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Abstract We study the existence and stability of time-periodic oscillations in a
chain of coupled impact oscillators, for rigid impacts without energy dissipation. We
formulate the search for periodic solutions as a boundary value problem incorpo-
rating unilateral constraints. This problem is solved analytically in the vicinity of
the uncoupled limit and numerically for larger coupling constants. Different solution
branches corresponding to nonlinear localized modes (breathers) and normal modes
are computed.

1 Introduction

Understanding the dynamics of nonlinear lattices (i.e., large networks of coupled
nonlinear oscillators) is a problem of fundamental importance in mechanics, con-
densed matter physics and biology. One of the major issues concerns the mathemati-
cal analysis and numerical computation of special classes of nonlinear time-periodic
oscillation that organize the dynamics in many situations. In particular, spatially
periodic waves (standing waves or periodic traveling waves) and spatially localized
waves (breathers) are the object of intensive research [16, 41]. In this context, many
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theoretical and numerical works have focused on smooth nonlinear systems, whereas
relatively few mathematical existence results are available for waves in nonsmooth
infinite lattices [17, 18, 28, 39]. Developing theoretical and numerical tools for the
analysis of nonlinear waves in nonsmooth systems is extremely important for appli-
cations, in particular, in the context of impact mechanics in which unilateral contacts
and friction come into play [1, 5, 6, 15, 23]. Spatially discrete lattice models are
frequently encountered in this context, in particular, for the modeling of waves in
multibody mechanical systems (e.g., granular media) or in finite element models
of continuum systems. A classical example illustrating the latter case concerns thin
oscillating mechanical structures (a string under tension or a clamped beam) contact-
ing rigid obstacles [5, 6, 23]. Such a structure can be described by a one-dimensional
finite-element model involving a large number of degrees of freedom [2, 37]. The
contact force between the string/beam and a rigid obstacle is either measure-valued
(for rebounds with velocity jumps at contact times) or set-valued (if a wrapping of
the string on the obstacle occurs) see, e.g., [13].

Although nonlinear modes of oscillation have been observed in experiments on
impacting mechanical systems (see, e.g., [3, 6]), relatively little is known from a
mathematical point of view about their existence and stability. Existence theorems
for periodic and almost-periodic oscillations have been obtained in particular cases,
for a continuum string model with point-mass or plane obstacle [9–11, 14, 20, 36]
(see also [12] for a review). In addition, several analytical approaches have been
used to obtain time-periodic solutions formally for different types of piecewise-
linear dynamical systems with rigid impacts. One can mention Fourier and Green
function methods [4–6, 17–19, 24–26, 33, 39], modal decomposition [29, 40] and
sawtooth time transformations [34]. Most of the results obtained for discrete systems
concern impacts localized on a single particle, and different types of wave have
been constructed. In [29, 34, 40], nonsmooth normal modes have been obtained for
general classes of conservative multiple degrees-of-freedom systems (the analysis
in [34] is performed for a single or two impacting particles). Spatially-localized
oscillations (breathers) with a single impacting node have also been studied for
different classes of infinite or finite system. Breather existence and stability has been
analyzed for oscillator chains with linear nearest-neighbor coupling and a symmetric
local vibroimpact potential (including, in some cases, a linear component), both for
conservative systems [18] and forced systems with dissipative impacts [17, 33, 39].

One of the main difficulties with the above techniques is the need to check ana-
lytically that the formal solutions to the piecewise-linear systems are consistent, i.e.,
that they satisfy the inequality constraints corresponding to non-penetration of the
obstacles. This has been achieved in a number of works in the case of breathers [17,
18, 39] and for nonsmooth modes close to grazing linear normal modes [29]. In
[19], the analysis from [33] has been extended to several impacting particles, but the
verification of the inequality constraints is still an open problem in that case.

In thiswork,we study the existence and stability of time-periodic oscillations in an
infinite chain of linearly coupled impact oscillators reminiscent of a model analyzed
in [19, 33], for rigid impacts without energy dissipation. We show the existence of
exact solutions (i.e., check the non-penetration conditions) for an arbitrary number of
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Fig. 1 A chain of identical impact oscillators with linear nearest-neighbor coupling. The chain is
allowed to oscillate above a straight obstacle. After suitable rescaling, the obstacle position is fixed
to y = −1, and the masses m of particles and local stiffness k are set to unity

impacting particles when the coupling between oscillators is small, and we compute
solution branches numerically for larger couplings. The system under consideration
is depicted in Fig. 1. Particle positions are denoted as y(t) = (yn(t))n∈Z and satisfy
the following complementarity system:

ÿn + yn − γ (Δy)n = λn, n ∈ Z, (1)

0 ≤ λ ⊥ (y + 1) ≥ 0, (2)

if ẏn(t
−) < 0 and yn(t) = −1 then ẏn(t

+) = −ẏn(t
−), (3)

where (Δy)n = yn+1 − 2 yn + yn−1 defines a discrete Laplacian operator, 1 denotes
the constant sequence with all terms equal to unity and γ ≥ 0 is a parameter. Non-
dissipative impacts occur for yn(t) = −1 and give rise to impulsive reaction forces
λn(t). This configuration differs from the case of a symmetric local vibroimpact
potential considered in [19, 33], which introduces an additional barrier above the
chain.

Our analytical results are presented in Sect. 2. We start by describing in Sect. 2.1
some simple examples of nonsmooth modes of oscillations (in-phase, out-of-phase,
and some symmetry-breaking bifurcations from these modes). In Sect. 2.2, we refor-
mulate the search for periodic solutions of (1)–(3) as a boundary value problem
incorporating unilateral constraints. This formulation, together with an appropriate
notion of nondegenerate modes introduced in Sect. 2.3, allows us to construct nons-
mooth modes of oscillations (spatially localized or extended) at small coupling (see
Theorems 1 and 2). This approach is an adaptation of the idea of an “anticontinuum”
limit [16, 30, 38] to the nonsmooth setting. Section 2.4 deals with the linear stabil-
ity of time-periodic solutions to (1)–(3). We provide a formula for the monodromy
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matrix that determines spectral stability in the presence of simple impacts, following
the lines of [32]. In Sect. 3, the above results are used for the numerical computation
of time-periodic solutions. Solution branches are continued for fixed values of T ,
varying the linear stiffness γ (and starting from the limit γ = 0) or by fixing γ and
varying T . In this way, we compute some families of breathers and extended modes
and study their linear stability. Dynamical instabilities are illustrated by integrating
(1)–(3) numerically. These computations are performed with the Siconos software
for nonsmooth dynamical systems [1, 22].

2 Analytical Study of Nonsmooth Modes

2.1 Definitions and Basic Examples

We look for T -periodic solutions to (1)–(3) that are even in time, and assume each
particle undergoes at most one impact during each period of oscillation. Conse-
quently, for a given particle, impacts either occur at half-period multiples or do
not occur at all. We denote by Ik ⊂ Z with k = 1 or 2 the index sets of particles
impacting at t = (2m + k) T/2 for all m ∈ Z (i.e., yn((2m + k) T/2) = −1), and
by I0 := Z \ (I1 ∪ I2) the index set corresponding to non-impacting particles (i.e.,
yn(t) > −1 for all t). We thus have λn = 0 for all n ∈ I0 and

λn = 2 ẏn(
kT +

2
)

∑

m∈Z
δ(m+ k

2 )T for all n ∈ Ik . (4)

The triplet (I0, I1, I2)will be denoted as the pattern of the periodic solution. A nons-
mooth mode corresponds to a continuous one-parameter family of periodic solutions
(typically parameterized by T ) sharing a given pattern with I0 �= Z (i.e., impacts
occur).

We provide below some simple examples of nonsmooth modes. The simplest case
corresponds to the in-phase mode with I1 = Z (or equivalently, I2 = Z up to a phase
shift). This solution exists for T ∈ (π, 2π) and reads as

yn(t) = − cos t

cos (T/2)
for |t | ≤ T/2, (5)

where (5) is extended by periodicity outside the interval (−T/2, T/2). The impact
velocity in particular, reads as ẏ1((T/2)+) = −ẏ1((T/2)−) = − tan (T/2). The
amplitude of oscillations diverges when T → π and becomes unity for T = 2π . In
that case, the impact becomes grazing (i.e., occurs at zero velocity), and one recovers
the linear in-phase mode yn(t) = cos t , which a solution to (1) with λ = 0. Notice
that, for T �= 2 k π outside the interval (π, 2π), expression (5) does not provide a
solution to (1)–(3), because the constraint yn ≥ −1 is violated.
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Another example concerns nonsmooth modes with spatial period two, i.e., which
satisfy yn+2(t) = yn(t). Nonsmooth modes in two degrees-of-freedom impacting
systems have been studied in a number of works (see, e.g., [31, 42] for a case of
symmetric constraints and [23] for more references). In what follows, we discuss
the case when I1 and I2 consist of the sets of odd and even integers, respectively.
Moreover, we assume that all impact velocities are identical and nonzero. In order to
compute such modes, we introduce the relative displacement r = y2 − y1, the center
of mass q = (y1 + y2)/2 and the impact velocity v = ẏ2(0+) = ẏ1((T/2)+) �= 0.
From Eqs. (1) and (4) taken at n = 1, 2, and considering the spatial period two of the
mode, one obtains

r̈ + Ω2 r = 2 v
∑

m∈Z
(−1)m δm T

2
, (6)

where Ω = √
1 + 4 γ . Note that Ω is the frequency of the linear out-of-phase mode

yn(t) = (−1)n cos (Ω t), which is a solution to (1) with λ = 0. If the non-resonance
condition (2m + 1) (2π/T ) �= Ω holds true for all integers m, there exists an even
T -periodic solution to (6) defined by

r(t) = v

Ω

sin (Ω (t − T
4 ))

cos (Ω T/4)
for t ∈ [0, T/2], (7)

where the integration constants have been determined from the conditions v =
ṙ(0+) = ṙ((T/2)−). In addition, the T -periodic solution is unique ifm (2π/T ) �= Ω

for all integers m. From expression (7), and using the fact that r is T -periodic and
even, one can see that r( T

4 + t) = −r( T
4 − t) for all t ∈ R.

Similarly, the center of mass satisfies

q̈ + q = v
∑

m∈Z
δm T

2
. (8)

Let us assume that the non-resonance condition T �= 4m π holds true for all integers
m. In that case, Eq. (8) admits an even T/2-periodic solution. Indeed, since v/2 =
q̇(0+) = −q̇((T/2)−), we find

q(t) = v

2

cos (t − T
4 )

sin (T/4)
for t ∈ [0, T/2], (9)

and q is defined as the T/2-periodic extension of (9). The symmetry q( T
4 + t) =

q( T
4 − t) for all t ∈ R and the fact that q is T/2-periodic imply that q is even. In

addition, (8) does not possess additional T -periodic solutions if the non-resonance
condition T �= 2m π holds true for all integers m.

Particle displacements are obtained from the identities

y1 = q − r

2
, y2 = q + r

2
.
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Fig. 2 Impact velocity as a function of the period

One can check that ẏ1(0+) = 0, hence ẏ1(0−) = 0 and y1 is smooth everywhere
except at the impact times t = (2k + 1)T/2 with k ∈ Z. Moreover, it follows from
the symmetries of r that y2(t) = y1(t + T/2) = y1(t − T/2).

We use the constraint y2(0) = −1 to determine v from T , which yields

v = 2

(
1

Ω
tan (Ω T/4) − cot (T/4)

)−1

(10)

and implies that y1(T/2) = −1. The expression in (10) is depicted in Fig. 2. In
the uncoupled case γ = 0, expression (10) simplifies to v = − tan (T/2), and one
recovers the case n = 1 of (5). Moreover, in the limit cases T → (2k + 1) 2π/Ω

(k ∈ N0) and T → 4mπ (m ∈ N), one obtains v → 0, i.e., a grazing impact. When
T → (2k + 1) 2π/Ω and Ω �= (2k + 1)/(2m) for all m ∈ N, the above solution
converges towards the linear out-of-phase mode yn(t) = (−1)n+1 cos (Ω t), while
T → 4mπ and Ω �= (2k + 1)/(2m) for all k ∈ N0 leads to a convergence towards
the linear in-phase mode yn(t) = − cos t .

In order to obtain solutions to (1)–(3), there remains to check the values of param-
eters γ, T for which the constraint y1 ≥ −1 is satisfied. Let us examine this problem
when the coupling constant γ is fixed and T is varied. A necessary condition is v ≥ 0,
which is achieved for values of T > 0 within an infinite and unbounded sequence
of disjoint intervals depending on γ . The lower bounds of these intervals are the
roots of v−1, and the upper bounds take the form T = (2k + 1) 2π/Ω with k ∈ N0

or T = 4mπ with m ∈ N (values leading to v = 0). In particular, the first interval
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takes the form (T0(γ ), 2π/Ω], where T0(γ ) is implicitely defined through

1

Ω
tan (Ω T0/4) = cot (T0/4), T0 ∈ (0, 2π/Ω). (11)

Note that limγ→+∞ T0(γ ) = 0 (since T0 < 2π (1 + 4γ )−1/2), limγ→0 T0(γ ) = π

(the case Ω = 1 of (11)), and T0 is a decreasing function of γ (since the left side
of (11) increases with Ω or γ ), hence T0(γ ) < π for γ > 0. The upper bound
T = 2π/Ω yields v = 0 (grazing impact), as previously outlined, whereas in the
case T → T0(γ )+, one obtains v → +∞.

Now, let us check the constraint y1(t) ≥ −1 in the case T ∈ (T0(γ ), 2π/Ω). One
can restrict the discussion to t ∈ [0, T/2] without loss of generality (since y1 is even
and T -periodic). In that case, we deduce from the above computations that

ẏ1(t) = − v

2

(
sin (t − T

4 )

sin (T/4)
+ cos (Ω (t − T

4 ))

cos (Ω T/4)

)
.

Consequently, the conditions T < 2π/Ω < 2π and v > 0 (which follows from
T ∈ (T0(γ ), 2π/Ω)) imply that y1 decreases on [T/4, T/2], hence y1(t) > −1 =
y1(T/2) for all t ∈ [T/4, T/2). In addition, expressions (7) and (9) show that r ≤ 0
and q > 0 on [0, T/4], hence y1 > 0 on [0, T/4]. This shows that y1(t) > −1 for
all t ∈ [0, T/2).

As a result, we have obtained a family of even and time-periodic solutions to (1)–
(3), parameterized by their period T ∈ (T0(γ ), 2π/Ω). These solutions have spatial
period two and possess the symmetry yn+1(t) = yn(t + T/2). When T → T0(γ )+,
the impact velocity v and amplitude of oscillations y1(0) diverge.When T → 2π/Ω ,
the mode converges towards the linear out-of-phase mode. This family of solutions
will be denoted as the nonsmooth out-of-phase mode. They are illustrated for several
values of T in Fig. 3.

There exist other nonsmooth modes with spatial period 2 and I0 = ∅, I2 = 2Z

not discussed above, for example, a branch of solutions emerging above T = 4π/Ω .
For T = 4π/Ω , odd particles undergo a grazing impact at t = 0 (we conjecture
the existence of a nonsmooth mode with two impacts per period and T < 4π/Ω).
When T increases above 4π/Ω , no impacts occur at t = 0 for odd particles and the
branch of solutions can evolve in different ways depending on γ . If γ < 5/16 (so that
4π < 6π/Ω), themode converges towards the linear in-phasemodewhen T → 4π−
(this corresponds to a period-doubling bifurcation of the in-phase mode), a limit in
which odd particles again display a grazing impact at t = 0. If γ > 5/16 (the case
6π/Ω < 4π ), convergence towards the linear out-of-phase mode takes place when
T → (6π/Ω)− (period-tripling bifurcation of the out-of-phase mode). In this limit,
odd particles undergo a grazing impact at t = π/Ω . Illustrations of period doubling
bifurcations are displayed in Fig. 4 and those period tripling bifurcations in Fig. 5.
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Fig. 3 Nonsmooth
out-of-phase modes for
several values of T

(a) Particle oscillations for γ = 0.2, T = 2π(1+4γ )−1/2 ≈ 4.68

(b) Particle oscillations for γ = 0.2, T = 4.1

(c) Particle oscillations for γ = 0.2, T = 2.926
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(a) Particle oscillations for γ = 0.2,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.2,T = 11

(c) Particle oscillations for γ = 0.2,T = 12 (d) Particle oscillations for γ = 0.2,T = 4π

Fig. 4 Period doubling bifurcation

2.2 Boundary Value Problem

In the sequel, E denotes either the Banach space �∞(Z) of real bounded sequences
on Z, the Hilbert space �2(Z) of square-summable sequences, or the Hilbert space
P p of p-periodic sequences (isomorphic to the Euclidean space R

p) for a fixed
integer p. The case E = �2(Z) will be relevant for the study of localized modes,
and the periodic case will be considered for numerical computations. We consider a
chain of impact ocillators with positions described by a vector y(t) ∈ E solution to
the complementarity system (1)–(3). We look for T -periodic solutions even in time,
with a prescribed pattern (I0, I1, I2) (as defined in Sect. 2.1) such that I0 �= Z.

The splitting Z = I0 ∪ I1 ∪ I2 allows one to identify E with E (0) × E (1) × E (2),
where E (k) is a space of sequences indexed by n ∈ Ik , equiped with the same norm as
E (‖ ‖2 or ‖ ‖∞). For all y ∈ E , we shall use the notation y = (y(0), y(1), y(2)) with
y(k) = (yn)n∈Ik ∈ E (k). Any solution to the linear differential equation (12) satisfies
ẏ(t) ∈ E , therefore we shall denote ẏ = (ẏ(0), ẏ(1), ẏ(2))with ẏ(k) ∈ E (k). The above
problem can be reformulated as a boundary value problem on a half-period interval
(0, T/2),

ÿn + yn − γ (Δy)n = 0, n ∈ Z, t ∈ (0, T/2), (12)
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(a) Particle oscillations for γ = 0.4,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.4,T = 8

(c) Particle oscillations for γ = 0.4,T = 11.1 (d) Particle oscillations for γ = 0.4,T = 11.6

(e) Particle oscillations for γ = 0.4,T = 6π(1+
4γ)−1/2

Fig. 5 Period tripling bifurcation
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with boundary conditions

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1 , y(2)(0) = −1,

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2 , y(1)(T/2) = −1, (13)

and constraint
y(t) + 1 > 0, t ∈ (0, T/2). (14)

Indeed, it is immediately apparent that any even T -periodic solution to (1)–(3) with
pattern (I0, I1, I2) satisfies (12)–(14). Moreover, every solution to (12)–(14) can be
extended to an even T -periodic function y, which, in turn, defines a solution to
(1)–(3). Indeed, since ẏ is odd, we have ẏ(0−) = −ẏ(0+), and thus ẏ((k T )−) =
−ẏ((k T )+) for all k ∈ Z because ẏ is T -periodic. In the same way, since ẏ is odd
and T -periodic, we have ẏ((T/2)−) = −ẏ((−T/2)+) = −ẏ((T/2)+), and thus we
have, by periodicity, ẏ(((2k + 1)T/2)−) = −ẏ(((2k + 1)T/2)+) for all k ∈ Z.

In what follows, we reformulate the boundary value problem (12)–(13) as a lin-
ear system for ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ E (0) × E (1) × E (2), i.e., as an affine
equation in E . For this purpose, we define the projection P : E × E → E through

P (y, ẏ) = (ẏ(0), y(1), ẏ(2))

and an embedding N : E → E × E by

N (y(0), y(1), ẏ(2)) = (u, v), u = (y(0), y(1), 0), v = (0, 0, ẏ(2)) in E(0) × E(1) × E(2).

Introducing Y = (y, ẏ)T ∈ E × E , the linear differential equation (12) takes the
form

Ẏ = J Y + γ L Y, (15)

where

J =
(

0 I

−I 0

)
, L =

(
0 0
Δ 0

)

and I is the identity map in E . Let us denote by Sγ (t) = e(J+γ L) t ∈ L (E × E) the
flow of (15).

The boundary condition at t = 0 defined in (13) takes the form Y (0) = N ξ − B,
where B = (1I2 , 0)

T ∈ E × E and 1I2 denotes the indicator function of I2. More-
over, the boundary condition at t = T/2 in (13) reads as P Y (T/2) = −1I1 . Conse-
quently, the boundary value problem (12)–(13) is equivalent to

Mγ,T ξ = η, (16)

where Mγ,T = P Sγ (T/2) N ∈ L (E) and η = P Sγ (T/2) B − 1I1 .
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In the case E = P p (periodic boundary conditions with period p), E is isomor-
phic to R

p and (16) takes the form of a p-dimensional linear system. The solution
ξ ∈ E can be identified with a vector x ∈ R

p defined by

xi = yi if i ∈ I0 ∪ I1, xi = ẏi if i ∈ I2.

The matrix P ∈ Mp,2p(R) reads as

Pj, j = 1 if j ∈ I1, Pj, j+p = 1 if j ∈ I0 ∪ I2, Pi, j = 0 elsewhere.

The matrix N ∈ M2p,p(R) is defined by

Ni,i = 1 if i ∈ I0 ∪ I1, Ni+p,i = 1 if i ∈ I2, Ni, j = 0 elsewhere.

2.3 Nondegenerate Modes and Continuation at Small
Coupling

Consider an even T -periodic solution to (1)–(3) with pattern (I0, I1, I2) (recall that
under these assumptions, each particle undergoes at most one impact per period). The
reduced initial condition ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ E (0) × E (1) × E (2) defines
a solution to the linear problem (16). This leads us to introduce the following notion
of a nondegenerate periodic solution.

Definition 1 An even T -periodic solution to (1)–(3) with pattern (I0, I1, I2) is non-
degenerate if the map Mγ,T is invertible and

ẏn((T/2)−) < 0 ∀ n ∈ I1, ẏn(0
+) > 0 ∀ n ∈ I2. (17)

Let us consider any nondegenerate periodic solution to (1)–(3). Since Mγ,T

depends analytically on γ, T , the corresponding solution to (16) locally admits a
unique continuation with respect to (γ, T ) denoted by ξγ,T , which is analytic in
(γ, T ) in some open set [43]. It follows that

Yγ,T (t) = (yγ,T (t), ẏγ,T (t))T = Sγ (t) (N ξγ,T − B) (18)

is a solution to (12) satisfying (13).
In order to check the constraint (14), we define uγ,T (t) = yγ,T ( T

2 t ) + 1 and
introduce the Banach space

X = { u ∈ C1([0, 1], E), un(1) = 0 ∀ n ∈ I1, un(0) = 0 ∀ n ∈ I2 },

equiped with the C1-norm. We consider the open set
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Ω = { u ∈ X, ∀ n ∈ I0, un > 0 on [0, 1],
∀ n ∈ I1, un > 0 on [0, 1), u̇n(1

−) < 0,

∀ n ∈ I2, un > 0 on (0, 1], u̇n(0
+) > 0

}
.

Thanks to assumption (17), the nondegenerate periodic solution belongs toΩ . Since
the map (γ, T ) �→ uγ,T is continuous in X , the local continuation with respect to
(γ, T ) of the nondegenerate solution stays locally in Ω , and thus the constraint (14)
is satisfied by yγ,T when (γ, T ) lies in some open set U . Consequently, we have
obtained a family of solutions to the boundary value problem (12)–(14) parameterized
by (γ, T ), which provides in turn a family of solutions to (1)–(3). As a result, we
have shown the following.

Theorem 1 Any nondegenerate even periodic solution to (1)–(3) with a given pat-
tern persists for values of the coupling constant γ and period T lying in an open
set U . Moreover, these solutions take the form y(t) = yγ,T (t) for all t ∈ [0, T/2],
where the map (t, γ, T ) �→ yγ,T (t) is analytic in R × U and defined in (18).

In particular, the above result shows that any nondegenerate periodic solution is
part of a continuous branch of periodic solutions parameterized by T and forming
a nonsmooth mode. The continuation may stop when a new grazing impact takes
place for n ∈ I0 or if an impact occurring for n ∈ I1 or I2 becomes grazing. In such
cases, the branch of periodic solutions might be continued with a different pattern or
by allowing several impacts per period or sticking contacts, but these extensions are
outside of the scope of the present study.

Another case when the above continuation theorem does not apply corresponds
to the noninvertibility of Mγ,T . This situation may lead to a divergence of the solu-
tion (i.e., divergence of ‖(y(0)(0), y(1)(0), ẏ(2)(0))‖) or to a bifurcation of periodic
solutions.

The solution to (12)–(13) is non-unique, or equivalently, Mγ,T admits a nontrivial
kernel if, and only if, the homogeneous boundary value problem given by (12) and

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1, y(2)(0) = 0,

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2, y(1)(T/2) = 0, (19)

admits nontrivial solutions y(t) ∈ E . Let us fix E = �∞(Z) and discuss some reso-
nant cases when this phenomenon occurs. The linear equation (12) admits normal
mode solutions (or “phonons”)

yn(t) = a cos (Ωq t + ϕ) cos (q n + ψ), (20)

whose frequencies Ωq = (1 + 4γ sin2 (q/2))1/2 span the phonon band [1,Ω], the
highest frequency Ω = √

1 + 4γ corresponding to the out-of-phase mode with q =
π . For nonsmoothmodes having certain patterns, simple nontrivial solutions to (12)–
(19) can be found in the form (20) if some multiple of π/T belongs to the phonon
band.
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For example, if I1 = Z or I2 = Z (this is the case for the in-phase mode) and if
one has a resonance (2m + 1) π/T = Ωq for some integer m and q ∈ [0, π ], then
(20) provides nontrivial solutions to (12)–(19), and thus Mγ,T is non-invertible. This
occurs, e.g., for T = π (m = 0, q = 0), where the amplitude of the in-phase mode
becomes infinite.

Moreover, if one considers a localized pattern I0 = Z \ {n0} for some integer n0,
then the resonance m (2π/T ) = Ωq (m ∈ N) leads to nontrivial solutions to (12)–
(19) (obtained by choosing ψ = π

2 − q n0 in (20)), and thus Mγ,T is non-invertible.
In the case E = P p (p-periodic sequences), the phonon band becomes discrete

(wavenumbers take the form q = k 2π/p with k ∈ Z), but the above resonance con-
ditions remain valid when I1 = Z or I2 = Z, or if I0 = Z \ {n0 + p Z}.

As an application of Theorem 1, we now prove the existence of nonsmooth modes
having any type of pattern, close to the uncoupled (or “anticontinuum”) limit γ = 0.
In Theorem 2 below, the mode pattern I = (I0, I1, I2) must be compatible with the
choice of E . For E = P p, the sets Ik are assumed invariant modulo p, and for
E = �2(Z), the sets I1 and I2 have to be finite (no impacts occur at infinity when
oscillations are spatially localized). In the case E = �∞(Z), there are no restrictions
on the mode pattern.

Theorem 2 Fix a mode pattern I = (I0, I1, I2) compatible with E. There exists an
open set V ⊂ R

2 including the segment {0} × (π, 2π) such that for all (γ, T ) ∈ V ,
system (1)–(3) admits a unique even periodic solution with pattern I , which is defined
by (18).

Proof It suffices to check that for γ = 0 and all T ∈ (π, 2π), system (1)–(3) admits
a unique nondegenerate periodic solution with pattern I . Then, the result follows by
direct application of Theorem 1.

Let us denote by yipn (t) the in-phase mode defined by (5) with period T ∈ (π, 2π).
For γ = 0, system (1)–(3) consists of uncoupled impact oscillators. Consequently,
the unique T -periodic solution with pattern I is given by yn = yipn for all n ∈ I1,
yn(t) = yipn (t + T/2) for all n ∈ I2, and yn = 0 for all n ∈ I0 (for γ = 0, all non-
impacting nontrivial solutions are 2π -periodic, and we have assumed that T < 2π ).
It follows that the condition (17) of non-grazing impacts is satistied for T ∈ (π, 2π).
In order to show that the T -periodic solution obtained for γ = 0 is nondegenerate,
there remains to check that the linear map M0,T of (16) is invertible. We have, for all
ξ = (ξ (0), ξ (1), ξ (2)) ∈ E (0) × E (1) × E (2),

M0,T ξ = P eJ T/2

(
u
v

)
, (21)

where u, v ∈ E = E (0) × E (1) × E (2) are defined as follows:

u = (ξ (0), ξ (1), 0), v = (0, 0, ξ (2)).

Moreover, we have in the block form
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eJ t =
(

cos t sin t
− sin t cos t

)
∈ L (E × E),

hence (21) yields
M0,T ξ = P (y, ẏ),

where y, ẏ ∈ E = E (0) × E (1) × E (2) are defined by

y = (cos (T/2) ξ (0), cos (T/2) ξ (1), sin (T/2) ξ (2)),

ẏ = (− sin (T/2) ξ (0),− sin (T/2) ξ (1), cos (T/2) ξ (2)).

Consequently, M0,T ∈ L (E (0) × E (1) × E (2)) takes the following diagonal form:

M0,T ξ = (− sin (T/2) ξ (0), cos (T/2) ξ (1), cos (T/2) ξ (2)).

It follows that M0,T is invertible because the coefficients cos (T/2) and sin (T/2) do
not vanish for T ∈ (π, 2π). �

It is interesting to compare the local continuation result of Theorem 2 and the
explicit computations of the nonsmooth in-phase and out-of-phase modes performed
in Sect. 2. The in-phase mode actually exists for all γ ∈ R and T ∈ (π, 2π). More-
over, the out-of-phase mode exists for all γ ≥ 0 (and even for γ slightly negative)
and T ∈ (T0(γ ), 2π(1 + 4γ )−1/2).

2.4 Stability

In this section, the linear stability of periodic solutions is analyzed through the eigen-
values of an associated monodromy matrix. Since the trajectory of the state of the
system is nonsmooth at impact times, some precautions must be taken into account
to compute the monodromy matrix. The computation of the monodromy follows the
line of the work in [32].

In this section, we will consider the finite-dimensional case E = P p. For a given
initial condition Y0 = (y(t0), ẏ(t0))T ∈ R

2p, the conservative system (1)–(3) admits
a unique solution (without accumulation of impacts) that is analytic in time between
impacts [7, 8, 35]. Let us define the trajectory of the flow of (1)–(3) for the initial
conditions (t0, Y0) as

φ : R × R × R
2p → R

2p

(t, t0, Y0) �→ φ(t, t0, Y0).
(22)

The flow φ satisfies φ(t0, t0, Y0) = Y0. The trajectory of the system for the initial
condition (t0, Y0) is Y (t) = φ(t, t0, Y0). In the sequel, we consider a time t and
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an initial time t0 at which no impact occurs. The computation of the monodromy
amounts to performing the differentiation of the flow φ at time t for the initial time
t0 with respect to the initial condition Y0, that is,

M(t) = dφ(t, t0, Y0)

dY0
. (23)

This matrix can be approximated by finite differences. As noted in [32], the appli-
cation of a finite-difference scheme may result in a poor approximation of the mon-
odromy matrix. Since, in our application, the flow can be defined as a concatenation
of piecewise smooth flows between impact times, we present here a closed-form
formula for the monodromy matrix based on the computation of a saltation matrix
that takes into account how the impact times evolve with the initial conditions. This
closed-form formula is based on the assumption that the impacts are simple impacts
in the sense that only one particle impacts at a given time. Moreover, we consider
non-grazing impacts, i.e., impact at nonzero velocities.

The case of a simple impact at time t� > t0 :

Let us assume that we have a unique and simple impact in the interval (t0, t) at time
t�(Y0). The notation outlines its dependency on the initial condition. At the impact
time t�(Y0), the trajectory is reset using the elastic Newton impact law, which can be
written as follows:

Y (t+
� (Y0)) = Rt�Y (t−

� (Y0)), (24)

where Rt� ∈ R
2p×2p is the reset matrix. Let us denote by it� the index of the impacting

particle at t�(Y0), i.e.,
yit�

(t�(Y0)) = −1. (25)

The reset matrix can be written as

Rt� =
[

I 0
0 E

]
, (26)

where the matrix E ∈ R
p×p is given by its components as

Ei j =

⎧
⎪⎨

⎪⎩

0, if i �= j,

1, if i = j �= it� ,

−1, if i = j = it� .

(27)

The state of the system at time t can be written as

Y (t) = φ(t, t0, Y0) = φ(t, t+
� (Y0), Y (t+

� (Y0)))

= φ(t, t+
� (Y0), Rt�Y (t−

� (Y0))) = φ(t, t+
� (Y0), Rt�φ(t−

� (Y0), t0, Y0)).
(28)
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The differentiation of the previous expression amounts to differentiating,with respect
to Y0, a composition of smooth functions

dφ(t, t0, Y0)

dY0
= D2φ(t, t+

� (Y0), Rt�φ(t−
� (Y0), t0, Y0))

dt�(Y0)

dY0

+D3φ(t, t+
� (Y0), Rt�φ(t−

� (Y0), t0, Y0))Rt�
dφ(t−

� (Y0), t0, Y0)

dY0
(29)

with

dφ(t−
� (Y0), t0, Y0)

dY0
= D1φ(t−

� (Y0), t0, Y0)
dt�(Y0)

dY0
+ D3φ(t−

� (Y0), t0, Y0). (30)

The notation Dkφ denotes the partial derivatives ofφwith respect to its k-th argument.
If the smooth flow is known between impacts, the only difficult part that remains to
compute is the derivative of the time of impact t� with respect to Y0. Let us split the
flow φ such that

Y (t) = φ(t, t0, Y0) =
[

φy(t, t0, Y0)

φẏ(t, t0, Y0)

]
=

[
y(t)
ẏ(t)

]
. (31)

We have assumed that only one particle of index it� is impacting at t�(Y0). The
constraint (25) can be written as

φy,it�
(t�, t0, Y0) = −1. (32)

Since ∂tφy,it�
(t−

� , t0, Y0) = ẏit�
(t−

� (Y0)) < 0 (non-grazing impact) and the flow is
smooth (analytic) between impacts, the implicit function theorem guarantees that the
impact persists upon small variations of Y0, with an impact time t� being a smooth
(analytic) function of Y0. Moreover, defining a projection matrix Pi ∈ R

1×2p such
that

D3φy,i (t
−
� (Y0), t0, Y0) = Pi D3φ(t−

� (Y0), t0, Y0), (33)

we have
dtt� (Y0)

dY0
= − 1

ẏit�
(t−

� (Y0))
Pit�

D3φ(t−
� (Y0), t0, Y0). (34)

In order to simplify the expression of the monodromy matrix given by (29) and (30),
we observe that

D2φ(t, t+
� , Y (t+

� (Y0))) = −D3φ(t, t+
� (Y0), Y (t+

� (Y0)))Ẏ (t+
� (Y0)). (35)

Indeed, since φ(t, t̃, φ(t̃, t+
� , Y�)) = φ(t, t+

� , Y�) is independent of t̃ , the identity
∂t̃φ(t, t̃, φ(t̃, t+

� , Y�)) = 0 evaluated at t̃ = t+
� and Y� = Y (t+

� (Y0)) yields identity
(35). Using (29), (30) and (35), the monodromy matrix simplifies to
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dφ(t, t0, Y0)

dY0
= D3φ(t, t+� , Y (t+� (Y0)))

[
[Rt� Ẏ (t−� (Y0)) − Ẏ (t+� (Y0))]dt�(Y0)

dY0
+ Rt� D3φ(t−� (Y0), t0, Y0)

]
.

(36)

Finally, using the relation (34), the monodromy matrix is expressed as follows:

dφ(t, t0, Y0)

dY0
= D3φ(t, t+

� (Y0), Y (t+
� (Y0)))St� D3φ(t−

� (Y0), t0, Y0), t > t�(Y0),

(37)
where the so-called saltation matrix St� is defined by

St� = − 1

ẏit�
(t−

� (Y0))
[Rt� Ẏ (t−

� (Y0)) − Ẏ (t+
� (Y0))]Pit�

+ Rt� . (38)

Note that the monodromy matrix is obtained as the product of the Jacobian matrices
of the flow with respect to the initial condition in each smooth phase separated by
the saltation matrix.

The Case of Two Simple Impacts at Times t�,2 > t�,1 > t0 :

For the two simple impacts at time t�,2 > t�,1 > t0, the computation of the mon-
odromy matrix follows the same line. It is also a product of the Jacobian matrices of
the flow with respect to the initial condition in each smooth phase separated by the
saltation matrix:

dφ(t, t0, Y0)

dY0
= D3φ(t, t+�,2(Y0), Y (t+�,2(Y0)))St�,2

D3φ(t, t+�,1(Y0), Y (t+�,1(Y0)))St�,1 D3φ(t−�,1(Y0), t0, Y0), t > t�,2(Y0).
(39)

Computation of the Monodromy for the Piecewise Linear System :

In our case of a piecewise-linear dynamics, the flow of the system between two
impacts is given by

φ(t, t0, Y0) = exp(D(t − t0)) Y0, t0 ≤ t ≤ t�,1(Y0), (40)

φ(t, t+�,1(Y0), Y (t+�,1(Y0))) = exp(D(t − t�,1(Y0))) Y (t+�,1(Y0)), t�,1(Y0) ≤ t ≤ t�,2(Y0)

(41)
φ(t, t+�,2(Y0), Y (t+�,2(Y0))) = exp(D(t − t�,2(Y0))) Y (t+�,2(Y0)), t ≥ t�,2(Y0), (42)

with D = J + γ L . As indicated above in the derivation of the monodromy matrix,
the piecewise linear flow is smooth (analytic). If we consider the explicit formula
of the linear flow (40)–(42) between impacting times at t�,1 = T/2 and t�,2 = T , we
get, for the monodromy matrix,
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dφ(t, t0, Y0)

dY0
= exp(D(t − T )) ST exp(D(T/2)) ST/2 exp(D(T/2 − t0)), t > T,

(43)
where t0 < T/2. In Sect. 3, we shall fix t0 = T/4 and t = t0 + T = 5T/4 to compute
the monodromy matrix of a T -periodic solution with impact times multiple of T/2.
This leads to

dφ(5T/4, T/4, Y0)

dY0
= exp(DT/4) ST exp(D(T/2)) ST/2 exp(DT/4). (44)

The periodic solution will be unstable if this monodromy matrix admits an eigen-
value with modulus greater than unity, and spectrally stable if all eigenvalues lie
on the unit circle (due to time-reversal symmetry, the Floquet spectrum has the
invariance σ → σ−1). The spectrum of the above monodromy is the same as for
ST exp(D(T/2)) ST/2 exp(DT/2).

3 Numerical Computation of Nonsmooth Modes

We solve problem (12)–(13) numerically for a chain of p oscillators with periodic
boundary conditions. Unless explicitly stated otherwise, we fix p = 100. Although
the system (12)–(13) is a standard linear system, we use a general shooting method,
i.e., determine avector ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ R

p such that the three bound-
ary conditions of (13) at t = 0 and t = T/2 are satisfied through Newton iterations.
For eachNewton iteration, this requires solving a linear system for ξ obtained through
time-integration of the linear ODE (12). This time integration is equivalent to com-
puting the exponential matrix of the linear flow numerically. When the coupling
parameter is chosen far from the degeneracy case of the BVP matrix, the shoot-
ing technique converges in one iteration. When we are in the neighborhood of the
degenerate cases, the number of Newton iterations may increase, indicating an ill-
conditioned linear system of the BVP. Thanks to the general shooting technique, the
case of nonlinear local or interaction potentials could be similarly addressed. The
constraint (14) is checked a posteriori. To this end, we integrate (1)–(3) numerically
using an event-driven scheme for nonsmooth dynamical systems implemented in the
Siconos software [22]. For the shooting technique and validation of the constraints,
the linear ODE is integrated thanks to ODEPACK [21] embedded in the Siconos
software.

Usually, the solution branches are first continued for fixed values of T , varying the
coupling parameter γ . For all fixed value T ∈ (π, 2π), a choice of impacting particles
and phases (determined by I1, I2) selects a unique solution for γ = 0, which can be
continued up to some maximal value of the coupling parameter γ . We shall see in
the sequel that some continuations are also done with respect to the period.
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Fig. 6 Mode pattern for the site-centered breather

3.1 Site-Centered Breathers

In this section, we illustrate the site-centered breather for the mode pattern I2 =
{50}, I1 = ∅ depicted in Fig. 6. The period is T = 3π

2 . The periodic solution has
been successfully computed for γ ∈ [0, γc] with

γc = 1

4

((
2π

T

)2

− 1

)
, (45)

the critical value of γ for which we expect to reach the out-of-phase mode. For T =
3π
2 , we have γc ≈ 0.1944. In Fig. 7, the initial positions and velocities are displayed
for the particle indices between 40 and 60 and for 4 different values of γ . We observe
that, for small values of the coupling parameter γ , the breather is localized on a few
particles. With the increasing values of γ , the support of the solution is increasing to
reach the out-of-phase linear grazing mode for γ = γc. Let us note that the velocity
of the central particle 50 is decreasing to the grazing solution for all the particles.

In Fig. 8, the eigenvalues of the monodromy matrix are displayed. In Fig. 8a, we
remark that the eigenvalues have amodulus equal to 1 up to a critical value γs between
0.129 and 0.142 for which a pair of eigenvalues is leaving the unit circle. In Fig. 8b,
c and d, all the eigenvalues are plotted in the complex plane for three different values
of γ ∈ {0, 0.064, 0.181}. For γ = 0, a pair of eigenvalues are equal to +1 and all
the other conjugate eigenvalues pairs are equal to i or −i . For γ < γs , the conjugate
eigenvalue pairs, equal to i and −i for γ = 0, start to slide on the unit circle toward
the pair of eigenvalues that remains at +1. For γ = γs , a collision occurs at +1.
Finally, for γ > γs , a pair of real inverse eigenvalues leaves the unit circle to slide on
the real line while a pair of eigenvalues remains at+1. In that case, the stability of the
periodic solution is lost. For γ = 0.181, one of the eigenvalues of modulus around
5.71 is not displayed. To illustrate this loss of stability, we report, in Fig. 9, several
time integrations of the system with constraints and impacts for different values of
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Fig. 7 Site-centered breather with pattern I1 = ∅, I2 = {50}
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Fig. 8 Eigenvalues of the monodromy matrix for the site-centered breather with pattern I1 =
∅, I2 = {50}

γ over the time interval [0, 25T ]. Although the system is numerically integrated
with high accuracy Runge-Kutta schemes in ODEPACK with very tight tolerances
(10−14), the periodic solutions for γ = 0.181 are destabilized.
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Fig. 9 Time integration of the periodic solutions for the site-centered breather with pattern I1 =
∅, I2 = {50}

We also perform a continuation of the solution with respect to the period. We start
for a value of (γ, T ) equal to (0.15, 3π/2) and we decrease the period following
a solution with a fixed pattern. The numerical solutions are displayed in Fig. 10a.
We can observe that a family of site-centered breathers is found with an increasing
amplitude of the initial state. For the uncoupled case (γ = 0.0), we know that the
amplitude of the solution goes to infinity when T → π . The same phenomenon is
observed for a given coupling parameter γ = 0.15. In Fig. 10b, we plot themaximum
amplitude of the position ‖y(0)‖∞ and the velocity ‖ẏ(0)‖∞ as a function of T .
An asymptotic value of the period clearly appears for which the amplitude of the
solution blows up. In this specific case, the asymptotic value of the period is about
0.58(3π/2) ≈ 2.78. Let us note that this value is below π .

To conclude this section, an exploration of the viability of the site-centered
breathers has been performed for (γ, T ) ∈ [0, 1.1] × [2, 2π ] and p = 30 particles.
We select a mesh grid in the plane (γ, T ) and solve the boundary value problem for
each pair (γ, T ). The results are reported in Fig. 11. The light areas correspond to
a numerical computation of a periodic solution to (12)–(13) with the satisfaction of
the constraint (14) and the pattern I1 = ∅, I2 = {15}. The red dashed curve is given
by the out-of-phase grazing linear mode whose period is related to γ by

T (γ ) = 2π (1 + 4γ )−1/2. (46)

As expected with the previous computations, we observe that there exists a large
light area bounded above by the relation (46) and corresponding to site-centered
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Fig. 10 Continuation with a decreasing period of the site-centered breather with pattern I1 =
∅, I2 = {50} for γ = 0.15

breathers. This area is also bounded below by another curve that corresponds to
modes whose amplitudes go to infinity, as we have already discussed for a particular
value of γ = 0.15 in Fig. 10. Quite interestingly, other light areas are present above
the red curve. To explain these areas, we plot the graphs of the periods with respect
to γ for larger wavenumber q given by

Tn(γ ) = 2π (1 + 4γ sin2(q/2))
−1/2

, with q = n2π/p, n = 1, . . . , 15. (47)
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Fig. 11 Continuation of periodic solutions with pattern I1 = ∅, I2 = {15} (light areas) for (γ, T ) ∈
[0, 1.1] × [2, 2π ]. Graphs of Tn(γ ) = 2π (1 + 4γ sin2(q/2))

−1/2
, with q = n2π/p, for n =

1, . . . , 15 and p = 30

We can observe the existence ofmodulatedwaves near the linear grazing solutions. In
order to illustrate the solutions obtained in these areas, we plot, in Fig. 12, the results
of two continuations over the period for γ = 1, T3 ≈ 5.34 and T4 ≈ 4.87 (large dots
in Fig. 11). We can observe that these solutions are not exactly normal nonsmooth
modes that emerge from the linear grazing modes, but rather spatial modulations of
nonsmooth normal modes. For the computation of what could be called a nonsmooth
normal mode, we refer to Sect. 3.4. There, other solutions are computed (with long-
wavelength near T1) with preservation of the normal mode pattern at the start of
continuation.

3.2 Bond-Centered Breathers

In this section, some bond-centered breathers are computed with two different pat-
terns.

Bond-Centered Breathers With Pattern I1 = {49}, I2 = {50}
Let us start with the out-of-phase pattern I1 = {49}, I2 = {50}, illustrated in Fig. 13.
We again choose a period equal to 3π

2 , and the periodic solution has successfully
been computed in the range [0, γc], with γc given by (45). The initial conditions of
the periodic solutions are displayed in Fig. 14 for the particle indices in [40, 60].
Again, we can observe that the breather is localized over a few particles for small
values of the coupling parameter. Once again, the solution reaches the out-of-phase
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Fig. 12 Continuation of spatially-modulated nonsmooth normal modes with pattern I1 = ∅, I2 =
{15} for γ = 1
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Fig. 14 Bond-centered breather with pattern I1 = {49}, I2 = {50}

linear grazing mode for γ = γc while the velocity of the central particle decreases
at time 0.

In Fig. 15, we depict the eigenvalues of the monodromy matrix. In Fig. 15b, for
γ = 0, we have two pairs of eigenvalues in +1. All the other pairs of conjugate
eigenvalues are equal to i or −i . We observe, in Fig. 15a and b, that for γ > 0, a
pair of real inverse eigenvalues slides from +1 on the real line as γ increases, while
the other pair remains equal to +1. The others pairs of conjugate eigenvalues slide
on the unit circle toward the pair of real eigenvalues in +1. A collision occurs again
at +1 for γ = γs ∈ [0.142, 0.155]. Then, a second pair of inverse real eigenvalues
slides on the real line. For γ > 0, the stability of the periodic solutions is lost. We
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(d) eigenvalues for γ = 0.181

Fig. 15 Eigenvalues of the monodromy matrix for the bond-centered breather with pattern I1 =
{49}, I2 = {50}

attempt to illustrate this phenomena with numerical time integration of the periodic
solutions over a long time interval [0, 35T ] in Fig. 16.
Bond-Centered Breathers With Pattern I1 = ∅, I2 = {49, 50}
For the pattern I1 = ∅, I2 = {49, 50}, the solution for the initial conditions is depicted
for thewhole chain in Fig. 17a and for the particleswith indices in [40, 60] in Fig. 17b.
The period is again 3π

2 , and we succesfully perform a continuation of the solution
over [0, γc] with γc given by (45). The main difference with the previous breathers
concerns the solution when γ → γc. In this latter case, it seems that we do not
converge towards a grazing linear mode. This has to be confirmed with a more
accurate study of the critical value of γ .

In Fig. 18, we depict the eigenvalues of the monodromy matrix computed by
finite differences. In this case, the closed form formula of the monodromy (44) no
longer applies, since we have multiple impacts. Although the approximation of the
eigenvalues may contain some numerical errors, we observe a more complicated
behavior of the evolution with respect to γ of the eigenvalues. For γ = 0, two pairs
of real eigenvalues are equal to+1 and the others are conjugated pairs of eigenvalues
equal to i and −i . For increasing values of γ , one of the pairs of real eigenvalues
starts to slide on the unit circle, respectively towards i and −i , while the other pairs
of conjugate eigenvalues slide on the unit circle from i and −i towards +1. A first
collision occurs on the unit circle for γ ∈ [0.051, 0.064] and two pairs of eigenvalues
leave the unit circle. Several other collisions of different types occurwhenwe increase
the value of γ up to γc.
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Fig. 16 Time integration of the periodic solutions for the bond-centered breather with pattern
I1 = {49}, I2 = {50}

3.3 Multiple Impacting Particles

In this section, we illustrate wave patterns with multiple impacts, where the pattern
is either spatially periodic or localized on several particles (multi-site breathers).

Out-of-Phase Mode with Spatial Period Two

We start with the nonsmooth mode of spatial period two described in Sect. 2. The
pattern is given by I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49, which corresponds to
the sets of odd and even integers, respectively. In Fig. 19, the initial conditions for the
periodic solutions are given for T = 3π

2 . For this example, we are able to continue the
solution over the range [0, γc] up to reaching the out-of-phase linear grazing mode.
In Fig. 20, the eigenvalues of the monodromy matrix computed by finite differences
are depicted. For γ = 0, all the eigenvalues are equal to +1. For γ > 0, the pairs
of inverse real eigenvalues slide on the real line. The periodic solutions are there-
fore unstable for γ > 0. This is illustrated in Fig. 21, where long time integration
simulations have been performed over the time interval [0, 35T ].
Periodic Wave with Spatial Period Six

Another example of nonsmooth spatially periodic standing wave is displayed in
Fig. 22. The spatial period is six and the time period is again 3π

2 . The mode profiles
are depicted for several values of γ in [0, γc].
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Fig. 17 Bond-centered breather with pattern I1 = ∅, I2 = {49, 50}
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Fig. 18 Eigenvalues of themonodromymatrix computed by finite differences for the bond-centered
breather with pattern I1 = ∅, I2 = {49, 50}
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Fig. 19 Out-of-phase mode with pattern I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49

Fig. 20 Eigenvalues of the monodromy matrix computed by finite differences for the out-of-phase
mode with pattern I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49



124 G. James et al.

Fig. 21 Time integration of the periodic solutions for the out-of-phase mode with pattern I1 =
{2k + 1}k=0,...,49, I2 = {2k}k=0,...,49

Fig. 22 Periodicwavewith pattern of spatial period 6 : I1 = {6k + 3, 6k + 4, 6k + 5}k=0,3,..., I2 =
{6k, 6k + 1, 6k + 2}k=0,3,...
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Fig. 23 Multi-site breather with pattern I1 = ∅, I2 = {45, . . . , 55}

Multi-site Breather Localized on 10 Particles

In Fig. 23, a multi-site breather with pattern I1 = ∅, I2 = {45, . . . , 55} is displayed
for T = 3π

2 . For γ → γc, the computation of the solutions is more difficult. The
largest value of γ for which a solution is displayed is 0.1944096 < γc. We can
observe that the particles in I0 are still not grazing.
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(a) Positions for T = T1 (b) Velocities for T = T1

Fig. 24 Main linear grazing mode for γ = 1 and T1 = 2π (1 + 4γ sin2(π/30))
−1/2

3.4 Long-Wavelength Modes

We also compute spatially extended long-wavelength modes close to the main linear
mode with wavenumber q = 2π/p, that is depicted in Fig. 24. The period of the
linear mode for a given wavenumber q is

T1 = 2π (1 + 4γ sin2(q/2))
−1/2

. (48)

Our computations are performed for γ = 1 and p = 30 particles and we get T1 ≈
6.150.

A First Branch of Solutions

We are able to follow a first continuous branch of solutions depicted in Fig. 25 with
periods T ∈ [α7 T1, α1 T1], andα1 = 0.99056 andα7 = 0.5035988.Themode ampli-
tude diverges when T → α7 T +

1 , and two particles at n = 15, 30 (the antinodes, i.e.,
the particles that reach maximal height) undergo grazing impacts when T → α1 T −

1 .
The number of impacting particles decreases from 30 to 10 when T is increased.
More precisely, for T in intervals of the form [α j T1, α j−1 T1], we find 4 j + 2
impacting particles with pattern I1 = { 1, 2, . . . , j, p − j, p − j + 1, . . . , p }, I2 =
{ 15 − j, . . . , 15 + j }.Wefindα6 ≈ 0.5798,α5 ≈ 0.7641,α4 ≈ 0.92,α3 ≈ 0.9618,
α2 ≈ 0.9771.
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(a) Positions for T = α1T1 (b) Velocities for T = α1T1

(c) Positions for T = α2T1 (d) Velocities for T = α2T1

(e) Positions for T = α3T1 (f) Velocities for T = α3T1

Fig. 25 A first branch of long-wavelength normal modes for γ = 1 and T1 = 2π

(1 + 4γ sin2(π/30))
−1/2
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(g) Positions for T = α4T1 (h) Velocities for T = α4T1

(i) Positions for T = α5T1 (j) Velocities for T = α5T1

Fig. 25 (continued)
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(k) Positions for T = α6T1 (l) Velocities for T = α6T1

(m) Positions for T = α7T1 (n) Velocities for T = α7T1

Fig. 25 (continued)

A Second Branch of Solutions

We find another branch of solutions whose period T ∈ [0.81 · T1, T1) can approach
T1 arbitrary closely. These solutions emerge from the linear grazing mode when
T → T1. Let us set T = α T1 and describe the mode pattern depending on α. We
only describe I2, given that I1 = I2 + 15(mod 30). We have I2 = { 15 } for α ∈
[0.991, 1), I2 = { 14, 15, 16 } for α ∈ [0.9825921, 0.99], I2 = { 12, 14, 15, 16, 18 }
for α ∈ [0.965, 0.9825924], I2 = { 11, 12, 14, 15, 16, 18, 19 } for α ∈ [0.85, 0.964],
I2 = { 9, 11, 12, 14, 15, 16, 18, 19, 21 } for α ∈ [0.836, 0.849], and for α ∈ [0.81,
0.835], we find I2 = { 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 }. Mode profiles are
shown in Fig. 26.



130 G. James et al.

(a) Positions for T = 0.997T1 (b) Velocities for T = 0.997T1

(c) Positions for T = 0.99T1 (d) Velocities for T = 0.99T1

(e) Positions for T = 0.9825924T1 (f) Velocities for T = 0.9825924T1

Fig. 26 A second branch of long-wavelength normal modes for γ = 1 and T1 =
2π (1 + 4γ sin2(π/30))

−1/2
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(g) Positions for T = 0.964T1 (h) Velocities for T = 0.964T1

(i) Positions for T = 0.849T1 (j) Velocities for T = 0.849T1

Fig. 26 (continued)
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(k) Positions for T = 0.835T1 (l) Velocities for T = 0.835T1

(m) Positions for T = 0.81T1 (n) Velocities for T = 0.81T1

Fig. 26 (continued)

4 Discussion

In this work, we have studied the existence and stability of nonsmooth modes (either
spatially localized or extended) in a chain of coupled impact oscillators, for rigid
impacts without energy dissipation. We have obtained analytical solutions with an
arbitrary number of impacting particles at small coupling, and have computed such
solutions numerically for larger coupling constants. Different solution branches cor-
responding to stable or unstable breathers, multibreathers and nonsmooth normal
modes have been found.

The computation of periodic solutions based on the above approach is much more
effective than numerical continuation of periodic solutions based on stiff compliant
models. In the latter case, impacts are described by smooth nonlinear Hertzian type
potentials leading to stiff ODE and costly numerical continuation.
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Several extensions of this work could be considered. It would be interesting to
perform the continuation of periodic solutions while allowing switches in the mode
patterns. In addition, the study of more complex types of nonsmooth mode would
be of great interest. In particular, one could allow particles to realize several impacts
per period [40] or display sticking phases after a grazing contact [27]. The inclusion
of dissipative impacts and forcing and the application of the method to more com-
plex finite-element models of continuous impacting systems constitute additional
challenging directions.

Acknowledgements The authors are grateful to Oleg Gendelman and Itay Grinberg for all of the
stimulating discussions.
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