaviside function. Using u∗ as the weighting function in the space-
time integral form of Eq. (20a) yields

c2
∫ τ

0

∫ L

0
∂2
xxu(x, t)u∗(x, t, ξ, τ ) dxdt−

∫ τ

0

∫ L

0
∂2
t t u(x, t)u∗(x, t, ξ, τ ) dxdt = 0

(30)
which, after integration by parts and a few manipulations [115], leads to

u(ξ, τ ) = 1

2
u(L , τ − (L − ξ)/c) + 1

2
u(0, τ − ξ/c) (31a)

−
∫ τ

0
∂xu(L , t)u∗(L , t, ξ, τ ) dt −

∫ τ

0
∂xu(0, t)u∗(0, t, ξ, τ ) dt (31b)

+ 1

c2

∫ L

0
v0(x)u

∗(x, t, ξ, 0) dx − 1

c2

∫ L

0
u0(x)∂t u

∗(x, t, ξ, 0) dx, (31c)

where the last integral stands in the distributional sense. This is the principle of
the TD-BEM in one dimension. The general solution is a linear combination of u∗
defined in (29), which is a progressive wave. The Convolution Quadrature-BEM
(CQ-BEM) [1, 86] computes the integrals in (31) via the Convolution Quadrature
Method. They can also be computed with piecewise-constant or piecewise-linear
polynomials [14]. After discretizing space and time integrals, the sought solution u
becomes a linear combination of the boundary conditions u(0, ·), ∂xu(0, ·), u(L , ·),
∂xu(L , ·) and the initial conditions u0 and v0. Due to clamping at x = 0, u(0, ·) is
known and ∂xu(0, ·) is unknown. The contact condition at x = L corresponds to
either a free or a fixed boundary condition, and the switch is triggered by monitoring
the gap and the normal contact force. In either case, exactly half of the boundary
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conditions are known and half are unknown. The latter can be deduced from the
evaluation of (31) at ξ = 0 and ξ = L , providing two equations in two unknowns at
each prescribed time step. The displacement of internal prescribed nodes can then
be recovered through (31).

When targeting periodic solutions, the shooting method (see Sect. 2.3.2) can be
used, togetherwith the discretized governing equations obtained from (31), providing
2n equations where n is the number of discretized space nodes, for 2n + 1 unknowns
(the initial conditions at the n nodes plus the period T ).Again, numerical continuation
techniques involving a semi-smooth Newton solver are employed to find nonsmooth
modes of vibration.

This approach was successful in computing the first two main backbone curves,
some subharmonics and internal resonance backbone curves, (see Fig. 11). The main
challenge for the extension to themulti-dimensional framework is that the fundamen-
tal solutions are only known exactly for simple geometries. In such cases, Green’s
functions (which are fundamental solutions with specified boundary conditions) can,
however, be approximated numerically [24, Chap.7].

3.5 Space-Time Finite Differences

Many other discretization schemes relying on finite differences are available for
hyperbolic PDEs [67].We focus on numericalmethods that simultaneously discretize
space and time. When discontinuous solutions are expected, common methods
include Lax-Friederich, Lax-Wendroff, MacCormack Upwind, Forward-Time-
Centered-Space (FTCS), and Leapfrog. These schemes all stem from truncated Tay-
lor series, and differmostly according to their order in space and in time. For example,
the FTCS method is second-order in space and first-order in time. Another method
can be derived as follows. Writing the second-order Taylor series of u in time

u(x j , t
n+1) = u(x j , t

n) + �t∂t u(x j , t
n) + 1

2
�t2∂2

t t u(x j , t
n) + O(�t3), (32)

then replacing ∂t u with −c∂xu (and thus ∂2
t t u with c2∂2

xxu) [82], and applying a
first-order central difference for ∂xu and second-order central difference for ∂2

xxu
yields

u(x j , t
n+1) = u(x j , t

n) − c�t

2�x
(u(x j+1, t

n) − u(x j−1, t
n)

+ c2�t2

2�x2
(u(x j+1, t

n) − 2u(x j , t
n) + u(x j−1, t

n)),

(33)

which is the well-known Lax-Wendroff scheme.
Stability is governed by the Courant–Friederich–Lewy (CFL) condition, which

provides a necessary condition (sometimes sufficient) on the time step �t , given
the wave celerity ci in direction i and the space discretization step �xi , taking the
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following form in N dimensions:

�t
N∑
i=1

ci
�xi

≤ CCFL, (34)

where CCFL depends on the finite difference scheme. The interpretation of this con-
dition is that numerical “information” should not propagate slower than physical
“information”. It is not a sufficient condition for stability.

Themain issuewith these finite difference schemes for propagating discontinuous
fields is that they are either first-order accurate, thus numerical viscosity7 smoothens
the solution, or second-order accurate, in which case they are dispersive,8 leading to
numerical oscillations known as Gibbs phenomenon. Apart from Glimm’s method,
which suffers from inaccuracy during smooth phases [18], this is clearly illustrated
by several examples in [34].

A common strategy for reduce spurious oscillations is to add numerical diffusion
tuned to the Gibbs phenomenon. This approach is problem-dependent, and may
therefore be tedious to accomplish, and is hardly compatible with periodic solutions.
Possibly more promising are limiters [21, 28]. Signorini conditions and impact laws
have yet to be incorporated into this formalism. As of now, it is unclear whether
these approaches would be suitable for nonsmooth modal analysis. Other potentially
relevant methods are listed in [28].

Mixed space-time HBM [119] or a time-space FEM with a discretization along
the characteristics9 for one-dimensional systems might also be useful for nonsmooth
modal analysis, and are hence worthy of further investigation.

4 Relationships Between Forced Response and Nonsmooth
Modes

Various analytical and numerical methods capable of performing nonsmooth modal
analysis have been reviewed in the preceding sections, both in the discrete and con-
tinuous frameworks. Some are sufficiently mature for nonsmooth modal analysis,
while others have yet to be thoroughly explored, as their usability has not been com-
prehensively assessed. In the following, the nonsmoothmodal analysis of a FEM-like

7Numerical viscosity, or diffusion, arises when the numerical scheme introduces a velocity term
with a positive prefactor.
8Numerical dispersion occurs when the numerically approximated propagation celerity of a wave
depends on its frequency. Note that dispersion and numerical dispersion are two distinct concepts.
9The unknown displacement field would be expanded as

u(x, t) =
∑

aiφi (x + ct) + biφi (x − ct), (35)

where the φi could be the usual hat functions, for instance.
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Fig. 14 Spring-mass system subjected to a unilateral constraint

semi-discretization of the colliding bar is explored by means of the analytical and the
multiple shooting methods. In the continuous framework, nonsmooth modal analysis
of the same system is carried out with WFEM and analytical techniques. The fact
that peaks of resonance in the forced response emerge along the backbone curves in
the FEP demonstrates the main purpose of nonsmooth modal analysis.

4.1 Discrete Oscillators

Recall that all numerical methods detailed in Sect. 2.3 are capable of computing
periodic solutions of a forced system. The brute-force approach is another possibility,
which does not work in the autonomous case. It consists in time-integrating Eq. (2),
where fext is periodic in time, until a periodic response is obtained or a stopping
criterion is reached [72]. This simple technique is CPU-intensive when damping
is light and the detection of the steady-state may be delicate. Nevertheless, it was
implemented to compute the forced response of the two-dof spring-mass system in
Fig. 14 with n = 2.

Results are presented as a function of the forcing period in Fig. 15 (top), where
colors indicate the number of impacts per period. For clarity, only the five lowest IPPs
are shown, even though solutions with as high as 24 IPPs were found, an example of
which is depicted in Fig. 16. The period of the response can differ from the period of
the forcing. For instance, the period of the 24 IPP-response in Fig. 16 is 8T0, where
T0 is the forcing period. Accordingly, the results in Fig. 15 (top) can also be plotted as
a function of the response period, (see Fig. 15 (bottom)). This results in a correlation
between the number of IPP and the response period: IPP curves are clustered. It
also shows that identical nonsmooth resonances can be obtained for distinct forcing
periods: the two 1 IPP resonance peaks in the top plot seem to correspond to the same
resonance in the bottom plot.

The purpose of modal analysis is to predict vibratory resonances. Using the ana-
lytical method described in Sect. 2.2, it appears that resonance peaks in the forced
response mostly emanate in the vicinity of NSM backbone curves. This is illustrated
for the main peaks in Figs. 15 (bottom) and 17, for 1, 3 and 5 IPPs. Note that several
response curves are depicted, because the horizontal axis corresponds to the response
period. A vast majority of the branches in Fig. 15 look like they were connected to
NSMs.Theway inwhich nonsmoothmodes relate to forced responses is not restricted
to peaks in the FEP, but rather extends to shapes. This is illustrated in Fig. 18 for a
two-dof system in which the forced response trajectories of the masses are compared
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(a) (b) (c)

Fig. 15 FEP of a two-dof impact oscillator. Responses with 6 IPPs or more are excluded for clarity.
Colors correspond to IPPs with labels used in Fig. 17

Fig. 16 24-IPP Periodic forced response of period 8 times the forcing period

to the nonsmooth modal shape of the same period. Though no longer symmetric,
the forced response is strikingly similar to the periodic solution of the autonomous
problem. The above observations extend, in part, to Duffing impact oscillators, as
depicted in Fig. 14 for n = 2. The corresponding autonomous dynamics between
impacts is governed by

[
m1 0
0 m2

] [
ü1
ü2

]
+

[
2k −k
−k k

] [
u1
u2

]
+ ε

[
(u2 − u1)3

(u1 − u2)3

]
=

[
0
0

]
. (36)

where ε is user-defined. The previous piecewise-linear system corresponds to ε = 0,
but no analytical techniques exist to compute the periodic solutions when ε 
= 0,
except for n = 1. Using the shooting method between time instants 0+ and T−, as
described in Sect. 2.3.2, both the backbone curves and the forced response curves can
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(a) (b) (c)

Fig. 17 Forced response resonances as a function of the response period. They perfectly match the
backbone curves [ ]. Labels refer to Fig. 15

Fig. 18 Comparison between a forced response and the corresponding autonomous periodic solu-
tion on the NSM for 5 IPPs. [ ] NSM and [ ] forced response

be computed for several values of ε. They are exposed in Fig. 19, in the neighborhood
of a backbone curve with 1 IPP. In this figure, the thick backbone curve is the one
in Fig. 17 (left), plotted in terms of frequency. It continuously deforms as the cubic
nonlinearity increases. The forced response changes accordingly, so that even in the
piecewise-nonlinear case, nonsmooth modal analysis seems to provide backbone
curves that perfectly support the forced response curves.

We now proceed with the illustration of HBM, as described in Sect. 2.3.1 for a
one-dof impact oscillator [95]. Figure 20 shows the approximated backbone curves
for an increasing number of harmonics: the backbone curve converges to the exact
one. Also, the approximated forced response is seen to be perfectly organized around
the backbone curves. The time evolution of position (right plot) shows that the resid-
ual penetration gets smaller as N increases. This very simple example establishes
numerical evidence that when periodicity is enforced, constitutive impact laws are
unnecessary.
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Fig. 19 Sensitivity to the cubic nonlinearity in aDuffing impact oscillatorwith ε defined in Eq. (36).
[ ] Forced response and [ ] backbone curves

Fig. 20 Convergence of HBM for a one-dof oscillator and no impact law (from [95]). Forced
responses are computed fromEq. (17). [ ]Exact backbone curve. [ ]Backbone curves calculated
with HBM. With N ∈ {1, 2, 5, 10, 20} (from light gray to black)

4.2 Continuous Oscillators

This subsection succinctly extends the previous results to the continuous frame-
work by exploring the autonomous and forced dynamics of a one-dimensional bar
colliding with a rigid wall (see Fig. 10). As explained previously, backbone curves
can be obtained analytically (Sect. 3.2), via WFEM (Sect. 3.3) or using TD-BEM
(Sect. 3.4). The first four main backbone curves are depicted in Fig. 21 together with
the periodically forced response at various energy levels. The top plot corresponds
to an excitation induced by a harmonically moving obstacle, while the bottom plot
considers an external periodic and distributed force along the bar. As in the discrete
case, the main peaks of the forced response align, in both cases, with the main back-
bone curves. The additional minor peaks on the top plot might correspond to internal
resonances. However, this point requires further work.



218 A. Thorin and M. Legrand

Fig. 21 Main backbone curves of the colliding bar [thick] and forced response curves [thin]
(from [125]). External loading is either a harmonically moving obstacle (top) or a harmonic dis-
tributed force (bottom). Labels a© and b© refer to Fig. 22

(a) (b)

Fig. 22 Space-time forced response and comparison with the nonsmooth mode of the same fre-
quency. Labels are reported in Fig. 21. Left plot is the one in Fig. 13 bottom left

Similarities between autonomous and forced responses also emerge in terms of
frequency and modal shapes. For instance, Fig. 22 compares one periodic solution
belonging to the first nonsmooth mode to a forced response arising in its vicinity. It
is remarkable that the forced response is dominated by the resonant response, that
is, the first mode shape (see Fig. 22, left), which is only slightly altered by the type
of external forcing.
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5 From Discrete to Continuous NSM: Similarities
and Differences

We have seen that space-continuous and space-discrete models fall under two differ-
ent paradigms. In the first category, contact is simply a constraint fromwhich emanate
shock waves propagating in the continuous solid. The second category introduces a
number of pitfalls and difficulties. An impact law is required, propagation of awave is
difficult to approximate accurately, and lasting contact phases are hardly compatible
with the conservation of energy required by the periodicity condition. Additionally,
the regularity of the generalized positions is higher than in the continuous case,
characterized by discontinuous velocity waves and not just the degree-of-freedom
involved in the unilateral constraint.

This last section attempts to highlight the similarities and differences between the
two “worlds” within the unidimensional framework presented in Sect. 3.1.

5.1 Without Unilateral Contact Constraints

Unilateral contact conditions are temporarily set aside. In structural dynamics, the
Finite Element Method is widely used to discretize PDE (20a). Loosely speaking,
the weak form of (20a) consists in finding u such that for all v in an appropriate space

∫ L

0
v ∂2

t t u dx + c2
∫ L

0
∂xv ∂xu dx − c2

[
v ∂xu

]x=L

x=0 = 0. (37)

Posing uh(x, t) = ∑n
i=1 φi (x)ui (t), vh(x) = ∑n

i=1 φi (x)vi for some chosen shape
functions φ1, . . . , φn , approximating u and v by uh and vh in (37), respectively, leads
to a system of ODEs standard in structural dynamics:

∀t ∈ R
+, Mü(t) + Ku(t) = 0, (38)

where M and K are calculated from (37). In the sequel, we consider, for simplicity,
the space semi-discretization of the clamped–free bar with punctual masses (see
Fig. 14). Accordingly, M = mIn and

K = k

⎡
⎢⎢⎢⎢⎢⎣

2 −1 . . . . . . 0
−1 2 −1 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 2 −1
0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎥⎦

. (39)
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The Young modulus E , the length L and the cross-sectional area S of the bar are
related to the stiffnesses and the masses through

k = nS

L
E and m = ρS

n
L . (40)

Illustrations are given for the following arbitrary values: E = 1Pa, S = 1m2, L =
1m, ρ = 1kg m−3 and the corresponding k and m given by (40).

Space-discretization formulations are not able to capture the progressive nature of
shock waves properly and may lead to non-causal spurious oscillations in space [39].
In order to explain this, let us compare the modal properties of the continuous bar
with those of the spring-mass system.The eigenfrequencies and correspondingmode-
shapes of the continuous bar are given by [37]

∀p ∈ N
∗, ωp = (2p − 1)πc

2L
and φp(x) = sin

( (2p − 1)πx

2L

)
. (41)

In contrast, the eigenfrequencies of the discrete system are

∀p ∈ �1, n�, ω̃p =
√
2k

m

√
1 − cos

( (2p − 1)π

2n + 1

)
, (42)

with the corresponding eigenvectors

φ̃ p =
[
sin

(
j
(2p − 1)π

2n + 1

)]
j=1,...,n

. (43)

When n � p, using (40), the result is that the eigenfrequencies of the discrete and
the continous bar are equivalent:

ω̃p ∼ n

√
2ES

ρSL2

√
1

2

(
2p − 1)π

2n + 1

)2

∼
√

E

ρ

π(2p − 1)

2L
= ωp. (44)

Relating the node j of the discrete system to the position x in the bar via x =
L( j − 1)/(n − 1), an analogous consequence holds for the mode shapes φ̃ p and
φp(x). This is shown in Fig. 23 where both the eigenfrequencies and the eigenmodes
are in good agreement in the low-frequency range. However, when the index p
is no longer negligible compared to n, the approximation becomes inaccurate. By
injecting a progressive monochromatic wave of the form u(x, t) = ei(ωt−κx) into the
wave equation (here, i stands for the imaginary unit), it results that κ = c/ω, which
constitutes a linear dispersion relation: the phase and group velocities coincide and
there is no dispersion. Now, let �x denote the space discretization step such that
�x = L/n. A progressive monochromatic wave of the form u p(t) = ei(ωt−pκ̃�x)

in (38) propagates by satisfying
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Fig. 23 Comparison between the linear modes of a continuous clamped bar and the linear modes
of its discretized counterpart. [ ] Mode shape of the continuous bar. [ ] Mode shape of the
discretized system

0 = −ω2ei(ωt−p�ξ) − k

m
ei(ωt−pκ̃�x)(e−iκ̃�x − 2 + eiκ̃�x

)

= −ω2u p(t) − 2
k

m
up(t)(cos(κ̃�x) − 1), (45)

so that

κ̃�x = arccos
(
1 − ω2m

2k

)
= arccos

(
1 − ω2�x2

2c2

)
. (46)

When �x � κ = c/ω, then κ̃ ∼ κ , translating the fact that low-frequency waves
propagate at the same velocity as in the continuous bar. Nevertheless, dispersion
appears for higher frequencies, as illustrated in Fig. 24. This figure shows the time
histories for zero initial displacements and velocities except a unit initial velocity on
the free node n. Even with a relatively high number of degrees of freedom (n = 100),
the solution displays spurious oscillations due to the dispersion of high frequency
waves. This questions the relevance of the space semi-discretization formalismwhen
shock waves are sought. A comparison between numerous different schemes is pro-
posed in [23]. Even the most accurate of them yields significant discrepancies with
the exact solution, even after only one (pseudo-)period of motion [4, 29].

5.2 With Unilateral Contact Constraints

The relationships between nonsmooth modes and forced response curves have been
presented in Sect. 4 for discrete and continuous systems, separately. The relationships
between discrete NSMs and continuous NSMs is now examined in an exploratory
and qualitative manner.
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Fig. 24 Time evolution of a spring-mass systemwith n = 100. All initial displacements and veloc-
ities are zero, except a unit initial velocity for the free node n. The main wave propagates at the
velocity c, but spurious oscillations become visible due to dispersion. Index j goes from 1 to n. The
black curves correspond to the trajectory of every fifth degree of freedom. Trajectories are merged
in a surface to facilitate visualization

As discussed in Sect. 2.1, the space semi-discretization of a PDE brings in the
necessity of an impact law: modal analysis requires e = 1 for energy conservation,
while e = 0 is needed if sticking phases are of interest. Sticking phases are meaning-
ful, as they emerge naturally in the continuous framework (see Fig. 3). Some authors
have proposed themass redistribution method. It removes the mass of the contacting
node and redistributes it to other nodes [29, 50], so that kinetic energy is not affected.
However, it is not clear how it differs from a penalization approach. In the same vein,
a recent exploratory work that incorporates an elastic law e = 0 proposed to redis-
tributing the kinetic energy of the non-massless contacting node to the neighboring
mass [124]. Let us now analyze the sensitivity of the responses to e with n fixed, and
to n with e fixed, respectively.

It is observed that the sensitivity of the solution to e reduces when n increases.
Figure 25 displays the periodic forced responses for various e and n, obtained using
a Moreau–Jean scheme together with a θ -method (θ = 1/2) [2].

For n as small as 20, displacements of the masses are not much affected by e,
meaning the forced response curves computed for various e are very similar. Chatter-
ing obtained for e > 0 seems to have a negligible effect on the overall dynamics [78].

Interestingly, when scaled with respect to the length L , the local behavior of
the contact node for large values of n is indistinguishable from that of the contin-
uous bar. This is illustrated with e = 1 in Fig. 26 where the periodic solution with
n ∈ {5, 20, 1000} is compared with the continuous periodic solutions produced by
WFEM (see Sect. 3.3). In particular, no elastic bounces are visible and the contact
behaves very much like the lasting contact experienced in the continuous framework.
Indeed, the solutions seem to converge with n, irrespective of e, to the solution of the
continuous bar. Overall, this paradigmatic difference between the continuous and the
discrete systems with forcing and damping vanishes as n becomes large. The chat-
tering phenomenon appears to be the pivot between the discrete and the continuous
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Fig. 25 Sensitivity of a forced periodic solution to the coefficient of restitution e with respect to
n for T = 5.9 and g0 = 1. [ ] e = 1. [ ] e = 0.7. [ ] e = 0. When n is sufficiently large, the
influence of e becomes negligible

Fig. 26 Convergence to the continuous periodic solutions as n increases for e = 1 and T = 5.7.
Time-integration with n = 1000 is indistinguishable from the WFEM solution [ ]. [ ] n = 5.
[ ] n = 20. [ ] n = 1000

frameworks. Damping is likely to play an important role as well, since it acts like a
low-pass filter, and thus reduces the discrepancies between continuous and discrete
models mentioned in Sect. 5.1.

Naturally, one may wonder, in the autonomous and conservative framework, how
the backbone curves of the continuous bar compare to the ones of the semi-discretized
bar.More explicitly,wewould like to approach the backbone curves in Fig. 11 accord-
ing to the ones exhibited in its n-dof counterpart, as in Fig. 8 for a sufficiently large
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Fig. 27 Comparison between the forced response curve of the discrete system with e = 1 and the
backbone curve of the continuous bar. [ ] First continuous NSM. [ ] Second continuous NSM.
[ ]Harmonic of the first NSM. Dashed parts correspond to the linear part. The damping is denoted
by c

n. The challenge comes from the fact that when n becomes large, the spectrum is
extremely dense and numerically demanding and currently not accessible. Nonethe-
less, we provide a few clarifications. In Fig. 27, the energy averaged over six forcing
periods for n = 5 and n = 20 is plotted, for two levels of forcing and several levels
of damping. For n = 5, the resonance peaks roughly correspond to the main back-
bone curves of the continuous bar. For n = 20, the agreement is clear, and thus,
irrespective of the level of damping, for the first two modes as well.

Figure 27 also shows that the forced response curve is very jagged for low levels
of damping (dark curves) and becomes a smooth function of the forcing period as
damping increases. This can be understood by plotting the position as a function of
time for distinct damping levels, as illustrated in Fig. 28. The forcing magnitude is
tuned to approximately maintain the magnitude for the position un , to compensate
for increasing damping levels. The three following types of forced response curves
can be distinguished:

• For low damping, the forced response curve is governed by k IPP nonsmooth
modes, as stated in Sect. 4.1. The backbone curves feature a number of small
branches10 (see Fig. 15 for n = 2). It follows that a forced response is very sensitive
to the forcing frequency, as witnessed by the numerous irregularities in the forced
response curves in Fig. 27. This situation corresponds to the top left plot in Fig. 28
where a 6T -periodic response with 3 IPPs is observed.

10The number of linear modes increases with n, together with possible internal resonances. This
gives the intuition behind the density of backbone curves, which quickly escalates with n. In the
piecewise-linear framework, this can be understood in light of the matrices � and � in Eq. (7),
whose domains of definition always become more intricate.
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(a) (b)

(c) (d)

Fig. 28 As the damping (and external force) increases, the motion becomes more and more orga-
nized; eventually, chattering appears. a© 3 IPP of period 6T (F = 1, C = 0.001K). b© 4 IPP of
period 2T (F = 4, C = 0.02K). c© 2 IPP of period T (F = 5, C = 0.1K). d© ∞ IPP (chattering)
with period T (F = 14, C = K). With n = 5 and T = 4.4. Identical vertical scale for the position

• For moderate damping, the forced response curve is smoother and the trajectory
is simpler. This corresponds to the 2T -periodic response with 4 IPPs (top right)
and T -periodic response with 2 IPPs (bottom left) in Fig. 28.

• For large damping, the response curves are very smooth, as shown in Fig. 27.
Contact settles through chattering mechanisms, and the macroscopic coefficient
of restitution, i.e., seen from the scale of the whole system, is e = 0, even though
the computations were performed with e = 1.

Given that the motion of the discrete system converges to that of the continuous bar
for sufficient damping, it is not surprising that, for medium or high levels of damping,
the resonance peaks are close to those of the bar, for n = 20. More surprising is the
fact that nonsmooth resonances for low damping alsomatch the continuous backbone
curves for large n. In other words, for low damping, as shown in Sect. 4, the forced
response of a n-dof system appears to be driven by its (discrete) NSMs, at least for
small n. Figure 27 shows that, for large n, this forced response resonates along the
backbone curves corresponding to the NSMs of the continuous system. Accordingly,
there must be a relationship between the backbone curves of the discrete system
and those of the continuous one. This is presently to be clarified, even in the one-
dimensional framework, because computing the FEP for the autonomous case with
large n is challenging.

We close this chapter with two observations, which tend to confirm some degree
of correlation between backbone curves in the continuous and discrete settings.

The first one is concerned with the non-existence of nonsmooth modes for the
continuous bar within certain frequency ranges. The continuous bar does not seem to
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Fig. 29 Close-up view of
the first backbone curve of
the continuous bar. Two
different grazing trajectories
coexist at ω1. [ ] Backbone
curve of the first linear
mode. [ ] Backbone curve
of the first nonsmooth mode

possess any backbone curves within the range ω/ω1 ∈ [2, 3] in Fig. 11 and the same
applies to the discretized bar for large n: nearly no periodic solutions are detected in
this range, at least for 1 IPP, which is encouraging.

The second point relates to similarities in grazing motions:

• In the vicinity of ω1, the continuous bar features two grazing modes, as illustrated
in Fig. 29: the linear grazing mode of the clamped–free bar, which is a sinusoidal
function in time, and the nonsmooth grazing mode, which is a triangular function
in time (see Fig. 30 (left)). This triangular shape corresponds to the limit case when
the mode shape shown in Fig. 13 (bottom left) has a contact duration approaching
0 and can be found exactly from ϕ given in (24), that is, ϕ(x) = 1 for x ∈ [−L , L]
and 2L-antiperiodic, by evaluating integral (21).

• For the discrete bar, the corresponding linear grazingmode is a sine of frequency ω̃1

as well. There is a priori no equivalent for the triangular function found for the
continuous bar, since the modal manifold is known to be continuous for any
fixed n [59].

However, the triangular shape can be recovered in the discrete setting for large n,
as a 1 IPP trajectory. Let us focus on the contacting end of the first nonsmooth mode,
for a grazing amplitude. From [104, Eq. (93a)], the position of the nth mass with
1 IPP is

un(t) = − λ√
m

n∑
j=1

cos(ω̃ j (t − T/2))

ω̃ j sin(ω̃ j T/2)
φ̃2
j,n, (47)

where ω̃ j and φ̃ j,n are given by (42) and (43). The value of λ is such that
un(0) = g0 (closed gap); to simplify, only the time-domain shape of un(t) is stud-
ied, its magnitude being dropped. When T approaches 2π/ω̃1, the first term of the
sum dominates and the shape converges to cos((t − T/2)π/2). This situation corre-
sponds to the first linear grazingmode. For the triangular shape, it should be observed
that the sum is dominated by the first terms such that for some n′ � n and j ≤ n′,
ω̃ j ∼ π(2 j − 1)/2 and φ̃ j,n ∼ sin((2 j − 1)π/2) = (−1) j+1, un(t) can be approxi-
mated by
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Fig. 30 In the continuous framework, the first linear grazing (a sine function in time) and first
nonsmooth grazing (a triangular function in time) trajectories share the same frequency ω1. For the
discrete system, the linear grazing mode is also a sine. When n is sufficiently large, the triangular
shape of the continuous nonsmooth grazing mode is retrieved. [ ] Displacement of the contacting
end u(L , t) and un(t), respectively, along the first linear grazing mode. Other positions within the
bar/discrete oscillator are also indicated from x ≈ 0 to x ≈ L (white to black)

n′∑
j=1

cos
(
π(2 j − 1)(t − T/2)/2

)
(2 j − 1) sin(ω̃ j T/2)

. (48)

Now, concerning the period of the first grazing nonsmooth mode T = 2π/ω1 = 4,
and since sin(2ω̃ j ) ∼ (2 j − 1)π/(2n) when j � n, the shape is also similar to

n′∑
j=1

cos(π(2 j − 1)t/2)

(2 j − 1)2
=

n′∑
j=1

(−1) j
sin((2 j − 1)π/2(t − 1)

(2 j − 1)2
, (49)

which is the truncated Fourier series of a triangular wave. As n → ∞, ω̃1 → ω1,
which is in the neighborhood of ω1 (and its multiples), both the exact grazing sine
and the approximated grazing triangular function are found (see Fig. 30 (right)). The
n-dof system thus mimics the continuous bar’s nonsmooth grazing behaviour. The
corresponding energies, for the discrete and continuous system, are also found to be
comparable.

The (nonsmoothgrazing) triangular displacement reported above emerges because
it can be expressed as a combination of the linear modes of the clamped–free
bar, whose time-domain participations in the nonsmooth periodic solution follow
a Fourier sequence of fundamental frequency ω1: this unique attribute stems from
the full internal resonance condition enjoyed by the continuous time considered and
no longer holds when this condition is not satisfied.
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6 Conclusion

In the literature, nonlinear modal analysis is recognized as a matured tool for smooth
nonlinear vibratory systems of small to moderate size. However, new methods of
analysis are needed when vibro-impact dynamics and unilateral contact conditions
are involved. Nonsmooth modal analysis is one such tool. It consists in finding con-
tinuous families of periodic solutions of unforced nonsmooth systems, as specified
by the definition of modal analysis. Existing solution methods serving that purpose,
including very recent developments, were presented in this chapter for simplified
systems in the form of a one-dimensional continuous bar and a corresponding n-
dof discrete spring–mass oscillator. Conceptual dissimilarities between these two
frameworks are summarized as follows:

• Formodal analysis purposes, the discrete setting necessitates an energy-preserving
impact law with restitution coefficient e, while the continuous setting does not.

• The discrete setting with an energy-preserving impact law generates chattering,
which manifests itself as k-IPP trajectories that are challenging to capture numeri-
cally when k and n grow. Chattering was found to be the pivot between the discrete
and continuous worlds.

• It is not clear whether the backbone curves (which define the nonlinear spectrum
of vibration) of the discrete oscillator converge towards the backbone curves of
the continuous system as n increases.

• The sensitivity to the restitution coefficient e of the periodically forced displace-
ment of the discrete oscillator with low damping decreases with n.

• The backbone curves calculated in the continuous setting accurately predict the
vibratory resonances of the discrete oscillator for a sufficiently large n, irrespective
of e.

• By virtue of the above comment, vibratory resonances of the continuous bar and
discrete oscillator are in good agreement as soon as n is sufficiently large. The
peaks of resonance are not much affected by the type of forcing (distributed,
concentrated at the contacting end, or far from the contact zone).

In the long run, the aim is to settle Nonsmooth Modal Analysis as an attractive and
standard engineering tool aiding in the the efficient prediction and comprehension
of nonsmooth vibratory signatures, in replacement of tedious time-domain computa-
tions. Among the various possible avenues to be explored in the future, the following
are pressing issues:

• In the finite element framework, removing the problematic chattering could be
overcome by taking advantage of the vanishing influence of the impact laws for
large n and choosing a purely inelastic impact law, that is, e = 0. The very small
loss of energy should be compensated for in some way.

• Nonsmooth Modal Analysis of multi-dimensional systems should be tentatively
performed employing Finite Volumes and the Time-domain Boundary Element
Method.
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• In the context of continuummechanicswith the assumptions of large displacements
and strains, smooth nonlinearities emerge. The resulting dynamics involving uni-
lateral contact constraints should be addressed.
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