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Preface

Many open scientific questions and engineering problems in nonlinear dynamics
concern dynamical systems with some degree of nonsmoothness or switching
behaviour. Switching systems, hybrid systems or, more generally, nonsmooth
systems arise in very different disciplines, such as the science of cyber-physical
systems, neuroscience and biomathematics and control and electrical circuits the-
ory. Nonsmooth models are abundant in mechanics and related engineering
applications. Dry friction and impact laws lead to nonsmooth models in multibody
dynamics, whereas switching control laws result in a nonsmooth closed-loop
dynamics. Classical theoretical results in nonlinear dynamics, as well as the con-
ventional numerical simulation and optimization algorithms, presuppose a suffi-
ciently smooth behaviour and often fail when applied to nonsmooth systems.
Nonsmooth systems, therefore, open up a Pandora’s box of unresolved questions
and pose a demanding challenge to mechanics and other disciplines, leading to a
new research field. The Nonsmooth Dynamics research field studies dynamical
systems, for which the state is not required to be a smooth (differentiable or con-
tinuous) function of time. Nonsmooth Dynamics finds its roots in nonlinear
dynamics with strong connections to stability theory, bifurcation theory and chaos.
It uses concepts of nonsmooth analysis, convex analysis, measure theory and
nonsmooth optimization (complementarity and variational inequality theory) for
the modeling, analysis, simulation, control and design of nonsmooth systems. The
study of nonsmooth systems is receiving an increasing amount of attention in the
scientific literature, conferences and symposia.

The European Network for Nonsmooth Dynamics (ENNSD, http://ennsd.gforge.
inria.fr/) is an initiative that aims to provide a platform for collaborations, symposia,
summer schools and workshops on nonsmooth dynamics. The network unites about
40 active specialists in the field of Nonsmooth Dynamics from 9 different countries.
It also contributes to the promotion and dissemination of Nonsmooth Dynamics
theories and methods throughout the scientific community and to the training of
young researchers and newcomers. The symposia of the European Network for
Nonsmooth Dynamics took place at ETH in Zürich (2012), INRIA in Grenoble
(2013), TUM in Munich (2014), LMGC in Montpellier (2015), University of Liège

v



(2016), Eindhoven University of Technology (2017) and University of Stuttgart
(scheduled for 2018).

The aim of this book is twofold. Firstly, as the title reflects, this edited volume
gathers a selection of original research contributions by experts in the field of
Nonsmooth Dynamics. Secondly, it plays the role of transactions of the European
Network for Nonsmooth Dynamics by documenting some of the scientific
knowledge that has been gathered by the network over recent years.

The book covers modeling, analysis, simulation and control of nonsmooth
systems. Each chapter is written such that researchers from other research fields can
be introduced to the topic.

The editors wish to thank all of the members of ENNSD for their valuable
contributions to Nonsmooth Dynamics.

Stuttgart, Germany Remco I. Leine
Grenoble, France Vincent Acary
Liège, Belgium Olivier Brüls
November 2017
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Comparisons of Multiple-Impact Laws
For Multibody Systems: Moreau’s Law,
Binary Impacts, and the LZB Approach

Ngoc Son Nguyen and Bernard Brogliato

Abstract This chapter is dedicated to comparisons of three well-known models
that apply to multiple (that is, simultaneous) collisions: Moreau’s law, the binary
collision law, and the LZB model. First, a brief recall of these three models and the
way in which their numerical implementation is done. Then, an analysis based on
numerical simulations, in which the LZB outcome is considered as the reference
outcome, is presented. It is shown that Moreau’s law and the binary collision model
possess good prediction capabilities in some few “extreme” cases. The comparisons
are made for free chains of aligned grains, and for chains impacting a wall. The
elasticity coefficient, coefficients of restitution, mass ratios and contact equivalent
stiffnesses are used as varying parameters.

1 Introduction

Multiple impacts are very complex phenomena occurring frequently in multibody
systems.Roughly speaking, amultiple impact occurs in amultibody systemeach time
the system undergoes several collisions at the same time timp. In models based on the
assumption that the bodies are perfectly rigid at contact, and such that the impacts are
instantaneous phenomena, the definition of timp is clear. When deformations occur,
one may consider that an impact is multiple whenever the collisions at the m con-
tact/impact points i , which have non-zero durations [t0,i , t f,i ] (with t f,i = +∞ for
some models –think of an overdamped linear spring-dashpot [1, Sect. 2.1] [2]), over-
lap, and consequently may influence each other due to dynamic couplings between
the various contact points. One subtlety in the definition of a multiple impact is that
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2 N. S. Nguyen and B. Brogliato

some previously active contacts with zero local relative velocity, may participate in
it. This is the case for the two well-known classical systems: chains of aligned balls
(like Newton’s cradle), in which several balls are in contact before the shock, or the
planar rocking block that rotates around one corner. In both cases, one is obliged
to take the previously lasting contacts into account, even if the multiple impact is
triggered at a single contact. In a Lagrange dynamics framework with generalized
coordinates q, impacts are associated with unilateral constraints, which are defined
from p gap functions fi (q) (signed distances) that define an admissible domainΦ for
the generalized position, i.e., q(t) ∈ Φ for all t ≥ 0. Impacts correspond to trajecto-
ries hitting the boundary of Φ (denoted bd(Φ)) with a non-zero normal velocity, i.e.,
∇T fi (q(t))q̇(t−) < 0 if fi (q(t)) = 0. Inmost cases, bd(Φ) consists of co-dimension
p′ ≤ p submanifolds {q ∈ C | fi (q) = 0, for some 1 ≤ i ≤ p}, of the configuration
spaceC � Φ.When a co-dimension p′ boundary submanifold is attainedwith p′ ≥ 2
(a kindof singularity of bd(Φ)where two smoothhypersurfaces intersect), one speaks
of a p′-impact. For instance, the 2-dimensional rocking block with concave base and
two corners undergoes a 2-impact during a classical rockingmotion. Consider a chain
of n aligned spheres, in which one sphere at one end of the chain hits the other n − 1
ones that are at rest and in contact with no pre-constraint: this is an n − 1-impact.

Just as for single impacts, several classes of contact/impact models can be used
in multiple impacts [3]:

• (i) Algebraic models that relate post and pre-impact velocities as q̇(t+) =
F (q̇(t−)) for some function F , which may be explicitly or implicitly defined.

• (ii) First-order dynamics following the Darboux-Keller approach [1, Sect. 4.3.5]:
positions are assumed constant, and the impact force impulse is used as the new
time scale.

• (iii) Second-order dynamics that use rheological compliant models with lumped
flexibility, like spring-and-dashpot linear (Kelvin-Voigt, Maxwell, Zener) or non-
linear models (Kuwabara-Kono, Simon-Hunt-Crossley, etc.), Discrete Element
Method (DEM), or Finite Element Method (FEM).

All models have some advantages and drawbacks. It is not our objective in this
chapter to classify or to rank models. Rather, we consider three well-known models
that belong to classes (i) and (ii), and we compare them in terms of their velocity
outcomes, on the benchmark of chains of aligned balls. The results therefore complete
those shown in [3, Chap. 6], which is restricted to chains of three aligned balls.
Our results also indicate the instances in which Moreau’s and the binary laws may
provide realistic outcomes. Since multiple impacts in chains of balls are essentially
determined by the nonlinear waves that travel through the chain, we pay attention to
characterize, when possible, the waves associated with the domains of applicability
of these two impact laws.

Remark 1 In this work, we restrict ourselves to frictionless constraints.

Remark 2 Multiple impacts are therefore intrinsically different from infinite
sequences of single impacts with an accumulation, like in the bouncing ball system.
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However, some approaches for multiple impacts may yield some kind of infinite
sequence of impacts, sometimes instantaneously (this may occur, for instance, in
the binary collision model, or with the so-called Han-Gilmore algorithm [1, Sect.
6.1.2], which is not always guaranteed to converge in a finite number of steps, or to
converge to a unique solution [3, Sect. 3.4]). This is closely related to another feature
of multiple impacts, that is, the possible discontinuity of trajectories with respect to
the initial data [1, 4].

2 System’s Dynamics

In this chapter, we mainly deal with chains of n aligned balls (or more generally,
aligned grains not necessarily spherical) with radii Ri > 0 whose dynamics is as
follows: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mq̈(t) = Λ(t)

fi (q) = qi+1 − qi − (Ri+1 + Ri ) ≥ 0, 1 ≤ i ≤ n − 1

M = diag(mi ), 1 ≤ i ≤ n,

(1)

where q = (q1, q2, . . . , qn)
T is the generalized coordinates of the chain and Λ(t) ∈

IRn is the vector of generalized contact forces between the balls. The gap func-
tions fi (q) are signed distances between adjacent balls and represent the unilateral
constraints in the chain. We have Λ = ∇f(q)λ, with λ ∈ IRn−1 being the vector of
Lagrange multipliers associated with the unilateral constraints. We obtain the sub-
sequent equalities that will be useful later:

⎧
⎨

⎩

∇T fi+1(q)M−1∇ fi (q) = −m−1
i+1, ∇T fi−1(q)M−1∇ fi (q) = −m−1

i

∇T fi−2(q)M−1∇ fi (q) = 0, ∇T fi (q)M−1∇ fi (q) = m−1
i + m−1

i+1.

(2)

In terms of the kinetic angles θi j between the submanifold (or hypersurfaces) defined
by the equalities fi (q) = 0 and f j (q) = 0, we obtain (see [1, Eq. (6.66)] for the
definition of a kinetic angle), when all masses are equal to m > 0:

θi,i+2 = π

2
, θi,i+1 = π

6
. (3)

Roughly speaking, and without going into further considerations other than this
preliminary geometrical analysis, this means that monodisperse chains of aligned
balls may have complex dynamics at impacts because they may not satisfy the con-
ditions that guarantee continuity of trajectories with respect to initial data [4]. As
shown in [3, Appendix A], the 3-ball chain is equivalent to a particle in the plane
hitting in a corner, whose dynamics may be quite complex [5]. As is well-known,
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there is another “natural” set of coordinates for the chain, using conservation of lin-
ear momentum. Let zi = fi (q) for each 1 ≤ i ≤ n − 1, and z0 =∑n

i=1 mi qi . Then,
z̈0 = 0 (by adding the n lines of the dynamics, which just translate Newton’s law
of action/reaction). We have z = Nq + L for some easily obtained N ∈ IRn×n and
L = (0, R2 + R1, . . . , Rn + Rn−1)

T . Then × nmassmatrix becomes in the z coordi-

nates N−T MN−1 =

⎛

⎜
⎜
⎝

1 0 . . . 0
0
0 M̄
0

⎞

⎟
⎟
⎠, with M̄ = M̄T ∈ IR(n−1)×(n−1) positive definite.

Let z̄ = (z1, . . . , zn−1)
T ; the dynamics in (1) then becomes in a reduced form:

⎧
⎨

⎩

M̄ ¨̄z = λ

zi ≥ 0, 1 ≤ i ≤ n − 1.
(4)

If all the balls are in contact at the impact time, then zi (0) = 0. Though the dynamics
in (4) looks simpler than that in (1), this is not necessarily the case, because M̄ may
not be diagonal.

3 The Multiple-Impact Models

In this section, the three models: Moreau’s impact law, the binary collision model
and the LZB approach are described, and some of their features are analyzed.

3.1 Moreau’s Impact Law

Moreau’s impact law belongs to class (i). It is primarily formulated as an extension
of Newton’s kinematic restitution law, in a Lagrange dynamics framework, and with
a global coefficient of restitution. Since it can also be expressed in local frames at
the contact points, as a linear complementarity problem with the local velocities as
unknowns , it is convenient to implement in event-capturing time-stepping schemes.
As such, this is the law that is implemented in the software packages siconos1 and
lmgc90.2 It was introduced in [6, 7].

Let us describe it now. We consider a Lagrangian system with generalized
coordinates q ∈ IRn , symmetric positive definite mass matrix M(q) ∈ IRn×n , and
a set of unilateral constraints fi (q) ≥ 0, 1 ≤ i ≤ m, defined from the differen-

tiable gap functions fi : IRn → IR, such that ∇ fi (q)
Δ= [ ∂ fi

∂q (q)
]T 
= 0 for all q

such that fi (q) = 0 (it is assumed that gradients do not vanish on the boundary

1http://siconos.gforge.inria.fr/4.1.0/html/index.html.
2https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home.

http://siconos.gforge.inria.fr/4.1.0/html/index.html
https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
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of the admissible domain). The non-negative multipliers associated with the unilat-
eral constraints are denoted λi , and they are supposed to satisfy complementarity
conditions fi (q)λi = 0. In a compact form, one obtains 0 ≤ λ ⊥ f(q) ≥ 0, with
λ = (λ1, . . . , λm)T , f(q) = ( f1(q), . . . , fm(q))T . The right-hand side of the smooth

dynamics (outside impacts) is equal to Λ
Δ= ∇f(q)λ with 0 ≤ λ ⊥ f(q) ≥ 0, which,

under some suitable assumptions and using nonsmooth analysis, can be rewritten
equivalently as Λ(t) ∈ −NΦ(q(t)), the normal cone being generated by the gradi-
ents at the active constraints fi (q) = 0 (the set of active constraints is denoted as
I (q) in the sequel).

Remark 3 Readers who are not familiar with convex and nonsmooth analysis should
simply think of normal and tangent cones as a generalization of normal and tangen-
tial subspaces, with normal cones being generated by the gradients of the active con-
straints on the admissible domain boundary. As we explain next, use of the normal
and tangential cones is very useful for understanding particular features of Moreau’s
impact law, because they provide a clear geometrical picture of the collision process,
a point of view that is lost if these tools are not used.

Moreau goes a step further, replacing the normal cone to the admissible domain
NΦ(q) with the normal cone to the tangent cone V (q) = {v ∈ IRn|vT ∇ fi (q) ≥
0, for all i ∈ I (q)}, computed at the right-limit of the velocity, i.e., the following
inclusion is proposed: Λ(t) ∈ −NV (q(t))(q̇(t+)), whose right-hand side we choose
to refer to asMoreau’s set [1].We have to assume thatV (q) is non-empty, whichmay
be guaranteed by suitable constraint qualification.We also assume that the pre-impact
velocity satisfies q̇(t−) ∈ −V (q(t)). When no constraints are active, i.e.,I (q) = ∅,
then one sets V (q) = IRn . In this case,NV (q)(·) = {0}, as expected (contact forces
vanish).

In a more general setting, Moreau’s set is computed at w(t)
Δ= q̇(t+)+eq̇(t−)

1+e , where
e is a global coefficient of restitution (CoR) (global in the sense that it applies to
all the contacts), i.e.: Λ(t) ∈ −NV (q(t))(w(t)) ⊆ −NΦ(q(t)).3 One important con-
sequence of using Moreau’s set is that, since V (q) ⊆ IRn is a convex polyhedral
set for velocities (while Φ may be in general non-convex and non-polyhedral), the
calculations of the normal cone are doable, as we show next. When an impact occurs
at time t , Λt = ∇f(q(t))λt is the contact force impulse and the system’s dynamics
becomes:

M(q(t))(q̇(t+) − q̇(t−)) = ∇f(q(t))λt ∈ −NV (q(t))(w(t)). (5)

The objective of the above developments may appear obscure to many readers,
however, as we show next, they pave the way towards a sound and practical
impact law. First of all, one may use a basic result of convex analysis, which

3These developments make sense under some well-posedness conditions of the dynamics, which
are assumed to hold here. In particular, positions q(·) are absolutely continuous, velocities q̇(·) are
right continuous of local bounded variations –hence possessing right and left limits everywhere–
and accelerations are measures, as well as λ. See [1, Theorem 5.3] and [8].
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states that for a symmetric positive definite matrix M, two vectors x and y, and
a closed non-empty convex set K , M(x − y) ∈ −NK (x) ⇔ x = projM[K ; y],
where projM denotes the orthogonal projection in the metric defined by M, i.e.:
x = argminz∈K

1
2 (x − z)T M(x − z). Using this, and after few manipulations, we

obtain from (5):

M(q(t))(q̇(t+) − q̇(t−)) ∈ −NV (q(t))(w(t))
�

q̇(t+) = −eq̇(t−) + (1 + e)projM(q(t))[V (q(t)); q̇(t−)],
(6)

where we used that multiplying both sides of (5) by 1
1+e > 0 does not change the

right-hand side, which is a cone. Other equivalent formulations exist [1, Eqs. (5.60)
(5.61)]. Now, using a corollary of the celebrated Moreau’s two cones Lemma [1, Eq.
(B.18)], it follows that (6) is equivalent to

q̇(t+) = q̇(t−) − (1 + e)projM(q(t))[NΦ(q(t)); q̇(t−)], (7)

where, under someconstraint qualification (like the so-calledMangasarian-Fromovitz
CQ), we can state that NΦ(q) is the polar cone to V (q) (the admissible domain Φ

needs not be convex for this). Moreau’s law is a global (generalized) law that gives
the post-impact velocity in one compact form. The question is then how to compute
the projection in a way that is convenient for numerical implementation.

Since the projection is done in the metric defined by M(q), we can define the (out-
wards) normal cone as NΦ(q) = {w ∈ IRn|w = −∑i∈I (q) λi nq,i , λi ≥ 0}, with
nq,i = M−1(q)∇ fi (q)√

∇T fi (q)M−1(q)∇ fi (q)
, the (inwards) normal vector to the submanifold defined

by fi (q) = 0 in the kineticmetric. It is, however, not trivial to calculate the projection
onto a cone in the general case of the kinetic metric. We may start directly from the
impact dynamics in (6) to get a more tractable expression. Indeed, Moreau’s set
can be expressed as NV (q(t))(w) = {z ∈ IRn|z = −∑i∈K (w) λi∇gi (w), λi ≥ 0},
with: gi (w) = wT ∇ fi (q), K (w) = { j ∈ I (q)|g j (w) = 0} ⊆ I (q). Thus, I (q)

collects indices of active position constraints, while K (w) collects indices from
active velocity constraints inside position active constraints. We see at once that
Moreau’s set implies a two-stage process: first look at positions, second look at
velocities. In more mathematical language, there is a lexicographical inequality
imposed at the contact local kinematics. Notice that we can equivalently rewrite
NV (q(t))(w) = {z ∈ IRn|z = −∑i∈I (q) λi∇gi (w), 0 ≤ λi ⊥ gi (w) ≥ 0}, and we

have ∇gi (w) = [ ∂gi

∂w (w)
]T = ∇ fi (q) = [ ∂ fi

∂q (q)
]T
. Then, we obtain:

⎧
⎨

⎩

M(q(t))(q̇(t+) − q̇(t−)) =∑i∈I (q) λi∇ fi (q)

0 ≤ λi ⊥ gi (w) = ∇T fi (q)w ≥ 0.
(8)
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In this approach, the multiplier λi has to be interpreted as the contact force

impulse at time t , i.e., λi = λt,i . Let I (q) = {i1, . . . , il}, and denote fI (q)(q)
Δ=

( fi1(q), fi2(q), . . . , fil (q))T , so that ∇fI (q)(q) = (∇ fi1(q), . . . ,∇ fil (q)) ∈ IRl×n .
In the same way, we denote λt,I (q) = (λt,i1 , . . . , λt,il )

T , and Un,I (q) = (Un,i1 , . . . ,

Un,il )
T , with Un,i

Δ= ∇T fi (q)q̇ being the normal local velocity at contact i . From (8),
and using the expression of w(t), we obtain:

Un,I (q)(t+) − Un,I (q)(t−) = DI (q)(q) λt,I (q)

0 ≤ λt,I (q) ⊥ Un,I (q)(t+) + EnnUn,I (q)(t−) ≥ 0

DI (q)(q) = ∇T fI (q)(q)M(q)−1∇fI (q)(q),

(9)

with Enn = diag(e). This form of Moreau’s impact law for normal local velocities
is very interesting, because it takes the form of a Mixed Linear Complementarity
Problem (MLCP), which is numerically tractable. See [1, Lemma 5.2, Corollary
5.1] for existence and uniqueness of solutions to this MLCP. It may be seen as a
generalized Newton’s impact law, however, it is worth noting that it is not a mere
application ofNewton’s law at each active contact. Indeed, there is a complementarity
condition and inertial couplings through the Delassus’ matrix DI (q)(q) ∈ IRl×l . We
see from (9) that Moreau’s law is kinetically consistent (non-negative impulse). If
e ∈ [0, 1], it is also energetically consistent [1, Eq. (5.61)], and it can be shown to
be kinematically consistent as well (admissible post-impact velocities) using (6).
Indeed, we obtain

q̇(t+) = projM(q(t))[V (q(t)); q̇(t−)] + e{−q̇(t−) + projM(q(t))[V (q(t)); q̇(t−)]}.
(10)

The three terms of the right-hand side belong to V (q(t)), and since e ≥ 0, the post-
impact velocity also belongs to the tangent cone (a convex cone being closed under
addition), and is thus admissible.

Actually, though it is not particularly useful from the calculation point of view,
the expression in (6) or in (7) is valuable for visualizing how Moreau’s law works
from simple geometrical arguments in the plane, as illustrated in Fig. 1. This figure
demonstrates that the outcome ofMoreau’s law is strongly influenced by the (kinetic)
angle between the constraints (denoted α in the figure). This is the reason why it
can possess good predictability in the case of multiple impacts when waves play a
negligible role, but the system’s geometry is crucial. For instance, planar rocking
blocks follow this intuitive rule: slender blocks have a kinetic angle ≥ π

2 and are
likely to rock more easily than flat (or stocky) blocks that have a kinetic angle ≤ π

2
[1, Remark 6.10]. This is confirmed in [9, 10], where tangential effects are added to
prevent sliding of the block. Contrastingly, in chains of balls, the wave propagation
is a crucial mechanical effect that is mainly ruled by contact flexibilities. A purely
kinematic impact law that does not contain any information on contact stiffnesses
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q̇(t−) ∈ − (q(t))

(q(t))

q(t)

Φ (q(t))

q(t)

q̇2(t−)

q̇1(t−)

q̇1(t+)

q̇2(t+) = 0

q̇3(t−)

q̇3(t+)

(q(t))

Φ (q(t))

Φ
Φ

α α

Constraints angle α ≤ π
2 : if e = 0 then q̇(t+) = 0 Constraints angle α ≥ π

2 : post-impact velocities when e = 0

Fig. 1 Moreau’s law and constraints angle (planar case)

will, in most cases, fail to predict the outcome correctly. It may, however, in some
very particular cases, provide good results, as shown in Sect. 5.

Remark 4 Other kinematic impact laws have been proposed and studied in the liter-
ature [11–18], or using a Poisson coefficient and a two-stage linear complementarity
problem [19]. It would beworth studying them along the same lines as done in Sect. 5.
This is left for future work. Notice, however, that as shown in [20], Poisson-Pfeiffer-
Glocker and Moreau’s law are equivalent when a unique global CoR is used, though
in general, Poisson’s hypothesis yieldsmultiple impact lawswith a larger post-impact
velocity set than Moreau’s law [3, Chap. 3]. Finally, Moreau’s law may be in some
cases formulated as a quadratic problem under non-convex constraints [3, Proposi-
tion 3.4], in which the cost function represents the energy dispersion. Most of the
above results are taken from [6, 7, 21, 22]; an alternate proof of (9) for Moreau’s
law can be found in [20, Proposition 5.6]. See also [23] for a geometric analysis
of multiple impacts and a characterization of the domain of admissible post-impact
velocities.

Let us come back to (9). It implies the following LCP:

0 ≤ λt,I (q) ⊥ DI (q)(q) λt,I (q) + (Il + Enn)Un,I (q)(t
−) ≥ 0. (11)

If the active constraints are functionally independent (we have l ≤ n), then DI (q)(q)

is positive definite and this LCP always has a unique solution. Let us calculate it for
a chain of balls, using (2), where we assume that, during the shock, all the balls are
in contact, hence l = m = n − 1:
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DI (q) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(m−1
1 + m−1

2 ) −m−1
2 0 0 . . . . . . 0

−m−1
2 (m−1

2 + m−1
3 ) −m−1

3 0 . . . 0

0 −m−1
3 (m−1

3 + m−1
4 ) m−1

4 0 0

.

.

. 0
.
.
.

.

.

.

.

.

. −m−1
n−3 0 0

0 . . . 0 −m−1
n−3 (m−1

n−3 + m−1
n−2) −m−1

n−2 0
0 . . . . . . 0 −m−1

n−2 (m−1
n−2 + m−1

n−1) −m−1
n−1

0 0 . . . . . . 0 −m−1
n−1 (m−1

n−1 + m−1
n )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)

We have the following for an impact occurring at t = 0.

Proposition 1 Consider a chain of n aligned balls in (1). Let mi = m > 0 for all
1 ≤ i ≤ n. Also let e = 0, and the pre-impact conditions are chosen as q̇1(0−) =
1 m/s and q̇i (0−) = 0 m/s for 2 ≤ i ≤ n (hence, Un,I (q)(0−) = (−1, 0, . . . , 0)T ).
Then, the unique solution of (11) is

λ0,I (q) = m
n+1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n
n − 1
n − 2

...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, which yields Un,I (q)(0+) = (0, . . . , 0)T .

Proof In this case,

DI (q) = 1

m

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 0 0
...

...

0 . . . 0
0 . . . 0 −1 2 −1
0 . . . 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

which is positive definite, as Lemma 1 shows. The result follows by inspection, since
there is a unique solution to the LCP. �

Remark 5 (Dependent active coordinates) In case the active constraints are depen-
dent, thenDI (q) � 0, and since it is a symmetric matrix,DI (q)(λ

1
t,I (q) − λ2

t,I (q)) =
0 for any two solutions λ1

t,I (q) and λ2
t,I (q) of the LCP (11). Therefore, Un,I (q)(t+)

is uniquely defined from the first line in (9) (see [1, Lemma 5.2, Corollary 5.1] for
the same analysis in a slightly more general framework).

Now, we have the next result.

Lemma 1 The Delassus’ matrix in (13) has full rank and is therefore positive defi-
nite.



10 N. S. Nguyen and B. Brogliato

Proof Consider a matrix as in (13) with dimension n × n, and denote it as Dn . It
is not difficult to show that det(Dn) = 2det(Dn−1) − det(Dn−2), for all n ≥ 3, and
letting D1 = 2. It follows that, provided det(Dn−1) = n and det(Dn−2) = n − 1, it
holds that det(Dn) = n + 1. One checks that this is true for n = 3, since det(D2) = 3
and det(D1) = 2. Hence, this is true for all n ≥ 3. Due to the fact that the Delassus’
matrix is at least positive semi definite, the result follows. �

Proposition 1 shows that Moreau’s law creates some distance effect with non-
zero impulse at all contacts, and that all balls are stuck together after the shock
(maximal dispersion of the kinetic energy in accordance with [3, Proposition 3.4]).
Notice, however, thatλ0,I (q) > 0 (component-wise) implies from (11) thatλ0,I (q) =
−D−1

I (q)(Il + Enn)Un,I (q)(0−), so that−EnnUn,I (q)(0−) = Un,I (q)(0+). In our case,
Un,1(0−) = −1m/s, so this implies thatUn,1(0+) = em/s: this is true for e = 0 under
the above conditions. Calculations for the 3-ball system show that this is also the
case when e = 1 [1, p.271].

Proposition 2 Consider the chain of n aligned balls in (1) with mi = m > 0. Sup-
pose that λ0,I (q) > 0 (each contact undergoes an impact with positive impulse), with
pre-impact relative velocityUn(0−) = (−1, 0, . . . , 0)T (so thatI (q) = {1, . . . , n −
1}). Then, it holds that Un(0+) = (e, 0, . . . , 0)T .

Let us now state the following result. We still assume that q̇1(0−) = 1 m/s, and
q̇i (0−) = 0 m/s, 2 ≤ i ≤ n.

Proposition 3 Let e = 1, mi = m > 0, 1 ≤ i ≤ n, Un(0−) = (−1, 0, . . . , 0)T .
Assume that q̇1(0+) = 2−n

n m/s, q̇i (0+) = 2
n m/s for 2 ≤ i ≤ n (so that Un(0+) =

(1, 0, . . . , 0)T ). Then, the kinetic energy is conserved, and λ0,I (q) = D−1
I (q)[Un(0+)

− Un(0−)] > 0 (component-wise) is the solution of the LCP in (11).

Proof Preservation of the kinetic energy follows from a simple calculation. Notice
that Un(0+) − Un(0−) = (2, 0, . . . , 0)T , consequently we only need to know the
first column of D−1

I (q), where DI (q) has the structure shown in the proof of Propo-
sition 1. Let us denote matrices with this structure, and of dimension p, as Dp.
In fact, it can be shown by induction that the first column of D−1

p is equal to
1

det(Dp)
(det(Dp−1), det(Dp−2), . . . , 2, 1)T , where det(Dp) = p + 1. Therefore, since

we have I (q) = {1, . . . , n − 1}, the first column of D−1
I (q) is equal to

1

det(DI (q))
(det(Dn−2), det(Dn−3), . . . , 2, 1)

T > 0.

Therefore, λ0,I (q) is twice this vector and is positive. We have DI (q)(q) λ0,I (q) +
(Il + Enn)Un,I (q)(0−) = Un,I (q)(0+) − Un,I (q)(0−) + (1 + e)Un,I (q)(0−) = 0,
which ends the proof, since the impact LCP has a unique solution. �

It is also checked that the linear momentum of the chain is preserved. Therefore,
under the stated assumption, Moreau’s impact law is unable to separate the balls 2
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to n, while ball 1 “rebounds” on the chain and gives a non-zero velocity to the n − 1
other balls. It has limited predictability in terms of energy dispersion (see Moreau’s
line in [3, Fig. 2.6] for the 3-ball system). This is what has motivated researchers to
extend it while remaining in a rigid-body approach, and this is what motivates us to
analyze which are the cases when it does correctly predict the post-impact velocity
in Sect. 5.

Remark 6 Solving the impact LCP in (11) allows one to compute the projection in
(7), i.e., the index setJ (q). We could start from the reduced dynamics (4) in which
the calculations for the tangent and normal cones are simplified, since the constraints
define the first orthant. However, projections are made in the metric defined by M̄,

which is no longer a diagonal matrix. In these coordinates, the Delassus’ matrix is
DI (q) = M̄ and Un,i = żi . Thus, there is nothing special to gain using (4) instead
of (1).

3.2 The Binary Impact Model

Contrary to Moreau’s law, which handles all impacts at the same time, the binary
impact model handles impacts separately. To do so, the multiple impact problem is
assumed to be a succession of binary collisions between rigid particles, so collisions
are independent of each other. Each binary collision between two balls can be com-
pletely solved by using the conservation law of momentum and Newton’s kinematic
restitution law:

{
m1q̇

−
1 + m2q̇

−
2 = m1q̇

+
1 + m2q̇

+
2 ,

q̇+
2 − q̇+

1 = −en(q̇
−
2 − q̇−

1 ),
(14)

where superscripts (−) and (+) indicate the pre- and post-impact velocities, and en is
the coefficient of normal restitution which takes a value from 0 for purely dissipative
collision to 1 for purely elastic collision. Note that each binary collision is assumed
to be central: the collision occurs only in the normal direction of the contact, as
illustrated in Fig. 2.

The post-impact velocity of each ball is obtained by solving the system of linear
equations (14):

q̇−
1 q̇−

2 q̇+1 q̇+2

After collisionBefore collision

m1 m2 m2m1

Fig. 2 Two particles before and after a binary collision
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⎧
⎪⎨

⎪⎩

q̇+
1 = m1 − m2en

m1 + m2
q̇−
1 + (1 + en)m2

m1 + m2
q̇−
2 ,

q̇+
2 = (1 + en)m1

m1 + m2
q̇−
1 + m2 − enm1

m1 + m2
q̇−
2 .

(15)

In the case in which the two balls have the same mass and the first ball comes to
collide with the last one at rest, the post-impact velocities are

⎧
⎪⎨

⎪⎩

q̇+
1 = 1 − en

2
q̇−
1 ,

q̇+
2 = (1 + en)

2
q̇−
1 .

(16)

If the collision is purely elastic (en = 1), the first ball stops and the last one moves
forward after collisionwith a velocity equal to the pre-impact velocity of the first ball.
This means that the energy and momentum of the first ball are entirely transferred
to the last one.

While the outcome of a binary collision is easily obtained, the definition of the
succession of binary collisions is not straightforward. One can try to mimic the wave
propagation induced by the shock in a granular media to define the sequence of
binary collisions. Let us consider a granular monodisperse chain composed of n
elastic identical beads as an example. The beads are numbered 1, 2, . . . , n from the
left to the right. When the first ball moves with a velocity of 1 m/s and collides with
the other balls which are at rest, a solitary wave is initiated and propagates from
the left to the right. According to the wave propagation, the succession of binary
collisions can be defined as follows: ball 1 collides with ball 2, then ball 2 collides
with ball 3, …, then ball i collides with ball i + 1, …, and at the end, ball n − 1
collides with ball n. Applying the rule (15) from the first to the last binary collision,
we obtain the impact outcome as follows: balls 1 to n − 1 stop and ball n moves
forward with a velocity of 1 m/s. This sequence of binary collisions is also true for
a tapered chain in which the bead diameter decreases progressively, and it has been
used by several authors to study the momentum and energy propagation in tapered
chains [24–27]. It is worthmentioning that for elasticmonodisperse chains or tapered
chains and for the considered particular initial condition, i.e., the first ball collides
with the other balls at rest, the sequence of binary collisions is uniquely defined.
However, this is not true in most cases. Let us demonstrate this point by considering
a monodisperse chain of 10 dissipative beads. We apply the binary collision rule
(15) with the coefficient of restitution en = 0.5 to the sequence of binary collisions
defined above. The velocity of each bead after this sequence of binary collisions is
shown in Table 1. It can be seen that beads enter into collisions again after the first
sequence of binary collisions: there are indeed potential collisions between balls 1
and 2, between balls 2 and 3, and so on. Even for an elastic chain, we can encounter
this problem. Let us take an elastic decorated chain (Fig. 3) as an example. For this
granular chain, three small balls of mass 0.5m are placed periodically between four
big balls of mass m. Table 2 shows that there are several potential collisions between
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Table 1 Bead velocity for a monodisperse chain after a sequence of binary collisions from the left
to the right

1 2 3 4 5 6 7 8 9 10

0.25 0.19 0.14 0.11 0.08 0.06 0.04 0.03 0.026 0.08

Fig. 3 Illustration of a
decorated chain

Table 2 Bead velocity for a decorated chain after a sequence of binary collisions from the left to
the right

1 2 3 4 5 6 7

0.3333 −0.4444 0.2963 −0.3951 0.2634 −0.3512 0.7023

balls after the first sequence of binary collisions. A question that arises here regards
which order of binary collisions we should consider when there are several binary
collisions to be handled.We present here two strategies that can be used for a granular
chain in which collisions start at the left end and propagate to the right end.

(1) Binary collisions are always handled from the left to the right. This means that
among the set of possible collisions, the collision at the contact with the least
value of the index k is handled first.

(2) The order of binary collisions is unimportant, so binary collisions can be ran-
domly handled. This strategy has been adopted in [28, 29].

It is worth mentioning that the selection of binary collisions with the left-to-right
order or the random order presented above is not physically justified. Let us apply
these two strategies to a disordered chain of 30 elastic balls. For this kind of gran-
ular chain, ball masses are randomly distributed. Sequences of binary collisions are
randomly selected with the uniform distribution law. Figure 4 shows a comparison
between the impact outcomes obtained with the two considered strategies. One can
see that the impact outcome depends strongly on the chosen sequence of binary col-
lisions. In addition, different random sequences of binary collisions lead to different
impact outcomes, as shown in Fig. 5. This is intimately related to the fact that the
trajectories are, in general, discontinuous with respect to initial data, as we pointed
out in Sect. 3.1.

Another issue of the binary collision model is that the sequence of binary colli-
sions can tend to infinity before the impact process ends, even for simple cases. For
example, Towne and Hadlock [5] have determined analytically that the number of
binary collisions for a chain of three balls is infinite if the number z defined in (17)
satisfies z ≥ 1 (see [3] for more discussions):
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Fig. 4 Ball post-impact
velocity versus ball number
for a disordered chain
obtained with the
left-to-right and random
sequences of binary
collisions

Random
Left to right

q̇+ i
Ball number

Fig. 5 Ball post-impact
velocity versus ball number
for a disordered chain
obtained with four random
sequences of binary
collisions q̇+ i

Random 1

Random 4

Ball number

Random 3
Random 2

Table 3 Number of binary collisions Nc obtained with the left-to-right (LR) and random (R) orders
versus the number of balls n in a disordered chain with en = 0.9

n 10 20 30 40 50 60 70

Nc - LR 53 189 991 18476 4731360 38936068 –

Nc - R 51 153 397 1316 – – –

z = 1

2

(√
en + 1√

en

) 1
√(

1 + m2

m1

)(
1 + m2

m3

) . (17)

The number of binary collisions increases quickly with the number of balls, in par-
ticular for dissipative chains (en < 1), as shown in Table 3 for a disordered chain
with en = 0.9. One can see that the binary collision model is not able to determine
the impact outcome with 70 balls for the left-to-right order and with 50 balls for the
random order, because the number of binary collisions to be handled is too big.

In summary, the binary collision model presents three main drawbacks:

(1) The impact outcome is possibly not unique, which is related to the discontinuity
with respect to the initial data;
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(2) The impact outcome depends on the chosen order of sequence of binary colli-
sions;

(3) The number of binary collisions to be handled is possibly infinite.

3.3 The LZB Model

This way of treating multiple impacts has been introduced in [30–32], and we briefly
summarize it in this section. It has been validated through extensive comparisons
between experimental and numerical data in [3, 33–37] for chains of balls, rocking
blocks, bouncing dimers and other setups. This is a model of the class (ii), based on
the Darboux-Keller approach [1, Sect. 4.3.5]. As such, it is based on the following
fundamental assumptions:

1. Forces other than impact forces are negligible during the collision process.
2. Positions are constant during the collision process.
3. Tangential stiffnesses are infinite.
4. The impact consists of a compression phase followed by an expansion phase.

Then, the impact dynamics consist of a first-order dynamics whose state is the
velocity, and the time-scale is replaced by the impact force impulse. Though the
Darboux-Keller shock dynamics have a long history for two-body single impacts,
it is only recently that its extension to multiple impacts has been proposed with
the use of energetic coefficients of restitution (CoRs) [30, 32]. We summarize the
LZB dynamics now, when applied to chains of aligned balls. Let us start from

(1): Mq̈(t) = Wλ(t), where W Δ= ∇f(q) is constant. In this example, M and W
are constant, so the constant position assumption is useless. During the impact, we

will denote the infinitesimal impulse as dP Δ= λdt , so that the so-called Darboux-
Keller dynamics writes Mdq̇ = WdP ⇔ M dq̇

dP = W, after a time rescaling has
been performed. The next basic assumption is that at each contact i , one has the
force/indentation relation λi = Ki (δi )

ηi , where Ki is the contact equivalent stiff-
ness and ηi is the elasticity coefficient (ηi = 1 for linear elasticity, ηi = 3

2 for
Hertz’ elasticity). More precisely, the LZB model may be designed with a mono-
stiffness compression/expansion model, or a bi-stiffness compression/expansion
model [30], or even a tri-stiffness model [3, Fig. 4.4]. Let us describe the bi-
stiffness model, as shown in Fig. 6. During the compression phase (from the origin
to Mi ), one has λc,i = Ki (δi )

ηi ; during the expansion (or restitution) phase, one has

λe,i = λMi

(
δi −δri

δMi −δri

)ηi

(see [1, Sect. 4.2.1.2] for a short history about bi-stiffnessmod-

els). The dashed area corresponds to the dissipated energy during the shock, δMi is the
maximal indentation, and δr i is the residual indentation. The work done by the con-
tact force during the compression phase is Wc,i = ∫ δMi

0 λi (δi )dδi = 1
1+ηi

Ki (δMi )ηi +1,

and during the restitution phaseWe,i = ∫ δri

δMi
λi (δi )dδi = − 1

1+ηi
Ki (δMi )ηi (δMi − δr i ).

Actually, the bi-stiffness model is a piecewise-continuous model, which states that
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Fig. 6 The bi-stiffness
force/indentation model for
the LZB model at contact i

0

compression

expansion

δi

λi

λMi M i

δMiδr i

λi = Ki (δi )
ηi if δ̇i ≥ 0 (compression) and λi = K e

i (δi − δr i )ηi if δ̇i < 0 (expansion),

where K e
i = Ki

(
δMi

δMi −δri

)ηi

. Calculations show that the energeticCoRat contact i sat-

isfies e2i,∗ = − We,i

Wc,i
= 1 − δri

δMi
=
(

Ki
K e

i

) 1
ηi , hence δr i = δMi (1 − e2i,∗). Perfectly plastic

impacts with ei,∗ = 0 imply that δr i = δMi , so that the expansion phase has zero
duration and the point (δMi , 0) is reached instantaneously from the maximum com-
pression point Mi .

The next step is to calculate the contact force as a function of the potential energy.
Starting from λi = Ki (δi )

ηi , and using dλi
dt = λi

dλi
d Pi

, one finds that

λi (Pi (t)) =
[

(ηi + 1)
∫ Pi (t)

0
K

1
ηi

i ∇T fi q̇ d Pi

] ηi
ηi +1

. (18)

Further calculations not recalled here allow one to show that, even in case of pre-
compression (with λi (0) 
= 0), one has

λi (Pi (t)) = (1 + ηi )
ηi

ηi +1 K
1

ηi +1

i (Ei (Pi (t)))
ηi

ηi +1 , (19)

where Ei (Pi ) is the potential energy at contact i , i.e., Ei (Pi ) = E0,i + ∫ Pi (t)
0 δ̇i (Pi )

d Pi , where E0,i is the potential energy due to pre-compression. Taking pre-
compression into account is crucial, because such multiple impacts usually involve
repeated impacts at the same contact point, which correspond to an impact start-
ing again while the zero indentation has not been reached yet (see Fig. 8). Repeated
impacts render the problemmore complex. A crucial result is shown in [30, Theorem
3.1]. Let us consider Fig. 7. Then, [30, Theorem 3.1] guarantees that a compression-
expansion cycle ̂O R′δr1 (curves 1 and 3) is equivalent, from the energetic point of
view, to a cycle ̂ARδr2 (curves 2 and 4), where the compression would finish at R′
(respectively at R). This allows us to prove the following. When the contact point i
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Fig. 7 The potential energy
when the contact point is
located at the expansion
phase

1

3
4

R

M

r1 r2R' M

R'

M

R

A

2

R

Fig. 8 Repeated impact: the
contact point with two
compression phases

M1

M2

M2

M1

A

M2

B

R

R M1

R

moves from Mi to Ri along the expansion curve in Fig. 7, the recovered energy is
∫ δR,i

δM,i
λi (δi )dδi , and we obtain at contact i4

∫ δRi

δMi
λi (δi )dδi = ∫ δr2,i

δMi
λi (δi )dδi − ∫ δr2,i

δRi
λi (δi )dδi

= −e2i,∗
∫ δMi

δ0
λi (δi )dδi − ∫ δr2,i

δRi
λi (δi )dδi ,

(20)

where ei,∗ is the energetic CoR at contact i . According to Stronge [38], the ener-
getic CoR ei,∗ is defined as e2i,∗ = −W e

i /W c
i , where W c

i and W e
i are the respective

works done by the contact force during the compression and expansion phases. The
term premultiplied by −e2i,∗ is equal to the area enclosed by the curve ̂δr2RδR in
Fig. 7. Let us assume that the force/indentation relationship remains the same for
the second compression/expansion phase (i.e., the elasticity properties do not vary).

4In Figs. 7 and 8, the subscript i is not indicated. Thus, Ri is R, and so on.
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Using this, and after manipulations, it follows that the potential energy along the
repeated impact in Fig. 8 is given as follows, where Q denotes a generic point along
the force/indentation curve:

E(P(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 + ∫ P(t))
0 δ̇(P(s))d P(s) Q ∈ ̂O M1

EM1 + 1
e2∗

∫ P(t)
PM1

δ̇(P(s))d P(s) Q ∈ ̂M1R

ER + ∫ P(t)
PR

δ̇(P(s))d P(s) Q ∈ ̂RM2

EM2 + 1
e2∗

∫ P(t)
PM2

δ̇(P(s))d P(s) Q ∈ ̂M2B,

(21)

where EM1 is the residual potential energy at point M1, and so on. As a next step,
one can use (19) to derive the distributing law between infinitesimal impulses d Pi

and d Pj at contact points i and j , respectively:

d Pi

d Pj
= (1 + ηi )

ηi
1+ηi

(1 + η j )
η j

1+η j

K
1

1+ηi
i

K
1

1+η j

j

(Ei (Pi ))
ηi

1+ηi

(E j (Pj ))
η j

1+η j

. (22)

It is noteworthy that if all contacts have the same elasticity coefficient, the distributing
law simplifies and shows that the ratio in (22) depends only on the stiffnesses ratio
(

Ki
K j

) 1
1+η

. It is a well-known fact that the post-impact velocities in chains of aligned

balls indeed do not depend on the absolute values of the equivalent contact stiffnesses,
but only on their ratio, in the case of linear elasticity (see, for instance, [1, Sect. 6.1.3]).
This result generalizes it. In summary, the potential energy can be calculated along
(21), while the infinitesimal impulse ratio is given by (22). Now, contrary to the case
of a single collision in which one can make a time-scale change, passing from time t
to the impact force impulse d P (since the contact/impact forces are always assumed
to be non-negative, and positive for times strictly inside the collision interval), one
has d P > 0, and this time rescaling is valid. In a case of multiple impacts, one has
to choose a so-called primary contact at which it is guaranteed that the impulse does
not become constant, for otherwise, the time rescaling becomes impossible with this
impulse. Thus, one chooses the primary impulse as the impulse from contact i at
which the potential energy at this contact Ei (Pi ) is maximal amongst the various
contact points.

We obtain the multiple impact Darboux-Keller equations:

1. (contact parameters): K j , η j , e j,∗, 1 ≤ j ≤ n − 1.
2. (dynamical equations):

Mdq = WdP, (23)
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where the impulse increment d Pj at a contact j is related to the impulse increment
d Pi at another contact i by the distributing law (22). The impulse increment d Pj

can be also related to the time increment dt by the relation

d Pj = λ j dt = (1 + η j )
η j

η j +1 K
1

η j +1

j (E j (t))
η j

η j +1 dt, (24)

with the contact force λ j computed with Eq. (18).
3. (potential energy for the bi-stiffness model):

E j (Pj ) = ET ra, j + 1

T ra

∫ Pj (t)

PT ra(t)
∇T f j (q)q̇ d Pj (25)

where T ra = 1 if δ̇ j > 0 (compression), T ra = e2j,∗ if δ̇ j < 0 (expansion), ET ra, j

is the accumulated potential energy at the beginning of the integration, and PT ra(t)
depends on the impulse value at the beginning of the subphase (see (21)).

4. (impact termination): E j (Pj ) = 0 and δ̇ j ≤ 0 at all contacts 1 ≤ j ≤ n − 1.

We have δ̇ j = ∇ f j (q)T q̇ = q̇i+1 − q̇i . Notice that (25) could be rewritten in its dif-
ferential form

d E j = 1

T ra
∇ f j (q)T q̇ d Pj ⇔ d E j

d Pi
= 1

T ra
δ̇ j (P)� j i (Ei (Pi ), E j (Pj )), (26)

with� j i = d Pj/d Pi and initial condition E j (PT ra, j ) = ET ra, j . Themultiple impact
Darboux-Keller equations are therefore a set of first-order nonlinear and coupled
piecewise smooth differential equations, with states q̇, �, E, and state-dependent
switching conditions at times of maximum compressions (δ̇ j = 0, points M1, M2 in
Fig. 8) or repeated impacts (point R in Fig. 8).

Remark 7 1. The bi-stiffness model has several drawbacks: it does not model a
bounded maximal contact force, it is a rough representation of plasticity (if plas-
tification is the primary source of dissipated energy), and it models dissipation
during the expansion phase (while dissipation could also occur during the com-
pression phase). However, it can be improved as described in [3, Sect. 4.2.4].

2. The LZB approach can also be formulated with Coulomb friction at contacts
[37].

3. The CoRs ei,∗ can be estimated off-line from pairwise collisions between two
balls.

4. We employ the word “balls”, however, the chain may consist of other types of
elementary particles than spherical balls, like beads or polyhedral grains.

5. We have written δ̇ j (P) because, due to dynamical couplings stemming from M
and W in (23), the local velocity may depend on several contact impulses.

6. As we shall see in Sect. 4.3, it is possible to dispense with the distributing law in
(22), which is quite time-consuming during numerical integration (see [3, Chap.
4] for a complete exposition of the event-driven algorithm for the LZB model,
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in particular, the algorithm for the primary impulse selection). The distributing
law is nevertheless quite interesting, since it highlights the way in which the
different contacts interact with each other.

7. We see that the LZB model allows us to include the effects of contact flexibil-
ities (which are crucial in chains of balls impacts) while disregarding position
variations. This is done thanks to the distributing law.

4 Numerical Resolution

The numerical algorithms which are used to compute the post-impact velocities,
may differ from one impact law to the next. Let us describe now how the above three
models of multiple impacts are treated numerically.

4.1 Moreau’s Impact Law

As alluded to above, the great advantage of Moreau’s law is that it is naturally
embedded in the discrete-time version ofMoreau’s sweeping process for Lagrangian
systems, using a suitable event-capturing scheme that stems fromMoreau’s catching-
up algorithm. The numerical aspects of the sweeping process applied to mechanical
systems are treated in detail in [1, 7, 21, 22, 39, 40]. Let us briefly introduce the
catching-up algorithm. We start from the second order sweeping process:

M(q)dv + F(q, v, t)dt ∈ −NV (q)(w), (27)

where v = q̇ almost everywhere and dv is the so-called differential measure asso-
ciated with the acceleration (which cannot be a function at impact times, since the
velocity has a discontinuity), so that (27) is a measure differential inclusion (MDI).
Outside impacts we have dv = q̈(t)dt . At an impact time t , the MDI (27) is equiva-
lent to (5), that is dv = (q̇(t+) − q̇(t−))δt , with δt the Dirac measure at t . The basic
time-stepping method for (27) is as follows on [tk, tk+1), with constant time-step
h = tk+1 − tk > 0, k ≥ 0:

⎧
⎪⎪⎨

⎪⎪⎩

M(qk)(vk+1 − vk) + h F(qk, vk, tk) ∈ −NV (qk )

(
vk+1 + evk

1 + e

)

qk+1 = qk + hvk+1.

(28)

We can proceed as we did in Sect. 3.1 to transform (5).We denote Fk
Δ= F(qk, vk, tk).
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vk+1 − vk + h M−1(qk)Fk

1 + e
∈ −M−1(qk) NV (qk)

(
vk+1 + evk

1 + e

)

⇔ vk+1 + evk

1 + e
+ h M−1(qk)Fk

1 + e
− evk

1 + e
− vk

1 + e
∈ −M−1(qk) NV (qk )

(
vk+1 + evk

1 + e

)

⇔ vk+1 = −evk + (1 + e) projM(qk)

[

V (qk);−h M−1(qk)Fk

1 + e
+ vk

]

⇔ vk+1 = −evk + (1 + e) argminz∈V (qk )
1
2 (z − v̄k)T M(qk)(z − v̄k),

(29)
where v̄k = −hM−1(qk )Fk

1+e + vk . Notice that if fi (q) > 0 for all 1 ≤ i ≤ n − 1, then
vk+1 = vk − h M−1(qk)Fk . We infer that the next velocity can be computed by solv-
ing a quadratic problemunder conic varying constraints.Anext step is to compute this
projection using complementarity. To this aim, we notice first that NV (qk )(wk+1) =
{z ∈ IRn|z =∑i∈I (qk )

−λi∇ fi (qk), 0 ≤ λi ⊥ wT
k+1∇ fi (qk) ≥ 0}. Thus, we obtain

M(qk)(vk+1 − vk) + h Fk = ∇fI (qk )(qk) λI (qk ),k+1

⇔ vk+1 − vk + hM−1(qk)Fk = M−1(qk)∇fI (qk )(qk) λI (qk ),k+1

⇔ ∇T fI (qk )(qk)(vk+1 − vk + hM−1(qk)Fk) = DI (qk )(qk) λI (qk ),k+1,

(30)

where DI (qk )(qk) = ∇T fI (qk )(qk)M−1(qk)∇fI (qk )(qk) is the Delassus’matrix of
(position) active constraints at step k. Denoting the local velocities as Un,I (qk ),k , we
obtain the mixed LCP:

Un,I (qk ),k+1 − Un,I (qk ),k + h∇T fI (qk )(qk)M−1(qk)Fk = DI (qk )(qk) λI (qk ),k+1

0 ≤ λI (qk ),k+1 ⊥ Un,I (qk ),k+1 + e Un,I (qk ),k ≥ 0,

(31)
where we used the expression for wT

k+1∇ fi (qk) in the complementarity conditions.
The similarity between (31) and (9) is obvious. Once the set of active constraints
has been computed, one can solve the mixed LCP (31) to compute Un,I (qk ),k+1 and
λI (qk ),k+1. Once λI (qk ),k+1 is known, one can use the first line in (31) to obtain vk+1

and then qk+1. There exist quite efficient algorithms to solve mixed LCPs, some of
which are implemented in the INRIA siconos software package.

Remark 8 The rationale behind the above is that the elements inside the normal cone
−NV (qk )

( vk+1+evk

1+e

)
are an approximation of∇fI (q)(q) λt,I (q)([tk, tk+1]), that is, the

measure of the interval [tk, tk+1] by∇fI (q)(q) λt,I (q). Thus, even at an impact time,
this is a bounded quantity (in fact, the impact magnitude).
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In practice, the event-capturing method in (28) can be modified to cope with energy
conservation, accuracy, etc [41, 42]. An important feature is that it is shown to
converge [8], hence for small time-steps, the numerical solutions must be close to
the analytical ones.

4.2 Binary Collision Model

The binary collision model is solved in an iterative manner until no binary collision
is found. For a chain of balls where the impact starts at the left end, the balls are
numbered 1, 2, . . . , n, and the contacts are numbered 1, 2, . . . , s from the left to
the right. In this case, we can handle the left-to-right sequence of binary collisions
proposed in Sect. 3.2 by usingAlgorithm 1. This algorithm can also be used to handle
a random sequence of binary collisions by randomly selecting a binary collision in
set I instead of getting the minimum value in set I .

4.3 LZB Impact Model

The LZB impact model presented in Sect. 3.3 can be integrated with respect to the
impulse scale. To do so, the contact at which the potential energy is maximum is
chosen as the primary contact for each integration step. The impulse increment d Pj at
each contact is related to the one at the primary contact by the distributing law (22).
Two singularities may be encountered during the integration. The first singularity
may occur at the beginning of the impact process where the potential energy is
zero at all contacts. The second one may occur during the impact process when a
contact, which has left the impact process previously, enters again into the impact
process. When a singularity occurs, the distributing law (22) must be regularized.
The interested reader can refer to [3, Sect. 4.2.8] for the regularization techniques and
for the integration algorithm. It is worth mentioning that this integration technique
requires a significant computational effort to select the primary contact among all
contacts at each integration step and to handle the singularities. In addition, when the
primary contact changes from one contact to another, the impulse increment d Pj at
each contact computed with the distributing law (22) changes brutally, which might
slow down the convergence of the algorithm.

The LZB model can also be integrated with respect to the time scale. To do so,
the Darboux-Keller equation (23) is first discretized using the Euler explicit method:

q̇k+1 = q̇k + M−1WΔPk, (32)

where k is an integration step (k = 1, 2, . . . , N ). The impulse increment d Pk
j at each

contact is obtained by integrating (24) with the Euler explicit scheme:
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Algorithm 1 Handling binary collisions according to the left-to-right order in a
granular chain.

Require: q̇−
i , mi for all particles i = 1, 2, . . . , n

Require: e j for all contacts j = 1, 2, . . . , s
Ensure: q̇+

i for all particles i = 1, 2, . . . , n
// Initialize
for i = 1 → n do

q̇+
i ← q̇−

i
end for
I sT ermination ← f alse
N ← 0 � number of binary collisions handled
//Iterations
while I sT ermination = f alse do � while impact is not yet terminated

I sT ermination ← true
// Find all binary collisions to be handled
I ← ∅ � set of all binary collisions to be handled
for j = 1 → s do

if q̇+
j+1 − q̇+

j < 0 then
Add j to I
q̇−

j ← q̇+
j

q̇−
j+1 ← q̇+

j+1
I sT ermination ← f alse

end if
end for
// Select a binary collision in set I and handle it
k ← min(I ) � get minimum value in I

q̇+
k ← q̇−

k
mk − mk+1ek

mk + mk+1
+ q̇−

k+1
(1 + ek)mk+1

mk + mk+1

q̇+
k+1 ← q̇−

k
(1 + ek)mk

mk + mk+1
+ q̇−

k+1
mk+1 − ekmk

mk + mk+1
N ← N + 1

end while

ΔPk
j =
∫ t k+1

t k

λ j (t)dt ≈ λk
jΔt = (1 + η j )

η j

1+η j K
1

1+η j

j (Ek
j )

η j
η j +1 Δt. (33)

A singularity occurs with (33) when a contact enters into the impact process at an
integration step k, i.e., Ek

j = 0. In this case, ΔPk
j can be approximated as

ΔPk
j =
∫ t k+1

t k

λ j (t)dt ≈ 1

2
λk+1

j Δt = 1

2
K j (δ

k+1
j )η j Δt ≈ 1

2
K j (δ̇

k
j Δt)η j Δt. (34)

The potential energy is computed by discretizing (25):

Ek+1
j = Ek

j + δ̇k
j + δ̇k+1

j

2
ΔPk

j , if δ̇k+1
j ≥ 0, (35)
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Ek+1
j = Ek

j + 1

e2j,∗

δ̇k
j + δ̇k+1

j

2
ΔPk

j , if δ̇k+1
j < 0. (36)

The impact process can be considered to be terminated at a step k if

Ek
j = 0, and δ̇k

j ≤ 0, ∀ j = 1, 2, . . . , s. (37)

The interested reader can followAlgorithms 2, 3 and 4 to implement the resolution
of the LZB model with respect to time into a programming language.

Algorithm 2 Integration up to the end of the impact process.
Require: q̇0, M, W, Δt
Require: E0

j : initial potential energy at all contacts j = 1, 2, . . . , s
Require: K j , η j , e j,∗ for all j = 1, 2, . . . , s
Ensure: q̇, P at the end of the impact process

//Initialize
δ̇
0 ← −WT q̇0

P0 ← 0
//Integration
t ← 0 � Time scale
I sT ermination ← f alse
//I sT ermination = true: impact is over
//I sT ermination = f alse: otherwise
k ← 0
while I sT ermination = f alse do � while the multiple impacts not yet terminated

Check status of each contact and the termination condition with Algorithm 3
Integrate up to the end of the current step with Algorithm 4
t ← t + Δt
//Advance to the next step
k ← k + 1

end while

For a comparison between the two above integration algorithms, we consider a
monodisperse chain of 1000 elastic beads, in which the first bead with a velocity of
1 m/s collides with the other beads at rest. The CoR e∗ is then equal to 1.0 for all
contacts and the Hertz’s contact law (η = 3/2) is used for each contact. The other
parameters are: Young’s modulus E = 203 GPa, Poisson’s coefficient ν = 0.3, ball
radius r = 0.01m andmass density ρ = 7780 kg/m3. For this chain, the post-impact
velocities of balls must satisfy the energy conservation. The integration with respect
to impulsewith a step sizeΔP = 10−6 N.s needs about 2.2 × 107 steps and consumes
about 380 s of CPU time. The resulting post-impact velocities of balls satisfy the
energy conservation with a relative error of about 1.5 × 10−5. With regard to the
integration with respect to time using (34), a step size Δt = 10−8 s results in about
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Algorithm 3Check status of each contact and the termination condition at the begin-
ning of a step k.

Require: δ̇k
j , Ek

j for all j = 1, 2, .., s

Ensure: f lagk
j for all j = 1, 2, .., s

1: // f lagk
j = 0: contact does not come into collision

2: // f lagk
j = 1: contact begins the compression phase

3: // f lagk
j = 2: contact is already in the impact process

Ensure: I sT ermination
4: I sT ermination ← true
5: for j = 1 → s do
6: if Ek

j = 0 then

7: if δ̇k
j ≤ 0 then

8: f lagk
j ← 0

9: else � δ̇k
j > 0

10: f lagk
j ← 1

11: I sT ermination ← f alse
12: end if
13: else � Ek

j > 0

14: f lagk
j ← 2

15: I sT ermination ← f alse
16: end if
17: end for

2.9 × 106 steps and about 38 s of CPU time. The resulting post-impact velocities
of balls satisfy the energy conservation with a relative error of about 2.0 × 10−7.
The difference between the solutions obtained with the two integration algorithms is
about 0.03%. It can be concluded that the integration algorithm with respect to time
is about ten times faster than the integration algorithm with respect to impulse for
the considered chain. The first one would be more advantageous for systems with
higher numbers of particles.

5 Comparisons

In this section, we present a comparison between Moreau’s law, the binary collision
model and the LZBmodel. For this comparison, the outcome given by the LZBmodel
is chosen as reference and different parameters such as the elasticity coefficient, the
contact stiffness distribution, the coefficient of restitution and the mass distribution
are varied. Free chains of aligned balls are first considered in Sect. 5.1, and chains
of aligned balls colliding with a wall are then considered in Sect. 5.2.
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Algorithm 4 Integration up to the end of each step k.

Require: M, W, Δt , q̇k

Require: η j , K j , e j,∗, Ek
j , δ̇

k
j , Pk

j for all j = 1, 2, . . . , s

Ensure: q̇k+1, δ̇k+1
j , Ek+1

j , Pk+1
j for all j = 1, 2, . . . , s

1: //Compute the impulse increment at each contact ΔPk
j

2: for j = 1 → s do
3: if f lagk

j = 0 then � Contact does not come into the collision process

4: δPk
j ← 0

5: else if f lagk
j = 1 then � Contact begins the collision process

6: ΔPk
j ← 1

2 K j (δ̇
k
j Δt)η j Δt

7: else if f lagk
j = 2 then � Contact has already been in the collision process

8: ΔPk
j ← (1 + η j )

η j
1+η j K

1
1+η j
j (Ek

j )

η j
1+η j Δt

9: end if
10: end for
11: //Compute q̇k+1, δ̇

k+1

12: q̇k+1 ← q̇k + M−1WΔPk

13: δ̇
k+1 ← −WT q̇k+1

14: //Compute Pk+1
j , Ek+1

j , λk+1
j

15: for j = 1 → s do
16: Pk+1

j ← Pk
j + ΔPk

j

17: if δ̇k+1
j ≥ 0 then � contact located in the compression phase

18: Ek+1
j ← Ek

j + δ̇k
j + δ̇k+1

j

2
ΔPk

j

19: else � contact located in the expansion phase

20: Ek+1
j ← Ek

j + 1

e2j,∗

δ̇k
j + δ̇k+1

j

2
ΔPk

j

21: end if
22: end for

5.1 Free Chains of Aligned Beads

Let us first consider monodisperse chains of balls in which all the balls have the
same mass. The dependence of the impact outcome on the elasticity coefficient,
on the contact stiffness distribution and on the coefficient of restitution is analyzed,
respectively, in Sects. 5.1.1, 5.1.2 and 5.1.3. The effect of themass distribution is then
analyzed by considering decorated chain (i.e., polydisperse chains) in Sect. 5.1.4.

5.1.1 Varying the Elasticity Coefficient η

To study the effect of the elasticity coefficient η in the LZB model, a monodisperse
chain composed of 100 elastic beads (e∗ = 1) is considered. The stiffness Ki is
the same for all contacts, while the elasticity coefficient η is varied. The impact
outcomes given by the LZB model for different values of η are shown in Fig. 9 and
are compared to the impact outcomes given byMoreau’s law and the binary collision
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v+ i

v+ i

(a) η = 0.001 (b) η = 0.01

v+ i v+ i

(c) η = 0.1 (d) η = 1.0
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Ball number

Ball number

Ball number

Ball number

Ball number

Ball number

v+ i

(e) η = 1.5 (f) η = 3.0

Fig. 9 Post-impact velocities obtained with the LZBmodel versus ball number for different values
of η

law in Fig. 10. It is worth mentioning that the impact outcomes given by Moreau’s
law and the binary collision model are independent of the elasticity coefficient η.
It can be seen that the elasticity coefficient η greatly affects the impact outcome
given by the LZB model. For a very small value of η (η = 10−3, for example), only
the first ball bounces back and the remaining balls move forward with almost the
same velocity after impact. This is similar to the case where the first ball impacts
the other balls which are rigidly bonded. It is interesting to note that this particular
impact outcome is given byMoreau’s law (Fig. 10). As η increases, fewer balls move
forward after impact, as shown in Fig. 11. For a high enough value of η (η = 3, for
example), only the last ball moves forward after impact with a velocity almost equal
to the velocity of the first ball before impact, and the other balls are almost at rest,
which is the outcome given by the binary collision model (Fig. 10). This is similar
to the case where the first ball impacts the other balls which are separated from each
other by a gap.
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Fig. 10 Post-impact
velocities obtained with
Moreau’s model and the
binary collision model
versus ball number v+ i

Moreau’s law
binary collision

Ball number

Fig. 11 Number of balls
moving forward after impact
obtained with the LZB
model, versus η

η

N

Let us take the outcome given by the LZB model as a reference outcome and then
quantify the gap between the impact outcome v+ obtained with Moreau’s law or the
binary collision law and the impact outcome v+

lzb obtained with the LZB model by
the following gap measure:

Φ = ‖v+ − v+
lzb‖

‖v+
lzb‖

× 100%, (38)

where ‖.‖ is the Frobenius norm of a vector. Figure 12 shows the gap measure Φ

defined for outcomes given by Moreau’s law and the binary collision model versus
the elasticity coefficient η. It can be seen that, by varying the elasticity coefficient η
from a very small value to a big value, the impact outcome given by the LZB model,
initially close to the outcome given byMoreau’s law, moves away from the latter, but
gets closer to the outcome given by the binary collision model. Except for extreme
values of η, the impact outcomes obtainedwithMoreau’s law and the binary collision
model are quite far from that given by the LZB model. For spherical homogeneous
beads, Hertz’s contact model (η = 3/2) is widely adopted in the literature. In this
case, the binary collision model gives an approximation of the impact outcome with
an error of about 17% compared to the LZB model, while Moreau’s law gives an
unrealistic outcome.
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Fig. 12 Gap measure Φ of
Moreau’s law and the binary
collision model versus η

used in the LZB model

Φ
(%

)

binary collision

η

Moreau’s law

Fig. 13 Number of balls for
which the binary collision
model and Moreau’s model
give a good post-impact
velocity

η

N binary collision
Moreau’s law

model

It is interesting to note in Fig. 13 that although the outcomes given by the binary
collision model and Moreau’s law are poor for small and big values of η (η < 0.01
and η > 1.0), respectively, they can be considered to be good in terms of the number
of balls for which these models give a good post-impact velocity compared to the one
given by the LZB model. The post-impact velocity v+

i of a ball given by Moreau’s
law or the binary collision model is considered to be good compared to the result
v+

i,lzb obtained with the LZB model if

| v+
i − v+

i,lzb |
‖v+

lzb‖
< ε, (39)

where ε is a precision which is chosen to be equal to 0.05 in this study.
Let us analyze the wave propagation in the considered granular chain when vary-

ing the elasticity coefficient η in the LZB model, and the link between the wave
propagation and the impact outcome. Figure 14 shows the potential energy E versus
time t at the first 20 contacts (from left to right) for different values of η. It can be seen
that the wave propagation is greatly affected by the elasticity coefficient η. Three
classes can be observed: (i) strongly localized wave at the first contact for very small
values of η (Fig. 14a, b), (ii) attenuated and dispersed wave for intermediate values
of η (Fig. 14c–e) and (iii) dispersion-free wave for big values of η (Fig. 14f). Her-
rmann et al. [43] also observed the dispersion-free wave for the elasticity coefficient
η = 3.0. The wave propagation results from the compliance of solid bodies and is
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Fig. 14 Potential energy E at the first 20 contacts versus time t for different values of η

an important dynamical effect that should be taken into account in an impact model.
The LZB model takes into account this effect by using the contact model shown in
Fig. 6. As a result, it is capable of reproducing the wave propagation induced by a
shock and subsequently the impact outcome. On the other hand, Moreau’s law and
the binary collision model completely neglect this compliance effect and make use
of two opposite assumptions: the first one assumes that all collisions occur simulta-
neously, while the second one assumes that collisions occur in a sequential manner.
The first assumption can be justified for the wave propagation category (i), so the
impact outcome given by the LZB model coincides with the one given by Moreau’s
law (Figs. 9a, b and 10). The sequential collisions are observed for the wave propa-
gation category (iii); as a consequence, the impact outcome given by the LZB model
coincides with the one given by the binary collision model.

The category (ii) corresponds to the wave dispersion for which the shock initiated
at the first contact spreads out spatially and the energy induced by impact is shared by
many particles. A measure for this dispersion effect in terms of post-impact kinetic
energies of balls was introduced in [3]:

CK E = 1

T
+

√
√
√
√ 1

N

N∑

i=1

(T +
i − T

+
)2, (40)



Comparisons of Multiple-Impact Laws For Multibody Systems: Moreau’s Law, … 31

Fig. 15 Dispersion measure
CK E versus elasticity
coefficient η
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where T +
i is the post-impact kinetic energy of ball i (T +

i = mi (q̇
+
i )2/2), and T

+
is

the mean post-impact kinetic energy:

T
+ = 1

N

N∑

i=1

T +
i . (41)

According to (40), the higher the value of CK E is, the lower the dispersion effect
is. For a chain of n balls, CK E reaches the maximum value of

√
n − 1 for the case

where the energy after impact is concentrated in one ball and the other balls are at
rest. This chain exhibits zero dispersion effect, also called dispersion-free [44, 45].
Figure 15 shows the dispersion measure CK E obtained with the LZB model versus
the elasticity coefficient η. The maximum value of CK E for the considered chain of
100 balls is

√
100 − 1 ≈ 9.95. It can be seen that the dispersion effect is very weak

for very small values of η, and it increases as η increases until η ≈ 0.4, where CK E

reaches its minimum value. This means that the dispersion effect is maximum for
η ≈ 0.4, for which a strongly dispersed wave propagation can be seen in Fig. 14c.
When η increases beyond 0.4, the dispersion effect decreases and almost vanishes for
η = 3.0. It is worthmentioning that the dispersion-free outcome obtained for η = 3.0
corresponds to the sequential wave propagation shown in Fig. 14f. It was shown in
[3] that, for a chain of 3 balls, the dispersion measure CK E increases monotonically
with η. However, this monotonic dependency of CK E on η no longer exists for a
chain with a high number of balls. Figure 15 also shows that Moreau’s law and the
binary collision model give good impact outcomes for extreme values of η for which
the dispersion effect is very weak.

5.1.2 Varying the Contact Stiffness Distribution

It can be seen in the distributing law (22) that the impact outcome does not depend
on the value of the contact stiffness Ki if the latter and the elasticity coefficient ηi

are the same for all contacts. In this section, we show how the difference in stiffness
between contacts affect the impact outcome and for which cases the outcome of the
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LZB model coincides with the ones given by Moreau’s law and the binary collision
model. For this study, we set the elasticity coefficient η = 3/2 for all contacts in the
monodisperse elastic chain considered in Sect. 5.1.1 and vary the stiffness Ki at each
contact according to the following linear law: Ki = Ki−1 + αK ∗, with a coefficient
α and a reference stiffness K ∗. If α > 0, the contact stiffness increases progressively
from the left to the right of the chain, and the reference stiffness K ∗ is set to the first
contact. Otherwise, the contact stiffness decreases progressively, and the reference
stiffness K ∗ is set to the last contact. It should be noted that the value of the reference
stiffness K ∗ is of no importance.

Figure 16 shows the impact outcome given by the LZBmodel for different values
of α. It can be seen that the impact outcome changes slightly when the contact stiff-
ness is progressively decreased (α < 0) and approaches the one given by the binary
collision model. Despite a very strong decrease in contact stiffness (α = −104), we
cannot closely reach the latter: the two first balls still bounce back after impact. This

v+ i

(a) α = −104 (b) α = −102

v+ i

(c) α = 0 (d) α = 10

v+ i

v+ i
v+ i

v+ i

Ball number

Ball number

Ball number Ball number

Ball number

Ball number
(e) α = 102 (f) α = 104

Fig. 16 Post-impact velocities obtainedwith the LZBmodel versus ball number for different values
of α
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Fig. 17 Gap measure Φ of
Moreau’s law and the binary
collision model versus α

Φ
( %

)
α

Moreau’s law

binary collision
model

means that the dispersion-free outcome cannot be reached for the considered gran-
ular chain if only contact stiffnesses are varied. In fact, Reinsch [45] has developed
an analytical analysis for a granular chain with the linear contact model (η = 1) and
has shown that the dispersion-free outcome can only be reached if the mass of each
ball and the stiffness of each contact are both varied according to some specific laws.
On the other hand, the impact outcome changes greatly when the contact stiffness
is progressively increased (α > 0) and gets closer to the one given by Moreau’s
law. The latter one is closely reached for a very strong increase in contact stiffness
(α = 104). Figure 17 shows the gap measure defined in (38) for Moreau’s law and
the binary collision model versus coefficient α. It is clear that the outcomes given by
these two impact laws can be approached by progressively increasing and decreasing
the contact stiffness, respectively.

The link between the impact outcome and the wave propagation during impact
can be clearly observed in Fig. 18. It can be seen that the solitary wave, which
travels in a Hertzian monodisperse chain (Fig. 18c), is not significantly disturbed by
a progressive decrease in contact stiffness. On the other hand, a progressive increase
in contact stiffness greatly affects the wave propagation in the chain: the wave is
more dispersed and more attenuated. This makes the impact outcome significantly
different from the one given by the binary collision model. One can also see that
for α = 6 and 10 (Figs. 18e, f), secondary collisions occur at each contact, making
the wave more scattered. With a very strong increase in contact stiffness (α = 104),
the wave is strongly attenuated (Fig. 18h), leading to the impact outcome given
by Moreau’s law (Fig. 16f). The wave profiles shown in Fig. 18 can explain the
non-monotonic dependence of the dispersion measure CK E on α, shown in Fig. 19.
The best dispersion effect (the minimum value of CK E ) is obtained for α = 20. For
extreme values of α (a strong decrease or increase in contact stiffness), the dispersion
effect is very small, and in these cases Moreau’s law and the binary collision model
can predict the impact outcome of the chain.
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5.1.3 Varying the Coefficient of Restitution (Dissipation Effect)

So far, we have studied the impact in purely elastic granular chains, i.e., there is no
energy dissipation. We will show in the following how these systems behave when
contacts between particles are no longer elastic. It isworthmentioning that the perfect
elasticity is just an idealized case, and the energy dissipation always exists in the real
world. The latter comes from several sources: plasticity or viscosity of the constitutive
material, friction at the contact, vibration of the bulk solid, etc. For example, for
a collision between two beads constituted of chrome steel, which is a very elastic
material, the energeticCoR e∗, defined in Sect. 4.3, is around 0.95 [24]. Let us vary the
energetic CoR e∗ from 1.0 (purely elastic case) to 0.0 (purely dissipative case) for the
monodisperse chain considered in Sect. 5.1.1 with the elasticity coefficient η = 3/2.
Figure 20 shows the impact outcome obtained with the LZB model compared to
the one obtained with Moreau’s law for different values of the energetic CoR e∗.
As mentioned in Sect. 3.2, when using the binary collision model for a dissipative
monodisperse chain, there is more than one binary collision to be handled at one
time. Two strategies have been proposed for handling these simultaneous collisions.
However, the number of binary collisions can be infinite in many cases. Therefore,
the binary collision model is not considered for the comparison in this section. The
global CoR e used in Moreau’s law is equal to the energetic CoR e∗ in the LZB
model. It can be seen that the CoR e∗ greatly affects the impact outcome. Indeed, a
decrease of merely 2% in e∗ from 1.0 (Fig. 20a) to 0.98 (Fig. 20b) leads to a reduction
of 54% in the post-impact velocity of the last ball. Particles tend to be stuck together
after impact, i.e., they have almost the same post-impact velocities, as the CoR e∗
decreases. We consider that two particles are stuck together if the absolute value of
the relative velocity between them is smaller than 0.1% of the pre-impact velocity
of the first ball. We define the value of e∗ under which particles are stuck together
after impact. This value of e∗ is 0.86 for the considered chain of 100 balls, and it
increases as the number of balls increases (Table 4). According to Moreau’s law, the
first ball bounces back and the other balls are stuck together after impact for any
value of e∗, except for e∗ = 0 for which all the balls are stuck together. Therefore,
the outcome given by Moreau’s law is very different from the one given by the LZB
model, except for e∗ = 0 for which these two models give the same outcome. This
result is confirmed in Fig. 21, in which the gap measure Φ is plotted against the
CoR e∗.

Figure 22 shows a comparison between the two impact models in terms of the
kinetic energy ratio K E R defined as: K E R = T +/T − with T + and T − being the
kinetic energies before and after impact, respectively. When a granular chain with
multiple contacts is subjected to an impact, the induced energy propagates and dis-
perses in the system (Fig. 23), which involves more contacts to participate in the
impact process. If the system is dissipative, although each contact dissipates a small
amount of energy, the whole system of multiple contacts dissipates a great amount of
energy, as shown in Fig. 22. The wave is damped as it propagates through the system.
For the considered chain with 100 balls, the energy induced by the shock is almost
dissipated when e∗ < 0.9. With regard to Moreau’s law, it underestimates the energy
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Fig. 20 Post-impact velocities obtainedwith the LZBmodel versus ball number for different values
of the energetic CoR e∗

dissipation. Indeed, this impact model completely neglects the wave propagation in
a system with multiple contacts, so the impact is only localized at the first contact. It
should be noted that Moreau’s law describes the impact in the considered granular
chain as a single impact between the first ball and another solid composed of the
other balls. The only case in which this impact law gives the same outcome as the
one given by the LZB model is the purely dissipative case (e∗ = 0), for which the
wave is strongly damped and the energy induced by the shock is almost localized at
the first contact (Fig. 23f).
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Table 4 Value of e∗ under which particles are stuck together after impact for different values of
the number n of balls

n 2 3 10 20 30 40 50 100 500

e∗ 0 0.1 0.5 0.66 0.75 0.79 0.8 0.86 0.88

Fig. 21 Gap measure Φ of
Moreau’s law versus the
coefficient of restitution e∗

Φ
(%

)

e∗

Fig. 22 Kinetic energy ratio
K E R versus the coefficient
of restitution e∗

e∗

Moreau’s law
LZB model

K
E
R

5.1.4 Decorated Chain

Let us consider a decorated chain to investigate how the distribution of particlemasses
affects the impact outcome. The considered chain is composed of 101 balls whose
masses are distributed as follows: the masses of balls with an odd number (1, 2, 3,
…) are equal to m and the masses of balls with an even number (2, 4, 6, …) are
equal to εm. The mass ratio ε is varied from 0.01 to 100. The Hertz’s contact model
(η = 3/2) and the energetic CoR e∗ = 1.0 are used for simulations performed with
the LZB model. Figure 24 shows the impact outcome obtained with the LZB model
for different values of the mass ratio ε. One sees that placing small balls between big
balls makes the energy more distributed in the chain after impact (Fig. 24b and d),
except for very small or very big values of ε. When ε is very small, if we look only
at the velocity of the big balls in Fig. 24a, the decorated chain behaves similarly to a
monodisperse chain composed of the big balls (Fig. 24c). This means that separating
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Fig. 23 Potential energy E obtained with the LZB model at the first 20 contacts versus time t for
different values of the coefficient of restitution e∗

big balls by very small balls does not significantly change the impact outcome of
the big balls. In this case, curves representing the evolution of the potential energy
at the two contacts on each small ball almost overlap and we find again the solitary
wave which was observed for a monodisperse chain (Fig. 14d). When ε is very big
(the first ball is very small compared to the second ball), the first ball bounces back
with most of the energy after impact. Concerning Moreau’s law, its impact outcome
for the considered chain is similar to the one of a single impact between the first ball
and the remainder of the chain, independently of the mass distribution. Because the
mass of the first ball is very small compared to the remainder of the chain, the first
ball bounces back after impact with a velocity almost equal to its velocity before
impact. This means that Moreau’s law is not capable of predicting the effect of the
mass distribution on the outcome of the decorated chain. The only case in which this
law gives the same impact outcome as the one given by the LZB model is for a very
big value of ε (Fig. 24f). This is due to the fact that the big mass of the second ball
compared to the first ball prevents the wave from propagating in the chain, so the
collision process is almost localized at the first contact, as shown in Fig. 25b.
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Fig. 24 Post-impact velocities obtainedwith the LZBmodel versus ball number for different values
of the mass ratio ε
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Fig. 26 Dispersion measure
CK E versus the mass ratio ε
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Remark 9 The binary collision model is not used for this kind of chain, because
it leads to undefined impact outcomes after a huge number of binary collisions for
several values of the mass ratio ε.

Figure 26 shows the dispersion measure CK E obtained with the LZB model and
Moreau’s law versus themass ratio ε. It can be seen that the dispersion of post-impact
kinetic energies of balls obtained with Moreau’s law is weak and does not change
significantly with the mass distribution. Contrastingly, the LZB model predicts a
strong effect of the mass distribution on the energy dispersion of the decorated chain.
For this kind of chain, the energy induced by the shock is the best dispersed in the
chain for ε = 0.64 and 1.55. As stated in [3], the energy dispersion and the force
transmission in a granular chain are related to each other. The first value (ε = 0.64)
is quite close to the characteristic value ε = 0.59 shown in [46], for which the force
transmission in a decorated chain is minimum.

5.1.5 Conclusions

For the tested systems of chains of aligned balls: Moreau’s law has good predictive
capabilities for small CoR (big dissipation), very small elasticity coefficient, big
stiffness increase through the chain, or high mass ratio in decorated chains. In terms
ofwaves,Moreau’s law has good prediction capabilities when thewave is localized at
the first contact. The binary collision model has good predictive capabilities for large
elasticity coefficient or large stiffness decrease through the chain. However, it is very
hard to draw conclusions with the binary collision law due to intrinsic issues, like the
impossibility of choosing a unique order of collisions (different sequences usually
yield different outcomes), and the lack of a criterion that guarantees its convergence
(an infinite number of impacts is possible in some cases). For these reasons, this
approach should be disregarded most of the time.
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Fig. 27 Illustration of a
granular chain impacting a
wall

5.2 Chains Impacting a Rigid Wall

We have so far considered free granular chains in which the first ball impacts the
other stationary balls. In this section, we consider a monodisperse chain of 100
balls in which all balls move with the same velocity and impact a rigid wall, as
illustrated in Fig. 27. It is noteworthy that, in contrast to the free chains, in this case,
the linear momentum of the 100 balls is not conserved. This kind of impact has
been experimentally studied in [47], and a good agreement between the numerical
results obtained with the LZB model and the experimental results has been shown
in [32]. It was observed that when the chain impacts the wall, the collision process
starts at the bottom and then propagates to the top of the chain. The top ball leaves
the chain first, is then followed by the next one, and so on. The considered chain is
composed of 100 elastic balls and the elasticity coefficient is varied. The balls are
numbered from 1 at the top to 100 at the bottom. According to Moreau’s law, all the
balls are still stuck together and the chain moves upward after the impact with the
same velocity as the one before impact. The same impact outcome is obtained with
the binary collision model with a sequence of binary collisions from the bottom to
the top of the chain to mimic the wave propagation. The post-impact velocities of
balls obtained with the LZB model for different values of the elasticity coefficient
are shown in Fig. 28. It is shown that when the Hertzian contact model is used
(η = 3/2), balls are detached from each other after impact, except for a few balls in
the middle, and the top ball almost doubles its velocity. However, when the linear
contact model is used (η = 1), about 70 balls in the middle come close to being
stuck together after impact, this number of balls being about 80 for η = 0.1. It is
expected that for a very small value of η, all the balls are stuck together after impact,
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Fig. 28 Post-impact velocities for an elastic monodisperse chain impacting a wall obtained with
the LZB model versus the ball number for different values of η
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Fig. 29 Potential energy E obtained with the LZB model at the 50th contact versus time t for a a
free monodisperse chain of 100 balls and b for the same chain impacting a wall

which corresponds to the impact outcome given byMoreau’s law. However, we were
unable to simulate this impact problem for a very small value of η. In fact, when
a chain of balls collides with a wall, contacts undergo many repeated collisions, as
shown in Fig. 29b. As a consequence, integrating such an impact process is much
more difficult than integrating the impact in a free monodisperse chain in which
each contact undergoes only one collision (Fig. 29a). One would expect that a value
of η higher than 1.5 would make the top ball bounce back with a higher velocity.
However, this is not the case for a monodisperse chain impacting a wall, as shown
in Fig. 28d where the post-impact velocity of the top ball for η = 2.0 is lower than
for η = 1.5.

For a granular chain colliding with a wall, a small dissipation at each contact can
lead to a large damping effect, since those contacts undergomany repeated collisions,
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Fig. 30 Post-impact velocities for amonodisperse chain impacting awall obtainedwith LZBmodel
versus ball number for a e∗ = 0.99 and b e∗ = 0.96

as mentioned above. As shown in Fig. 30a, a marked change in the impact outcome
is observed for e∗ = 0.99, compared to the elastic case (Fig. 28c), and about 50% of
energy is dissipated in this case. When e∗ = 0.96, the whole energy is dissipated and
the chain is stuck to the wall after impact, as shown in Fig. 30b. It is interesting to
note that when the considered monodisperse chain impacts a wall, the whole energy
is dissipated at a higher value of e∗ than when it is free: as shown in Sect. 5.1.3, most
of the energy is dissipated for e∗ < 0.9 for the free chain.

6 Conclusions

In this chapter, we have made comparisons between three classical multiple-impact
laws: the binary collision model, Moreau’s impact law and the LZB approach. The
comparisons are based on chains of aligned beads (free or impacting a wall) in terms
of the post-impact velocities and the kinetic energy dispersion, when the coefficients
of restitution, the elasticity coefficients, or the contact stiffnesses are varied. The
results given by the LZB model are considered as reference solutions. Wave propa-
gation is known to be a crucial effect in such systems. We found that Moreau’s law
and the binary collision model can predict the impact outcome with accuracy, only
in a few “extreme” cases (like a very low or very high elasticity coefficient or mass
ratio). Moreau’s law gives good outcomes when the wave is localized at the first con-
tact. Its advantage is that it is easy to implement, even in the case of a great number
of bodies and contacts. The binary collision law suffers from severe drawbacks, such
as the possible infinity of impacts or different outcomes for different sequences of
impacts, which make it very delicate to use for reliable computations in most cases.
Future studies should focus on two-dimensional granular systems, with Coulomb’s
friction at contacts.
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Variational Analysis of Inequality Impact
Laws for Perfect Unilateral Constraints

Tom Winandy, Michael Baumann and Remco I. Leine

Abstract This chapter deals with frictionless instantaneous impacts in rigid multi-
body dynamics. For autonomous multibody systems which are subjected to perfect
unilateral constraints, a geometric description of the impacts on the respective tangent
space to the configuration manifold is presented. The mass matrix of a mechanical
system endows the configuration manifold with the structure of a Riemannian mani-
fold and provides an isomorphism between the tangent space and the cotangent space
at each point of the configuration manifold. Kinematic quantities (virtual displace-
ments, velocities) are elements of the tangent space, while kinetic quantities (forces,
impulsive forces) live in the cotangent space, the dual space of the tangent space.
Impact laws, as constitutive laws relating primal and dual quantities, are introduced
as set-valued mappings between these two spaces. Methods from Convex Analysis
permit to study what the implications are if the impact law is maximal monotone.
Finally, the generalized Newton’s and the generalized Poisson’s impact law are con-
sidered as illustrative examples.

1 Introduction

The present chapter1 deals with frictionless instantaneous impacts in rigid multibody
dynamics. Our aim is to derive a geometric description of impacts and to reveal the

1Sections2–5werewritten by the first author. Sections2–4 gather awealth of ideas and concepts
of various authors, notably Aeberhard [3], Glocker [15, 16, 19], Ballard [5], and Moreau [34,
36] (in reverse chronological order). Sections5 and 6 are based on the PhD thesis [6] of the
second author.
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mathematical structure of the related constitutive laws. We start by considering an
autonomous (i.e., time-independent) multibody systemwithout unilateral constraints
in the geometric frameworkofRiemannianmanifolds [25,Chap.13]. It iswell-known
that the set of all possible configurations of a multibody system can be modelled as a
Riemannian configuration manifold whose metric is given by the mass matrix of the
system [29]. The dynamics of such multibody systems without unilateral constraints
is governed by second-order ordinary differential equations whose solutions are
differentiable with respect to time [8].

If the set of possible positions of the multibody system is now restricted by sclero-
nomic (i.e., time-independent) unilateral constraints, a wider class of solutions needs
to be considered. Like bilateral constraints, a unilateral constraint comes along with
a constraint force that guarantees that the dynamics (i.e., the motion) respects the
constraint [15]. Therefore, the velocities may jump instantaneously. The formulation
of perfect unilateral constraints in a geometric setting has been presented by Ballard
in [5].

In the framework of hard unilateral constraints, the impacts are jumps in the veloc-
ities that come along with impulsive forces and that occur at some instants of time.
Therefore, the position remains constant over an impact, whichmeans geometrically,
that the mathematical description of the impact takes place on the tangent space to
the configuration manifold at the respective position where the impact occurs. The
perfect unilateral constraints restrict the tangent space (the space of velocities) and its
dual, the cotangent space (the space of forces), to conic subsets, as iswell-known from
non-smooth mechanics [9, 15, 36]. This means that the pre-impact and post-impact
velocities, as well as the impulsive contact forces, have to obey certain restrictions,
aside from the fact that they are linked by the impact equation. Additionally, the
physical requirement can be added that the kinetic energy must not increase over an
impact. In general, the so-derived algebraic impact description on the tangent space
still allows for multiple post-impact velocities [16, 19]. It needs to be complemented
by a constitutive law (the set-valued impact law) to provide a unique post-impact
velocity for given initial data. We will investigate the mathematical structure of this
constitutive law. The generalized Newton’s [17] and Poisson’s impact law [18] will
serve as two examples of frictionless instantaneous impact laws that are commonly
used in multibody dynamics [37].

As clear as the above outline might appear, it involves a substantial amount of
mathematics. During their studies in engineering, the authors have followed only
a shallow training in mathematics, which seems to be firmly anchored in the cur-
ricula at too many engineering faculties. While in the first half of the twentieth
century, differential geometry was at the core of analytical mechanics, nowadays,
technical mechanics and modern differential geometry have drifted widely apart. For
comments on this deplorable development, the reader is referred to [15, Chap.15].
Because mechanics and mathematics (especially geometry) cannot be separated,
Sects. 2–4 have been written with the aim of being accessible for readers with a
typical engineering background in mathematics.
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Then, we will allow ourselves to draw the reader’s attention to the application
of convex analysis to mechanics. Convex analysis has been coined by Moreau and
Rockafellar. At least for Moreau, convex analysis is tied to mechanics. In his Fonc-
tionelles Convexes [34, p. 3], Moreau writes

L’intérêt de l’auteur pour la convexité est motivé par la théorie des liaisons unilatérales en
mécanique […].

which can be translated as: The author’s interest in convexity originates from the
theory of unilateral constraints in mechanics. Probably due to Moreau’s inspiration
bymechanics, he formulates his treatise in the context of dual vector spaces, while the
books [39, 40] by Rockafellar are based on the consideration of the n-dimensional
real vector space R

n together with its canonical inner product. Therefore, the role
played by the duality pairing in the work of Moreau is played by the canonical inner
product in the books by Rockafellar.

Because we will need both concepts, we introduce them in Sect. 2. First, the dual
space of a finite dimensional real vector space is introduced via the duality pairing
between their elements. If a symmetric, positive definite, covariant 2-tensor (see [25,
Chap.12]) is given on a finite dimensional real vector space, then it induces an
inner product, as well as an isomorphism between the vector space and its dual. A
covariant 2-tensor on a finite dimensional vector space is also called a bilinear form.
This sectionmay be skipped by readers familiarwith tensor calculus on vector spaces.
For a good introduction to linear algebra, including the concept of dual spaces, we
refer to [13].

Section3 introduces the basic differential geometric concepts that are relevant to
the description of multibody systems without unilateral constraints. For a concise
treatment of differential geometry, we refer to the book by Aubin [4]. A comprehen-
sive treatment with many comments on the historical development can be found in
the five volumes by Spivak [41]. Good reference books are [24, 25]. References for
geometricmechanics in the framework of a time-independent configurationmanifold
are [1, 10, 20, 32].

The unilateral constraints are added in Sect. 4. First, a geometric description of the
restricted set of positions compatible with the unilateral constraints is introduced on
the configuration manifold using gap functions. These restrictions induce cones on
the respective tangent and cotangent space of the configurationmanifold. These cones
are used to define the concept of perfect unilateral constraints, as in [5, 16]. Then,
the impact equations are stated in their geometric form. We use a result from [3]
and introduce orthogonal projectors on the tangent space that are induced by the
unilateral constraints. Section5 is concerned with the implications of a set-valued
impact law that has the property of being maximal monotone. The central concept
that we use is the Minty parametrization from the book Variational Analysis [40]
by Rockafellar and Wets. Therefore, we speak of variational analysis of impact
laws [26]. The previously derived projectors now become crucial in order to establish
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the connection between the description of impacts in contact velocities and the one in
generalized velocities. Section6 deals with two specific frictionless impact laws, the
generalized Newton’s [17] and the generalized Poisson’s impact law [18]. Finally,
we use the Sect. 8 to critically review the presented results and to comment on the
insight that may be distilled from our considerations.

2 Some Linear Algebra

Let V be a finite dimensional real vector space. An element û ∈ V is called a vector.
Let ω̂ be a linear real-valued map on V , i.e.,

ω̂ : V → R, û �→ ω̂(û), (1)

such that
ω̂(aû + bv̂) = aω̂(û) + bω̂(v̂), (2)

for any a, b ∈ R and û, v̂ ∈ V . The set V ∗ of all linear real-valued maps on V is
known as the dual space of V . It is a real vector space of the same dimension as V .
An element ω̂ ∈ V ∗ is called a covector.

Consider the dual space V ∗∗ := (V ∗)∗ of the dual space V ∗, i.e., the space of
linear real-valued maps on V ∗. The identification of V ∗∗ with V via the canonical
isomorphism allows us to write û(ω̂) = ω̂(û). This operation between dual vectors
is known as duality pairing and it is denoted by

〈ω̂ , û〉 = 〈û , ω̂〉 = ω̂ · û = û · ω̂ = ω̂(û). (3)

Let
A· : V → W (4)

be a linear map between two finite dimensional real vector spaces V and W . It has
a unique transpose (or dual) map

AT· : W ∗ → V ∗, (5)

which is defined by the identity

〈AT · ω̂ , û〉 = 〈ω̂ , A · û〉, (6)

which has to hold for any û ∈ V and any ω̂ ∈ W ∗. On the left-hand side stands the
duality pairing between elements of V ∗ and V , while on the right-hand side, the
angle brackets denote the duality pairing between elements of W ∗ and W .
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The real vector space V can be endowed with an inner product, which we denote
by

(· , ·) : V × V → R. (7)

An inner product on a real vector space is symmetric, bilinear and positive definite.
Symmetric means that (û , v̂) = (v̂ , û) for all û, v̂ ∈ V . Bilinearity is the property
that

(aû + bv̂ , ŵ) = a(û , ŵ) + b(v̂ , ŵ),

(û , av̂ + bŵ) = a(û , v̂) + b(û , ŵ),
(8)

for all a, b ∈ R and û, v̂, ŵ ∈ V . The inner product (· , ·) is positive definite if it
satisfies

(û , û) > 0, ∀û ∈ V \ {0}. (9)

Therefore, the inner product on V is nothing other than a symmetric, positive definite,
covariant 2-tensor

M̂ : V × V → R,

(û, v̂) �→ M̂(û, v̂) = û · M̂ · v̂.
(10)

In the following, we use the notation (· , ·)M̂ to designate the inner product, which
corresponds to the symmetric, positive definite, covariant 2-tensor M̂ , i.e.,

(û , v̂)M̂ = û · M̂ · v̂. (11)

If a basis {ê1, . . . , ên} with êi ∈ V is chosen on the n-dimensional real vector
space V , then its dual basis is denoted by {ê1, . . . , ên} with êi ∈ V ∗ and it is defined
via the duality pairing

êi (ê j ) = êi · ê j = δi
j =

{
1, if i = j,

0, if i 	= j,
(12)

where δi
j is known as the Kronecker delta. A vector û ∈ V is then written as

û = ui êi , (13)

where we have used index notation together with Einstein’s summation convention,
i.e., the index i runs from 1 to n and a summation is understood over an index that
appears once as a lower and once as an upper index. The n coefficients ui can be
gathered in an R

n-tuple as
u = (

u1 . . . un
)T

. (14)
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A covector ω̂ ∈ V ∗ is expressed analogously as

ω̂ = ω j ê
j , (15)

and again, the coefficients can be collected in an R
n-tuple as follows:

ω = (
ω1 . . . ωn

)T
. (16)

In order to keep track of the fact that the Rn-tuple ω is related to a covector, we will
use the notation ω ∈ R

n∗ with an asterisk to distinguish between primal and dual
quantities on R

n . The duality pairing can then be written as

〈ω̂ , û〉 = ω̂ · û = ωi ui = ωTu. (17)

Using the dual basis {ê1, . . . , ên}, the symmetric, positive definite, covariant 2-
tensor M̂ can be written as

M̂ = Mkl ê
k ⊗ êl . (18)

If we consider the n-by-n matrix

M =
⎛
⎜⎝

M11 · · · M1n
...

. . .
...

Mn1 · · · Mnn

⎞
⎟⎠ , (19)

then the inner product (11) can be written as

(û , v̂)M̂ = û · M̂ · v̂ = Mi j u
i v j = uTMv. (20)

The symmetric, positive definite, covariant 2-tensor M̂ , respectively the inner
product, provides the two isomorphisms

M̂ · : V → V ∗,

û �→ M̂ · û = Mklu
l êk

(21)

and
M̂−1· : V ∗ → V,

ω̂ �→ M̂−1 · ω̂ = Mi jω j êi ,
(22)

where Mi j are the elements of the matrixM−1, i.e.,

M−1 =
⎛
⎜⎝

M11 · · · M1n

...
. . .

...

Mn1 · · · Mnn

⎞
⎟⎠ , (23)
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with
MM−1 = M−1M = In. (24)

The tensor M̂−1 has the following coordinate expression:

M̂−1 = Mi j êi ⊗ ê j . (25)

If we consider the special case V = R
n with the standard basis {ê1, . . . , ên} =

{e1, . . . , en}, then our notational distinction becomes trivial, because for û ∈ R
n we

have that
û = ui êi = ui ei = u, (26)

since the basis vectors of the standard basis satisfy

êi = ei = (0 . . . 1 . . . 0)T (27)

i

For further details, we refer to [13].

3 Dynamics of Multibody Systems

The position of a multibody system with n degrees-of-freedom is usually denoted
by q ∈ R

n . The components of the R
n-tuple q, which defines the position of the

system, are known as generalized coordinates. Geometrically, the position (or con-
figuration) of an autonomous system can be seen as a point q̂ in an n-dimensional
configuration manifold Q. For autonomousmultibody systems, this set of all possible
positions, which is not a vector space in general, is usually [1, 32, 35] modelled as an
n-dimensional differentiable manifold, i.e., an n-dimensional topological manifold
that is endowed with a differentiable structure. For the definition of a topological
and differentiable manifold, we refer to [25]. We only consider autonomous sys-
tems. This is not a restriction, since we are interested in the geometric treatment of
instantaneous impacts, that occur at fixed instants of time.

A topological manifold is a space that is locally homeomorphic to R
n , i.e., that

locally looks likeRn . Such homeomorphisms are known as charts. The chart (UI , φI )

provides local coordinates on the open (w.r.t. the topology on Q) neighbourhood
UI ⊆ Q by

φI : Q ⊇ UI → R
n,

q̂ �→ φI (q̂) =: q.
(28)

A global description of Q is given by a collection of charts whose respective domains
UI cover Q. Such a collection of charts is referred to as an atlas. The concept of
charts is visualized in Fig. 1. The smooth differentiable structure, which we consider
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Fig. 1 Differentiable
manifold Q with charts
(UI , φI ) and (UJ , φJ )

in this work, is added to the topologicalmanifold by considering an atlas that contains
only charts with the property that, for any pair of charts with overlapping domains
(i.e., UI ∩ UJ 	= ∅), the chart transition functions given by

φJ ◦ φ−1
I : Rn ⊇ φI (UI ∩ UJ ) → φJ (UI ∩ UJ ) ⊆ R

n (29)

are diffeomorphisms, i.e., smooth bijections that have a smooth inverse.
By their definition in (28), the generalized coordinates q provide a local (on

the open neighbourhood UI ) description of the configuration manifold as the set of
positions q̂ . To distinguish between a geometrical object and its local representation
in a chart, we mark geometrical objects with a hat and use upright bold-faced letters
to denote tuples from R

n (and R
n∗).

The example of a rigid body that rotates around a fixed point illustrates that the
choice of a set of generalized coordinates q (i.e., the choice of a chart) is not unique
and provides, in general, only a local description of Q. The rigid body with a fixed
point has three rotational degrees-of-freedom.One choice forq could beEuler angles.
However, due to their singularity, they have to be complemented by Cardan angles
in order to obtain a full description of the configuration. This well-known example
illustrates that a particular choice of generalized coordinates generally provides only
a local description. Alternatively, unit quaternions or an axis angle parameterization
could be chosen as generalized coordinates, which shows that their choice is not
unique.

We define the motion of an autonomous multibody system to be a continuous
parametrized curve

q̂ : R ⊃ I → Q, t �→ q̂(t). (30)

This curve can be locally represented in the charts of an atlas by considering the chart
representations of the restrictions of q̂(t) to the respective neighbourhood UI , i.e.,

q|UI : I ⊇ preImq̂(UI ) → R
n, t �→ φI (q̂(t)), (31)

where
preImq̂(UI ) := {

t ∈ I | q̂(t) ∈ UI
}

(32)
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denotes the pre-image of UI by q̂ , which is the set of time instants t for which the
motion q̂(t) remains in the neighbourhood UI . The restriction |UI is usually omitted,
and we write q(t) without referring to a particular chart.

By Tq̂ Q, we denote the tangent space [25] to the configuration manifold Q at the
point q̂ . This n-dimensional real vector space is the habitat of velocities and virtual
displacements. Pointwise, the corresponding dual vector space T ∗

q̂ Q := (Tq̂ Q)∗ can
be declared as the space of all real-valued linear maps (covectors) on Tq̂ Q, i.e., for
ω̂ ∈ T ∗

q̂ Q, it holds that
ω̂ : Tq̂ Q → R, v̂ �→ ω̂(v̂), (33)

with the property that
ω̂(av̂ + bŵ) = aω̂(v̂) + bω̂(ŵ) (34)

for all a, b ∈ R and v̂, ŵ ∈ Tq̂ Q. Note that the cotangent space has been defined anal-
ogously to the dual space V ∗ in Sect. 2. Therefore, the considerations fromSect. 2 can
be pointwisely carried over to the tangent and cotangent spaces of the configuration
manifold Q. The duality pairing between a covector ω̂ ∈ T ∗

q̂ Q and a vector v̂ ∈ Tq̂ Q
is denoted as ω̂ · v̂ = ω̂(v̂). In mechanics, the cotangent space T ∗

q̂ Q is considered as
the space of forces.

Consider a point q̂ ∈ Q and a chart (U, φ) with q̂ ∈ U . If we consider a single
chart, we omit the index I of the chart in order to get a lighter notation. The chart
(U, φ) induces a basis {

∂

∂q1

∣∣∣∣
q̂

, . . . ,
∂

∂qn

∣∣∣∣
q̂

}
(35)

of the tangent space Tq̂ Q such that a ûq̂ ∈ Tq̂ Q can be written as

ûq̂ = ui (q̂)
∂

∂qi

∣∣∣∣
q̂

. (36)

The dual basis to (35) is denoted by

{
dq1

q̂ , . . . , dqn
q̂

}
(37)

and it holds that

dqi
q̂

(
∂

∂q j

∣∣∣∣
q̂

)
= dqi

q̂ · ∂

∂q j

∣∣∣∣
q̂

= δi
j . (38)

Since (37) is a basis of the cotangent space T ∗
q̂ Q, an ω̂q̂ ∈ T ∗

q̂ Q can be written as

ω̂q̂ = ωi (q̂) dqi
q̂ . (39)
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As in Sect. 2, a summation is understood in (36) and (39) over the index i from 1 to
n (dimension of the configuration manifold Q) according to the Einstein summation
convention. The coefficients ui (q̂) can be written as an R

n-tuple

u(q̂) = u(q) = (
u1(q̂) . . . un(q̂)

)T
. (40)

Often, the point is omitted, and we write u = (u1 . . . un)T. If we consider tangent
vectors along a curve, then it is common to write

u(t) = u(q̂(t)) = u(q(t)) = (
u1(q̂(t)) . . . un(q̂(t))

)T
. (41)

For covectors, an analogue notation applies.
Between the tangent space Tq̂ Q with the basis (35) induced by a specific chart

(U, φ) andRn with the standard basis {e1, . . . , en}, the following isomorphism holds:

dφ· : Tq̂ Q → R
n,

ûq̂ �→ dφ · ûq̂ = u,
(42)

where
dφ = ei ⊗ dφi

q̂ = ei ⊗ dqi
q̂ . (43)

In (43), φi : U → R denotes the i th component of the chart φ and dφi denotes its
exterior derivative [25]. Finally, dφi

q̂ stands for the latter evaluated at the point q̂ .
The inverse map of dφ is given by

dφ−1· : Rn → Tq̂ Q,

u �→ dφ−1 · u = ûq̂

(44)

and

dφ−1 = ∂

∂qi

∣∣∣∣
q̂

⊗ ei . (45)

The transpose map of (44), i.e., dφ−T· : T ∗
q̂ Q → R

n∗ is an isomorphism between
T ∗

q̂ Q (the dual of Tq̂ Q) andRn∗ (the dual ofRn). The linear maps (42), (44) and their
dual maps are shown in Fig. 2.

The symmetric positive definite mass matrix of a finite dimensional mechanical
system endows the configuration manifold with a Riemannian metric M̂ , which is a
symmetric covariant 2-tensor field that is positive definite. Pointwise, it holds that

M̂(q̂) : Tq̂ Q × Tq̂ Q → R, (46)

with q̂ ∈ Q. In local coordinates, the Riemannian metric (46) is given by

M̂(q̂) = Mkl dqk
q̂ ⊗ dql

q̂ . (47)
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Its inverse is denoted by

M̂−1(q̂) : T ∗
q̂ Q × T ∗

q̂ Q → R, (48)

and it is locally given by

M̂−1(q̂) = Mi j ∂

∂qi

∣∣∣∣
q̂

⊗ ∂

∂q j

∣∣∣∣
q̂

. (49)

The elements Mkl from (47) can be written as an n-by-n matrix M = Mkl ek ⊗ el ,
where ek and el denote the dual basis to the standard basis of Rn . The inverse matrix
ofM from (49) can be written using the standard basis ofRn asM−1 = Mi j ei ⊗ e j .
This is known as the pushforward with the chart of the Riemannian metric (47) and
of its inverse (49) to R

n and R
n∗, respectively. Using the isomorphism (42), the

diagrams from Fig. 2 can be drawn. The black diagram commutes if

M· = dφ−T · M̂(q̂) · dφ−1·
= Mkl ek ⊗ el ·, (50)

and the gray diagram commutes if

M−1· = dφ · M̂−1(q̂) · dφT·
= Mi j ei ⊗ e j · .

(51)

Note that thematricesM andM−1 are symmetric positive definite, because the tensors
M̂ and M̂−1 are as well. Therefore, the inner product that can be defined on Tq̂ Q
using M̂ directly carries over to R

n . Indeed, the Riemannian metric M̂ pointwisely
induces an inner product (cf. Sect. 2) on each tangent space Tq̂ Q for any q̂ ∈ Q such
that (

ûq̂ , v̂q̂
)

M̂
:= ûq̂ · M̂(q̂) · v̂q̂ = u · M · v = uTMv. (52)

The associated norm is denoted as

‖ûq̂‖M̂ :=
√(

ûq̂ , ûq̂
)

M̂
=

√
ûq̂ · M̂(q̂) · ûq̂ = √

uTMu. (53)

Fig. 2 Isomorphisms
induced by the choice of a
chart (U, φ) and the
resulting diagrams, which
can be drawn for a
Riemannian metric M̂(q̂)

and its inverse M̂−1(q̂)
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Moreover, the Riemannian metric provides isomorphisms between the tangent
and the cotangent space via the pointwise maps

M̂(q̂)· : Tq̂ Q → T ∗
q̂ Q,

v̂ �→ M̂(q̂) · v̂ = Mklv
l dqk

q̂

(54)

and
M̂−1(q̂)· : T ∗

q̂ Q → Tq̂ Q,

ω̂ �→ M̂−1(q̂) · ω̂ = Mi jω j
∂

∂qi

∣∣∣∣
q̂

.
(55)

The analogue holds between R
n and its dual space Rn∗

M· : Rn → R
n∗,

u �→ M · u = Mu = Mklu
l ek

(56)

and
M−1· : Rn∗ → R

n,

ω �→ M−1 · ω = M−1ω = Mi jω j ei .
(57)

Unfortunately, it would go beyond the scope of the present work to derive the
equations of motion of the multibody system in a geometrical context. For this, we
refer to [20, 32].Classically, they canbederived in local coordinates usingLagrange’s
equations of the second kind or by the projection equation [8], for example. The
equations of motion of an autonomous multibody system can be stated in vector
notation as

M(q)q̈ − h(q, q̇) = 0, (58)

where the mass matrix M(q) is a symmetric, positive definite matrix, because it is
the chart representation of a Riemannian metric M̂(q̂).

4 Geometry of Impacts

Now, the positions of the mechanical system are restricted by k scleronomic (i.e.,
time-independent) constraints to the subset

Ĉ := {
q̂ ∈ Q | ĝβ(q̂) ≥ 0, β = 1, . . . , k

}
(59)

of the configuration manifold Q. The geometric approach that we adopt can be found
in [3, 5, 19]. The constraint functions

ĝβ : Q → R, q̂ �→ ĝβ(q̂) (60)
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should be continuously differentiable and the points for which ĝβ(q̂) = 0 holds are
assumed to be regular points (cf. [25, Chap.5]), i.e., dĝβ

q̂ : Tq̂ Q → R should be
surjective, which means non-zero for a scalar function.

The functions ĝβ have the following representationwith respect to the chart (U, φ)

gβ |U : φ(U ) → R,

q �→ gβ |U (q) := ĝβ ◦ φ−1(q),
(61)

where the restriction |U is usually omitted. The functions ĝβ (or gβ , respectively) are
known as gap functions [16]. If ĝβ > 0 (or gβ > 0, respectively), then theβth contact
is open, i.e., the βth constraint is neither active ĝβ = 0 (or gβ = 0, respectively) nor
violated ĝβ < 0 (or gβ < 0, respectively). The set of active constraints Â(q̂) in q̂ is
defined as

Â(q̂) := {
β | ĝβ(q̂) = 0

}
(62)

and it has the local expression with respect to the chart (U, φ)

A(q) := {
β | gβ |U (q) = 0

}
. (63)

Obviously, it holds that Â(q̂) = A(q). The gap functions of the h active constraints
can be re-indexed and gathered in a vector

g(q) =
⎛
⎜⎝

g1|U (q)
...

gh|U (q)

⎞
⎟⎠ , (64)

such that g(q) = 0. The dimension h depends on the point q̂ and corresponds to the
cardinality of the set of active constraints Â(q̂), i.e., h = |Â(q̂)| ≤ k.

The βth contact velocity is defined as

γ
β

q̂ := dĝβ

q̂ · ûq̂ , (65)

where dĝβ

q̂ denotes the exterior derivative of the function ĝβ and is evaluated at
the point q̂ ∈ Q. With respect to the chart (U, φ), the βth contact velocity has the
expression

γ
β

q̂ = dĝβ

q̂ · ûq̂ = ∂gβ

∂qi

∣∣∣∣
q̂

ui (q̂) =: wβ T(q)u, (66)

where ui can be associated with the i th component of an Rn-tuple u, as in (40), and
the generalized direction vector is given by

wβ =
(

∂gβ

∂q1

∣∣∣
q̂

. . .
∂gβ

∂qn

∣∣∣
q̂

)T
(67)

http://dx.doi.org/10.1007/978-3-319-75972-2_5
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because
dĝβ

q̂ = wβ
m dqm

q̂ . (68)

As we did for the gap functions in (64), the contact velocities of the active constraints
can also be gathered in a vector γ ∈ R

h such that

γ = (
γ 1

q̂ . . . γ h
q̂

)T = WT(q)u, (69)

where

W := (
w1 . . . wh

) =
(

∂g
∂q

)T

. (70)

At a point q̂ ∈ Ĉ, the set Ĉ ⊆ Q is locally approximated by the tangent cone

TĈ(q̂) :=
{

ûq̂ ∈ Tq̂ Q | dĝβ

q̂ · ûq̂ ≥ 0, ∀β ∈ Â(q̂)
}

=
{

ûq̂ ∈ Tq̂ Q | dĝα
q̂ · ûq̂ ≥ 0, ∀α ∈ {1, . . . , h}

}
,

(71)

which is, by definition, a subset of the tangent space, i.e., TĈ(q̂) ⊆ Tq̂ Q. The last
equality in (71) can be written by re-indexing from β to α. With the tangent cone at
the point q̂ ∈ Ĉ comes its polar cone, the normal cone

NĈ(q̂) :=
{
ω̂q̂ ∈ T ∗

q̂ Q | ω̂q̂ · δq̂q̂ ≤ 0, ∀δq̂q̂ ∈ TĈ(q̂)
}

, (72)

which is a subset of the cotangent space, i.e., NĈ(q̂) ⊆ T ∗
q̂ Q. For points lying in

the interior of Ĉ, it holds that Â(q̂) = ∅. Therefore, TĈ(q̂) = Tq̂ Q and NĈ(q̂) =
{0} ⊂ T ∗

q̂ Q, for all q̂ ∈ int Ĉ. Given the definitions of the tangent cone (71) and the
normal cone (72), it follows from Farkas’ lemma (see [39, p. 200]) that the one-forms
dĝ1

q̂ , . . . , dĝk
q̂ finitely generate the normal cone, i.e.,

NĈ(q̂) =
{

−λα dĝα
q̂ ∈ T ∗

q̂ Q | λα ≥ 0, α ∈ {1, . . . , h}
}

. (73)

In a local chart (U, φ), the set Ĉ from (59) has the expression

C = {
q ∈ φ(U ) ⊆ R

n | gβ |U (q) ≥ 0, β = 1, . . . , k
}
, (74)

where we used (61). Considering (63) and (66), the tangent cone (71) is locally
given by

TC(q) = {
u ∈ R

n | wβ T u ≥ 0, ∀β ∈ A(q)
}

= {
u ∈ R

n | wα T u ≥ 0, ∀α ∈ {1, . . . , h}}
= {

u ∈ R
n | WT(q)u ≥ 0

}
,

(75)

where the last equality uses (70).
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With the use of (75), the normal cone (72) and (73) can be written locally as

NC(q) = {
ω ∈ R

n∗ | ωTδq ≤ 0, ∀δq ∈ TC(q)
}

= {−wαλα ∈ R
n∗ | λα ≥ 0, α ∈ {1, . . . , h}}

= {−Wλ ∈ R
n∗ | λ ≥ 0

}
,

(76)

where the last equality makes use of (70) again.
Now, we want to state the dynamics of the multibody system which is subjected

to the k scleronomic unilateral constraints from (59). As long as the position q̂ is
not on the boundary of Ĉ, i.e., as long as Â(q̂) = ∅, the dynamics is given by the
equations of motion (58). If a motion arrives at the boundary of Ĉ, we have to add the
possibility that jumps in the generalized velocities may occur in order to constrain
the motion to the set Ĉ for arbitrary initial conditions. Therefore, we extend the local
description of the dynamics (58) to

M(q)u̇ − h(q,u) = fc, (77)

M(q)(u+ − u−) = Fc, (78)

where u = q̇, whenever it exists, and u−, u+ denote the pre- and the post-impact
generalized velocity, respectively. Equation (77) is the equationmotion extendedwith
the constraint force fc on the right-hand side. Equation (78) is referred to as the impact
equation and relates the velocity jump u+ − u− to the impulsive constraint force Fc.
For those time instants t̄ for which u(t̄) = u(q(t̄)) = q̇(t̄) (impact-free motion), the
R

n-tuple of the generalized velocities u(t̄) is the chart representation of the velocity
vector ûq̂(t̄) ∈ Tq̂(t̄) Q of the motion at time t̄ with respect to the chart (U, φ). At an
impact, i.e., at a time instant t∗ where u+ 	= u−, the pre- and post-impact generalized
velocities u−,u+ are the chart representations of the corresponding tangent vectors
û−

q̂(t∗), û+
q̂(t∗) ∈ Tq̂(t∗) Q (see Fig. 3).

We model perfect unilateral constraints [5] such that the constraint force fc and
the impulsive constraint force Fc have to obey

− fc ∈ NC(q) and − Fc ∈ NC(q). (79)

The dynamics (77) and (78) together with the constraint (79) can be restated as

M(q)u̇ − h(q,u) ∈ −NC(q), (80)

M(q)(u+ − u−) ∈ −NC(q), (81)

with q̇ = u almost everywhere. Using the local expression (76) of the normal cone,
we can write

M(q)u̇ − h(q,u) = Wλ, (82)

M(q)(u+ − u−) = WΛ, (83)

with q̇ = u almost everywhere, λ ≥ 0 and Λ ≥ 0.



62 T. Winandy et al.

Fig. 3 The generalized velocities u, u− and u+ are the chart representations of the tangent vectors
û, û− and û+ to the motion q̂(t)

In order to guarantee unique post-impact generalized velocities u+, the impact
equation (81)/(83) has, in general, to be complemented with a constitutive lawwhich
we will refer to as the set-valued impact law. In the following, we will investigate the
geometry of impacts and under which conditions a set-valued impact law leads to a
unique post-impact generalized velocity when combined with the impact equation.

A set-valued impact law together with the impact equation (83) should yield
kinematically admissible post-impact contact velocities, i.e.,

γ α+ ≥ 0, for all α ∈ {1, . . . , h}, (84)

which is equivalent to

û+ ∈ TĈ(q̂), or locally u+ ∈ TC(q). (85)

The restriction (85) is known as kinematic consistency [16]. For physically mean-
ingful pre-impact velocities, it holds that

û− ∈ −TĈ(q̂), or locally u− ∈ −TC(q). (86)

The impact equation (81) is the local expression with respect to the chart (U, φ)

of the inclusion
M̂(q̂) · (û+ − û−) ∈ −NĈ(q̂) (87)

on the cotangent space. At instantaneous impacts, the positions are constant over the
impact, and therefore the impact description reduces to the algebraic expression (87)
on T ∗

q̂ Q. Using the isomorphism (55), the inclusion (87) can be pushed to the tangent
space Tq̂ Q
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û+ − û− ∈ −T ⊥
Ĉ (q̂), (88)

where
T ⊥
Ĉ (q̂) : =

{
v̂q̂ ∈ Tq̂ Q | v̂q̂ · M̂(q̂) · δq̂q̂ ≤ 0, ∀δq̂q̂ ∈ TĈ(q̂)

}
= M̂−1(q̂) · NĈ(q̂)

(89)

is the cone which is orthogonal to the tangent cone TĈ(q̂) with respect to the inner
product on Tq̂ Q induced by the Riemannian metric M̂(q̂). Using the expression (73)
of the normal cone, the cone T ⊥

Ĉ (q̂) can be written as

T ⊥
Ĉ (q̂) =

{
−λα∇ ĝα

q̂ ∈ Tq̂ Q | λα ≥ 0, α ∈ {1, . . . , h}
}

, (90)

where we have introduced the gradient on a Riemannian manifold [25, Chap.13],
which is defined as

∇ ĝα
q̂ := M̂−1(q̂) · dĝα

q̂ . (91)

Again, Eqs. (88)–(90) can be written locally as

u+ − u− ∈ −T ⊥
C (q), (92)

T ⊥
C (q) = M−1(q)NC(q)

= {
v ∈ R

n | vTM(q)δq ≤ 0, ∀δq ∈ TC(q)
}

= {−M−1(q)W(q)Λ ∈ R
n | Λ ≥ 0

} (93)

and are referred to as kinetic consistency [16].
Next, we consider the change of the kinetic energy over an impact. Let T − and T +

denote the kinetic energy before and after the impact, respectively. The difference of
post-impact and pre-impact kinetic energy is

T + − T − = 1

2

∥∥û+
q̂

∥∥2
M̂ − 1

2

∥∥û−
q̂

∥∥2
M̂

= 1

2
û+ · M̂ · û+ − 1

2
û− · M̂ · û−

= 1

2

(
û+ + û−) · M̂ · (

û+ − û−)
= 1

2

(
û+ + û−) · (Λαdgα)

= 1

2
dgα · (

û+ + û−)
Λα,

(94)

with Λα ≥ 0. The fourth equality is based upon (87) and (73). By (65) and with the
definitions
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γ̄ α := 1

2
(γ α+ + γ α−), (95)

γ̄ := (
γ̄ 1 . . . γ̄ h

)T
, (96)

Λ := (
Λ1 . . . Λh

)T
, (97)

we can write (94) as

T + − T − = 1

2

(
γ α+ + γ α−)

Λα

= γ̄ αΛα =: γ̄ TΛ,

(98)

with Λ ≥ 0.
From the change of the kinetic energy over an impact (98), γ̄ and Λ can be

recognized as dual variables. The assumption that impacts are dissipative, i.e., that
the kinetic energy must not increase at impacts, can be written as

û+ ∈ B‖û−‖M̂
(q̂), with B‖û−‖M̂

(q̂) := {
û+ ∈ Tq̂ Q | ‖û+‖M̂ ≤ ‖û−‖M̂

}
(99)

and is referred to as energetic consistency [16–18]. To summarize, we restate the
three geometric restrictions on the post-impact velocities from (85)–(99):

û+ ∈ TĈ(q̂), (kinematic consistency) (100)

û+ ∈ û− − T ⊥
Ĉ (q̂), (kinetic consistency) (101)

û+ ∈ B‖û−‖M̂
(q̂). (energetic consistency) (102)

Because of the geometric restrictions (100)–(102), the post-impact velocity needs to
satisfy the inclusion

û+ ∈ Ŝ(q̂, û−) with Ŝ(q̂, û−) := TĈ(q̂) ∩
(

û− − T ⊥
Ĉ (q̂)

)
∩ B‖û−‖M̂

(q̂). (103)

Figure 4 visualizes the set Ŝ , which results from the three geometric require-
ments (100)–(102).

So far, we have seen that the space which is relevant to the description of an
impact is the tangent space at the respective boundary point of the set Ĉ. In the
tangent space, we have identified the tangent cone TĈ(q̂) as the set of admissible
post-impact velocities. Moreover, we have seen that its orthogonal cone T ⊥

Ĉ (q̂) is

spanned by the gradients of the defining functions ĝα of the set Ĉ. These two cones
will allow us to push our geometrical considerations further. The decomposition of
the tangent space, which will be presented in the next two sections, can be found in
the Ph.D. thesis by Aeberhard [3].
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Fig. 4 Set Ŝ ⊆ Tq̂ Q and its local respresentation S ⊆ R
n resulting from the requirements of

kinematic, kinetic and energetic consistency

4.1 Subspaces of the Tangent Space

A subset D of Rn is called convex if for any two elements x, y ∈ D it contains the
line between them, i.e., (1 − s)x + sy ∈ D with 0 < s < 1. A subset K of Rn is a
cone if 0 ∈ K and αx ∈ K for all x ∈ K and α > 0. A cone is not necessarily convex.
For convex cones, the following proposition holds. Figure5 illustrates Propositions1
and 2 for the example of a three-dimensional vector space V .

Proposition 1 IfK is a convex cone inRn, then it holds for the setsLK = K ∩ (−K)

and
〈
K

〉 = K + (−K) = {x + y | x ∈ K, y ∈ (−K)} that LK ⊆ K ⊆ 〈
K

〉
. Thereby,

LK is the largest linear subspace inK and
〈
K

〉
is the linear hull ofK, i.e., the smallest

linear subspace containing K. The cone K is itself a linear subspace iff K = −K.

The proof is given by Rockafellar andWets in [40, Proposition 3.8]. The next propo-
sition together with its proof can be found in [3, Corollary 6.1].
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Fig. 5 A closed convex cone K in a vector space V defines a decomposition of V into the two
orthogonal subspaces

〈
K⊥〉

and LK

Proposition 2 Let (V, (·, ·)) be a vector space with inner product (·, ·). Let K ⊆ V
be a closed, convex cone and K⊥ be its orthogonal cone. Let LK = K ∩ (−K) be
the largest linear subspace of K and

〈
K⊥〉 = K⊥ − K⊥ = {

û − v̂ | û, v̂ ∈ K⊥}
be

the linear hull of K⊥, i.e., the smallest linear space containing K⊥. Then, LK and〈
K⊥〉

are orthogonal subspaces of V which span V entirely.

Proof We start by showing that LK ⊆ 〈
K⊥〉⊥

. Consider an arbitrary û ∈ LK. For
any â ∈ K⊥, it holds that (û , â) ≤ 0 and (û , â) ≥ 0, so (û, â) = 0. An arbi-
trary ŝ ∈ 〈

K⊥〉
can be written as ŝ = b̂ − ĉ for some b̂, ĉ ∈ K⊥. It follows from

(û , b̂) = (û , ĉ) = 0 that (û , ŝ) = (û , b̂ − ĉ) = 0. Because û ∈ LK has been cho-
sen arbitrarily, it holds that LK ⊆ 〈

K⊥〉⊥
.

Now, we show that LK ⊇ 〈
K⊥〉⊥

. For an arbitrary û ∈ 〈
K⊥〉⊥

, it follows for all

b̂, ĉ ∈ K⊥ that (û , b̂ − ĉ) = 0. If one chooses ĉ = 0, then for all b̂ ∈ K⊥ it holds that
(û , b̂) = 0. This implies that (û , b̂) ≤ 0 and (û , b̂) ≥ 0. Since b̂ ∈ K⊥ is arbitrary,
it follows that û ∈ K and û ∈ −K and, therefore, û ∈ LK. Because û ∈ 〈

K⊥〉⊥
has

been chosen arbitrarily, it follows that
〈
K⊥〉⊥ ⊆ LK. Hence, we have shown the

equality
〈
K⊥〉⊥ = LK. Therefore,

〈
K⊥〉 ⊥ LK and LK ⊕ 〈

K⊥〉 = V . ��
Considering (71), the largest vector space LTĈ (q̂) contained in the tangent cone

TĈ(q̂) is given by

LTĈ (q̂) = (−TĈ(q̂)
) ∩ TĈ(q̂)

=
{

ûq̂ ∈ Tq̂ Q | dĝα
q̂ · ûq̂ = 0, ∀α ∈ Â(q̂)

}
.

(104)

In the local chart (U, φ), we see that

LTC (q) = {
u ∈ R

n | WT(q)u = 0
} = ker

(
WT(q)

)
(105)

is given by the kernel of WT(q).
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The linear hull of the cone T ⊥
Ĉ (q̂) orthogonal to the tangent cone is given by

〈
T ⊥
Ĉ (q̂)

〉 =
{

−λα∇ ĝα
q̂ ∈ Tq̂ Q | λα ∈ R, α ∈ {1, . . . , h}

}
, (106)

where we have used (90). In the local coordinates (U, φ), it can be written as

〈
T ⊥
C (q)

〉 = {
M−1(q)W(q)Λ ∈ R

n | Λ ∈ R
h
}
. (107)

4.2 Orthogonal Projectors on the Tangent Space

According to Proposition 2, the spaces LTĈ (q̂) and
〈
T ⊥
Ĉ (q̂)

〉
are orthogonal subspaces

of the tangent space Tq̂ Q, which span Tq̂ Q entirely. In the following, we want to
derive orthogonal (w.r.t. the inner product on Tq̂ Q) projectors

P̂· : Tq̂ Q → LTĈ (q̂) (108)

and
P̂⊥· : Tq̂ Q → 〈

T ⊥
Ĉ (q̂)

〉
(109)

on the spaces LTĈ (q̂) ⊆ Tq̂ Q and
〈
T ⊥
Ĉ (q̂)

〉 ⊆ Tq̂ Q, respectively.
Some preliminary remarks are needed before we are able to define the projectors.

The covectors dĝα
q̂ of the active constraints that define the tangent cone may be

written as a vector-valued one-form

dg = eα ⊗ dĝα
q̂ = ∂gα

∂qi
eα ⊗ dqi

= (
W T

)α

i eα ⊗ dqi = W α
i eα ⊗ dqi ,

(110)

where the right expression is the representation in the chart (U, φ) and the eα with
α ∈ {1, . . . , h} denote the basis vectors of the standard basis of Rh . The

(
W T

)α

i
and

W α
i denote the components of the matricesWT andW, respectively. The left index

specifies the row, the right one stands for the column. The map

dg· : Tq̂ Q → R
h (111)

is a linear map between the two vector spaces Tq̂ Q and Rh . As a linear map between
two vector spaces, it has a dual (or transpose) map

dgT· : Rh∗ → T ∗
q̂ Q (112)
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Fig. 6 Relations between
primary and dual spaces

between the spaces T ∗
q̂ Q and R

h∗, which is defined in accordance with (6) by

〈dgT · Λ, û〉 = 〈Λ, dg · û〉, ∀Λ ∈ R
h∗ and û ∈ Tq̂ Q. (113)

From the definition, it follows that

dgT = dĝα
q̂ ⊗ eα = ∂gα

∂qi
dqi ⊗ eα

= W α
i dqi ⊗ eα = (

W T
)α

i dqi ⊗ eα.

(114)

From the diagram in Fig. 6, we see that, by concatenation of dgT·, M̂−1(q̂)· and dg·,
we obtain the map

G· : Rh∗ → R
h,

Λ �→ G · Λ = dg · M̂−1(q̂) · dgT · Λ,
(115)

where
Λ = Λα eα and Λ = (

Λ1 . . . Λh
)T

. (116)

By construction,G is a symmetric, covariant 2-tensor, because M̂−1(q̂) is symmetric.
In mechanics, the 2-tensor G is known as the Delassus operator. Moreover, G is, in
general, positive semi-definite. To see this, we consider that

Λ · G · Λ = Λ · dg · M̂−1(q̂) · dgT · Λ

= (dgT · Λ) · M̂−1(q̂) · (dgT · Λ) ≥ 0,
(117)

because of the positive definiteness of M̂(q̂). For G being positive definite, it is
required that

dgT · Λ = 0 (118)

only holds for the trivial solution Λ = 0. In other words, the coefficient matrix W
needs to have full column rank. The column rank ofW is equivalent to the row rank
of WT, which corresponds to the number of linearly independent dĝα

q̂ in dg.
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The maps dg·, dgT· and G· have the property that

ker(dgT·) = ker(G·), (119)

im(dg·) = im(G·). (120)

First, we show that ker(G·) ⊆ ker(dgT·). For this, we consider a Λ ∈ ker(G·), i.e.,
a Λ ∈ R

h∗ with the property G · Λ = 0. This implies that Λ · G · Λ = 0, and con-
sequently dgT · Λ = 0 by (117) and the positive definiteness of M̂ . So, we have
shown that ker(G·) ⊆ ker(dgT·). The reverse direction ker(G·) ⊇ ker(dgT·) follows
trivially from the definition of G·.

Concerning the proof of equality (120), the inclusion im(G·) ⊆ im(dg·) follows
from the definition of G·. The rank nullity theorem can then be invoked twice to
show equality. For the linear map dgT· : Rh∗ → T ∗

q̂ Q, the rank nullity theorem
says that dim im(dgT·) = h − dim ker(dgT·). According to (119), it follows that
dim ker(dgT·) = dim ker(G·), such that dim im(dgT·) = h − dim ker(G·). Now,
by the rank nullity theorem for G· : Rh∗ → R

h , it follows that dim im(dgT·) =
dim im(G·). Since the row and column rank of a linear map are identical, it fol-
lows that dim im(dg·) = dim im(G·), and therefore im(dg·) = im(G·).

Next,we consider a coupleγ ∈ R
h andΛ ∈ R

h∗ forwhich it holds thatγ = G · Λ.
The pre-image of γ by the possibly singular linear map G· is then given by all the
vectors that are mapped to γ by G·, i.e.,

preImG·(γ ) := {y ∈ R
h∗ | G · y = γ } = Λ + ker(G·), (121)

since G · ker(G·) = 0. Let Λ, Λ̃ ∈ preImG·(γ ) be a pair of vectors that are mapped
to γ under G·, thus it holds that G · (Λ − Λ̃) = 0, and therefore Λ − Λ̃ ∈ ker(G·).
Because ker(dgT·) = ker(G·), it follows that the set dgT · preImG·(γ ) is a singleton
(a set with exactly one element) for any γ ∈ im(G·). Indeed, for any γ ∈ im(G·)
and for all Λ, Λ̃ ∈ preImG·(γ ), it holds that

dgT · Λ = dgT · Λ̃, (122)

and therefore
dgT · preImG·(γ ) = {dgT · y | y ∈ preImG·(γ )} (123)

is a singleton for any γ ∈ im(G·).
Since im(dg·) = im(G·), the pre-image with G· of any point γ ∈ im(dg·) in the

image of dg· is never empty, i.e., preImG·(dg · û) is non-empty for any û ∈ Tq̂ Q. We
conclude that

dgT · preImG·(·) : im(dg·) → T ∗
q̂ Q (124)

is a singleton. This means that the binary relation (124) between the sets im(dg·) and
T ∗

q̂ Q is a linear map, which we will denote as
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dgT · G−1· : im(dg·) → T ∗
q̂ Q. (125)

Note that dgT · G−1· denotes one function in general. In the case when G is regular,
dgT · G−1· is indeed the concatenation of dgT· and G−1·.

Using this linear map, we can consider the following two concatenations of maps:

F̂ · : im(G·) → Tq̂ Q, with F̂ := M̂−1(q̂) · dgT · G−1 (126)

and
P̂⊥· : Tq̂ Q → Tq̂ Q, with P̂⊥ := M̂−1(q̂) · dgT · G−1 · dg. (127)

We show that (127) defines an orthogonal projector onto the linear hull
〈
T ⊥
C (q̂)

〉
of

the orthogonal tangent cone T ⊥
C (q̂) ⊆ Tq̂ Q. Straightforward calculation shows that

P̂⊥· is idempotent
P̂⊥ · P̂⊥ = P̂⊥ (128)

and self-adjoint (
P̂⊥ · û , v̂

)
M̂

=
(

û , P̂⊥ · v̂
)

M̂
, (129)

for all û, v̂ ∈ Tq̂ Q. Therefore, P̂⊥· is an orthogonal projector on Tq̂ Q.
For any û ∈ Tq̂ Q, the set preImG·(dg · û) is non-empty, because im(dg·) =

im(G·) according to (120). For an element Λ ∈ preImG·(dg · û), it holds that

P̂⊥ · û = M̂−1(q̂) · dgT · Λ, (130)

which can be expressed locally using (49), (114) and Λ = Λβ eβ as

P̂⊥ · û = M̂−1(q̂) · dgT · Λ

=
(

Mkl ∂

∂qk
⊗ ∂

∂ql

)
·
(

∂gα

∂qi
dqi ⊗ eα

)
· (

Λβ eβ
)

= MklΛα

∂gα

∂ql

∂

∂qk
.

(131)

By comparing (131) and (106), we see that P̂⊥ · û ∈ 〈
T ⊥
Ĉ (q̂)

〉
. Since û ∈ Tq̂ Q is

arbitrary, the statement im(P̂⊥·) = 〈
T ⊥
Ĉ (q̂)

〉
results.

Because the subspace LTĈ (q̂) is the orthogonal complement to the subspace〈
T ⊥
C (q̂)

〉
, the projector P̂·, which was announced in (108), can now be defined as

P̂· : Tq̂ Q → Tq̂ Q, with P̂ := 1 − P̂⊥ = 1 − M̂−1(q̂) · dgT · G−1 · dg, (132)
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where 1 denotes the identity tensor on Tq̂ Q, which can be locally written as

1 = ∂

∂qi
⊗ dqi . (133)

The projectors P̂· and P̂⊥· satisfy

P̂
∣∣
LTĈ (q̂)

= 1
∣∣
LTĈ (q̂)

,

P̂
∣∣〈T ⊥

Ĉ (q̂)〉 = 0,

P̂⊥∣∣
LTĈ (q̂)

= 0,

P̂⊥∣∣〈T ⊥
Ĉ (q̂)〉 = 1

∣∣〈T ⊥
Ĉ (q̂)〉,

P̂ + P̂⊥ = 1. (134)

The following properties hold for the linear maps dgT·, dg·, G·, F̂ ·, P̂⊥· and P̂·
introduced so far:

F̂ · dg = P̂⊥,

dg · F̂ = 1
∣∣
im(G·),

P̂⊥ · F̂ = F̂,

P̂ · F̂ = 0,

dg
∣∣
LTĈ (q̂)

= 0,

F̂ · G = M̂−1(q̂) · dgT.
(135)

From the properties (134) and by (88) and (106), it becomes obvious that

P̂ · (û+ − û−) = 0,

P̂⊥ · (û+ − û−) ∈ −T ⊥
Ĉ (q̂).

(136)

So far, we have introduced geometric objects in the tangent space Tq̂ Q. Often, we
want to work in local coordinates, i.e., in Rn . Hence, it is reasonable to ask whether
the decomposition of the tangent space given by the orthogonal projectors P̂ and P̂⊥
can be pushed to Rn using the isomorphisms from Fig. 6.

Using the standard bases of Rn , Rh and of their duals Rn∗, Rh∗, the matrix W
from (70) and its transpose correspond to the linear map

W· : Rh∗ → R
n∗,

Λ �→ Fc = W · Λ := dφ−T · dgT · Λ
(137)

and its transpose

WT· : Rn → R
h,

u �→ γ = WT · u := dg · dφ−1 · u,
(138)

depending on the chart (U, φ) with q̂ ∈ U . In Eqs. (137) and (138), the chart φ

appears in the form of the isomorphism (44). Note that the contraction dot · can be
omitted when W is seen as a matrix and u ∈ R

n , Λ ∈ R
h∗ as column vectors.
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The orthogonal projectors (108) and (109) are endomorphisms on the tangent
space Tq̂ Q. We want to push them from Tq̂ Q toRn using the chart φ such that we get
corresponding projectors (i.e., endomorphisms) on R

n . We consider the following
diagram:

which commutes if

P⊥· = dφ · P̂⊥ · dφ−1·, (139)

P· = dφ · P̂ · dφ−1 · . (140)

Using (127), we write (139) as

P⊥· = dφ ·
(

M̂−1(q̂) · dgT · G−1 · dg
)

· dφ−1·, (141)

where we can insert the identity map dφT · dφ−T on R
n∗ such that we can use (51)

to obtain
P⊥· = dφ · M̂−1(q̂) · dφT · dφ−T · dgT · G−1 · dg · dφ−1·

= M−1 · W · G−1 · WT · .
(142)

Analogously, it can be shown that

P· = (
In · ) − (

M−1 · W · G−1 · WT · )
. (143)

It can be checked that P· and P⊥· are indeed projectors. Finally, the map
F̂ · : im(G·) → Tq̂ Q from (126) remains. We define the chart representation of F̂ ·
as

F· : Rh ⊇ im(G·) → R
n,

γ �→ F · γ := dφ · F̂ · γ ,
(144)

i.e., F = dφ · F̂ . By (126), it follows that

F· = dφ · M̂−1(q̂) · dgT · G−1·
= dφ · M̂−1(q̂) · dφT · dφ−T · dgT · G−1·
= M−1 · W · G−1·,

(145)
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where we used (51) again. The properties (135) remain valid for the linear mapsW·,
WT·, G·, F·, P⊥· and P· such that

F · WT = P⊥,

WT · F = Ih

∣∣
im(G·),

P⊥ · F = F,

P · F = 0,

WT
∣∣
LTC (q)

= 0,

F · G = M−1 · W.
(146)

5 Variational Analysis of Impact Laws

In this section, we give a variational analysis of instantaneous impact laws, as is also
done in [6, 26]. Following [6], we restrict the analysis to the special case of a positive
definite Delassus operator G.

From now on, we restrict our considerations to the special case in which the level
curves ĝα(q̂) = 0 are assumed to intersect transversally. This means that the dĝα

q̂ ∈
T ∗

q̂ Q, which are active in the sense that ĝα(q̂) = 0 holds, are linearly independent
in T ∗

q̂ Q. The corresponding matrix W from (70) then has full column rank, and
the corresponding Delassus operator G from (115) is positive definite such that it
has an inverse G−1. Remember that in the previous sections, G−1· was a shorthand
notation to denote the pre-image of G· for which only the concatenation dgT · G−1·
from (125) was a linear map in general. In the following, G−1· itself is also a linear
map, because of G being positive definite. Moreover, we will work on R

n , Rh and
their duals, rather than on Tq̂ Q, Rh and their duals.

We start by restating the inclusions (100)–(102) on R
n as

u+ ∈ TC(q), (kinematic consistency) (147)

u+ ∈ u− − T ⊥
C (q), (kinetic consistency) (148)

u+ ∈ B‖u−‖M(q). (energetic consistency) (149)

In order to obtain a unique post impact velocity u+, the inclusions (147)–(149)
have to be complemented by a constitutive law. On the one hand, the description
of impacts according to the classical Newton’s or Poisson’s impact law is done in
contact velocities. On the other hand, we have identified the dual variables γ̄ and Λ

in (98) such that we assume a binary relation H as constitutive law, i.e.,

(γ̄ , −Λ) ∈ grphH, (150)

with grphH ⊆ R
h × R

h∗. Following Rockafellar [40], a binary relation H can be
interpreted as set-valued mapping H : Rh ⇒ R

h∗ and the binary relation (150) can
be denoted as

− Λ ∈ H(γ̄ ). (151)

In the following, we define the property of maximal monotonicity, which the set-
valued impact law (151) may have.
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5.1 Convex Analysis

In convex analysis, the domain of a scalar, real-valued function f on a convex
set D ⊂ R

n (cf. Sect. 4.1) is usually extended to R
n by defining f (x) = ∞ for

all x /∈ D. Therefore, the functions of interest are f : Rn →] − ∞, ∞]. The func-
tion f is convex if for arbitrary x1, x2 ∈ R

n it holds that f ((1 − s)x1 + sx2) ≤
(1 − s) f (x1) + s f (x2) with 0 < s < 1. The function is proper if f (x) < ∞ for
at least one x ∈ R

n . The function f is lower semi-continuous if limx→x̄ f (x) ≥ f (x̄)
for all x ∈ R

n .
In the following, we will introduce some concepts from convex analysis. As we

discussed in Sect. 1, we want to introduce the objects in the context of dual vector
spaces, as proposed by Moreau in [34]. At some points, we needed to adapt the
definitions taken from [39, 40] by replacing the canonical inner product (· , ·) onRn

with the duality pairing 〈· , ·〉.
Definition 1 The subdifferential of a proper, lower semi-continuous, convex func-
tion f : Rn →] − ∞, ∞] at x0 ∈ R

n , is defined as the set

∂ f (x0) = {
y ∈ R

n∗ | f (x) ≥ f (x0) + 〈
y , x − x0

〉
, ∀x ∈ R

n
}
.

In general, the subdifferential is a set-valuedmapping, i.e., ∂ f : Rn ⇒ R
n∗. Elements

of the domain may be mapped to subsets of the image.
If we are given a set-valued mapping H : Rn ⇒ R

n∗, then it is an interesting
question for which conditions it can be written as the subdifferential of a proper,
lower semi-continuous, convex function f : Rn →] − ∞, ∞]. We start by defining
the graph of the set-valued mapping H as

grphH = {
(x, y) ∈ R

n × R
n∗ | y ∈ H(x)

}
. (152)

Definition 2 AmappingH : Rn ⇒ R
n∗ is calledmonotone if it has the property that

〈
y2 − y1 , x2 − x1

〉 ≥ 0 (153)

whenever y1 ∈ H(x1), y2 ∈ H(x2) and strictly monotone if this inequality is strict
when x1 	= x2. The monotone mapping H : Rn ⇒ R

n∗ is maximal monotone if no
enlargement of its graph is possible in R

n × R
n∗ without destroying monotonicity.

From the definition of the subdifferential, it is obvious that subdifferentials of
proper, lower semi-continuous, convex functions are monotone. It can be shown that
they are maximal monotone (see Theorem 12.17 in [40]). Maximal monotonicity
is therefore a necessary condition that a set-valued mapping H : Rn ⇒ R

n∗ needs
to fulfil in order for it to be written as the subdifferential of a proper, lower semi-
continuous, convex function f : Rn →] − ∞, ∞]. The property of maximal cyclical
monotonicity provides us with a necessary and sufficient criterion.
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Definition 3 A mapping H : Rn ⇒ R
n∗ is cyclically monotone if for any choice of

points x0, x1, . . . , xm (for arbitrary m ≥ 1) and elements yi ∈ H(xi ), it holds that〈
y0 , x1 − x0

〉 + 〈
y1 , x2 − x1

〉 + . . . + 〈
ym , x0 − xm

〉 ≤ 0. (154)

It is maximal cyclically monotone if it is cyclically monotone and its graph cannot
be enlarged without destroying this property.

For m = 1, the condition (154) for cyclical monotonicity corresponds to the condi-
tion (153) for monotonicity. It can be shown that every maximal cyclically monotone
mapping is maximal monotone.

Theorem 1 A mapping H : Rn ⇒ R
n∗ has the form H = ∂ f for some proper, lower

semi-continuous, convex function f : Rn →] − ∞, ∞] iff H is maximal cyclically
monotone. Then, f is determined by H uniquely up to an additive constant.

For the proof, we refer to [40, Theorem 12.25].
The above definitions can be stated for mappings from V to itself. The inner

product onV then takes the place of the duality pairing.Weconfineour considerations
to the definition of maximal monotonicity in this context.

Definition 4 Let R
n be a vector space with inner product (· , ·). A mapping

T : Rn ⇒ R
n is called monotone if it has the property that

(
y2 − y1 , x2 − x1

) ≥ 0

whenever y1 ∈ T (x1), y2 ∈ T (x2) and strictly monotone if this inequality is strict
when x1 	= x2. The monotone mapping T : Rn ⇒ R

n is maximal monotone if no
enlargement of its graph is possible in R

n × R
n without destroying monotonicity.

In terms of the norm ‖ · ‖, which is induced by an inner product (· , ·) as

‖x‖ = √
(x , x), (155)

the property of nonexpansivity can be defined as follows.

Definition 5 LetRn be a vector spacewith inner product (· , ·). AmappingS : Rn ⇒
R

n is called nonexpansive if

‖w1 − w0‖ ≤ ‖z1 − z0‖ whenever w1 ∈ S(z1), w0 ∈ S(z0)

and contractive if the inequality is strict when z1 	= z0.

Rockafellar and Wets [40] state the following theorem about the so-called Minty
parametrization, which connects maximal monotone and nonexpansive mappings.

Theorem 2 Let T : Rn ⇒ R
n be maximal monotone. Then, the mappings

P = (I + T )
−1 , Q = (

I + T −1)−1
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are single-valued, in fact maximal monotone and nonexpansive, and the mapping
z �→ (Q(z),P(z)) is one-to-one fromR

n to grph T . This provides a parametrization
of grph T that is Lipschitz continuous in both directions:

(P(z),Q(z)) = (x, y) ⇔ z = x + y, (x, y) ∈ grph T .

LetD ⊆ R
n be a closed, non-empty, convex set. The indicator function of the set

D is defined as

ΨD(x) :=
{
0 if x ∈ D,

∞ if x /∈ D.
(156)

We can take the subdifferential of the indicator function ΨD because it is a lower
semi-continuous, proper, convex function, and we obtain

∂ΨD(x) = {
y ∈ R

n∗ | ΨD(x′) ≥ ΨD(x) + 〈
y , x′ − x

〉
, ∀x′ ∈ R

n
}

= {
y ∈ R

n∗ | 0 ≥ 〈
y , x′ − x

〉
, ∀x′ ∈ D

}
,

(157)

which is the normal cone to the set D

ND(x) = {
y ∈ R

n∗ | 〈
y , x′ − x

〉 ≤ 0, ∀x′ ∈ D
}
. (158)

Considering that the tangent cone to the set D at the point x is defined as

TD(x) = c| {v ∈ R
n | v = s(x′ − x), ∀x′ ∈ D, s ≥ 0

}
, (159)

the normal cone (158) can be written in the same form as (72), i.e.,

ND(x) = {
y ∈ R

n∗ | 〈
y , v

〉 ≤ 0, ∀v ∈ TD(x)
}
. (160)

If the vector spaceRn is equipped with an inner product (· , ·)R such that, accord-
ing to (11),

(u , v)R = uTRv (161)

for any u, v ∈ R
n , then the proximal point function proxRD : Rn → D of a point z ∈

R
n to a nonempty closed convex set D ⊆ R

n can be defined as

proxRD(z) := argminx′∈D ‖z − x′‖R. (162)

The proximal point function (162) provides the closest point of z in the set D with
respect to the norm corresponding to the inner product (· , ·)R. TheR in the notation
of the proximal point function serves as a mnemonic for the inner product space.
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The proximal point function of a set D is related to its normal cone as follows:

x = proxRD(z) ⇔ x = argminx′∈D ‖z − x′‖R
⇔ x = argminx′∈Rn

1

2
‖z − x′‖2R + ΨD(x′)

⇔ 0 ∈ −R(z − x) + ND(x)

⇔ z ∈ x + R−1ND(x).

(163)

The distance function distRD(z) := ‖z − proxRD(z)‖R gives the distance in theR-norm
of a point z ∈ R

n to the proximal point in the set D. It holds that

∂
1

2

(
distRD(z)

)2 = R
(
z − proxRD(z)

)
, (164)

which is proven in [27, Proposition 2.33] for R = I and can be directly extended to
a more general inner product (· , ·)R.

For a given pair of orthogonal closed convex cones K,K⊥ ⊆ R
n , any vector u ∈

R
n can be represented uniquely in the form

u = v + v⊥, v ∈ K, v⊥ ∈ K⊥, v ⊥ v⊥, (165)

where ⊥ denotes orthogonality with respect to the inner product, i.e., (v , v⊥)R = 0.
The decomposition u = v + v⊥ may be written using the proximal point function as

u = proxRK(u) + proxRK⊥(u), (166)

according to [33].
Next, we consider the following diagram:

where m ≤ n and A ∈ R
n×m∗ is a matrix with full column rank. Note that the inner

products (· , ·)R on R
n and (· , ·)ATRA on R

m are compatible in the sense that

(Au , Av)R = (u , v)ATRA (167)

for all u, v ∈ R
m . The above diagram commutes if

A proxA
TRA

D (x) = proxRAD(Ax), (168)
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which is the transformation rule from [6, 31]. Lastly, we state the identities

proxMTC (Px + y) = Px + proxMTC (y), (169)

proxMT ⊥
C

(x + y) = proxMT ⊥
C

(P⊥x + y), (170)

from [6] without proof.

5.2 Impact Map in the Generalized Velocities

If we assume that the constitutive law −Λ ∈ H(γ̄ ) is maximal monotone, then we
can derive a single-valued map

Z : Rn → R
n,

u− �→ u+ = Z(u−).
(171)

We consider the Minty parametrization of the maximal monotone set-valued
map on Rn

Tu : Rn ⇒ R
n,

ū �→ Tu(ū) = 1

2
M−1 · W · H ◦ WT · ū,

(172)

as shown in Fig. 7. The variables x and y from Theorem 2 are then given by ū and
− 1

2M
−1WΛ, respectively. Considering the impact equation (83)

u+ − u− = M−1WΛ (173)

and defining

ū = 1

2
(u+ + u−), (174)

it follows that

z = x + y = ū +
(

−1

2
M−1WΛ

)
= u− (175)

as desired. According to Theorem 2, the mapping

ū = P(u−) = (In + Tu)
−1 (u−) =

(
In + 1

2
M−1 · W · H ◦ WT

)−1

(u−) (176)

is single-valued. Using (174), we can state the desired impact map in generalized
velocities

u+ = 2

(
In + 1

2
M−1 · W · H ◦ WT

)−1

(u−) − u− (177)
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such that

Z = 2

(
In + 1

2
M−1 · W · H ◦ WT

)−1

− In. (178)

5.3 Impact Map in the Contact Velocities

As in the previous section, we now want to obtain a single-valued map

S : Rh → R
h,

γ − �→ γ + = S(γ −),
(179)

under the assumption that the constitutive law −Λ ∈ H(γ̄ ) is maximal monotone.
To do so, we consider the set-valued map

Tγ : Rh ⇒ R
h,

γ̄ �→ Tγ (γ̄ ) = 1

2
G · H(γ̄ ),

(180)

together with its Minty parametrization (see Fig. 7). The variables x and y from
Theorem 2 are then given by γ̄ and − 1

2GΛ, respectively.
First, we consider that the Delassus operator from (115) can be written using (51),

(137) and (138) as

G = dg · M̂−1(q̂) · dgT
= dg · dφ−1 · dφ · M̂−1(q̂) · dφT · dφ−T · dgT
= WTM−1W.

(181)

Fig. 7 Set-valuedmaps 1
2G · H on the inner product space

(
R

h, (·, ·)G−1
)
and 1

2M
−1 · W · H ◦ WT

on (Rn, (·, ·)M) associated with a set-valued map H : Rh ⇒ R
h∗
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Then, we multiply (173) from the left by WT and obtain

γ + − γ − = GΛ. (182)

With (96) and (182), it follows that

z = x + y = γ̄ +
(

−1

2
GΛ

)
= γ −. (183)

According to Theorem 2, the mapping

γ̄ = P(γ −) = (
Ih + Tγ

)−1
(γ −) =

(
Ih + 1

2
G · H

)−1

(γ −) (184)

is single-valued. Using (96), we can state the desired impact map in contact velocities

γ + = 2

(
Ih + 1

2
G · H

)−1

(γ −) − γ − (185)

such that

S = 2

(
Ih + 1

2
G · H

)−1

− Ih . (186)

5.4 Interrelations Between the Representations
of an Impact Law

Figure8 summarizes the interrelations between the maps H, S and Z . In Sect. 5.3,
we have derived the mapping S when we are given H. In the opposite direction, we
can solve (186) for H such that

H = 2G−1 ·
((

S + Ih

2

)−1

− Ih

)
. (187)

Similarly, we can solve (178) for H. In a first step, we can write

W · H ◦ WT = 2M ·
((

Z + In

2

)−1

− In

)
. (188)

Then, F can be applied from the right to yield

W · H = 2M ·
((

Z + In

2

)−1

− In

)
◦ F (189)
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Fig. 8 Interrelations of the monotonicity properties of an impact constitutive law H and the cor-
responding impact mappings Z and S

because of the properties (146). Next, we apply FT : Rh∗ → R
n∗, the transpose map

of F, from the left to obtain

H = 2FT · M ·
((

Z + In

2

)−1

− In

)
◦ F, (190)

which is the desired relation.
Our considerations from Sect. 4.2 can be used to derive a direct relation between

S and Z . Using the orthogonal projectors on Rn from (139) and (140), we have that

u+ = P · u+ + P⊥ · u+

= P · u− + F · WT · u+

= P · u− + F · γ +

= P · u− + F · S(γ −)

= P · u− + F · S(WT · u−).

(191)

At the second equality, we have used (136), (142), (145), (146) and (173). At the
third and fifth equality we have used that γ ± = WT · u±. Finally, we have

Z = P + F · S ◦ WT

= P + F ·
(
2

(
Ih + 1

2
G · H

)−1

◦ WT − WT

)
,

(192)
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where we inserted the expression (186) for S. The expression (192) can be solved
for S by applying WT· from the left as

WT · Z = WT · P + WT · F · S ◦ WT

= S ◦ WT,
(193)

because it follows from (143) that WT · P = 0 and by the properties (146) WT ·
F · S ◦ WT = S ◦ WT. After applying F from the right, we can invoke the proper-
ties (146) again to conclude that

S = WT · Z ◦ F. (194)

6 Specific Impact Laws

In this section, which is an abridged version of [6, Chap. 3.3.4], we will apply the
variational analysis of impact laws to two specific impact laws, those being Newton’s
impact law and Poisson’s impact law, which are typically used in rigid multibody
dynamics [38]. Both of these impact laws have originally been stated for collisions
with a single unilateral constraint. Here, we will consider generalizations of these
impact laws to multi-contact collisions that are referred to as the generalized New-
ton’s impact law and the generalized Poisson’s impact law, respectively.

6.1 Generalized Newton’s Impact Law

The classical Newton’s impact law considers a collision with a single active uni-
lateral constraint g1 = 0 with a pre-impact velocity γ 1− < 0, or γ 1− ≤ 0 if zero-
velocity collisions are also considered. Newton’s impact law simply inverts the pre-
impact contact velocity and scales it with what is called a Newtonian restitution
coefficient ε1, i.e.,

γ 1+ = −ε1γ 1−, (195)

thereby giving a kinematically admissible post-impact contact velocity γ 1+ ≥ 0, as
the coefficient of restitution is chosen in the interval ε1 ∈ [0, 1]. The case ε1 = 1
corresponds to a completely elastic impact (energy conservation), whereas ε1 = 0
corresponds to a completely inelastic impact (maximal energy dissipation). The
impact is accompanied by a contact impulse Λ1. The assumption of an adhesion-
free contact poses the restriction Λ1 ≥ 0 on the contact impulse, which is naturally
fulfilled for single-contact collisions. In a multi-contact collision, one cannot simply
apply Newton’s restitution rule to all active constraints α = 1, . . . , h. Simple appli-
cation of Newton’s restitution rule may result in a negative contact impulse for some
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constraints. The classical Newton’s impact law has therefore to be generalized for
multi-contact collisions by explicitly allowing for superfluous constraints. A unilat-
eral constraint gα ≥ 0 is called superfluous if it does not participate in the impact
(i.e.,Λα = 0) although the unilateral constraint is active (i.e., gα = 0). For γ α− < 0,
the occurrence of such a superfluous constraint only happens for multi-constraint
collisions. Following [14, 36], we generalize the classical Newton’s impact law to
account for superfluous constraints by allowing post-impact contact velocities larger
than prescribed by Newton’s restitution rule, i.e., γ α+ ≥ −εαγ α−. Summarizing,
two cases can occur at an active unilateral constraint α:

1. The unilateral constraint is actively participating in the impact process, i.e.,
Λα > 0 and γ α+ = −εαγ α−.

2. The unilateral constraint is superfluous, i.e., Λα = 0 and γ α+ ≥ −εαγ α−.

These two cases are combined in an inequality complementarity impact law on
velocity–impulse level with ξα := γ α+ + εαγ α− as

− Λα ∈ NR
+
0
(ξα). (196)

The generalized Newton’s impact law (196) can be written in vector notation
using the restitution coefficient matrix E = diag

({ε1, . . . , εh}) ∈ R
h×h as

− Λ ∈ N
R

h+
0

(ξ), (197)

where ξ = γ + + Eγ −. Alternatively, wemaywrite the generalized Newton’s impact
law as the inequality complementarity

R
h∗+
0 ! Λ ⊥ ξ ∈ R

h+
0 , (198)

where Λ ⊥ ξ denotes 〈Λ, ξ 〉 = 0. The symmetry in the inequality complementar-
ity (198) reveals that we can invert the normal cone inclusion (196) into

− ξ ∈ N
R

h∗+
0

(Λ). (199)

We will consider the simpler case of a global restitution coefficient ε, meaning
that all restitution coefficients are identical, εα = ε for all α = 1, . . . , h, and corre-
spondingly E = εI. The following theorem is proven in [6].

Theorem 3 Consider the impact equation (83) together with the generalized New-
ton’s impact law (197) with a global restitution coefficient ε ∈ [0, 1], that is,
ξ = γ + + εγ −. Then, the set-valued impact law H and the impact mappings S
and Z are given by

−Λ ∈ H(γ̄ ) =
{− 2(1+ε)

1−ε
proxG

R
h∗+
0

(−G−1γ̄ ) 0 ≤ ε < 1,

N
R

h+
0

(γ̄ ) ε = 1,
(200)
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γ + = S(γ −) = proxG
−1

R
h+
0

(γ −) − ε proxG
−1

(Rh+
0 )⊥(γ −), (201)

u+ = Z(u−) = proxMTC
(
u−) − ε proxMT ⊥

C

(
u−)

. (202)

Furthermore, the set-valued impact law −Λ ∈ H(γ̄ ) = ∂Φ(γ̄ ) is cyclically maximal
monotone with the corresponding dissipation function

Φ(γ̄ ) =
⎧⎨
⎩

1+ε
1−ε

(
distG

−1

R
h+
0

(γ̄ )
)2

0 ≤ ε < 1,

Ψ
R

h+
0

(γ̄ ) ε = 1.
(203)

Proof In the first part of the proof, we derive the impact mappings S and Z . For this
purpose, the generalized Newton’s impact law (197) is written using the local impact
equation (182) together with ξ = γ + + εγ − as

− (γ + − γ −) ∈ GN
R

h+
0

(γ + + εγ −). (204)

The normal cone inclusion transforms by (163) to the explicit equation

γ + = −εγ − + proxG
−1

R
h+
0

(
(1 + ε)γ −)

. (205)

Using the positive homogeneity of proxG
−1

R
h+
0

(·), we arrive at

γ + = −εγ − + (1 + ε) proxG
−1

R
h+
0

(γ −), (206)

which is already a formulation for S. Using the orthogonal cone decomposition (166),
we may put the mapping S in its final form

γ + = proxG
−1

R
h+
0

(γ −) − ε proxG
−1

(Rh+
0 )⊥(γ −). (207)

The mapping Z is obtained from the mapping S using (192) as

u+ = (
P + FS ◦ WT

)
(u−)

= (
I + F(S − I) ◦ WT

)
(u−)

= u− − (1 + ε)F · proxG−1

(Rh+
0 )⊥

(
WT · u−)

,

(208)

in which P = I − P⊥ = I − F · WT has been used. Because G−1 = FT · M · F, the
proximal point function on (Rh, (· , ·)G−1) can be replaced by the one on (Rn, (· , ·)M)

using the transformation rule (168)

u+ = u− − (1 + ε)F · proxFTMF
(Rh+

0 )⊥
(
WT · u−)

= u− − (1 + ε) proxM
F(Rh+

0 )⊥
(
F · WT · u−)

.
(209)
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The formulation (202) of the mapping Z is obtained by again using the orthogonal
cone decomposition together with T ⊥

C = F(Rh+
0 )⊥ and the identity (170), i.e.,

u+ =
(
u− − proxMT ⊥

C

(
u−)) − ε proxMT ⊥

C

(
u−)

= proxMTC
(
u−) − ε proxMT ⊥

C

(
u−)

.
(210)

We continue by deriving the set-valued impact law H in (200). Using the mean
contact velocity and (182), we express ξ as

ξ = γ + + εγ −

= 1 + ε

2
(γ + + γ −) + 1 − ε

2
(γ + − γ −)

= (1 + ε)γ̄ + 1 − ε

2
GΛ.

(211)

ThegeneralizedNewton’s impact law−Λ ∈ N
R

h+
0

(ξ) for ε = 1 is equivalent to−Λ ∈
N

R
h+
0

(γ̄ ), where the cone property of the normal cone N
R

h+
0

has been used. For ε ∈
[0, 1), we proceed by inverting the normal cone into (199) and employ the cone
condition to obtain

− 2(1 + ε)

1 − ε
γ̄ − GΛ ∈ N

R
h∗+
0

(Λ). (212)

The equivalence (163) allows us to write

− Λ = −2(1 + ε)

1 − ε
proxG

R
h∗+
0

(−G−1γ̄ ), (213)

in which the positive homogeneity of proxG
R

h∗+
0

(·) has been used.

It remains to be proven that the functionΦ given in (203) is the dissipation function
of the set-valued impact lawH. The case ε = 1 is trivial. For the case ε ∈ [0, 1), we
use (164) to obtain the subdifferential of the dissipation function as

∂Φ(γ̄ ) = 2(1 + ε)

1 − ε
∂
1

2

(
distG

−1

R
h+
0

(γ̄ )
)2

= 2(1 + ε)

1 − ε
G−1

(
γ̄ − proxG

−1

R
h+
0

(γ̄ )
)

= 2(1 + ε)

1 − ε
G−1 proxG

−1

(Rh+
0 )⊥(γ̄ )

= −2(1 + ε)

1 − ε
proxG

R
h∗+
0

(−G−1γ̄
)
,

(214)

where the proximal point transformation (168) together with −G−1(Rh+
0 )⊥ = R

h∗+
0

has been used. Hence, the generalized Newton’s impact law with a global restitu-



86 T. Winandy et al.

tion coefficient has a set-valued impact law H, which is cyclically maximal mono-
tone. The corresponding convex dissipation function Φ is positively homogeneous
of degree 2. ��

Theorem 3 considers the case of a global restitution coefficient, i.e., E = εI.
In [6], the impact mappings S, Z and the set-valued impact law H are also derived
for the more general case of a diagonal matrixE = diag

({ε1, . . . , εh}). However, the
set-valued impact law H looses its property of cyclic maximal monotonicity and a
dissipation function Φ for the impact law no longer exists. Furthermore, if the resti-
tution coefficients εα differ much such that G − EGE ≥ 0 no longer holds, then the
property of monotonicity itself is also lost. For a further example of an instantaneous
impact law in which the corresponding set-valued impact law is maximal but not
cyclically maximal monotone, we refer to [43].

6.2 Generalized Poisson’s Impact Law

The generalized Poisson’s impact law [14, 18] distinguishes between a compression
and an expansion phase. In the compression phase, the impulsive forces reduce the
normal relative velocities until standstill, thereby maximizing the reduction of the
kinetic energy that is accessible by the constraint forces. The compression phase
corresponds to a completely inelastic impact, and can thus be represented by the
generalized Newton’s impact law with εα = 0 as

M(q)(uC − u−) = W(q)ΛC , −ΛC ∈ N
R

h+
0

(γ C). (215)

The compression constraint impulses ΛC and the constraint velocities after the com-
pression phase γ C = WT(q)uC are therefore nonnegative by components.

The deformation energy gained during the compression is partly released during
the expansion phase and reconverted into kinetic energy. The dissipative behavior
is expressed by the Poisson’s restitution coefficients εα ∈ [0, 1], which relate the
expansion impulse to the compression impulse. The expansion phase is described by
an inequality complementarity as

M(q)(u+ − uC) = W(q)ΛE , −(ΛE − EΛC) ∈ N
R

h+
0

(γ +). (216)

The impact equation (83) with the total constraint impulses Λ = ΛC + ΛE is
obtained by addition of the impact equations (215) and (216). The generalized Pois-
son’s impact law is able to describe certain restitution effects of multi-constraint
collisions, which are not possible to describe with the generalized Newton’s impact
law. The differences between the generalized Newton’s impact law and the general-
ized Poisson’s impact law are explained in detail in [14, 17, 18].
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In the following theorem, which is an adapted version of [6], we give the map-
pings S and Z for the generalized Poisson’s impact law and also prove maximal
monotonicity of H without giving an explicit formulation for H itself.

Theorem 4 Consider the impact equation (83) together with the generalized Pois-
son’s impact law (215)–(216) with a global coefficient of restitution ε ∈ [0, 1], that
is, E = εI. Then, the impact mappings S and Z are given by

γ + = S(γ −) = proxG
−1

R
h+
0

(
proxG

−1

R
h+
0

(γ −) − ε proxG
−1

(Rh+
0 )⊥(γ −)

)
, (217)

u+ = Z(u−) = proxMTC

(
proxMTC

(
u−) − ε proxMT ⊥

C

(
u−))

. (218)

Furthermore, the set-valued impact law −Λ ∈ H(γ̄ ) is maximal monotone.

Proof In the first part of the proof, we derive the impact mappings S and Z . The
impact law of the compression phase of the generalized Poisson’s impact law (215)
is written using γ C = γ − + GΛC as

− ΛC ∈ N
R

h+
0

(γ − + GΛC). (219)

The compression impulses ΛC as a function of the pre-impact contact velocities
γ − are obtained by inverting the normal cone and transforming (219) using (163)
and (170) as

−γ − ∈ N
R

h∗+
0

(ΛC) + GΛC , (220)

ΛC = proxG
R

h∗+
0

(−G−1γ −), (221)

ΛC = −G−1 proxG
−1

(Rh+
0 )⊥(γ −). (222)

The impact law of the expansion phase (216) is written using ΛE = Λ − ΛC =
G−1(γ + − γ −) − ΛC as

γ − + (1 + ε)GΛC ∈ GN
R

h+
0

(γ +) + γ +, (223)

which transforms by (163) to the explicit form

γ + = proxG
−1

R
h+
0

(
γ − + (1 + ε)GΛC

)
. (224)

Replacing ΛC using (222) and (166) yields the mapping S in (217)

γ + = proxG
−1

R
h+
0

(
γ − − (1 + ε) proxG

−1

(Rh+
0 )⊥(γ −)

)
(225)

= proxG
−1

R
h+
0

(
proxG

−1

R
h+
0

(γ −) − ε proxG
−1

(Rh+
0 )⊥(γ −)

)
. (226)
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The mapping Z in (218) is obtained by substituting (225) in (192) as

u+ = Z(u−) = (P + FS ◦ WT)(u−)

= Pu− + F proxG
−1

R
h+
0

(
WTu− − (1 + ε) proxG

−1

(Rh+
0 )⊥

(
WTu−))

= Pu− + proxM
FRh+

0

(
FWTu− − (1 + ε)F proxG

−1

(Rh+
0 )⊥

(
WTu−))

= Pu− + proxM
FRh+

0

(
FWTu− − (1 + ε) proxM

F(Rh+
0 )⊥

(
FWTu−))

= proxMTC

(
Pu− + P⊥u− − (1 + ε) proxMT ⊥

C

(
P⊥u−))

= proxMTC

(
u− − (1 + ε) proxMT ⊥

C

(
u−))

= proxMTC

(
proxMTC

(
u−) − ε proxMT ⊥

C

(
u−))

,

(227)

where the transformation rule (168), the identities (169) and (170) and the same steps
as in the derivation of Z for Newton’s impact law have been used.

The non-expansivity of the impact mapping S can directly be shown by writing
(225) as

γ + = S(γ −)

= proxG
−1

R
h+
0

(1 + ε

2
γ − + 1 − ε

2

(
proxG

−1

R
h+
0

(
γ −) − proxG

−1

(Rh+
0 )⊥

(
γ −) ))

.
(228)

The mappings I , proxG
−1

R
h+
0

and proxG
−1

R
h+
0

− proxG
−1

(Rh+
0 )⊥ are non-expansive, as shown

in [6]. Furthermore, if any two functions f, g are non-expansive, then the func-
tions f ◦ g and λ0f + λ1g with |λ0| + |λ1| ≤ 1 are non-expansive as well. The non-
expansivity of S implies that Z is also non-expansive and that H is monotone.
Maximal monotonicity ofH follows from the fact that S is maximal non-expansive,
as its domain is Rh . ��

In [6], the derivation for S and Z of themore general case with different restitution
coefficients is given. Moreover, an example is given which shows that the set-valued
impact law H of the generalized Poisson’s impact law is not cyclically maximal
monotone in general.

7 Discussion on Variational Analysis of Impact Laws

We attempt to give a critical discussion of the results on the variational analysis of
impact laws that was presented in Sect. 5 and the specific impact laws in Sect. 6:

• Closed form expressions (201) and (202), respectively (217) and (218), for the
impact mappings S and Z have been derived for the generalized Newton’s and
Poisson’s impact law. It has to be remarked that the numerical evaluation of the
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proximal point functions in such global mappings become cumbersome when
multiple unilateral constraints are considered. Instead, a numerical scheme will
usually solve a combinatorial problem to find the post-impact velocities using the
impact laws in the local form (199), e.g., by setting up a linear complementar-
ity problem or by using Alart and Curnier’s solution method [2]. Furthermore,
the relations (186) and (178) that express the mappings S and Z in terms of the
set-valued impact law H are not constructive in the sense that they do not allow
for the systematic derivation of the expressions for S and Z in terms of proximal
point functions for a given set-valued impact lawH, as they are derived in Sect. 6.
However, in the research fields Hybrid Systems [21, 23, 28, 30, 42] and Robotic
Locomotion (see the survey paper [22]), one uses reset maps to describe instanta-
neous jumps in the state of the system, either for simulation or control purposes. A
description of mechanical systems with unilateral constraints within the theory of
Hybrid Systems requires an explicit expression for Z . The closed form expressions
for the impact mappings S and Z therefore help to unite related research fields.

• In this work, as well as in earlier work of the authors, it has been shown that
under some conditions on the restitution coefficients, the impact maps S and Z of
the generalized Newton’s and Poisson’s impact law are maximal non-expansive.
Furthermore, it has been shown that S and Z are related to H through a Minty
parametrization. The maximal non-expansivity of S and Z is therefore equivalent
to the maximal monotonicity of H. This property is used to derive stability and
synchronization properties of unilaterally constrained systems [27] and attempts
are made to derive state-observers for such systems based on this property [7]. The
validity of the assumption of maximal monotonicity ofH in application problems
remains an open question, being closely related to the chosen discretization level.
A fine discretization will result in small values of the restitution coefficients and
also lead to a decoupling in the Delassus matrix G. Both these effects render the
impact map H maximal monotone.

• The concept of a dissipation function as pseudo-potential for the impact law has
been presented. The introduction of this concept strengthens the relationship with
convex optimization theory and puts impact theory within the general framework
of set-valued force laws, as expounded upon in the book by Glocker [15]. How-
ever, such a dissipation function only exists for very specific impact laws, notably
the generalized Newton’s impact law with global restitution coefficient. The prac-
tical relevance of dissipation functions to characterize impact laws is therefore
extremely limited. Furthermore, the implication of cyclic maximal monotonicity
of H for the dynamics of systems with unilateral constraints is still unexplored.

Clearly, the above discussion shows that our work does not immediately contribute
to, for instance, improved simulationmethods, lead to improved impact laws or solve
any other practical issue related to systems with contact. We merely conclude that
a variational analysis of impact laws does bring a mathematical structure to impact
theory and also reveals properties that can be favorable from a dynamic analysis
point of view.
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8 Concluding Remarks

In Sects. 2–4, we have presented the geometric setting for the description of impacts
in rigid multibody dynamics. One may observe that these sections are mainly based
on linear algebra and basic differential geometry. The strength of the geometric
description of impacts lies in the identification of the involved primal and dual quan-
tities, i.e., the geometric description allows one to formulate a mechanical theory
that distinguishes between kinematic and kinetic quantities. It is well-known that
this geometric structure is applicable to other domains in mechanics, e.g., in contin-
uum mechanics [11, 12] and analytical mechanics [1, 10, 20]. Therefore, the value
of these sections may be found in the generality of the underlying concepts.

In Sects. 5 and 6, we have given a variational analysis of impact laws and applied
it to two specific impact laws. These sections apply convex analysis, in particular,
the Minty parametrization, to impact theory. A critical discussion has been given in
Sect. 7.
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Periodic Motions of Coupled Impact
Oscillators

Guillaume James, Vincent Acary and Franck Pérignon

Abstract We study the existence and stability of time-periodic oscillations in a
chain of coupled impact oscillators, for rigid impacts without energy dissipation. We
formulate the search for periodic solutions as a boundary value problem incorpo-
rating unilateral constraints. This problem is solved analytically in the vicinity of
the uncoupled limit and numerically for larger coupling constants. Different solution
branches corresponding to nonlinear localized modes (breathers) and normal modes
are computed.

1 Introduction

Understanding the dynamics of nonlinear lattices (i.e., large networks of coupled
nonlinear oscillators) is a problem of fundamental importance in mechanics, con-
densed matter physics and biology. One of the major issues concerns the mathemati-
cal analysis and numerical computation of special classes of nonlinear time-periodic
oscillation that organize the dynamics in many situations. In particular, spatially
periodic waves (standing waves or periodic traveling waves) and spatially localized
waves (breathers) are the object of intensive research [16, 41]. In this context, many
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theoretical and numerical works have focused on smooth nonlinear systems, whereas
relatively few mathematical existence results are available for waves in nonsmooth
infinite lattices [17, 18, 28, 39]. Developing theoretical and numerical tools for the
analysis of nonlinear waves in nonsmooth systems is extremely important for appli-
cations, in particular, in the context of impact mechanics in which unilateral contacts
and friction come into play [1, 5, 6, 15, 23]. Spatially discrete lattice models are
frequently encountered in this context, in particular, for the modeling of waves in
multibody mechanical systems (e.g., granular media) or in finite element models
of continuum systems. A classical example illustrating the latter case concerns thin
oscillating mechanical structures (a string under tension or a clamped beam) contact-
ing rigid obstacles [5, 6, 23]. Such a structure can be described by a one-dimensional
finite-element model involving a large number of degrees of freedom [2, 37]. The
contact force between the string/beam and a rigid obstacle is either measure-valued
(for rebounds with velocity jumps at contact times) or set-valued (if a wrapping of
the string on the obstacle occurs) see, e.g., [13].

Although nonlinear modes of oscillation have been observed in experiments on
impacting mechanical systems (see, e.g., [3, 6]), relatively little is known from a
mathematical point of view about their existence and stability. Existence theorems
for periodic and almost-periodic oscillations have been obtained in particular cases,
for a continuum string model with point-mass or plane obstacle [9–11, 14, 20, 36]
(see also [12] for a review). In addition, several analytical approaches have been
used to obtain time-periodic solutions formally for different types of piecewise-
linear dynamical systems with rigid impacts. One can mention Fourier and Green
function methods [4–6, 17–19, 24–26, 33, 39], modal decomposition [29, 40] and
sawtooth time transformations [34]. Most of the results obtained for discrete systems
concern impacts localized on a single particle, and different types of wave have
been constructed. In [29, 34, 40], nonsmooth normal modes have been obtained for
general classes of conservative multiple degrees-of-freedom systems (the analysis
in [34] is performed for a single or two impacting particles). Spatially-localized
oscillations (breathers) with a single impacting node have also been studied for
different classes of infinite or finite system. Breather existence and stability has been
analyzed for oscillator chains with linear nearest-neighbor coupling and a symmetric
local vibroimpact potential (including, in some cases, a linear component), both for
conservative systems [18] and forced systems with dissipative impacts [17, 33, 39].

One of the main difficulties with the above techniques is the need to check ana-
lytically that the formal solutions to the piecewise-linear systems are consistent, i.e.,
that they satisfy the inequality constraints corresponding to non-penetration of the
obstacles. This has been achieved in a number of works in the case of breathers [17,
18, 39] and for nonsmooth modes close to grazing linear normal modes [29]. In
[19], the analysis from [33] has been extended to several impacting particles, but the
verification of the inequality constraints is still an open problem in that case.

In thiswork,we study the existence and stability of time-periodic oscillations in an
infinite chain of linearly coupled impact oscillators reminiscent of a model analyzed
in [19, 33], for rigid impacts without energy dissipation. We show the existence of
exact solutions (i.e., check the non-penetration conditions) for an arbitrary number of
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Fig. 1 A chain of identical impact oscillators with linear nearest-neighbor coupling. The chain is
allowed to oscillate above a straight obstacle. After suitable rescaling, the obstacle position is fixed
to y = −1, and the masses m of particles and local stiffness k are set to unity

impacting particles when the coupling between oscillators is small, and we compute
solution branches numerically for larger couplings. The system under consideration
is depicted in Fig. 1. Particle positions are denoted as y(t) = (yn(t))n∈Z and satisfy
the following complementarity system:

ÿn + yn − γ (Δy)n = λn, n ∈ Z, (1)

0 ≤ λ ⊥ (y + 1) ≥ 0, (2)

if ẏn(t
−) < 0 and yn(t) = −1 then ẏn(t

+) = −ẏn(t
−), (3)

where (Δy)n = yn+1 − 2 yn + yn−1 defines a discrete Laplacian operator, 1 denotes
the constant sequence with all terms equal to unity and γ ≥ 0 is a parameter. Non-
dissipative impacts occur for yn(t) = −1 and give rise to impulsive reaction forces
λn(t). This configuration differs from the case of a symmetric local vibroimpact
potential considered in [19, 33], which introduces an additional barrier above the
chain.

Our analytical results are presented in Sect. 2. We start by describing in Sect. 2.1
some simple examples of nonsmooth modes of oscillations (in-phase, out-of-phase,
and some symmetry-breaking bifurcations from these modes). In Sect. 2.2, we refor-
mulate the search for periodic solutions of (1)–(3) as a boundary value problem
incorporating unilateral constraints. This formulation, together with an appropriate
notion of nondegenerate modes introduced in Sect. 2.3, allows us to construct nons-
mooth modes of oscillations (spatially localized or extended) at small coupling (see
Theorems 1 and 2). This approach is an adaptation of the idea of an “anticontinuum”
limit [16, 30, 38] to the nonsmooth setting. Section 2.4 deals with the linear stabil-
ity of time-periodic solutions to (1)–(3). We provide a formula for the monodromy
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matrix that determines spectral stability in the presence of simple impacts, following
the lines of [32]. In Sect. 3, the above results are used for the numerical computation
of time-periodic solutions. Solution branches are continued for fixed values of T ,
varying the linear stiffness γ (and starting from the limit γ = 0) or by fixing γ and
varying T . In this way, we compute some families of breathers and extended modes
and study their linear stability. Dynamical instabilities are illustrated by integrating
(1)–(3) numerically. These computations are performed with the Siconos software
for nonsmooth dynamical systems [1, 22].

2 Analytical Study of Nonsmooth Modes

2.1 Definitions and Basic Examples

We look for T -periodic solutions to (1)–(3) that are even in time, and assume each
particle undergoes at most one impact during each period of oscillation. Conse-
quently, for a given particle, impacts either occur at half-period multiples or do
not occur at all. We denote by Ik ⊂ Z with k = 1 or 2 the index sets of particles
impacting at t = (2m + k) T/2 for all m ∈ Z (i.e., yn((2m + k) T/2) = −1), and
by I0 := Z \ (I1 ∪ I2) the index set corresponding to non-impacting particles (i.e.,
yn(t) > −1 for all t). We thus have λn = 0 for all n ∈ I0 and

λn = 2 ẏn(
kT +

2
)

∑

m∈Z
δ(m+ k

2 )T for all n ∈ Ik . (4)

The triplet (I0, I1, I2)will be denoted as the pattern of the periodic solution. A nons-
mooth mode corresponds to a continuous one-parameter family of periodic solutions
(typically parameterized by T ) sharing a given pattern with I0 �= Z (i.e., impacts
occur).

We provide below some simple examples of nonsmooth modes. The simplest case
corresponds to the in-phase mode with I1 = Z (or equivalently, I2 = Z up to a phase
shift). This solution exists for T ∈ (π, 2π) and reads as

yn(t) = − cos t

cos (T/2)
for |t | ≤ T/2, (5)

where (5) is extended by periodicity outside the interval (−T/2, T/2). The impact
velocity in particular, reads as ẏ1((T/2)+) = −ẏ1((T/2)−) = − tan (T/2). The
amplitude of oscillations diverges when T → π and becomes unity for T = 2π . In
that case, the impact becomes grazing (i.e., occurs at zero velocity), and one recovers
the linear in-phase mode yn(t) = cos t , which a solution to (1) with λ = 0. Notice
that, for T �= 2 k π outside the interval (π, 2π), expression (5) does not provide a
solution to (1)–(3), because the constraint yn ≥ −1 is violated.
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Another example concerns nonsmooth modes with spatial period two, i.e., which
satisfy yn+2(t) = yn(t). Nonsmooth modes in two degrees-of-freedom impacting
systems have been studied in a number of works (see, e.g., [31, 42] for a case of
symmetric constraints and [23] for more references). In what follows, we discuss
the case when I1 and I2 consist of the sets of odd and even integers, respectively.
Moreover, we assume that all impact velocities are identical and nonzero. In order to
compute such modes, we introduce the relative displacement r = y2 − y1, the center
of mass q = (y1 + y2)/2 and the impact velocity v = ẏ2(0+) = ẏ1((T/2)+) �= 0.
From Eqs. (1) and (4) taken at n = 1, 2, and considering the spatial period two of the
mode, one obtains

r̈ + Ω2 r = 2 v
∑

m∈Z
(−1)m δm T

2
, (6)

where Ω = √
1 + 4 γ . Note that Ω is the frequency of the linear out-of-phase mode

yn(t) = (−1)n cos (Ω t), which is a solution to (1) with λ = 0. If the non-resonance
condition (2m + 1) (2π/T ) �= Ω holds true for all integers m, there exists an even
T -periodic solution to (6) defined by

r(t) = v

Ω

sin (Ω (t − T
4 ))

cos (Ω T/4)
for t ∈ [0, T/2], (7)

where the integration constants have been determined from the conditions v =
ṙ(0+) = ṙ((T/2)−). In addition, the T -periodic solution is unique ifm (2π/T ) �= Ω

for all integers m. From expression (7), and using the fact that r is T -periodic and
even, one can see that r( T

4 + t) = −r( T
4 − t) for all t ∈ R.

Similarly, the center of mass satisfies

q̈ + q = v
∑

m∈Z
δm T

2
. (8)

Let us assume that the non-resonance condition T �= 4m π holds true for all integers
m. In that case, Eq. (8) admits an even T/2-periodic solution. Indeed, since v/2 =
q̇(0+) = −q̇((T/2)−), we find

q(t) = v

2

cos (t − T
4 )

sin (T/4)
for t ∈ [0, T/2], (9)

and q is defined as the T/2-periodic extension of (9). The symmetry q( T
4 + t) =

q( T
4 − t) for all t ∈ R and the fact that q is T/2-periodic imply that q is even. In

addition, (8) does not possess additional T -periodic solutions if the non-resonance
condition T �= 2m π holds true for all integers m.

Particle displacements are obtained from the identities

y1 = q − r

2
, y2 = q + r

2
.
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Fig. 2 Impact velocity as a function of the period

One can check that ẏ1(0+) = 0, hence ẏ1(0−) = 0 and y1 is smooth everywhere
except at the impact times t = (2k + 1)T/2 with k ∈ Z. Moreover, it follows from
the symmetries of r that y2(t) = y1(t + T/2) = y1(t − T/2).

We use the constraint y2(0) = −1 to determine v from T , which yields

v = 2

(
1

Ω
tan (Ω T/4) − cot (T/4)

)−1

(10)

and implies that y1(T/2) = −1. The expression in (10) is depicted in Fig. 2. In
the uncoupled case γ = 0, expression (10) simplifies to v = − tan (T/2), and one
recovers the case n = 1 of (5). Moreover, in the limit cases T → (2k + 1) 2π/Ω

(k ∈ N0) and T → 4mπ (m ∈ N), one obtains v → 0, i.e., a grazing impact. When
T → (2k + 1) 2π/Ω and Ω �= (2k + 1)/(2m) for all m ∈ N, the above solution
converges towards the linear out-of-phase mode yn(t) = (−1)n+1 cos (Ω t), while
T → 4mπ and Ω �= (2k + 1)/(2m) for all k ∈ N0 leads to a convergence towards
the linear in-phase mode yn(t) = − cos t .

In order to obtain solutions to (1)–(3), there remains to check the values of param-
eters γ, T for which the constraint y1 ≥ −1 is satisfied. Let us examine this problem
when the coupling constant γ is fixed and T is varied. A necessary condition is v ≥ 0,
which is achieved for values of T > 0 within an infinite and unbounded sequence
of disjoint intervals depending on γ . The lower bounds of these intervals are the
roots of v−1, and the upper bounds take the form T = (2k + 1) 2π/Ω with k ∈ N0

or T = 4mπ with m ∈ N (values leading to v = 0). In particular, the first interval



Periodic Motions of Coupled Impact Oscillators 99

takes the form (T0(γ ), 2π/Ω], where T0(γ ) is implicitely defined through

1

Ω
tan (Ω T0/4) = cot (T0/4), T0 ∈ (0, 2π/Ω). (11)

Note that limγ→+∞ T0(γ ) = 0 (since T0 < 2π (1 + 4γ )−1/2), limγ→0 T0(γ ) = π

(the case Ω = 1 of (11)), and T0 is a decreasing function of γ (since the left side
of (11) increases with Ω or γ ), hence T0(γ ) < π for γ > 0. The upper bound
T = 2π/Ω yields v = 0 (grazing impact), as previously outlined, whereas in the
case T → T0(γ )+, one obtains v → +∞.

Now, let us check the constraint y1(t) ≥ −1 in the case T ∈ (T0(γ ), 2π/Ω). One
can restrict the discussion to t ∈ [0, T/2] without loss of generality (since y1 is even
and T -periodic). In that case, we deduce from the above computations that

ẏ1(t) = − v

2

(
sin (t − T

4 )

sin (T/4)
+ cos (Ω (t − T

4 ))

cos (Ω T/4)

)
.

Consequently, the conditions T < 2π/Ω < 2π and v > 0 (which follows from
T ∈ (T0(γ ), 2π/Ω)) imply that y1 decreases on [T/4, T/2], hence y1(t) > −1 =
y1(T/2) for all t ∈ [T/4, T/2). In addition, expressions (7) and (9) show that r ≤ 0
and q > 0 on [0, T/4], hence y1 > 0 on [0, T/4]. This shows that y1(t) > −1 for
all t ∈ [0, T/2).

As a result, we have obtained a family of even and time-periodic solutions to (1)–
(3), parameterized by their period T ∈ (T0(γ ), 2π/Ω). These solutions have spatial
period two and possess the symmetry yn+1(t) = yn(t + T/2). When T → T0(γ )+,
the impact velocity v and amplitude of oscillations y1(0) diverge.When T → 2π/Ω ,
the mode converges towards the linear out-of-phase mode. This family of solutions
will be denoted as the nonsmooth out-of-phase mode. They are illustrated for several
values of T in Fig. 3.

There exist other nonsmooth modes with spatial period 2 and I0 = ∅, I2 = 2Z

not discussed above, for example, a branch of solutions emerging above T = 4π/Ω .
For T = 4π/Ω , odd particles undergo a grazing impact at t = 0 (we conjecture
the existence of a nonsmooth mode with two impacts per period and T < 4π/Ω).
When T increases above 4π/Ω , no impacts occur at t = 0 for odd particles and the
branch of solutions can evolve in different ways depending on γ . If γ < 5/16 (so that
4π < 6π/Ω), themode converges towards the linear in-phasemodewhen T → 4π−
(this corresponds to a period-doubling bifurcation of the in-phase mode), a limit in
which odd particles again display a grazing impact at t = 0. If γ > 5/16 (the case
6π/Ω < 4π ), convergence towards the linear out-of-phase mode takes place when
T → (6π/Ω)− (period-tripling bifurcation of the out-of-phase mode). In this limit,
odd particles undergo a grazing impact at t = π/Ω . Illustrations of period doubling
bifurcations are displayed in Fig. 4 and those period tripling bifurcations in Fig. 5.
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Fig. 3 Nonsmooth
out-of-phase modes for
several values of T

(a) Particle oscillations for γ = 0.2, T = 2π(1+4γ )−1/2 ≈ 4.68

(b) Particle oscillations for γ = 0.2, T = 4.1

(c) Particle oscillations for γ = 0.2, T = 2.926
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(a) Particle oscillations for γ = 0.2,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.2,T = 11

(c) Particle oscillations for γ = 0.2,T = 12 (d) Particle oscillations for γ = 0.2,T = 4π

Fig. 4 Period doubling bifurcation

2.2 Boundary Value Problem

In the sequel, E denotes either the Banach space �∞(Z) of real bounded sequences
on Z, the Hilbert space �2(Z) of square-summable sequences, or the Hilbert space
P p of p-periodic sequences (isomorphic to the Euclidean space R

p) for a fixed
integer p. The case E = �2(Z) will be relevant for the study of localized modes,
and the periodic case will be considered for numerical computations. We consider a
chain of impact ocillators with positions described by a vector y(t) ∈ E solution to
the complementarity system (1)–(3). We look for T -periodic solutions even in time,
with a prescribed pattern (I0, I1, I2) (as defined in Sect. 2.1) such that I0 �= Z.

The splitting Z = I0 ∪ I1 ∪ I2 allows one to identify E with E (0) × E (1) × E (2),
where E (k) is a space of sequences indexed by n ∈ Ik , equiped with the same norm as
E (‖ ‖2 or ‖ ‖∞). For all y ∈ E , we shall use the notation y = (y(0), y(1), y(2)) with
y(k) = (yn)n∈Ik ∈ E (k). Any solution to the linear differential equation (12) satisfies
ẏ(t) ∈ E , therefore we shall denote ẏ = (ẏ(0), ẏ(1), ẏ(2))with ẏ(k) ∈ E (k). The above
problem can be reformulated as a boundary value problem on a half-period interval
(0, T/2),

ÿn + yn − γ (Δy)n = 0, n ∈ Z, t ∈ (0, T/2), (12)
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(a) Particle oscillations for γ = 0.4,T = 4π(1+
4γ)−1/2

(b) Particle oscillations for γ = 0.4,T = 8

(c) Particle oscillations for γ = 0.4,T = 11.1 (d) Particle oscillations for γ = 0.4,T = 11.6

(e) Particle oscillations for γ = 0.4,T = 6π(1+
4γ)−1/2

Fig. 5 Period tripling bifurcation
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with boundary conditions

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1 , y(2)(0) = −1,

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2 , y(1)(T/2) = −1, (13)

and constraint
y(t) + 1 > 0, t ∈ (0, T/2). (14)

Indeed, it is immediately apparent that any even T -periodic solution to (1)–(3) with
pattern (I0, I1, I2) satisfies (12)–(14). Moreover, every solution to (12)–(14) can be
extended to an even T -periodic function y, which, in turn, defines a solution to
(1)–(3). Indeed, since ẏ is odd, we have ẏ(0−) = −ẏ(0+), and thus ẏ((k T )−) =
−ẏ((k T )+) for all k ∈ Z because ẏ is T -periodic. In the same way, since ẏ is odd
and T -periodic, we have ẏ((T/2)−) = −ẏ((−T/2)+) = −ẏ((T/2)+), and thus we
have, by periodicity, ẏ(((2k + 1)T/2)−) = −ẏ(((2k + 1)T/2)+) for all k ∈ Z.

In what follows, we reformulate the boundary value problem (12)–(13) as a lin-
ear system for ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ E (0) × E (1) × E (2), i.e., as an affine
equation in E . For this purpose, we define the projection P : E × E → E through

P (y, ẏ) = (ẏ(0), y(1), ẏ(2))

and an embedding N : E → E × E by

N (y(0), y(1), ẏ(2)) = (u, v), u = (y(0), y(1), 0), v = (0, 0, ẏ(2)) in E(0) × E(1) × E(2).

Introducing Y = (y, ẏ)T ∈ E × E , the linear differential equation (12) takes the
form

Ẏ = J Y + γ L Y, (15)

where

J =
(

0 I

−I 0

)
, L =

(
0 0
Δ 0

)

and I is the identity map in E . Let us denote by Sγ (t) = e(J+γ L) t ∈ L (E × E) the
flow of (15).

The boundary condition at t = 0 defined in (13) takes the form Y (0) = N ξ − B,
where B = (1I2 , 0)

T ∈ E × E and 1I2 denotes the indicator function of I2. More-
over, the boundary condition at t = T/2 in (13) reads as P Y (T/2) = −1I1 . Conse-
quently, the boundary value problem (12)–(13) is equivalent to

Mγ,T ξ = η, (16)

where Mγ,T = P Sγ (T/2) N ∈ L (E) and η = P Sγ (T/2) B − 1I1 .
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In the case E = P p (periodic boundary conditions with period p), E is isomor-
phic to R

p and (16) takes the form of a p-dimensional linear system. The solution
ξ ∈ E can be identified with a vector x ∈ R

p defined by

xi = yi if i ∈ I0 ∪ I1, xi = ẏi if i ∈ I2.

The matrix P ∈ Mp,2p(R) reads as

Pj, j = 1 if j ∈ I1, Pj, j+p = 1 if j ∈ I0 ∪ I2, Pi, j = 0 elsewhere.

The matrix N ∈ M2p,p(R) is defined by

Ni,i = 1 if i ∈ I0 ∪ I1, Ni+p,i = 1 if i ∈ I2, Ni, j = 0 elsewhere.

2.3 Nondegenerate Modes and Continuation at Small
Coupling

Consider an even T -periodic solution to (1)–(3) with pattern (I0, I1, I2) (recall that
under these assumptions, each particle undergoes at most one impact per period). The
reduced initial condition ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ E (0) × E (1) × E (2) defines
a solution to the linear problem (16). This leads us to introduce the following notion
of a nondegenerate periodic solution.

Definition 1 An even T -periodic solution to (1)–(3) with pattern (I0, I1, I2) is non-
degenerate if the map Mγ,T is invertible and

ẏn((T/2)−) < 0 ∀ n ∈ I1, ẏn(0
+) > 0 ∀ n ∈ I2. (17)

Let us consider any nondegenerate periodic solution to (1)–(3). Since Mγ,T

depends analytically on γ, T , the corresponding solution to (16) locally admits a
unique continuation with respect to (γ, T ) denoted by ξγ,T , which is analytic in
(γ, T ) in some open set [43]. It follows that

Yγ,T (t) = (yγ,T (t), ẏγ,T (t))T = Sγ (t) (N ξγ,T − B) (18)

is a solution to (12) satisfying (13).
In order to check the constraint (14), we define uγ,T (t) = yγ,T ( T

2 t ) + 1 and
introduce the Banach space

X = { u ∈ C1([0, 1], E), un(1) = 0 ∀ n ∈ I1, un(0) = 0 ∀ n ∈ I2 },

equiped with the C1-norm. We consider the open set
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Ω = { u ∈ X, ∀ n ∈ I0, un > 0 on [0, 1],
∀ n ∈ I1, un > 0 on [0, 1), u̇n(1

−) < 0,

∀ n ∈ I2, un > 0 on (0, 1], u̇n(0
+) > 0

}
.

Thanks to assumption (17), the nondegenerate periodic solution belongs toΩ . Since
the map (γ, T ) �→ uγ,T is continuous in X , the local continuation with respect to
(γ, T ) of the nondegenerate solution stays locally in Ω , and thus the constraint (14)
is satisfied by yγ,T when (γ, T ) lies in some open set U . Consequently, we have
obtained a family of solutions to the boundary value problem (12)–(14) parameterized
by (γ, T ), which provides in turn a family of solutions to (1)–(3). As a result, we
have shown the following.

Theorem 1 Any nondegenerate even periodic solution to (1)–(3) with a given pat-
tern persists for values of the coupling constant γ and period T lying in an open
set U . Moreover, these solutions take the form y(t) = yγ,T (t) for all t ∈ [0, T/2],
where the map (t, γ, T ) �→ yγ,T (t) is analytic in R × U and defined in (18).

In particular, the above result shows that any nondegenerate periodic solution is
part of a continuous branch of periodic solutions parameterized by T and forming
a nonsmooth mode. The continuation may stop when a new grazing impact takes
place for n ∈ I0 or if an impact occurring for n ∈ I1 or I2 becomes grazing. In such
cases, the branch of periodic solutions might be continued with a different pattern or
by allowing several impacts per period or sticking contacts, but these extensions are
outside of the scope of the present study.

Another case when the above continuation theorem does not apply corresponds
to the noninvertibility of Mγ,T . This situation may lead to a divergence of the solu-
tion (i.e., divergence of ‖(y(0)(0), y(1)(0), ẏ(2)(0))‖) or to a bifurcation of periodic
solutions.

The solution to (12)–(13) is non-unique, or equivalently, Mγ,T admits a nontrivial
kernel if, and only if, the homogeneous boundary value problem given by (12) and

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1, y(2)(0) = 0,

ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2, y(1)(T/2) = 0, (19)

admits nontrivial solutions y(t) ∈ E . Let us fix E = �∞(Z) and discuss some reso-
nant cases when this phenomenon occurs. The linear equation (12) admits normal
mode solutions (or “phonons”)

yn(t) = a cos (Ωq t + ϕ) cos (q n + ψ), (20)

whose frequencies Ωq = (1 + 4γ sin2 (q/2))1/2 span the phonon band [1,Ω], the
highest frequency Ω = √

1 + 4γ corresponding to the out-of-phase mode with q =
π . For nonsmoothmodes having certain patterns, simple nontrivial solutions to (12)–
(19) can be found in the form (20) if some multiple of π/T belongs to the phonon
band.
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For example, if I1 = Z or I2 = Z (this is the case for the in-phase mode) and if
one has a resonance (2m + 1) π/T = Ωq for some integer m and q ∈ [0, π ], then
(20) provides nontrivial solutions to (12)–(19), and thus Mγ,T is non-invertible. This
occurs, e.g., for T = π (m = 0, q = 0), where the amplitude of the in-phase mode
becomes infinite.

Moreover, if one considers a localized pattern I0 = Z \ {n0} for some integer n0,
then the resonance m (2π/T ) = Ωq (m ∈ N) leads to nontrivial solutions to (12)–
(19) (obtained by choosing ψ = π

2 − q n0 in (20)), and thus Mγ,T is non-invertible.
In the case E = P p (p-periodic sequences), the phonon band becomes discrete

(wavenumbers take the form q = k 2π/p with k ∈ Z), but the above resonance con-
ditions remain valid when I1 = Z or I2 = Z, or if I0 = Z \ {n0 + p Z}.

As an application of Theorem 1, we now prove the existence of nonsmooth modes
having any type of pattern, close to the uncoupled (or “anticontinuum”) limit γ = 0.
In Theorem 2 below, the mode pattern I = (I0, I1, I2) must be compatible with the
choice of E . For E = P p, the sets Ik are assumed invariant modulo p, and for
E = �2(Z), the sets I1 and I2 have to be finite (no impacts occur at infinity when
oscillations are spatially localized). In the case E = �∞(Z), there are no restrictions
on the mode pattern.

Theorem 2 Fix a mode pattern I = (I0, I1, I2) compatible with E. There exists an
open set V ⊂ R

2 including the segment {0} × (π, 2π) such that for all (γ, T ) ∈ V ,
system (1)–(3) admits a unique even periodic solution with pattern I , which is defined
by (18).

Proof It suffices to check that for γ = 0 and all T ∈ (π, 2π), system (1)–(3) admits
a unique nondegenerate periodic solution with pattern I . Then, the result follows by
direct application of Theorem 1.

Let us denote by yipn (t) the in-phase mode defined by (5) with period T ∈ (π, 2π).
For γ = 0, system (1)–(3) consists of uncoupled impact oscillators. Consequently,
the unique T -periodic solution with pattern I is given by yn = yipn for all n ∈ I1,
yn(t) = yipn (t + T/2) for all n ∈ I2, and yn = 0 for all n ∈ I0 (for γ = 0, all non-
impacting nontrivial solutions are 2π -periodic, and we have assumed that T < 2π ).
It follows that the condition (17) of non-grazing impacts is satistied for T ∈ (π, 2π).
In order to show that the T -periodic solution obtained for γ = 0 is nondegenerate,
there remains to check that the linear map M0,T of (16) is invertible. We have, for all
ξ = (ξ (0), ξ (1), ξ (2)) ∈ E (0) × E (1) × E (2),

M0,T ξ = P eJ T/2

(
u
v

)
, (21)

where u, v ∈ E = E (0) × E (1) × E (2) are defined as follows:

u = (ξ (0), ξ (1), 0), v = (0, 0, ξ (2)).

Moreover, we have in the block form
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eJ t =
(

cos t sin t
− sin t cos t

)
∈ L (E × E),

hence (21) yields
M0,T ξ = P (y, ẏ),

where y, ẏ ∈ E = E (0) × E (1) × E (2) are defined by

y = (cos (T/2) ξ (0), cos (T/2) ξ (1), sin (T/2) ξ (2)),

ẏ = (− sin (T/2) ξ (0),− sin (T/2) ξ (1), cos (T/2) ξ (2)).

Consequently, M0,T ∈ L (E (0) × E (1) × E (2)) takes the following diagonal form:

M0,T ξ = (− sin (T/2) ξ (0), cos (T/2) ξ (1), cos (T/2) ξ (2)).

It follows that M0,T is invertible because the coefficients cos (T/2) and sin (T/2) do
not vanish for T ∈ (π, 2π). �

It is interesting to compare the local continuation result of Theorem 2 and the
explicit computations of the nonsmooth in-phase and out-of-phase modes performed
in Sect. 2. The in-phase mode actually exists for all γ ∈ R and T ∈ (π, 2π). More-
over, the out-of-phase mode exists for all γ ≥ 0 (and even for γ slightly negative)
and T ∈ (T0(γ ), 2π(1 + 4γ )−1/2).

2.4 Stability

In this section, the linear stability of periodic solutions is analyzed through the eigen-
values of an associated monodromy matrix. Since the trajectory of the state of the
system is nonsmooth at impact times, some precautions must be taken into account
to compute the monodromy matrix. The computation of the monodromy follows the
line of the work in [32].

In this section, we will consider the finite-dimensional case E = P p. For a given
initial condition Y0 = (y(t0), ẏ(t0))T ∈ R

2p, the conservative system (1)–(3) admits
a unique solution (without accumulation of impacts) that is analytic in time between
impacts [7, 8, 35]. Let us define the trajectory of the flow of (1)–(3) for the initial
conditions (t0, Y0) as

φ : R × R × R
2p → R

2p

(t, t0, Y0) �→ φ(t, t0, Y0).
(22)

The flow φ satisfies φ(t0, t0, Y0) = Y0. The trajectory of the system for the initial
condition (t0, Y0) is Y (t) = φ(t, t0, Y0). In the sequel, we consider a time t and
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an initial time t0 at which no impact occurs. The computation of the monodromy
amounts to performing the differentiation of the flow φ at time t for the initial time
t0 with respect to the initial condition Y0, that is,

M(t) = dφ(t, t0, Y0)

dY0
. (23)

This matrix can be approximated by finite differences. As noted in [32], the appli-
cation of a finite-difference scheme may result in a poor approximation of the mon-
odromy matrix. Since, in our application, the flow can be defined as a concatenation
of piecewise smooth flows between impact times, we present here a closed-form
formula for the monodromy matrix based on the computation of a saltation matrix
that takes into account how the impact times evolve with the initial conditions. This
closed-form formula is based on the assumption that the impacts are simple impacts
in the sense that only one particle impacts at a given time. Moreover, we consider
non-grazing impacts, i.e., impact at nonzero velocities.

The case of a simple impact at time t� > t0 :

Let us assume that we have a unique and simple impact in the interval (t0, t) at time
t�(Y0). The notation outlines its dependency on the initial condition. At the impact
time t�(Y0), the trajectory is reset using the elastic Newton impact law, which can be
written as follows:

Y (t+
� (Y0)) = Rt�Y (t−

� (Y0)), (24)

where Rt� ∈ R
2p×2p is the reset matrix. Let us denote by it� the index of the impacting

particle at t�(Y0), i.e.,
yit�

(t�(Y0)) = −1. (25)

The reset matrix can be written as

Rt� =
[

I 0
0 E

]
, (26)

where the matrix E ∈ R
p×p is given by its components as

Ei j =

⎧
⎪⎨

⎪⎩

0, if i �= j,

1, if i = j �= it� ,

−1, if i = j = it� .

(27)

The state of the system at time t can be written as

Y (t) = φ(t, t0, Y0) = φ(t, t+
� (Y0), Y (t+

� (Y0)))

= φ(t, t+
� (Y0), Rt�Y (t−

� (Y0))) = φ(t, t+
� (Y0), Rt�φ(t−

� (Y0), t0, Y0)).
(28)
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The differentiation of the previous expression amounts to differentiating,with respect
to Y0, a composition of smooth functions

dφ(t, t0, Y0)

dY0
= D2φ(t, t+

� (Y0), Rt�φ(t−
� (Y0), t0, Y0))

dt�(Y0)

dY0

+D3φ(t, t+
� (Y0), Rt�φ(t−

� (Y0), t0, Y0))Rt�
dφ(t−

� (Y0), t0, Y0)

dY0
(29)

with

dφ(t−
� (Y0), t0, Y0)

dY0
= D1φ(t−

� (Y0), t0, Y0)
dt�(Y0)

dY0
+ D3φ(t−

� (Y0), t0, Y0). (30)

The notation Dkφ denotes the partial derivatives ofφwith respect to its k-th argument.
If the smooth flow is known between impacts, the only difficult part that remains to
compute is the derivative of the time of impact t� with respect to Y0. Let us split the
flow φ such that

Y (t) = φ(t, t0, Y0) =
[

φy(t, t0, Y0)

φẏ(t, t0, Y0)

]
=

[
y(t)
ẏ(t)

]
. (31)

We have assumed that only one particle of index it� is impacting at t�(Y0). The
constraint (25) can be written as

φy,it�
(t�, t0, Y0) = −1. (32)

Since ∂tφy,it�
(t−

� , t0, Y0) = ẏit�
(t−

� (Y0)) < 0 (non-grazing impact) and the flow is
smooth (analytic) between impacts, the implicit function theorem guarantees that the
impact persists upon small variations of Y0, with an impact time t� being a smooth
(analytic) function of Y0. Moreover, defining a projection matrix Pi ∈ R

1×2p such
that

D3φy,i (t
−
� (Y0), t0, Y0) = Pi D3φ(t−

� (Y0), t0, Y0), (33)

we have
dtt� (Y0)

dY0
= − 1

ẏit�
(t−

� (Y0))
Pit�

D3φ(t−
� (Y0), t0, Y0). (34)

In order to simplify the expression of the monodromy matrix given by (29) and (30),
we observe that

D2φ(t, t+
� , Y (t+

� (Y0))) = −D3φ(t, t+
� (Y0), Y (t+

� (Y0)))Ẏ (t+
� (Y0)). (35)

Indeed, since φ(t, t̃, φ(t̃, t+
� , Y�)) = φ(t, t+

� , Y�) is independent of t̃ , the identity
∂t̃φ(t, t̃, φ(t̃, t+

� , Y�)) = 0 evaluated at t̃ = t+
� and Y� = Y (t+

� (Y0)) yields identity
(35). Using (29), (30) and (35), the monodromy matrix simplifies to
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dφ(t, t0, Y0)

dY0
= D3φ(t, t+� , Y (t+� (Y0)))

[
[Rt� Ẏ (t−� (Y0)) − Ẏ (t+� (Y0))]dt�(Y0)

dY0
+ Rt� D3φ(t−� (Y0), t0, Y0)

]
.

(36)

Finally, using the relation (34), the monodromy matrix is expressed as follows:

dφ(t, t0, Y0)

dY0
= D3φ(t, t+

� (Y0), Y (t+
� (Y0)))St� D3φ(t−

� (Y0), t0, Y0), t > t�(Y0),

(37)
where the so-called saltation matrix St� is defined by

St� = − 1

ẏit�
(t−

� (Y0))
[Rt� Ẏ (t−

� (Y0)) − Ẏ (t+
� (Y0))]Pit�

+ Rt� . (38)

Note that the monodromy matrix is obtained as the product of the Jacobian matrices
of the flow with respect to the initial condition in each smooth phase separated by
the saltation matrix.

The Case of Two Simple Impacts at Times t�,2 > t�,1 > t0 :

For the two simple impacts at time t�,2 > t�,1 > t0, the computation of the mon-
odromy matrix follows the same line. It is also a product of the Jacobian matrices of
the flow with respect to the initial condition in each smooth phase separated by the
saltation matrix:

dφ(t, t0, Y0)

dY0
= D3φ(t, t+�,2(Y0), Y (t+�,2(Y0)))St�,2

D3φ(t, t+�,1(Y0), Y (t+�,1(Y0)))St�,1 D3φ(t−�,1(Y0), t0, Y0), t > t�,2(Y0).
(39)

Computation of the Monodromy for the Piecewise Linear System :

In our case of a piecewise-linear dynamics, the flow of the system between two
impacts is given by

φ(t, t0, Y0) = exp(D(t − t0)) Y0, t0 ≤ t ≤ t�,1(Y0), (40)

φ(t, t+�,1(Y0), Y (t+�,1(Y0))) = exp(D(t − t�,1(Y0))) Y (t+�,1(Y0)), t�,1(Y0) ≤ t ≤ t�,2(Y0)

(41)
φ(t, t+�,2(Y0), Y (t+�,2(Y0))) = exp(D(t − t�,2(Y0))) Y (t+�,2(Y0)), t ≥ t�,2(Y0), (42)

with D = J + γ L . As indicated above in the derivation of the monodromy matrix,
the piecewise linear flow is smooth (analytic). If we consider the explicit formula
of the linear flow (40)–(42) between impacting times at t�,1 = T/2 and t�,2 = T , we
get, for the monodromy matrix,
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dφ(t, t0, Y0)

dY0
= exp(D(t − T )) ST exp(D(T/2)) ST/2 exp(D(T/2 − t0)), t > T,

(43)
where t0 < T/2. In Sect. 3, we shall fix t0 = T/4 and t = t0 + T = 5T/4 to compute
the monodromy matrix of a T -periodic solution with impact times multiple of T/2.
This leads to

dφ(5T/4, T/4, Y0)

dY0
= exp(DT/4) ST exp(D(T/2)) ST/2 exp(DT/4). (44)

The periodic solution will be unstable if this monodromy matrix admits an eigen-
value with modulus greater than unity, and spectrally stable if all eigenvalues lie
on the unit circle (due to time-reversal symmetry, the Floquet spectrum has the
invariance σ → σ−1). The spectrum of the above monodromy is the same as for
ST exp(D(T/2)) ST/2 exp(DT/2).

3 Numerical Computation of Nonsmooth Modes

We solve problem (12)–(13) numerically for a chain of p oscillators with periodic
boundary conditions. Unless explicitly stated otherwise, we fix p = 100. Although
the system (12)–(13) is a standard linear system, we use a general shooting method,
i.e., determine avector ξ = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ R

p such that the three bound-
ary conditions of (13) at t = 0 and t = T/2 are satisfied through Newton iterations.
For eachNewton iteration, this requires solving a linear system for ξ obtained through
time-integration of the linear ODE (12). This time integration is equivalent to com-
puting the exponential matrix of the linear flow numerically. When the coupling
parameter is chosen far from the degeneracy case of the BVP matrix, the shoot-
ing technique converges in one iteration. When we are in the neighborhood of the
degenerate cases, the number of Newton iterations may increase, indicating an ill-
conditioned linear system of the BVP. Thanks to the general shooting technique, the
case of nonlinear local or interaction potentials could be similarly addressed. The
constraint (14) is checked a posteriori. To this end, we integrate (1)–(3) numerically
using an event-driven scheme for nonsmooth dynamical systems implemented in the
Siconos software [22]. For the shooting technique and validation of the constraints,
the linear ODE is integrated thanks to ODEPACK [21] embedded in the Siconos
software.

Usually, the solution branches are first continued for fixed values of T , varying the
coupling parameter γ . For all fixed value T ∈ (π, 2π), a choice of impacting particles
and phases (determined by I1, I2) selects a unique solution for γ = 0, which can be
continued up to some maximal value of the coupling parameter γ . We shall see in
the sequel that some continuations are also done with respect to the period.
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Fig. 6 Mode pattern for the site-centered breather

3.1 Site-Centered Breathers

In this section, we illustrate the site-centered breather for the mode pattern I2 =
{50}, I1 = ∅ depicted in Fig. 6. The period is T = 3π

2 . The periodic solution has
been successfully computed for γ ∈ [0, γc] with

γc = 1

4

((
2π

T

)2

− 1

)
, (45)

the critical value of γ for which we expect to reach the out-of-phase mode. For T =
3π
2 , we have γc ≈ 0.1944. In Fig. 7, the initial positions and velocities are displayed
for the particle indices between 40 and 60 and for 4 different values of γ . We observe
that, for small values of the coupling parameter γ , the breather is localized on a few
particles. With the increasing values of γ , the support of the solution is increasing to
reach the out-of-phase linear grazing mode for γ = γc. Let us note that the velocity
of the central particle 50 is decreasing to the grazing solution for all the particles.

In Fig. 8, the eigenvalues of the monodromy matrix are displayed. In Fig. 8a, we
remark that the eigenvalues have amodulus equal to 1 up to a critical value γs between
0.129 and 0.142 for which a pair of eigenvalues is leaving the unit circle. In Fig. 8b,
c and d, all the eigenvalues are plotted in the complex plane for three different values
of γ ∈ {0, 0.064, 0.181}. For γ = 0, a pair of eigenvalues are equal to +1 and all
the other conjugate eigenvalues pairs are equal to i or −i . For γ < γs , the conjugate
eigenvalue pairs, equal to i and −i for γ = 0, start to slide on the unit circle toward
the pair of eigenvalues that remains at +1. For γ = γs , a collision occurs at +1.
Finally, for γ > γs , a pair of real inverse eigenvalues leaves the unit circle to slide on
the real line while a pair of eigenvalues remains at+1. In that case, the stability of the
periodic solution is lost. For γ = 0.181, one of the eigenvalues of modulus around
5.71 is not displayed. To illustrate this loss of stability, we report, in Fig. 9, several
time integrations of the system with constraints and impacts for different values of
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Fig. 7 Site-centered breather with pattern I1 = ∅, I2 = {50}
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Fig. 8 Eigenvalues of the monodromy matrix for the site-centered breather with pattern I1 =
∅, I2 = {50}

γ over the time interval [0, 25T ]. Although the system is numerically integrated
with high accuracy Runge-Kutta schemes in ODEPACK with very tight tolerances
(10−14), the periodic solutions for γ = 0.181 are destabilized.
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(d) velocities of the particles for γ = 0.181

Fig. 9 Time integration of the periodic solutions for the site-centered breather with pattern I1 =
∅, I2 = {50}

We also perform a continuation of the solution with respect to the period. We start
for a value of (γ, T ) equal to (0.15, 3π/2) and we decrease the period following
a solution with a fixed pattern. The numerical solutions are displayed in Fig. 10a.
We can observe that a family of site-centered breathers is found with an increasing
amplitude of the initial state. For the uncoupled case (γ = 0.0), we know that the
amplitude of the solution goes to infinity when T → π . The same phenomenon is
observed for a given coupling parameter γ = 0.15. In Fig. 10b, we plot themaximum
amplitude of the position ‖y(0)‖∞ and the velocity ‖ẏ(0)‖∞ as a function of T .
An asymptotic value of the period clearly appears for which the amplitude of the
solution blows up. In this specific case, the asymptotic value of the period is about
0.58(3π/2) ≈ 2.78. Let us note that this value is below π .

To conclude this section, an exploration of the viability of the site-centered
breathers has been performed for (γ, T ) ∈ [0, 1.1] × [2, 2π ] and p = 30 particles.
We select a mesh grid in the plane (γ, T ) and solve the boundary value problem for
each pair (γ, T ). The results are reported in Fig. 11. The light areas correspond to
a numerical computation of a periodic solution to (12)–(13) with the satisfaction of
the constraint (14) and the pattern I1 = ∅, I2 = {15}. The red dashed curve is given
by the out-of-phase grazing linear mode whose period is related to γ by

T (γ ) = 2π (1 + 4γ )−1/2. (46)

As expected with the previous computations, we observe that there exists a large
light area bounded above by the relation (46) and corresponding to site-centered
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ẏ
(0
)

γ = 0.1500 , T == 4.61
γ = 0.1500 , T == 2.81
γ = 0.1500 , T == 2.79
γ = 0.1500 , T == 2.78

(a) positions and velocities of the particles

3.0 3.5 4.0 4.5 5.0

T

0

20

40

60

80

100

120

140

‖y
0‖

∞

3.0 3.5 4.0 4.5 5.0

T

0

250

500

750

1000

1250

1500

1750

‖ẏ
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Fig. 10 Continuation with a decreasing period of the site-centered breather with pattern I1 =
∅, I2 = {50} for γ = 0.15

breathers. This area is also bounded below by another curve that corresponds to
modes whose amplitudes go to infinity, as we have already discussed for a particular
value of γ = 0.15 in Fig. 10. Quite interestingly, other light areas are present above
the red curve. To explain these areas, we plot the graphs of the periods with respect
to γ for larger wavenumber q given by

Tn(γ ) = 2π (1 + 4γ sin2(q/2))
−1/2

, with q = n2π/p, n = 1, . . . , 15. (47)
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Fig. 11 Continuation of periodic solutions with pattern I1 = ∅, I2 = {15} (light areas) for (γ, T ) ∈
[0, 1.1] × [2, 2π ]. Graphs of Tn(γ ) = 2π (1 + 4γ sin2(q/2))

−1/2
, with q = n2π/p, for n =

1, . . . , 15 and p = 30

We can observe the existence ofmodulatedwaves near the linear grazing solutions. In
order to illustrate the solutions obtained in these areas, we plot, in Fig. 12, the results
of two continuations over the period for γ = 1, T3 ≈ 5.34 and T4 ≈ 4.87 (large dots
in Fig. 11). We can observe that these solutions are not exactly normal nonsmooth
modes that emerge from the linear grazing modes, but rather spatial modulations of
nonsmooth normal modes. For the computation of what could be called a nonsmooth
normal mode, we refer to Sect. 3.4. There, other solutions are computed (with long-
wavelength near T1) with preservation of the normal mode pattern at the start of
continuation.

3.2 Bond-Centered Breathers

In this section, some bond-centered breathers are computed with two different pat-
terns.

Bond-Centered Breathers With Pattern I1 = {49}, I2 = {50}
Let us start with the out-of-phase pattern I1 = {49}, I2 = {50}, illustrated in Fig. 13.
We again choose a period equal to 3π

2 , and the periodic solution has successfully
been computed in the range [0, γc], with γc given by (45). The initial conditions of
the periodic solutions are displayed in Fig. 14 for the particle indices in [40, 60].
Again, we can observe that the breather is localized over a few particles for small
values of the coupling parameter. Once again, the solution reaches the out-of-phase
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{15} for γ = 1
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Fig. 14 Bond-centered breather with pattern I1 = {49}, I2 = {50}

linear grazing mode for γ = γc while the velocity of the central particle decreases
at time 0.

In Fig. 15, we depict the eigenvalues of the monodromy matrix. In Fig. 15b, for
γ = 0, we have two pairs of eigenvalues in +1. All the other pairs of conjugate
eigenvalues are equal to i or −i . We observe, in Fig. 15a and b, that for γ > 0, a
pair of real inverse eigenvalues slides from +1 on the real line as γ increases, while
the other pair remains equal to +1. The others pairs of conjugate eigenvalues slide
on the unit circle toward the pair of real eigenvalues in +1. A collision occurs again
at +1 for γ = γs ∈ [0.142, 0.155]. Then, a second pair of inverse real eigenvalues
slides on the real line. For γ > 0, the stability of the periodic solutions is lost. We
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Fig. 15 Eigenvalues of the monodromy matrix for the bond-centered breather with pattern I1 =
{49}, I2 = {50}

attempt to illustrate this phenomena with numerical time integration of the periodic
solutions over a long time interval [0, 35T ] in Fig. 16.
Bond-Centered Breathers With Pattern I1 = ∅, I2 = {49, 50}
For the pattern I1 = ∅, I2 = {49, 50}, the solution for the initial conditions is depicted
for thewhole chain in Fig. 17a and for the particleswith indices in [40, 60] in Fig. 17b.
The period is again 3π

2 , and we succesfully perform a continuation of the solution
over [0, γc] with γc given by (45). The main difference with the previous breathers
concerns the solution when γ → γc. In this latter case, it seems that we do not
converge towards a grazing linear mode. This has to be confirmed with a more
accurate study of the critical value of γ .

In Fig. 18, we depict the eigenvalues of the monodromy matrix computed by
finite differences. In this case, the closed form formula of the monodromy (44) no
longer applies, since we have multiple impacts. Although the approximation of the
eigenvalues may contain some numerical errors, we observe a more complicated
behavior of the evolution with respect to γ of the eigenvalues. For γ = 0, two pairs
of real eigenvalues are equal to+1 and the others are conjugated pairs of eigenvalues
equal to i and −i . For increasing values of γ , one of the pairs of real eigenvalues
starts to slide on the unit circle, respectively towards i and −i , while the other pairs
of conjugate eigenvalues slide on the unit circle from i and −i towards +1. A first
collision occurs on the unit circle for γ ∈ [0.051, 0.064] and two pairs of eigenvalues
leave the unit circle. Several other collisions of different types occurwhenwe increase
the value of γ up to γc.
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Fig. 16 Time integration of the periodic solutions for the bond-centered breather with pattern
I1 = {49}, I2 = {50}

3.3 Multiple Impacting Particles

In this section, we illustrate wave patterns with multiple impacts, where the pattern
is either spatially periodic or localized on several particles (multi-site breathers).

Out-of-Phase Mode with Spatial Period Two

We start with the nonsmooth mode of spatial period two described in Sect. 2. The
pattern is given by I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49, which corresponds to
the sets of odd and even integers, respectively. In Fig. 19, the initial conditions for the
periodic solutions are given for T = 3π

2 . For this example, we are able to continue the
solution over the range [0, γc] up to reaching the out-of-phase linear grazing mode.
In Fig. 20, the eigenvalues of the monodromy matrix computed by finite differences
are depicted. For γ = 0, all the eigenvalues are equal to +1. For γ > 0, the pairs
of inverse real eigenvalues slide on the real line. The periodic solutions are there-
fore unstable for γ > 0. This is illustrated in Fig. 21, where long time integration
simulations have been performed over the time interval [0, 35T ].
Periodic Wave with Spatial Period Six

Another example of nonsmooth spatially periodic standing wave is displayed in
Fig. 22. The spatial period is six and the time period is again 3π

2 . The mode profiles
are depicted for several values of γ in [0, γc].
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Fig. 17 Bond-centered breather with pattern I1 = ∅, I2 = {49, 50}
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Fig. 18 Eigenvalues of themonodromymatrix computed by finite differences for the bond-centered
breather with pattern I1 = ∅, I2 = {49, 50}
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Fig. 19 Out-of-phase mode with pattern I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49

Fig. 20 Eigenvalues of the monodromy matrix computed by finite differences for the out-of-phase
mode with pattern I1 = {2k + 1}k=0,...,49, I2 = {2k}k=0,...,49
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Fig. 21 Time integration of the periodic solutions for the out-of-phase mode with pattern I1 =
{2k + 1}k=0,...,49, I2 = {2k}k=0,...,49

Fig. 22 Periodicwavewith pattern of spatial period 6 : I1 = {6k + 3, 6k + 4, 6k + 5}k=0,3,..., I2 =
{6k, 6k + 1, 6k + 2}k=0,3,...
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Fig. 23 Multi-site breather with pattern I1 = ∅, I2 = {45, . . . , 55}

Multi-site Breather Localized on 10 Particles

In Fig. 23, a multi-site breather with pattern I1 = ∅, I2 = {45, . . . , 55} is displayed
for T = 3π

2 . For γ → γc, the computation of the solutions is more difficult. The
largest value of γ for which a solution is displayed is 0.1944096 < γc. We can
observe that the particles in I0 are still not grazing.
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(a) Positions for T = T1 (b) Velocities for T = T1

Fig. 24 Main linear grazing mode for γ = 1 and T1 = 2π (1 + 4γ sin2(π/30))
−1/2

3.4 Long-Wavelength Modes

We also compute spatially extended long-wavelength modes close to the main linear
mode with wavenumber q = 2π/p, that is depicted in Fig. 24. The period of the
linear mode for a given wavenumber q is

T1 = 2π (1 + 4γ sin2(q/2))
−1/2

. (48)

Our computations are performed for γ = 1 and p = 30 particles and we get T1 ≈
6.150.

A First Branch of Solutions

We are able to follow a first continuous branch of solutions depicted in Fig. 25 with
periods T ∈ [α7 T1, α1 T1], andα1 = 0.99056 andα7 = 0.5035988.Themode ampli-
tude diverges when T → α7 T +

1 , and two particles at n = 15, 30 (the antinodes, i.e.,
the particles that reach maximal height) undergo grazing impacts when T → α1 T −

1 .
The number of impacting particles decreases from 30 to 10 when T is increased.
More precisely, for T in intervals of the form [α j T1, α j−1 T1], we find 4 j + 2
impacting particles with pattern I1 = { 1, 2, . . . , j, p − j, p − j + 1, . . . , p }, I2 =
{ 15 − j, . . . , 15 + j }.Wefindα6 ≈ 0.5798,α5 ≈ 0.7641,α4 ≈ 0.92,α3 ≈ 0.9618,
α2 ≈ 0.9771.



Periodic Motions of Coupled Impact Oscillators 127

(a) Positions for T = α1T1 (b) Velocities for T = α1T1

(c) Positions for T = α2T1 (d) Velocities for T = α2T1

(e) Positions for T = α3T1 (f) Velocities for T = α3T1

Fig. 25 A first branch of long-wavelength normal modes for γ = 1 and T1 = 2π

(1 + 4γ sin2(π/30))
−1/2
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(g) Positions for T = α4T1 (h) Velocities for T = α4T1

(i) Positions for T = α5T1 (j) Velocities for T = α5T1

Fig. 25 (continued)
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(k) Positions for T = α6T1 (l) Velocities for T = α6T1

(m) Positions for T = α7T1 (n) Velocities for T = α7T1

Fig. 25 (continued)

A Second Branch of Solutions

We find another branch of solutions whose period T ∈ [0.81 · T1, T1) can approach
T1 arbitrary closely. These solutions emerge from the linear grazing mode when
T → T1. Let us set T = α T1 and describe the mode pattern depending on α. We
only describe I2, given that I1 = I2 + 15(mod 30). We have I2 = { 15 } for α ∈
[0.991, 1), I2 = { 14, 15, 16 } for α ∈ [0.9825921, 0.99], I2 = { 12, 14, 15, 16, 18 }
for α ∈ [0.965, 0.9825924], I2 = { 11, 12, 14, 15, 16, 18, 19 } for α ∈ [0.85, 0.964],
I2 = { 9, 11, 12, 14, 15, 16, 18, 19, 21 } for α ∈ [0.836, 0.849], and for α ∈ [0.81,
0.835], we find I2 = { 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 }. Mode profiles are
shown in Fig. 26.
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(a) Positions for T = 0.997T1 (b) Velocities for T = 0.997T1

(c) Positions for T = 0.99T1 (d) Velocities for T = 0.99T1

(e) Positions for T = 0.9825924T1 (f) Velocities for T = 0.9825924T1

Fig. 26 A second branch of long-wavelength normal modes for γ = 1 and T1 =
2π (1 + 4γ sin2(π/30))

−1/2
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(g) Positions for T = 0.964T1 (h) Velocities for T = 0.964T1

(i) Positions for T = 0.849T1 (j) Velocities for T = 0.849T1

Fig. 26 (continued)
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(k) Positions for T = 0.835T1 (l) Velocities for T = 0.835T1

(m) Positions for T = 0.81T1 (n) Velocities for T = 0.81T1

Fig. 26 (continued)

4 Discussion

In this work, we have studied the existence and stability of nonsmooth modes (either
spatially localized or extended) in a chain of coupled impact oscillators, for rigid
impacts without energy dissipation. We have obtained analytical solutions with an
arbitrary number of impacting particles at small coupling, and have computed such
solutions numerically for larger coupling constants. Different solution branches cor-
responding to stable or unstable breathers, multibreathers and nonsmooth normal
modes have been found.

The computation of periodic solutions based on the above approach is much more
effective than numerical continuation of periodic solutions based on stiff compliant
models. In the latter case, impacts are described by smooth nonlinear Hertzian type
potentials leading to stiff ODE and costly numerical continuation.
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Several extensions of this work could be considered. It would be interesting to
perform the continuation of periodic solutions while allowing switches in the mode
patterns. In addition, the study of more complex types of nonsmooth mode would
be of great interest. In particular, one could allow particles to realize several impacts
per period [40] or display sticking phases after a grazing contact [27]. The inclusion
of dissipative impacts and forcing and the application of the method to more com-
plex finite-element models of continuous impacting systems constitute additional
challenging directions.

Acknowledgements The authors are grateful to Oleg Gendelman and Itay Grinberg for all of the
stimulating discussions.
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Mathematical Aspects of Vibro-Impact
Problems

Laetitia Paoli

Abstract We consider in this chapter the dynamics of rigid multibody systems
subjected to frictionless unilateral constraints. Starting from the mechanical descrip-
tion of the problem, we derive its formulation as a second-order Measure Differen-
tial Inclusion and we introduce the corresponding mathematical framework, namely
functions of Bounded Variation and Stieltjes measures. Then, the main difficulties
in the study of vibro-impact problems are described and an overview of the state of
the art about existence results and relevant numerical methods (penalty approach,
time-stepping schemes at the position or velocity level) is proposed. Throughout this
chapter, the bouncing ball model problem is considered to highlight the key points
of the mathematical analysis without too many technicalities.

1 Introduction

The dynamics of multibody systems subjected to perfect non-penetration condi-
tions generates impact and vibrations, leading to unwanted noise and untimely wear
of structures. Due to its wide range of applications – granular matter, robotics,
aerospace, car engines – it is crucial to study these vibro-impact phenomena both
from the qualitative and quantitative points of view.

At a first glance, the mathematical background in the framework of discrete
mechanical systems seems quite elementary, since we may expect to deal with
second-order Ordinary Differential Equations. Unfortunately, as soon as unilateral
constraints are applied, impacts and velocity jumps may occur and the acceleration
may contain Dirac masses. Hence, we have to consider Measure Differential Inclu-
sions instead of Ordinary Differential Equations, and classical good properties, like
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uniqueness or continuity of data, are not always satisfied. As a consequence, reliable
simulations of such systems cannot be performed easily and the choice of a numerical
algorithm has to be substantiated by a convergence result.

So, the aim of this chapter is to highlight these difficulties and to describe themain
tools that may be used to overcome them. In order to give the flavour of the proofs
without too many technicalities, a model problem will be considered throughout the
sections and some classical properties of functions of BoundedVariation and Stieltjes
measures are recalled in Sect. 7, Appendix.

The chapter is organized as follows. In Sect. 2, starting from the mechanical
description of the problem, its formulation as a second-order Measure Differen-
tial Inclusion is derived. Then, in Sect. 3, a list of bad mathematical properties is
presented. Section 4 is devoted to existence results for smooth or convex constraints,
based on a penalty approach. Finally, time-stepping schemes formulated at the posi-
tion or velocity level are introduced in Sects. 5 and 6, leading to existence results
also for non-smooth and/or non-convex constraints as well.

2 Description of the Problem and Mathematical
Framework

We consider a discrete mechanical systemwith d degrees-of- freedom.We denote by
q ∈ IRd its representative point in generalized coordinates. Starting from Lagrangian
formalism, the dynamics is given by a second-order Ordinary Differential Equation
(ODE)

d

dt

(
∂L

∂q̇

)
= ∂L

∂q
+ F(t, q, q̇), L = 1

2

〈
q̇,M(q)q̇

〉 − V (q), (1)

where 〈·, ·〉 denotes the Euclidean inner product of IRd , M(q) is the inertia operator
of the system, V (q) is a smooth convex potential and F(t, q, q̇) describes the forces
acting on the system that do not derive from a potential, leading to some possible
dissipation during the motion.

Let us assume now that the system is subjected to unilateral constraints charac-
terized by geometrical inequalities

fα
(
q(t)

) ≥ 0, α ∈ {1, . . . , ν}, ν ≥ 1,

with smooth functions fα such that ∇ fα does not vanish in a neighbourhood of
{q ∈ IRd; fα(q) = 0}. We define the set of admissible configurations as

K = {
q ∈ IRd; fα(q) ≥ 0 ∀α ∈ {1, . . . , ν}}

and we assume that Int(K ) �= ∅.
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Whenever q(t) ∈ Int(K ), the motion is described by (1), but when q(t) ∈ ∂K , a
reaction force due to the constraints is applied and we get

d

dt

(
∂L

∂ q̇

)
= ∂L

∂q
+ F(t, q, q̇) + R,

which can be rewritten as

M(q)q̈ = f (t, q, q̇) + R, Supp(R) ⊂ {
t; q(t) ∈ ∂K

}

with

f (t, q, q̇) = −V ′(q) + F(t, q, q̇) − 1

2

(
dM(q) · q̇)q̇.

Let us observe that, when t ∈ (0, τ ) with q(t) ∈ ∂K , the velocity may be discon-
tinuous. Indeed, let α ∈ {1, . . . , ν} such that fα

(
q(t)

) = 0. Then,

fα
(
q(t ± h)

) − fα
(
q(t)

)
h

≥ 0, h > 0,

and thus, if q̇(t ± 0) is defined, we obtain

〈∇ fα
(
q(t)

)
, q̇(t + 0)

〉 ≥ 0,
〈∇ fα

(
q(t)

)
, q̇(t − 0)

〉 ≤ 0. (2)

It follows that the appropriate mathematical framework for the generalized velocities
is the space of functions of Bounded Variation. Thus, q̈ should be understood as the
Stieltjes measure dq̇ and the reaction force R is a measure with values in IRd (see
Sect. 7, Appendix).

We assume, moreover, that the constraints are perfect, i.e.:
• contact is without friction

∀v ∈ TK (q) ∩ (−TK (q)
) : 〈R, v〉 = 0,

• there is no adhesion

∀v ∈ TK (q) : 〈R, v〉 ≥ 0,

where TK (q) is the set of kinematically admissible right velocities at q defined as

TK (q) = {
v ∈ IRd; 〈∇ fα(q), v

〉 ≥ 0 ∀α ∈ J (q)
}
,

with J (q) = {
α ∈ {1, . . . , ν}; fα(q) ≤ 0

}
. We infer that R ∈ −NK (q) with
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NK (q) = {
w ∈ IRd; 〈w, v〉 ≤ 0 ∀v ∈ TK (q)

}
if q ∈ K , NK (q) = ∅ otherwise.

Let us recall Farkas-Minkowski’s lemma.

Lemma 1 (Farkas-Minkowski’s lemma [16]) Let H be a Hilbert space endowed
with the inner product 〈·, ·〉H , r ∈ H and aα ∈ H, α ∈ J , where J is a finite family
of indexes. Then, the following inclusion holds:

{
v ∈ H ; 〈aα, v〉 ≥ 0 ∀α ∈ J

} ⊂ {
v ∈ H ; 〈r, v〉 ≥ 0

}

if and only if there exist non-negative real numbers (λα)α∈J such that r =
∑
α∈J

λαaα .

With aα = ∇ fα(q) and J = J (q), we obtain

R =
∑

α∈J (q)

λα∇ fα(q), λα ≥ 0.

Hence, the motion of the system is described by a function q : [0, τ ] → IRd , with
τ > 0, such that

q(t) = q(0) +
∫ t

0
u(s) ds ∈ K ∀t ∈ [0, τ ], (3)

with u ∈ BV
([0, τ ]; IRd

)
satisfying the following Measure Differential Inclusion

(MDI),

M(q)du − f (·, q, u)dt ∈ −NK (q), (4)

i.e., there exist non-negative real measures λα , α ∈ {1, . . . , ν} such that

M(q)du − f (·, q, u)dt =
ν∑

α=1

λα∇ fα(q), (5)

with

Supp(λα) ⊂ {
t ∈ [0, τ ]; fα

(
q(t)

) = 0
}
. (6)

Let us observe that (3) implies that q is continuous, q̇(t ± 0) = u(t ± 0) for all
t ∈ (0, τ ) and dq̇ = du on (0, τ ). Furthermore,

q̇(t + 0) ∈ TK
(
q(t)

)
, q̇(t − 0) ∈ −TK

(
q(t)

) ∀t ∈ (0, τ ).

It follows that, whenever t ∈ (0, τ ) with q(t) ∈ ∂K and q̇(t − 0) /∈ TK
(
q(t)

)
, the

velocity is discontinuous at t . Furthermore, with (4),
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M
(
q(t)

)(
q̇(t + 0) − q̇(t − 0)

) ∈ −NK
(
q(t)

)
, (7)

and we should expect that the kinetic energy does not increase at t (mechanical
consistency). But these properties do not define q̇(t + 0) uniquely, and we need to
introduce an impact law.

Let us consider first the simple case of a single active constraint at t , i.e., J
(
q(t)

) =
{α}. Then,wemay decompose the right and left velocities at t into normal and tangent
parts as follows:

q̇(t ± 0) = λ±M−1
(
q(t)

)∇ fα
(
q(t)

) + q̇T (t ± 0),

with λ± ∈ IR and
〈∇ fα

(
q(t)

)
, q̇T (t ± 0)

〉 = 0. Thus,

λ± =
〈∇ fα

(
q(t)

)
, q̇(t ± 0)

〉
〈∇ fα

(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉 ∈ IR±.

Moreover, since NK
(
q(t)

) = IR−∇ fα
(
q(t)

)
,we infer from (7) that there existsμ ∈ IR

such that

M
(
q(t)

)(
q̇T (t + 0) − q̇T (t − 0)

) = μ∇ fα
(
q(t)

)
.

But

〈∇ fα
(
q(t)

)
, q̇T (t + 0) − q̇T (t − 0)

〉 = 0 = μ
〈∇ fα

(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉
︸ ︷︷ ︸

>0

.

Thus, μ = 0 and q̇T (t − 0) = q̇T (t + 0), which means that the tangent part is con-
tinuous.

We define the kinetic metric at q(t) as

〈v,w〉q(t) = 〈
v,M

(
q(t)

)
w
〉 ∀(v,w) ∈ IRd × IRd

and the corresponding norm

‖v‖q(t) = 〈
v,M

(
q(t)

)
v
〉1/2 ∀v ∈ IRd .

The kinetic energy is given by

E (t ± 0) = 1

2

∥∥q̇(t)
∥∥2
q(t) = 1

2

〈
q̇(t ± 0),M

(
q(t)

)
q̇(t ± 0)

〉

= 1

2
(λ±)2

〈∇ fα
(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉

+1

2

〈
q̇T (t ± 0),M

(
q(t)

)
q̇T (t ± 0)

〉
.
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Hence, we have E (t + 0) ≤ E (t − 0) (mechanical consistency) if and only if |λ+| ≤
|λ−|. Owing to the fact that λ+ ≥ 0 and λ− ≤ 0, we obtain that there exists e ∈ [0, 1]
such that λ+ = −eλ− and

q̇(t + 0) = q̇(t − 0) − (1 + e)

〈∇ fα
(
q(t)

〉
, q̇(t − 0)

〉
〈∇ fα

(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉M−1(q(t)
)∇ fα

(
q(t)

)
,

i.e., we get a family of impact laws characterized by the choice of a parameter
e ∈ [0, 1].

We observe that the projection of q̇(t − 0) on the cone M−1
(
q(t)

)
NK

(
q(t)

) =
IR−M−1

(
q(t)

)∇ fα
(
q(t)

)
relatively to the kinetic metric at q(t) is given by

Projq(t)

(
M−1

(
q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
=

〈∇ fα
(
q(t)

〉
, q̇(t − 0)

〉
〈∇ fα

(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉M−1(q(t)
)∇ fα

(
q(t)

)
.

Indeed, let

y =
〈∇ fα

(
q(t)

〉
, q̇(t − 0)

〉
〈∇ fα

(
q(t)

)
,M−1

(
q(t)

)∇ fα
(
q(t)

)〉M−1
(
q(t)

)∇ fα
(
q(t)

)
.

Since q̇(t − 0) ∈ −TK
(
q(t)

)
, we immediately have y ∈ IR−M−1

(
q(t)

)∇ fα
(
q(t)

)
and

〈
q̇(t − 0) − y, v − y

〉
q(t) = 〈

q̇T (t − 0),M
(
q(t)

)
(v − y)︸ ︷︷ ︸

∈IR∇ fα
(
q(t)

)
〉 ≤ 0

∀v ∈ M−1(q(t)
)
NK

(
q(t)

)
.

Then, we may apply

Lemma 2 (Lemma of the two cones [36]) Let H be a real Hilbert space endowed
with an inner product 〈·, ·〉H . Let P and Q be two mutually polar cones i.e.

Q = {
x ∈ H ; 〈x, y〉H ≤ 0 ∀y ∈ P

}
, P = {

y ∈ H ; 〈y, x〉H ≤ 0 ∀x ∈ Q
}
.

Then, for all (x, y, z) ∈ H 3, the following properties are equivalent:
(i) z = x + y, x ∈ P, y ∈ Q, 〈x, y〉H = 0,
(ii) x = ProjH (P, z), y = ProjH (Q, z).

With H = IRd endowed with the kinetic metric at q(t), P = TK
(
q(t)

)
and Q =

M−1
(
q(t)

)
NK

(
q(t)

)
, we infer that

q̇(t − 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

)
︸ ︷︷ ︸

q̇T (t−0)

+Projq(t)

(
M−1(q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
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and

q̇(t + 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

)
−eProjq(t)

(
M−1(q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
.

(8)

(Newton’s law).
This impact law may also be considered when several constraints are active at

instant t (i.e., when Card
(
J
(
q(t)

)) ≥ 2). In the general case, we can still check the
mechanical consistency of this model of impact, since

E (t + 0) = 1

2

〈
q̇(t + 0),M

(
q(t)

)
q̇(t + 0)

〉 = 1

2

∥∥q̇(t + 0)
∥∥2
q(t)

= 1

2

∥∥Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

)∥∥2
q(t)

+1

2
e2

∥∥Projq(t)

(
M−1

(
q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)∥∥2
q(t) ≤ E (t − 0),

and equality holds if e = 1 (elastic shocks). Contrastingly, dissipation of energy at
impacts is maximal when e = 0 (inelastic shocks), and then

q̇(t + 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

) = Argminu∈TK (q(t))‖u − q̇(t − 0)‖q(t).

Let us emphasize that, whenever Card
(
J
(
q(t)

)) = 1, (8) is the unique impact law
satisfying both the kinematic properties (2)–(7) and the mechanical consistency con-
dition E (t + 0) ≤ E (t − 0). In this case, it simply means that the tangential part
of the velocity is conserved while the normal part (relative to the kinetic metric) is
reversed and multiplied by a restitution parameter e ∈ [0, 1], i.e., it corresponds to a
kind of optical reflexion rule at impacts.

Unfortunately, if Card
(
J
(
q(t)

)) ≥ 2, (8) is no longer the unique kinematically
and mechanically consistent model. As an example, let us consider the motion of a
material point ofmassm = 1 in the part of the plane K = IR− × IR+.Without external
forces, with an initial position q0 = (−1, 0) and an initial velocity u0 = (1, 0), the
following two trajectories satisfy the MDI with conservation of energy:

q(t) = (−1 + t, 0) ∀t ∈ [0, 1], q(t) = (1 − t, 0) ∀t ≥ 1,
q̃(t) = (−1 + t, 0) ∀t ∈ [0, 1], q̃(t) = (0, t − 1) ∀t ≥ 1.

Indeed, wemay define f1(q) = −q1 and f2(q) = q2 for all q = (q1, q2) ∈ IR2. Then,
we get

q(t) = q(0) +
∫ t

0
u(s) ds

(
resp. q̃(t) = q(0) +

∫ t

0
ũ(s) ds

)
∀t ≥ 0,
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with

u(s) = (1, 0) (resp. ũ(s) = (1, 0)) if s ∈ [0, 1),
u(s) = (−1, 0) (resp. ũ(s) = (0, 1)) if s ≥ 1.

It follows that du = (
u(1 + 0) − u(1 − 0)

)
δt=1 (respectively dũ = (

ũ(1 + 0) −
ũ(1 − 0)

)
δt=1), where δt=1 is the unit Dirac mass measure at t = 1, and

J
(
q(t)

) =
⎧⎨
⎩

{2} if t ∈ [0, 1),
{1, 2} if t = 1,
{2} if t > 1,

⎛
⎝respectively J̃

(
q̃(t)

) =
⎧⎨
⎩

{2} if t ∈ [0, 1),
{1, 2} if t = 1,
{1} if t > 1.

⎞
⎠

Hence, the MDI is satisfied by both q and q̃ . Moreover, for all t ∈ (0, 1) ∪ (1,+∞),
we have q̇(t ± 0) ∈ TK

(
q(t)

)
(respectively ˙̃q(t ± 0) ∈ TK

(
q̃(t)

)
). Finally, for t = 1,

we can check that q̇(t − 0) = ˙̃q(t − 0) = (1, 0) ∈ NK
(
q(t)

)
, thus

Projq(t)

(
M−1

(
q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

) = q̇(t − 0)
= Projq(t)

(
M−1

(
q(t)

)
NK

(
q(t)

)
, ˙̃q(t − 0)

) = ˙̃q(t − 0),

and

Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

) = 0IR2 = Projq(t)

(
TK

(
q(t)

)
, ˙̃q(t − 0)

)
.

So, only the first trajectory satisfies Newton’s impact law (with e = 1).
In the rest of this chapter, we will focus on frictionless vibro-impact problems

satisfying Newton’s impact law. By gathering (3)–(5)–(6) and (8), we obtain the
following mathematical formulation.

Problem (P) Let q0 ∈ K , u0 ∈ TK (q0). Find u : [0, τ ] → IRd , τ > 0, such that:

(P1) u ∈ BV
([0, τ ]; IRd

)
, u(0 + 0) = u0,

(P2) q(t) = q0 +
∫ t

0
u(s) ds ∈ K for all t ∈ [0, τ ],

(P3) the measureM(q)du − f (·, q, u)dt takes its values in −NK (q), i.e., there exist
non-negative real measures λα , α ∈ {1, . . . ν} such that

M(q)du − f (·, q, u)dt =
ν∑

α=1

λα∇ fα(q),

with

Supp(λα) ⊂ {
t ∈ [0, τ ]; fα

(
q(t)

) = 0
}
,

(P4) for all t ∈ (0, τ ) Newton’s impact law is satisfied, i.e.,

q̇(t + 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

) − eProjq(t)

(
M−1(q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
.
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Remark 1 It is also possible to consider energy conservative solutions (or energy
dissipative solutions) by replacing property (P4) with the following balance energy
equation:
(P’4) for almost every t ∈ (0, τ ), we have

1

2

〈
u(t), u(t)

〉
q(t) = 1

2
〈u0, u0〉q0 +

∫ t

0

〈
f
(
s, q(s), u(s)

)
, u(s)

〉
ds

+1

2

∫ t

0

〈
u(s),

(
dM

(
q(s)

)
u(s)

)
u(s)

〉
ds

(respectively the following dissipativity property:
(P”4) for all t ∈ (0, τ ), we have

∥∥q̇(t + 0)
∥∥
q(t) ≤ ∥∥q̇(t − 0)

∥∥
q(t)

(see [3, 9, 11, 12, 43, 55, 60]). The former property implies thatE (t + 0) = E (t − 0)
for all t ∈ (0, τ ), which yields to Newton’s impact law with e = 1 whenever
Card

(
J
(
q(t)

)) = 1, while the latter property allows us to consider any mechani-
cally consistent impact law.

3 Some Bad Mathematical Properties

From themathematical point of view, natural questions arise: does problem (P) admit
solutions?Dowe have uniqueness?Are the solutions continuouswith respect to data?
How can we compute them exactly or approximately?

At a first glance, vibro-impact problems do not seem so difficult. Indeed, as long
as the constraints are not saturated, problem (P) reduces to a second-order ODE and
one may think that it is enough to solve this ODE, to detect when contact occurs by
determining τc such that q(τc) ∈ ∂K , and to use the impact law to define new initial
data for the ODE at τc + 0.

The main advantage of this strategy is its conceptual simplicity, but it relies on
the assumption that the impacts are isolated, i.e., the time interval [0, τ ] can be
decomposed into a finite union of intervals [τi , τi+1] such that q(t) ∈ Int(K ) for all
t ∈ (τi , τi+1). For this kind of motion, sometimes called motions of finite sort, any
ODE solver combinedwith an impact detection procedure (leading to an event-driven
algorithm) may be used to compute approximate solutions of problem (P).

Unfortunately, it has been known since the beginning of the 20th century that
other kinds of solutions exists (see [17]), and in particular, impact instants may
accumulate towards a finite limit impact instant τ∞. As an example, let us consider a
material point falling vertically on a horizontal plane (bouncing ball example). Then,
d = 1, K = IR+,M(q) ≡ 1 and f (t, q, v) = −g for all (t, q, v) ∈ IR3. Assume that
e ∈ (0, 1). With q0 = 1 and u0 = 0, we obtain
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q(t) = 1 − g

2
t2 if t ∈ [0, τ1], τ1 =

√
2

g
.

Then, at t = τ1, the material point hits the obstacle, and we get

q(t) = v1(t − τ1) − g

2
(t − τ1)

2 if t ∈ [τ1, τ2],

with v1 = e
√
2g and τ2 = τ1 + 2v1

g
= (1 + 2e)

√
2

g
. With an immediate induction,

we obtain

q(t) = vi (t − τi ) − g

2
(t − τi )

2, if t ∈ [τi , τi+1],

with vi = ei
√
2g and τi+1 = τi + 2vi

g
for all i ≥ 1. It follows that

τi+1 = τi + 2ei
√
2

g
−→i→+∞ τ∞ = 1 + e

1 − e

√
2

g
.

Thus, we get an infinite number of distinct impact instants within the bounded time-
interval [0, τ∞), and afterwards, the material point remains at rest.

So, it appears that even-driven algorithms suffer a major drawback: they are well-
suited only when we are able to justify that the solutions of the problem are motions
of the finite sort.

The second major drawback is the possible non-uniqueness of solutions. Such
an assertion may look strange, since the formulation of problem (P) derives from
deterministic mechanical properties, but some counter-examples may be exhibited,
even in very simple settings.

For instance, let us consider again the bouncing ball model problem, i.e., d = 1,
K = IR+ and M(q) ≡ 1. Let us assume now that e = 1 and q0 = u0 = 0. Then,
problem (P) reduces to

Problem (P) Find u : [0, τ ] → IR, τ > 0, such that:

(P1) u ∈ BV
([0, τ ]; IR)

, u(0 + 0) = 0,

(P2) q(t) =
∫ t

0
u(s) ds ≥ 0 for all t ∈ [0, τ ],

(P3) there exists a non-negative real measure λ such that

du − f (t, q, u)dt = λ, Supp(λ) ⊂ {
t ∈ [0, τ ]; q(t) = 0

}
,

(P4) for all t ∈ (0, τ ) such that q(t) = 0, we have q̇(t + 0) = −q̇(t − 0).
For any continuous non-positive function f of the time variable, the stationary

motion u ≡ 0, q ≡ 0 is a solution to the problem. But we can also find a function
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f of the time variable such that problem (P) admits another non-trivial solution
with an infinite number of arches with grazing bounces. Such a counter-example to
uniqueness was proposed first in [60], then in [4]. Let us describe it briefly.

Let f be the non-positive continuous function defined by f (0) = 0 and for all
n ≥ 0

f (t) = 0 if t ∈ [αn+1, αn+1 + δn),

f (t) = − 1

2(n!)ρ
(

t − αn+1 − δn

αn − αn+1 − δn

)
if t ∈ [αn+1 + δn, αn),

with

αn =
∑
i≥n

(i + 5)2

(i + 1)(i + 2)(i + 3)(i + 4)
, δn = (n + 5)

(n + 1)(n + 2)(n + 4)
∀n ≥ 0

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ(x) = 0 ifx = 0 or x = 1,

ρ(x) =
exp

(
1

x(x−1)

)
∫ 1

0
exp

(
1

t (t − 1)

)
dt

ifx ∈ (0, 1).

Next, we consider τ ∈ (α1, α0) and u : [0, τ ] → IR defined by u(0) = 0 and for
all n ≥ 0

u(t) = 1

(n + 4)! if t ∈ [αn+1, αn+1 + δn) ∩ [0, τ ],

u(t) = 1

(n + 4)! − 1

2(n!)
∫ t

αn+1+δn

ρ

(
s − αn+1 − δn

αn − αn+1 − δn

)
ds if t ∈ [αn+1 + δn, αn) ∩ [0, τ ].

It follows that u is a non-increasing function of class C1 on each interval (αn+1, αn)

with u̇(t) = f (t) for all t ∈ (αn+1, αn) and

u(αn+1 + 0) = u(αn+1) = 1

(n + 4)! ,
u(αn − 0) = − 1

(n + 3)! = −u(αn + 0).

It follows that limt→0+ u(t) = 0.
Moreover, u is a function of bounded variation on [0, τ ]. Indeed, let S : 0 =

t0 < · · · < tp = τ be a subdivision of [0, τ ]. Possibly adding new points, we may
assume without loss of generality that

{
αn; n ≥ 0

} ⊂ {
ti ; 0 ≤ i ≤ p

}
. Then, if,

for some indexes j0, j1 ∈ {0, . . . , p} such that j0 < j1 + 1, we have
{
ti ; j0 ≤ i ≤

j1
} ⊂ [αn+1, αn) with n ≥ 1, the monotonicity of u on [αn+1, αn) implies that
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j1−1∑
j= j0

∣∣u(t j+1) − u(t j )
∣∣ = u(t j0) − u(t j1),

and an analogous property is valid if
{
ti ; j0 ≤ i ≤ j1

} ⊂ [α1, τ ). Hence,

p∑
j=0

∣∣u(t j+1 − u(t j )
∣∣

≤ ∣∣u(α1) − u(τ )
∣∣ +

∑
n≥1

(∣∣u(αn+1) − u(αn − 0)
∣∣ + ∣∣u(αn) − u(αn − 0)

∣∣)

and

Var
(
u, [0, τ ]) ≤ ∣∣u(α1) − u(τ )

∣∣ +
∑
n≥1

(
1

(n + 4)! + 3

(n + 3)!
)

< +∞.

Furthermore,

du − f dt =
∑
n≥1

(
u(αn) − u(αn − 0)

)
δt=αn =

∑
n≥1

2

(n + 3)!δt=αn ∈ M
([0, τ ]; IR+)

.

Finally, we let q : [0, τ ] → IR given by q(t) =
∫ t

0
u(s) ds for all t ∈ [0, τ ].

Since u ∈ BV
([0, τ ]; IR)

, u is bounded in [0, τ ] and q is continuous on [0, τ ]
with q(0) = 0. Moreover, q is of class C2, with a non-increasing derivative q̇ = u,
on each subinterval (αn+1, αn) with n ≥ 1 and on (α1, τ ].

Let n ≥ 1. By definition of q(t), we have

q(αn) − q(αn+1) = αn − αn+1

(n + 4)! − (αn − αn+1 − δn)
2

2(n!)
∫ 1

0

(∫ y

0
ρ(σ) dσ

)
dy

︸ ︷︷ ︸
=∫ 1

0 (1−x)ρ(x) dx= 1
2

= αn − αn+1

(n + 4)! − (αn − αn+1 − δn)
2

4(n!) = 0.

Since lim
n→+∞ q(αn) = q(0) = 0, we obtain q(αn) = 0 for all n ≥ 1. Finally, since u

decreases from
1

(n + 4)! to− 1

(n + 3)! on (αn+1 + δn, αn), there exists ξn ∈ (αn+1 +
δn, αn) such that q is monotone increasing on (αn+1, ξn), then monotone decreasing
on (ξn, αn). Hence, q(t) > 0 for all t ∈ (αn+1, αn) ∩ [0, τ ] for all n ≥ 0 and q is
another solution to problem (P).

The key point in this example is the fact that f possesses a flat point at t = 0.
Indeed, ρ ∈ C∞([0, 1]; IR)

, so we immediately have f ∈ C∞(
(0, α0); IR

)
. More-

over, for all n ≥ 0 and for all k ≥ 1, we have
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f (k)(t) = − 1

2(n!)
1

(αn − αn+1 − δn)k
ρ(k)

(
t − αn+1 − δn

αn − αn+1 − δn
,

)

∀t ∈ [αn+1 + δn, αn] ∩ [0, τ ]

thus

∣∣ f (k)(t)
∣∣ ≤ 1

2(n!)
1

(αn − αn+1 − δn)k
max
x∈[0,1]

∣∣ρ(k)(x)
∣∣

≤ 1

2(n!)
1

(αn − αn+1 − δn)k

t

αn+1
max
x∈[0,1]

∣∣ρ(k)(x)
∣∣ ∀t ∈ [αn+1, αn] ∩ [0, τ ]

and the same inequality also holds for k = 0. But

αn − αn+1 − δn �+∞
2

n3
, αn+1 �+∞

1

n
,

and thus

lim
t→0+

1

t
f (k)(t) = 0 ∀k ∈ IN.

By induction on k, we may conclude that f is infinitely differentiable at t = 0, with
f (k)(0) = 0 for all k ∈ IN.
Hence, we can only expect uniqueness results in the analytical case (see [54,

56] in the special case of energy conservative solutions to the bounce problem for a
material point subjected to a single constraint, [61] for any value of the restitution
coefficient and d = 1 and [4] for the general case) or as a generic property (see [13–
15] for the one-dimensional elastic bounce problem and [9] for energy conservative
solutions to the bounce problem for a material point subjected to a single constraint).

As a third mathematical drawback, continuity of data does not hold in general in
the multi-constrained case, i.e., ν > 1. Let us illustrate this with the example of a
material point moving in the planar angular domain K given by

K = {
q = (q1; q2) ∈ IR2; f1(q) = q2 ≥ 0, f2(q) = 2q2 − q1 ≥ 0

}
.

With f ≡ 0, e = 1, q0 = (ε, 1), ε ∈ (−∞, 2), u0 = (0,−1), we obtain

qε(t) =
{

(ε, 1 − t) if t ∈ [0, 1],
(ε, t − 1) if t ≥ 1,

ifε ≤ 0,

and

qε(t) =

⎧⎪⎨
⎪⎩

(ε, 1 − t) if t ∈ [0, τε] with τε = 1 − ε

2
,(

ε − 4

5
(t − τε),

ε

2
+ 3

5
(t − τε)

)
if t ≥ τε,

ifε > 0.
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Fig. 1 Trajectories of a material point in an angular domain of IR2, with e = 1

See, for instance, Fig. 1 with ε = 0.05. Thus, for any t > 1,

lim
ε→0+

∣∣qε(t) − q−ε(t)
∣∣∣∣qε(0) − q−ε(0)
∣∣ = +∞.

Such a bad property may lead to some numerical unpredictability due to round-up
errors. Nevertheless, we can observe that, for this model problem, continuity of data
holds if the vertex is right or acute whenever e = 0 or right whenever e ∈ (0, 1]. In
a more general setting, the following proposition can be proved.

Proposition 1 (Continuity of data) Continuity of data holds if the following geo-
metrical “angle condition” on the active constraints is satisfied:

〈∇ fα(q),M(q)−1∇ fβ(q)〉 ≤ 0 if e = 0
〈∇ fα(q),M(q)−1∇ fβ(q)〉 = 0 if e �= 0

for all (α, β) ∈ J (q)2 such that α �= β, for all q ∈ ∂K.

See [4] for a first proof giving a sufficient condition of continuity with respect to
initial data and [44] for the general case.

Finally, as a last mathematical drawback, we may point out possible finite
time-explosions. This bad property is not specific to vibro-impact problems and
is somehow classical for ODE. For instance, let us consider once again the bounc-
ing ball model problem, i.e., d = 1, K = IR+, M(q) ≡ 1, and let us assume that
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f (t, q, v) = v2 for all (t, q, v) ∈ IR3. The motion without constraint is described by
the ODE q̈ = q̇2. With the initial condition q̇(0) = u0 > 0, we obtain

q̇(t) = 1
1
u0

− t
> 0 ∀t ∈ [0, τ1), τ1 = 1

u0
.

Thus, for any q0 ≥ 0 and u0 > 1, we get

q(t) = q0 − ln

(
1

u0
− t

)
> 0 ∀t ∈

[
0,

1

u0

)
,

with

lim
t→ 1

u0

−
q(t) = +∞ = lim

t→ 1
u0

−
q̇(t).

Hence, we have an explosion at t = 1

u0
without any impact during the time-interval(

0,
1

u0

)
.

Nevertheless, owing to that the kinetic energy does not increase at impacts, we
obtain that any solution to problem (P) satisfies the following energy estimate:

E (t + 0) ≤ E (0 + 0) +
∫ t

0

〈
f
(
s, q(s), q̇(s)

)
, q̇(s)

〉
ds

+1

2

∫ t

0

〈
q̇(s),

(
dM

(
q(s)

)
q̇(s)

)
q̇(s)

〉
ds ∀t ∈ [0, τ )

It follows that

Proposition 2 (Energy estimate [46]) Let C > ‖u0‖q0 . Then, there exists τ(C) > 0
such that, for any solution (q, u) to problem (P) defined on [0, τ ], we have

‖q(t) − q0‖ ≤ C and ‖u(t)‖q(t) ≤ C for a.e. t ∈ [
0,min

(
τ(C), τ

)]
.

With such a long list of mathematical drawbacks, which kind of result can we
expect? First of all, we may prove the existence of solutions. Moreover, we may pro-
pose some numerical methods, substantiated with appropriate convergence results,
allowing us to compute approximate solutions. Of course, non-uniqueness will yield
only to the convergence of subsequences of approximate solutions in general, but as
soon as uniqueness holds (for instance, if all the data are analytical), we will recover
the convergence of the whole sequence of approximate solutions.
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4 Penalty Approach

A quite natural idea for solving constrained problems consists in relaxing the con-
straints in order to consider unconstrained problems (Pn)n≥1 constructed in such a
way that the constraints are better and better satisfied when n tends to +∞.

Such a technique is especially suited to solving minimization problems. As an
example, let us consider the problem

Find u ∈ U such that J (u) = min
v∈U J (v)

where U is a closed, non-empty subset of IRd and J : IRd → IR is a continuous
mapping such that lim‖v‖→+∞ J (v) = +∞. Now, let ψ : IRd → IR+ be a continuous

mapping such thatψ(v) = 0 if and only if v ∈ U , and for all n ∈ IN∗, let us introduce
the penalized problem

Find un ∈ IRd such that Jn(un) = min
v∈IRd

Jn(v),

with

Jn(v) = J (v) + nψ(v) for all v ∈ IRd .

Both the constrained and the penalized problems admit a solution. Indeed, since
U �= ∅, there exists v0 ∈ U , and since lim‖v‖→+∞ J (v) = +∞, there exists r > 0 such

that Jn(v) ≥ J (v) > J (v0) = Jn(v0) for all v ∈ IRd such that ‖v‖ > r . It follows that
the constrained (respectively penalized) problem is equivalent to

Find u ∈ U ∩ B(0IRd , r) such that J (u) = minv∈U∩B(0IRd ,r) J (v)

(resp. Find un ∈ IRd ∩ B(0IRd , r) such that Jn(u) = min
v∈IRd∩B(0IRd ,r)

Jn(v))

and the compactness of the closed ball B(0IRd , r) combined with the continuity of
J (resp. Jn) allows us to conclude.

Moreover, for all n ≥ 1, we have

J (un) ≤ Jn(un) = J (un) + nψ(un) ≤ Jn(v) ∀v ∈ IRd .

It follows that J (un) ≤ Jn(un) ≤ Jn(v0) = J (v0) for all n ≥ 1 and (un)n≥1 and(
nψ(un)

)
n≥1 are bounded. Hence, possibly extracting a subsequence, still denoted

(un)n≥1, there exists u ∈ IRd such that

un −→n→+∞ u.
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Since ψ is continuous, lim
n→+∞ ψ(un) = ψ(u) = 0, which implies that u ∈ U , and

by continuity of J , J (u) = lim
n→+∞ J (un) ≤ J (v) for all v ∈ U . Thus, the sequence

(un)n≥1 converges to a solution of the constrained problem.
This method is proposed for solving Lagrangian problems with bilateral con-

straints by adding a convex potential nW such that W is smooth and W ≡ 0 if and
only if the constraints are satisfied (see, for instance, [2, 59]).

Let us now adapt this technique to our model problem of the bouncing ball, i.e.,
consider the vibro-impact problem (P) with d = 1, K = IR+,M(q) ≡ 1. In order to
relax the constraint q(t) ∈ IR+, we introduce the potential W : IR → IR+ given by

W (q) = 1

2

(
min(q, 0)

)2
for all q ∈ IR. Clearly, W is Fréchet-differentiable at any

q ∈ IR and

W ′(q) = min(q, 0) ∀q ∈ IR.

Then, we consider the unconstrained problems (Pn)

Find qn : [0, τ ] → IR, τ > 0, such that qn(0) = q0, q̇n(0) = u0 and

q̈n(t) + nW ′(qn(t)) = f
(
t, qn(t), q̇n(t)

)
in(0, τ ), (9)

with n ∈ IN∗. If f is continuous on [0, τ ] × IR2 and Lipschitz continuous with respect
to its last two arguments, uniformly with respect to the first one, then the classical
Cauchy-Lipschitz existence theorem for ODE implies that, for any (q0, u0) ∈ IR2,
problem (Pn) admits an unique solution qn ∈ C2

([0, τ ]; IR)
. Moreover, qn satisfies

the following energy estimate:

1

2

(
q̇n(t)

)2 + n

2
W

(
qn(t)

)
= 1

2
(u0)

2 + n

2
W (q0) +

∫ t

0
f
(
s, qn(s), q̇n(s)

)
q̇n(s) ds ∀t ∈ [0, τ ].

Let us denote as L f the Lipschitz constant of f . We obtain

1

2

(
q̇n(t)

)2 + n

2
W

(
qn(t)

)
≤ 1

2
(u0)

2 + n

2
W (q0) +

∫ t

0

∣∣ f (s, q0, 0)∣∣∣∣q̇n(s)∣∣ ds
+L f

∫ t

0

(∣∣qn(s) − q0
∣∣ + ∣∣q̇n(s)∣∣)∣∣q̇n(s)∣∣ ds ∀t ∈ [0, τ ].

By using Cauchy-Schwarz’s inequality and Grönwall’s lemma, we infer that
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(
q̇n(t)

)2 + nW
(
qn(t)

)
≤

(
(u0)

2 + nW (q0) +
∫ τ

0

∣∣ f (s, q0, 0)∣∣2 ds
)
exp

((
2L f (1 + T ) + 1

)
t
) ∀t ∈ [0, τ ].

Asa consequence, ifq0 ∈ IR+,weobtain that the sequences (q̇n)n≥1 and
(
nW (qn)

)
n≥1

are bounded in L∞(0, τ ; IR). Next, we observe that

Lemma 3 There exists a constant C (independent of n) such that Var
(
q̇n, [0, τ ])

≤ C.

Proof Let n ≥ 1. Since q̇n ∈ C1
([0, τ ]; IR) we have

Var
(
q̇n, [0, τ ]) =

∫ τ

0

∣∣q̈n(s)∣∣ ds ≤
∫ τ

0

∣∣ f (s, qn(s), q̇n(s))∣∣ ds + n
∫ τ

0

∣∣W ′(qn(s))∣∣ ds.
With the previous energy estimate we obtain

∫ τ

0

∣∣ f (s, qn(s), q̇n(s))∣∣ ds ≤ Mτ,

where

M = sup
{∣∣ f (s, q, v)

∣∣; (s, q, v) ∈ [0, τ ] × [q0 − Rτ, q0 + Rτ ] × [−R, R]}

with

R =
(

(u0)
2 +

∫ τ

0

∣∣ f (s, q0, 0)∣∣2 ds
)1/2

exp

(
2L f (1 + T ) + 1

2
τ

)
.

Now, let z be a continuous function from [0, τ ] to [−1, 1]. We get

W ′(qn(s))(1 ± z(s) − qn(s)
) = (

1 ± z(s)
)
min

(
qn(s), 0

) − (
min

(
qn(s), 0

))2
≤ −1

2

(
min

(
qn(s), 0

))2 ≤ 0 ∀s ∈ [0, τ ].

Hence,

±
∫ τ

0
nW ′(qn(s))z(s) ds

≤ −
∫ τ

0
nW ′(qn(s))(1 − qn(s)

)
ds

=
∫ τ

0

(
q̈n(s) − f

(
s, qn(s), q̇n(s)

))(
1 − qn(s)

)
ds

= q̇n(τ ) − u0 − q̇n(τ )qn(τ ) + u0q0 +
∫ τ

0

((
q̇n(s)

)2 − f
(
s, qn(s), q̇n(s)

)(
1 − qn(s)

))
ds

≤ (
R + |u0|)(q0 + 1) + 2R2τ + M(1 + q0 + Rτ)τ

and we conclude that
(
nW ′(qn)

)
n≥1 is bounded in L1(0, τ ; IR) [19].
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By applying Ascoli’s theorem [64] and Helly’s theorem ([27], see also Sect. 7,
Appendix), we determine that there exists a subsequence, still denoted (qn)n≥1, such
that

qn(t) −→n→+∞ q(t) uniformly in [0, τ ],
q̇n(t) −→n→+∞ u(t) for all t ∈ [0, τ ],
dq̇n − f (·, qn, q̇n)dt ⇀n→+∞ λ = du − f (·, q, u)dt weakly ∗ in M

([0, τ ]; IR)
,

with q ∈ C0
([0, τ ]; IR) and u ∈ BV

([0, τ ]; IR)
. By using the continuity of W , we

infer that

W
(
qn(t)

) −→n→+∞ 0 = W
(
q(t)

)
uniformly in [0, τ ],

i.e., q(t) ≥ 0 for all t ∈ [0, τ ]. Moreover,

qn(t) = q0 +
∫ t

0
q̇n(s) ds ∀t ∈ [0, τ ],

so at the limit, we have

q(t) = q0 +
∫ t

0
u(s) ds ∀t ∈ [0, τ ].

Furthermore, dq̇n − f (·, qn, q̇n)dt = −nW ′(qn)dt is a non-negative measure on
[0, τ ] for all n ≥ 1 thus λ is also a non-negative measure. Let v ∈ C0

([0, τ ]; IR)
such that Supp(v) ⊂ {

t ∈ [0, τ ]; q(t) > 0
}
. By compacity of Supp(v), we infer

that, for all n big enough, we have qn(t) > 0 for all t ∈ Supp(v). It follows that

〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) = lim
n→+∞

〈
dq̇n − f (·, qn, q̇n)dt, v〉M ([0,τ ];IR),C0([0,τ ];IR)

= lim
n→+∞ −n

∫ τ

0
W ′(qn(t))v(t)︸ ︷︷ ︸

=0

dt = 0,

where 〈·, ·〉M ([0,τ ];IR),C0([0,τ ];IR) denotes the duality product between the space of real
(Borel) measuresM ([0, τ ]; IR) and the space of continuous functionsC0([0, τ ]; IR).
Thus, we may conclude that Supp(λ) ⊂ {

t ∈ [0, τ ]; q(t) = 0
}
.

Finally, we obtain an energy estimate for the limit motion.

Proposition 3 For almost every t ∈ [0, τ ], we have
1

2

(
u(t)

)2 = 1

2
(u0)

2 +
∫ t

0
f
(
s, q(s), u(s)

)
u(s) ds.

Proof For all n ≥ 1 and for all t ∈ [0, τ ], we have
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1

2

(
q̇n(t)

)2 + n

2
W

(
qn(t)

) = 1

2
(u0)

2 +
∫ t

0
f
(
s, qn(s), q̇n(s)

)
q̇n(s) ds

and

1

2

(
q̇n(t)

)2 −→n→+∞
1

2

(
u(t)

)2
,∫ t

0
f
(
s, qn(s), q̇n(s)

)
q̇n(s) ds −→n→+∞

∫ t

0
f
(
s, q(s), u(s)

)
u(s) ds.

It follows that
(n
2
W

(
qn(t)

))
n≥1

admits a limit, denoted g(t), for all t ∈ [0, τ ].
Then, we observe that

∫ τ

0

n

2
W

(
qn(t)

)
dt ≤ 1√

2
max
t∈[0,τ ]

√
W

(
qn(t)

) ∫ τ

0
n
∣∣W ′(qn(t))∣∣ dt = O

(
1√
n

)
.

By using Fatou’s lemma, we infer that g ∈ L1(0, τ ; IR) and

0 = lim inf
n→+∞

∫ τ

0

n

2
W

(
qn(t)

)
dt ≥

∫ τ

0
g(t)︸︷︷︸
≥0

dt ≥ 0.

Thus,

n

2
W

(
qn(t)

) −→n→+∞ g(t) = 0 a.e.t ∈ [0, τ ].

With Proposition 3, we infer that

∣∣q̇(t + 0)
∣∣ = ∣∣u(t + 0)

∣∣ = ∣∣u(t − 0)
∣∣ = ∣∣q̇(t − 0)

∣∣ ∀t ∈ (0, τ )

and we get an energy conservative solution to our vibro-impact problem. In this
simple example, we have Card

(
J
(
q(t)

)) = 1 for all t ∈ [0, τ ] such that q(t) ∈ ∂K ,
so we may conclude that q is a solution of problem (P) with a restitution coefficient
e = 1.

Several existence results rely on a penalty approach, allowing us to consider either
convex constraints, i.e., convex sets of admissible configurations or, more generally,
dynamics driven by a convex (non-smooth) potential (see, for instance, [3, 9, 12,
18, 31, 43, 55, 60]). But, as in the model problem of the bouncing ball presented
above, we always obtain energy conserving solutions, since the penalty term in the
approximate problems derives from a potential and does not lead to dissipation of
energy at the limit. So if we want to apply this kind of approach to study problem (P)
with e ∈ [0, 1), we have to introduce in the approximate problems some dissipation
when the constraints are not satisfied. From the heuristic point of view, the simplest
way to add dissipation during the motion consists in adding a viscous friction term.
Indeed, if we consider the ODE



Mathematical Aspects of Vibro-Impact Problems 155

ÿ + 2ε ẏ + y = 0,

with ε ∈ (0, 1) and the initial conditions y(0) = 0, ẏ(0) < 0, we obtain

y(t) = ẏ(0)√
1 − ε2

sin
(√

1 − ε2t
)
exp

(−εt
) ∀t ∈ IR+.

It follows that y(t) < 0 on (0, t1), with t1 = π√
1 − ε2

and ẏ(t1) = −ẏ(0)

exp

(
− πε√

1 − ε2

)
. Observing that exp

(
− πε√

1 − ε2

)
∈ (0, 1), we choose ε such

that e = exp

(
− πε√

1 − ε2

)
, which leads to

ε = − ln(e)√
π2 + (

ln(e)
)2 if e ∈ (0, 1).

Then, having in mind that we expect an immediate reflexion of the normal velocity

at impact, we rescale the time-variable and we let zn(t) = 1√
n
y
(√

n(t − τ0)
)
, which

yields żn

(
τ0 + π√

n(1 − ε2)

)
= −eżn(τ0).

Going back to the bouncing ballmodel problem,we nowuse these ideas to propose
now the following sequence of approximate problems:

q̈n(t) + 2ε
√
nG

(
qn(t), q̇n(t)

) + nW ′(qn(t)) = f
(
t, qn(t), q̇n(t)

)
in(0, τ ), (10)

with the initial conditions qn(0) = q0, q̇n(0) = u0 and

G(q, v) =
{

v if q < 0,
0 if q ≥ 0,

ε = − ln(e)√
π2 + (

ln(e)
)2 , e ∈ (0, 1).

Let us observe that ε tends to zerowhen e tends to 1, andwe recover (9).Otherwise,we
have an additional penalty term which acts as a viscous friction force and is activated
only when the constraint qn(t) ≥ 0 is not satisfied. Let us emphasize that (10) does
not satisfy the usual assumptions, allowing us to apply classical existence results
for ODE. Indeed, the mapping (q, v) �→ G(q, v) is not continuous on {0} × IR∗.
Nevertheless, if f is Lipschitz continuous with respect to its last two arguments,
uniformly with respect to the first one, we can establish that, for any τ > 0, q0 ∈ IR+
and u0 ∈ IR, (10) admits a solution qn ∈ C1

([0, τ ]; IR)
such that q̇n is absolutely

continuous on [0, τ ], q̈n ∈ L∞(0, τ ; IR) and (10) holds for almost every t ∈ (0, τ )

[49]. Moreover, we have



156 L. Paoli

G(q, v)v ≥ 0 ∀(q, v) ∈ IR2,

so with the same computations as earlier, we obtain the following energy inequality:

1

2

(
q̇n(t)

)2 + n

2
W

(
qn(t)

) ≤ 1

2
(u0)

2 +
∫ t

0
f
(
s, qn(s), q̇n(s)

)
q̇n(s) ds ∀t ∈ [0, τ ]

and at the limit when n tends to +∞, we may expect that (qn)n≥1 converges to an
energy dissipative solution to the vibro-impact problem (see Remark 1). But we can
also easily check that Newton’s impact law will be satisfied at the limit. Indeed,
let τ0n ∈ (0, τ ) such that qn(τ0n) = 0 and q̇n(τ0n) < 0. Then, qn behaves like zn ,
with zn(τ0n) = 0 and żn(τ0n) = q̇n(τ0n) on a right neighbourhood of τ0n . Indeed, qn
remains negative on some non-trivial interval (τ0n, τ̃0n) and the function rn given by

rn(s) = √
n(qn − zn)

(
τ0n + s√

n

)
∀s ∈ (

0,
√
n(̃τ0n − τ0n)

)
,

satisfies the ODE

r̈n(s) + 2εṙn(s) + rn(s) = 1√
n
f̃ (s) for a.e. s ∈ (

0,
√
n(̃τ0n − τ0n)

)

with rn(0) = 0, ṙn(0) = 0 and

f̃ (s) = f

(
τ0n + s√

n
, qn

(
τ0n + s√

n

)
, q̇n

(
τ0n + s√

n

))
∀s ∈ [

0,
√
n(̃τ0n − τ0n)

]
.

Then, with an energy inequality and Grönwall’s lemma, we obtain

∣∣ṙn(s)∣∣2 + ∣∣rn(s)∣∣2 ≤ O

(
1

n

)
exp(s) ∀s ∈ [

0,
√
n(̃τ0n − τ0n)

]
,

i.e.,

∣∣q̇n(t) − żn(t)
∣∣2 + n

∣∣qn(t) − zn(t)
∣∣2 ≤ O

(
1

n

)
exp

(√
n(t − τ0n)

) ∀t ∈ [τ0n, τ̃0n].

Since zn(t) > 0 for all t ∈
(

τ0n + π√
n(1 − ε2)

, τ0n + 2π√
n(1 − ε2)

)
, we infer that
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0 > q(t) ≥ zn(t) − O

(
1

n

)
exp

(√
n

2
(t − τ0n)

)

≥ q̇(τ0n)√
n(1 − ε2)

sin
(√

n(1 − ε2)(t − τ0n)
)
exp

(−ε
√
n(t − τ0n)

)

−O

(
1

n

)
exp

(√
n

2
(t − τ0n)

)

∀t ∈ (τ0n, τ̃0n) ∩
(

τ0n + π√
n(1 − ε2)

, τ0n + 2π√
n(1 − ε2)

)
.

Let us assume that there exists δ ∈ (0, π) and n∗ ≥ 1 such that

τ̃0n > τ0n + π + δ√
n(1 − ε2)

∀n ≥ n∗.

Then, with t = τ0n + π + δ√
n(1 − ε2)

∈ (τ0n, τ̃0n) ∩
(

τ0n + π√
n(1 − ε2)

, τ0n + 2π√
n(1 − ε2)

)
,

we obtain

0 ≥ q̇(τ0n)√
1 − ε2

sin(π + δ) exp

(
−ε

π + δ√
1 − ε2

)
︸ ︷︷ ︸

>0

−O

(
1√
n

)
exp

(
π + δ√
2(1 − ε2)

)

for all n ≥ n∗, which is absurd. It follows that τ̃0n − τ0n �n→+∞
π√

n(1 − ε2)

and q̇n (̃τ0n) �n→+∞ żn

(
τ0n + π√

n(1 − ε2)

)
= −eq̇n(τ0n). Of course, this does not

allow us to conclude immediately that (qn)n≥1 converges to a solution to problem (P).
With the energy inequality, we already know that (qn)n≥1 and (q̇n)n≥1 are uniformly
bounded in L∞(0, τ ; IR), and we can check with the same kind of computations as
in Lemma 3 that

(
nW ′(qn)

)
n≥1 is uniformly bounded in L1(0, τ ; IR). Hence, we may

apply Ascoli’s theorem, but unfortunately, this is not enough to apply also Helly’s
compactness theorem as well and we have to prove the following Lemma.

Lemma 4 The sequence
(√

nG(qn, q̇n)
)
n≥1 is uniformly bounded in L1(0, τ ; IR).

Proof Let n ≥ 1. We defineU−
n = {

t ∈ [0, τ ]; qn(t) < 0
}
and we denote as Inj the

connex components of U−
n i.e. U−

n = ⋃
j∈Jn

Inj where Jn is at most countable and
Inj ∩ (0, τ ) = (αnj , βnj ) for all j ∈ Jn . For all j ∈ Jn we have

q̈n(t) + 2ε
√
nq̇n(t) = wn(t) = f

(
t, qn(t), q̇n(t)

) − nqn(t) for a.e.t ∈ Inj ,

and thus
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q̇n(t) = q̇n(tn j ) exp
(−2ε

√
n(t − tn j )

) +
∫ t

tn j
exp

(−2ε
√
n(t − s)

)
wn(s) ds ∀t ∈ Inj ,

where tn j ∈ (αnj , βnj ). It follows that q̇n admits a finite (right) limit at αnj . Let us
assume now that αnj �= 0. Then, qn(αnj ) = 0 and q̇n(αnj ) = q̇n(αnj + 0) ≤ 0, since
qn(t) < 0 on (αnj , βnj ). Let us assume, moreover, that q̇n(αnj + 0) �= 0. Then, qn
remains positive on a left neighbourhood (γnj , αnj ) of αnj and

q̈n(t) = f
(
t, qn(t), q̇n(t)

)
for a.e. t ∈ (γnj , αnj ),

which yields

q̇n(αnj )(αnj − t) + (
q(t) − q(αnj )

)
=

∫ αnj

t

(∫ αnj

s
f
(
σ, qn(σ ), q̇n(σ ) dσ

)
ds ∀t ∈ (γnj , αnj )

and thus q̇n(αnj ) = q̇n(αnj + 0) ≤ O(αnj − γnj ) if γnj > 0. Hence,

∫ τ

0

√
n
∣∣G(

qn(t), q̇n(t)
)∣∣ dt =

∫
U−
n

√
n
∣∣q̇n(t)∣∣ dt

≤
∑
j∈Jn

∣∣q̇n(αnj + 0)
∣∣ ∫ βnj

αnj

√
n exp

(−2ε
√
n(t − αnj )

)
dt

+√
n

∑
j∈Jn

∫ βnj

αnj

(∫ t

αnj

exp
(−2ε

√
n(t − s)

)∣∣wn(s)
∣∣ ds

)
dt

≤ 1

2ε

⎛
⎝∑

j∈Jn

∣∣q̇n(αnj + 0)
∣∣ +

∫
U−
n

∣∣wn(t)
∣∣ dt

⎞
⎠

≤ 1

2ε

⎛
⎝∑

j∈Jn

∣∣q̇n(αnj + 0)
∣∣ +

∫ τ

0

∣∣ f (t, qn(t), q̇n(t))| dt

+
∫ τ

0
n
∣∣W ′(qn(t))∣∣ dt

)
,

which allows us to conclude.

So, by using Ascoli’s and Helly’s theorems, and possibly extracting a subse-
quence, still denoted (qn)n≥1, we infer that there exists q ∈ C0

([0, τ ]; IRd) and
u ∈ BV

([0, τ ]; IRd
)
such that

qn(t) −→n→+∞ q(t) uniformly in [0, τ ],
q̇n(t) −→n→+∞ u(t) for all t ∈ [0, τ ],
dq̇n − f (·, qn, q̇n)dt ⇀n→+∞ λ = du − f (·, q, u)dt weakly ∗ in M

([0, τ ]; IR)
,

with



Mathematical Aspects of Vibro-Impact Problems 159

q(t) = q0 +
∫ t

0
u(s) ds ≥ 0 ∀t ∈ [0, τ ]

and Supp(λ) ⊂ {
t ∈ [0, τ ]; q(t) = 0

}
.

It remains to prove that λ is a non-negative measure, i.e.,

〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) ≥ 0 ∀v ∈ C0
([0, τ ]; IR+)

.

Let us consider first v ∈ C1([0, τ ]; IR+). Then, for all n ≥ 1, we have

〈dq̇n − f (·, qn, q̇n)dt, v〉M ([0,τ ];IR),C0([0,τ ];IR)

=
∫
U−

n

(−nqn(t)
)
v(t)︸ ︷︷ ︸

≥0

dt − 2ε
√
n
∫
U−

n

q̇n(t)v(t) dt

≥ −2ε
√
n
∑
j∈Jn

[
qn(t)v(t)

]βnj

αnj
+ 2ε

√
n
∑
j∈Jn

∫ βnj

αnj

qn(t)v̇(t) dt.

In the first sum, all the terms vanish, except perhaps the very last one, if βnj = τ ,
and then qn(τ ) ≤ 0. Thus,

〈dq̇n − f (·, qn, q̇n)dt, v〉M ([0,τ ];IR),C0([0,τ ];IR)

≥ − 2ε√
n

max
t∈[0,τ ]

∣∣v̇(t)∣∣
∫ τ

0
n
∣∣W ′(qn(t))∣∣ dt = −O

(
1√
n

)
.

It follows that

〈dq̇n − f (·, qn, q̇n)dt, v〉M ([0,τ ];IR),C0([0,τ ];IR) −→n→+∞ 〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) ≥ 0

for all v ∈ C1
([0, τ ]; IR+)

and by density we get finally 〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) ≥
0 for all v ∈ C0

([0, τ ]; IR+)
.

By observing that W ′(q) = q − Proj(K , q) and

G(q, v) = 〈
v, n

(
Proj(K , q)

)〉
n
(
Proj(K , q)

)
ifq /∈ K ,

where n
(
Proj(K , q)

)
is the outward unit normal to K at Proj(K , q), we may extend

the previous penalty approach to any set K of admissible configurations such that
K is convex and ∂K is smooth. Indeed, by applying some diffeomorphism, we may
define local coordinates that transform the set K into a half-space, and the normal
component of q in these new coordinates will satisfy an ODE of the same form as
(10). Hence, the main ideas to prove the convergence of the approximate solutions
remain the same as in the simple previous case of the bouncing ball example, but the
technical aspects are more involved, since we have to deal, in general, with a curved
boundary ∂K . For the complete proof when M(q) ≡ IdIRd and ∂K of class C2, the
reader is referred to [49] for e ∈ (0, 1].
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Let us emphasize that the definition of ε as ε = − ln(e)√
π2 + (

ln(e)
)2 does not allow

us to consider the case e = 0. Nevertheless, we have lim
e→0+

ε = 1, and wemaywonder

if the penalized problems

q̈n(t) + 2
√
nG

(
qn(t), q̇n(t)

) + n
(
qn(t) − Proj

(
K , qn(t)

))
= f

(
t, qn(t), q̇n(t)

)
in(0, τ ),

with n ∈ IN∗, provide approximate solutions of (P) when e = 0. For the bouncing
ball model problem, we can compare qn to the solution zn to the following ODE:

z̈n + 2
√
nżn + nzn = 0.

More precisely, let us consider τ0n ∈ (0, τ ) such that qn(τ0n) = 0 and q̇n(τ0n) < 0.
Let (τ0n, τ̃0n) be a right neighbourhood of τ0n such that qn(t) < 0 for all t ∈ (τ0n, τ̃0n).
With zn(τ0n) = 0 and żn(τ0n) = q̇n(τ0n), we get

0 ≥ zn(t) = q̇n(τ0n)(t − τ0n) exp
(−√

n(t − τ0n)
) ∀t ∈ [τ0n,+∞)

and

∣∣q̇n(t) − żn(t)
∣∣2 + n

∣∣qn(t) − zn(t)
∣∣2 ≤ O

(
1

n

)
exp

(√
n(t − τ0n)

) ∀t ∈ (τ0n, τ̃0n)

and the mathematical analysis of the behaviour of the approximate trajectories can
still be performed, leading to a convergence result. The general case with M(q) �≡
IdIRd and smooth enough ∂K (i.e., ∂K at least of class C3) is considered in [62].

Of course, in the multi-constrained case (i.e., ν ≥ 2), the boundary of K is not
smooth anymore, andwhen q is a “corner” of ∂K , i.e., q ∈ ∂K withCard

(
J (q)

) ≥ 2,
the normal cone to K at q is not reduced to a half-line and K can no longer be
transformed into a half-space by using a local diffeomorphism. Thus, a natural idea
consists in regularizing K in a neighbourhood of all such points of its boundary, for
instance, by replacing K with K ε = K + εIBp, where IBp is the closed unit ball of IRd

for the usual p-norm, with p ∈ (1,+∞), and ε > 0. If K is convex, then K ε is also
convex, and the corresponding bounce problem admits energy conservative solutions
that satisfy Newton’s impact law with e = 1. When ε tends to zero, the reflexion of
the velocity when an impact occurs in a corner of K depends on p and we recover
Newton’s impact law with e = 1 only for the choice p = 2 [10]. Moreover, if we
solve the bounce problemwith different kinds of penalty approaches, the limit impact
law at corners also depends on the choice of penalty approach [3]!

Hence, the penalty approach provides a good theoretical (but heavy and technical)
tool for proving existence resultswhen ∂K is smooth or for convex sets K with energy
conservative solutions, but it does not seem well-suited in the other cases.
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Since this approach relies on the construction of a sequence of approximate tra-
jectories that may be computed numerically (since qn is the solution to an ODE), it
also provides, as a by-product, a tool for approximately soving problem (P). Observ-
ing that n

(
qn − Proj(K , qn)

)
acts as an elastic drawback force and 2ε

√
nG(qn, q̇n)

as a viscous friction force applied to the system when the constraints are violated,
problems (Pn) admit a nice mechanical interpretation: the boundary ∂K of the set of
admissible configurations no longer behaves as a rigid obstacle but as a (visco)-elastic
one, which seems more realistic from the physical point of view.

In the framework of deformable bodies, this approach, also called normal compli-
ance approximation, has been extensively used to relax Signorini’s complementary
conditions (see, for instance, [25, 30] and references therein or [26] for some recent
variants of this technique). Unfortunately, from the numerical point of view, it suffers
from two major drawbacks.

First, as has been seen in the previous proof, the approximate trajectories are not
feasible and the constraints are violated on time-intervals Inj = (αnj , βnj )with βnj −
αnj �n→+∞

π√
n(1 − ε)2

when e ∈ (0, 1]. Hence, in order to compute qn accurately

enough to “catch” the reflexion of velocity at βnj , we need to choose a time-step

Δt <<
π√

n(1 − ε)2
, and it is costly.

Moreover, we have to choose the value of the penalty parameter n, and then
we solve numerically (thus only approximately) the penalized problem (Pn), which
means that we have two kinds of approximation error: the approximation error due to
the penalty approach, namely ‖q − qn‖C0([0,τ ];IRd

)
, and the approximation error due

to the numerical solver applied to (Pn). Of course, we can choose a very accurateODE
solver, and we may expect a bigger n the smaller ‖q − qn‖C0([0,τ ];IRd

)
. But we also

have to deal with the condition Δt <<
π√

n(1 − ε)2
. Keeping in mind the physical

interpretation of the term n
(
qn − Proj(K , qn)

)
as an elastic drawback force with

stiffness n, we may hope to find some characteristic values of the stiffness associated
to some material properties. Unfortunately, the range of these values given in the
literature goes from 5.5 107 Nm for an impacting bar [63] to 1010 Nm for systems
with joint clearance [57]. Furthermore, we can also observe a great sensitivity of the
approximate solutions qn to the penalty parameter [51].

So, we may conclude that the penalty approach does not provide any efficient
procedure for simulating vibro-impact problems. As a consequence, we have to find
other techniques for proving the existence of solutions and solving problem (P)
numerically when K is not convex and/or ∂K is non-smooth.

An answer to the first question may be given by combining both existence results
for ODE and for variational inequalities when the data are analytical (which means
that no flat points like those in the example presented in Sect. 3 may appear along
the trajectory). This idea has been developed by P.Ballard in [4], but it does not yield
to the construction of approximate solutions, and thus does not give any numerical
tool for solving problem (P).
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Motivated now by both existence results and efficient numerical techniques that
allow us to encompass the long list of drawbacks enumerated in Sect. 3, we will
consider time-stepping approximations of problem (P) in the rest of this chapter.

5 Time-Discretization at the Position Level

Having in mind all the difficulties listed in the previous sections that we have to
encompass in order to solve problem (P), it is clear that we have to propose an
approach that
• avoids systematic impact detection,
• is able to deal with non-smooth sets of constraints and/or non-analytical data.

So, we may try to apply to the MDI (4) time-discretization techniques inspired
by classical methods for ODE. In this framework, we may replace the acceleration

term with finite difference approximations
un − un−1

Δt
, with un = qn+1 − qn

Δt
, where

the q j ’s are some approximation of q at the discrete instants t j = jΔt , with Δt > 0.
Then the simplest idea consists in considering an explicit time-discretization of the
MDI given by

M(qn)
un − un−1

Δt
− f (tn, q

n, un−1) ∈ −NK (qn) ∀n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
.

Unfortunately, if qn /∈ K , we have NK (qn) = ∅, and this inclusion does not admit
any solution. The next simplest idea consists in considering the semi-implicit time-
discretization of the MDI given by

M(qn)
un − un−1

Δt
− f (tn, q

n, un−1) ∈ −NK (qn+1) ∀n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
(11)

Of course, we need to check first that this inclusion always admits a solution.

Lemma 5 Let us assume that K �= ∅ and that
(∇ fα(q)

)
α∈J (q)

is linearly indepen-

dent for all q ∈ ∂K. Then, for all n ∈
{
1, . . .

⌊ τ

Δt

⌋}
, qn ∈ IRd and qn−1 ∈ IRd , (11)

admits at least one solution qn+1.

Proof Let n ∈
{
1, . . .

⌊ τ

Δt

⌋}
, qn ∈ IRd and qn−1 ∈ IRd . We define

Wn = 2qn − qn−1 + Δt2M−1(qn) f

(
tn, q

n,
qn − qn−1

Δt

)
.

Then, (11) is equivalent toM(qn)(Wn − qn+1) ∈ NK (qn+1).
If Wn ∈ K , then qn+1 = Wn is the solution. Otherwise, since K is a closed non-

empty subset of IRd , we know that Argminz∈K‖Wn − z‖qn is not empty and we let
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qn+1 ∈ Argminz∈K‖Wn − z‖qn . Then, for all z ∈ K ,

‖Wn − qn+1‖2qn

≤ ‖Wn − z‖2qn = ‖Wn − qn+1‖2qn + 2〈Wn − qn+1, qn+1 − z〉qn + ‖qn+1 − z‖2qn ,

i.e.,

〈Wn − qn+1, z − qn+1〉qn ≤ 1

2
‖z − qn+1‖2qn .

If qn+1 ∈ Int(K ), then z = qn+1 + r(Wn − qn+1) belongs to K for all positive small
enough number r , which yields

‖Wn − qn+1‖2qn ≤ r

2
‖Wn − qn+1‖2qn .

and at the limit as r tends to zero, we obtain qn+1 = Wn ∈ Int(K ), which is absurd.
So, qn+1 ∈ ∂K . Let v ∈ TK (qn+1) = {

v ∈ IRd; 〈∇ fα(qn+1), v
〉 ≥ 0 ∀α ∈ J (qn+1)

}
.

Since
(∇ fα(qn+1))α∈J (qn+1) is linearly independent, it may be completed as a basis

of IRd , and we denote as (ε j )1≤ j≤d the dual basis. Then, for all δ > 0, we define

vδ = v + δ
∑

β∈J (qn+1)

εβ . We get

〈∇ fα(qn+1), vδ

〉 = 〈∇ fα(qn+1), v
〉 + ∑

β∈J (qn+1)

δ
〈∇ fα(qn+1), εβ

〉
︸ ︷︷ ︸
=0 if β �=α;=δ if β=α

≥ δ > 0

for all α ∈ J (qn+1). Then, z(t) = qn+1 + vδt ∈ K for all t in a right neighbourhood
of 0, and we get

〈Wn − qn+1, vδ〉qn ≤ t

2
‖vδ‖2qn ,

which implies that 〈Wn − qn+1, vδ〉qn ≤ 0 for all δ > 0.At the limit as δ tends to zero,
we obtain 〈Wn − qn+1, v〉qn = 〈

M(qn)(Wn − qn+1), v
〉 ≤ 0 for all v ∈ TK (qn+1),

which allows us to conclude.

This proof yields also a way to define q0 and q1 in order to initialize the algorithm:

since (11) is satisfied by qn+1 ∈ Argminz∈K‖Wn − z‖qn for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
,

we may choose

q0 = q0, q1 ∈ Argminz∈K‖q0 + Δtu0 − z‖q0 . (12)

Clearly, (11) provides a time-discretization of the MDI (4) with feasible approxi-
mate positions qn’s, but we may wonder how the discrete velocities behave when the
constraints are saturated. Let us check first what happens in the case of the bouncing
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ball model problem, i.e., d = 1, K = IR+,M(q) ≡ 1. Then, (11) reduces to

qn+1 = max(Wn, 0), Wn = 2qn − qn−1 + Δt2 f

(
tn, q

n,
qn − qn−1

Δt

)
(13)

for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
. For simplicity, let us assume that f ≡ 0, q0 = 1, u0 =

−1 and let us choose Δt ∈
(
0,

1

2

)
. With (12), we get

q0 = 1, q1 = max(1 − Δt, 0) = 1 − Δt > 0

and

qn+1 = 1 − (n + 1)Δt for all n ∈ {0, . . . , n∗}withn∗ =
⌊

1

Δt

⌋
− 1.

At the next time-step, we get

Wn∗+1 = 2qn∗+1 − qn∗ = 1 − (n∗ + 2)Δt < 0

and qn∗+2 = 0. It follows that

Wn∗+2 = 2qn∗+2 − qn∗+1 = −qn∗+1 ≤ 0,

thus qn∗+3 = 0, and by an immediate induction, qn = 0 for all n ≥ n∗ + 3. The
discrete velocities satisfy

un = −1 ∀n ∈ {1, . . . , n∗}, un∗+1 = −qn∗+1

Δt
∈ (−1, 0], un = 0 ∀n ≥ n∗ + 2

and we have an approximate solution to problem (P) with e = 0 (see Fig. 2).
Hence, we have to modify (11) in order to get approximate solutions of problem

(P) with e ∈ (0, 1] as well. We observe that (13) implies that qn+1 = 0 whenever
Wn ≤ 0, and if it occurs for two successive time-steps, we get automatically e = 0.
So, from the heuristic point of view, we may try to modify (13) as

qn+1 = −eqn−1 + (1 + e)max(Wn
e , 0) ∀n ≥ 1, (14)

with an appropriate choice of Wn
e , i.e., with Wn

e such that

qn+1 = −eqn−1 + (1 + e)Wn
e = 2qn − qn−1 = 1 − (n + 1)Δt,

as long as (n + 1)Δt is not too close to t∗ = 1. We obtain
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Fig. 2 Exact and approximate trajectories for Δt = 0.15 and e = 0

Wn
e = 2qn − (1 − e)qn−1

1 + e
,

and (13) is replaced by

qn+1 = −eqn−1 + max
(
2qn − (1 − e)qn−1, 0

) ∀n ≥ 1.

We obtain again that qn+1 = 1 − (n + 1)Δt for all n ∈ {1, . . . , ne∗}, with

ne∗ = max

{
n ≥ 1; 1 + 2eΔt

1 + e
≥ (n + 1)Δt

}
.

Then,

Wne∗+1
e < 0, qne∗+2 = −eqne∗

and

Wne∗+2
e = 2qne∗+2 − (1 − e)qne∗+1

1 + e
= −2eqne∗ − (1 − e)(2qne∗ − qne∗−1)

1 + e
= −Wne∗ ≤ 0,

soqne∗+3 = −eqne∗+1 andune∗+2 = −eune∗ = e.We infer thatWne∗+3
e = −eWne∗+1

e ≥
0, thus qne∗+4 = 2qne∗+3 − qne∗+2 and une∗+3 = une∗+2. The discrete velocities now
satisfy
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Fig. 3 Exact and approximate trajectories for Δt = 0.15 and e = 0.3

un = −1 ∀n ∈ {1, . . . , ne∗},
une∗+1 = −eqne∗ − qne∗+1

Δt
∈ (−1, e],

un = e ∀n ≥ ne∗ + 2

and we have obtained an approximate solution to problem (P) with e ∈ (0, 1] (see
Fig. 3).

Let us assume now that f �≡ 0. Then, we get

qn+1 = −eqn−1 + max

(
2qn − (1 − e)qn−1 + Δt2 f

(
tn, q

n,
qn − qn−1

Δt

)
, 0

)
(15)

and we let

Wn
e = 1

1 + e

(
2qn − (1 − e)qn−1 + Δt2 f

(
tn, q

n,
qn − qn−1

Δt

))

for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
. As long as Wn

e ≥ 0 (15), reduces to

qn+1 = 2qn − qn−1 + Δt2 f

(
tn, q

n,
qn − qn−1

Δt

)
,
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i.e.,

qn+1 − 2qn + qn−1

Δt2
= f

(
tn, q

n,
qn − qn−1

Δt

)
,

which is simply a centered time-discretization of the ODE q̈ = f (t, q, q̇) that
describes the unconstrained dynamics. On the contrary, if there exists ne∗ ≥ 1 such
that Wne∗ ≥ 0 and Wne∗+1 < 0, we obtain

qne∗+2 = −eqne∗ , qne∗+1 = −eqne∗−1 + (1 + e)Wne∗
e ≥ −eqne∗−1.

Hence,

Wne∗+2
e = 2qne∗+2 − (1 − e)qne∗+1 + Δt2 f (tne∗+2, qne∗+2, une∗+1)

1 + e

= −e
(
2qne∗ − (1 − e)qne∗−1

)
1 + e

− (1 − e)Wne∗
e + Δt2

1 + e
f (tne∗+2, q

ne∗+2, une∗+1)

= −Wne∗
e + eΔt2

1 + e
f (tne∗ , q

ne∗ , une∗−1) + Δt2

1 + e
f (tne∗+2, q

ne∗+2, une∗+1)

≤ eΔt2

1 + e
f (tne∗ , q

ne∗ , une∗−1) + Δt2

1 + e
f (tne∗+2, q

ne∗+2, une∗+1).

If Wne∗+2
e ≤ 0, then qne∗+3 = −eqne∗+1 and une∗+2 = −eune∗ . Otherwise,

0 < Wne∗+2
e ≤ Δt2

1 + e

(
e f (tne∗ , q

ne∗ , une∗−1) + f (tne∗+2, q
ne∗+2, qne∗+1)

)

and

qne∗+3 = −eqne∗+1 + (1 + e)Wne∗+2
e = −eqne∗+1 + O(Δt2),

which yields une∗+2 = −eune∗ + O(Δt). So, the discrete velocities are reversed and
multiplied by the restitution coefficient e, up to some additional terms of orderO(Δt).

Moreover, as long as Wn
e ≥ 0, we have

un = un−1 + Δt f

(
tn, q

n,
qn − qn−1

Δt

)
,

so

|un| ≤ |un−1| + Δt
∣∣ f (

tn, q
n, un−1

)∣∣.
Whenever n ≥ 2 and Wn

e < 0, we have qn+1 + eqn−1 = 0 and qn + eqn−2 ≥ 0, so

un = qn+1 − qn

Δt
= qn+1 + eqn−1 − (qn + eqn−2) − e(qn−1 − qn−2)

Δt
≤ −eun−2
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and

qn+1 + eqn−1 − (1 + e)Wn
e

Δt
= un − un−1 − Δt f

(
tn, q

n,
qn − qn−1

Δt

)
≥ 0.

It follows that

|un| ≤ max
(|un−1| + Δt

∣∣ f (
tn, q

n, un−1
)∣∣ , e|un−2|),

and by an immediate induction,

|un| ≤ max
(|u0|, |u1|) +

n∑
k=2

Δt
∣∣ f (

tk, q
k, uk−1

)∣∣ ∀n ∈
{
2, . . . ,

⌊ τ

Δt

⌋}
.

Reminding ourselves that q0 = q0 ∈ IR+, we obtain

|u0| =
∣∣∣∣q

1 − q0

Δt

∣∣∣∣ =
∣∣max(q0 + Δt u0, 0) − q0)

∣∣
Δt

≤ |u0|

and

|u1| =
∣∣∣∣q

2 − q1

Δt

∣∣∣∣ =
∣∣∣∣ (1 + e)max(W 1

e , 0) − (1 + e)q0 + q0 − q1

Δt

∣∣∣∣
≤

∣∣∣∣ (1 + e)W 1
e − (1 + e)q0

Δt

∣∣∣∣ + |u0| ≤ 3|u0| + Δt
∣∣ f (

t1, q
1, u0

)∣∣ .
We infer that

|un | ≤ 3|u0| +
n∑

k=1

Δt
∣∣∣ f (

tk, q
k, uk−1

)∣∣∣

≤ 3|u0| +
n∑

k=1

Δt | f (tk , q0, 0)| +
n∑

k=1

L f Δt
(|qk − q0| + |uk−1|)

≤ 3|u0| + τ max
t∈[0,τ ]

∣∣ f (t, q0, 0)∣∣ + L f (τ + 1)Δt
n−1∑
k=0

|uk | ∀n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
,

where we recall that L f denotes the Lipschitz constant of f with respect to its last
two arguments. By using the discrete Grönwall’s lemma, we determine that there
exists h∗ > 0 and C∗ > 0 such that, for all Δt ∈ (0, h∗),

|un| ≤ C∗ ∀n ∈
{
0, . . . ,

⌊ τ

Δt

⌋}
.

We define the approximate solutions qh by linear interpolation of the qn’s, i.e.,
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qh(t) = qn + (t − tn)
qn+1 − qn

h
∀t ∈ [tn, tn+1) ∩ [0, τ ], ∀n ∈

{
0, . . . ,

⌊ τ

Δt

⌋}

with h = Δt and tn = nh for all n ∈
{
0, . . . ,

⌊ τ

Δt

⌋}
. In order to prove that (qh)h>0

converges to a solution of the bouncing ball problem, we reproduce the same kind
of mathematical analysis as in the previous section.

By construction, qh is continuous and affine by parts on [0, τ ] and

q̇h(t) = un ∀t ∈ (tn, tn+1) ∩ [0, τ ] ∀n ∈
{
0, . . . ,

⌊ τ

Δt

⌋}
.

So,

T V
(
q̇h, [0, τ ]) =

�τ/h�−1∑
n=0

|un+1 − un| = |u1 − u0| +
�τ/h�−1∑

n=1

|un+1 − un|

≤ |u1 − u0| +
�τ/h�−1∑

n=1

∣∣un+1 − un − h f (tn+1, q
n+1, un)︸ ︷︷ ︸

≥0

∣∣

+h
�τ/h�−1∑

n=1

∣∣ f (tn+1, q
n+1, un)

∣∣

≤ |u1 − u0| + u�τ/h� − u1 + 2h
�τ/h�−1∑

n=1

∣∣ f (tn+1, q
n+1, un)

∣∣
≤ 4(C∗ + τM∗),

with M∗ = sup
{∣∣ f (t, q, v)

∣∣; (t, q, v) ∈ [0, τ ] × [q0 − C∗τ, q0 + C∗τ ] × [−C∗,C∗]
}
.

Let us choose, from now on, h = Δt = τ

N
, with N ∈ IN∗. By using Ascoli’s and

Helly’s theorem and possibly extracting a subsequence, still denoted (qh)h>0, we
obtain

qh(t) −→h→0 q(t) uniformly in [0, τ ],
q̇h(t) −→h→0 u(t) for all t ∈ [0, τ ],
dq̇h − f (·, qh, q̇h)dt ⇀h→0 λ = du − f (·, q, u)dt weakly ∗ in M

([0, τ ]; IR)
,

with q ∈ C0
([0, τ ]; IR) and u ∈ BV

([0, τ ]; IR)
such that

q(t) = q0 +
∫ t

0
u(s) ds ∀t ∈ [0, τ ].

Moreover, for all t ∈ (0, τ ), let n =
⌊
t

h

⌋
. For all h small enough, we have n ∈{

1, . . . ,
⌊ τ

Δt

⌋
− 1

}
and
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q(t) = 1

1 + e

(
q(tn+1) + eq(tn−1) + e

∫ t

tn−1

u(s) ds −
∫ tn+1

t
u(s) ds

)

≥ 1

1 + e
(qn+1 + eqn−1)︸ ︷︷ ︸

≥0

−‖q − qh‖C([0,τ ];IR) − 2C∗h.

Thus, q(t) ≥ 0 for all t ∈ [0, τ ].
Finally, we decompose the measure dq̇h − f (·, qh, q̇h)dt as

dq̇h − f (·, qh, q̇h)dt =
�τ/h�−1∑

n=1

(
un − un−1 − h f (tn, q

n, un−1)
)
δt=tn + λh,

with

λh =
�τ/h�−1∑

n=1

h f (tn, q
n, un−1)δt=tn − f (·, qh, q̇h)dt,

where δt=tn is the Dirac measure of mass 1 at tn . For all v ∈ C0
([0, τ ]; IR+)

, we have

〈
dq̇h − f (·, qh, q̇h)dt, v

〉
M ([0,τ ];IR),C0([0,τ ];IR)

≥ 〈λh, v〉M ([0,τ ];IR),C0([0,τ ];IR)

and
∣∣〈λh, v〉M ([0,τ ];IR),C0([0,τ ];IR)

∣∣
=

∣∣∣
�τ/h�−1∑

n=1

h f (tn, q
n, un−1)v(tn) −

∫ τ

0
f
(
t, qh(t), q̇h(t)

)
v(t) dt

∣∣∣

≤
�τ/h�−1∑

n=1

∫ tn+1

tn

∣∣ f (tn, qn, un−1) − f
(
t, qh(t), q̇h(t)

)∣∣∣∣v(t)∣∣ dt

+
�τ/h�−1∑

n=1

∫ tn+1

tn

∣∣ f (tn, qn, un−1)
∣∣∣∣v(tn) − v(t)

∣∣ +
∫ h

0

∣∣ f (t, qh(t), q̇h(t))v(t)∣∣ dt

≤
�τ/h�−1∑

n=1

L f

∫ tn+1

tn

(∣∣qn − qh(t)
∣∣ + |un − un−1|)‖v‖C0([0,τ ];IR) dt

+τM∗ωv(h) + hM∗‖v‖C0([0,τ ];IR)

≤ L f h
(
C∗τ + T V

(
q̇h, [0, τ ]))‖v‖C0([0,τ ];IR) + τM∗ωv(h) + hM∗‖v‖C0([0,τ ];IR),

where ωv denotes the continuity modulus of v. At the limit as h tends to zero, we
obtain

〈
dq̇h − f (·, qh , q̇h)dt, v

〉
M ([0,τ ];IR),C0([0,τ ];IR)

−→h→0 〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) ≥ 0

for all v ∈ C0
([0, τ ]; IR+)

. So, λ is a non-negative measure.
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Moreover, let v ∈ C0
([0, τ ]; IR)

such that Supp(v) ⊂ {
t ∈ [0, τ ]; q(t) > 0

}
. By

compacity of Supp(v), there exists N∗ ∈ IN∗ such that, for all h = τ

N
with N ≥ N∗,

we have qh(t) > 0 for all t ∈ Supp(v) and Wn
e > 0 for all nh ∈ Supp(v). It follows

that
〈
dq̇h − f (·, qh , q̇h)dt, v

〉
M ([0,τ ];IR),C0([0,τ ];IR)

= 〈λh , v〉M ([0,τ ];IR),C0([0,τ ];IR)

−→h→0 〈λ, v〉M ([0,τ ];IR),C0([0,τ ];IR) = 0

which implies that Supp(λ) ⊂ {
t ∈ [0, τ ]; q(t) = 0

}
, and we may conclude that q

is a solution of the vibro-impact problem.
In the general case, with d ≥ 1, e ∈ [0, 1] and a set of admissible configurations

defined as

K = {
q ∈ IRd; fα(q) ≥ 0 ∀α ∈ {1, . . . , ν}},

the time-stepping algorithm is given as a natural generalization of (14), i.e.,
• q0 = q0, q1 ∈ Argminz∈K

∥∥q0 + Δtu0 − z
∥∥
q0 ,

• for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}

qn+1 ∈ −eqn−1 + (1 + e)Argminz∈K‖Wn
e − z‖qn , (16)

with

Wn
e = 1

1 + e

(
2qn − (1 − e)qn−1 + Δt2M−1(qn) f

(
tn, qn,

qn − qn−1

Δt

))
. (17)

By replacing qn+1 with
qn+1 + eqn−1

1 + e
in the proof of Lemma 5, we determine

that (16)–(17) imply that

M(qn)
un − un−1

Δt
− f

(
tn, q

n,
qn − qn−1

Δt

)
∈ −NK

(
qn+1 + eqn−1

1 + e

)

for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
. Let us observe that whenever Wn

e ∈ K , we get

M(qn)
qn+1 − 2qn + qn−1

Δt2
= f

(
tn, q

n,
qn − qn−1

Δt

)
,

which is a centered time-discretization of the ODE describing the unconstrained

dynamics. Moreover, the average approximate position
qn+1 + eqn−1

1 + e
belongs to
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K for all n ∈
{
1, . . . ,

⌊ τ

Δt

⌋}
, which implies that dist(qn, K ) ≤ O(Δt) for all n ∈{

0, . . . ,
⌊ τ

Δt

⌋}
.

We define once again the approximate solution qh as a linear interpolation of the
qn’s. Let us assume:

(H1) for all α ∈ {1, . . . , ν}, the function fα belongs to C1(IRd; IR), ∇ fα is locally
Lipschitz continuous, and does not vanish in a neighbourhood of

{
q ∈ IRd : fα(q) =

0
}
,

(H2) the interior of K is not empty and the active constraints along ∂K are func-
tionally independent, i.e., for all q ∈ ∂K , the vectors

(∇ fα(q)
)
α∈J (q)

are linearly
independent,
(H3) M is a mapping of class C1 from IRd to the set of symmetric positive definite
d × d matrices,
(H4) f is a continuous function from [0, τ ] × IRd × IRd (τ > 0) to IRd ,
(H5) for all compact subsetsB of IRd , there exist CB > 0 and rB > 0 such that, for
all (q1, q2) ∈ (K ∩ B)2 such that ‖q1 − q2‖ ≤ rB , we have

〈
eα(q1), eβ(q2)

〉 ≤ CB‖q1 − q2‖ if e = 0,∣∣〈eα(q1), eβ(q2)
〉∣∣ ≤ CB‖q1 − q2‖ if e ∈ (0, 1],

for all (α, β) ∈ J (q1) × J (q2) such that α �= β, where eα(qi ) =
M−1/2(qi )∇ fα(qi )

‖M−1/2(qi )∇ fα(qi )‖ for all α ∈ J (qi ), i = 1, 2.

Let us observe that, by choosing q1 = q2 = q ∈ ∂K , this last assumption reduces
to the “angle condition” given in Proposition 1, i.e.,

〈∇ fα(q),M(q)−1∇ fβ(q)〉 ≤ 0 if e = 0
〈∇ fα(q),M(q)−1∇ fβ(q)〉 = 0 if e �= 0

for all (α, β) ∈ J (q)2 such that α �= β, for all q ∈ ∂K .
We obtain the following theorem.

Theorem 1 Let q0 ∈ K ,u0 ∈ TK (q0)ande ∈ [0, 1]. For anyC > ‖u0‖q0 , let τ(C) >

0 be defined by Proposition 2. Then, there exist τ∗ ∈ [
min

(
τ(C), τ

)
, τ

]
and a sub-

sequence of (qh)h>0, still denoted (qh)h>0, such that

q̇h(t) −→h→0+ u(t) for all t ∈ [0, τ∗],
qh(t) −→h→0+ q(t) = q0 +

∫ t

0
u(s) ds uniformly in [0, τ∗],

with u ∈ BV
([0, τ∗]; IRd

)
, and u is a solution to problem (P).

The mathematical analysis follows the same steps as in the bouncing ball model
problem: we establish first a uniform estimate of the approximate velocities q̇h and
of their total variation, then we pass to the limit as h tends to zero by applying
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Ascoli’s and Helly’s theorems, and finally, we study the reflexion of the velocities
when the constraints are saturated. Nevertheless, the details of the proofs are much
more technical, even in the single constraint case (ν = 1), and we refer the reader to
[52] when ν = 1 and [45, 46] when ν ≥ 2.

6 Time-Discretization at the Velocity Level

With the results of the previous section, it seems that there is nothing to add about the
mathematical aspects of vibro-impact problems, since we have obtained a numer-
ical method and existence results that allow us to consider rather weak regularity
assumptions for the data and any value of d, ν and e.

Nevertheless, the time-stepping scheme proposed in the previous section requires
to find, at each time-step, the proximal point of Wn

e in K relatively to the kinetic
metric at qn , which is not necessarily an easy task. Indeed, if Wn

e ∈ K , the solution
to (16) is obvious and we simply have qn+1 = −eqn−1 + (1 + e)Wn

e . Otherwise,
if K is convex, (16) admits an unique solution that can be computed by standard
procedures like gradient methods or relaxation (see [16], for instance). But when
K is not convex, (16) is much more difficult to solve and may even admit several
solutions.

So, the previous time-stepping scheme is a good theoretical tool for proving
existence results in a more general framework than in [3, 4, 9, 12, 14, 43, 49, 55,
60, 62] but it is a useful numerical tool, mainly when K is convex, and in such a case,
the efficiency of this algorithm has been clearly showned through several examples
of implementation (see, for instance, [20, 21, 50, 53]).

Motivated by computational issues, it does, however, seem necessary to propose
another numerical method allowing us to handle the non-convex case as well. In
order to overcome the difficulty due to the lack of convexity of the set of admissible
configurations, we observe that the set of admissible right velocities TK (q) is always
convex. More precisely, we have the following properties: the constraint at the posi-
tion level, i.e., the condition q(t) ∈ K for all t ∈ [0, τ ], yields q̇(t + 0) ∈ TK

(
q(t)

)
for all t ∈ [0, τ ), which can be interpreted as a constraint at the velocity level. It fol-

lows that, for any function u of Bounded Variation such that q(t) = q0 +
∫ t

0
u(s) ds

for all t ∈ [0, τ ], we have u(t) ∈ TK
(
q(t)

)
for almost every t ∈ (0, τ ). Indeed, we

have q̇(t + 0) = u(t + 0) ∈ TK
(
q(t)

)
for all t ∈ [0, τ ). Since u is continuous except

on a (at most) countable subset of [0, τ ], the conclusion follows.
The converse property is also true and we have the Lemma.

Lemma 6 Let u ∈ BV
([0, τ ]; IRd

)
with τ > 0, q0 ∈ K and q be defined by

q(t) = q0 +
∫ t

0
u(s) ds ∀t ∈ [0, τ ].
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Assume, moreover, that u(t) ∈ TK
(
q(t)

)
for almost every t ∈ (0, τ ). Then, q(t) ∈ K

for all t ∈ [0, τ ].
Proof Let us assume that there exists τ∗ ∈ [0, τ ] such that q(τ∗) /∈ K . Then, τ∗ > 0
and there exists α ∈ {1, . . . , ν} such that fα

(
q(τ∗)

)
< 0. We define

τ0 = inf
{
t ∈ [0, τ ]; t ≤ τ∗, fα

(
q(s)

)
< 0 ∀s ∈ [t, τ∗]}.

By continuity of q, we get τ0 ∈ [0, τ∗) and fα
(
q(τ0)

) = 0. Thus,

fα
(
q(t)

) = fα
(
q(τ0)

)
︸ ︷︷ ︸

=0

+
∫ t

τ0

〈∇ fα
(
q(s)

)
, u(s)

〉
︸ ︷︷ ︸

≥0

ds ∀t ∈ (τ0, τ∗],

which gives a contradiction.

So, we may wonder if it is possible to obtain another formulation of vibro-impact
problems at the velocity level. Let us recall the impact law:

q̇(t + 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

) − eProjq(t)

(
M−1(q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
.

By definition of the projection on a convex set, it is equivalent to

q̇(t + 0) + eq̇(t − 0)

1 + e
∈ TK

(
q(t)

)

and
〈
M

(
q(t)

)(
q̇(t − 0) − q̇(t + 0) + eq̇(t − 0)

1 + e︸ ︷︷ ︸
= q̇(t−0)−q̇(t+0)

1+e

)
, v − q̇(t + 0) + eq̇(t − 0)

1 + e

〉
≤ 0

∀v ∈ TK
(
q(t)

)
,

i.e.,

M
(
q(t)

)(
q̇(t − 0) − q̇(t + 0)

) ∈ ∂ψTK (q(t))

(
q̇(t + 0) + eq̇(t − 0)

1 + e

)
,

where ψTK (q) is the indicatrix function of TK (q) defined as

ψTK (q)(v) =
{

0 if v ∈ TK (q),

+∞ otherwise,

and ∂ψTK (q) is its subdifferential [58] given by



Mathematical Aspects of Vibro-Impact Problems 175

∂ψTK (q)(v) =
{ {

w ∈ IRd; 0 ≥ 〈w, z − v〉 ∀z ∈ TK (q)
}

if v ∈ TK (q),

∅ otherwise.

Next, we define the average velocity ue by

ue(t) = u(t + 0) + eu(t − 0)

1 + e
∀t ∈ (0, τ ), ue(0) = u(0), ue(τ ) = u(τ ).

Reminding ourselves that u is continuous except on a (at most) countable sub-
set of [0, τ ], we infer that ue(t ± 0) = u(t ± 0) for all t ∈ (0, τ ). Thus, ue ∈
BV

([0, τ ]; IRd
)
with due = du. It follows thatM(q)du − f (·, q, u)dt = M(q)due −

f (·, q, ue)dt and

q(t) = q0 +
∫ t

0
u(s) ds = q0 +

∫ t

0
ue(s) ds ∀t ∈ [0, τ ].

Moreover, the impact law (P4) is equivalent to

ue(t) = u(t + 0) + eu(t − 0)

1 + e
= q̇(t + 0) + eq̇(t − 0)

1 + e
∈ TK

(
q(t)

)

and

M
(
q(t)

)(
q̇(t − 0) − q̇(t + 0)

) ∈ ∂ψTK (q(t))
(
ue(t)

)

for all t ∈ (0, τ ). Next, we observe that for any q ∈ ∂K and v ∈ TK (q), we have
∂ψTK (q)(v) = NTK (q)(v), since TK (q) is convex [58] and NTK (q)(v) ⊂ NK (q) with
equality if and only if

〈∇ fα(q), v
〉 = 0 for all α ∈ J (q). Indeed,

TK (q) = {
v ∈ IRd; 〈∇ fα(q), v

〉
︸ ︷︷ ︸

=ϕα(v)

≥ 0 ∀α ∈ J (q)
}
.

and, for all v ∈ TK (q), we have

∂ψTK (q)(v) = NTK (q)(v) =

⎧⎪⎨
⎪⎩w = −

∑
α∈J ′(v)

λα ∇ϕα(v)︸ ︷︷ ︸
=∇ fα(q)

, λα ≥ 0

⎫⎪⎬
⎪⎭ ,

with

J ′(v) = {
α ∈ J (q); ϕα(v) = 〈∇ fα(q), v

〉 ≤ 0
}
.

Let t ∈ (0, τ ). We can distinguish the following cases:
• if q(t) ∈ Int(K ), then TK

(
q(t)

) = IRd and NK
(
q(t)

) = {0} = ∂ψTK (q(t))(v) for all
v ∈ TK

(
q(t)

)
;



176 L. Paoli

• if q(t) ∈ ∂K and q̇(t − 0) = q̇(t + 0), then

〈∇ fα
(
q(t)

)
, q̇(t + 0)

〉 = 〈∇ fα
(
q(t)

)
, q̇(t − 0)

〉 = 0 ∀α ∈ J
(
q(t)

)
,

thus

∂ψTK (q(t))

(
q̇(t + 0) + eq̇(t − 0)

1 + e

)
= ∂ψTK (q(t))

(u(t + 0) + eu(t − 0)

1 + e︸ ︷︷ ︸
=ue(t)

)
= NK

(
q(t)

)
.

• if q(t) ∈ ∂K and q̇(t − 0) �= q̇(t + 0), then

(
M(q)due − f (·, q, ue)dt

)({t}) = M
(
q(t)

)(
ue(t + 0) − ue(t − 0)

)
= −M

(
q(t)

)(
q̇(t − 0) − q̇(t + 0)

)
.

So, we can gather properties (P3) and (P4) of problem (P) into a single condition:
the measure f (·, q, ue)dt − M(q)due takes its values in ∂ψTK (q)(ue). In order to give
a precise mathematical meaning, we introduce the measure μ = |due| + dt where
|due| is defined by

|due|(A) = sup
∑∥∥due(Bk)

∥∥
for any Borel subset A ⊂ [0, τ ], where the supremum is taken over all the finite
families (Bk)k of disjoint Borel sets included in A (see [8] I-3.10, for instance).

Then, we can check that, for any Borel subset A ⊂ [0, τ ], such that μ(A) = 0
we have |due|(A) = 0 and dt (A) = 0, which means that the measures due and dt
are absolutely continuous with respect to the measure μ. Using Radon-Nikodym’s
theorem, we infer that there exist u′

μ ∈ L1
([0, τ ]; IRd , μ

)
and t ′μ ∈ L1

([0, τ ]; IR, μ
)

such that, for any Borel subset A ⊂ [0, τ ],

due(A) =
∫
A
u′

μdμ, dt (A) =
∫
A
t ′μdμ.

([8] I-4.9)
So, we can now introduce another formulation of our vibro-impact problem.
Problem (P’) Let q0 ∈ K , u0 ∈ TK (q0). Find a function ue : [0, τ ] → IRd , with τ >

0, such that:
(P’1) ue ∈ BV

([0, τ ]; IRd
)
, ue(0 + 0) = u0,

(P’2) ue(t) = ue(t + 0) + eue(t − 0)

1 + e
for all t ∈ (0, τ ),

(P’3) there exists a non-negative measure μ such that the Stieltjes measure due and
Lebesgue’s measure dt admit densities relatively to μ, denoted, respectively, u′

μ and
t ′μ, and
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f
(
t, q(t), ue(t)

)
t ′μ(t) − M

(
q(t)

)
u′

μ(t) ∈ ∂ψTK (q(t))
(
ue(t)

)
μ a.e.on(0, τ ),

with

q(t) = q0 +
∫ t

0
ue(s) ds ∀t ∈ [0, τ ].

Let us emphasize that any μ-negligible subset of [0, τ ] is also negligible with
respect to Lebesgue’s measure and (P’3) implies that ue(t) ∈ TK

(
q(t)

)
for almost

every t ∈ (0, τ ). By using Lemma 6, we obtain q(t) ∈ K for all t ∈ [0, τ ].
Moreover, for any t ∈ (0, τ ) such that q̇(t − 0) �= q̇(t + 0), we have

ue(t − 0) = q̇(t − 0) �= q̇(t + 0) = ue(t + 0)

and thus |due|
({t}) �= 0 and μ

({t}) > 0. Recalling that ∂ψTK (q(t))
(
ue(t)

)
is a cone,

we infer from (P’3) that

(
f (·, q, ue)dt − M(q)due

)({t}) = M
(
q(t)

)(
ue(t − 0) − ue(t + 0)

)
= M

(
q(t)

)(
q̇(t − 0) − q̇(t + 0)

) ∈ ∂ψTK (q(t))
(
ue(t)

) = ∂ψTK (q(t))

(
q̇(t + 0) + eq̇(t − 0)

1 + e

)
,

which is equivalent to
q̇(t + 0) + eq̇(t − 0)

1 + e
= Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

)
, i.e.,

q̇(t + 0) = Projq(t)

(
TK

(
q(t)

)
, q̇(t − 0)

) − eProjq(t)

(
M

(
q(t)

)
NK

(
q(t)

)
, q̇(t − 0)

)
.

Remark 2 Since ∂ψTK (q(t))(v) is a cone for any v ∈ IRd , we obtain that (P’3) is
independent of the choice of any non-negative measure μ such that due and dt are
absolutely continuous with respect to μ [37, 38].

Starting from this new formulation, we propose another time-discretization of our
problem. More precisely, for a given time-step Δt > 0, we define the approximate
positions and velocities by

q0 = q0, u0 = u0,

and for all n ∈
{
0, . . . ,

⌊ τ

Δt

⌋
− 1

}

qn+1 = qn + Δt un, (18)

f
(
tn+1, q

n+1, un
) − M(qn+1)

(
un+1 − un

Δt

)
∈ ∂ψTK (qn+1)

(
un+1 + eun

1 + e

)
. (19)
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By using the definition of ∂ψTK (q)(·), we can deduce that this inclusion always admits
an unique solution given by

un+1 = −eun + (1 + e)Projqn+1

(
TK (qn+1), un + Δt

1 + e
M−1(qn+1) f

(
tn+1, q

n+1, un
))

.

Moreover, if qn+1 ∈ Int(K ), we simply obtain

qn+2 − 2qn+1 + qn

Δt2
= M−1(qn+1) f

(
tn+1, q

n+1, un
)

and we recover a centered time-discretization of the ODE describing the uncon-
strained dynamics. Otherwise, there exist non-negative real numbers

(
λn+1

α )α∈J (qn+1)

such that

M(qn+1)(un+1 − un) − Δt f
(
tn+1, q

n+1, un
) =

∑
α∈J (qn+1)

λn+1
α ∇ fα(qn+1),

and we get a quite natural time-discretization of the MDI (5).

In order to have an idea of how this scheme behaves, let us consider once again
the bouncing ball model problem, i.e., d = 1, K = IR+ and M(q) ≡ 1. Then, (19)
reduces to

un+1 =
⎧⎨
⎩

un + Δt f
(
tn+1, q

n+1, un
)

if qn+1 > 0,

−eun + (1 + e)max

(
un + Δt

1 + e
f
(
tn+1, q

n+1, un
)
, 0

)
if qn+1 ≤ 0,

or equivalently,

un+1 =

⎧⎪⎨
⎪⎩

un + Δt f
(
tn+1, q

n+1, un
)

if qn+1 > 0

or if qn+1 ≤ 0 and un + Δt

1 + e
f
(
tn+1, q

n+1, un
) ≥ 0,

−eun otherwise.

It follows that

|un+1| ≤ |un| + Δt
∣∣ f (tn+1, q

n+1, un
)∣∣ ≤ |u0| +

n+1∑
k=1

Δt
∣∣ f (tk, qk, uk−1

)∣∣

for all n ∈
{
0, . . . ,

⌊ τ

Δt

⌋
− 1

}
. Then, with the same kind of computations as in the

previous section, we deduce that there exists h∗ > 0 and C∗ > 0 such that, for all
Δt ∈ (0, h∗),

|un| ≤ C∗ ∀n ∈
{
0, . . . ,

⌊ τ

Δt

⌋}
.
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Next, we observe that

un+1 − un − Δt f
(
tn+1, q

n+1, un
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if qn+1 > 0 or if

qn+1 ≤ 0 and un + Δt

1 + e
f
(
tn+1, q

n+1, un
) ≥ 0,

−(1 + e)

(
un + Δt

1 + e
f
(
tn+1, q

n+1, un
))

otherwise,

and thus

un+1 − un − Δt f
(
tn+1, q

n+1, un
) ≥ 0 ∀n ∈

{
0, . . . ,

⌊ τ

Δt

⌋
− 1

}
.

We infer that

�τ/Δt�−1∑
n=0

|un+1 − un| ≤ u�τ/Δt� − u0 + 2Δt
�τ/Δt�∑
n=1

∣∣ f (tn, qn, un−1)
∣∣ ≤ 2(C∗ + τM∗)

with M∗ = max
{∣∣ f (t, q, v)

∣∣; (t, q, v) ∈ [0, τ ] × [q0 − C∗τ, q0 + C∗τ ] × [−C∗,
C∗]

}
.

Let us define the approximate solutions qh by linear interpolation of the qn’s, i.e.,

qh(t) = qn + (t − tn)
qn+1 − qn

h
∀t ∈ [tn, tn+1], ∀n ∈

{
0, . . . ,

⌊τ

h

⌋
− 1

}
,

where h = Δt = τ

N
with N ∈ IN∗ and tn = nh for all n ∈ {0, . . . , N }.

We pass to the limit asΔt tends to zero, with Ascoli’s and Helly’s theorems: there
exists a subsequence, still denoted (qh)h>0, such that

qh(t) −→h→0 q(t) uniformly in [0, τ ],
q̇h(t) −→h→0 u(t) for all t ∈ [0, τ ],

with q ∈ C0
([0, τ ]; IR) and u ∈ BV

([0, τ ]; IR)
such that

q(t) = q0 +
∫ t

0
u(s) ds ∀t ∈ [0, τ ].

Next, we prove the following proposition.

Proposition 4 For all t ∈ [0, τ ] we have q(t) ≥ 0.

Proof We use a contradiction argument. Let us assume that there exists τ0 ∈ (0, τ )

such that q(τ0) < 0 and let

τ1 = inf

{
s ∈ [0, τ0); q(t) ≤ 1

2
q(τ0) ∀t ∈ [s, τ0]

}
.
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Since q(0) = q0 ≥ 0, we obtain τ1 > 0 and q(τ1) = 1

2
q(τ0). With the uniform con-

vergence of (qh)h>0 to q on [0, τ ], we obtain that

qh(t) ≤ 1

4
q(τ0) < 0 ∀t ∈ [τ1, τ0]

for all h small enough. Let n1 =
⌊τ1

h

⌋
and n0 =

⌊τ0

h

⌋
. By definition of the scheme,

qh(tn0+1) + eqh(tn0) = qh(tn1+1) + eqh(tn1) + h
n0∑

n=n1+1

(un + eun−1︸ ︷︷ ︸
≥0 since qn≤0

)

≥ qh(tn1+1) + eqh(tn1)

for all h small enough. By passing to the limit as h tends to zero, we obtain

0 > q(τ0) ≥ q(τ1) = 1

2
q(τ0),

which is absurd.

Let us observe that

u(t + 0) = q̇(t + 0) ∈ TK
(
q(t)

)
, u(t − 0) = q̇(t − 0) ∈ −TK

(
q(t)

) ∀t ∈ (0, τ ),

and we cannot infer that u(t) = u(t + 0) + eu(t − 0)

1 + e
∈ TK

(
q(t)

)
for all t ∈ (0, τ ).

Hence, we modify u on a (at most) countable subset of [0, τ ] and we define ue ∈
BV

([0, τ ]; IRd
)
by

ue(t) = u(t + 0) + eu(t − 0)

1 + e
∀t ∈ [0, τ ],

with the convention that u(0 − 0) = u(0) and u(τ + 0) = u(τ ). It follows that ue ∈
BV

([0, τ ]; IRd
)
and ue(t ± 0) = u(t ± 0) for all t ∈ (0, τ ). Thus,

ue(t) = ue(t + 0) + eue(t − 0)

1 + e
∀t ∈ (0, τ )

and

q(t) = q0 +
∫ t

0
ue(s) ds ∀t ∈ [0, τ ].

In order to check that ue is a solution to (P’), it remains to prove (P’3). This is
achieved in two steps.



Mathematical Aspects of Vibro-Impact Problems 181

Let μ = |due| + dt and t ∈ (0, τ ). First, we observe that, for all n ∈{
0, . . . ,

⌊ τ

Δt

⌋
− 1

}
,

(
un + h

1 + e
f (tn+1, q

n+1, un) − un+1 + eun

1 + e

)(
x − un+1 + eun

1 + e

)
≤ 0 ∀x ∈ IR+,

i.e.,

h f (tn+1, q
n+1, un)(x − un) ≤ (un+1 − un)x − 1

2

(|un+1|2 − |un|2)

+
(
1

2
− 1

1 + e

)
|un+1 − un|2 + h f (tn+1, q

n+1, un)

(
un+1 − un

1 + e

)
.

Hence, for any subinterval [t, s] ⊂ [0, τ ], we have
k−1∑

n= j−1

h f (tn+1, q
n+1, un)(x − un) ≤ (

uh(tk) − uh(t j−1)
)
x − 1

2

(∣∣uh(tk)∣∣2 − ∣∣uh(t j−1)
∣∣2)

+ hM∗
1 + e

k−1∑
n= j

|un+1 − un |,

with t j−1 ≤ t < t j < · · · < tk ≤ s < tk+1. If q(t) > 0, then, for any small enough

Δt and s − t , we have qn+1 = qh(tn+1) > 0, which implies,
un+1 + eun

1 + e
= un +

h

1 + e
f (tn+1, q

n+1, un) for all n ∈ { j − 1, . . . , k − 1}. Thus, the same inequality is

valid for any x ∈ IR = TK
(
q(t)

)
. So, whatever the value of q(t), when Δt tends to

zero, we get

∫ s

t
f
(
σ, q(σ ), u(σ )

)(
x − u(σ )

)
dσ

≤ (
u(s) − u(t)

)
x − 1

2

(∣∣u(s)
∣∣2 − ∣∣u(t)

∣∣2) ∀x ∈ TK
(
q(t)

)
.

By using Jeffery’s theorem [29] and differentiation rules for functions of Bounded
Variation, we infer that there exists a μ-negligible subset A of [0, τ ] such that, for
all t ∈ (0, τ ) \ A such that ue is continuous at t , we have

f
(
t, q(t), ue(t)

)
t ′μ(t)

(
x − ue(t)

) ≤ u′
μ(t)

(
x − ue(t)

) ∀x ∈ TK
(
q(t)

)
,

which yields

f
(
t, q(t), ue(t)

)
t ′μ(t) − u′

μ(t) ∈ ∂ψTK (q(t))
(
ue(t)

)
.



182 L. Paoli

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

 0  0.5  1  1.5  2

’exact_traj-e=0’
’approx_traj-e=0-h=0.15’

’boundary_ofK’

 0  0.5  1  1.5  2

’exact_traj-e=0.3’
’approx_traj-e=0.3-h=0.15’

’boundary_ofK’

Fig. 4 Exact and approximate trajectories for Δt = 0.15 and e = 0 (left) or e = 0.3 (right)

Finally, there remains to prove that (P’3) holds at discontinuity points of ue. But
in such a case, the measures due and μ have a Dirac mass and (P’3) reduces to the
impact law (P4).

Let us assume for simplicity that f ≡ 0,q0 = 1andu0 = −1.Then, ifΔt ∈ (0, 1),
we have q1 = 1 − Δt > 0, so u1 = u0 = −1, and we get

qn+1 = 1 − (n + 1)Δt, un = −1 ∀n ∈ {0, . . . , n∗},

with

n∗ = max
{
n ≥ 1; 1 − nΔt > 0

} =

⎧⎪⎨
⎪⎩

⌊ 1

Δt

⌋
if

1

Δt
/∈ IN∗,⌊ 1

Δt

⌋
− 1 if

1

Δt
∈ IN∗.

Then, qn∗+1 ≤ 0, un∗+1 = −eun∗ + (1 + e)max(un∗ , 0) = e, and by induction,

qn = 1 − (n∗ + 1)h + e(n − n∗ − 1)Δt, un = e ∀n ≥ n∗ + 1.

The convergence of this velocity-based time-stepping scheme has been proved
first in the single constraint case (i.e., ν = 1, which implies that TK (q) is given
as IRd if q ∈ Int(K ) or as an half-line otherwise) for a trivial inertia operator and
inelastic shocks ([35], see also [32]). This proof has been extended to partially or
totally elastic shocks but still with a trivial kinetic metric [33], and then to a non-
trivial inertia operator [23, 24, 34]. Finally the general case, with ν ≥ 1, e ∈ [0, 1]
and M(q) �≡ IdIRd , is considered in [47] (see also [48]) and we have the following
theorem.

Theorem 2 Assume that (H1)–(H3) holds and
(H’4) the function f : [0, τ ] × IRd × IRd → IRd (τ > 0) is continuous and locally
Lipschitz continuous with respect to its second and third arguments,
(H’5) for all q ∈ ∂K, we have
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〈∇ fα(q),M(q)−1∇ fβ(q)〉 ≤ 0 if e = 0
〈∇ fα(q),M(q)−1∇ fβ(q)〉 = 0 if e �= 0

for all (α, β) ∈ J (q)2 such that α �= β.
Let q0 ∈ K, u0 ∈ TK (q0) and e ∈ [0, 1]. For anyC > ‖u0‖q0 , let τ(C) > 0 be defined
by Proposition 2. Then, there exist τ∗ ∈ [

min
(
τ(C), τ

)
, τ

]
, ue ∈ BV

([0, τ∗]; IRd
)

and a subsequence of (qh, uh)h>0, still denoted (qh, uh)h>0, such that

uh(t) −→h→0+ ue(t) except on a (at most) countable subset of [0, τ∗],
qh(t) −→h→0+ q(t) = q0 +

∫ t

0
ue(s) ds uniformly in [0, τ∗],

and ue is a solution to problem (P’).

Of course, one may wonder if this numerical method is capable of the com-
plex dynamical behaviour of vibro-impact problems efficiently. Indeed, with the
bouncing ball model problem, it seems that this velocity-based time-stepping scheme
gives a better approximation of the impact law (P4) than the position-based algo-
rithm described in Sect. 5, since reflexion of the velocity occurs immediately when
the discrete position saturates the constraints (we obtain un∗+1 = −eun∗ = e when
qn∗+1 ≤ 0), while two time-steps are needed to obtain the reflexion of the dis-

crete velocities with (14) (we got une∗+1 = −eqne∗ − qne∗+1

Δt
∈ (−1, e] and une∗+2 =

−eune∗ = e when Wne∗+1 = 2qne∗+1 − (1 − e)qne∗

1 + e
< 0). But, in the general case,

the approximate average positions
qn+1 + eqn−1

1 + e
always satisfy the constraints, since

qn+1 + eqn−1

1 + e
∈ K by definition with the position-based algorithm (16)–(17), which

implies that dist(qn, K ) ≤ O(Δt), and it can be checked that the reflexion of the
velocities occurs in (at most) ν + 1 time-steps (in the general case). On the contrary
with (18)–(19), only the constraints at the velocity level are satisfied at each time-

step, since we have
un+1 + eun

1 + e
∈ TK (qn+1), but it may lead to some discrepancy

at the position level in the case of grazing impacts or when e = 0. Indeed, let us go
back to the bouncing ball example. If qn > 0 and qn+1 ≤ 0, then

un = qn+1 − qn

Δt
< 0

and

un+1 = −eun + (1 + e)max

(
un + Δt

1 + e
f
(
tn+1, q

n+1, un
)
, 0

)
.
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If un + Δt

1 + e
f
(
tn+1, q

n+1, un
) ≥ 0, then

un+1 = un + Δt f
(
tn+1, q

n+1, un
) ≤ O(Δt)

and

qn+2 = qn+1 + Δt un+1 ≤ qn+1 + O(Δt2).

If un+1 + Δt

1 + e
f
(
tn+2, q

n+2, un+1
)
is still non-negative, we get

un+2 = un+1 + Δt f
(
tn+2, q

n+2, un+1
) ≤ O(Δt),

and so on.

Contrastingly, if un + Δt

1 + e
f
(
tn+1, q

n+1, un
)

< 0, we get un+1 = −eun and

qn+2 = qn+1 − eΔt un = qn + (1 − e)Δt un , which still may be non-positive and
which is certainly non-positive if e = 0 (see Fig. 4). Hence, it may be useful in
numerical simulations to modify (18)–(19) by adding a post-stabilization procedure
[39]. See also the chapter by Brüls et al. in this book [7] related to numerical time-
integration schemes in which stabilization of the constraints at position and acceler-
ation levels is implemented. Nevertheless, the mathematical proof of convergence is
still open.

For examples of implementation, the reader is referred to [22, 28, 39, 41, 42].

7 Conclusion

Despite their importance in many industrial applications and some pioneering works
[17], vibro-impact problems, i.e., dynamics of rigid multibody systems with perfect
unilateral constraints, were not really investigated before the end of the ’50s [5]
and their formulation in the appropriate mathematical framework of functions of
Bounded Variation was introduced for the first time in [60] at the end of the ’70s. So,
this part of non-smooth dynamics is a rather recent and very active research field.

In this chapter, an overview of the state-of-the-art about existence, (non-)
uniqueness and continuity of data has been proposed, as well as the main diffi-
culties to be overcome in numerical simulations. Different kinds of approximation –
penalty approach, time-stepping scheme at the position or velocity level – have also
been described and their behaviour has been illustrated with the bouncing ball model
problem.

This chapter focuses on mathematical aspects, so it was not within its scope to
present examples of implementations; for numerical aspects, the reader is referred
[6] or [1] and the references therein.
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Appendix: Functions of Bounded Variation

Definition 1 Let I = [a, b] be a real interval and u : I → IRd , d ≥ 1, be a function.
The total variation of u on I is given by

Var(u, I ) = sup
n∑

i=1

∥∥u(ti ) − u(ti−1)
∥∥ ∈ IR+ ∪ {+∞},

where the supremum is taken over all increasing finite sequences S : t0 < t1 < · · · <

tn of points of I . If Var(u, I ) < +∞, then we say that u is a function of Bounded
Variation on I and we denote u ∈ BV (I ; IRd).

Examples: step functions, functions of class C1, monotone functions when d = 1.

Remark 3 If u ∈ BV (I ; IRd), then u is bounded on I . Indeed, let t ∈ (a, b) and
S : a = t0 < t < t2 = b. We have

∥∥u(t)
∥∥ ≤ ‖u(a)‖ + ‖u(t) − u(a)‖

≤ ‖u(a)‖ + ‖u(t) − u(a)‖ + ‖u(b) − u(t)‖
≤ ‖u(a)‖ + Var(u, I ).

Proposition 5 ([27] II-7 or [40] Proposition 4.2 and Corollary 4.4)
If u ∈ BV (I ; IRd), then u possesses a left limit (respectively right limit), denoted

u(t − 0) (respectively u(t + 0)) for all t ∈ (a, b] (respectively t ∈ [a, b)). Further-
more, the set of discontinuity points of u in I , is at most, countable.

By convention, we will denote u(a − 0) = u(a), u(b + 0) = u(b).
Let u ∈ BV (I ; IR) and S : a = t0 < t1 < · · · < tn = b a finite sequence of points

of I . For all i ∈ {1, . . . , n}, we consider θ i
S ∈ [ti−1, ti ]. Then, for any function ϕ ∈

C0(I ; IR), we define

Σ(S, θ, ϕ) =
n∑

i=1

ϕ(θ i
S)

(
u(ti ) − u(ti−1)

)
.

Obviously, we have

∣∣Σ(S, θ, ϕ)
∣∣ ≤ max

t∈I
∣∣ϕ(t)

∣∣Var(u, I ).

Remark 4 If u(t) = t for all t ∈ [a, b], then Σ(S, θ, ϕ) is the Riemann sum of ϕ

associated with the pointed subdivision (S, θ).

As in Riemann’s theory of integration, it can be proved that Σ(S, θ, ϕ) converges
to a limit when σ(S) = max1≤i≤n(ti − ti−1) tends to zero, uniformly with respect to
θ ([27] II.9). With the previous inequality, we obtain
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lim
σ(S)→0

∣∣Σ(S, θ, ϕ)
∣∣ ≤ max

t∈I
∣∣ϕ(t)

∣∣Var(u, I ).

Thus, the mapping ϕ �→ limσ(S)→0 Σ(S, θ, ϕ) is linear and continuous from the
space C0(I ; IR), endowed with the uniform norm on I , to IR. It allows us to define a
measure, denoted du ∈ M 1(I ; IR) such that, for all ϕ ∈ C(I ; IR),

lim
σ(S)→0

Σ(S, θ, ϕ) =
∫
I
ϕ du (Riemann − Stieltjes integral).

Definition 2 The measure du is called the Stieltjes measure associated with u.

Examples:
If u ∈ C1(I ; IR), we obtain du = u′dt where dt denotes Lebesgue’s measure on I .
So, du generalizes the notion of a derivative for functions of Bounded Variation.
If u is a step function that is discontinuous at t j , j = 1, . . . , p, we obtain du =∑p

j=1

(
u(t j + 0) − u(t j − 0)

)
δt=t j , where δt=t j denotes the Dirac measure at t j .

If u ∈ BV (I ; IRd) with d > 1, we define

du =
d∑

i=1

dui ei ,
∫
I
ϕ du =

d∑
i=1

∫
I
ϕi dui ∀ϕ ∈ C0(I ; IRd),

where (ei )1≤i≤d is the canonical basis of IRd and (ui )1≤i≤d (respectively (ϕi )1≤i≤d )
are the coordinates of u (respectively ϕ) in the basis (ei )1≤i≤d .

Proposition 6 ([40] Proposition 8.1 and Corollary 8.2) Let u ∈ BV (I ; IRd). Then,
for any (a′, b′) ∈ I × I such that a′ < b′, we have

du
({a′}) = u(a′ + 0) − u(a′ − 0), du

([a′, b′]) = u(b′ + 0) − u(a′ − 0),
du

([a′, b′[) = u(b′ − 0) − u(a′ − 0), du
(]a′, b′]) = u(b′ + 0) − u(a′ + 0),

du
(]a′, b′[) = u(b′ − 0) − u(a′ + 0).

Remark 5 The previous relations uniquely characterize the measure du, since the
Borel tribute on I is generated by compact subintervals of I . As a consequence, if
u and v are two functions of Bounded Variation on I such that u(t ± 0) = v(t ± 0)
for all t ∈ I , we have du = dv.

Finally, let us recall a compactness result for functions of Bounded Variation.

Theorem 3 (Helly’s theorem [27] II-8.9 and II-15.3) Let (un)n≥1 be a sequence of
functions of BV

([a, b]; IRd
)
such that (un)n≥1 is uniformly of bounded variation and(

un(a)
)
n≥1 is bounded. Thus, there exists a subsequence, still denoted (un)n≥1, and

u ∈ BV
([a, b]; IRd

)
such that

un(x) −→n→+∞ u(x) ∀x ∈ [a, b],
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and

lim
n→+∞

∫ b

a
ϕ dun =

∫ b

a
ϕ du ∀ϕ ∈ C

([a, b]; IRd),

i.e.,

dun ⇀n→+∞ du weakly ∗ inM
([a, b]; IRd

)
.
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Nonsmooth Modal Analysis: From the
Discrete to the Continuous Settings

Anders Thorin and Mathias Legrand

Abstract This chapter addresses the prediction of vibratory resonances in nons-
mooth structural systems via Nonsmooth Modal Analysis. Nonsmoothness in the tra-
jectories is induced by unilateral contact conditions in the governing (in)equations.
Semi-analytical and numerical state-of-the-art solutionmethods are detailed. The sig-
nificance of nonsmooth modal analysis is illustrated in simplified one-dimensional
space semi-discrete and continuous frameworkswhose theoretical and numerical dis-
crepancies are explained. This contribution establishes clear evidence of correlation
between periodically forced and autonomous unilaterally constrained oscillators. It
is also shown that strategies using semi-discretization in space are not suitable for
nonsmooth modal analysis. The spectrum of vibration exhibits an intricate network
of backbone curves with no parallel in nonlinear smooth systems.

The purpose of this chapter is to provide a general picture of the state-of-the-art
vibratory analysis of nonsmooth systems. This topic lies at the interface between
modal analysis of smooth nonlinear systems and nonsmooth contact dynamics dedi-
cated to the time-evolution of nonsmooth systems, undergoing impact or dry friction,
for instance. Some elementary concepts are succinctly recalled for the purpose of
completeness.

Terminology

Unless otherwise stated, the epithet discrete (as in “discrete systems” or “discrete set-
ting”) designates semi-discretization in space, while continuous refers to everything
else.
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1 Introduction to Nonlinear Modal Analysis

Mechanical systems, from those of large scale (buildings) to those of small scale
(MEMS switches), commonly undergo forced vibrations. The efficient and accurate
characterization of the response of such systems to an external periodic loading is
essential to ensure safe designs. It also has various other applications, such as retrofit,
damage detection or model reduction, to name a few. In this context, frequency-
response curves play a key role for the dynamicist: they indicate the energy level of
a periodic solution produced by an external periodic forcing of (angular) frequency
ω, as a function of ω. For nonlinear systems, computing these frequency-response
curves is not a straightforward task. Actually, they are known to depend, in a possibly
intricate manner, on the forcing amplitude, the forcing frequency, and the forcing
shape [48]. A brute-force time-domain approach consisting in solving the govern-
ing equations for various external forces and initial conditions is, in practice, not
conceivable for large-scale systems. Instead, modal analysis provides a means of
computing, for a much more reasonable cost, the so-called backbone curves that
shape the forced response curves. Such backbone curves correspond to the underly-
ing autonomous (i.e., unforced) and conservative (i.e., undamped) periodic solutions
of the governing differential equation.1 Autonomous periodic solutions of conser-
vative systems may seem “unrealistic” in the sense that no undamped systems are
observable in the physical world. Their investigation can yet provide germane infor-
mation on periodically-forced and slightly damped systems. Essentially, they extend
the concept of spectrum, defined for linear systems, to the nonlinear framework.
In particular, they show the energy-dependence of vibration frequencies. The above
statements are illustrated by considering afinite-dimensional system relevant to struc-
tural dynamics and governed by a linear Ordinary Differential Equation (ODE) of
the form

Mü(t) + Cu̇(t) + Ku(t) = fext(t), (1)

where u is the vector of generalized displacements, M is its positive-definite mass
matrix, C its damping matrix, K its positive-definite stiffness matrix and fext its
vector of external loadings. The backbone curves are trivially obtained by considering
the autonomous conservative counterpart Mü + Ku = 0 and its periodic solutions,
yielding vertical lines in the energy–frequency diagram at the eigenfrequencies of the
systemdefined as the square roots of the eigenvalues ofM−1K: in linear dynamics, the
frequency of vibration is independent of the magnitude of vibration. This can be seen
in Fig. 1 (top), which illustrates a typical Frequency-Energy Plot (FEP) for a two-
degrees-of-freedom (dof) linear oscillator. The forced frequency-response curves
are clearly aligned on the two backbone curves, which completely characterize the
spectrum of vibration. Let us now consider a smooth nonlinear system of the form

Mü(t) + f(u̇(t),u(t)) = fext(t), (2)

1Modal analysis can also be defined in the autonomous damped case, which is more complicated
and not further discussed here.
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where smooth refers to the smoothness of f with respect to u and u̇. Its dynamics
is unsurprisingly more subtle than the previous linear case, and systematic solu-
tion methods for characterizing the vibrations globally are not available [40, 90,
Sect. 1.3]. However, it is known that fixed points, periodic and quasi-periodic limit
cyclesmay exist, in the vicinity ofwhich itmaybe possible to approximate the nonlin-
ear dynamical response. In particular, the centre manifold theorem [40, 47], together
with Lyapunov’s centre theorem [9, p. 5], show that under sufficient regularity2 and
non-internal resonance conditions, two-dimensional invariant manifolds exist locally
in the phase space and are tangent to the linear modes of the system linearized at
the fixed points. Such two-dimensional invariant manifolds were later defined as
nonlinear normal modes of vibration [93, 111] in the vibration community. They
can be understood as curved extensions of linear modes that correspond to flat two-
dimensional invariant manifolds defined by one-parameter continuous families of
elliptic trajectories. However, the nonlinear framework encompasses many phenom-
ena that are not observed in linear systems, such as internal resonance, frequency–
energy dependence, emergence of subharmonics or chaos, and existence of isolated
loops in the FEP [49]. Again, the relevance of nonlinear modal analysis is illustrated
in Fig. 1 (bottom), depicting the forced response of a two-dof Duffing oscillator. The
response curveswarp around the backbone curves.As opposed to the linear spectrum,
the nonlinear backbone curves are frequency-dependent and stiffening is exhibited
here. The kink of the forced response in the neighborhood of ω2/3 corresponds to
a subharmonic resonance. The loop near ω1 corresponds to an internal resonance,
where the first nonlinear mode and the third subharmonic of the second nonlinear
mode interact.

Among all nonlinearities found in mechanics, unilateral and frictional contact
nonlinearities form a specific class in which nonsmoothness arises in the dynam-
ics [94]. Typically, the impact between two bodies induces velocity discontinuities
and acceleration impulses [2]. The present chapter focuses on the frictionless frame-
work. The governing equation can no longer be written in the form (2), where f
is a smooth function of u and u̇. However, classical analytical techniques available
for computing nonlinear modes [49] require smoothness of the governing equation.
Indeed, the invariant manifold approach is based on the Taylor series of the solution
written as a function of a pair of master coordinates [93]; the method of multiple
scales [73], as a subclass of perturbation methods, requires asymptotic expansions;
normal forms rely on the nonlinearity being an analytic function [45].When it comes
to nonsmoothness, such strategies no longer apply.

Nonsmooth modal analysis is the extension of nonlinear modal analysis to nons-
mooth systems. This is accomplished by computing nonsmooth modes, that is, fami-
lies of nonsmooth periodic solutions of the autonomous and conservative dynamics.
Even simplistic nonsmooth oscillators exhibit intricate responses [20, 103, 106]. The
regularizing approach, consisting in replacing nonsmoothness with smooth strong
nonlinearities [7, 15, 26, 44, 58, 92, 101, 114], has the adverse effect of introduc-

2Notably, the linearized flow should be invertible. For example, the equation ü + u3 = 0 has non-
trivial periodic solutions, but its linearized ODE ü = 0 does not.
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Fig. 1 Frequency–energy plot of a two-dof Duffing oscillator, linearized (top) and nonlinear (bot-
tom). [ ] Backbone curves. [ ] Forced-response. [ ] Subharmonic of the second mode

ing issues such as numerical stiffness [19, 77, 78] and is not further discussed in
this work. Another approach is to include nonsmoothness as such. Many investiga-
tions on the dynamics of forced vibro-impact oscillators [35, 83, 85, 117, 120] and
grazing bifurcations [20, 20, 30, 75, 81] or stability issues [60] are available. The
specific target of families of periodic solutions of a conservative nonsmooth problem
has emerged recently for space-discretized systems [59, 104, 107] or continuous
ones [41, 125].

Multiple applications which could benefit from nonsmooth modal analysis can
be listed: rotor-stator contact interactions in rotating machinery involving unilateral
contact occurrences between blades and casings [116], boiler tube dynamics with
a loose support [26, 76], grid-to-rod fretting [42], percussive drilling systems [79,
80], cutting tools [121] or, on a smaller scale, capsule systems (capsubots) [63, 64],
and electrostatically-driven and piezoelectric actuators [31, 69].The Sensitivity of an
atomic force microscope, in tapping mode, can be improved through understanding
of the response of impact oscillators [113]. Additional examples include impact
dampers implemented to reduce vibrations [62, 91] or fret-string contact interactions
within musical instruments [12, 16, 43]. More applications can be found in [7]. All
applications have in common the need to properly characterize nonsmooth vibratory
resonances.

The purpose of this chapter is to give a picture of the state-of-the-art nonsmooth
modal analysis.While the standard procedure inmechanical engineering is to approx-
imate continuous systems by n-dof systems, complications arise when contact is
involved. Nonsmooth modes of a continuous system have intricate relationships with
that of their semi-discretized counterparts, which raises open-ended questions. The
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available analytical and numerical methods for nonsmooth modal analysis are first
presented for finite-dimensional systems (Sect. 2) and continuous systems (Sect. 3).
The relationships between forced response and Nonsmooth Modes (NSMs) are then
illustrated in Sect. 4. The comparison between modal analysis of continuous sys-
tems and semi-discretized counterparts is addressed in Sect. 5, which concludes the
chapter.

2 Nonsmooth Modal Analysis of Discrete Oscillators

Consider the dynamics governed by a differential equation of the form (2), where
fext = 0. A contact condition, which prevents penetration between two colliding
bodies, is commonly expressed as a unilateral constraint g(u, t) ≥ 0, where g stands
for gap, that is, the distance between the bodies. This constraint is incorporated into
the dynamics via a Lagrange multiplier λ corresponding to the reaction force in the
outward normal direction of the contact surface. The non-sticking condition implies
that λ ≥ 0 and λ can be non-zero only if the gap is closed: g(u, t)λ(t) = 0. These
three conditions, known as the Signorini conditions [2], are commonly written in the
synthetic form 0 ≤ λ ⊥ g(u, t) ≥ 0. In the case of multiple unilateral constraints,
each gap function and its correspondingLagrangemultiplier can be stacked in vectors
g and λ, respectively; the inequalities and the orthogonality operator ⊥ are then
defined component-wise. Altogether, the autonomous dynamics now writes

{
Mü + f(u, u̇) − ∇u g(u, t)λ = 0 (3a)

0 ≤ λ ⊥ g(u, t) ≥ 0 (3b)

and nonsmooth modal analysis consists in finding continuous families of periodic
solutions to this problem. Equation (3a) should be read in a weak sense, since u is
only of regularity C0 because of the complementarity condition (3b). Various other
formalisms are available to describe the dynamics [2].

2.1 Necessity of an Impact Law

An aspect that does not always seem to be understood is that Problem (3), together
with some initial conditions u(0) and u̇(0), does not uniquely determine a solution.
For instance, consider a punctual ball of mass m located above a rigid ground and
subjected to gravity.When dropped from a given height, the ball first undergoes a free
flight uniquely determined by its initial position and initial velocity, together with
an ODE of the form mü + mg = 0 (Cauchy problem). It then reaches the ground:
from there, infinitely many solutions are possible, all satisfying Eq. (3) adapted to the
problem at hand. The ball could remain on the ground: u̇ = 0 and λ = mg. It could
also bounce with the same kinetic energy: u̇+ = −u̇− and λ = −2mu̇− at the impact
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Fig. 2 Two distinct
solutions to the problem of a
bouncing ball of the
form (3): uniqueness is not
guaranteed when an impact
law is not specified

time, where u̇− (respectively u̇+) denotes the normal pre-impact (respectively post-
impact) contact velocity. These two acceptable solutions are depicted in Fig. 2. This
non-uniqueness indicates that information is missing.3 To ensure well-posedness,
Eq. (3) is complemented with a constitutive impact law. If the latter does not lead
to an increase of kinetic energy, uniqueness is guaranteed as soon as the unilateral
constraints, the smooth nonlinear terms and the smooth external forces are analytic
functions [8, 87]. Nevertheless, evenwith impact laws, the continuity of the solutions
with respect to the initial conditions is not guaranteed in the case ofmultiple unilateral
constraints [8].

The necessity of an impact law holds for any unilateral constraint arising in sys-
tems semi-discretized in space, unless special treatment is enforced [51]. Numerical
strategies which do not explicitly include an impact law, such as [13, 122], produce
only one among infinitely many possible solutions.

Among possible impact laws, only conservative ones should be considered in the
framework of nonsmooth modal analysis, since autonomous periodic solutions are
sought. Themost common choice4 is Newton’s purely elastic impact law, u̇+ = −u̇−
at impact times. This choice, dictated by the periodicity condition, is incompatible
with lasting contact phases observed during collisions in the continuous framework.
This can be illustrated by considering the position of the contacting end of a one-
dimensional bar collidingwith a rigid obstacle, as depicted in Fig. 3. In the continuous
framework, contact phases last a finite amount of time, while the energy is preserved
(left plot). When the bar is discretized, the conservative impact law implies instan-
taneous bounces (right plot). For n-dof systems, lasting contact phases necessitate a
purely inelastic impact law of the form u̇+ = 0, leading to a loss of kinetic energy
incompatible with the conservative framework of modal analysis. Also, it is worth
mentioning that when subjected to an external load, a unilaterally-constrained system
can exhibit lasting contact phases after a countable infinity of impacts occurring in
finite time, for non-purely elastic impact laws [17, 66]. This phenomenon is called
chattering and is illustrated in Sect. 5.

For very specific initial conditions, systems governed by (3), togetherwith a purely
elastic impact law,may have solutionswith lasting contact phases, also called sticking

3As explained in Sect. 3, this results from the fact that shock waves, emanating from the contact
interface where bodies collide, are not properly described in the semi-discrete setting.
4Other strategies, consisting in redistributing energy or mass, have also been explored, (see
Sect. 5.2).
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Fig. 3 Displacement of the contacting with end of a bar colliding a rigid obstacle with no external
force. In the continuous framework, no impact law is needed for well-posedness and the contact
is lasting, even for energy-preserving motions. The discretized bar with a conservative impact law
exhibits chattering instead

Fig. 4 Possible gap-closing trajectories for conservative autonomous systems, in terms of the
normal velocity u̇

phases, despite the non-sticking condition on the contact force. Such trajectories
can be seen as one specific type of contact, as impact or grazing see Fig. 4. They
were investigated in [56] for a linear two-dof spring-mass system. An extension to
n degrees of freedom, general mass matrices and a single unilateral constraint is
proposed in [105]. In both cases, T -periodic trajectories with one lasting contact
phase were shown to exist only for isolated values of T . While they may seem of
purely theoretical interest, it was recently demonstrated that such trajectories play an
important role in the response spectrum of piecewise-linear impact oscillators [106,
Fig. 4]. No systematic results are presently available in the literature on periodic
motions with lasting contact phases of systems with additional smooth nonlinearities
or multiple unilateral constraints.

2.2 Quasi-analytical Techniques in Simple Cases

The systematic analytic derivation of NSM for n-dof systems has recently been
provided for a piecewise-linear spring–mass system with one Impact Per Period
(IPP) [59], as well as for any piecewise-linear system with a single linear unilateral
constraint and an arbitrary number of IPPs [104]. Preliminary investigations show
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that there exist strong relationships between the forced response of piecewise-linear
impact oscillators and backbone curves obtained using NSM, as detailed in Sect. 4.
Additional weak smooth nonlinearities do not seem to change the overall picture, as
succinctly discussed in Sect. 4.1. Extension to multiple unilateral constraints quickly
becomes tedious, because of the combinatorial nature of the sequence of unilateral
constraint activations.

We now derive the main ideas on how to carry out nonsmooth modal analysis on
n-dof piecewise-linear impact oscillators [104]. The generalized displacements and
velocities are denoted by u and u̇; the state x is such that x� = [u, u̇]� ∈ R

2n . The
unilateral constraint is assumed to be a linear function of the u. As a consequence,
there exists a vector w ∈ R

n and a constant g0 ∈ R such that g(u) = w�u + g0. The
elastic impact law can be written as [104, Sect. 4.2]

g(u) = 0 =⇒ x+ = Nx−, (4)

where N is similar to a reflection matrix with respect to a hyperplane of R2n (also
known as a Householder matrix), which depends only on w and the mass matrixM.
This describes the impact as a simple relationship in terms of the system state x.
In the same spirit, let S(σ )x denote the state after a free flight of duration σ from
a state x. A k IPP motion (k ∈ N

∗) is the succession of one free flight of duration
σ1 > 0, one impact, one free flight of duration σ2 > 0, one impact, and so on, k times.
Such a motion is depicted in Fig. 5. Starting from a post-impact state, the periodicity
condition reads as

x(0) = x(T ) = NS(σk)NS(σk−1)N . . .NS(σ1)x(0), (5)

where T = σ1 + · · · + σk . This condition comes with the k gap closure conditions
at impact times, that is,

g(x(0)) = 0, g(x(σ1)) = 0, g(x(σ1 + σ2)) = 0, . . . , g(x(σ1 + · · · + σk−1)) = 0.
(6)

The initial conditions x0, determining a motion x that satisfies conditions (5) and (6)
for some s = (σ1, . . . , σk), define an autonomous periodic motion, provided the gap
remains non-negative, in line with (3b). Finding such x0 reduces to determining a
vector λ ∈ R

k that satisfies [104]

�(s)λ = 0 and �(s)λ = g0j, (7)

with j = [1, . . . , 1]� ∈ R
k and where � and � are two k × k matrices, whose

expressions are known explicitly [104, Sect. 3.1] and depend on the parameters M,
K and w. The physical interpretation of vector λ is that it is proportional to the
pre-impact contact velocities. Several major consequences follow from (7):

• it suffices to find the k components of λ instead of the 2n unknown components
of x0;



Nonsmooth Modal Analysis: From the Discrete to the Continuous Settings 199

Fig. 5 Example of motion with 7 IPPs for a 5-dof system

Fig. 6 Projection of a 1 IPPNSM in the (un−1, un, vn) space for n = 5 (from [104]). This NSM is a
continuum of periodic nonsmooth trajectories with 1 IPP continuously connected to a linear grazing
mode (green ellipse). This two-dimensional manifold is invariant: if a motion starts on it, it will
remain on it as time unfolds. In particular, this manifold cannot be intersected by other trajectories
in the phase space

• � is invertible almost everywhere in R
k , so λ can be eliminated by combin-

ing (5) and (6). As a result, all the periodic solutions are governed by the equation
�(s)�(s)−1j = 0. The first step is to solve for s. Then, the corresponding ini-
tial state is recovered via x0(s) = ϕ(g0�(s)−1j), where ϕ is a known function
(see [104], not recalled here for conciseness);

• the skew-symmetry of � is such that �(s)�(s)−1j = 0 generically leads to k − 1
independent equations. As a result, the set of solutions is a curve inRk and periodic
orbits with k IPPs belong to a one-parameter continuous family, corresponding to
a two-dimensional manifold in the phase space (see Fig. 6). This feature is shared
by smooth nonlinear systems away from internal resonances.

The above methodology is summarized in Fig. 7. Each NSM corresponds to a back-
bone curve in terms of FEP. An example of such FEP is provided in Fig. 8 for a
two-dof spring-mass system (see Fig. 14), with up to seven IPPs. For one to three
IPPs, the spectrum was computed with the quasi-analytical method described above.
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Fig. 7 Summary of analytical nonsmooth modal analysis in the generic case for g0 
= 0. The
dependency of x0 to s is highlighted by the notation x0(s)

Fig. 8 Backbone curves of a two-dof impact oscillator with up to 7 IPPs. The two horizontal lines
correspond to the two linear grazing modes. Axes in log scale

Amultiple shootingmethodwas used for four to seven IPPs (see Sect. 2.3.2). Figure 8
displays no isolated branches. Indeed, all backbone curves can either [106]:

• diverge to unbounded energy, which corresponds to a singularity of �(s);
• be connected to a linear grazing mode (this is true in the case for 1 IPP);
• be connected to another backbone curve, with the junction then corresponding, to
a nonsmooth trajectory with impacts and grazing;

• converge to a motion with one Sticking Per Period (SPP).

In the neighborhood of a 1SPP, backbone curves seem to converge to the SPP as the
number of IPPs increases. This phenomenon is illustrated in Fig. 9. Convergence to
trajectories combining 1 IPP and 1SPP have also been observed. While very likely
to be true, there is no formal proof of such convergence.
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Fig. 9 Parallel sequences of NSMs with increasing IPP (1 → 3 → 5 → 7 and 2 → 4) converging
to a 1SPP motion. Convergence is shown via backbone curves (left) and in time domain (right)
(from [106])

As already reported [104, 107], seemingly independent backbone curvesmight be
connected through a vertical backbone curve: this additional non-generic feature was
referred to as a bridge. This occurs for isolated s, making �(s) singular. However,
such s and those leading to unbounded energy are distinct.

Stability analysis of k IPP motions is carried out in a straightforward fashion by
linearizing the kth return map on the hyperplane g(u) = 0. A perturbation of an
initial condition x0 propagates through the mapping

x0 + δx0 �→ NS(σk + δσk)N . . .NS(σ1 + δσ1)(x0 + δx0), (8)

where δσi is an unknown yet small change of duration of the i th free flight. The
first-order Taylor expansion of this assumed smooth mapping yields an equation of
the form

δx=NS(σk)N . . .NS(σ1)δx0+
( k∑

�=1

NS(σk) . . .NS′(σ�)N . . .NS(σ1)δσ�

)
x0. (9)

The unknowns δσ1, . . . , δσk are found by solving the linearized system g(u((σ1 +
δσ1) + · · · + (σ� + δσ�))) = 0 for � ∈ �1, k�. Ultimately, there exists a linear map-
ping between δx0 and δx through a matrix A(x0) such that

δx = A(x0)δx0. (10)

The eigenvalues of A(x0) determine the spectral stability of the periodic solutions
emanating from x0 [90, Summary 7.5].
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2.3 Numerical Techniques

The above (semi-)analytical developments provide essential insight in understand-
ing nonsmooth modes. They are inevitable for proving mathematical results, but are
limited to piecewise-linear systems. Numerical techniques take over for more chal-
lenging vibro-impact systems, for instance, with multiple unilateral constraints or
polynomial nonlinearities.

In the following, we restrict ourselves to two well-known procedures devoted to
periodic solutions: Harmonic Balance Method (HBM) and Shooting Method (SM).
HBM enforces periodicity exactly by construction, while contact conditions are only
approximated. In contrast, SMhandles contact conditions accurately, to the detriment
of periodicity. Other methods, such as multiple scales, invariant manifold approach
and alike, are not considered, as they essentially apply to smooth nonlinearities.

2.3.1 Harmonic Balance Method and Its Variants

For n-dof systems, setting the unilateral constraints apart, smooth dynamics is
described by ODEs in the form

f(u, u̇, ü, t) = 0, (11)

where f is a nonlinear function of the displacements u and velocities u̇. The unknown
displacement u is approximated by uh , which is defined as a linear combination of
N chosen shape functions stacked in a vector ϕ so that

u(t) ≈ uh(t) = Aϕ(t), (12)

where A is a n × N matrix of unknown coefficients. Equation (11) is approximately
solved by making the residual f(Aϕ,Aϕ̇,Aϕ̈, t) orthogonal to a well-chosen set of
M test functions φ for the usual inner product

∀k ∈ �1, M�,

∫ T

0
φk(t)f(Aϕ,Aϕ̇,Aϕ̈, t) dt = 0. (13)

Such integrals collectively form a system of nonlinear equations and can be evaluated
numerically if the integrand does not easily simplify. Choosing M = N , the nN
coefficients in A are then found using a root-finding algorithm such as Newton-
Raphson to solve the nN Eq. (13).

This method can be used to compute periodic responses to either forced or
autonomous ODEs. Equation (12) shows that the periodicity condition is transferred
to a condition on ϕ, which must therefore be periodic. In the case of a periodic
external force of angular frequency �, periodic solutions are expected to have a
frequency multiple of �, so T = 2π/� can be chosen, or T = 2pπ/�, p ∈ N

∗ to
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accommodate possible subharmonics [38, 53, 123]. In the autonomous case, T is
unknown and continuation procedures must be used [3].

The HBM is a well-established technique [54, 118] for finding approximations
of periodic solutions to (13). It is obtained by specifying

ϕ = φ = [
1 exp iωt . . . exp iNωt

]�
, (14)

with ω = 2π/T . While commonly producing accurate results for weak nonlineari-
ties, HBM is mostly used heuristically, and there is no proof that a truncated series
is a valid approximation of the exact solution [32]. Other shape and test functions
ϕ and φ shall be adopted. Another well-known method is the collocation method,
which corresponds to a low-order piecewise periodized polynomial for ϕ and

∀t ∈ [0, T ], φ(t) = [
δ(t − t1) . . . δ(t − tN )

]�
, (15)

where t1, . . . , tN are the collocations points. The Dirac deltas have the property to
transform the computation of the inner product (13) into the simple evaluation of
uh at the collocation points. The derivatives of uh are computed from the shape
functions if they are differentiable, through a finite difference scheme, for instance,
or via a conservative Simo scheme [5, 98].When orthogonal polynomials are chosen
as shape functions and the collocation points are the roots of one of the orthogonal
polynomials, the method is called orthogonal collocation or pseudospectral [10, 33]
and is reported to be efficient for dealing with sharp fronts [22].

For unilateral contact problems, HBM has mostly been implemented in conjunc-
tion with regularizing techniques [26, 38, 53, 116, 123] and the contact forces are
directly included in the governing ODE (11). A variant of HBM in which the trun-
cated Fourier series is replaced by wavelets has been proposed to compute periodic
solutions of a turbine blade with regularized contact conditions [99]. HBM with
regularized friction has been investigated in [46].

The unilateral contact conditions can also be treated without regularization, and
the problem reads as

⎧⎨
⎩

f(u, u̇, ü, t,λ) = 0 (16a)

0 ≤ g(u) ⊥ λ ≥ 0 (16b)

u(0) = u(T ), u̇(0) = u̇(T ). (16c)

Above, no impact law is specified. It is instead replaced by the periodicity conditions.
We are not aware of any formal proof of this supposed equivalence. However, within
HBM, the impact law with e = 1 is implied by the conservation of the total energy
in an autonomous problem with no simultaneous impacts, but it is unclear which
solutions are picked by the numerical procedure in other cases, such as in the presence
of external forces.

The Signorini conditions are transformed by means of a max operator, observing
that for any α > 0 [88], in the component-wise sense,
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0 ≤ λ ⊥ g(u) ≥ 0 ⇐⇒ λ − max(λ − αg(u), 0) = 0, (17)

and can be readily included in (11) at the cost of reducing the regularity of f [96].
The inner product (13) is computed numerically and the solution is found through a
semi-smooth Newton solver. An alternative is to implement HBM together with an
augmented Lagrangian in a case of unilateral conditions only [55] or a variation of the
augmented Lagrangian in the case friction [71]. Another possibility is to approximate
u and λwith adapted periodic shape functions and satisfy the Signorini conditions at
discrete times (collocation points), leading to a Linear or Nonlinear Complementary
Problem [68].

Another possible strategy could consist in adding a chosen nonsmooth function
with the same regularity as the expected solution (C0 in the case of impacts) as a
shape function; a faster convergence would then be expected, as in the dry frictional
case [52]. Irrespective of the chosen discretization, contact-induced nonlinearities
require a large number of harmonics (see Fig. 20).

2.3.2 Shooting Method

The Shooting Method is a well-known procedure capable of tracking periodic solu-
tions of ODEs in the form (11) [6, 70]. It consists in finding initial conditions (u0, u̇0)
such that they are recovered after a time integration over some interval [0, T ] for
some T > 0. The analytical method presented in Sect. 2.2 can be understood for one
IPP as a SM in which exact integration is performed through matrix exponentials.
In more general cases, time integration can be carried out either by event-driven
schemes or time-stepping methods [2]. Enforcing periodicity conditions reduces to
finding the roots of a vector function z(u0, u̇0, T ), bearing in mind that z might be
nonsmooth. In modal analysis, T is unknown and there are a priori 2n + 1 unknowns
for 2n independent equations: the solution space is a curve, which can be found, as
in the HBM, via numerical continuation. The multiple shooting method enlarges the
domain of attraction of the root-finding algorithm by splitting the integration domain,
increasing the robustness of the numerical procedure [90, 102].

This approach was applied to contact problems with regularized nonsmooth-
ness [84, 112]. It was also used to locate grazing [110]. The merits of SM for
nonsmooth modal analysis rely on the fact that efficient numerical schemes dedi-
cated to nonsmoothness, such as the Moreau–Jean scheme [2, 89], can be employed.
Convergence proofs exist for a few schemes [25].

For solutions with multiple impacts per period, period T can be replaced by the
succession of unknown free flight durations σ1, . . . , σk (see Sect. 2.2). Complement-
ing the set of equations with k − 1 additional conditions of gap closure (g(σ1) = 0,
. . . , g(σ1 + · · · + σk) = 0) imposes prescribed times of impact, which has the advan-
tage of eliminating the nonsmoothness without regularizing the contact conditions.
Again, continuation can be used to recover a backbone curve with a given number
of IPPs. The robust features of Manlab could be explored in this context [11, 109].
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One drawback of the shooting method is that it hardly captures unstable parts of
backbone curves, because of the time integration [22].

HBM and SM have been combined in the context of forced nonsmooth dynamics
in a hybrid method [89]. The linear part of the dynamics is captured by HBM, while
SM deals with the nonlinearities.

2.3.3 Gauss’ Principle

Another possibility would be to consider Gauss’ principle for translating the problem
of finding a periodic solution into an optimization problem [108]. This principle is
known to be equivalent to d’Alembert’s or Jourdain’s in the nonsmooth dynamics
framework [36]. The acceleration field ü solution to an ODE of the form (3) obeys
Gauss’ principle with the unilateral constraints

minG(ü) subject to g(u) ≥ 0, (18)

withG(ü) = (ü − a)�M(ü − a) and a = −M−1f(u, u̇). The idea is to seek periodic
solutions by replacing u with a truncated Fourier series uh , as in Eq. (12), and to
express Gauss’ principle in a weak sense in which the cost function is G(üh) ≈
Gh(A, t). This yields a problem of the form: find A solution to

min
A

(∫ T

0
Gh(A, t) dt

)
subject to ∀ti ∈ S, g(Aϕ(ti )) ≥ 0, (19)

where S is a chosen set of discrete times in the interval [0, T ]. This approach has
been adopted for a one-dof system in [74].

3 Nonsmooth Modal Analysis of Continuous Systems

Contact between two linear elastic media generates shock waves featuring discon-
tinuous stress and velocity fronts. For example, when a bar hits the rigid ground, a
shockwave emanates at the contact interface, propagates to the free surface of the bar
and reflects. The bar departs from the ground when the reflection of the shock wave
comes back to the contact interface. Mathematically, the dynamics is described by
a Partial Differential Equation (PDE), a solution of which is completely determined
by the initial displacement and velocity fields, even in the presence of unilateral con-
straints [57]: in contrast to the semi-discretized framework (see Sect. 2.1), no impact
law is needed for well-posedness. The situation is already quite sophisticated for
three-dimensional isotropic homogeneous linear elastic materials, where uncoupled
longitudinal and transverse waves propagate at distinct velocities. When a nonlinear
constitutive law is considered instead, the governing equations are still hyperbolic,
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Fig. 10 Fixed–free bar subjected to a unilateral constraint

but the longitudinal and transversewaves are coupled [27,Chap. 4].Here,we focus on
one-dimensional homogeneous linear elastodynamics and explore solution methods
that do not rely on space semi-discretization techniques exposed in Sect. 2.

3.1 One-Dimensional Problem of Interest

The system of interest is a fixed–free bar, whose free end is subjected to a unilat-
eral constraint, as illustrated in Fig. 10. The displacement u is assumed to be small
compared to the length L of the bar. The dynamics is governed by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀x ∈ (0, L), t ∈ R, ∂2
t t u(x, t) = c2∂2

xxu(x, t) wave equation (20a)

∀t ≥ 0, u(0, t) = 0 Dirichlet condition (20b)

∀t ≥ 0, 0 ≤ −∂xu(L , t) ⊥ g0 − u(L , t) ≥ 0 Signorini condition (20c)

∀x ∈ (0, L), u(x, 0) = u0(x), v(x, 0) = v0(x) initial conditions, (20d)

where g0 denotes the gap at rest and c = √
E/ρ is the wave propagation speed,

defined from the Young modulus E and the density ρ of the material. It is worth
mentioning that the eigenfrequencies of the linear fixed–free bar are all multiples
of the first one, that is, ωk = kω1, k ∈ N

∗: any initial condition generates a periodic
motion and all linear frequencies satisfy an internal resonance condition.

3.2 Analytical Solution

A few analytical solutions of (20) are available for colliding bars [37] or vibrating
strings with an obstacle [12, 41] which share similar governing equations. New
ingredients are introduced below.

The general solution to (20a) is of the form u(x, t) = f (ct + x) + h(ct − x),
for x ∈ [0, L] and t ∈ R. In the weak sense, it suffices to require continuity and
piecewise C1-regularity for f and h. Condition (20b) implies that f = −h. Let ϕ

denote the derivative of f . It follows that

∀x ∈ [0, L], ∀t ∈ R, u(x, t) = f (ct + x) − f (ct − x) =
∫ ct+x

ct−x
ϕ(s) ds. (21)
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Condition (20c) implies that ∂xu(L , t) = 0 when the gap is open, in other words,
ϕ(x + L) = −ϕ(x − L), which means that ϕ is a 2L-antiperiodic function on R.
When the gap closes, it remains closed as long as ∂xu ≤ 0. In particular, ∂t u(L , t) =
0, which is equivalent to ϕ(ct + L) − ϕ(ct − L) = 0, or ϕ is 2L-periodic. Consider
a free phase over [0, t1]. On this interval, the displacement field is associated with
a 2L-antiperiodic function ϕ. Assume the gap is then closed over [t1, t1 + t2]. The
displacement field is then associated with a 2L-periodic function ϕ1. Introducing the
function ε, defined overR by 2L-antiperiodicity and the value 1 over [−L , L), it can
be shown that the periodicity condition reduces to the following condition on ϕ5:

∀x ∈ R, ϕ(x) = ε(x)ε(x + ct2)ϕ(x + c(t1 + t2)). (22)

The problem of finding (potential) periodic solutions with one contact phase per
period for the unilaterally constrainedbar hence reduces tofindingϕ solutions of (22).
The period is given by T := t1 + t2. Three additional conditions apply, which can
be understood as admissibility conditions [104, 105]:

• the contacting end of the bar must not penetrate the obstacle during the free flight:

∀t ∈ [0, t1], g0 −
∫ ct+L

ct−L
ϕ(s) ds ≥ 0; (23a)

• at x = L , the bar must remain in compression during the contact phase:

∀t ∈ [t1, t1 + t2], ϕ(ct + L) + ϕ(ct − L) ≤ 0; (23b)

• the gap must be closed at t1:

g0 −
∫ ct1+L

ct1−L
ϕ(s) ds = 0. (23c)

Equations (22) and (23) can either be solved collectively to find periodic solutions
or be used to check the correctness of a candidate periodic solution identified from
numerical methods.

An interesting direct consequence follows from the absolute value of (22): ∀x ∈
R, |ϕ(x)| = |ϕ(x + cT )|. Recall that ϕ is 2L-antiperiodic, so |ϕ| is 2L-periodic, and
also cT -periodic. This is possible only if cT/L is a rational, or if |ϕ| is constant.
Continua parametrized by T are hence possible only if |ϕ| is constant, meaning that
all backbone curves, which are not vertical lines, correspond to piecewise-linear
displacement fields, that is, piecewise-constant velocity fields.

Not only does it provide a sound mathematical basis, this approach was proven
successful for rediscovering the nonsmooth modes previously conjectured [125] (see
Fig. 11). The main backbone curves emanate from the linear eigenfrequencies of the

5This formula was established by Pierre Delezoide.
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Fig. 11 Backbone curves in the vicinity of the first two linear modes of the bar. ω1 is the first
linear mode of the fixed–free bar. Labels a©, b© and c© correspond to the first NSM, a subharmonic
backbone curve and the second NSM, respectively

Fig. 12 Functions ϕ corresponding to the first NSM, the first subharmonic of the first NSM and the
second NSM. The corresponding energies and frequencies are marked by the labels a©, b© and c©
in Fig. 11

fixed–free bar. The additional curves correspond to subharmonics of higher frequency
modes. The functions ϕ labeled a©, b© and c© in Fig. 11 are plotted in Fig. 12.

Among the solutions to (22) are the two main NSMs determined by ϕ1 and ϕ2.
Each of these functions is defined by its value over [−L , L] and its 2L-antiperiodicity
over R. For the first one,

ϕ1(x) = α

{
+1 x ∈ [−L , L − t2)

−1 x ∈ [2L − t2, L], (24)

where the duration of the contact phase t2 relates to T through T = 4L/c − t2. For
the second mode,
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Fig. 13 Displacement field on the first and second linear modes (top), and first and second nons-
mooth modes (bottom)

ϕ2(x) = α

{
+1 x ∈ [−L ,− 1

3 (L + 2ct2)) ∪ [ 13 (L − ct2), L − ct2)

−1 x ∈ [− 1
3 (L + 2ct2), 1

3 (L − ct2)) ∪ [L − ct2, L] , (25)

where t2 satisfies T = (4L/c − t2)/3. In both cases, the mode is parametrized by t2,
or equivalently, T or ω. The coefficient α is such that u(L , 0) = g0 and is not
explained for the sake of conciseness. The displacement field u, calculated from
ϕ using Eq. (21), is depicted for the first two linear and nonsmooth modes in Fig. 13
with appropriate labels. The first nonsmooth mode and its linear counterpart show
similar features: this also holds for the second mode, where both exhibit nodes of
vibration. However, standing waves in the linear setting become travelling waves in
the unilateral setting, where the characteristic lines are clearly identified.

The analytical approach developed above is limited to simple systems such as the
one considered. Numerical techniques capable of handling more general systems are
now exposed.
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3.3 Finite Volumes and the Wave Finite Element Method

Finite Volume Methods (FVMs) form a family of numerical methods widely used in
fluid mechanics [61] to solve PDEs. By construction, they are designed to enforce
conservation laws. They consist in discretizing the space domain into cells. As
opposed to other well-known numerical techniques such as the Finite Element
Method (FEM), the strong form of the PDE is considered and the unknown field is
averaged in every cell through volume integrals. Time evolutions are calculated via
fluxes on the cell boundaries. In the one-dimensional case, the wave equation (20a)
is recast into a system of two hyperbolic conservation laws:

{
∂tσ − E∂xv = 0 (26)

ρ∂tv − ∂xσ = 0, (27)

where v andσ are the velocity and stress fields, respectively. TheWaveFiniteElement
Method (WFEM) is a shock-capturing FVM, in which the time-discretization is
coupled to space in such a way that waves propagate along the characteristics lines
of the hyperbolic PDE [97]. The Dirichlet-type fixed boundary at x = 0 can be
dealt with straightforwardly using ghost cells [61]. The treatment of the unilateral
contact condition is more challenging: one possibility is to use the floating boundary
condition technique [97], which can be understood as a conditional switch between
free and fixed boundary conditions.

Finding periodic solutions of the colliding bar reduces to finding the initial stress
and velocity fields, in the form of constant averaged values in every cell, which prop-
agate along the characteristic lines, satisfy the clamped boundary condition at x = 0
and the switches between fixed and free boundaries at x = L such that the initial state
is recovered at time T after a prescribed number k of contact phases per period. The
analytical backbone curves in Fig. 11 are retrieved with this approach [125]. A more
complicated configuration in which, at x = 0, the Dirichlet condition is replaced
with a Robin condition of the form ∂xu(0, t) = αu(0, t) is also of interest, since the
internal resonance condition previously mentioned no longer holds. No analytical
results could be derived, but nonsmooth modes can be numerically computed.

Also, WFEM implies a projection step when penetration is predicted. This should
not be confused with an impact law, since the exact solution of a bouncing bar [23]
and the exact solutions in Fig. 13 are retrieved.6 The main drawbacks of semi-
discretization in space are not observed: in particular, there is no chattering, the
velocity of the contacting end undergoes a jump at gap openings, and the energy
is accurately preserved. Forced responses can be computed as well [125]. How-
ever, extension to higher dimensions looks challenging. Indeed, the description of
how a discontinuity (between two finite volumes) propagates, the so-called Riemann
problem, can no longer be solved exactly. Moreover, conservation laws in the multi-
dimensional framework raise a number of issues that are not well-understood [65].

6Presumably, in agreement with the continuous framework, no impact law is needed, because
information propagates accurately along the characteristic lines.
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3.4 Boundary Element Method

Problem (20) can be solved using a variant of the Boundary Element Method (BEM)
called the Time-Domain Boundary Element Method (TD-BEM) [100, 115]. BEM
is a weighted residual method, with a different weighting function chosen as the
fundamental solution u∗ of the PDE of interest. For the wave equation in one dimen-
sion, u∗ is defined as the displacement field in response to an impulse at an arbitrary
position ξ ∈ [0, L] and time τ ∈ R:

∀x ∈ [0, L], ∀t ∈ R,

∂2
xxu

∗(x, t, ξ, τ ) − 1

c2
∂2
t t u

∗(x, t, ξ, τ ) = δ(x − ξ)δ(t − τ). (28)

A fundamental solution to this PDE reads as [37, Sect. 1.1.8]:

u∗(x, t, ξ, τ ) = − c

2
H

(
c(t − τ) − |x − ξ |), (29)

where H is the Heaviside function. Using u∗ as the weighting function in the space-
time integral form of Eq. (20a) yields

c2
∫ τ

0

∫ L

0
∂2
xxu(x, t)u∗(x, t, ξ, τ ) dxdt−

∫ τ

0

∫ L

0
∂2
t t u(x, t)u∗(x, t, ξ, τ ) dxdt = 0

(30)
which, after integration by parts and a few manipulations [115], leads to

u(ξ, τ ) = 1

2
u(L , τ − (L − ξ)/c) + 1

2
u(0, τ − ξ/c) (31a)

−
∫ τ

0
∂xu(L , t)u∗(L , t, ξ, τ ) dt −

∫ τ

0
∂xu(0, t)u∗(0, t, ξ, τ ) dt (31b)

+ 1

c2

∫ L

0
v0(x)u

∗(x, t, ξ, 0) dx − 1

c2

∫ L

0
u0(x)∂t u

∗(x, t, ξ, 0) dx, (31c)

where the last integral stands in the distributional sense. This is the principle of
the TD-BEM in one dimension. The general solution is a linear combination of u∗
defined in (29), which is a progressive wave. The Convolution Quadrature-BEM
(CQ-BEM) [1, 86] computes the integrals in (31) via the Convolution Quadrature
Method. They can also be computed with piecewise-constant or piecewise-linear
polynomials [14]. After discretizing space and time integrals, the sought solution u
becomes a linear combination of the boundary conditions u(0, ·), ∂xu(0, ·), u(L , ·),
∂xu(L , ·) and the initial conditions u0 and v0. Due to clamping at x = 0, u(0, ·) is
known and ∂xu(0, ·) is unknown. The contact condition at x = L corresponds to
either a free or a fixed boundary condition, and the switch is triggered by monitoring
the gap and the normal contact force. In either case, exactly half of the boundary
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conditions are known and half are unknown. The latter can be deduced from the
evaluation of (31) at ξ = 0 and ξ = L , providing two equations in two unknowns at
each prescribed time step. The displacement of internal prescribed nodes can then
be recovered through (31).

When targeting periodic solutions, the shooting method (see Sect. 2.3.2) can be
used, togetherwith the discretized governing equations obtained from (31), providing
2n equations where n is the number of discretized space nodes, for 2n + 1 unknowns
(the initial conditions at the n nodes plus the period T ).Again, numerical continuation
techniques involving a semi-smooth Newton solver are employed to find nonsmooth
modes of vibration.

This approach was successful in computing the first two main backbone curves,
some subharmonics and internal resonance backbone curves, (see Fig. 11). The main
challenge for the extension to themulti-dimensional framework is that the fundamen-
tal solutions are only known exactly for simple geometries. In such cases, Green’s
functions (which are fundamental solutions with specified boundary conditions) can,
however, be approximated numerically [24, Chap. 7].

3.5 Space-Time Finite Differences

Many other discretization schemes relying on finite differences are available for
hyperbolic PDEs [67].We focus on numericalmethods that simultaneously discretize
space and time. When discontinuous solutions are expected, common methods
include Lax-Friederich, Lax-Wendroff, MacCormack Upwind, Forward-Time-
Centered-Space (FTCS), and Leapfrog. These schemes all stem from truncated Tay-
lor series, and differmostly according to their order in space and in time. For example,
the FTCS method is second-order in space and first-order in time. Another method
can be derived as follows. Writing the second-order Taylor series of u in time

u(x j , t
n+1) = u(x j , t

n) + �t∂t u(x j , t
n) + 1

2
�t2∂2

t t u(x j , t
n) + O(�t3), (32)

then replacing ∂t u with −c∂xu (and thus ∂2
t t u with c2∂2

xxu) [82], and applying a
first-order central difference for ∂xu and second-order central difference for ∂2

xxu
yields

u(x j , t
n+1) = u(x j , t

n) − c�t

2�x
(u(x j+1, t

n) − u(x j−1, t
n)

+ c2�t2

2�x2
(u(x j+1, t

n) − 2u(x j , t
n) + u(x j−1, t

n)),

(33)

which is the well-known Lax-Wendroff scheme.
Stability is governed by the Courant–Friederich–Lewy (CFL) condition, which

provides a necessary condition (sometimes sufficient) on the time step �t , given
the wave celerity ci in direction i and the space discretization step �xi , taking the
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following form in N dimensions:

�t
N∑
i=1

ci
�xi

≤ CCFL, (34)

where CCFL depends on the finite difference scheme. The interpretation of this con-
dition is that numerical “information” should not propagate slower than physical
“information”. It is not a sufficient condition for stability.

Themain issuewith these finite difference schemes for propagating discontinuous
fields is that they are either first-order accurate, thus numerical viscosity7 smoothens
the solution, or second-order accurate, in which case they are dispersive,8 leading to
numerical oscillations known as Gibbs phenomenon. Apart from Glimm’s method,
which suffers from inaccuracy during smooth phases [18], this is clearly illustrated
by several examples in [34].

A common strategy for reduce spurious oscillations is to add numerical diffusion
tuned to the Gibbs phenomenon. This approach is problem-dependent, and may
therefore be tedious to accomplish, and is hardly compatible with periodic solutions.
Possibly more promising are limiters [21, 28]. Signorini conditions and impact laws
have yet to be incorporated into this formalism. As of now, it is unclear whether
these approaches would be suitable for nonsmooth modal analysis. Other potentially
relevant methods are listed in [28].

Mixed space-time HBM [119] or a time-space FEM with a discretization along
the characteristics9 for one-dimensional systems might also be useful for nonsmooth
modal analysis, and are hence worthy of further investigation.

4 Relationships Between Forced Response and Nonsmooth
Modes

Various analytical and numerical methods capable of performing nonsmooth modal
analysis have been reviewed in the preceding sections, both in the discrete and con-
tinuous frameworks. Some are sufficiently mature for nonsmooth modal analysis,
while others have yet to be thoroughly explored, as their usability has not been com-
prehensively assessed. In the following, the nonsmoothmodal analysis of a FEM-like

7Numerical viscosity, or diffusion, arises when the numerical scheme introduces a velocity term
with a positive prefactor.
8Numerical dispersion occurs when the numerically approximated propagation celerity of a wave
depends on its frequency. Note that dispersion and numerical dispersion are two distinct concepts.
9The unknown displacement field would be expanded as

u(x, t) =
∑

aiφi (x + ct) + biφi (x − ct), (35)

where the φi could be the usual hat functions, for instance.
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Fig. 14 Spring-mass system subjected to a unilateral constraint

semi-discretization of the colliding bar is explored by means of the analytical and the
multiple shooting methods. In the continuous framework, nonsmooth modal analysis
of the same system is carried out with WFEM and analytical techniques. The fact
that peaks of resonance in the forced response emerge along the backbone curves in
the FEP demonstrates the main purpose of nonsmooth modal analysis.

4.1 Discrete Oscillators

Recall that all numerical methods detailed in Sect. 2.3 are capable of computing
periodic solutions of a forced system. The brute-force approach is another possibility,
which does not work in the autonomous case. It consists in time-integrating Eq. (2),
where fext is periodic in time, until a periodic response is obtained or a stopping
criterion is reached [72]. This simple technique is CPU-intensive when damping
is light and the detection of the steady-state may be delicate. Nevertheless, it was
implemented to compute the forced response of the two-dof spring-mass system in
Fig. 14 with n = 2.

Results are presented as a function of the forcing period in Fig. 15 (top), where
colors indicate the number of impacts per period. For clarity, only the five lowest IPPs
are shown, even though solutions with as high as 24 IPPs were found, an example of
which is depicted in Fig. 16. The period of the response can differ from the period of
the forcing. For instance, the period of the 24 IPP-response in Fig. 16 is 8T0, where
T0 is the forcing period. Accordingly, the results in Fig. 15 (top) can also be plotted as
a function of the response period, (see Fig. 15 (bottom)). This results in a correlation
between the number of IPP and the response period: IPP curves are clustered. It
also shows that identical nonsmooth resonances can be obtained for distinct forcing
periods: the two 1 IPP resonance peaks in the top plot seem to correspond to the same
resonance in the bottom plot.

The purpose of modal analysis is to predict vibratory resonances. Using the ana-
lytical method described in Sect. 2.2, it appears that resonance peaks in the forced
response mostly emanate in the vicinity of NSM backbone curves. This is illustrated
for the main peaks in Figs. 15 (bottom) and 17, for 1, 3 and 5 IPPs. Note that several
response curves are depicted, because the horizontal axis corresponds to the response
period. A vast majority of the branches in Fig. 15 look like they were connected to
NSMs.Theway inwhich nonsmoothmodes relate to forced responses is not restricted
to peaks in the FEP, but rather extends to shapes. This is illustrated in Fig. 18 for a
two-dof system in which the forced response trajectories of the masses are compared
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(a) (b) (c)

Fig. 15 FEP of a two-dof impact oscillator. Responses with 6 IPPs or more are excluded for clarity.
Colors correspond to IPPs with labels used in Fig. 17

Fig. 16 24-IPP Periodic forced response of period 8 times the forcing period

to the nonsmooth modal shape of the same period. Though no longer symmetric,
the forced response is strikingly similar to the periodic solution of the autonomous
problem. The above observations extend, in part, to Duffing impact oscillators, as
depicted in Fig. 14 for n = 2. The corresponding autonomous dynamics between
impacts is governed by

[
m1 0
0 m2

] [
ü1
ü2

]
+

[
2k −k
−k k

] [
u1
u2

]
+ ε

[
(u2 − u1)3

(u1 − u2)3

]
=

[
0
0

]
. (36)

where ε is user-defined. The previous piecewise-linear system corresponds to ε = 0,
but no analytical techniques exist to compute the periodic solutions when ε 
= 0,
except for n = 1. Using the shooting method between time instants 0+ and T−, as
described in Sect. 2.3.2, both the backbone curves and the forced response curves can
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(a) (b) (c)

Fig. 17 Forced response resonances as a function of the response period. They perfectly match the
backbone curves [ ]. Labels refer to Fig. 15

Fig. 18 Comparison between a forced response and the corresponding autonomous periodic solu-
tion on the NSM for 5 IPPs. [ ] NSM and [ ] forced response

be computed for several values of ε. They are exposed in Fig. 19, in the neighborhood
of a backbone curve with 1 IPP. In this figure, the thick backbone curve is the one
in Fig. 17 (left), plotted in terms of frequency. It continuously deforms as the cubic
nonlinearity increases. The forced response changes accordingly, so that even in the
piecewise-nonlinear case, nonsmooth modal analysis seems to provide backbone
curves that perfectly support the forced response curves.

We now proceed with the illustration of HBM, as described in Sect. 2.3.1 for a
one-dof impact oscillator [95]. Figure 20 shows the approximated backbone curves
for an increasing number of harmonics: the backbone curve converges to the exact
one. Also, the approximated forced response is seen to be perfectly organized around
the backbone curves. The time evolution of position (right plot) shows that the resid-
ual penetration gets smaller as N increases. This very simple example establishes
numerical evidence that when periodicity is enforced, constitutive impact laws are
unnecessary.
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Fig. 19 Sensitivity to the cubic nonlinearity in aDuffing impact oscillatorwith ε defined in Eq. (36).
[ ] Forced response and [ ] backbone curves

Fig. 20 Convergence of HBM for a one-dof oscillator and no impact law (from [95]). Forced
responses are computed fromEq. (17). [ ]Exact backbone curve. [ ]Backbone curves calculated
with HBM. With N ∈ {1, 2, 5, 10, 20} (from light gray to black)

4.2 Continuous Oscillators

This subsection succinctly extends the previous results to the continuous frame-
work by exploring the autonomous and forced dynamics of a one-dimensional bar
colliding with a rigid wall (see Fig. 10). As explained previously, backbone curves
can be obtained analytically (Sect. 3.2), via WFEM (Sect. 3.3) or using TD-BEM
(Sect. 3.4). The first four main backbone curves are depicted in Fig. 21 together with
the periodically forced response at various energy levels. The top plot corresponds
to an excitation induced by a harmonically moving obstacle, while the bottom plot
considers an external periodic and distributed force along the bar. As in the discrete
case, the main peaks of the forced response align, in both cases, with the main back-
bone curves. The additional minor peaks on the top plot might correspond to internal
resonances. However, this point requires further work.
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Fig. 21 Main backbone curves of the colliding bar [thick] and forced response curves [thin]
(from [125]). External loading is either a harmonically moving obstacle (top) or a harmonic dis-
tributed force (bottom). Labels a© and b© refer to Fig. 22

(a) (b)

Fig. 22 Space-time forced response and comparison with the nonsmooth mode of the same fre-
quency. Labels are reported in Fig. 21. Left plot is the one in Fig. 13 bottom left

Similarities between autonomous and forced responses also emerge in terms of
frequency and modal shapes. For instance, Fig. 22 compares one periodic solution
belonging to the first nonsmooth mode to a forced response arising in its vicinity. It
is remarkable that the forced response is dominated by the resonant response, that
is, the first mode shape (see Fig. 22, left), which is only slightly altered by the type
of external forcing.
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5 From Discrete to Continuous NSM: Similarities
and Differences

We have seen that space-continuous and space-discrete models fall under two differ-
ent paradigms. In the first category, contact is simply a constraint fromwhich emanate
shock waves propagating in the continuous solid. The second category introduces a
number of pitfalls and difficulties. An impact law is required, propagation of awave is
difficult to approximate accurately, and lasting contact phases are hardly compatible
with the conservation of energy required by the periodicity condition. Additionally,
the regularity of the generalized positions is higher than in the continuous case,
characterized by discontinuous velocity waves and not just the degree-of-freedom
involved in the unilateral constraint.

This last section attempts to highlight the similarities and differences between the
two “worlds” within the unidimensional framework presented in Sect. 3.1.

5.1 Without Unilateral Contact Constraints

Unilateral contact conditions are temporarily set aside. In structural dynamics, the
Finite Element Method is widely used to discretize PDE (20a). Loosely speaking,
the weak form of (20a) consists in finding u such that for all v in an appropriate space

∫ L

0
v ∂2

t t u dx + c2
∫ L

0
∂xv ∂xu dx − c2

[
v ∂xu

]x=L

x=0 = 0. (37)

Posing uh(x, t) = ∑n
i=1 φi (x)ui (t), vh(x) = ∑n

i=1 φi (x)vi for some chosen shape
functions φ1, . . . , φn , approximating u and v by uh and vh in (37), respectively, leads
to a system of ODEs standard in structural dynamics:

∀t ∈ R
+, Mü(t) + Ku(t) = 0, (38)

where M and K are calculated from (37). In the sequel, we consider, for simplicity,
the space semi-discretization of the clamped–free bar with punctual masses (see
Fig. 14). Accordingly, M = mIn and

K = k

⎡
⎢⎢⎢⎢⎢⎣

2 −1 . . . . . . 0
−1 2 −1 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 2 −1
0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎥⎦

. (39)
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The Young modulus E , the length L and the cross-sectional area S of the bar are
related to the stiffnesses and the masses through

k = nS

L
E and m = ρS

n
L . (40)

Illustrations are given for the following arbitrary values: E = 1Pa, S = 1m2, L =
1m, ρ = 1kg m−3 and the corresponding k and m given by (40).

Space-discretization formulations are not able to capture the progressive nature of
shock waves properly and may lead to non-causal spurious oscillations in space [39].
In order to explain this, let us compare the modal properties of the continuous bar
with those of the spring-mass system.The eigenfrequencies and correspondingmode-
shapes of the continuous bar are given by [37]

∀p ∈ N
∗, ωp = (2p − 1)πc

2L
and φp(x) = sin

( (2p − 1)πx

2L

)
. (41)

In contrast, the eigenfrequencies of the discrete system are

∀p ∈ �1, n�, ω̃p =
√
2k

m

√
1 − cos

( (2p − 1)π

2n + 1

)
, (42)

with the corresponding eigenvectors

φ̃ p =
[
sin

(
j
(2p − 1)π

2n + 1

)]
j=1,...,n

. (43)

When n � p, using (40), the result is that the eigenfrequencies of the discrete and
the continous bar are equivalent:

ω̃p ∼ n

√
2ES

ρSL2

√
1

2

(
2p − 1)π

2n + 1

)2

∼
√

E

ρ

π(2p − 1)

2L
= ωp. (44)

Relating the node j of the discrete system to the position x in the bar via x =
L( j − 1)/(n − 1), an analogous consequence holds for the mode shapes φ̃ p and
φp(x). This is shown in Fig. 23 where both the eigenfrequencies and the eigenmodes
are in good agreement in the low-frequency range. However, when the index p
is no longer negligible compared to n, the approximation becomes inaccurate. By
injecting a progressive monochromatic wave of the form u(x, t) = ei(ωt−κx) into the
wave equation (here, i stands for the imaginary unit), it results that κ = c/ω, which
constitutes a linear dispersion relation: the phase and group velocities coincide and
there is no dispersion. Now, let �x denote the space discretization step such that
�x = L/n. A progressive monochromatic wave of the form u p(t) = ei(ωt−pκ̃�x)

in (38) propagates by satisfying
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Fig. 23 Comparison between the linear modes of a continuous clamped bar and the linear modes
of its discretized counterpart. [ ] Mode shape of the continuous bar. [ ] Mode shape of the
discretized system

0 = −ω2ei(ωt−p�ξ) − k

m
ei(ωt−pκ̃�x)(e−iκ̃�x − 2 + eiκ̃�x

)

= −ω2u p(t) − 2
k

m
up(t)(cos(κ̃�x) − 1), (45)

so that

κ̃�x = arccos
(
1 − ω2m

2k

)
= arccos

(
1 − ω2�x2

2c2

)
. (46)

When �x � κ = c/ω, then κ̃ ∼ κ , translating the fact that low-frequency waves
propagate at the same velocity as in the continuous bar. Nevertheless, dispersion
appears for higher frequencies, as illustrated in Fig. 24. This figure shows the time
histories for zero initial displacements and velocities except a unit initial velocity on
the free node n. Even with a relatively high number of degrees of freedom (n = 100),
the solution displays spurious oscillations due to the dispersion of high frequency
waves. This questions the relevance of the space semi-discretization formalismwhen
shock waves are sought. A comparison between numerous different schemes is pro-
posed in [23]. Even the most accurate of them yields significant discrepancies with
the exact solution, even after only one (pseudo-)period of motion [4, 29].

5.2 With Unilateral Contact Constraints

The relationships between nonsmooth modes and forced response curves have been
presented in Sect. 4 for discrete and continuous systems, separately. The relationships
between discrete NSMs and continuous NSMs is now examined in an exploratory
and qualitative manner.
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Fig. 24 Time evolution of a spring-mass systemwith n = 100. All initial displacements and veloc-
ities are zero, except a unit initial velocity for the free node n. The main wave propagates at the
velocity c, but spurious oscillations become visible due to dispersion. Index j goes from 1 to n. The
black curves correspond to the trajectory of every fifth degree of freedom. Trajectories are merged
in a surface to facilitate visualization

As discussed in Sect. 2.1, the space semi-discretization of a PDE brings in the
necessity of an impact law: modal analysis requires e = 1 for energy conservation,
while e = 0 is needed if sticking phases are of interest. Sticking phases are meaning-
ful, as they emerge naturally in the continuous framework (see Fig. 3). Some authors
have proposed themass redistribution method. It removes the mass of the contacting
node and redistributes it to other nodes [29, 50], so that kinetic energy is not affected.
However, it is not clear how it differs from a penalization approach. In the same vein,
a recent exploratory work that incorporates an elastic law e = 0 proposed to redis-
tributing the kinetic energy of the non-massless contacting node to the neighboring
mass [124]. Let us now analyze the sensitivity of the responses to e with n fixed, and
to n with e fixed, respectively.

It is observed that the sensitivity of the solution to e reduces when n increases.
Figure 25 displays the periodic forced responses for various e and n, obtained using
a Moreau–Jean scheme together with a θ -method (θ = 1/2) [2].

For n as small as 20, displacements of the masses are not much affected by e,
meaning the forced response curves computed for various e are very similar. Chatter-
ing obtained for e > 0 seems to have a negligible effect on the overall dynamics [78].

Interestingly, when scaled with respect to the length L , the local behavior of
the contact node for large values of n is indistinguishable from that of the contin-
uous bar. This is illustrated with e = 1 in Fig. 26 where the periodic solution with
n ∈ {5, 20, 1000} is compared with the continuous periodic solutions produced by
WFEM (see Sect. 3.3). In particular, no elastic bounces are visible and the contact
behaves very much like the lasting contact experienced in the continuous framework.
Indeed, the solutions seem to converge with n, irrespective of e, to the solution of the
continuous bar. Overall, this paradigmatic difference between the continuous and the
discrete systems with forcing and damping vanishes as n becomes large. The chat-
tering phenomenon appears to be the pivot between the discrete and the continuous
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Fig. 25 Sensitivity of a forced periodic solution to the coefficient of restitution e with respect to
n for T = 5.9 and g0 = 1. [ ] e = 1. [ ] e = 0.7. [ ] e = 0. When n is sufficiently large, the
influence of e becomes negligible

Fig. 26 Convergence to the continuous periodic solutions as n increases for e = 1 and T = 5.7.
Time-integration with n = 1000 is indistinguishable from the WFEM solution [ ]. [ ] n = 5.
[ ] n = 20. [ ] n = 1000

frameworks. Damping is likely to play an important role as well, since it acts like a
low-pass filter, and thus reduces the discrepancies between continuous and discrete
models mentioned in Sect. 5.1.

Naturally, one may wonder, in the autonomous and conservative framework, how
the backbone curves of the continuous bar compare to the ones of the semi-discretized
bar.More explicitly,wewould like to approach the backbone curves in Fig. 11 accord-
ing to the ones exhibited in its n-dof counterpart, as in Fig. 8 for a sufficiently large
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Fig. 27 Comparison between the forced response curve of the discrete system with e = 1 and the
backbone curve of the continuous bar. [ ] First continuous NSM. [ ] Second continuous NSM.
[ ]Harmonic of the first NSM. Dashed parts correspond to the linear part. The damping is denoted
by c

n. The challenge comes from the fact that when n becomes large, the spectrum is
extremely dense and numerically demanding and currently not accessible. Nonethe-
less, we provide a few clarifications. In Fig. 27, the energy averaged over six forcing
periods for n = 5 and n = 20 is plotted, for two levels of forcing and several levels
of damping. For n = 5, the resonance peaks roughly correspond to the main back-
bone curves of the continuous bar. For n = 20, the agreement is clear, and thus,
irrespective of the level of damping, for the first two modes as well.

Figure 27 also shows that the forced response curve is very jagged for low levels
of damping (dark curves) and becomes a smooth function of the forcing period as
damping increases. This can be understood by plotting the position as a function of
time for distinct damping levels, as illustrated in Fig. 28. The forcing magnitude is
tuned to approximately maintain the magnitude for the position un , to compensate
for increasing damping levels. The three following types of forced response curves
can be distinguished:

• For low damping, the forced response curve is governed by k IPP nonsmooth
modes, as stated in Sect. 4.1. The backbone curves feature a number of small
branches10 (see Fig. 15 for n = 2). It follows that a forced response is very sensitive
to the forcing frequency, as witnessed by the numerous irregularities in the forced
response curves in Fig. 27. This situation corresponds to the top left plot in Fig. 28
where a 6T -periodic response with 3 IPPs is observed.

10The number of linear modes increases with n, together with possible internal resonances. This
gives the intuition behind the density of backbone curves, which quickly escalates with n. In the
piecewise-linear framework, this can be understood in light of the matrices � and � in Eq. (7),
whose domains of definition always become more intricate.
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(a) (b)

(c) (d)

Fig. 28 As the damping (and external force) increases, the motion becomes more and more orga-
nized; eventually, chattering appears. a© 3 IPP of period 6T (F = 1, C = 0.001K). b© 4 IPP of
period 2T (F = 4, C = 0.02K). c© 2 IPP of period T (F = 5, C = 0.1K). d© ∞ IPP (chattering)
with period T (F = 14, C = K). With n = 5 and T = 4.4. Identical vertical scale for the position

• For moderate damping, the forced response curve is smoother and the trajectory
is simpler. This corresponds to the 2T -periodic response with 4 IPPs (top right)
and T -periodic response with 2 IPPs (bottom left) in Fig. 28.

• For large damping, the response curves are very smooth, as shown in Fig. 27.
Contact settles through chattering mechanisms, and the macroscopic coefficient
of restitution, i.e., seen from the scale of the whole system, is e = 0, even though
the computations were performed with e = 1.

Given that the motion of the discrete system converges to that of the continuous bar
for sufficient damping, it is not surprising that, for medium or high levels of damping,
the resonance peaks are close to those of the bar, for n = 20. More surprising is the
fact that nonsmooth resonances for low damping alsomatch the continuous backbone
curves for large n. In other words, for low damping, as shown in Sect. 4, the forced
response of a n-dof system appears to be driven by its (discrete) NSMs, at least for
small n. Figure 27 shows that, for large n, this forced response resonates along the
backbone curves corresponding to the NSMs of the continuous system. Accordingly,
there must be a relationship between the backbone curves of the discrete system
and those of the continuous one. This is presently to be clarified, even in the one-
dimensional framework, because computing the FEP for the autonomous case with
large n is challenging.

We close this chapter with two observations, which tend to confirm some degree
of correlation between backbone curves in the continuous and discrete settings.

The first one is concerned with the non-existence of nonsmooth modes for the
continuous bar within certain frequency ranges. The continuous bar does not seem to
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Fig. 29 Close-up view of
the first backbone curve of
the continuous bar. Two
different grazing trajectories
coexist at ω1. [ ] Backbone
curve of the first linear
mode. [ ] Backbone curve
of the first nonsmooth mode

possess any backbone curves within the range ω/ω1 ∈ [2, 3] in Fig. 11 and the same
applies to the discretized bar for large n: nearly no periodic solutions are detected in
this range, at least for 1 IPP, which is encouraging.

The second point relates to similarities in grazing motions:

• In the vicinity of ω1, the continuous bar features two grazing modes, as illustrated
in Fig. 29: the linear grazing mode of the clamped–free bar, which is a sinusoidal
function in time, and the nonsmooth grazing mode, which is a triangular function
in time (see Fig. 30 (left)). This triangular shape corresponds to the limit case when
the mode shape shown in Fig. 13 (bottom left) has a contact duration approaching
0 and can be found exactly from ϕ given in (24), that is, ϕ(x) = 1 for x ∈ [−L , L]
and 2L-antiperiodic, by evaluating integral (21).

• For the discrete bar, the corresponding linear grazingmode is a sine of frequency ω̃1

as well. There is a priori no equivalent for the triangular function found for the
continuous bar, since the modal manifold is known to be continuous for any
fixed n [59].

However, the triangular shape can be recovered in the discrete setting for large n,
as a 1 IPP trajectory. Let us focus on the contacting end of the first nonsmooth mode,
for a grazing amplitude. From [104, Eq. (93a)], the position of the nth mass with
1 IPP is

un(t) = − λ√
m

n∑
j=1

cos(ω̃ j (t − T/2))

ω̃ j sin(ω̃ j T/2)
φ̃2
j,n, (47)

where ω̃ j and φ̃ j,n are given by (42) and (43). The value of λ is such that
un(0) = g0 (closed gap); to simplify, only the time-domain shape of un(t) is stud-
ied, its magnitude being dropped. When T approaches 2π/ω̃1, the first term of the
sum dominates and the shape converges to cos((t − T/2)π/2). This situation corre-
sponds to the first linear grazingmode. For the triangular shape, it should be observed
that the sum is dominated by the first terms such that for some n′ � n and j ≤ n′,
ω̃ j ∼ π(2 j − 1)/2 and φ̃ j,n ∼ sin((2 j − 1)π/2) = (−1) j+1, un(t) can be approxi-
mated by
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Fig. 30 In the continuous framework, the first linear grazing (a sine function in time) and first
nonsmooth grazing (a triangular function in time) trajectories share the same frequency ω1. For the
discrete system, the linear grazing mode is also a sine. When n is sufficiently large, the triangular
shape of the continuous nonsmooth grazing mode is retrieved. [ ] Displacement of the contacting
end u(L , t) and un(t), respectively, along the first linear grazing mode. Other positions within the
bar/discrete oscillator are also indicated from x ≈ 0 to x ≈ L (white to black)

n′∑
j=1

cos
(
π(2 j − 1)(t − T/2)/2

)
(2 j − 1) sin(ω̃ j T/2)

. (48)

Now, concerning the period of the first grazing nonsmooth mode T = 2π/ω1 = 4,
and since sin(2ω̃ j ) ∼ (2 j − 1)π/(2n) when j � n, the shape is also similar to

n′∑
j=1

cos(π(2 j − 1)t/2)

(2 j − 1)2
=

n′∑
j=1

(−1) j
sin((2 j − 1)π/2(t − 1)

(2 j − 1)2
, (49)

which is the truncated Fourier series of a triangular wave. As n → ∞, ω̃1 → ω1,
which is in the neighborhood of ω1 (and its multiples), both the exact grazing sine
and the approximated grazing triangular function are found (see Fig.30 (right)). The
n-dof system thus mimics the continuous bar’s nonsmooth grazing behaviour. The
corresponding energies, for the discrete and continuous system, are also found to be
comparable.

The (nonsmoothgrazing) triangular displacement reported above emerges because
it can be expressed as a combination of the linear modes of the clamped–free
bar, whose time-domain participations in the nonsmooth periodic solution follow
a Fourier sequence of fundamental frequency ω1: this unique attribute stems from
the full internal resonance condition enjoyed by the continuous time considered and
no longer holds when this condition is not satisfied.
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6 Conclusion

In the literature, nonlinear modal analysis is recognized as a matured tool for smooth
nonlinear vibratory systems of small to moderate size. However, new methods of
analysis are needed when vibro-impact dynamics and unilateral contact conditions
are involved. Nonsmooth modal analysis is one such tool. It consists in finding con-
tinuous families of periodic solutions of unforced nonsmooth systems, as specified
by the definition of modal analysis. Existing solution methods serving that purpose,
including very recent developments, were presented in this chapter for simplified
systems in the form of a one-dimensional continuous bar and a corresponding n-
dof discrete spring–mass oscillator. Conceptual dissimilarities between these two
frameworks are summarized as follows:

• Formodal analysis purposes, the discrete setting necessitates an energy-preserving
impact law with restitution coefficient e, while the continuous setting does not.

• The discrete setting with an energy-preserving impact law generates chattering,
which manifests itself as k-IPP trajectories that are challenging to capture numeri-
cally when k and n grow. Chattering was found to be the pivot between the discrete
and continuous worlds.

• It is not clear whether the backbone curves (which define the nonlinear spectrum
of vibration) of the discrete oscillator converge towards the backbone curves of
the continuous system as n increases.

• The sensitivity to the restitution coefficient e of the periodically forced displace-
ment of the discrete oscillator with low damping decreases with n.

• The backbone curves calculated in the continuous setting accurately predict the
vibratory resonances of the discrete oscillator for a sufficiently large n, irrespective
of e.

• By virtue of the above comment, vibratory resonances of the continuous bar and
discrete oscillator are in good agreement as soon as n is sufficiently large. The
peaks of resonance are not much affected by the type of forcing (distributed,
concentrated at the contacting end, or far from the contact zone).

In the long run, the aim is to settle Nonsmooth Modal Analysis as an attractive and
standard engineering tool aiding in the the efficient prediction and comprehension
of nonsmooth vibratory signatures, in replacement of tedious time-domain computa-
tions. Among the various possible avenues to be explored in the future, the following
are pressing issues:

• In the finite element framework, removing the problematic chattering could be
overcome by taking advantage of the vanishing influence of the impact laws for
large n and choosing a purely inelastic impact law, that is, e = 0. The very small
loss of energy should be compensated for in some way.

• Nonsmooth Modal Analysis of multi-dimensional systems should be tentatively
performed employing Finite Volumes and the Time-domain Boundary Element
Method.
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• In the context of continuummechanicswith the assumptions of large displacements
and strains, smooth nonlinearities emerge. The resulting dynamics involving uni-
lateral contact constraints should be addressed.
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Variational and Numerical Methods
Based on the Bipotential and Application
to the Frictional Contact

Géry de Saxcé

Abstract First, we define the bipotential and discuss some fundamental aspects
concerning the existence and construction of a bipotential generating a given consti-
tutive law. After a quick review of applications to solid mechanics, we highlight, in
particular, problems of unilateral contact with isotropic and anisotropic Coulomb dry
friction. The second part is devoted to variational methods and numerical algorithms
inspired by the bipotential, illustrated, in particular, to multi-body systems. Extended
limit analysis techniques are used to determine the collapse load of structures with
plasticity and friction contact.

1 Basic Tools

X and Y are topological, locally convex, real vector spaces of dual variables x ∈ X
and y ∈ Y , with the duality product 〈•, •〉 : X × Y → R. We shall suppose that
X,Y have topologies compatible with the duality product. We use the notation:
R̄ = R ∪ {+∞}. For any convex and closed set A ⊂ X , its indicator function, χA, is
defined by

χA(x) =
{
0 if x ∈ A
+∞ otherwise .

The subgradient of a function φ : X → R̄ at a point x ∈ X is the (possibly empty)
set

∂φ(x) = {
y ∈ Y | ∀x′ ∈ X 〈x′ − x, y〉 ≤ φ(x′) − φ(x)

}
.

Its Fenchel conjugate φ∗ : Y → R̄ is defined by
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φ∗( y) = sup {〈 y, x〉 − φ( y) | y ∈ X} .

The conjugate is always convex and lower semi-continuous (lsc).
We denote by �(X) the class of convex and lower semi-continuous functions

φ : X → R̄. The class of convex and lower semi-continuous functions φ : X → R

different from the constant +∞ is denoted by �0(X).
A graph M is cyclically monotone if, for all integer m > 0 and any finite family

of couples (x j , y j ) ∈ M, j = 0, 1, . . . ,m,

〈x0 − xm, ym〉 +
m∑

k=1

〈xk − xk−1, yk−1〉 ≤ 0. (1)

A cyclically monotone graph M is maximal if it does not admit a strict prolongation
that is cyclically monotone. By reindexing the couples, we easily recast the previous
inequality as

〈xm, y0 − ym〉 +
m∑

k=1

〈xk−1, yk − yk−1〉 ≤ 0, (2)

which shows that the graphs of a law and its dual law are simultaneously cyclically
monotone. Rockafellar [26], Theorem 24.8 (see also Moreau [23], Proposition 12.2)
proved a theorem that can be stated as follows.

Theorem 1.1 Given a graph M, there exist potentials φ ∈ �0(X) such that M ⊂
Graph(∂φ) if, and only if, M is cyclically monotone. They are defined by

φ(x) = sup

{
〈x − xm, ym〉 +

m∑
k=1

〈xk − xk−1, yk−1〉
}

+ φ(x0), (3)

where x0 and φ(x0) are arbitrarily fixed and the ’sup’ is extended to any m > 0 and
to any couples (xk, yk) ∈ M, k = 1, 2, . . . ,m.

Because the dual law is also cyclically monotone, we can once again apply the
construction of the previous Theorem, giving the function

ψ( y) = sup

{
〈xm, y − ym〉 +

m∑
k=1

〈xk−1, yk − yk−1〉
}

+ ψ( y0) (4)

such that M ⊂ M(∂ψ∗). With the exception of when M is maximal, φ and ψ∗ are,
in general, a distinct function, as will be seen further in the application.

http://dx.doi.org/10.1007/978-3-319-75972-2_24
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2 What Is a Bipotential?

The constitutive laws of the materials can be represented, as in Elasticity, by a uni-
valued mapping T : X → Y or, as in Plasticity, can be generalized in the form of
a multivalued mapping T : X → 2Y , but this representation is not necessarily con-
venient. Its graph M = Graph(T ) is a non-empty part of X × Y . When the graph
is maximal cyclically monotone, we can modelize it thanks to a convex and lower
semi-continuous (l.s.c.) function φ : X → R̄, called a superpotential (or pseudo-
potential), such that the graph M is the one of its subdifferential Graph(∂φ). The
dissipative materials admitting a superpotential of dissipation are often qualified as
standard [17], and the law is said to be a normality law, a subnormality law or an
associated law. However, many experimental laws proposed over these last decades,
particularly in Plasticity, are non-associated. For such laws, we proposed in [12] a
suitable modelization thanks to a function called a bipotential.

Definition 1 A bipotential is a function b : X × Y → R̄, with the properties:

(a) b is convex and lower semicontinuous in each argument;
(b) for any x ∈ X, y ∈ Y , we have b(x, y) ≥ 〈x, y〉;
(c) for any (x, y) ∈ X × Y , we have the equivalences:

y ∈ ∂b(•, y)(x) ⇐⇒ x ∈ ∂b(x, •)(y) ⇐⇒ b(x, y) = 〈x, y〉 . (5)

The graph of b is

M(b) = {(x, y) ∈ X × Y | b(x, y) = 〈x, y〉} . (6)

If the graph M of a law is the graph of a bipotential b, we say that the law (the
graph) admits a bipotential. In particular, for each superpotential φ, we can associate
the separable bipotential

b(x, y) = φ(x) + φ∗(y) (7)

where φ∗ is the Fenchel conjugate of φ. Hence, the cornerstone inequality of the
bipotential (Definition 1 (b)) is reduced to well-known Fenchel’s inequality [13].

We also introduce, in [5, 6], the notion of a strong bipotential. Conditions (B1S)
and (B2S) appear as relations (51), (52) in Laborde and Renard [21].

Definition 2 A function b : X × Y → R̄ is a strong bipotential if it satisfies the
conditions:

(a) b is convex and lower semicontinuous in each argument;
(B1S) for any y ∈ Y, inf

{
b(x′, y) − 〈x′, y〉 : x′ ∈ X

} ∈ {0,+∞};
(B2S) for any x ∈ X, inf

{
b(x, y′) − 〈x, y′〉 : y′ ∈ Y

} ∈ {0,+∞}.
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Proposition 2.1 Any strong bipotential is a bipotential.

The notion of a strong bipotential (introduced in relations (51), (52) [21]) is also
motivated by the fact that all bipotentials considered in applications to mechanics
are, in fact, strong bipotentials.

The introduction of non-separable bipotentials allows modelizing, in a more gen-
eral way, the non-associated constitutive laws. The laws admitting a bipotential are
called laws of implicit standard materials, because the relation y ∈ ∂b(•, y)(x) is a
subnormality law but the relation between x and y is implicit. Linked to the structural
mechanics and, in particular, with the Calculus of Variation, the bipotential theory
offers an elegant framework formodelizing a broad spectrum of non-associated laws.
Examples of such non-associated constitutive laws are: non-associated Drücker-
Prager [9] and Cam-Clay models [8] in soil mechanics, cyclic Plasticity ([2, 7]) and
Viscoplasticity [18] of metals with non-linear kinematical hardening rule, Lemaitre’s
damage law [1], the coaxial laws ([10, 29]), and the Coulomb’s friction law [3, 7,
9, 12, 14, 16, 20, 21]. A complete survey can be found in [10]. In the previous
works, robust numerical algorithms were proposed for solving structural mechanics
problems.

3 Existence and Non-uniqueness of the Bipotential

For all these particular constitutive laws, the bipotentials were heuristically con-
structed, without knowing beforehand the conditions under which the law admits a
bipotential, nor a systematic algorithm for constructing this bipotential. This ques-
tion was answered later. In [4], we solved two key problems: (a) when the graph
of a given multivalued operator can be expressed as the graph (6) of a bipotential,
and (b) a method of construction of a bipotential associated (in the sense of point
(a)) with a multivalued, typically non-monotone, operator. The main tool was the
notion of convex Lagrangian cover of the graph of the multivalued operator, and
a related notion of implicit convexity of this cover. The results of [4] apply only
to bi-convex, bi-closed graphs (for short BB-graphs) admitting at least one convex
Lagrangian cover by maximal cyclically monotone graphs. This is a rather large
class of graph of multivalued operators, but important applications to mechanics,
such as the bipotential associated to contact with friction [12], are not in this class.

In more recent papers [5, 6], we proposed an extension of the method presented
in [4] to a more general class of BB-graphs. This is done in two steps. In the first
step, we proved that the intersection of two maximal cyclically monotone graphs is
the critical set of a bipotential if, and only if, a condition formulated in terms of the
inf convolution of a family of convex lsc functions is true [5]. In the second step, we
extended the main result of [4] by replacing the notion of convex Lagrangian cover
with the one of bipotential convex cover (Definition 5). In this way, we were able
to apply our results to the bipotential for the Coulomb’s friction law.
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Definition 3 For any graph M ⊂ X × Y , we can introduce the sections

M(x) = {y ∈ Y | (x, y) ∈ M} , M∗(y) = {x ∈ X | (x, y) ∈ M} ,

The domain of M is, by definition,

dom(M) = {x ∈ X | M(x) �= ∅} ,

Hence, the law T assigns at each x ∈ X the section M(x) and the inverse law assigns
to each y ∈ Y the section M∗(y). Let a constitutive law be given by a graph M . Does
it admit a bipotential? The existence problem is easily settled by the following result.

Theorem 3.1 Given a non-empty set M ⊂ X × Y , there is a bipotential b such that
M = M(b) if, and only if, for any x ∈ X and y ∈ Y , the sections M(x) and M∗(y)

are convex and closed.

The proof can be found in [4]. Then,we say thatM is bi-convex and bi-closed, or in
short, that M is a BB-graph. This criterion, simple to verify, allows for straightaway
moving laws without bipotential aside. If the law is represented by a BB-graph, a
closely related topic is to know whether the bipotential is unique. The answer is no.
The proof of the previous result is based on the introduction of the bipotential

b∞(x, y) = 〈x, y〉 + χM(x, y).

Therefore, here is a counterexample. If M is cyclically monotone maximal, it admits
at least two distinct bipotentials, the separable bipotential defined by (7) and b∞.
Therefore, the graph of the law alone is not sufficient to uniquely define the bipoten-
tial.

4 Bipotential Convex Cover

For a given multivalued constitutive law, Theorem 3.1 does not give a satisfactory
bipotential, because the bipotential b∞ is somehow degenerate. We would like to be
able to find a bipotential b that is not everywhere infinite outside the graph M . We
saw that the graph alone is not sufficient to construct interesting bipotentials. We
need more information to start from. This is provided by the notion of bipotential
convex cover.

Let Bp(X,Y ) be the set of all bipotentials b : X × Y → R̄. We shall need the
following definitions.

Definition 4 LetΛbe an arbitrary non-empty set andV a real vector space. The func-
tion f : Λ × V → R̄ is implicitly convex if, for any twoelements (λ1, z1), (λ2, z2) ∈
Λ × V and for any two numbers α, β ∈ [0, 1] with α + β = 1, there exists λ ∈ Λ

such that
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f (λ, αz1 + βz2) ≤ α f (λ1, z1) + β f (λ2, z2) . (8)

Definition 5 A bipotential convex cover of the non-empty set M is a function
λ ∈ Λ �→ bλ from Λ with values in the set Bp(X,Y ), with the properties:

(a) The set Λ is a non-empty compact topological space,
(b) Let f : Λ × X × Y → R ∪ {+∞} be the function defined by

f (λ, x, y) = bλ(x, y).

Then, for any x ∈ X and for any y ∈ Y , the functions f (•, x, •) : Λ × Y → R̄

and f (•, •, y) : Λ × X → R̄ are lower semi-continuous on the product spaces
Λ × Y and, respectively, Λ × X endowed with the standard topology,

(c) We have M =
⋃
λ∈Λ

M(bλ),

(d) With the notations from point (b), the functions f (•, x, •) and f (•, •, y) are
implicitly convex in the sense of Definition 4.

A bipotential convex cover is in some sense described by the collection {bλ : λ
∈ Λ}. This is the point of view that wewill adopt in the sequel. The next result defines
the conditions under which the notion of bipotential convex cover is independent of
the choice of the parametrization [6].

Proposition 4.1 Let λ ∈ Λ �→ bλ ∈ Bp(X,Y ) be a bipotential convex cover and
g : Λ → Λ be a continuous, invertible, with continuous inverse, function. Then,
λ ∈ Λ �→ bg(λ) ∈ Bp(X,Y ) is a bipotential convex cover.

The next theorem, proved in [6], is the key result needed further.

Theorem 4.2 Let λ �→ bλ be a bipotential convex cover of the graph M and b :
X × Y → R defined by

b(x, y) = inf {bλ(x, y) | λ ∈ Λ} . (9)

Then, b is a bipotential and M = M(b).

The result is rather surprising, because an inferior envelop of functions, even
convex, is not generally a convex function. The property (d) of the Definition 5 is
essential for ensuring the convexity properties of b.

5 Bipotential for Cyclically Monotone Graphs

Maximal cyclically monotone graphs are critical sets of separable bipotentials. For
a non-maximal cyclically monotone graph M , Rockafellar’s theorem [26] claims
only that there exists a superpotential φ such that M ⊂ Graph(∂φ). Hence, φ is
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not sufficient to define M unambiguously. In this section, we show that M can be
characterized unequivocally by a bipotential b = max(b1, b2), where b1 and b2 are
separable bipotentials.

Theorem 5.1 Let b1 and b2 be separable bipotentials associated, respectively, with
the convex and lsc functions φ1, φ2 : X → R̄, that is,

bi (x, y) = φi (x) + φ∗
i (y)

for any i = 1, 2 and (x, y) ∈ X × Y . Consider the following assertions:

(i) b = max(b1, b2) is a strong bipotential.
(ii’) For any y ∈ dom φ∗

1 ∩ dom φ∗
2 and for any λ ∈ [0, 1], we have

(λ φ1 + (1 − λ) φ2)
∗ (y) = λ φ∗

1 (y) + (1 − λ) φ∗
2 (y). (10)

(ii”) For any x ∈ dom φ1 ∩ dom φ2 and for any λ ∈ [0, 1], we have
(
λ φ∗

1 + (1 − λ) φ∗
2

)∗
(x) = λ φ1(x) + (1 − λ) φ2(x). (11)

Then, the point (i) is equivalent with the conjunction of (ii’), (ii”), (for short: (i)⇐⇒
((ii’) AND (ii”))).

Remark 1 If b1, b2 are separable bipotentials and b = max(b1, b2) is a bipotential,
then M(b) = M(b1) ∩ M(b2), therefore M(b) is the intersection of two maximal
cyclically monotone graphs.

The demonstration of the Theorem is given in [6].

6 Example

For any BB-graph M , let us show how to construct b∞. For any u ∈ dom(M), the
graph Mu = {u} × M(u) is cyclically monotone. Indeed, for any finite family of
couples (x j , y j ) ∈ M, j = 0, 1, . . . ,m, we have x j = u for all j and

〈x0 − xm, ym〉 +
m∑

k=1

〈xk − xk−1, yk−1〉 = 〈u − u, ym〉 +
m∑

k=1

〈u − u, yk−1〉 = 0.

The sets Mu obviously cover the graph M when u runs in dom(M). As x j = u in
(3), and putting v = ym , the function defined by Theorem 1.1 is reduced to

φu(x) = sup {〈x − u, v〉 | v ∈ M(u)}

and its Fenchel conjugate is
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φ∗
u( y) = 〈u, y〉 + χM(u)( y).

Besides, choosing (x0, y0) = (u, 0), and taking into account x j = u for all j , the
function defined by (4) is

ψu( y) = sup

{
〈u, y − ym〉 + 〈u,

m∑
k=1

( yk − yk−1)〉
}

= 〈u, y〉,

which is, in general, different from φ∗
u. Its Fenchel conjugate is

ψ∗
u(x) = sup {〈x − u, y〉 | y ∈ Y } = χ{u}(x).

For u ∈ dom(M), let us now calculate the bipotential of Mu by Theorem 5.1:

bu(x, y) = sup(φu(x) + φ∗
u( y), ψu( y) + ψ∗

u(x)) =

sup
(
sup {〈x − u, v〉 | v ∈ M(u)} + 〈u, y〉 + χM(u)( y), 〈u, y〉 + χ{u}(x)

)
.

This function is equal to +∞ if x �= u. Otherwise, it equal to

〈u, y〉 + χM(u)( y).

Hence, for any (x, y) ∈ X × Y , we have

bu(x, y) = 〈u, y〉 + χM(u)( y) + χ{u}(x).

Finally, we construct the bipotential of M by Theorem 4.2:

b(x, y) = inf {bu(x, y) | u ∈ dom(M)}

b(x, y) = inf
{〈u, y〉 + χM(u)( y) + χ{u}(x) | u ∈ dom(M)

}
.

If x does not belong to dom(M), the function is equal to+∞. Otherwise, we choose
u = x to minimise, which gives us

b(x, y) = 〈x, y〉 + χM(x)( y) = 〈x, y〉 + χM(x, y) = b∞(x, y)

Of course, as discussed earlier, this bipotential is rather trivial, but the method allows
us to obtain more interesting ones by choosing suitable bipotential convex covers, as
in the next section.
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7 Application to Unilateral Contact with Coulomb’s Dry
Friction

To be brief, the space X = R
3 is the one of relative velocities between points of

two bodies, and the space Y , also identified to R
3, is the one of the contact reaction

stresses. The duality product is the usual scalar product. We put

−u̇ = −(u̇n, u̇t ) ∈ X = R × R
2, (rn, rt ) ∈ Y = R × R

2 ,

where u̇n is the gap velocity, u̇t is the sliding velocity, rn is the contact pressure and
rt is the friction stress. The friction coefficient is μ > 0. The graph of the law of
unilateral contact with Coulomb’s dry friction is defined as the union of three sets,
respectively corresponding to the ‘body separation’, the ‘sticking’ and the ‘sliding’.

M = {(−u̇, 0) ∈ X × Y | −u̇n < 0} ∪ {(0, r) ∈ X × Y | ‖ rt ‖≤ μrn} ∪ (12)

∪
{
(−u̇, r) ∈ X × Y | u̇n = 0, u̇t �= 0, rt = μrn

−u̇t

‖ −u̇t ‖
}

.

It is well known that this graph is not monotone, and thus not cyclically monotone.
As usual, we introduce Coulomb’s cone

Kμ = {(rn, rt ) ∈ Y | ‖ rt ‖≤ μrn} (13)

and its conjugate cone

K ∗
μ = {(−u̇n,−u̇t ) ∈ X | μ ‖ −u̇t ‖ −u̇n ≤ 0} .

In particular, we have
K ∗

0 = {−u̇ ∈ X | −u̇n ≤ 0} .

Now, we define some sets useful in the sequel. Let us consider p > 0 and the
closed convex disc obtained by cutting Coulomb’s cone at the level rn = p

D(p) = {
rt ∈ R

2 | ‖ rt ‖≤ μp
}
.

Therefore, for each value of p > 0, we define a set of ‘sticking couples’

M (a)
p = {(0, (p, rt )) ∈ X × Y | rt ∈ D(p)}

and a set of ‘sliding couples’

M (s)
p = {((0,−u̇t ), (p, rt )) ∈ X × Y | ‖ rt ‖= μp, ∃λ > 0, −u̇t = λrt } .
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So, we can cover the graph M with the set of subsequent subgraphs parameterized
by p ∈ [0,+∞]:

(a) Mp = M (a)
p ∪ M (s)

p , p ∈ (0,+∞) ,
(b) M0 = {(−u̇, 0) ∈ X × Y | −u̇n ≤ 0} ,
(c) M+∞ = ∅, by convention.

All these subgraphs are cyclically monotone, but none of them is maximal. By apply-
ing Rockafellar’s Theorem [26] to Mp twice, let us construct the corresponding
superpotentials φp : X → R̄ such that Mp ⊂ Graph(∂φp) and ψp : Y → R̄ such
that Mp ⊂ Graph(∂ψp). It is worthwhile observing that ψp is not the Fenchel con-
jugate ofφp, becauseMp is notmaximal. To fix the arbitrary constant in the definition
of the superpotentials, we suppose that φp(0) = ψp(0) = 0. For p ∈ (0,+∞), the
computations give us

φp(−u̇) = −pu̇n + μp ‖ −u̇t ‖ ψp(r) = χD(p)(rt ).

Their Fenchel conjugates are

φ∗
p(r) = χ{p}(rn) + χD(p)(rt ) ψ∗

p(−u̇) = μp ‖ −u̇t ‖ +χ{0}(u̇n).

For p = 0, we obtain
φ0(−u̇) = 0 , ψ0(r) = χK0(r).

Their Fenchel conjugates are

φ∗
0 (r) = χ{0}(r) , ψ∗

0 (−u̇) = χK ∗
0
(−u̇).

For fixed p, define the bipotentials bi,p, i = 1, 2, by

b1,p(−u̇, r) = φp(−u̇) + φ∗
p(r) ,

b2,p(−u̇, r) = ψ∗
p(−u̇) + ψp(r) .

As an application of Theorem 5.1, we obtain that bp = max
{
b1,p, b2,p

}
is a bipo-

tential. Indeed, we shall check only the point (ii’) from Theorem (5.1) (the point (ii”)
is true by a similar computation). For λ ∈ [0, 1) and p �= 0, we have

λφp(−u̇) + (1 − λ)ψ∗
p(−u̇) = χ{0}(u̇n) + μp ‖ −u̇t ‖,

therefore we get

(
λφp + (1 − λ)ψ∗

p

)∗
(r) = χD(p)(rt ).

Also, by computation, we obtain
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λφ∗
p(r) + (1 − λ)ψp(r) = χ{p}(rn) + χD(p)(rt ).

If φ∗
p(r) < +∞ , ψp(r) < +∞, then, in particular, rn = p, and we obtain (10) as

an equality 0 = 0. All other cases involving λ = 1 or p = 0 are solved in the same
way.

The bipotential bp has the expression

bp(−u̇, r) = μp ‖ −u̇t ‖ +χD(p)(rt ) + χ{p}(rn) + χ{0}(u̇n), p ∈ (0,+∞)

b0(−u̇, r) = χ{0}(r) + χ(−∞,0](u̇n).

It is easy to check that the function p ∈ [0,+∞] �→ bp is a bipotential convex
cover, therefore, by Theorem 4.2, we obtain a bipotential for the set M . By direct
computation, this bipotential, defined as

b(−u̇, r) = inf
{
bp(−u̇, r) : p ∈ [0,+∞]} ,

has the following expression:

b(−u̇, r) = μrn ‖ −u̇t ‖ +χKμ
(r) + χK ∗

0
(−u̇) . (14)

Therefore, we recover the bipotential heuristically obtained in [12].

8 Unilateral Contact with Orthotropic Friction

For many industrial applications, the assumption of isotropic friction is unrealistic
because of directional surface machining and finishing operations. For orthotropic
frictional contact, Michałowski andMróz have pointed out the non-associated nature
of the sliding rule [22] (see alsoMróz andStupkiewicz [24]). In thismodel, the convex
friction cone is defined by

Kμ = {
r ∈ R

3 | ‖rt‖μ − rn ≤ 0
}
, (15)

where ‖ • ‖μ denotes the elliptic norm

‖rt‖μ =
√(

rtx
μx

)2

+
(
rty
μy

)2

= ∥∥F−1rt
∥∥ , (16)

with the Euclidean norm ‖ • ‖ and

F =
[

μx 0
0 μy

]
. (17)
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Fig. 1 Friction condition and sliding rule

The classical isotropic Coulomb’s friction condition is recovered by setting μx =
μy = μ. The dual norm ‖ • ‖∗

μ associated with (16) is given by

‖ − u̇t‖∗
μ =

√
μ2

x (−u̇tx )2 + μ2
y (−u̇ty )2 = ‖F (−u̇t )‖ . (18)

The Michałowski-Mróz model is twice non-associated because, as in isotropic fric-
tion, the normal velocity is absentwhen sliding occurs, but also because the tangential
velocity is not normal to the elliptical level curves ‖rt‖μ = constant (Fig. 1). This
additional lack of associativity can be described introducing a slip potential defined
by

g(rtx , rty ) = ‖rt‖p, (19)

in which ‖rt‖p is given by

‖rt‖p =
√(

rtx
px

)2

+
(
rty
py

)2

= ∥∥P−1rt
∥∥ , (20)

with

P =
[
px 0
0 py

]
. (21)

It is convenient to introduce the sliding non-associativity matrix

Q = PF
−1 = F

−1
P =

⎡
⎢⎣

px
μx

0

0
py
μy

⎤
⎥⎦ . (22)
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The complete form of the frictional contact law involves three possible states, which
are separating, contact with sticking, and contact with sliding. It can be described
using two overlapped “if...then...else” statements:

if rn = 0 then

u̇n ≥ 0 !separating
elseif r ∈ intKμ then

u̇n = 0 and u̇t = 0 !sticking
else( r ∈ bdKμ and rn > 0){

u̇n = 0 , λ̇ ≥ 0 and − u̇t = λ̇
∂g

∂rt
= λ̇

P
−2 rt

‖rt‖p

}
!sliding

endif

(23)

where “intKμ” and “bdKμ” denote the interior and the boundary ofKμ, respectively.
It was proved in [19] that the graph of the previous law is the critical set of the

following bipotential:

b(−u̇, r) = χKμ
(r) + χR−(−u̇n) + (

I − Q
2
) • rt + rn ‖Q2(−u̇t )‖∗

μ (24)

For the isotropic case, we recover the bipotential (14) as a particular case.

9 Implicit Predictor-Corrector Scheme

The time interval [0,T ], within which the loading history is defined, is partitioned
into N sub-intervals of size �t, not necessarily equal. For the sake of clarity, we
focus our attention on the first time increment [t 0, t 1]. The value of any quantity a
at the beginning (respectively at the end) of the step is denoted by a0 (respectively
a1). The corresponding increment is�a. In order to ensure convergence and stability
requirements, the implicit scheme is considered. Taking into account the fact that b is
positively homogeneous of order one with respect to the first argument, the complete
contact law is satisfied at the end of each time step:

− �u ∈ ∂bc(−�u, •) (r 1), (25)

where bc is given by

bc(−�u, r1) = χKμ
(r 1) + χR−(−h0 − �un) + (

I − Q
2
)
(−�ut ) • rt1

+ rn1 ‖Q2(−�ut )‖∗
μ, (26)
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which takes into account the gap −h0 at the beginning of the time-step.
Unfortunately, unlike elastoplastic problems, the incremental bipotential is not

differentiable. For this reason, the incremental bipotential is not directly used and a
regularization technique is applied in order to replace the unpleasant inequation with
an equivalent equation, simpler to solve. Thus, the implicit scheme (25) leads to

r1 ∈ R
3 : bc(−�u, r′) − bc(−�u, r1) ≥ −�u • (r′ − r1), ∀ r′ ∈ R

3. (27)

The variational inequality (27) is rewritten in an obvious manner as

r1 ∈ R
3 : ρbc(−�u, r′) − ρbc(−�u, r1) + [r1 − (r1 − ρ�u)] • (r′ − r1) ≥ 0, ∀ r′ ∈ R

3 (28)

where ρ is a positive number that needs to be chosenwithin a suitable range to ensure
convergence. The variational inequality (28)means that r1 is the proximal point of the
augmented force r̂ = r1 − ρ �u, with respect to the function r1 �→ ρbc(−�u, r1)
(see [23])

r1 = prox (r1 − ρ�u, ρbc(−�u, •)) . (29)

The solution of (29) can be obtained using Uzawa’s algorithm, which involves two
steps: prediction : r̂i+1 = ri1 − ρ �u. correction: ri+1

1 = prox
(
r̂i+1, ρbc(−�u, •)

)
By substituting bc(−�u, r1) with its expression (26) in (28), the inequality can be
rearranged to obtain

r1 ∈ Kμ : (
rt1 − τ t

) • (
r′
t − rt1

) + (
rn1 − τn

) (
r′
n − rn1

) ≥ 0 ∀ r′ ∈ Kμ,

(30)
where

τ t = rt1 − ρ Q
2�ut and τn = rn1 − ρ

(
�un + ∥∥Q2(−�ut )

∥∥∗
μ

)
(31)

are the components of the modified augmented surface traction. The last inequality
means that the reaction r at the end of the time step is the projection of the augmented
surface traction onto the convex friction cone Kμ. With respect to algorithms with
separated treatment of the friction and the unilateral contact, the main advantage
of the method is that only one predictor-corrector step is required for the discrete
frictional contact problem. At each step, the iterative algorithm is the following:

(1) A value �u of the displacement increment being known, the new value of the
contact stress r1 at the end of the time step is obtained by computing the aug-
mented stress τ i+1 and the proximal point ri+1

1 :

Predictor :
τ i+1 = ri1 − ρ

[
Q

2�ut +
(
�un + ∥∥Q2(−�ut )

∥∥∗
μ

)
n
]
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Corrector :
ri+1
1 = proj (τ i+1,Kμ)

(2) Next, the displacement increment is updated and the procedure is iteratively
repeated.

In the solution of the projection problem, three different situationsmust be considered
according to the position of the prediction τ in R

3. The first case corresponds to a
prediction τ located in the coneKμ. Its projection is the prediction itself, i.e., r1 = τ .
The second one relates to a prediction situated in the cone K∗

μ, where its projection
turns out to be the origin (r1 = 0). In the last case, the prediction is neither in Kμ

nor in K∗
μ and the corrector step requires computing the projection of the prediction.

The projection of a point onto a convex set is equivalent to the minimization of the
distance between this point and the convex set. Next, the problem is reformulated
as an unconstrained minimization problem by means of the Lagrange multipliers
technique and leads to finding the intersection of a quartic and a straight line. Details
are given in [19].

10 Numerical Applications

In previous papers [11, 12], several applications involving frictional contact problems
with isotropic friction condition and associated sliding rule have been carried out
using an algorithm based on the bipotential approach. The examples treated have
shown that the algorithm is very competitive, as the augmentation phase involves
only one prediction-correction step.

However, although many works have been devoted to the isotropic friction, this
hypothesis is not often realistic. In fact, most frictional contacts are anisotropic. The
source of the roughness anisotropy is technological; the industrial process used to
fabricate the bodies can create striations along preferential directions. In fact, most
machining, finishing and superfinishing operations are directional, andmachined sur-
faces have particular striation patterns unique to the type of machining. Also, specific
techniques of manufacture produce a surface with anisotropic frictional properties.
For a large number of machining processes, the striation directions are mutually
orthogonal. For such surfaces, an orthotropic friction condition will provide a better
description of the frictional behavior.

In [20], we proposed a benchmark test for validating the algorithm for a class
of non-associated anisotropic friction laws. The test of such frictional contact laws
requires a 3D finite element model. The problem under consideration is a deformable
elastic cylinder in contact with a rigid surface (Fig. 2). The radius and the height of
the cylinder are both equal to 10 mm. The Young modulus E of the cylinder is taken
as equal to 210000MPa and the Poisson ratio is 0.3. On the surface contact, the
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Fig. 2 Compression of a cylinder in contact with a rigid plate

Table 1 Frictional properties

Case μx μy px py

1 0.20 0.20 0.20 0.20

2 0.30 0.25 0.30 0.25

3 0.30 0.15 0.30 0.15

4 0.30 0.15 0.20 0.20

5 0.30 0.15 0.05 0.20

friction condition is assumed to be anisotropic. A vertical rigid motion is imposed
on the upper surface of the cylinder by an amount of 0.1 mm. The displacement is
applied in one step. The base of the cylinder is in contact with the rigid plate whose
normal vector is (0, 0, 1). The cylinder is subdivided into 1280 eight-node brick-like
elements, as shown in Fig. 2. Each element has 27 integration points.

Five different sets of frictional parameters, shown in Table 1, are considered.
The first case corresponds to a classical isotropic friction condition, considered

here for comparisonwith anisotropic cases. Case 2 and case 3 represent an anisotropic
frictional model with an associated sliding rule. The anisotropy is mild in case 2.
The last two cases consider a non-associated sliding rule.

Figure 3 shows the contour plots of the slip and the relative displacements between
the lower surface of the cylinder and the rigid plate in the x-direction. The slip
corresponds to the Euclidean norm of the tangential displacement. The frictional
model being isotropic, the iso-values of the slips are circular. As expected, the stick
zone is located around the base center and sliding increases monotonically as we get
closer the periphery. The magnitude of the tangential displacement in the x-direction
is largest on the cylinder edge.

Figure 4 shows, for case 1, the iso-values of the normal component of the contact
reaction and the tangential component of the contact reaction in the x-direction. In all
figures, the x-axis is horizontal and they-axis is vertical. Since themodel is isotropic, a
simple rotation about the z-axis of 90◦ gives the tangential component of the contact
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(a) (b)

Fig. 3 Case 1: a Contour plot of slip - b Contour plot of utx

(a) (b)

Fig. 4 Case 1: a Contour plot of rn - b Contour plot of rtx

reaction in the y-direction. The normal reaction is higher in the periphery of the
cylinder and decreases as we approach the center of the cylinder basis. However, the
decrease is not monotonic along every radius. Indeed, the normal reaction attains
its minimum in four tiny areas located at approximately the third of the radius from
the base center. For all cases considered, contour plots of the normal component
of the contact reaction have a similar pattern. The tangential reaction is higher in
the periphery of the cylinder, as sliding is more important there. Now, the effect of
anisotropy is considered. Slip contour plots for cases 2 and 3 are shown in Fig. 5.
As can be seen, the anisotropy of the friction condition significantly influences the
slip distribution pattern. The stick area is now an ellipse with a semi-axes ratio equal
to the semi-axes ratio of the friction criterion. The slips increase gradually from the
stick area and are maximum on the periphery in the y-direction, since, for both cases,
μx is greater than μy . If the disparity between the friction coefficients μx and μy is
significant (as it is for case 3), the distribution of rty changes notably, but the iso-values
pattern of rtx remains similar to the isotropic case 1 (see Fig. 6). The algorithm is still
convergent if the sliding rule is non-associated, but requires a fewmore iterations. The

number of iterations depends strongly on the degree of non-associativity. A ratio
μx

μy
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(a) (b)

Fig. 5 Contour plots of slip: a Case 2 - b Case 3

(a) (b)

Fig. 6 Contour plots of rtx : a Case 2 - b Case 3

much larger or much smaller than the ratio
px
py

gives a strong non-associated sliding

rule. In Case 4, an isotropic sliding potential is considered that corresponds here to a
mild non-associativity. In practice, high non-associativity (case 5) is often observed
([22, 24]). Once a non-associative sliding rule is considered, the slip distribution
can change drastically according to the degree of non-associativity. Indeed, if the
slip rule is strongly non-associated, the iso-values of the slip become non-convex,
as shown in Fig. 7. With an isotropic sliding potential, the stick zone is elliptical and
the maximum displacement is lower than the one obtained with an associated sliding
rule. Although the principal friction coefficients are the same for both cases 4 and 5,
the maximum slip is larger for case 5. The distribution pattern of rty (Fig. 8) is similar
to cases 2 and 3 (see Fig. 5a), but the iso-values distribution of rtx is totally different
if the non-associativity is strong.

Moreover, it is worth observing that, unlike the isotropic case, a strong hysteretic
behavior occurs when friction is anisotropic [15]. This effect is particularly impor-
tant, because the wear rate is strongly coupled to the friction dissipation. Figure 9
shows the relationship between the equivalent applied force (resulting from imposed
displacement) and the slip of point P at the intersection of the boundary of the con-
tact zone and the bisectrix of the quadrant Oxy. It can be seen that the relationship
is linear during loading. The unloading stage starts with a sharp drop in the applied



Variational and Numerical Methods Based on the Bipotential and Application … 253

(a) (b)

Fig. 7 Contour plots of slip: a Case 4 - b Case 5

(a) (b)

Fig. 8 Contour plots of rtx : a Case 4 - b Case 5

force, followed by a non-linear decrease. The difference between the loading path
and the unloading path appears to be evident. Furthermore, there is a slight difference
between the respective trajectories during the first and second cycles.

11 Limit Load of Plastic Frames with Frictional Contact
Supports

Limit analysis is a method of direct calculation of the collapse mechanism of elasto-
plastic structures under proportional loading and statical conditions, bypassing the
complete study of the loading history [27]. It is based on the essential hypothesis of
associated plasticity (with the normality law). The standard approach of limit anal-
ysis does not allow to take into account frictional contact at support, because of the
non-associativity of Coulomb’s dry friction law.

On the basis of the bipotential theory, we establish an extended limit analysis the-
ory for frames in the presence of the unilateral contact with Coulomb’s dry friction at
supports. The kinematic and static approaches are formulated through the calculation
of the total dissipation power of the frame. As it will be shown, on account of the
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Fig. 9 Total force versus
slip at point P

Fig. 10 PlaneFrame with frictional support

presence of contact with friction, the two approaches are coupled in the sense that
the kinematic approach of limit analysis contains static variables and, conversely,
the statical approach contains kinematic variables. To deal with this, an iterative
algorithm, based on the successive approximations method, will be described here.
The method is applied to the study of a simple example, consisting of a rectangular
frame (Fig. 10), which demonstrates how the value of the friction coefficient affects
the plastic limit state, and therefore the limit load and the corresponding collapse
mechanism.

The frame structure is supposed to have n plastic hinges or critical sections. The
i th hinge is characterised by bending moment Mi gathered in a vector m, angular
velocity θ̇i gathered in a vector q̇p and its plastic capacity Mpi . The total plastically
dissipated power is given by

D(q̇p) =
n∑

i=1

Mpi | θ̇i |,
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Its Fenchel conjugate is
D∗(m) = χK (m),

where K = {
m s.t. | Mi |≤ Mpi for 1 ≤ i ≤ n

}
. Hence, the plastic yielding rule

reads as
q̇p ∈ ∂D∗(m)

and the converse relation is
m ∈ ∂D(q̇p).

In detail, the plastic yielding rule is

if | Mi |< Mpi , then θ̇i = 0

else, if Mi = Mpi , then θ̇i ≥ 0,

else, if Mi = −Mpi , then θ̇i ≤ 0.

We suppose the frame contains some columns that can be pinned and unilaterally
supported with possible frictional contact (for instance, the right-hand column in
Fig. 10). Let N (respectively T ) be the normal (respectively tangential) component
of the reaction R at support. Coulomb’s cone is defined by (13):

Kμ = {R = (T, N ) | | T |≤ N } .

Let V be the relative velocity at the unilateral support, u̇ and v̇ being, respectively,
their horizontal and vertical components. Coulomb’s dry friction law is derived from
the contact bipotential (14):

b(−V, R) =
{

μ N | u̇ | if v̇ ≥ 0 and R ∈ Kμ

+∞ otherwise .

The total dissipative power due to plastic hinges and sliding friction, expressed in
terms of the generalized velocities q̇ = (q̇p, V ) and the generalized stresses Q =
(m, R), is given by the bipotential

β(q̇, Q) = D(q̇p) + D∗(m) + bc(−V, R). (32)

Let h be the redundancy degree of the plane structure with n plastic hinges and l
unilateral contacts with friction. The number of independent mechanisms, denoted
e, is given by

e = 2 l + n − h. (33)

The equilibrium equations corresponding to the independent mechanisms can be
written in the following matricial form:
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C Q = f = α f 0, (34)

where f , α > 0, f 0 andC are, respectively, the actual load, the load factor, the refer-
ence load and the so-called rotation matrix. f 0 are arbitrarily fixed for convenience
(for instance, with unitary values), and α, controlling the intensity of the overall
loading, may be given or unknown. The corresponding compatibility relations relat-
ing the generalised strain velocities q̇ to the vector ẇ of generalised velocities of the
independent mechanisms can be obtained through the usual duality:

q̇ = CT ẇ. (35)

A vector Qs is said to be admissible if it is statically admissible (i.e., it satisfies the
equilibrium equations (34)) and plastically admissible (i.e., it satisfies the plasticity
condition and friction condition). A collapse mechanism ẇk is said to be admissible
if it is compatible with the compatibility conditions (35) and provides a positive
power:

ẇkT f 0 > 0.

For given loads, an exact solution (ẇ, Q) of the structural problem is such that:

• ẇ is kinematically admissible (ka),
• Q is statically admissible (sa),
• (q̇, Q), where q̇ = CT ẇ satisfies the constitutive law:

Q ∈ ∂β(•, Q)(q̇) ⇔ q̇ ∈ ∂β(q̇, •)(Q) ⇔ β(q̇, Q) = q̇T Q. (36)

Let us introduce the following function, called bifunctional, representing the
difference between the internal power and the external one:

B(ẇ, Q) = β(CT ẇ, Q) − ẇT f.

The key result is given below.

Proposition 11.1 A solution to the (q̇, Q) of the structural problem is simultane-
ously a solution to the variational principles:

inf
{
B(ẇk, Q) : ẇk ca

}
, inf

{
B(ẇ, Qs) : Qs sa

}
. (37)

Proof. The former differential inclusion (36) reads as

β(q̇k, Q) − β(q̇, Q) ≥ (q̇k − q̇)T Q

which leads to, with q̇k = CT ẇk ,

B(ẇk, Q) − B(ẇ, Q) ≥ (q̇k − q̇)T Q − (ẇk − ẇ)T f.
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Owing to (35) and (34), one obtains the virtual power principle

(q̇k − q̇)T Q = (ẇk − ẇ)T f,

hence
B(ẇk, Q) ≥ B(ẇ, Q),

which achieves the proof. �

We would like now to determine the value αl of the load factor for which a
mechanism ẇ �= 0 with non-negative dissipation

β(q̇, Q) > 0 (38)

is developed with unlimited displacements and strains under constant load. This is
called the limit factor (or limit load). In this newproblem,αl is an unknownvariable,
in addition to the collapse mechanism ẇ and the corresponding generalized stresses
Q. Owing to (34), (35) and the latter relation (36), one has

β(q̇, Q) = ẇTC Q = αl ẇT f 0.

Then, the minimum in the variational principles (37) is

B(ẇ, Q) = 0. (39)

Also, taking into account (38) and αl > 0, one has ẇT f 0 > 0, and thus the collapse
mechanism ẇ is admissible. Hence, the limit factor is given by the ratio of the internal
dissipation and the external one:

αl = β(q̇, Q)

ẇT f 0
.

Byanalogy, for any admissiblemechanism ẇk , the correspondingkinematical factor
is defined by

αk = β(q̇k, Q)

ẇkT f 0
. (40)

As the bipotential (32) is positively homogeneous of order one,

∀λ > 0, β(λ q̇, Q) = λ β(q̇, Q),

the kinematical factor does not depend on the intensity of the mechanism. For con-
venience, it can be arbitrarily fixed by imposing the normalization condition
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ẇkT f 0 = 1, (41)

hence the kinematical factor becomes equal to the internal dissipation:

αk = β(q̇k, Q).

We are now able to state the kinematical theorem.

Proposition 11.2 For any admissible mechanism q̇k , the corresponding kinematical
factor majorizes the limit factor:

αk ≥ αl .

Proof. According to the former variational principle (37) and to (39), one has

B(ẇk, Q) = β(q̇k, Q) − αl ẇkT f 0 ≥ B(ẇ, Q) = 0.

Owing to the definition (40) of the kinematical factor, one has

(αk − αl)ẇT f 0 ≥ 0,

which achieves the proof, because ẇk is admissible, hence the second factor is posi-
tive. �

The dual proposition is the statical theorem.

Proposition 11.3 For any admissible generalized stress Qs in equilibrium with ref-
erence forces multiplied by αs , one has

αl − μ N | u̇ |≥ αs − μ Ns | u̇ | .

The proof can be found in [3].
The interest of Proposition 11.2 lies in the fact that it transforms the kinematic

approach into an optimization problem:

inf
{
β(CT ẇk, Q) : ẇk admissible and ẇkT f 0 = 1

}
. (42)

In solving this problem, themajor difficulty faced is that the functional tominimise
contains the generalised stress vector Q at the limit state, which is not yet known. A
general algorithm for solving this kind of problem, having a coupling term between
dual variables, is based on the successive approximationsmethod, taking into account
the constitutive relations. Let (ẇi , Qi ) be the approximate solution assumed to be
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Fig. 11 Beam element: Mk : bending moment; Nk : normal force; and Tk : shear force

known at the i th iteration. The novel mechanism ẇi+1 is obtained by solving the
optimization problem:

inf
{
β(CT ẇk, Qi ) : ẇ

k admissible and ẇkT f 0 = 1
}
, (43)

where the exact solution Q is replaced by the approximation Qi in (42).
The generalised strain vector ẇi+1 being known, the new approximation of gen-

eralised stress Qi+1 is obtained by seeking a sub-gradient of the bifunctional:

Qi+1 ∈ ∂β(•, Qi )(C
T ẇi+1).

Finally, we can make a converging minimising sequence that, at the limit, provides
the limit state (ẇ, Q).

12 Application to a Plane Frame

In order to illustrate the effect of the presence of the unilateral contact with frictional
support on the limit load and associated mechanism of the plane frames, a steel
rectangular plane frame, built-in at the left-hand column, pinned and unilaterally
supported at the right-hand columnwith possibleCoulombdry friction, is considered.
The loading and dimensions are indicated in Fig. 10. The plastic capacity is constant
on the structure and is equal to Mp. The joints are assumed infinitely rigid. Hence,
the plastic hinge model can be used. Concerning the bending moment, shear and
normal forces, the usual convention of beam theory is considered with respect to a
given reference fibre, represented in Fig. 11.

Because the redundancy of the structure is h = 2, having one contact, the number
of independent mechanisms is given by (33) and equal to 4. They are illustrated in
Fig. 12. The vector of corresponding velocities is

ẇT = (u̇3, v̇3, u̇5, v̇5).

For convenience, the following dimensionless quantities are used:

α = P a

Mp
, mi = Mi

Mp
, t = T a

Mp
, n = N a

Mp
.
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Fig. 12 Mechanisms

The equilibrium equation system (34) reads as

− m2 + 2m3 − m4 = α (44)

− m1 + m2 − m4 = α (45)

m4 + t = 0 (46)

m3 − m4 − n = 0. (47)

The generalized variables are given in the following order:

QT = (t, n,m1,m2,m3,m4), q̇T = (u̇, v̇, θ̇1, θ̇2, θ̇3, θ̇4)

The compatibility condition system (35) reads as

u̇ = u̇5, v̇ = −v̇5

θ̇1 = 1

a
(v̇5 − v̇3), θ̇2 = 1

a
(v̇3 − u̇3)

θ̇3 = 1

a
(2 u̇3 + v̇5), θ̇4 = 1

a
(−u̇3 − v̇3 + u̇5 − v̇5).

The normalization condition (41) is

u̇3 + v̇3 = 1.
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Fig. 13 Exact collapse mechanism. Case 1: for μ ≥ 0.5 (at the left). Case 2: for μ < 0.5 (at the
right)

A simple way to solve the kinematical problem (42) is to use Neals-Symonds
method of mechanism combination ([25, 28]). The principle of the method consists
in making a collapse mechanism by combination of some simple independent mech-
anisms. The kinematical theorem of limit analysis shows that the real mechanism is
characterised by the smallest dissipation. As a general rule, the combination of two
mechanisms does not give us an improved value of dissipation unless these mech-
anisms have in common opposed and equal rotations that cancel each other out. It
can be remarked that because of the loading direction, the contact obviously occurs
at the support that allows us to eliminate mechanism (47) of the combination.

12.1 Iteration 1

As an initial approximation, the problem with usual simple bilateral supports is
considered. It is equivalent to assuming that the sticking contact occurs. It is easy to
find the exact mechanism through a combination of the beam and sway mechanisms
such that the plastic rotation of the second hinge is eliminated to minimise the total
dissipation. The mechanism exactly involves h + 1 = 3 active variables θ̇1, θ̇3 and
θ̇4. The other ones are equal to zero. The equilibrium equation corresponding to the
combined mechanism (44) + (45) is obtained by sum member to member:

− m1 + 2m3 − 2m4 = 2α. (48)

The associated general velocity vector respecting the normalization condition is
ẇT = (0.5, 0.5, 0, 0). The corresponding mechanism is represented in Fig. 13 (Case
1).

Moreover, we have 6 statical unknowns that must be calculated. According to
(48) and the plastic yielding rule, we choose m1 = −1, m3 = 1, and m4 = −1.
Using equilibrium equations (44)–(47), it is easy to compute the other variables
m2, n and t . Finally, we have to check whether the generalised stress vector
QT = (1, 2, 1, 0 : 5, 1, 1) is admissible. Although all the plasticity conditions are
satisfied, Coulomb’s friction criterion | t |≤ μ n is not verified ifμ < 0.5.Otherwise,
if μ ≥ 0.5, Coulomb’s sliding condition is satisfied and the generalized stresses are
admissible, thus the exact collapse mechanism is obtained at the first iteration. Later
on, the non-trivial case μ < 0.5 is only considered (Fig. 13 (Case 1)). The sliding
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condition is violated and the vector Q is not admissible. For clarity, the first iteration
gives us

ẇT
1 = (0.5, 0.5, 0, 0), QT

1 = (1, 2,−1, 0.5, 1,−1),

with a limit factor α = 2.5. In summary, this mechanism is not valid for μ < 0.5.
So, other mechanisms must be looked for.

12.2 Iteration 2

Taking into account the existence of frictional contact, it is necessary to include the
sliding mechanism (47) in the combination of mechanisms. Keeping the generalised
stress vector constant and equal to the Q1 found in the last iteration, let us calculate
a new one. A new mechanism may be taken as the combination of (48) and (46)
multiplied by λ:

−m1 + 2m3 + (λ − 2)m4 + λ t = 2 α.

Assuming the sliding occurs, we put m1 = −1, m3 = 1 and | t |= μ n, which leads
to the following expression of the kinematical factor:

α = 1.5+ | 1 − λ

2
| +λ μ

2
n.

The value of λ is obtained by minimizing the function α(λ), which gives us

λ = 2, α = 1.5 + μ n,

which corresponds to the elimination of the last hinge (λ = 2). So, it is clear that the
kinematic load factor contains the static variables, which are not yet known. Based on
the principle of the successive approximation algorithm, the value of normal reaction
n is the one obtained in the previous iteration, i.e., n = 2. The active generalised
velocities are, in this case, θ̇1, θ̇3 and u̇. The other velocities are null: θ̇2 = θ̇4 = u̇ = 0.
By using the compatibility equations and the normalization condition, one has

ẇT
2 = (0.5, 0.5, 1, 0), q̇T

2 = (2, 0,−1, 0, 2, 0).

The new approximation Q2, which must satisfy the constitutive relations, is obtained
by means of equilibrium equations:

QT
2 = (2μ, 1 + 2μ,−1, 0.5, 1,−2μ), α3 = 1.5 + 2μ.

Once again, the sliding condition is violated for μ < 0.5. So, we should try a new
approximation.
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Table 2 Values of α, n, t at iteration 3 for different values of μ

μ 0 0.1 0.2 0.3 0.4 0.5

α 1.5 1.512 1.556 1.644 1.788 2.50

n 1 1.012 1.056 1.144 1.288 2.00

t 0 0.012 0.056 0.144 0.288 1.00

Table 3 Values of α, n, t at iteration 4 for different values of μ

μ 0 0.1 0.2 0.3 0.4 0.5

α 1.5 1.612 1.756 1.944 1.188 2.50

n 1 1.112 1.256 1.444 1.688 2.00

t 0 0.112 0.256 0.444 0.688 1.00

12.3 Iteration 3

Similarly to the previous iteration, Q2 will remain constant. The collapse mechanism
remains the same, having always three active rates θ̇1, θ̇3 and u̇, and one has

ẇT
3 = ẇT

2 = (0.5, 0.5, 1, 0), q̇T
3 = q̇T

2 = (2, 0,−1, 0, 2, 0)

From the equilibrium equations, and putting n = 1 + 2μ, one has

QT
3 = (μ (1 + μ),μ (1 + 2μ),−1, 0.5, 1,−μ (1 + 2μ)), α3 = 1.5 + μ (1 + 2μ)

Numerical values are given in Table 2. Once again, the sliding condition is violated
and we continue the iterations.

12.4 Iteration 4

By following the same procedure as in the previous iterations, one has (Table 3)

ẇT
4 = ẇT

3 = (0.5, 0.5, 1, 0), q̇T
4 = q̇T

3 = (2, 0,−1, 0, 2, 0)

QT
4 = (−μ (1 + μ + 2μ2), 1 + μ (1 + μ + 2μ2),−1, 0.5, 1,−μ (1 + μ) + 2μ2)

α4 = 1.5 + μ (1 + μ + 2μ2).

An infinite number of iterations is required to reach the exact collapsemechanism,
but according to the two previous iterations, the algorithm is convergent to an exact
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Fig. 14 Evolution of the
limit factor during the
iterations

solution (see Fig. 14). The last one can be determined easily in the present simple
structure. For this, we rewrite all the equilibrium equations:

− m1 + m2 − m4 = α, (49)

m2 − 2m3 + m4 = −α, (50)

m4 + t = 0, (51)

m3 − m4 − n = 0, (52)

− m1 + 2m3 − 2m4 = 2α, (53)

− m1 + 2m3 − 2 t = 2α. (54)

The exact mechanism may be obtained by assuming m1 = −1, m3 = 1 and the
sliding condition | t |= μ n occurs. Equations (51) and (52), combined with the
sliding condition, provide

n = 1

1 − μ
, t = μ

1 − μ

Equations (51)–(54) and (44) successively give us (Table 4)

αl = 1.5 + μ

1 − μ
, m4 = − μ

1 − μ
, m2 = 0.5.

Figures 15 and 16 show the variation of the exact limit load factor and contact and
frictional reactions with respect to the friction coefficient.

We insist on the remarkable sensitivity of the limit state to the non-associativity
caused by the presence of frictional contact in the right-hand column of the plane
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Table 4 Values of α, n, t at iteration 5 for different values of μ

μ 0 0.1 0.2 0.3 0.4 0.5

α 1.5 1.611 1.750 1.928 2.166 2.50

n 1 1.111 1.250 1.428 1.666 2.00

t 0 0.111 0.250 0.428 0.666 1.00

Fig. 15 Variation of the
contact and frictional
reactions with respect to the
friction coefficient

Fig. 16 Variation of the
limit load factor with respect
to the friction coefficient

frame. For instance, the value 0.5 the of friction coefficient represents a boundary
between two entirely different kinds of collapse mechanism. Indeed, forμ ≥ 0.5, the
collapse mechanism is the one represented in Case 1 of Fig. 13, having three plastic
hinges. On the other hand, if μ < 0.5, the collapse mechanism is the one illustrated
in Case 2 of Fig. 13 and has only two plastic hinges. A similar algorithm based on
the statical Proposition11.3 can be developed [3].
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13 Conclusions

In the theoretical part, we showed that the bipotential of Coulomb’s friction law is
related to a specific bipotential convex cover with the property that any graph of the
cover is non-maximal cyclically monotone. On this ground, we proposed a general
algorithm explicitly for constructing the bipotential for the modelling of a given
constitutive law.

In the numerical part, a robust algorithm, initially developed by de Saxcé and
Feng [12] for the isotropic frictional contact law with associated sliding rule, has
been adapted to handle non-associated sliding rules occurring when the friction
is orthotropic. This algorithm has been successfully tested on examples, including
cyclic loading for which a strong hysteretic behavior has been demonstrated.

In the last part, we introduced a variational version of the structural problem based
on the concept of a bifunctional. A solution to the structural problem is simultane-
ously a solution to two coupled variational principles. On this ground, we generalized
the limit analysis theorems for elastoplastic frames in the presence of frictional con-
tact supports. The effect of the friction on the limit load and the collapse mechanism
has been illustrated by considering a simple example with a single frictional contact
support.
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Passive Control of Differential Algebraic
Inclusions - General Method and a
Simple Example

Claude-Henri Lamarque and Alireza Ture Savadkoohi

Abstract In this chapter, we consider a master system consisting of a nonlinear dif-
ferential inclusion and an algebraic equation of constraint (resulting in a Differential
Algebraic Inclusion (DAI) system). This system is coupled to a nonlinear energy
sink (NES) corresponding to a one degree-of-freedom essentially nonlinear differ-
ential equation. We examine how a resonance capture can lead to a reduced order
dynamical system. To obtain this reduced order model, we describe a multiple time
scale analysis governed by the introduction of multi-timescales via a small param-
eter ε that is finite and strictly positive. The mass of the NES is small versus the
mass of the master system, and it governs a mass ratio defining the small parameter
ε. The first timescale is the fast scale. Introducing the Manevitch complexification
leads to the definition of slow time envelope coordinates. These envelope coordi-
nates either do not directly depend on the fast time scale or do not depend on this fast
time scale via introduction of the so-called Slow Invariant Manifold (SIM). The slow
time dynamics of the master system components is analyzed through introduction
of equilibrium points, corresponding to periodic solutions, or singular points (gov-
erning bifurcations around the SIM), corresponding to quasi-periodic behaviors. We
present a simple example of semi-implicit Differential Algebraic Equation (DAE),
including a friction term coupled to a cubic NES. Analytical developments of a 1:1:1
resonance case permit us to predict passive control of a DAI by a NES.
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1 Introduction

Nonsmooth dynamical systems correspond to difficult problems, among which the
theoretical resolution, the numerical approximation of the solutions and the control
gave rise to numerous research achievements ([1–8], for example). We are going to
focus here on a particular aspect: the passive control of dynamical systems of sec-
ond order involving nonsmooth terms and an algebraic constraint. Passive control
solutions in engineering were first explored a long time ago. A detailed study was
carried out by Roberson [9] showing that the suppression band of an absorber is
increased (with respect to traditional tuned mass dampers [10]) by including a cubic
term in its restoring forcing function. Since then, several investigations have been
performed on the passive control of main structural systems by nonlinear absorbers.
Some “few” examples of extensive research results in regard to this domain that we
can cite are: pendulum type [11] and autoparametric vibration absorber [12], buckled
systems [13], impact dampers [14], nonlinear energy sink [15, 16], and nonsmooth
[17] and nonlinear tuned vibration control systems [18]. Some works have been car-
ried out to consider the passive control of main nonsmooth systems by nonlinear
absorbers; for instance, we can mention the passive control process of a main sys-
tem including a Dahl model or Bouc-Wen type hysteresis behavior by a nonlinear
(smooth or nonsmooth) absorber [19, 20]. In these studies, the nonsmooth behaviors
ofmain systems are included bymeans of internal variables in the form of differential
equations. Vibratory energy control of main nonsmooth systems with Saint-Venant
elements in which their behaviors are represented via “differential inclusions” have
been studied by Schmidt and Lamarque [21], Weiss et al. [22] and Lamarque and
Ture Savadkoohi [23]. In the current chapter, we consider a forced principal structure
in which its behavior is modeled by nonlinear differential inclusion and an algebraic
equation of constraint leading to a Differential Algebraic Inclusion (DAI) system.
The system is treated via a time multi-scale method, which leads to the detection of
its slow invariant manifold and characteristic points.

The chapter is structured as follows: In Sect. 2, previous research concerning
the passive control of problems including a nonsmooth term are briefly recalled. In
Sect. 3, the treated problems are presented and themethod is described for the general
case of a master system with a finite number of degrees-of-freedom submitted to an
algebraic condition and with one NES coupled to the first mode of the master system.
In Sect. 4, a simple academic example is treated so as to illustrate themethod. Finally,
the chapter is concluded in Sect. 5.

2 Presentation of the Problems

We consider mechanical dynamical problems of second order in time with a finite
number of degrees-of-freedom including nonlinear terms that could be described
by smooth nonlinear terms, piecewise linear models, or maximal monotone graphs.
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These problems may involve internal variables described by additional problems of
first order in time: these additional problems may correspond to differential inclu-
sions or piecewise smooth nonlinear problems. In order to proceed to a passive
control, the previous systems, potentially with additional ones, could be coupled to
an essentially nonlinear system called a “Nonlinear Energy Sink” (NES). This sec-
ond order problem contains nonlinear terms that are smooth or piecewise smooth
(piecewise linear, for example). Typical situations and basic cases explaining our
purpose have been treated: one degree-of-freedom with nonsmooth internal variable
(Dahl or Bouc-Wen model) coupled to one NES [19, 20], one degree-of-freedom
with nonsmooth term (Saint-Venant element modelling friction) coupled to one NES
[21–23], for example. Here, we extend this study to the following case: semi-implicit
Differential Algebraic Equation (DAE) [24] involving a nonsmooth term coupled to
one NES.

3 General DAI Coupled to One NES

We consider a Differential Algebraic Inclusion (DAI) coupled to one NES depending
on a small parameter ε. The ratio of masses of the NES and the master system
governed by DAI introduces this small parameter. In this section, we describe a
method for analyzing the resonant capture phenomenon between the NES and one
mode of the DAI system, so that rough nonlinear behaviour can be split on two
timescales and approximated by the main harmonic of resonance.

3.1 Model of the System

Let us consider the following model of the system without an NES written in modal
form:

Ẍ(t) + DX (t) + εξ0 Ẋ(t) + εA0(X (t), Ẋ(t)) + εh0(Z(t)) − ε sin(ωt) f0 � 0,
(1)

or in condensed form as

Ẍ(t) − F (Ẋ(t), X (t), t) � 0,

with an additional algebraic constraint

G(Z , X, Ẋ) = 0, (2)

with 1 >> ε > 0 a small parameter, X (t) ∈ Rn , n ∈ N�, f0 ∈ Rn , Z(t) ∈ Rm ,
n ≥ m ∈ N�, h0 : Rm → Rn a smooth function, and A0 is assumed to be a non-
smooth term defined via a maximal monotone operator so that existence and
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uniqueness questions are solved in the frame of the theoretical results given in
[8]. Typically, A0(Ẋ(t), X (t)) = A0(Ẋ(t)) with A0 maximal monotone graph on
Rn . G : Rm × Rn × Rn → Rn is a smooth (nonlinear) function verifying that
∇ZG(Z(t), Ẋ(t), X (t)) is invertible, and either ∇Ẋ G(Z(t), Ẋ(t), X (t)) = 0 or,
more generally, differentiation of the Eq. (2) leads to the following differential inclu-
sion: (

∇ZG(Z(t), Ẋ(t), X (t))Ż(t) + ∇XG(Z(t), Ẋ(t), X (t))Ẋ(t)+

∇Ẋ G(Z(t), Ẋ(t), X (t))F (Ẋ(t), X (t), t)

)
� 0,

(3)

corresponding to a well-posed coupled problem for the nonsmooth terms occurring
viaF . In order to simplify, we consider here the case ∇ẊG(Z(t), Ẋ(t), X (t)) = 0.
We also assumeG(0, 0, 0) = 0. D is a diagonal matrix with diagonal associated with
the n frequencies (ω2

1, ω
2
2, . . . , ω

2
n) and ∇U stands for the gradient operator versus

the variable U .
For control purposes, we assume that aNES (with a very smallmass) is coupled on

one chosen mode of the main system (it counts as ω1). So, the DAI (1)–(2) problem
coupled to the NES can be written in the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẍ(t) + DX (t) + εξ0 Ẋ(t) + εA0(X (t), Ẋ(t)) + εh0(Z(t)) + ε(λ(ẋ1 − ẏ)

+Γ (x1 − y))

⎛
⎜⎜⎜⎝
1
0
...

0

⎞
⎟⎟⎟⎠ − ε sin(ωt) f0 � 0,

∇ZG(Z(t), X (t), Ẋ(t)) dZdt (t) + ∇XG(Z(t), X (t), Ẋ(t)) dXdt (t) = 0,

ε ÿ(t) + ελ(ẏ(t) − ẋ1(t)) − εΓ (x1 − y) = 0,

(4)

where ξ0 is a diagonal matrix of specific damping, λ governs the damping due to the
coupling, Γ is an essentially nonlinear function (typically, Γ (z) = γ z3), y(t) ∈ R,
and f0 is a vector of Rn . In spite of this, we assume that we do not have internal
resonance in the system. We consider a detuning relation for all the frequencies:

ω = ω j + σ jε,

which means that the frequency of the external excitation, i.e., ω, is varying around
the j th frequency of the main system, i.e., ω j . This variation of the frequency is
controlled by the detuning parameter σ j . Let us write

∇ZG(Z(t), X (t), Ẋ(t))
dZ

dt
(t) + ∇XG(Z(t), X (t), Ẋ(t))

dX

dt
(t)

= P(Z(t), X (t), Ẋ(t))
dZ

dt
(t) + Q(Z(t), X (t), Ẋ(t))

dX

dt
(t),

with P and Q matrices of size m × m and m × n, respectively.
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For such a system, we can directly start an analytical study of the evolution of the
amplitudes of oscillations under principal resonance of the system.Another approach
could be to introduce new coordinates derived from X, y. For example, center of unit
mass of the first coordinate x1 of X and of ε mass of the NES with coordinate y,
and relative displacement x1 − y, keeping the other coordinates x2, . . . , xn , since the
NES is coupled to the first mass. Here, we simplify the presentation of the method,
and we keep the X, y coordinates.

3.2 Introduction of Complexification of Manevitch

We assume that, due to the resonance type, the response of the DAI coupled with the
NES can be approached by modulation of the dynamical behavior around harmonics
of a Fourier analysis according to the ω frequency. So, Manevitch complexification
[25] could be introduced as

⎧⎪⎨
⎪⎩

φ1 exp(iωt) = ẋ1(t) + iωx(t), . . . , φn exp(iωt) = ẋn(t) + iωxn(t),

φn+2 exp(iωt) = ż1(t) + iωz1(t), . . . , φn+m+1 exp(iωt) = żm(t) + iωzm(t),

φn+1 exp(iωt) = ẏ(t) + iωy(t)
(5)

with conjugate values

⎧⎪⎨
⎪⎩

φ�
1 exp(−iωt) = ẋ1(t) − iωx(t), . . . , φ�

n exp(−iωt) = ẋn(t) − iωxn(t),

φ�
n+2 exp(−iωt) = ż1(t) − iωz1(t), . . . , φ�

n+m+1 exp(−iωt) = żm(t) − iωzm(t),

φ�
n+1 exp(−iωt) = ẏ(t) − iωy(t)

(6)
and classically, for j = 1, . . . , n and l = 1, . . . ,m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ j = 1
2 (φ j exp(iωt) + φ�

j exp(−iωt)),

x j = 1
2iω (φ j exp(iωt) − φ�

j exp(−iωt)),

żl = 1
2 (φl+n+1 exp(iωt) + φ�

l+n+1 exp(−iωt)),

zl = 1
2iω (φl+n+1 exp(iωt) − φ�

l+n+1 exp(−iωt)),

ẏ = 1
2 (φn+1 exp(iωt) + φ�

n+1 exp(−iωt)),

y = 1
2iω (φn+1 exp(iωt) − φ�

n+1 exp(−iωt)),

(7)

The next step of the analysis is to describe the dynamics with coordinates φ j , φ
�
j , j =

1, . . . , n + m + 1 that are not constants, as in the usual study of stationary solutions
(Harmonic BalanceMethod). The evolution will be written according to a multi-time
scale analysis governed by the small parameter ε.
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3.3 Multi-timescale Analysis. Slow Invariant Manifold

Let us set
τ j = ε j t, j = 0, 1, 2, . . . (8)

As usual, the time derivative can be expanded at different scales of ε according to

d

dt
= ∂

dτ0
+ ε

∂

dτ1
+ . . . (9)

We assume that all the φ j , φ
�
j , j = 1, . . . , n + m + 1 coordinates do not depend on

the τ0 timescale. We will see that either it will be verified a posteriori or it will be
demanded a posteriori up to an asymptotic assumption at time scale τ0. Because of
this assumption, it is possible to calculate integrals versus τ0 considering that all
the φ j are constant versus τ0 (but not independent of time, since variation versus
τ1, τ2, . . . could occur). The complex variables of Manevitch verify

⎧⎪⎨
⎪⎩

φ̇ j exp(iωt) = ẍ j + ω2x j , j = 1, . . . , n,

φ̇n+1 exp(iωt) = ÿ + ω2y,

φ̇l+n+1 exp(iωt) = z̈l + ω2zl, l = 1, . . . ,m,

(10)

Let us consider a projection of Eq. (4) onto the first harmonic of the underlying
Fourier analysis. We set T = 2π/ω. Assuming φ j , j = 1, . . . , n + m + 1 do not
depend on τ0 provides us with

1

T

∫ T

0
φ̇ j exp(iωt) exp(−iωτ0)dτ0 =

1

T

∫ T

0
φ̇ j (τ1, τ2, . . . ) exp(iωτ0) exp(−iωτ0)dτ0 = φ̇ j (τ1, . . . ).

(11)

In the same way, we obtain, for j = 1,

φ̇1 + (ω2
1 − ω2)

φ1

2iω + ε[ ξ01
2 φ1 + F1(φ1, φ

�
1, . . . , φn, φ

�
n) + H01(φn+2, . . . , φ

�
n+m+1)

+ λ
2 (φ1 − φn+1) + C (φ1, φ

�
1, φn+1, φ

�
n+1) − f01

2 ] = 0.
(12)

Then, for j = 2, . . . , n,

φ̇ j + (ω2
j − ω2)

φ j

2iω + ε[ ξ0 j
2 φ j + Fj (φ1, φ

�
1, . . . , φn, φ

�
n)

+H0 j (φn+2, . . . , φ
�
n+m+1) − f0 j

2 ] = 0.
(13)

For j = n + 1 corresponding to the equation associated with the NES behavior, we
have

ε
(
φ̇n+1 + i

1

2ω
φn+1 + λ

2iω
(φn+1 − φ1) − C (φ1, φ

�
1, φn+1, φ

�
n+1)

) = 0, (14)
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and it is possible to simplify by ε. For j = n + 2, . . . , n + m + 1,we obtain algebraic
relations from the calculations

1

T

∫ T

0
[

m∑
l=1

Pjl(Z(t), X (t), Ẋ(t))żl(t) +
n∑

l=1

Q jl ẋl(t)e
−iωτ0 ]dτ0 (15)

denoted as
G j (φ1, . . . , φ

�
N , φn+2, . . . , φ

�
n+m+1) = 0, (16)

for j = n + 2, . . . , n + m + 1, where we consider that each component of Z or X
or Ẋ can be expressed versus the φ j with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ j = 1
2 (φ j (τ1, . . . )eiωτ0 + φ�

j (τ1, . . . )e
−iωτ0),

x j = 1
2iω (φ j (τ1, . . . )eiωτ0 − φ�

j (τ1, . . . )e
−iωτ0),

żl = 1
2 (φl+n+1(τ1, . . . )eiωτ0 + φ�

l+n+1(τ1, . . . )e
−iωτ0),

zl = 1
2iω (φl+n+1(τ1, . . . )eiωτ0 − φ�

l+n+1(τ1, . . . )e
−iωτ0)),

ẏ = 1
2 (φn+1(τ1, . . . )eiωτ0 + φ�

n+1(τ1, . . . )e
−iωτ0),

y = 1
2iω (φn+1(τ1, . . . )eiωτ0 − φ�

n+1(τ1, . . . )e
−iωτ0).

(17)

Functions Fj , H0 j and C are defined by

Fj (φ1, φ
�
1, . . . , φn, φ

�
n) = 1

T

∫ T

0
A0 j (τ0, Φ(τ1, . . . ), Φ

�(τ1, . . . )) exp(−iωτ0)dτ0,

(18)
where Φ = (φ1, . . . , φn)

t . Then,

C (φ1, φ
�
1, φn+1, φ

�
n+1) = 1

T

∫ T

0
Γ (x1 − y)e−iωτ0dτ0, (19)

where

x1 − y = (φ1(τ1, . . . ) − φn+1(τ1, . . . ))eiωτ0 − (φ�
1(τ1, . . . ) − φ�

n+1(τ1, . . . ))e
−iωτ0

2iω

H0 j = 1

T

∫ T

0
h0 j (φn+2(τ1, . . . )e

iωτ0 , . . . , φ�
n+m+1(τ1, . . . )e

−iωτ0)e−iωτ0dτ0. (20)

Now, let us start to organize all of these equations versus the orders of ε. First, we
consider the ε0 order. We have

∂φ1

∂τ0
+ o(ε) = 0 ⇒ φ1 = φ1(τ1, . . . )

...
∂φn

∂τ0
+ o(ε) = 0 ⇒ φn = φn(τ1, . . . ),

(21)
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since ε is factorized in front of all the terms except (ω2
j − ω2)

φ j

2iω
= Iσ jε + o(ε2).

Let us simply denote

G j0(φ1, . . . , φ
�
N , φn+2, . . . , φ

�
n+m+1) = 0, (22)

for j = n + 2, . . . , n + m + 1, the ε0 order of equations G = 0. Then, we have, for
j = n + 1,

∂φn+1

∂τ0
+ λ

2iω1
(φn+1 − φ1) − C0(φ1, φ

�
1, φn+1, φ

�
n+1) = 0, (23)

where we considerC0 the ε0 order ofC , and approximationω = ω1 + o(ε), since we
focus on the passive control of the first mode. Then, considering asymptotic behavior

versus τ0, we assume that when τ0 −→ +∞,
∂φn+1

∂τ0
= 0, i.e.,

λ

2iω1
(φn+1 − φ1) − C0(φ1, φ

�
1, φn+1, φ

�
n+1) = 0. (24)

This relation and Eqs. (22) define the so-called Slow InvariantManifold (SIM). It can
be seen that considering the dynamical behavior around the SIM leads to a reduced
order n model, since we start from n + m + 1 complex variables φ j , but we add
m + 1 relations defining the SIM.

3.4 Analysis of the Dynamics of the Envelope at Fast Time
Scale

Now, we analyse the nonlinear strongly modulated motion around the SIM. It is
enough to consider equations at the ε1 order for φ j , j = 1, . . . , n, written in the
form

∂φ1

∂τ1
+ (iσ j + ξ01

2
)φ1 + F1 + H01 + λ

2
(φ1 − φn+1) + C = 0 (25)

and
∂φ j

∂τ1
+ (iσ j + ξ0 j

2
)φ j + Fj + H0 j = 0, j = 2, . . . , n. (26)

The analysis of the behavior can be done by looking for equilibrium points of the
previous equations (corresponding to approximations of periodic solutions of the
initial system, around the SIM) and by looking for potential “singular points” asso-
ciated with the introduction of them + 1 relations defining the SIM into the previous
equations. It means that if one see the variables φ1, . . . , φN as functions of the
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φn+1, . . . , φn+m+1, the previous Eqs. (25) and (26) could be expressed versus these
last variables as

M(φn+1, . . . , φ
�
n+m+1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn+1
...

φm+n+1

φ�
n+1
...

φ�
m+n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S(φn+1, . . . , φ
�
n+m+1), (27)

which is obtained from differentiation of the SIM relations [28]. Singular points
correspond to the occurrence of singularity of the 2(m + 1) × 2(m + 1) matrix M
when S = 0 corresponds to the equilibrium points. The application of the method
for designing a passive controller of the initial system leads to answering of the
following question: Is it possible to design the NES “parameters” (ε, λ, Γ ) so that
there is no periodic equation with amplitudes (modulus of φ j , j = 1, . . . , n) higher
than the given thresholds and singular points that appear governing quasi-periodic
exchanges between the master system and the NES, limiting the same amplitudes
around the same thresholds?

4 Example of a DAE Including Nonsmooth Terms Coupled
to a NES

In order to illustrate the purpose, we consider a simple mathematical example of
low dimension. We consider a semi-explicit DAE with friction coupled to a NES
reduced to an essentially cubic nonlinearity. Themodel is governed by a semi-explicit
Differential Algebraic Inclusion (DAI), such as

⎧⎪⎨
⎪⎩
ẍ + ω2

1x + εa0 ẋ + αρ(ẋ) + h(z) + ελ(ẋ − ẏ) + εΓ (x − y) � f (t),

g(ẋ, x, z) = 0,

ε ÿ + ελ(ẏ − ẋ) − εΓ (x − y) = 0,

(28)

where ω1, λ, γ, α, a0 are constants. The parameter ε is small and positive, which
is generally associated with a mass ratio (mass of the main system divided by the
mass of the NES). So, ε is finite and is not a bookkeeping parameter that could tend
towards 0+. The graph of the “sign” is represented by ρ. The variable z governs the
algebraic equation defined by g, while h is a function of z. We examine the principal
resonance. We assume
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Γ (x − y) = γ (x − y)3, f (t) = ε f0 sin(ωt), α = εα0, h(z) = εh0(z), ω = ω1 + σε.

(29)
We consider the simple case with

g(ẋ, x, z) = −z + x3

3
, h0(z) = βz, (30)

where p and β are given parameters. Since we have

∂g

∂ ẋ
= 0,

∂g

∂x
= x2,

∂g

∂z
= −1, (31)

the model of the semi-DAE system coupled with one NES can be written as

⎧⎪⎨
⎪⎩
ẍ + ω2

1x + ε(a0 ẋ + α0ρ(ẋ) + h0(z) + λ(ẋ − ẏ) + γ (x − y)3 − f0 sin(ωt)) � 0,

ε(ÿ + λ(ẏ − ẋ) + γ (y − x)3) = 0,

ż = x2 ẋ .
(32)

4.1 Analytical Approximated Approach

Let us introduce new coordinates v andw (center of mass and relative displacement),
so that

v = x + εy

1 + ε
,w = x − y. (33)

We obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v̈ + ω2
1

1+ε
(v + ε

1+ε
w)+

ε
1+ε

(a0[v̇ + ε
1+ε

ẇ] + α0ρ(v̇ + ε
1+ε

ẇ) + h0(z) − f0 sin(ωt)) � 0,

ẅ + ω2
1(v + ε

1+ε
w) + (1 + ε)(λẇ + γw3) + ε(a0[v̇ + ε

1+ε
ẇ]+

α0ρ(v̇ + ε
1+ε

ẇ) + h0(z) − f0 sin(ωt)) � 0,

ż = (v + ε
1+ε

w)2[v̇ + ε
1+ε

ẇ] = v2v̇ + o(ε).

(34)

Multiple-time scales are introduced so that

τ j = ε j t, j = 0, 1, 2, . . . (35)

We use the complexification of Manevitch [25] with the main harmonic, by setting
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⎧⎪⎨
⎪⎩

φ1 exp(iωτ0) = v̇ + iωv, φ�
1 exp(−iωτ0) = v̇ − iωv,

φ2 exp(iωτ0) = ẇ + iωw, φ�
2 exp(−iωτ0) = ẇ − iωw,

φ3 exp(iωτ0) = ż + iωz, φ�
3 exp(−iωτ0) = ż − iωz.

(36)

Following the previous method, we calculate the mean values of all equations to
obtain the projection of each equation on the main harmonic exp(iωτ0). For the
calculations, we assume (it will be verified or imposed later) that during the integrals
versus τ0, all functions φ j = φ j (τ1, τ2, . . . ), j = 1, 2, 3 are seen as constants versus
τ0 (as well as their conjugates φ�

j ). In fact, we assume a very simple mono-harmonic
formof the solution, so that analytical calculations can also be done for the nonsmooth
terms (see [26, 27]). Cumbersome calculations provide

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ̇1 + (
ω2
1

1+ε
− ω2)

φ1

2iω + ω2
1

(1+ε)2
ε

φ2

2iω + εα0
1+ε

F(N1, N2, δ1, δ2) + ε
1+ε

H0(φ3, φ
�
3)−

ε f0
2i(1+ε)

= 0,

φ̇2 − ω
2i φ2 + ω2

1[ φ1

2iω + εφ2

2iω(1+ε)
] + (1 + ε)λ

φ2

2 + εa0(φ1 + εφ2

1+ε
)+

εα0F(N1, N2, δ1, δ2) + εH0(φ3, φ
�
3) + (1 + ε)γ 3i

8ω3 | φ2 |2 φ2 − ε f0
2i = 0,

φ3 − 1
4ω2 | φ1 |2 φ1 = 0,

(37)
where F and H0 are given in Appendix1, and by introducing the polar form of each
φ j , j = 1, 2, 3 in the form

φ j = N j exp(iδ j ), N j and δ j real functions of τ1, τ2, . . . ; N j ≥ 0, j = 1, 2, 3.
(38)

Taking into account the detuning relation ω = ω1 + σε, and since

φ̇ j = d

dt
φ j = ∂φ j

∂τ0
+ ε

∂φ j

∂τ1
+ ε2

∂φ j

∂τ2
+ · · · = ∂φ j

∂τ0
+ ε

∂φ j

∂τ1
+ o(ε2), j = 1, 2, 3,

(39)
these equations can be organized versus powers of ε.

⎧⎪⎪⎨
⎪⎪⎩

∂φ1
∂τ0

+ ε[ ∂φ1
∂τ1

+ i
2 (ω1 + 2σ)φ1 + α0F(N1, N2, δ1, δ2) + H0(φ3, φ

�
3) − f0

2i ] + o(ε2) = 0,
∂φ2
∂τ0

+ iω1
2 (φ2 − φ1) + λ

2φ2 − 3iγ
8ω3

1
| φ2 |2 φ2 + o(ε) = 0,

φ3 − 1
4ω2

1
| φ1 |2 φ1 + o(ε) = 0.

(40)
At the ε0 order, we can see that ∂φ1

∂τ0
= 0, so the assumption φ1 = φ1(τ1, τ2, . . . ) is

verified.Moreover, the algebraic constraint becomes an algebraic equation, truncated
at order ε0 here. The slow invariant manifold (SIM) can be introduced by

φ1 = φ2 − iλ

ω1
φ2 − 3γ

4ω4
1

| φ2 |2 φ2. (41)



280 C.-H. Lamarque and A. Ture Savadkoohi

Fig. 1 The SIM of the
system for following
parameters: ε = 10−3,
ω1 = 1, λ = 0.1, γ = 0.1
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By considering that if τ0 → +∞, the evolution of the motion is modulated around
the SIM, so that one has ∂φ2

∂τ0
= 0, and in that case again, φ2 = φ2(τ1, τ2, . . . ). One

can obtain the following expressions to define the SIM:

N1 = N2

√
λ2

ω2
1

+ (1 − 3γ

4ω4
1

N 2
2 )2 = H1(N2)

δ1 = δ2 − arctan
N2

N1
(

λ

ω1(1 − 3γ
4ω4

1
N 2
2 )

) = H2(δ2, N2) = δ2 + H3(N2). (42)

An example of the SIM that is obtained by Eq. (42) is illustrated in Fig. 1.
At the ε1 order, we keep the following equation governing the main complex

coordinate:

∂φ1

∂τ1
= 1

2i
[(ω1 + 2σ)φ1 − ω1φ2] − α0F − H0 + f0

2i
= RHS. (43)

4.2 Equilibrium Points of the Reduced Model

From the evolution equation of φ1 versus τ1, equilibrium points are obtained by
demanding that, at ε1 order, ∂φ1

∂τ1
= 0. We obtain

RHS = 1

2i
[(ω1 + 2σ)φ1 − ω1φ2] − α0F − H0 + f0

2i
= 0, (44)

so that two real relations can be obtained:
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ω1

2
N2 sin(δ1 − δ2) + 2α0η

π
sin(2δ1) + f0

2
sin(δ1) = 0,

1

2
(ω1 + 2σ)N1 − ω1

2
N2 cos(δ1 − δ2) + 2α0η

π
cos(2δ1) − β

8ω3
1

N 3
1 + f0

2
sin(δ1) = 0, (45)

where η reads as

η = sgn(N1 cos(δ1) + ε

1 + ε
N2 cos(δ2)). (46)

sgn(...) stands for the sign function. By adding relations of the SIM (see Eq. (42)),
we have real relations leading to the definition of the equilibrium points:

N1 = H1(N2),

δ1 = H2(N2, δ2) = δ2 + H3(N2),

cos(δ1 − δ2) = N2

N1
(1 − 3γ

4ω4
1

N 2
2 )

sin(δ1 − δ2) = −N2

N1

λ

ω1

N1(
4α0η

π
sin(2δ1) + f0 sin(δ1)) = λN 2

2 ,

N1(
4α0η

π
cos(2δ1) + f0 cos(δ1)) = ω1N

2
2 (1 − 3γ

4ω4
1

N 2
2 ) − (ω1 + 2σ)N 2

1 (47)

It is possible to express N1, δ1 and δ2 versus N2 so that one equation depending only
on N2 can be calculated. First, combining previous relations, we have

sin(3δ1) = π
λ2N 4

2 + (ω1N 2
2 (1 − 3γ

4ω4
1
N 2
2 ) − (ω1 + 2σ)H 2

1 )2 − H 2
1 (( 4α0

π
)2 + f 20 )

8α0η f0H 2
1

,

(48)
so that we can express δ1 = H4(N2). Then, we obtain an equation depending only
on N2 with η = ±1:

− λN 2
2 + 4α0η

π
H1 sin(2H4) + f0H1 cos(H4) = 0. (49)

One has simply to check that a solution N2 (giving corresponding δ1, N1, δ2) obtained
for a given value of η is compatible with the calculation of η (see Eq. (65) in
Appendix1).

4.3 Singular Points of the Reduced Model

Equation (43) can be rewritten in the real form{
∂N1
∂τ1

= Re(RHS)

N1
∂δ1
∂τ1

= Im(RHS).
(50)
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Since N1 and δ1 are functions of N2 and δ2, Eq. (43) can be written in the form

(
∂H1
∂N2

0
∂H2
∂N2

∂H2
∂δ2

) (
∂N2
∂τ1
∂δ2
∂τ1

)
=

(
Re(RHS)

Im(RHS)

)
, (51)

which yields to (
∂H1
∂N2

0
∂H2
∂N2

1

) (
∂N2
∂τ1

∂δ2
∂τ1

)
=

(
Re(RHS)

Im(RHS)

)
. (52)

Singular points of the system demand that

det

(
∂H1
∂N2

0
∂H2
∂N2

1

)
= 0 (53)

or
∂H1

∂N2
= 0. (54)

It can be seen that Eq. (54) provides positions of local maxima of the SIM, which is
defined in Eq. (42). As a result, singular points of the system under study are confined
on local maxima of the SIM.

4.4 Numerical Scheme for the DAI

In order to compare the behaviors forecasted by the (rather rough) analytical
approach, we need to process numerical simulations. Based on previous works (see,
for example, [8]), we use an implicit Euler numerical scheme, which is correct math-
ematically and can guarantee the convergence of the approximated solution towards
the exact solution (but with -quite small- order 1). Let us write the semi-explicit DAI
(32) as a first-order differential inclusion. Let us set

X =

⎛
⎜⎜⎜⎜⎝

ẋ
x
ẏ
y
z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞
⎟⎟⎟⎟⎠ . (55)

Then, since we have ∂g
∂x1

= 0 and ∂g
∂x5

= −1, let us write

ẋ5 = ∂g

∂x2
ẋ2 = x22 x1. (56)

Finally, the equations can be expressed via
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Ẋ + L X + G(X, t) + A(X) � 0, (57)

where 0 = (0, 0, 0, 0, 0)t ,

L =

⎛
⎜⎜⎜⎜⎝

ε(a0 + λ) ω2
1 −ελ 0 0

−1 0 0 0 0
−λ 0 λ 0 0
0 0 −1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

L1

L2

L3

L4

L5

⎞
⎟⎟⎟⎟⎠ (58)

and

G(X, t) =

⎛
⎜⎜⎜⎜⎝

ε[h0(x5) + γ (x2 − x4)3 − f0(t)]
0

γ (x4 − x2)3

0
− ∂g

∂x2
x1

⎞
⎟⎟⎟⎟⎠ ,

∂g

∂x2
= x22 , (59)

with

A(X) =

⎛
⎜⎜⎜⎜⎝

εα0ρ(x1)
0
0
0
0

⎞
⎟⎟⎟⎟⎠ . (60)

The DAI problem of Eq. (57) with given initial conditions in the phase space of X
possesses a unique solution (see Ref. [8]). Discretization of the problem can easily
be done. Let us choose a time step Δt > 0. For any integer n, let us set tn = nΔt ,
X (tn) 	 Xn , X (tn+1) 	 Xn+1. An Euler implicit scheme can be built from

{
1
Δt (Xn+1 − Xn) + L Xn + G(Xn, tn) + A(Xn+1) = 0,

X0 given.
(61)

The Euler implicit scheme algorithm is given in Appendix2.

4.5 An Example: SMR of a System

Here, the system (32) is integrated numerically via an implicit Euler scheme with the
time step as Δt = 10−4. System parameters are collected in Table 1. The following
initial conditions are assumed for the system:

(
ẋ(0), x(0), ẏ(0), y(0), z(0)

) = (
0, 2, 0, 2,

8

3

)
. (62)
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Table 1 System parameters relevant to Eq.(32)

ε ω1 a0 α0 β∗ σ λ γ

10−3 1 0.1 0.1 0.1 0.1 0.1 0.1

P∗ h0(z) = εβz
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Fig. 2 Time histories of N2 and N1. Results are obtained by numerical integration of the system
(32) via an implicit Euler scheme with the time step as Δt = 10−4

The SIM of the mentioned system is depicted in Fig. 1. Local maxima of the SIM,
which are also positions of singular points of the system, can be obtained via Eq. (54).
They read as

N2 = 2.124 , 3.642. (63)

Considering that all parameters of the system are fixed, the necessary forcing ampli-
tude for leading the system to a SMRcan be obtained via Eq. (49). One should replace
N2 with values that are reported in Eq. (63). They correspond to

f0 = 0.242 , 4.019. (64)

Here, we take f0 = 4.019. Time histories of system amplitudes in terms of N j ,
j = 1, 2, 3 and systemvariables x , y and z are presented in Figs. 2 and 3, respectively.
These figures show that the system experiences persisting bifurcations due to the
existence of a singular point on N2 = 3.642. The SIM of the system obtained via
Eq. (42) and corresponding numerical values for N2 and N1 are collected in Fig. 4.
It is seen that the system oscillates around the SIM and it bifurcates persistently as
soon as it reaches its local maxima, which are positions of singular points. It should
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Fig. 3 Time histories of x , y and z. Results are obtained by numerical integration of the system
(32) via an implicit Euler scheme with the time step as Δt = 10−4

Fig. 4 The SIM of the
system obtained through
Eq. (42) (red dashed line)
and corresponding numerical
results (blue solid line)
collected by numerical
integration of the system
(32) via an implicit Euler
scheme with the time step as
Δt = 10−4
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be mentioned that the SIM that is defined in Eq. (42) is obtained by keeping only
the first harmonics of the system, while the numerical results contain all harmonics
of the system. That is why the numerical results presented in Fig. 4 oscillate around
the SIM. The effects of higher harmonics can be seen in Fig. 5 where the analytical
relations between N1 and N3 (see the third equation of the system 40) are compared
with those obtained from the numerical scheme. Finally, to get an idea about the
tolerance of the error imposed by the implicit Euler scheme, the time histories of
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Fig. 5 Relation between N3
and N1: The analytical curve
(red dashed line) obtained
from the third equation of the
system (40) and the
numerical one (solid blue
line) collected by numerical
integration of the system
(32) via an implicit Euler
scheme with the time step as
Δt = 10−4
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Fig. 6 The absolute value of
the g(ẋ, x, z) function (see
Eq. (28)), obtained from an
implicit Euler scheme
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g(ẋ, x, z) function (see Eq. (28)) are depicted in Fig. 6. This figure shows that the
error stays at the o(Δt) with Δt = 10−4, which is coherent with the error tolerance
of the Euler scheme.

5 Conclusion

This work can be extended according to the following perspectives: Manevitch com-
plexification can be generalized so as to involve more than one harmonic and the two
timescales approach can be adapted so as to define the SIM and study a reduced order
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model of the dynamics at scale τ1. From the example, one can see that analytical
developments are quite convenient for the design of a NES in engineering appli-
cations. To have a straightforward explicit relation will be quite impossible if one
increases the dimension of the master system, the number of NES and the implicit
character of the algebraic relations. But algebraic relations and the reduced order
model can be studied numerically so as to proceed with the design of the NES. Such
a generalization of the approach for the nonsmooth case is also an interesting per-
spective for the parametric investigation of the NES parameters and for applications
in engineering. Generalization to systems with more than one NES, or to systems
with mass, stiffness and damping matrices and smooth geometrical nonlinearities
with algebraic constraints and nonsmooth terms, is possible if existence and unique-
ness questions can be studied for the obtained model. For master systems, NES and
algebraic relations without any nonsmooth terms, the research of singular points can
be linked to the occurrence of Neimark-Sacker bifurcations.
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APPENDIX 1 - Expressions of F and H0

The function F is defined as

∫ 2π
ω

0
ρ(v̇ + εẇ

1 + ε
) exp(−iωτ0)dτ0.

We have

v̇ + εẇ

1 + ε
= 1

2
(φ1 + ε

1 + ε
φ2)exp(iωτ0) + c.c.,

and we assume that φ1, φ2 do not depend on τ0. Using the polar form φ j =
N j exp(iδ j ), j = 1, 2, we also have

v̇ + εẇ

1 + ε
= N1 cos(ωτ0 + δ1) + ε

1 + ε
N2 cos(ωτ0 + δ2).

So, we obtain

F
2iη

π
exp(−iωt�1 ),

where
N1 cos(ωt

�
1 + δ1) + ε

1 + ε
N2 cos(ωt

�
1 + δ2) = 0

and
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t�1 ∈ [0, π

ω
],

η = sign(N1 cos(δ1) + ε

1 + ε
N2 cos(δ2)). (65)

Finally, we derive

tan(ωt�1 ) = N1 cos(δ1) + ε
1+ε

N2 cos(δ2)

N1 sin(δ1) + ε
1+ε

N2 sin(δ2)
,

and keeping the main orders of ε, we have

F(N1, N2, δ1, δ2) = 2i
π
sign(cos(δ1)) exp(−iδ1)[1 − εi N2

N1
sin(δ1 − δ2) + o(ε2)],

H0(φ3, φ
�
3) = βφ3

2iω1
= β

8iω3
1

| φ1 |2 φ1. (66)

APPENDIX 2 - Euler Implicit Numerical Scheme

Let us note that Xn =

⎛
⎜⎜⎜⎜⎝

x1n
x2n
x3n
x4n
x5n

⎞
⎟⎟⎟⎟⎠, Xn+1 =

⎛
⎜⎜⎜⎜⎝

x1n+1

x2n+1

x3n+1

x4n+1

x5n

⎞
⎟⎟⎟⎟⎠. Let X0 be given. For n ≥ 0, we

have

auxn = x1n − Δt L1Xn − Δtε(h0(x5n) + γ (x2n − x4n)3 − f0(tn)),
L1Xn = ε(a0 + λ)x1n + ω2

1x2n − ελx3n,

x1n+1 =
⎧⎨
⎩

0 if | auxn |≤ εα0Δt
auxn − εα0Δt if auxn ≥ εα0Δt
auxn + εα0Δt if auxn ≤ −εα0Δt

,

x2n+1 = x2n + Δt x1n,
x3n+1 = x3n − Δt (L2Xn + γ (x4n − x2n)3) = x3n − Δt (x1n + γ (x4n − x2n)3),

x4n+1 = x4n + Δt x3n,
x5n+1 = x5n + Δt x22nx1n .
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Experimental Validation of Torsional
Controllers for Drilling Systems
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Abstract Torsional stick-slip vibrations decrease the performance, reliability and
fail-safety of drilling systems used for the exploration and harvesting of oil, gas, min-
erals and geo-thermal energy. Current industrial controllers regularly fail to eliminate
stick-slip vibrations, especially whenmultiple torsional flexibility modes in the drill-
string dynamics play a role in the onset of stick-slip vibrations. This chapter presents
the experimental validation of novel robust output-feedback controllers designed
to eliminate stick-slip vibrations in the presence of multiple dominant torsional
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flexibility modes. For this purpose, a representative experimental test setup is
designed, using a model of a real-life drilling rig as a basis. The model of the
dynamics of the experimental setup can be cast in Lur’e-type form with set-valued
nonlinearities representing an (uncertain) model for the complex bit-rock interaction
and the interaction between the drill-string and the borehole. The proposed controller
design strategy is based on skewed-μ-DK-iteration and aims at optimizing the robust-
ness with respect to uncertainty in the non-smooth bit-rock interaction. Moreover,
a closed-loop stability analysis for the non-smooth drill-string model is provided.
Experimental results confirm that stick-slip vibrations are indeed eliminated using
the designed controller in realistic drilling scenarios in which state-of-practice con-
trollers have failed to achieve the same.

1 Introduction

Efficiency, reliability and safety are important aspects in the drilling of deep wells for
the exploration and production of oil, gas, mineral resources and geo-thermal energy.
Drill-strings several kilometers in length are used to transmit the axial force and
torque necessary to drill the rock formations. These drill-string systems are known to
exhibit different types of self-excited vibration,which decrease the drilling efficiency,
accelerate bit wear, may cause sudden failure of expensive Measure-While-Drilling
(MWD) tools, and may cause drill-string failure due to fatigue. This chapter focuses
on the controlled mitigation of torsional stick-slip vibrations.

Modelling of the torsional dynamics of the drill-string is an important step towards
the control of torsional vibrations.Most controller designs presented in literature rely
on one- or two degree-of-freedom (DOF) models for the torsional dynamics only,
see e.g., [4, 14, 31, 35]. The resisting torque-on-bit (TOB) is typically modelled as
a frictional contact with a velocity weakening effect. Although experiments using
single cutters to identify the bit-rock interaction law, see [5], do not reveal such a
velocity weakening effect, analysis of models that take the coupled axial and tor-
sional dynamics into account shows that such coupling effectively leads to a velocity
weakening effect in the TOB [30]. This motivates a modelling-for-control approach
that only involves the torsional dynamics and a set-valued, velocity weakening bit-
rock interaction law. In contrast to other studies, however, we use a multi-modal
model of the torsional dynamics, as field observations have revealed that multiple
torsional resonance modes play a role in the onset of stick-slip oscillations.

Controllers for drilling systems aim to achieve drill-string rotation at a constant
velocity and the mitigation of stick-slip vibrations. Moreover, the following con-
trol specifications are important. First, only surface measurements can be used for
feedback. Second, the controller should be able to cope with dynamics related to
multiple torsional flexibility modes. Third, robustness with respect to uncertainty in
the non-smooth bit-rock interaction has to be guaranteed and, fourth control per-
formance specifications, related to, e.g., measurement noise sensitivity and actuator
constraints, need to be taken into account in the controller design.
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A well-known control method, which aims at damping the first torsional mode, is
the Soft Torque Rotary system, see [12]. The same objective is set in [14], which uses
a PI-controller based on the top drive velocity. Other control methods have been
developed, including torsional rectification [35], observer-based output-feedback
[4, 6, 39], impedance matching [8], adaptive output-feedback for infinite dimen-
sional drill-string models [1], weight-on-bit control [2] and robust control [15, 31].
Although important steps forward have been take in these works, an approach that
satisfies all mentioned requirements has not yet been developed. A robust control
approach, as proposed in [15, 31], is particularly suitable for this problem, since both
robustness with respect to uncertainty of the system dynamics and control perfor-
mance specifications can be taken into account in the control design. In [31], anH∞
controller synthesis method is applied to a 2-DOF drill-string model and the twist
in the drill-string is used as measurement, i.e., knowledge of the angular position
of the bit is assumed. [15] uses the μ-synthesis technique through the DK-iteration
procedure for the purpose of obtaining less conservative bounds on the uncertainty to
obtain robustness with respect to the nonlinear bit-rock interaction. The model used
is a similar 2-DOF model, and down-hole measurements (for assessing the twist of
the drill-string) are also used in this case. Moreover, the employed 2-DOF models
only take the first flexibility mode into account. In this chapter, we present exper-
imental results of a robust control approach for the control of torsional drill-string
vibrations, of which preliminary model-based results have been presented in [38]
and which can cope with multiple torsional resonance modes.

Because of the high costs involved in testing on a real drilling rig, experimental
lab-scale setups representing the drilling dynamics used for multiple purposes can
be found in the literature, some examples of which are mentioned here (see [25]
for a more comprehensive overview). In [22], an experimental 2-DOF drill-string
system is used for the analysis of friction-induced stick-slip limit cycles. The same
setup is used in [4] for experimental validation of an observer-based output-feedback
controller. In [17], an experimental setup is developed that can emulate various
excitationmechanisms of the drill-string, including stick-slip, well-borehole contact,
and drilling fluid interaction. The aforementioned test setups both use brake systems
to implement bit-rock interaction laws. A different approach is taken in [18], inwhich
an experimental setup for exploring stick-slip phenomena is used that involves real
cutting using a bit. In [36], an experimental setup is used to investigate whirling
effects in drilling systems, involving both torsional and lateral dynamics. Another
example of the experimental validation of a controller design approach to torsional
vibrations in drilling systems can be found in [20]. Also for the testing of down-hole
tools, experimental setups are used as a stepping stone towards implementation of the
technique. For example, experimental results ofResonanceEnhancedDrilling (RED)
technology are presented in [40], and in [29], an experimental setup for investigating
the Anti Stick-slip Tool (AST) is shown.

The need for a new experimental setup design stems from the fact that the
controllers proposed in this thesis focus on the robustness with respect to multi-
ple dominant torsional flexibility modes in the drill-string dynamics. To investigate
this robustness, it is important that the experimental setup represents such a drilling
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system with multiple dominant flexibility modes (in contrast to, e.g., [22, 36], in
which setups with a single flexibility mode are considered).

The main contributions of this chapter are, firstly, the model-based design of a
representative (lab-scale) experimental drill-string setup, secondly, the design of a
robust output-feedback controller methodology for eliminating stick-slip vibrations
and, thirdly, experimental results showing themerit of the proposed control approach.

In Sect. 2, the design of the experimental setup is motivated and detailed. This
design is based on a non-smooth model of a real drilling rig. Section 3 deals with
the controller design strategy aiming to eliminate the torsional vibrations. In Sect. 4,
the proposed control strategy is validated experimentally. The chapter closes with
concluding remarks in Sect. 5.

2 Design of the Experimental Drill-String Setup

2.1 Model-Based Design of the Experimental Setup

Consider a drilling system, as schematically shown in Fig. 1. The investigated system
is a realistic drill-string model of an offshore jack-up drilling rig, and the reservoir
sections of thewells are drilledwith a 6” PDCbit to reach depths ofmore than 6000m
along-hole and with an inclination angle up to 60◦, resulting in significant resistive
torques along the drill-string due to frictional borehole drill-string interaction. The
rig is equipped with an AC top drive and fitted with a modern SoftTorque system [14,
19]. However, for this depth and hole size, stick-slip vibrations have been observed in

Fig. 1 Schematic drilling
system, not to scale (adapted
from [27])

Top drive
Rig

Bottom hole
assembly

Bit

Drill pipe



Experimental Validation of Torsional Controllers for Drilling Systems 295

Fig. 2 Field data of the drilling rig under investigation, indicating severe stick-slip oscillations,
see [11] (desired angular velocity is approximately 50 rpm). Top plot: top drive angular velocity in
RPM; bottom plot: top drive torque

Fig. 3 Step-wise
development of a model to be
used as a basis for the design
of the experimental setup

18-DOF FEM
drill-string model

Dynamical model of
the experimental
setup (structure)

Reduced-order
drill-string model

Parameterized model
with structure of the

setup

Model of the
experimental setup

Parameter
identification

Model reduction

Scaling

the field for this rig (see [11]), as shown in Fig. 2. In this figure, measurement data of
the real rig is shown. The top drive angular velocity (RPM) and top drive torque (TQ)
show severe oscillations, indicating stick-slip oscillations at the bit. The fact that a
control strategy, which only damps the first flexibility mode of the torsional drill-
string dynamics, fails to eliminate stick-slip vibrations shows that multiple resonance
modes play a role and motivates construction of multi-modal drill-string models and
development of a controller based on these models.

A finite-element method (FEM) model of this real-life drilling system is used as
a basis for the design of the experimental drill-string setup. A detailed description of
the FEMmodel is given in Sect. 2.1.1. Here, the focus is on the steps that are taken to
develop a model of the experimental setup based on this 18-DOF FEMmodel. These
steps are summarized in Fig. 3 and are discussed in more detail in the following
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sections. In Sect. 2.1.2, the model reduction strategy that is used for obtaining a
reduced-order drill-string model is discussed. Next, the model of the experimental
setup is explained in more detail in Sect. 2.1.3 and the identification approach for
obtaining the parameters for this model based on the reduced-order model is given in
Sect. 2.1.4. Since it is impossible to scale down an oil-field drill-string to a lab-scale
setup that still exhibits the main (torsional) dynamics we aim to study, we propose
a model with four rotating discs, coupled with (steel) strings, as shown in Fig. 4.
It is important to mention that the proposed model of the experimental setup has a
specific structure, due to the mechanical elements (i.e., inertias and springs) that are
used in the setup resulting in a lumped-parameter model, while on the other hand,
the reduced-order drill-string model does not have such a specific structure. The
identified parameters of the obtained model are still of the same order of magnitude
as the original drill-string model (e.g., inertia and stiffness properties of the system
as a whole are still of the same order of magnitude, and are hence not (yet) scaled).
As a consequence, the representative torsional velocity and torque levels of the setup
match those of a real drill-string system. Therefore, scaling is used to obtain suitable
torque levels and velocities for a lab-scale drill-string setup, but also to obtain feasible
inertias and stiffnesses for the lab-scale experimental system design. This scaling
procedure is discussed in Sect. 2.1.5.

2.1.1 Finite-Element Model

Afinite-element model of this drilling system, which represents a drill-string 6249m
in length, has been developed, and the simulation results of this model have been
validated with field data for a range of operational conditions (such as weight-on-bit
(WOB) and angular velocity). The 18-DOF finite-element model is obtained by rep-
resenting the drill-string with a number of equivalent pipe sections in order to accu-
rately describe the torsional dynamics relevant to stick-slip vibrations. The model
is validated by comparing the simulations of the non-smooth model (i.e., including
bit-rock and borehole-drillstring interaction torques) with field measurements of the
drill-string system. Figures 5 and 6 show two cases of this validation study, i.e., the
simulation results of the finite-element model are compared with the field data under
two different operating conditions; in both cases, the drill-string system exhibited
stick-slip vibrations at the bit. As can be seen from these figures, the simulation
results match the field data, both in terms of the amplitude and the frequency of
the oscillations. The latter observations further motivate the usage of the developed
model as a basis for controller design in this thesis.
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Fig. 4 Schematic
representation of a model
with four discs

Inertia J̄4

θ̄s,4

Inertia J̄3

Inertia J̄2

θ̄s,2

Inertia J̄1

θ̄s,1

Steel string

Steel string

Steel string

Drive part

Tbit

θ̄s,3

The finite-element method (FEM) representation of the drill-string is a model
with 18 elements. The element at the top is a rotational inertia to model the top
drive inertia, and the subsequent elements are equivalent pipe sections based on the
dimensions and material properties of the drill-string (see [37] for more details).
The resulting model can be written as a second-order differential equation of the
following form:

M θ̈ + Dθ̇ + Ktθd = SwTw(θ̇) + SbTbit (θ̇1) + St Ttd (1)

with the rotational displacement coordinates θ ∈ R
m with m = 18, the top drive

motor torque input Ttd ∈ R being the control input, the bit-rock interaction torque
Tbit ∈ R and the interaction torques Tw ∈ R

m−1 between the borehole and the drill-
string acting on the nodes of the FEM model. The coordinates θ = [

θ1 · · · θm
]�

represent the angular displacements of the nodes of the finite-element representa-
tion. Next, we define the difference in angular position between adjacent nodes as
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Fig. 5 Comparison between a simulation result of the FEM model and actual field data from the
rig (top plot: top drive torque; bottom plot: top drive velocity); the desired angular velocity is
approximately 50 rpm [11]

Fig. 6 Comparison between a simulation result of the FEM model and actual field data from the
rig (top plot: top drive torque; bottom plot: top drive velocity); the desired angular velocity is
approximately 140 rpm, [11]

follows: θd := [
θ1 − θ2 θ2 − θ3 · · · θm−1 − θm

]�
. In (1), themass, damping and stiff-

ness matrices are, respectively, given by M ∈ R
m×m , D ∈ R

m×m and Kt ∈ R
m×m−1,

and the matrices Sw ∈ R
m×m−1, Sb ∈ R

m×1 and St ∈ R
m×1 represent the general-

ized force directions of the interaction torques, the bit torque and the input torque,
respectively. The coordinates θ are chosen such that the first element (θ1) describes
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Fig. 7 Schematic
representation of the 18-DOF
finite-element model

Ttd

Tbit

θ1

θ2

θ17

θ18

the rotation of the bit and the last element (θ18) the rotation of the top drive at the sur-
face, as illustrated in Fig. 7. The interaction between the borehole and the drill-string
is modelled as (set-valued) Coulomb friction, that is,

Tw,i ∈ Ti Sign
(
θ̇i

)
, for i = 2, . . . ,m, (2)

with Ti representing the amount of friction at each element and the set-valued sign
function defined as

Sign (y) :=
⎧
⎨

⎩

−1, y < 0
[−1, 1] , y = 0
1, y > 0.

(3)

Note that possible viscous effects between the drill-string and the borehole are
captured in the damping matrix D, which motivates only Coulomb effects being
taken into account in the interaction torques Tw. The set-valued bit-rock interaction
model is given by

Tbit (θ̇1) ∈ Sign
(
θ̇1

) (
Td + (Ts − Td) e

−vd |θ̇1|) , (4)

where Ts is the static torque, Td the dynamic torque and vd := 30
Ndπ

s/rad indicates the
decrease from static to dynamic torque. A schematic representation of the bit-rock
interaction is shown in Fig. 8. For typical parameter settings, the ratio between Ts and
Td is within the range 2–5, i.e., the static torque is 2 to 5 times higher than the dynamic
torque. Moreover, typical parameter settings for Nd are such that the decrease from
static to dynamic torque ismainly between 0 and 20–30 rpm,which results in a severe
velocity-weakening effect in the bit-rock interaction for low angular velocities.

2.1.2 Reduced-Order Model

The FEM model presented above has 18 degrees of freedom. For the design of the
setup, we rely on a reduced-order model. The purpose of this reduced-order model is
to approximate the higher-order FEM model with a reduced number of states, while
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Fig. 8 Schematic
representation of the bit-rock
interaction Tbit in (4);
ωbit := θ̇1

Td

−Td

Ts

−Ts

ωbit

Tbit

still preserving the key dynamic systemproperties.Asmentioned before,modelswith
multiple flexibility modes are considered, because field observations have revealed
that higher flexibility modes of the drill-string also play a role in the onset of stick-
slip vibrations (see [23]). As mentioned in [37], the first three resonance modes, with
resonance frequencies at f1 ≈ 0.15, f2 ≈ 0.38 and f3 ≈ 0.53 Hz, are dominant in
the drill-string dynamics (see Figs. 9, 10 and 11). Therefore, a drill-stringmodel with
at least four degrees of freedom is considered capable of enabling the accurate capture
of those first three flexibility modes and the rigid body mode by the reduced-order
model.

For the design of the experimental setup, we aim to accurately approximate the
torsional flexibility modes of the drill-string system associated with the lowest res-
onance frequencies. Therefore, an eigenmode-based reduction strategy is used, also
known as the mode displacement method [10]. Now, let us consider the undamped
(and unforced) drill-string system and, in addition, the stiffness matrix K related
to the absolute angular positions θ = [

θ1 · · · θm
]�
, instead of the stiffness matrix

Kt , related to the difference in angular position θd as in (1), hence M θ̈ + K θ = 0.
Then, the mode displacement method is based on the free vibration modes of
these structural dynamics. This leads to the following generalized eigenvalue prob-
lem:

[
K − λ2

i M
]
vi = 0, where vi is the mode shape vector corresponding to the

eigenfrequency λi , with i ∈ [1, . . . ,m]. The resulting eigenfrequencies are grouped
in ascending order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λm , and the corresponding eigenmodes
v1, v2, . . . , vm are collected in the square (m × m) modal matrix V = [

v1 v2 · · · vm
]
.

Using this matrix, we employ the following coordinate transformation to modal
coordinates η:

θ = Vη. (5)
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The general idea of the reduction approach is to keep the first mr < m eigenvec-
tors, which correspond to the lowest eigenfrequencies in the reduced-order model.
Hereto, consider the following transformationmatrix T = [

v1 v2 · · · vmr

]
. Using this

transformation matrix, (5) can be rewritten as

θ = [
T U

] [
θr
η2

]
= T θr +Uη2, (6)

whereU contains the truncated eigenmodes, that is, the eigencolumns mr + 1 to m,

and η2 contains the states that correspond to these modes; the coordinates preserved
in the reduced-order model are denoted by θr . Using (1) and (6) and projecting
the resulting equations of motion on the expansion basis T results in the following
reduced-order dynamics:

Mr θ̈r + Dr θ̇r + Krθr = T�SwTw(
˙̌
θ) + T�SbTbit ( ˙̌

θ1) + T�StTtd (7)

withMr = T�MT ∈ R
mr×mr , Dr = T�DT ∈ R

mr×mr , Kr = T�KT ∈ R
mr×mr and

θ̌ := T θr ∈ R
m being the estimated (full-order) angular displacements based on the

reduced-order estimates.
In this work, the case in which mr = 4 is considered, that is, we take the rigid

bodymode and three torsional flexibility modes into account. The relevant frequency
response functions of the (linear) drill-string dynamics are shown in Figs. 9, 10
and 11. These frequency response functions describe the (linear) drill-string dynam-
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Fig. 9 Frequency response function of the 18-DOF model, the reduced-order model and the setup
model with the identified parameters from input torque Ttd to bit velocity ωbit
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Fig. 10 Frequency response function of the 18-DOF, the reduced-order model and the setup model
with the identified parameters from input torque Ttd to top drive velocity ωtd
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Fig. 11 Frequency response function of the 18-DOF, the reduced-order model and the setup model
with the identified parameters from bit torque Tbit to bit velocity ωbit , i.e., bit-mobility
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ics from the relevant inputs (top drive torque and bit-rock interaction torque) to the
angular velocity outputs at the top drive and bit, i.e., respectively, ωtd := θ̇18 and
ωbit := θ̇1. As can be observed, the first three eigenmodes are indeed accurately
matched by the reduced-order model.

2.1.3 Dynamical Model of the Experimental Setup

In this section, the model that is used for the design of the experimental setup, as
shown in Fig. 4, is discussed in more detail. For the model, we will not restrict our-
selves to connections between adjacent discs, but will also take potential connections
between all the discs into account. The coordinates θ̄s = [

θ̄s,1 · · · θ̄s,4
]�

represent
the angular displacements of the discs. The equations of motion of the system are
given by:

M̄s
¨̄θs + D̄s

˙̄θs + K̄s θ̄s = SwsTws(
˙̄θs) + SbsTbit (

˙̄θs,1) + StsTtd , (8)

with

M̄s =

⎡

⎢⎢
⎣

J̄1 0 0 0
0 J̄2 0 0
0 0 J̄3 0
0 0 0 J̄4

⎤

⎥⎥
⎦ (9)

D̄s =

⎡

⎢⎢
⎣

d̄12 + d̄13 + d̄14 −d̄12 −d̄13 −d̄14
−d̄12 d̄12 + d̄23 + d̄24 −d̄23 −d̄24
−d̄13 −d̄23 d̄13 + d̄23 + d̄34 −d̄34
−d̄14 −d̄24 −d̄34 d̄14 + d̄24 + d̄34

⎤

⎥⎥
⎦, (10)

K̄s =

⎡

⎢
⎢
⎣

k̄12 + k̄13 + k̄14 −k̄12 −k̄13 −k̄14
−k̄12 k̄12 + k̄23 + k̄24 −k̄23 −k̄24
−k̄13 −k̄23 k̄13 + k̄23 + k̄34 −k̄34
−k̄14 −k̄24 −k̄34 k̄14 + k̄24 + k̄34

⎤

⎥
⎥
⎦, (11)

Sws =

⎡

⎢⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥
⎦ , Sbs =

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦ , Sts =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ , (12)

and the resistive torques at discs 2, 3 and 4 for modeling the borehole drill-string
interaction are given by Tws . Recall that Ttd denotes the top drive motor torque and
Tbit denotes the bit-rock interaction torque.
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2.1.4 Parameter Identification for the Setup Model

The next step is to determine the parameters of the 4-DOFmodel of the experimental
setup based on the reduced-order model presented in Sect. 2.1.2. First, the inertias of
the four discs are determined. The total inertia of the 4-disc setup is chosen to be equal
to the total inertia of the original 18-DOFmodel. In addition, we require the inertia of
the upper disc ( J̄4) to be equal to the inertia of the top drive, such that the upper disc
actually represents the top drive. Doing so, the torque in the drill-string below disc
4 comes to represent the pipe torque that is used as measurement in the linear robust
controller approach (presented in Sect. 3). The inertia of the bottom disc ( J̄1) is deter-
mined based on the “high”-frequency behavior (i.e., above the eigenfrequencies) of
the reduced-order model. The remaining part of the total inertia is equally distributed
over the two remaining discs. The remaining damping and stiffness parameters, are
determined using an optimization-based identification approach. The objective of the
optimization procedure is to find the model parameters such that the difference in the
complex plane between the frequency response function of the reduced-order model
and the model of the setup is minimized over all frequencies within the frequency
range of interest. Hence, we seek to solve the following optimization problem:

min
p∈

[
p, p

] J (p), (13)

where p := [
k̄12 k̄23 k̄34 k̄13 k̄14 k̄24 d̄12 d̄23 d̄34 d̄13 d̄14 d̄24

]
are the parameters of

the setup to be determined, p and p, represent a lower and upper bound for the
parameters and the objective function J (p) is given by

J (p) =
∑

ωl

w( jω)
(∣∣W ( jω)HTtdωbit

r ( jω) − W ( jω)HTtdωbit
s ( jω)

∣∣2
)

(14)

with HTtdωbit
r and HTtdωbit

s the frequency response functions from top drive torque input
to bit velocity output of the reduced-order model and the setup model, respectively.
The frequency response function from top drive torque input to bit velocity output
is chosen for the parameter identification because it captures the relevant dynamics
of the drilling system that should be represented in the setup. Note that HTtdωbit

s
depends on the parameters p. The frequency grid ωl is a discrete grid of frequencies
between 0.05 and 6 Hz, because that is the relevant frequency range of the reduced-
order drill-string dynamics (see Fig. 9). The frequency-dependent weighting filter
W ( jω) is chosen to beW ( jω) = Jtot jω, to compensate for the negative slope of the
frequency response function from top drive torque input to bit velocity output. The
(scalar) multiplication factorw( jω) in (14) is used to give extra weighting in specific
frequency ranges. This multiplication factor is equal to 1.5 for 0.14 < f < 0.165
(i.e., around thefirst resonance frequency), equal to 2 for 0.5 < f < 0.57 (i.e., around
the third resonance frequency) and equal to 1 for all other frequencies.
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The results of the fitting procedure are shown in Figs. 9, 10 and 11. Note that
the identified parameters are still of the same order of magnitude as for the original
drill-string model. For example, the inertia of the upper disc is equal to the inertia
of a real top drive (approximately 1800 kgm2) and a driving torque at the top drive
is typically on the order of 40 kNm. These settings are infeasible for a lab-scale
setup. Therefore, scaling of the parameters in order to obtain feasible dimensions
for the lab-scale setup is discussed in Sect. 2.1.5. It turned out that it is not possible
to fit the reduced-order model of the original drill-string and the model of the setup.
This is mainly caused by the fact that in the finite-element model (and therefore
also in the reduced-order model), the drill-string’s properties are distributed along
it, whereas the model of the setup is based on a lumped mass approach (multiple
discs representing discrete inertias). This is particularly visible in Fig. 9: due to the
lumped inertias of the setup model, the slope of the magnitude of the FRF decreases
by 2 (on a loglog-scale) after each resonance peak and the phase decreases by 180
degrees (due to the 2 poles associated with the resonance). However, the FRFs of
the 18-DOF and reduced-order model do not show this behavior; this is caused by
zeros of these models that are in the right-half-plane of the complex plane (i.e., non-
minimum phase). Nevertheless, a satisfactory match of the dominant resonances
is achieved and, moreover, simulation results of the non-smooth setup model (see
Fig. 12) confirm that the response of the setup model is in good correspondence
with the response of the reduced-order model and the original 18-DOF FEMmodel.
In Fig. 12, the response of the 18-DOF drill-string model is compared with the
response of the 4-DOF setup model. In both simulations, the system is controlled
with a SoftTorque controller (see (37) in Sect. 4.2) and the parameters ct = 1829
and kt = 1177), and the desired angular velocity is equal to 50 rpm. Clearly, the
response of the setup model is similar to the response of the original FEM model.
This illustrates that the dominant dynamics of the original 18-DOFmodel is captured
by the 4-DOF setup model, also in the scope of the non-smooth dynamics leading to
stick-slip oscillations.

2.1.5 Scaling of the Drill-String Model

An identified set of parameters for the experimental setup has been obtained in the
previous section. However, these parameters are based on a full-scale drilling rig and,
asmentionedbefore, suchparameter values are infeasible for a lab-scale experimental
setup. To obtain feasible parameter values for the experimental setup, a scaling of
the variables and parameters is in order, while retaining the resonance frequencies
of the drill-string system. Therefore, two scaling factors are introduced: c1 is used to
scale the torque level and c2 to scale the states of the system. The states are scaled
according to θs = 1

c2
θ̄s and the equations of motion are pre-multiplied with a factor

1
c1
to scale the torque level. This results in the (scaled) equations of motion given by

Ms θ̈s + Ds θ̇s + Ksθs = Sws T̂ws(θ̇s) + Sbs T̂bit (θ̇s,1) + Sts T̂td (15)
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Fig. 12 Simulation result of the 18-DOF drill-string model (left-hand side) compared with a sim-
ulation result of the 4-DOF model of the experimental setup (right-hand side)

withMs := c2
c1
M̄s , Ds := c2

c1
D̄s , Ks := c2

c1
K̄s , T̂ws := 1

c1
Tws , T̂bi t := 1

c1
Tbit and T̂td :=

1
c1
Ttd . The scaled bit-rock interaction torque T̂bi t is given by the following scaled law:

T̂bi t (θ̇s,1) ∈ Sign
(
θ̇s,1

) (
T̂d +

(
T̂s − T̂d

)
e

(−30
∣
∣θ̇s,1

∣
∣)/

(
N̂dπ

) )
(16)

with T̂d = 1
c1
Td , T̂s = 1

c1
Ts and N̂d = 1

c2
Nd , and the scaled drill-string borehole inter-

action torques can be written as

T̂ws,i ∈ T̂s,i Sign
(
θ̇s,i

)
, for i = 2, . . . ,m, (17)

where T̂s,i = 1
c1
Ts,i . The scaling factors are determined to be c1 = 6250 and c2 = 10.

This scaling is chosen first, to obtain feasible torque levels for typical motors that
can be used in lab-scale systems (mainly influenced by c1) and, second, to achieve
angular position differences between adjacent discs that are sufficiently small so



Experimental Validation of Torsional Controllers for Drilling Systems 307

as to avoid plastic deformation of the steel strings between those discs. The latter
aspect, of course, also depends on the length and diameter of the strings, which need
to have feasible dimensions. The scaled parameters are summarized in Table 1, the
scaled parameters regarding the interaction torques are given in Table 2. The top
drive torque is on the order of 40 kNm for the full scale system, whereas this is
scaled to approximately 6.4 Nm for the setup, and since the states are scaled with a
factor 10, a desired angular velocity of 50 rpm in practice is equal to a desired angular
velocity of 5 rpm in the setup. Note that no time-scaling applied, which implies that
the resonance frequencies of the system have not been changed.

By applying the described scaling, themodel of the experimental drill-string setup
is scaled to feasible dimensions for designing a lab-scale setup. With the method
described in this section, a set of prescribed model parameters is obtained for the
design of the setup. The setup design is discussed in more detail in the next section.

2.2 The Experimental Drill-String Setup

The experimental setup is designed to be adjustable and modular. In particular, it is
designed such that it should be possible to change the inertia of the discs and the
stiffness of the strings, and, by using a hardware-in-the-loop approach, other parame-
ters such as damping can also be adjusted. With this hardware-in-the-loop approach,
additional dynamics is emulated in software and implemented using motors driving
all the individual discs. In addition, the setup is designed such that it is possible to

Table 1 Parameters of the setup model

Symbol Value (kgm2) Symbol Value
(Nms/rad)

Symbol Value
(Nm/rad)

J1 0.064 k12 0.630 d12 0

J2 0.708 k23 1.799 d23 0.0018

J3 0.708 k34 1.097 d34 0.0024

J4 2.845 k13 0 d13 0

k14 0 d14 0.0005

k24 0 d24 0

Table 2 Parameters of the scaled bit-rock interaction model and drill-string borehole interaction
torques

Symbol Value Symbol Value (Nm)

T̂s 1.232 Nm T̂s,2 2.297

T̂d 0.272 Nm T̂s,3 3.038

N̂d 0.5 rad/s T̂s,4 0.662
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Fig. 13 Schematic representation of the experimental drill-string setup. a is an overview of the
setup, b is a top view on one of the disc platforms, c is a bottom view of one of the disc platforms.
Different parts are numbered as follows: 1- (steel) strings between the different discs; 2- disc
(representing inertia); 3- additional masses to change the inertia of the disc; 4- upward connection
for the string; 5- flat hollow shaft torque motor (embedded in the frame); 6- torque sensors; 7-
downward connection for the string

investigate a system with additional flexibility modes by adding an extra disc to the
setup. A schematic overview of the setup is shown in Fig. 13.

Let us now discuss the design of the setup in more detail. The total setup is 5 m
tall and has a footprint of 1 × 1 m. As can be seen in Fig. 13a, the setup has 4 disc
platforms to support the 4 discs of the model (see Fig. 13b, c; note that the bottom
disc platform is slightly different, which is explained in more detail later). These
discs are interconnected by steel strings to represent the torsional stiffness of the
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drill-string system and each disc is equipped with a motor. For the top disc, this
motor is used to drive the system and to apply the desired control action. At the
bottom disc, the motor is used to emulate the desired bit-rock interaction, and at
the intermediate discs, the drill-string borehole interaction torques are implemented
using these motors. In addition, these motors are used to emulate the hardware-in-
the-loop components, such as damping torque associated with the damping constant
d14, and to compensate for undesired effects, such as friction and cogging in the
motors. Each of the motors is equipped with an encoder, and the setup contains three
torque sensors for measuring the torques in the interconnecting strings. Furthermore,
a DS1103 controller board from dSPACE [7] is used as a real-time control and data
acquisition platform. A photo of the lab-scale drill-string system is shown in Fig. 14.

The three upper disc platforms are identical and equipped with Georgii Kobold
KTY-F torque motors ([9]). These are flat direct-drive brushless DC motors with a
maximum torque of 26 Nm and a maximum angular velocity of 250 rpm. To actuate
and control these motors, Siep & Meyer SD2S motor amplifiers ([33]) are used, and
to measure the angular position of the discs, built-in 19-bit Heidenhain ECI 119
inductive encoders ([13]) are used. The 19-bit encoder signal is converted, in the
motor amplifiers, into a 15-bit quadrature signal that is used by the dSPACE system
to determine the angular position of the discs. The angular velocities of the discs
are determined by numerical differentiation of the angular positions measured by
the encoders. The discs have an inertia of approximately 0.350 kgm2, including the
inertia of the motor. By adding additional masses at a certain radius on the discs, the
inertia of the discs can be adjusted (in steps of approximately 0.05 kgm2) to obtain
the desired inertia, as specified in Table 1.

The bottom disc platform is shown in Fig. 15 and is different from the other
platforms. This difference has two main reasons: first, the specified inertia of the
bottom disc is much lower compared to the inertias of the other discs and, second,
in order to accurately implement the desired bit-rock interaction law, it is important
that this disc has a low static friction. To realize these two aspects, a disc with a
smaller diameter and a different type of motor is used. The installed motor is a
brushed DC motor from Printed Motor Works (type: GN16RE), see [28], with a
maximum torque of 2.55 Nm and a maximum angular velocity of 3000 rpm. The
static friction in this motor is approximately 0.05 Nm, which is sufficiently lower
than the dynamic torque level T̂d to be implemented (see Table 2). In addition, a 16-
bit Sick DFS60A incremental encoder ([32]) is used together with a Copley Controls
Xenus Plus motor amplifier (type: XTL-230-40), see [3]. The bottom disc has an
inertia of approximately 0.03 kgm2 and can be adjusted in steps of approximately
0.01 kgm2 to achieve the prescribed inertia.

To represent the torsional stiffness of the drill-string model, steel strings with a
specific length and diameter are used. The length and diameter are chosen such that
the prescribed stiffnesses (see Table 1) are achieved. The specified damping factors
are obtained by implementing the damping using the motors (i.e., in a hardware-in-
the-loop fashion) based on the measured difference in angular velocity of the discs,
while compensating for the material damping that is already present in the strings.
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Fig. 14 The experimental
drill-string setup

The setup is also equipped with three PCMTQ-RT2A-25NM torque sensors [26].
These sensors can measure up to 25 Nm with an accuracy of ±0.2%. The torque
sensors are placed below the upper two discs and just above the bottom disc, as
indicated in Figure 13a with 6a-c. The torque sensor below the top drive disc will be
used for the pipe torque measurement, to be used in the scope of feedback control.

The foregoing description of the experimental setup shows that the setup is
equipped with multiple sensors: encoders in all the discs to measure the angular
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1

2

3

4

Fig. 15 Bottom disc platform, with 1: the disc with additional weights; 2: themotor; 3: the encoder;
4: the torque sensor

position (and determine the angular velocity) and three torque sensors to measure the
torques in the steel strings between the discs. However, the control design strategies
to be presented in later sections will only require surface (top-side) measurements.
The extra sensors, which are not required for the proposed control strategies, are used
for parameter identification and validation of the setup dynamics and for analyses of
the obtained experimental results.

2.3 Summary

In this section, the design of the experimental setup is discussed. First, a model of
the experimental setup, based on the 18-DOF FEM drill-string model, is presented.
The 4-DOF setup model is designed such that it represents the dominant dynamics
of the dynamics of an oil-field drill-string system that exhibits torsional vibrations.
The non-smooth model of the experimental drill-string setup is scaled to feasible
dimensions in support of the design of the lab-scale setup. Finally, the mechanical
and electrical design of the designed setup is presented in detail.

3 Output-Feedback Controller Design

In this section, a design approach for torsional controllers, aiming to eliminate tor-
sional stick-slip oscillations, is described. In Sect. 3.1, a model reformulation is pre-
sented rendering the model suitable in the scope of controller synthesis. Section3.2
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details the control problem formulation in system-theoretic terms. Next, Sect. 3.3
describes the proposed output-feedack control strategy inducing robustness with
respect to uncertainties in the bit-rock interaction torque.

3.1 Non-smooth Modelling for Control

The dynamic model of the setup in second -order form, as given in (15)–(17), can be
cast into a first-order Lur’e-type system form as follows:

ẋ = Ax + Gv + G2v2 + But
q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)

v2 ∈ −φ(q2).

(18)

Herein, x = [
θs,1 − θs,2, θ̇s,1, θ̇s,2, θs,2 − θs,3, θ̇s,3, θs,3 − θs,4, θ̇s,4

]� ∈ R
7 is the

state, where θs,i , i = 1, 2, 3, 4, describes the rotational displacement of the iner-
tias of the setup, and the bit velocity is defined as q := θ̇s,1. Furthermore, q2 :=
[
θ̇s,2 θ̇s,3 θ̇s,4

]�
. Note that only relative angular positions are taken into account,

such that the 4-DOF system is described with only 7 state variables. Moreover, the
bit-rock interaction torque T̂bi t is denoted by v ∈ R and the drill-string-borehole
interaction torques T̂ws are denoted by v2 ∈ R

3. As a consequence, the nonlinearities
ϕ(·) and φ(·) are defined by the set-valued nonlinearities in the right-hand sides of
(16) and (17), respectively. In addition, ut := T̂td ∈ R is the (top drive torque) con-
trol input and y := [

ωtd Tpipe
]� ∈ R

2 is the measured output, where ωtd := θ̇s,4 is
the top drive angular velocity. The so-called pipe torque Tpipe is the torque in the
drill-string directly below the top drive (sometimes also referred to as the saver sub
torque). In the experimental setup, this torque is measured using a torque sensor
directly below the top-most inertia.

3.2 Control Problem Formulation

The desired operation of the drill-string system is a constant angular velocity ωeq

for all four inertias. So, the objective is to regulate this set-point of the non-smooth
drill-string system by means of an output-feedback controller. The available output
measurements for the controller are the top drive angular velocity ωtd and the pipe
torque Tpipe. The system can be controlled by the top drive torque ut . The controller
should:
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1. locally stabilize the desired velocity of the drill-string, therewith eliminating
torsional (stick-slip) vibrations;

2. ensure robustness with respect to uncertainty in the non-smooth bit-rock interac-
tion ϕ;

3. guarantee the satisfaction of closed-loopperformance specifications, in particular,
on measurement noise sensitivity, i.e., limitation of the amplification of measure-
ment noise, and limitation of the control action such that top drive limitations can
be satisfied;

4. guarantee robust stability and performance in the presence of multiple flexibility
modes dominating the torsional dynamics.

To facilitate controller synthesis, the drill-string dynamics (18) are reformulated.
The desired constant angular velocity ωeq for all discs can be associated with a
desired equilibrium xeq for the state of the system. To ensure that xeq is an equilib-
rium of the closed-loop system, the control input ut = uc + ũ is decomposed in a
constant feedforward torque uc (inducing xeq ) and the feedback torque ũ. For the
feedforward design, we assume that θ̇s,i > 0, for i = 2, 3, 4, hence φ is constant and
can be compensated for by constant uc, and we determine xeq and uc using the equi-
librium equation of system (18), i.e., Axeq − Gϕ(Hxeq) − G2φ(H2xeq) + Buc � 0.
Next, we define ξ := x − xeq and apply a linear loop transformation such that the
slope of a transformed nonlinearity ϕ̃(q) (associated with ϕ(q) through the loop
transformation) is equal to zero at the equilibrium velocity, i.e., ∂ϕ̃/∂q|q=ωeq

= 0.
This results in a state-space representation of the transformed drill-string dynamics
in perturbation coordinates:

ξ̇ = Atξ + Bũ + Gṽ (19a)

ỹ = Cξ (19b)

q̃ = Hξ (19c)

ṽ ∈ −ϕ̃ (q̃) (19d)

with At := A + δGH , δ = − ∂ϕ/∂q|q=ωeq
> 0, ỹ := y − Cxeq , q̃ := q − Hxeq ,

ϕ̃ (q̃) := ϕ
(
q̃ + Hxeq

) − ϕ
(
Hxeq

) + δq̃ and ṽ := v − veq − δq̃ . The dynamics in
(19) represents aLur’e-type system,with the linear dynamics (19a)–(19c),with trans-
fer function Gol , and having inputs ũ and ṽ and outputs ỹ and q̃ , and the nonlinearity
ϕ̃ in the feedback loop. The open-loop transfer function Gol(s) is defined as

[
q̃(s)
ỹ(s)

]
:= Gol(s)

[
ṽ(s)
ũ(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
ṽ(s)
ũ(s)

]
. (20)

In the context of the second controller objective above, we model the nonlinearity
ϕ̃ (Fig. 16a) by an uncertainty Δ (Fig. 16b). This model formulation is used in the
controller design approach developed in Sect. 3.3. Note that ϕ̃ describes a nonlin-
ear (set-valued) mapping from q̃ to ṽ, while the uncertainty Δ is assumed to be a
(complex) LTI uncertainty (with output v̌). This means that, for example, stability of
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Fig. 16 Block diagram of
the system dynamics (19) in
Lur’e type form (a) and the
linear dynamics Gol with
(complex) model uncertainty
Δ (b)

Gol

ϕ̃ (·)
q̃ṽ

−

ũ ỹ

(a)

Δ

Gol

ũ ỹ

q̃v̌

(b)

the closed-loop system with uncertainty Δ does not directly imply stability for the
closed-loop system with nonlinearity ϕ̃. Nevertheless, the model in Fig. 16b is used
as a basis for controller synthesis in the next section. Subsequently, the stability of
the nonlinear (non-smooth) closed-loop system is analyzed in detail in Sect. 3.3.3.

3.3 Design of a Robust Output-Feedback Controller

In this section, we present a robust control design approach based on skewed-μ
DK-iteration ([38]).

First, we formulate the general control configuration that is used in such a robust
control context. Next, in Sect. 3.3.1, we analyze nominal performance of the (linear)
system, i.e., without uncertainty. This is extended to robust performance for the
(linear) system with uncertainty taken into account in Sect. 3.3.2. The stability of the
closed-loop nonlinear system is investigated in Sect. 3.3.3.

This robust control technique combines several concepts from robust control the-
ory to design a controller that achieves robust stability and performance of a system
with model uncertainties [34].

Robust controlmethods focus on the design of controllers,while systemuncertain-
ties are explicitly taken into account in the design. The general control configuration
for a (LTI) plant P with an uncertainty Δ and (LTI) controller K is shown in Fig. 17,
where e is the error in the measured output, u the control output and w and z rep-
resent the (weighted) exogenous inputs and outputs. This structure is similar to the
block diagram in Fig. 16b with v̄ and q̄ as weighted representations of v̌ and q̃ (see
Sect. 3.3.2) and, in addition, includes the controller K . The system P , in Fig. 17, is
described by

Fig. 17 General control
configuration with
uncertainty block Δ

P

K

z

eu

w

N

Δ
q̄v̄
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⎡

⎣
q̄
z
e

⎤

⎦ =
⎡

⎣
P11 P12 P13
P21 P22 P23
P31 P32 P33

⎤

⎦

⎡

⎣
v̄
w
u

⎤

⎦ . (21)

The system N := Fl (P, K ) is defined as the lower linear fractional transformation
(LFT) of the plant P with the controller K , that is:

N =
[
P11 P12
P21 P22

]
+

[
P13
P23

]
K (I − P33K )−1

[
P31 P32

]
.

With the introduction of the controller K , we can also introduce the closed-loop
bit-mobility function. The closed-loop bit-mobility transfer function Gcl from the
input ṽ to the output q̃ , of system (19) with controller K , is defined by

Gcl := g11 − g12K (I + g22K )−1g21. (22)

This bit-mobility plays an important role in the stability of the closed-loop system
(see Sect. 3.3.3 for the role of Gcl in the scope of a nonlinear stability analysis), and
is therefore important in the controller design methodology.

3.3.1 Nominal Stability and Nominal Performance

Asmentioned above, the controller design aims at stability, performance, and robust-
ness for the uncertainty Δ. In this section, the focus is on the first two aspects.
Robustness is considered in the next section. Based on the system representation in
Fig. 16b, the closed-loop system of the linear drill-string dynamics Gol in feedback
with the linear, dynamic controller K to be designed is shown in Fig. 18. In this
representation, additional inputs n and d are introduced, representing measurement
noise and actuator noise, respectively.

Consider the system without uncertainty given by

[
z
e

]
:= P

[
w
u

]
=

[
P22 P23
P32 P33

] [
w
u

]
(23)

with w and z weighted versions of w := [
n d

]�
and z := [

e u
]�
, respectively. The

weighted inputs and outputs are discussed in more detail in Sect. 3.3.2. Moreover,

Fig. 18 Linear drill-string
dynamics Gol in closed loop
with the controller K and
including model uncertainty
Δ with disturbances d and n

Gol

Δ

ỹ

q̃v̌
d n

u
K

e

−
ũ

+

+

+

+
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define the lower LFT of P with the controller K , that is, N22 := Fl
(
P, K

)
. Next,

the concept of nominal performance is defined as follows: for a system without
uncertainty Δ, the closed-loop system N22 = Fl(P, K ) is internally stable and the
H∞-norm of this system (from w to z) is smaller than 1, that is,

‖N22‖∞ = sup
ω

σ̄
(
Fl(P, K )

)
< 1, (24)

where we used the definition of the H∞-norm ‖H(s)‖∞ := ess supω∈R σ̄ (H ( jω))

and σ̄ indicates the maximum singular value. This means that nominal performance
can be achieved by solving the “standard” H∞ optimal control problem, in which
the aim is to find the internally stabilizing controller K that minimizes ‖Fl(P, K )‖∞
(see [34] for details). Internal stability of the closed-loop can be guaranteed by a
proper choice of the inputsw and outputs z. As proved in [41, Sect. 5.3], by choosing
w and z as defined earlier, the H∞ controller synthesis guarantees internal stability
of the closed-loop system. Specification of the weighting filters is treated in more
detail in Sect. 3.3.2. Moreover, the system with uncertainty is addressed in the next
section, leading to the concept of (alternative) robust performance.

3.3.2 Alternative Robust Performance

Robust performance means that the stability and performance objective, addressed
in Sect. 3.3.1, is achieved for all possible models in the uncertainty set D [34], i.e.,
for all Δ ∈ D. Standard robust performance techniques typically aim at optimizing
the performance for all possible plants induced by the uncertainty set. In contrast, we
aim to optimize the robustness with respect to the uncertainty while still guaranteeing
internal stability and satisfactionof givenperformanceobjectives. This iswhatwecall
alternative robust performance. In the drilling context, this means that, for example,
a (fixed) bound on the control action should be satisfied (see controller objective 3
in Sect. 3.2), while the robustness with respect to the nonlinear bit-rock interaction
is optimized (as specified in the second controller objective).

Consider the system P in Fig. 17, including the uncertainty block, Δ. The input-
output pair v̄, q̄ is related to this uncertainty block and the (weighted) closed-loop
transfer function N (s) = Fl (P, K ) is given by

[
q̄
w

]
= N

[
v̄
z

]
= Fl (P, K )

[
v̄
z

]
. (25)

Robust stability is obtained by designing a controller K such that the system
N is internally stable and the upper LFT, F := Fu(N ,Δ), is stable for all Δ ∈
D. Herein, the uncertainty set D is a norm-bounded subset of H∞,1 i.e., D =

1H∞ is a (closed) Banach space of matrix-valued functions that are analytic in the open right-half
plane and bounded on the imaginary axis. The real rational subspace of H∞ is denoted by RH∞,
which consists of all proper and real rational stable transfer matrices [41, Sect. 4.3].
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{Δ ∈ RH∞|‖Δ‖∞ < 1}. The aim is to find a stabilizing controller that also meets
certain performance specifications. Therefore, we use a similar approach as in [34,
Sect. 8.10] and consider the fictitious ‘uncertainty’ ΔP . The uncertainty ΔP is a
complex unstructured uncertainty blockwhich represents theH∞ performance spec-
ifications. Moreover, note that ΔP ∈ DP , with DP = {ΔP ∈ RH∞ |‖ΔP‖∞ ≤ 1 }.
The result given in [41, Theorem 11.8] states that a robust performance problem is
equivalent to a robust stability problem with the augmented uncertainty

Δ̂ =
⎡

⎣
Δ 0 0
0
0

ΔP

⎤

⎦ (26)

with Δ̂ a block-diagonal matrix. In other words, both the performance specifications
and uncertainty are taken into account in a similar fashion. Moreover, D̂ is the uncer-
tainty set with a structure as given in (26) and any Δ ∈ D and ΔP ∈ DP . The robust
performance condition can now be formulated as follows:

μD̂ (N ( jω)) ≤ 1, ∀ω, (27)

where μD̂ is the structured singular value with respect to D̂. The structured singular
value is defined as the real non-negative function

μD̂(N )= 1

k̄m
, k̄m =min

{
km

∣∣∣det
(
I − kmNΔ̂

)
=0

}
(28)

with complex matrix N and block-diagonal uncertainty Δ̂.
To optimize the robustness with respect to the uncertainty Δ (i.e., part of Δ̂ in

(26)), the skewed structured singular value μs can be used. The skewed structured
singular value is used if some uncertainty blocks in Δ̂ are kept fixed (ΔP in this case)
to investigate how large another source of uncertainty (Δ in this case) can be, before
robust stability/performance can no longer be guaranteed. In this case, we aim to
optimize the robustness of the closed-loop system with respect to uncertainty Δ in
the bit-rock interaction. Thus, we aim to obtain the largest uncertainty set Δ, given a
fixed ΔP (i.e., fixed performance specifications). Therefore, we introduce the matrix
Ks

m := diag
(
ksm, I

)
, and the skewed structured singular value μs

Δ̂
(N ) is defined as

μs
D̂
(N )= 1

k̄sm
, k̄sm =min

{
ksm

∣∣
∣det

(
I − Ks

mNΔ̂
)
=0

}
. (29)

Thus, the robust performance condition (27), with additional scaling (through Ks
m)

in terms of the skewed structured singular value, is written as the alternative robust
performance condition

μs
D̂

(N ( jω)) ≤ 1, ∀ω. (30)
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Fig. 19 Closed-loop system
with weighting filters and
scaling matrices

Gol

v̌ q̃
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−
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ỹ

V1

v̄

ũ

To support controller design satisfying particular performance specifications,
weighting filters and scaling matrices are introduced in the loop in Fig. 18, as shown
in Fig. 19. Those frequency-domain weighting filters allow us to specify the (inverse)
maximum allowed magnitudes of the closed-loop transfer functions. Moreover, the
scaling matrices are introduced to improve the numerical conditioning of the prob-
lem and to tune the desired bandwidth. The (weighted) generalized plant P with
input weighting filters Vi (s) and output weighting filters Wi (s), with i ∈ {1, 2, 3},
and scaling matrices Wsc and Vsc, is specified by

⎡

⎢⎢
⎣

q̄
ē
ū
e

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

W1 0 0 0
0 W2Wsc 0 0
0 0 W3 0
0 0 0 I2

⎤

⎥⎥
⎦P̄

⎡

⎢⎢
⎣

V1 0 0 0
0 VscV2 0 0
0 0 V3 0
0 0 0 1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
P

⎡

⎢⎢
⎣

v̄
n̄
d̄
u

⎤

⎥⎥
⎦ .

Herein, P̄(s) is the MIMO transfer function of the unweighted system P̄ with inputs[
ṽ n d u

]�
and outputs

[
q̃ e u e

]�
with its state-space realization given by

P̄
s=

⎡

⎢⎢⎢⎢
⎣

At G 0 B B
H 0 0 0 0

−C 0 −I 0 0
0 0 0 0 I

−C 0 −I 0 0

⎤

⎥⎥⎥⎥
⎦

. (31)

In this section, we have introduced an alternative robust performance framework.
To design a controller that minimizes the skewed structured singular value μs

D̂
, for

the purpose of obtaining robust performance, a procedure for synthesizing such a
controller, known as the DK-iteration procedure [34, Sect. 8.12], is treated concisely
below.

The first step in such a DK-iteration procedure is the introduction of D-scaling
matrices. This scaling uses the fact that Δ̂ is structured, hence, the inputs and out-
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Fig. 20 Block diagram of
the implementation for the
skewed-μ DK-iteration
procedure

D−1D

D

Δ̂=
[
Δ 0
0 Δp

]

D−1 N(K) Ks
m

puts to Δ̂ and N are scaled by inserting the matrices D and D−1, as shown in
Fig. 20. Using such scaling generally enables one to find potentially tighter robust
stability/performance conditions. For further details on the procedure, the reader is
referred to [24, 34].

The skewed-μ DK-iteration procedure aims at designing a controller that mini-
mizes the peak value over frequency of the upper bound on the skewed structured
singular value, i.e., a controller K should be designed by solving the following opti-
mization problem:

min
K

(
min
D

‖DKs
mN (K )D−1‖∞

)
. (32)

Here, the original scaling matrix D(ω) is replaced by a stable minimum-phase trans-
fer function fit D(s) of D(ω). The dependency of the closed-loop transfer function
N on the controller K is indicated by N (K ). In DK-iterations, a μ-analysis (D-step)
andH∞-optimization (K -step) are solved alternately (see [24]). In other words, the
skewed-μ DK-iteration procedure alternates between minimizing (32) with respect
to either K or D (while holding the other fixed) and recursively updating ksm (which
characterizes Ks

m) during the D-step.

3.3.3 Closed-Loop Stability Analysis

The main purpose of the controller is to stabilize the equilibrium ξ = 0 of the non-
linear system (19). Let us that assume that a controller K has been designed that
meets the performance specifications and is robust with respect to the uncertaintyΔ.
Hence, the designed controller guarantees stability for the linear closed-loop system
N (s) and achieves robustness with respect to the uncertainty Δ. In this section, the
stability of the nonlinear closed-loop system is considered. Therefore, we define a
symmetric sector condition on the nonlinearity ϕ̃ such that, for any (locally Lips-
chitz) nonlinearity which (locally) satisfies this sector condition, (local) asymptotic
stability of the origin of the closed-loop system can be guaranteed.

We use the circle criterion [16, Theorem 7.1] to determine a (symmetric) sector
on the nonlinearity ϕ̃ for which robust stability can be guaranteed. Consider the
closed-loop bit-mobility (22) and a symmetric sector condition on the nonlinearity
which is satisfied for all q̃ ∈ S with S := {q̃ ∈ R|q̃l < q̃ < q̃u} and q̃l < 0 < q̃u ,
i.e. ϕ̃(q̃) ∈ [−γ, γ

] ∀ q̃ ∈ S and γ > 0. We note that, although ϕ̃ is a set-valued
nonlinearity, we have that, for ωeq > 0 (i.e., for a nominal velocity away from the
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discontuinity in the bit-rock interaction at zero velocity), there indeed exist q̃l and q̃u
such that the latter symmetric sector condition is satisfied. The nonlinear system is
locally absolutely stable (i.e., ξ = 0 is locally asymptotically stable for any ϕ̃(q̃) ∈[−γ, γ

]
with q̃ ∈ S ) if

H(s) = (1 + γGcl(s)) (1 − γGcl(s))
−1, (33)

is strictly positive real. Applying Lemma 6.1 in [16], a scalar transfer function H(s)
is strictly positive real if the following conditions are satisfied:

1. H(s) is Hurwitz;

2. Re [H( jω)] = Re
[
1+γGcl ( jω)

1−γGcl ( jω)

]
> 0, ∀ω ∈ R;

3. H(∞) > 0.

For the symmetric sector, the condition on H(s) being Hurwitz is equivalent to
Gcl(s) being Hurwitz. The closed-loop transfer function Gcl(s) of the feedback
interconnection is Hurwitz by the design of the stabilizing controller K . Moreover,
Gcl is strictly proper, and therefore H(∞) = 1, such that the third condition is
satisfied. The second condition is equivalent to the condition:

‖Gcl( jω)‖∞ <
1

γ
. (34)

Hence, the H∞-norm of the closed-loop bit-mobility Gcl gives an upper bound on
the sector that the nonlinearity ϕ̃ should comply with, for the system to be abso-
lutely stable. With the DK-iteration procedure, presented above, a controller K can
be designed such that ‖Gcl‖∞ is indeed minimized. In other words, the robustness
with respect to uncertainty in the bit-rock interaction is optimized. This shows the
benefit of employing the alternative robust performance technique (see Sect. 3.3.2)
in terms of optimizing the robustness of the closed-loop drill-string dynamics with
respect to the uncertainty in the bit-rock interaction, also in the nonlinear context.

In the following section, design guidelines for the tuning of the weighting filters
tailored to the drilling context are given, and the designed controller is presented and
validated through experiments.

4 Experimental Controller Validation

In this section, the implementation and experimental results obtained with the con-
troller design strategy of the previous section are presented. First, a startup scenario
for the experiments on the drill-string setup is discussed inSect. 4.1.Next, in Sect. 4.2,
the implementation of the SoftTorque controller, being the industrial standard, is dis-
cussed, and an experimental result of this industrial controller having been applied to
the setup is shown. Finally, in Sect. 4.3, the implementation and experimental results
are discussed for the linear robust output-feedback controller, as presented in Sect. 3.
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Fig. 21 Open-loop bit-mobility of the setup, i.e., the frequency response function from bit torque
Tbit to bit velocity ωbit

Before going into detail about the implementation of the controllers and the exper-
imental results, let us consider the (open-loop) bit-mobility of the experimental drill-
string setup. As advocated earlier, the bit-mobility plays an important role in the
onset of stick-slip vibrations and the proposed control strategy aims to minimize
its H∞-norm. The measured open-loop bit-mobility of the setup is shown in Fig.
21. In the same figure, the bit-mobility of the setup model based on experimentally
identified parameters is shown. For details on the performed parametric model iden-
tification, we refer to [37]. Clearly, the third resonance mode is well captured by the
model and the second flexibility mode is more damped in the model compared to the
actual bit-mobility of the setup. Moreover, the first resonance mode exhibits some
discrepancy between the model and the experiments. Here, we opt for an identified
model that aims to capture, in particular, the third resonance mode accurately, as it is
precisely this dominant mode (in the bit-mobility) that is responsible for the occur-
rence of stick-slip oscillations. Moreover, it is well-known that it is relatively easy
to design a controller that robustly damps the first mode despite such uncertainties
(already guaranteed by a Soft-Torque controller).

4.1 Experimental Startup Scenario Description

For the experiments, we introduce a so-called startup scenario, which is based on
practical startup procedures for drilling rigs.Herein, the drill-string is first accelerated
to a low constant rotational velocitywith the bit above the formation (off bottom) and,
subsequently, the angular velocity and weight-on-bit (WOB) are gradually increased
to the desired operating conditions. The increase in WOB is modelled as a scaling
of the bit-rock interaction torque (TOB).

The startup scenario for the experiments is visualized in Fig. 22. The reference
angular velocity of the upper discs is shown in the upper plot and the scaling of the
TOB, indicated by α, is shown in the bottom plot. The timing of the transitions in
the startup scenario can be summarized as follows:
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Fig. 22 Reference velocity and TOB scaling of the startup scenario for the experimental setup

1. Start with zero initial velocities and linearly increase the reference angular veloc-
ity from zero to 3.5 rpm2 in the period between t = 0 and t = 30 s. At the same
time, increase the feedforward torque (uc) to its nominal value;

2. Between t = 50 and t = 90 s, adapt the drill-string borehole interaction torques
Tw to obtain the desired values, based on the torque sensor readings, in order to
compensate for possibly changed friction characteristics (in the bearings support-
ing the discs);

3. Gradually increase the reference angular velocity until the desired operating
velocity (ωeq being 5.5 rpm) is reached (in the time window 110 ≤ t < 170 s).
At the same time, gradually change the TOB to emulate that the bit bites the
formation, and finally, obtain the nominal operating condition in both the angular
velocity and the TOB. Adapting the torque on bit is done as follows. The bit-rock
interaction model is scaled by using the scaling factor α(t) according to:

T̂bi t (t) = Sign(ωbit )
(
Tini + α(t)

(
T̂d − Tini +

(
T̂s − T̂d

)
e
− 30

N̂dπ
|ωbit |))

, (35)

where Tini is the amount of resisting torque that is still present at the bit-rock
interface, evenwhen the bit is off bottom (e.g., due to drillingmud and interactions
with the borehole). For WOB = 0 (off bottom; characterized by α = 0), there is
no velocity-weakening in the TOB. The scaling factor α(t) in (35) is given by

2Note that due to scaling, this corresponds to 35 rpm on a real drilling rig.
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α(t) =
⎧
⎨

⎩

0, t0 ≤ t ≤ t1
t−t1
t2−t1

, t1 < t < t2
1, t ≥ t2

(36)

with t1 = 110 and t2 = 170 in this case.

4.2 SoftTorque Controller

The SoftTorque controller ([14]) is a controller for drill-string systems, widely used
in industry. This controller aims at damping of the first torsional flexibility mode of
the drill-string system only. This active damping system is a PI-controller, based only
on the velocity error ey between the measured top drive velocity y = ωtd and the
reference angular velocity ωtd,re f , i.e., ey := ωtd,re f − ωtd . The controller is given
by the transfer function

T f b(s) =
(
ct + kt

s

)
ey(s), s ∈ C, (37)

with ct = 2.93 and kt = 1.87 tuned such that damping of the first torsional flexibility
mode of the setup is obtained (note that these controller parameter settings corre-
sponds to unscaled system parameters, as mentioned in Sect. 2.1.4). In Fig. 23, the
measured closed-loop bit-mobility of the drill-string setup with the SoftTorque con-
troller is shown. It is clearly visible that the first torsional mode is damped using the
SoftTorque controller, but the amplitude of the second and third modes are similar in
the open-loop and closed-loop cases, illustrating a key deficiency of the SoftTorque
controller.

An experimental result of the closed-loop drill-string system with SoftTorque
controller (with the same constant feedforward active as for the controller proposed
in Sect. 3) is shown in Fig. 24. In the response of the bit angular velocity, stick-slip
oscillations can be observed. The onset of these oscillations starts when the reference
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Fig. 23 Bit-mobility of the setup with SoftTorque controller
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angular velocity and scaling factor α (for emulating an increase of the WOB) start
to increase at t = 110 s. This experimentally shows that the SoftTorque controller is
indeed unable to avoid stick-slip oscillations for the setup.

In Fig. 24, the filtered and unfiltered responses of the system are shown. The
filtered response of the system is compared with a simulation result of the model
of the setup with the identified parameters. The results are shown side-by-side in
Fig. 25. To allow for a clear comparison, a shift of the time axis has been applied for
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Fig. 24 Experimental result of the drill-string setup with the SoftTorque controller in the startup
scenario
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the experimental results. As can be seen from this figure, the closed-loop response
of the experimental setup is very similar to the response of the simulation results.
The only difference is the somewhat shorter sticking period in the simulation results
between two successive groups of two slipping periods (i.e., the long sticking period).
This result further illustrates that the setup is capable of accurately emulating the
non-smooth drill-string dynamics to be investigated, also in closed-loop operation.

4.3 H∞-Based Output-Feedback Controller

The linear robust output-feedback controller design methodology, presented in
Sect. 3.3, is also used to design a controller for the experimental drill-string setup.
The results of the drill-string setup in closed loop with theH∞-based controller are
presented in this section.
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Weighting filter design is key to satisfying the performance specifications related
to, e.g., measurement noise sensitivity and actuator limitations. Moreover, achieving
specific design targets such as the inclusion of integral action and high-frequency roll-
off can be achieved by absorbing these filters into the loop see [21]. High-frequency
roll-off reduces measurement noise amplification. Also, integral action is desired
from a practical point of view, e.g., in case of a mismatch between the (model-based)
feedforward torque uc and the actual required feedforward torque due to uncertainty
in the respective models for the bit-rock interaction and the drill-string borehole
interaction. In that case, integral action will compensate for this mismatch so as to
obtain convergence to the desired setpoint.

For the design of a controller for the drill-string model (18), the following objec-
tives are set:

• Integral action for low-frequencies;
• Second-order roll-off for high freqencies
• Cross-over frequency of the open-loop transfer function KGol (at the plant input)
at 0.6 Hz, i.e., just above the third eigenfrequency of the drill-string system (see
Fig. 11);

• Plant output scaling, i.e., scale the plant output y = [
ωtd Tpipe

]�
such that the

components of the weighted plant output are of the same order of magnitude.

These objectives are obtained through specific choices for several settings of the
weighting filters, as displayed in Fig. 19.

First, we apply plant scaling by using the scaling matrices Wsc and Vsc. This
scaling is applied to compensate for the different order of magnitude of the two plant
outputsωtd and Tpipe. This is important for a systemwith multiple outputs in a norm-
based controller synthesis method such as skewed-μ DK-iteration. When the plant
outputs are not scaled and the outputs differ in order of magnitude, one off-diagonal
term in the closed-loop sensitivity function will be large and the other small. In the
synthesis, it is then possible that the emphasis is on reducing the large off-diagonal
element at the expense of other elements. The plant scaling matricesWsc and Vsc are
tuned to compensate for this effect. The matrices are given by

Wsc =
[
wsc1 0
0 wsc2

]
, Vsc =

[
1 0
0 1

]
.

The filters Vi (s) and Wi (s), i = 1, 2, 3, are so-called performance filters and are
used to tune the performance-related properties of the closed-loop system. The filters
V1(s) and W1(s) can be used to tune the closed-loop bit-mobility (Gcl). Ideally, the
bit-mobility should be damped as much as possible (as follows from the stability
analysis in Sect. 3.3.3). However, this typically results in high control action. To
deal with this trade-off, the weighting filter V1(s) has a notch filter and is defined as
follows:

V1 = v1Vnotch

= v1
1

(2π f1)
2 s

2+ 2b1
2π f1

s+1

1

(2π f2)
2 s

2+ 2b2
2π f2

s+1
,

(38)



Experimental Validation of Torsional Controllers for Drilling Systems 327

where f j ( j = 1, 2) is the frequencies of the notch filter Vnotch(s) and b1 and b2 the
parameters for tuning the depth of the notch filter. The output weighting filter W1(s)
is set to a constant w1.

The remaining weighting filters are the filters for tuning the closed-loop perfor-
mance transfer functions. Let us first focus on the input weighting filters V2(s) and
V3(s). The filter V2(s) is given by

V2 =
[
v21 0
0 v22

]
, (39)

where v21 and v22 are static gains. These gains, as well as static gains in other weight-
ing filters, are used to scale those filters. Scaling is necessary to obtain a feasible
controller design with respect to the performance uncertainty ΔP(s) and changing
the gains allows for the synthesis of different controllers. The input weighting filter
V3(s) is set as

V3(s) = v3‖gco‖−1 1

wsc1
, (40)

where v3 is a static gain and gco := g22,1( j2π fco), i.e., the sub plant gain, related to
input ũ and output ỹ1 = ωtd − ωeq , at the target cross-over frequency fco. This gain
is chosen to obtain a cross-over frequency of the open-loop transfer function KGol

at 0.6 Hz, as specified. This cross-over frequency is chosen to achieve damping of
the dominant resonance modes.

The output weighting filters W2(s) and W3(s) are also used to tune the closed-
loop transfer functions, as well as to meet the first two controller objectives, i.e., to
include integral action and first-order roll-off. The controller Kt (s) to be designed
has two inputs and a single output (due to the two measured signals of the plant), i.e.,
Kt (s) = [

Kωtd (s) KTpipe(s)
]
. The controller aims at stabilizing the desired angular

velocity setpoint. Hence, an integrator should be specified in the top drive angular
velocity control loop. Note that it is not possible (and not necessary) to include an
integrator in both control loops Kωtd (s) and KTpipe(s). An integrator would force the
sensitivity function to zero for s = 0; however, this is not possible for both sensitivity
functions, due to the fact that we are dealing with a non-square plant. In other words,
there is only one control signal that can eliminate the steady-state error for one of
the two measurements. However, forcing ωtd to its equilibrium value also results
in Tpipe converging to its equilibrium. So, by only requiring integral action in the
control loop related to ωtd , the output weighting filter W2(s) is given by

W2(s) =
[
WI (s) 0
0 w22

]
=

[
PI

s+2π f I
s 0

0 w22

]
, (41)

using WI (s) to obtain an integral action in Kωtd (s) and w22 a static gain. To obtain
high-frequency roll-off, a roll-off filter is included in the output filter W3(s), hence
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W3(s) = w3wsc1‖gco‖W−1
R , (42)

where w3 is a static gain, and WR = (2π fR)2

s2+4πβ fRs+(2π fR)2
the second-order roll-off filter

with roll-off frequency fR .
The weighting filters W2(s) and W3(s) are unstable and non-proper weighting

filters, respectively. Therefore, these filters are not applicable in the H∞-controller
synthesis. To circumvent this limitation and still obtain a controller that includes
integral action and high-frequency roll-off, we add filters in the loop [21].We require
high-frequency roll-off on both input signals (top drive velocity and pipe torque) of
the controller and integral action on the top drive velocity. To acheive this, the actual
plant that is used in the controller synthesis algorithm is given by

Gt (s) = diag (1, WI (s), 1)Gol(s)diag (1,WR(s)) , (43)

whereWR(s) andWI (s) are the roll-off and integrator filters, respectively. The result-
ing controller K (s) from the DK-iteration procedure, treated in Sect. 3.3.2, for this
plantGt , has no integrator and roll-off properties. However, the actual controller (for
the plant Gol ) can be calculated as follows:

Kt (s) = WR(s)K (s)diag (WI (s), 1) , (44)

which does include the desirable integrator and roll-off properties.
Now, two different controllers will be synthesized based on the skewed-μ DK-

iteration procedure and the proposed weighting filters from the previous section.
Of course, it is possible to change all weighting filters so as to obtain a different
controller; however, the weighting filters have been chosen such that the controller
objectives can be met, and tuning of the parameters already allows us to synthesize
different controllers. The two controllers mainly differ in the allowed control action
and will be referred to as a high-gain (hg) controller and a low-gain (lg) controller.
The extra allowed control action for the high-gain controller is used for even greater
suppression of the bit-mobility compared to the low-gain controller. In Table 3, the
parameters of the weighting filters are given for both controllers. The notch filter in
V1(s) is used to allow for a higher bit-mobility within specific frequency ranges.

Performing theDK-iteration procedure for the drill-string systemwith theweight-
ing filters as specified above, results in the controller Kt (s) = [

Kωtd (s), KTpipe(s)
]
,

as shown in Fig. 26 for both the high-gain and the low-gain controller. These con-
trollers only use the measured top drive angular velocity ωtd and the pipe torque
measurement Tpipe. In the experimental setup, the pipe torque measurement is based
on the torque sensor reading just below the upper disc, compensated for the additional
damping term between disc 1 and 4. From this figure, the integral action in the con-
troller, Kωtd (s), which uses the top drive angular velocity, can be clearly recognized.
This feature is also present (single-input-single-output) in the SoftTorque controller,
also depicted in Fig. 26. This figure shows that both the high-gain and the low-gain
controller have a second-order roll-off filter. It can also be observed that the designed
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Table 3 Parameter settings for the performance weighting filters for the designed high-gain and
low-gain controller

Filter/setting Parameters

Low-gain controller High-gain controller

Wsc wsc1 = 1, wsc2 = 10 wsc1 = 1, wsc2 = 10

V1 v1 = 0.1 v1 = 0.7

f1 = f2 = 0.517Hz f1 = f2 = 0.518 Hz

b1 = 0.125 b1 = 0.033

b2 = 0.91 b2 = 0.8

W1 w1 = 1.2 w1 = 1

V2 v21 = 4, v22 = 0.125 v21 = 5, v22 = 0.167

V3 v3 = 1.286 v3 = 1.135

W2 PI = 0.1 PI = 0.01

f I = 0.134 f I = 1

w22 = 0.5 w22 = 0.01

W3 w3 = 0.243 w3 = 0.0044

fR = 0.469 fR = 1

β = 0.1 β = 0.1

controllers have distinct frequency-dependent characteristics within the frequency
range of the torsional resonance modes of the drill-string system (see Fig. 21), which
is not the case for the SoftTorque controller. This industrial controller, which only
uses top drive velocitymeasurements, is a properly tuned active damping system (i.e.,
PI-control of the angular velocity), which aims at damping only the first torsional
mode of the drill-string dynamics.

The resulting measured bit-mobilities are shown in Fig. 27. It can be seen that
the designed controllers suppress the first and second flexibility mode in the bit-
mobility. However, the third mode is only slightly damped using these controllers.
Clearly, the high-gain controller (H∞ (hg)) achieves more damping of the third
mode than the low-gain controller (H∞ (lg)). The limited amount of damping of
this mode is caused by the fact that it is difficult to synthesize a controller that
suppresses the third flexibility mode and at the same time satisfies the performance
specifications regarding measurement noise sensitivity. The sensitivity with respect
to measurement noise plays an important role in the design of controllers for the
experimental setup, because the level of noise (especially on the top drive angular
velocity) is relatively high. In addition, the third mode is almost unobservable in,
e.g., the frequency response function from top-drive torque to top-drive velocity, see
Fig. 10. Therefore, it is difficult to suppress the third torsional flexibility mode.

Remark 1 We conjecture that (e.g., torque) sensors in the drill-string can signifi-
cantly improve the observability properties of such essential flexibility modes, and
can hence potentially be used in a feedback strategy to improve the damping of such
modes that are poorly observable in surface measurements.
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Fig. 26 Designed linear dynamic controllers (andSoft-Torque controller) for the experimental drill-
string setup. Left plot is the controller that uses the top drive angular velocity, while the controller
in the right plot is based on the pipe torque measurement
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Fig. 27 Bit-mobility of the setup with two different H∞-controllers

Themeasured response is shown in Fig. 28. First, the low-gainH∞-controller is used,
and after approximately 210 s,we switch to the high-gain controller. This switch is not
necessary, and the desired setpoint can also be stabilized using the low-gain controller
only. However, the high-gain controller has improved robustness properties (due to
the improved damping of the third mode), which can be beneficial. By only using the
high-gain controller in the startup scenario, it is not possible to stabilize the desired
setpoint. A closer look at the experimental resultswith theH∞-controllers shows that
the low-gain controller is able to stabilize the desired setpoint of 5.5 rpmwith limited
control action (i.e., at least the controller acts less aggressively compared to the high-
gain H∞-controller). The oscillations in the bit angular velocity are still relatively
large in amplitude; however, the oscillations are sufficiently damped to mitigate
stick-slip vibrations. In addition, it has to be noted that, due to the presence of the
roll-off filters in the controller, high-frequency (measurement) noise is not amplified
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Fig. 28 Experimental result of the drill-string setupwith the designedH∞-controllers in the startup
scenario, after approximately 210 s, the controller is switched to a high-gain H∞-controller

by the controller, such that possible oscillations caused by such disturbances are
avoided. The high-gain controller clearly usesmore control action, which also results
inmore oscillations in the top drive angular velocity. The high-gain controller induces
slightly larger oscillations in the bit angular velocity than those induced by the low-
gain controller. The latter effect is related to the (measurement) noise sensitivity of
these controllers. Still, the high-gain controller ensures a higher robustness against
uncertainties in the bit-rock-interaction, as evidenced by an improved attenuation of
the (third) resonance in the bit mobility, see Fig. 27.
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Summarizing, with the designed H∞-controllers, it is possible to stabilize a
desired angular velocity of 5.5 rpm and to avoid stick-slip oscillations in a realistic
scenario in which the SoftTorque controller could not avoid such oscillations.

5 Concluding Remarks

In this chapter, we have presented the design of an experimental, lab-scale drill-string
setup based on a non-smooth model of a real-life drilling rig. The setup was designed
to reflect multiple dominant torsional flexibility modes of the system dynamics, as
field tests have shown that multiple modes can be associated with the occurrence of
stick-slip oscillations. Next, we have proposed a robust control design strategy that
can be used to design controllers that (1) stabilize a constant velocity setpoint, and
hence avoid such stick-slip limit cycling, (2) guarantee robust stability in the presence
of uncertainties in the bit-rock interaction, (3) take into account practically relevant
performance specifications, and (4) guarantee robust stability and performance in
the presence of multi-modal torsional drill-string dynamics. Finally, such controllers
have been implemented and tested on the experimental setup, and it has been shown
that these can eliminate stick-slip oscillations in realistic startup scenarios in which
an industrial SoftTorque controller fails to do so.
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On the Constraints Formulation
in the Nonsmooth Generalized-α
Method

Olivier Brüls, Vincent Acary and Alberto Cardona

Abstract The simulation of flexible multibody systems with unilateral contact
conditions and impacts requires advanced numerical methods. The nonsmooth
generalized-α method was developed in order to combine an accurate and second-
order time discretization of the smoother part of the dynamics and a consistent
but first-order time discretization of the impulsive contributions. Compared to the
Moreau-Jean scheme, this approach improves the quality of the numerical solution,
especially for the representation of the vibrating response of flexible bodies. It relies
on the formal definition of a so-called smooth motion that captures a non-impulsive
part of the total nonsmooth motion. This definition may account for some contri-
butions of the bilateral constraints and/or of the active unilateral constraints at the
velocity or at the acceleration level. This chapter shows that the formulation of the
constraints strongly influences the numerical stability and the computational cost of
the method. A strategy for enforcing the bilateral and unilateral constraints simul-
taneously at the position, velocity and acceleration levels is also established, with
a careful formulation of the activation criteria based on augmented Lagrange mul-
tipliers. In the special case of smooth systems, a comparison is made with more
standard solvers for differential-algebraic equations. The properties of this method
are demonstrated using illustrative numerical examples of smooth and nonsmooth
mechanical systems.
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1 Introduction

This chapter addresses the numerical simulation of mechanical systems composed of
rigid and flexible bodies interconnected by kinematic joints and subject to friction-
less contact conditions. These models are intended for the analysis of the dynamic
interactions between motion, impacts and vibrations in various industrial applica-
tions, such as in automotive, wind turbine, and robotic systems. The kinematic joints
impose restrictions on the relative motions of the bodies and are modelled as bilat-
eral constraints, whereas the non-penetration conditions at the contact points are
modelled as unilateral constraints. These unilateral constraints may cause impact
phenomena, so that the dynamic response becomes nonsmooth, involving velocity
jumps and impulsive reaction forces.

In many practical situations, the nonsmooth behaviours are nevertheless localized
in space and/or in time. After spatial and time discretization, this implies that velocity
jumps and impulsive forces are only observed for a limited number of coordinates
and/or during a limited number of time steps. Even though the correct description of
these velocity jumps and impulsive forces is of the utmost importance for the global
consistency of the simulation, the quality of the results within the smooth parts of
the motion is also essential.

The most popular time-stepping methods for nonsmooth systems, such as the
Moreau-Jean scheme [25, 27] or the Schatzman-Paoli scheme [29, 30], are robust
with respect to the treatment of nonsmooth phenomena. An interesting overview of
related mathematical results can be found in Chap. 4 of this book. However, these
time-stepping methods lead to rather poor first-order approximations of the smooth
parts of the motion and to high levels of numerical dissipation, which is particularly
penalizing for the accurate representation of vibration phenomena in flexible systems.
In the Moreau-Jean scheme, the constraints are imposed at the velocity level, so
that a constraint drift generally appears at the position level. Alternatively, event-
driven techniques, which adapt their time steps to the impact instants, can be used in
combination with a higher order scheme during the free flight phases [20]. However,
their performance decreases if the frequency of impacts increases, and they cannot
be used if accumulation phenomena, involving an infinite series of impact in a finite
time interval, are present. A more detailed description of numerical methods for the
simulation of nonsmooth systems can be found in [2].

These observations motivated the recent development of more sophisticated time-
stepping algorithms for nonsmooth systems,which involve improved approximations
of the smoother parts of the motion [12, 14, 34, 35, 37]. Several authors [1, 12, 36]
have also investigated the development of algorithms that simultaneously enforce the
bilateral and unilateral constraints at the velocity and position levels, so that any drift-
off phenomenon is avoided. In this chapter, we revisit the nonsmooth generalized-α
method introduced in [12, 14]. It relies on a splitting of the motion into smooth (non-
impulsive) and nonsmooth (impulsive) contributions. The smooth contributions are
integrated using the second-order generalized-α method, whereas the nonsmooth
contributions are integrated using a first-order backward Euler scheme. This method

http://dx.doi.org/10.1007/978-3-319-75972-2_4
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leads to qualitatively better solutions than the Moreau-Jean method, both for rigid
and flexible systems.

If the splitting of the dynamics into smooth and nonsmooth contributions leads
to algorithms with improved performance, some freedom remains in the precise
definition of the smoothmotion, especially regarding the contributions of the bilateral
and unilateral constraints. This question has a significant influence on the numerical
stability of the solution in the presence of impacts and velocity jumps. In [14],
the smooth motion was defined as an unconstrained motion, whereas the bilateral
constraints at the velocity level were imposed in [12]. Here, we propose a definition
of the smooth motion that involves the bilateral constraints and the active unilateral
constraints at the acceleration level.

After a description of the equations of motion in Sect. 2 and of the nonsmooth
generalized-α method in Sect. 3, the special case of a smooth mechanical system
without impact is addressed in Sect. 4 and a comparison with more standard solvers
for differential-algebraic equations (DAEs), which are commonly used for the analy-
sis of smoothmultibody systems, is performed.We show that the proposed algorithm
can be interpreted as an index-1 formulation that simultaneously enforces the con-
straints at the position, velocity and acceleration levels. In Sect. 5, the behaviour of
the algorithm in the smooth case is studied based on the numerical example of a
pendulum modelled as a DAE. In this example, a post-impact numerical solution is
also reproduced by considering disturbed initial conditions at the acceleration level.
This analysis reveals the high robustness and stability of the proposed algorithm.

Three examples of nonsmooth dynamic systems are studied in Sect. 6: a bouncing
rigid pendulum, a bouncing flexible pendulum and the horizontal impact of an elastic
bar. These examples intend to reveal the good properties of the algorithm for systems
with bilateral constraints, impacts, accumulation phenomena, flexible bodies, finite
contact duration, dynamic activation and deactivation of unilateral constraints. Also,
it is shown that the numerical damping of the generalized-α is no longer necessary
for the stabilization of the constraints, but is only useful for the stabilization of the
spurious high frequency modes resulting from the finite element discretization of
flexible bodies. The conclusions of the study are finally summarized in Sect. 7.

2 Nonsmooth Dynamics

2.1 Mechanical Systems with Unilateral Constraints

Let us consider a mechanical system with bilateral and unilateral constraints. For
example, the bilateral constraints may represent the restrictions imposed by a kine-
matic joint that connects two bodies of the system, whereas a unilateral constraint
may represent a non-penetration condition when two bodies are in contact. In a first
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step, we assume that no impact occurs in the system, but that detachment phenomena
may occur during the motion. The equations of motion are then expressed as

q̇ = v, (1a)

M(q) v̇ − gTq (q)λ = f(q, v, t), (1b)

gU (q) = 0, (1c)

0 ≤ gU (q) ⊥ λU ≥ 0, (1d)

where t is the time, q is the vector of coordinates, e.g., the nodal coordinates
of a finite element mesh, v is the vector of velocities, M(q) is the mass matrix,
f(q, v, t) = fext(t) − fdamp(q, v) − f int(q) collects the external, damping and inter-
nal forces, g is the combined set of bilateral and unilateral constraints, gq(q) is the
matrix of constraint gradients, λ is the vector of Lagrange multipliers that represents
the unilateral and bilateral reaction forces, U is the set of indices of the unilateral
constraints, U is its complementarity set, i.e., the set of bilateral constraints, and
T = U ∪ U is the total set of constraints, and we have

g =
[
gU

gU

]
, λ =

[
λU

λU

]
. (2)

Equation (1d) takes the form of a complementarity condition known as the Sig-
norini condition. For one contact j ∈ U , the function g j (q) represents the signed
gap distance, which can be obtained from the contact kinematics. The contact con-
dition imposes g j (q) λ j = 0 with both g j (q) and λ j being non-negative, i.e., we do
not authorize penetration and the reaction force can only be compressive.

The equations of motion (1) can be solved through time integration from given
initial conditions q(0) = q0 and v(0) = v0 in order to obtain the trajectory q(t),
v(t) and the Lagrange multipliers λ(t) on a given time interval [0, T ]. However, the
equations of motion also hide a purely algebraic relationship between q(t), v(t) and
λ(t). Indeed, at a given time t , the constraint reaction forces λ(t) can be evaluated
as an algebraic function of the current position q(t) and velocity v(t). As described
below, the expression of this function is obtained by constraint differentiation.

If the bilateral constraints are satisfied at the position level, then their first and sec-
ond time-derivatives also vanish, leading to the expression of the bilateral constraints
at the velocity level

dg(q(t))

dt
= gUq (q) v = 0 (3)

and at the acceleration level

d2g(q(t))

dt2
= gUq (q) v̇ + hU (q, v) = 0, (4)
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where h(q, v) is a quadratic operator with respect to its second argument. This
operator is defined as

h(q, v) = ∂s(q, v)
∂q

v, (5)

with s(q, v) = gq(q) v.
The unilateral constraint j ∈ U is active at the position level at time ti if

g j (q(ti )) = 0. As λ j ≥ 0, this constraint is such that λ j (ti ) − r g j (q(ti )) ≥ 0, where
r > 0 is a strictly positive, yet arbitrary, real number. The variable λ j (t) − r g j (q(t))
is an augmented Lagrange multiplier, as encountered in augmented Lagrangian for-
mulations [3, 31, 32]. The set of active unilateral constraints at the position level is
thus defined as

UA(t) = { j ∈ U : λ j (t) − r g j (q(t)) ≥ 0}. (6)

In order to avoid penetration right after ti , any constraint j in UA(ti ) needs to be
increasing so the gap velocity ġ j = g j

q(q(ti )) v(ti ) can only be non-negative. Hence,
the unilateral constraint is transferred at the velocity level as [33]

0 ≤ g j
q(q(t)) v(t) ⊥ λ j ≥ 0, ∀ j ∈ UA(t). (7)

Theunilateral constraint j ∈ U is active at the velocity level at time ti if g j (q(ti )) = 0
and g j

q(q(ti )) v(ti ) = 0. As λ j ≥ 0, this constraint satisfies λ j (ti ) − r g j
q(q(ti )) v(ti )

≥ 0 for r > 0. The set of active unilateral constraints at the velocity level is thus
defined as

UB(t) = { j ∈ UA(t) : λ j (t) − r g j
q(q(t)) v(t) ≥ 0}. (8)

In order to avoid penetration right after ti , the gap acceleration g̈ j = g j
q(q(ti )) v̇(ti ) +

h j (q(ti ), v(ti )) needs to be non-negative for any constraint j ∈ UB(ti ). The unilateral
constraint is thus further transferred at the acceleration level as [33]

0 ≤ g j
q(q(t)) v̇(t) + h j (q(t), v(t)) ⊥ λ j (t) ≥ 0, ∀ j ∈ UB(t). (9)

The unilateral constraint j ∈ U is active at the acceleration level at time ti if
g j (q(ti )) = 0, g j

q(q(ti )) v(ti ) = 0 and g j
q(q(ti )) v̇(ti ) + h j (q(ti ), v(ti )) = 0. Follow-

ing a similar argument as above, the set of active unilateral constraints at the accel-
eration level is thus defined as

UC(t) = { j ∈ UB(t) : λ j (t) − r (g j
q(q(t)) v̇(t) + h j (q(t), v(t))) ≥ 0}. (10)

For convenience, we also introduce the active sets A (t) = U ∪ UA(t), B(t) =
U ∪ UB(t), C (t) = U ∪ UC(t) and the inactive sets A (t) = T \ A (t), B(t) =
T \ B(t) and C (t) = T \ C (t).
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Using these definitions of the active sets A , B and C , which implicitly depend
on q, v, v̇ and λ, the equations of motion can be represented in three equivalent ways
as:

• the formulation with the constraints at the position level:

q̇ = v, (11a)

M(q) v̇ − gTq (q)λ = f(q, v, t), (11b)

gA (q) = 0, (11c)

λA = 0, (11d)

• the formulation with the constraints at the velocity level:

q̇ = v, (12a)

M(q) v̇ − gTq (q)λ = f(q, v, t), (12b)

gBq (q) v = 0, (12c)

λB = 0, (12d)

• the formulation with the constraints at the acceleration level:

q̇ = v, (13a)

M(q) v̇ − gTq (q)λ = f(q, v, t), (13b)

gCq (q) v̇ + hC (q, v) = 0, (13c)

λC = 0, (13d)

The expression of the Lagrange multipliers can now be obtained from the for-
mulation with the constraints at the acceleration level. Indeed, if the mass matrix is
nonsingular, the acceleration can be evaluated from Eq. (13b) as

v̇ = M−1(q) (f(q, v, t) + gTq (q)λ), (14)

so that Eqs. (13c) and (13d) give the equation for the Lagrange multipliers as

gCq (q)M−1(q) (f(q, v, t) + gTq (q)λ) + hC (q, v) = 0, (15a)

λC = 0, (15b)

If the position q(t) and velocity v(t) are known at a given time t and if all constraints
in C are independent, the Lagrange multipliers λ(t) can be evaluated by solving this
linear set of algebraic equations. Actually, this problem includes a linear comple-
mentarity condition, as the active set C implicitly depends on the unknown value of
λ(t).
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This constraint differentiation process revealed the existence of hidden bilateral
and unilateral constraints at the position, velocity and acceleration levels, which are
satisfied by the exact solution. Clearly, the initial conditions q0 and v0 should be
consistent with the constraints at the position and velocity levels. In the context of
DAE (i.e., systems without unilateral constraint), these hidden constraints are at the
core of so-called index reduction methods, which have been proposed to improve
the numerical stability of time integration schemes [4]. In the context of unilaterally
constrained systems, these hidden constraints can also be exploited to formulate
efficient numerical algorithms, as will be discussed later.

2.2 Mechanical Systems with Impacts

2.2.1 Equations of Motion

Now, the formulation is extended to deal with impact phenomena, which means
that impulsive reaction forces and jumps in the velocity field may arise, though the
position field remains absolutely continuous in time. Assuming that the velocity is a
function of bounded variation, the right and left limits are introduced:

q̇+(t) = lim
τ→t,τ>t

q̇(τ ), (16)

q̇−(t) = lim
τ→t,τ<t

q̇(τ ), (17)

v+(t) = lim
τ→t,τ>t

v(τ ), (18)

v−(t) = lim
τ→t,τ<t

v(τ ), (19)

For the sake of notation simplicity, the convention v(t) = v+(t) and q̇(t) = q̇+(t)
shall be used in the remaining part of this chapter.

When an impact occurs, the velocity is discontinuous and the acceleration is not
well-defined in the usual sense. This motivates the representation of the dynamics in
terms of the measure associated with the velocity dv [26]. This measure satisfies the
property

v(t2) − v(t1) =
∫

(t1,t2]
dv (20)

and, if the singular continuous part of the measure is neglected, it admits the decom-
position

dv = v̇ dt +
∑
i

(v(ti ) − v−(ti )) δti , (21)

where dt is the standard Lebesgue measure, the summation is performed over all
impacts, and δti is the Dirac delta supported at ti . Similarly, ameasure di is introduced
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to represent the reaction forces with possible impulsive contributions. This measure
is such that the integral

Λ∗(t1; t2) =
∫

(t1,t2]
di (22)

represents the total impulse of the reaction forces over the time interval (t1, t2], and
it admits the decomposition

di = λ dt +
∑
i

pi δti , (23)

where λ is the vector of nonimpulsive Lagrange multipliers associated with the
Lebesgue measurable constraint forces and pi is the impulse producing the jump at
the instant ti .

Then, the equations of motion can be expressed in the following form:

q̇ = v, (24a)

M(q) dv − gTq (q) di = f(q, v, t) dt, (24b)

gU (q) = 0, (24c)

0 ≤ gU (q(t)) ⊥ diU ≥ 0, (24d)

2.2.2 Impact Equation

For almost every time t , when there is no impact, the equations of motion given in
Eq. (11) with the definition of the active unilateral constraint UA in Eq. (6) are still
valid. At each impact time ti , Eq. (24d) leads to

0 ≤ gU (q(ti )) ⊥ pUi ≥ 0, (25)

so that the definition of the set of active unilateral constraintsUA at the impact time
ti is adapted as

UA(ti ) = { j ∈ U : p j
i − rp g

j (q(ti )) ≥ 0}, (26)

with the strictly positive scalar number rp > 0. The equations of motion at the impact
time become

M(q(ti )) (v(ti ) − v−(ti )) − gTq (q(ti ))pi = 0, (27a)

gA (q(ti )) = 0, (27b)

pAi = 0, (27c)
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An impact law is then needed to specify the post-impact velocity. The Newton
impact law defines the normal velocity jump in the case of an impact for the constraint
j ∈ UA(ti ) as

g j
q(q(ti )) v(ti ) = −e j g j

q(q(ti )) v−(ti ), (28)

where e j ∈ [0, 1] is the coefficient of restitution. The present formalism is developed
for the analysis of contact conditions between rigid or flexible bodies. For rigid
bodies, the coefficient of restitution defines the amount of energy dissipated during
an impact. For flexible bodies, the physical meaning of a coefficient of restitution
is not clear. The spatial discretization of a flexible body using the finite element
method leads to a finite dimensional system with finite masses. An impact law with a
coefficient of restitution is thus needed to describe contact conditions. In practice, for
flexible bodies, a value e j = 0 may often be used so that the condition g j

q v(ti ) = 0 is
imposedwhen the constraint is active. Based on this impact law, the contact condition
at the impact time is expressed at the velocity level as

0 ≤ gU A
q (q(ti )) v(ti ) + EU A gU A

q (q(ti )) v−(ti ) ⊥ pU A
i ≥ 0, (29)

where EU is a diagonal matrix formed with the coefficients of restitutions of all
contact points. At the impact time ti , the set of active unilateral constraints at the
velocity level UB is adapted as

UB(ti ) =
{
j ∈ UA(ti ) : p j

i − rp (g j
q(q(ti )) v(ti ) + e j g j

q(q(ti )) v−(ti )) ≥ 0
}

.

(30)
The equation for evaluating the velocity jump and the impact at time ti is obtained
as

M(q(ti )) (v(ti ) − v−(ti )) − gTq (q(ti ))pi = 0, (31a)

gBq (q(ti )) v(ti ) + EB gBq (q(ti )) v−(ti ) = 0, (31b)

pBi = 0. (31c)

Equation (31b) accounts for the bilateral and active unilateral constraints. The size
of the matrix of restitution coefficients E is thus adapted to include the bilateral
constraints with artificial restitution coefficients fixed to zero.

2.2.3 Active Set Formulations

The definitions of UA in Eqs. (6) and (26) can be merged into a single definition
valid for every time as

UA = { j ∈ U : di j − g j (q) dρ ≥ 0}, (32)
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where dρ > 0 is a measure defined from the strictly positive and constant scalar
numbers r and rp as

dρ = r dt + rp
∑
i

δti . (33)

Then, the combination of Eqs. (11) and (27) leads to a formulation in terms of mea-
sures

q̇ = v, (34a)

M(q(t)) dv − gTq (q) di = f(q, v, t) dt, (34b)

gA (q(t)) = 0, (34c)

diA = 0, (34d)

which is valid for every time and inwhich the constraints are expressed at the position
level. Notice that Eq. (34) should be combined with the impact law to obtain a
complete set of equations.

Similarly, the definitions of UB in Eq. (8) and (30) can be merged into a single
definition for every time as

UB = {
j ∈ UA : di j − (g j

q(q) v + e j g j
q(q) v−) dρ ≥ 0

}
. (35)

Then, the formulation of the equations of motion in terms of measures is obtained
from Eqs. (12) and (31) as

q̇ = v, (36a)

M(q(t)) dv − gTq (q) di = f(q, v, t) dt, (36b)

gBq (q) v + EB gBq (q) v− = 0, (36c)

diB = 0, (36d)

which is valid for every time and inwhich the constraints are expressed at the velocity
level.

As in the Moreau-Jean method, the formulation in Eq. (36) embeds the impact
law in the expression of the constraints at the velocity level. However, the activation
criterion defined by Eqs. (32) and (35) involves the augmented Lagrange multipliers
di j − g j dρ, and thereby differs from the activation strategy initially proposed by
Moreau, which only involves the gap distance g j . In our notations, the set of active
unilateral constraints in the original Moreau-Jean method would be defined as

U Moreau
A (t) = { j ∈ U : g j (q(t)) ≤ 0}. (37)

After time discretization, the set U Moreau
A at time step tn+1 is evaluated based on

a prediction of the displacement q∗(tn+1), whose definition affects the numerical
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solution. In practice, it turns out that, in the Moreau-Jean method, q∗(tn+1) cannot be
merely chosen as the actual displacement q(tn+1). In contrast, we will show that the
proposed activation criterion based on augmented Lagrange multipliers according to
Eqs. (6) and (26) leads to a simpler and more implicit discrete activation strategy.

Equation (36) can be discretized in time using the Moreau-Jean θ -method
[25, 27]. This method is known for its robustness and its ability to deal consis-
tently with unilateral constraints and impacts in mechanical systems. However, as
the constraints are only imposed at the velocity level, the numerical integration error
will induce a drift of the constraints at the position level that will accumulate as time
goes by. Also, for standard applications, the numerical parameter θ is selected in the
interval (1/2, 1]. This implies that the equations of motion are integrated with only
first-order accuracy and that the overall solution is affected by a rather large level of
numerical dissipation.

For nonsmooth systems, it is not possible to formulate the equations of motion
in terms of measures with the constraints at the acceleration level, because, while
the acceleration variable is defined for almost every time, it is not so at the impact
instants.

3 Nonsmooth Generalized-α Method

3.1 Splitting Method

Following [12, 14], the motion is split at one time step into a smooth trajectory
with continuous positions and velocities and nonsmooth contributions representing
impulsive forces, velocity jumps and position corrections. The smooth trajectory is
constructed by integration of an acceleration variable ˙̃v that shall be defined below.
The advantage of this approach comes from the possibility of using a second-order
scheme to integrate ˙̃v instead of a first-order θ -method.

Let us introduce the set of constraintsS (t) that shall be included in the definition
of the smooth motion. It can be selected in several different manners, which shall be
studied later in Sect. 3.2. At a given time t and for given values of q(t) and v(t), the
smooth acceleration ˙̃v(t) and the smooth Lagrange multiplier λ̃(t) are defined as the
solution to the well-posed algebraic system

M(q) ˙̃v − gTq (q) λ̃ = f(q, v, t), (38a)

gSq (q) ˙̃v + hS (q, v) = 0, (38b)

λ̃
S = 0. (38c)

An important point is that the resulting acceleration ˙̃v(t) is defined for every time,
including the impact instants. The values of ˙̃v and λ̃ at time t only depend on the
values of q, v and S at time t . In general, S (t) implicitly depends on ˙̃v(t) and
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λ̃(t). As q(t) is a continuous function and v(t) is a function of bounded variations,
the acceleration ˙̃v(t) and the multiplier λ̃(t) are also functions of bounded variations
and, by construction, they are free from any impulsive contribution. Also, we use
the conventions ˙̃v(t) = ˙̃v+(t) and λ̃(t) = λ̃

+
(t). Notice that a discontinuity of ˙̃v(t)

can be either caused by a jump in the velocity v(t) or by a constraint activation or
deactivation in the setS (t). The velocity field ṽ(t) and the position field q̃(t) of the
smooth trajectory, which are obtained by time integration of ˙̃v(t) over the time step,
are absolutely continuous functions of time.

The nonsmooth contributions to the total motion are then represented by the
differential measure dw, which is defined such that

dv = ˙̃v dt + dw. (39)

We obtain, using Eqs. (36b), (38a) and (39),

M(q) dw − gTq (q) (di − λ̃ dt) = 0. (40)

We insist on the fact that the smooth trajectory is a mere artificial construction, which
is only intended for the formulation of an appropriate time integration procedure.
The physical response is represented by the total motion q(t) and v(t) and the total
impulse di.

The formulation of the constraints at the acceleration level in Eq. (38b) departs
from the definition of the smooth motion based on the velocity constraints that was
proposed in [12], but leads to several advantages that will be investigated throughout
the paper. Firstly, it is not necessary to evaluate explicitly the smooth trajectory at
the position or velocity levels, which simplifies the initialization of these variables.
Secondly, the sensitivity of this formulation to disturbances induced by the coupling
with nonsmooth phenomena, such as velocity jumps or constraint activation and
deactivation, is reduced. Thirdly, this formulation can tolerate the dynamic activation
and deactivation of unilateral constraints in the set S (t).

In summary, the dynamics is now represented by the following set of equations:

q̇ = v, (41a)

dv = ˙̃v dt + dw, (41b)

M(q) ˙̃v − gTq (q) λ̃ = f(q, v, t), (41c)

gSq (q) ˙̃v + hS (q, v) = 0, (41d)

λ̃
S = 0, (41e)

M(q) dw − gTq (q) (di − λ̃ dt) = 0, (41f)

gBq (q) v + EB gBq (q−) v− = 0, (41g)

diB = 0. (41h)
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3.2 Activation Strategy for the Constraints on the Smooth
Motion

This section addresses the possible contribution λ̃ of the constraint reaction forces in
the definition of the smooth motion. The choice to include such contributions or not
bears some arbitrariness. Indeed, the value of λ̃ has no physical meaning; only the
total impulse represented by di can receive a physical interpretation. Even though
some contributions of the reaction forces are disregarded in the definition of λ̃, they
will be consistently incorporated into the total impulse di that satisfies the discrete
complementarity condition.

However, it is appealing to define the smooth motion so that it evolves as closely
as possible to the physical motion for at least two reasons. Firstly, the smooth motion
is integrated using a higher-order scheme, so we can expect a higher accuracy if the
smooth motion is closer to the total (physical) one. Secondly, when the nonsmooth
corrections are reduced, the convergence of the iterative procedure at each time step,
which is at the core of the implicit integration procedure, is accelerated.

In the proposed method, the acceleration ˙̃v and the multipliers λ̃ are well-defined
at any time (though they can be discontinuous) by Eq. (38), so that, by construction,
no impulsive term can appear. This observation remains valid when some constraints
on the smoothmotion are activated and deactivated. This means that we are relatively
free to dynamically activate and deactivate some unilateral constraints in S as we
feel appropriate without inducing inconsistent impulsive excitations on the smooth
motion.

Three different activation strategies for the smooth constraints are nowconsidered:

• Strategy 1:S = ∅, i.e., no bilateral constraint and no unilateral constraint is taken
into account, as proposed in [14]. This means that the smooth motion is considered
as a constraint-free motion.

• Strategy 2: S = U , i.e., only the bilateral constraints are taken into account,
but all unilateral constraints are excluded, as proposed in [12]. This means that
the smooth motion satisfies the bilateral constraints, but does not account for the
contact forces.

• Strategy 3: S = U ∪ ŨC , with ŨC the time-dependent set of active unilateral
constraints at the acceleration level defined according to

ŨC = { j ∈ UB : λ̃ j − r (g j
q(q) ˙̃v + h j (q, v)) ≥ 0}. (42)

This strategy is a new approach considered in this chapter. Notice that the definition
of ŨC relies on the acceleration ˙̃v, which is well-posed for every time (including
the impact times), and thus slightly differs from the definition ofUC , which is not
defined at the impact time. With this strategy, for almost every time (when there
is no impact), Eqs. (13) and (38) are strictly equivalent, so that ˙̃v = v̇ and λ̃ = λ.
Thismeans that, for almost every time, ˙̃v and λ̃ represent the standard accelerations
and reaction forces, but that they exclude impulsive contributions at the impact
instants.
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Compared to strategy 1,we clearly expect that strategy 2 brings the smoothmotion
closer to the physical motion, as it satisfies the bilateral constraints. For this reason,
strategy 2 should be preferred to strategy 1.

When all active unilateral constraints remain closed, the physical motion becomes
smooth and satisfies the active constraints at the acceleration level. In this case, for
the exact solution, the smooth motion defined in strategy 3 is equal to the total
motion, i.e., ˙̃v = v̇ and λ̃ = λ. This means that the total motion is integrated with
second-order accuracy. In the numerical scheme, numerical errors may lead to small
differences between the smooth motion and the total motion, but we expect that
these differences are much smaller compared to the position corrections and velocity
jumps in strategy 2. Compared to strategy 2, strategy 3 should thus be preferred when
the constraints remain closed.

When some unilateral constraints are active but some impulsive phenomena are
present in the system, the acceleration is not well-defined and the physical interpre-
tation of the constraint at the acceleration level becomes irrelevant. In this case, it is
not clear whether strategy 2 or strategy 3 should be preferred. This question will be
investigated through numerical tests in Sect. 6.

3.3 Gear-Gupta-Leimkuhler Formulation

In Eq. (41g), the constraints on the total (physical) motion are imposed at the veloc-
ity level. Due to numerical integration errors, a drift of the constraints is expected
at the position level. In order to remedy this situation, an adaptation of the Gear-
Gupta-Leimkuhler formulation [18] to nonsmooth systems was considered by sev-
eral authors [1, 12, 36]. The algorithm discussed here is built upon the formulation
proposed in [12]. An additional Lagrangemultiplierμ is thus introduced in Eq. (41a),
leading to

dv = ˙̃v dt + dw, (43a)

M(q) ˙̃v − gTq (q) λ̃ = f(q, v, t), (43b)

gSq (q) ˙̃v + hS (q, v) = 0, (43c)

λ̃
S = 0, (43d)

M(q)(q̇ − v) − gTq (q)μ = 0, (43e)

gA (q) = 0, (43f)

μA = 0, (43g)

M(q) dw − gTq (q) (di − λ̃ dt) = 0, (43h)

gBq (q) v + EB gBq (q−) v− = 0, (43i)

diB = 0. (43j)
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One can easily check that the solution to Eq. (41) also satisfies Eq. (43) with μ = 0.
So, the introduction of the new Lagrange multiplier preserves the original solution
to the problem.

3.4 Discrete Smooth and Nonsmooth Variables

In order to prepare the time discretization procedure, several global variables that rep-
resent the total jumps and total impulses over the time step (tn, tn+1] are introduced.
Over the current time step, the smooth motion is first constructed by integration of
the smooth acceleration ˙̃v(t) from the physical initial conditions q(tn) and v(tn) to
the end of the time step

ṽ(t) = v(tn) +
∫ t

tn

˙̃v(τ ) dτ, (44)

q̃(tn+1) = q(tn) + h v(tn) +
∫ tn+1

tn

∫ t

tn

˙̃v(τ ) dτ dt, (45)

where h = tn+1 − tn is the the time-step size. Even if the total velocity v(t) undergoes
a discontinuity, ṽ(t) is, by construction, a continuous function of time in (tn, tn+1].

The velocity jump is defined as

W(tn; tn+1) =
∫

(tn ,tn+1]
dw (46)

Using Eqs. (39) and (44), we get

W(tn; tn+1) = v(tn+1) − ṽ(tn+1). (47)

Similarly, the position correction is defined as

U(tn; tn+1) =
∫ tn+1

tn

(q̇(t) − ṽ(t)) dt, (48)

so that, using Eqs. (39), (44) and (45),

U(tn; tn+1) = q(tn+1) − q̃(tn+1). (49)

Then, the relative impulse variable

Λ(tn; tn+1) =
∫

(tn ,tn+1]
(di − λ̃(t) dt) (50)
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and the relative double integral variable

ν(tn; tn+1) =
∫ tn+1

tn

(
μ(t) +

∫
(tn ,t]

(di − λ̃(τ ) dτ)

)
dt (51)

are introduced so that, according to Theorem 1 in [12],

M(q(tn+1)) W(tn; tn+1) − gTq (q(tn+1)) Λ(tn; tn+1) = O(h), (52a)

M(q(tn+1)) U(tn; tn+1) − gTq (q(tn+1)) ν(tn; tn+1) = O(h2). (52b)

It is important to observe thatΛ(tn; tn+1) does not represent the total impulse of the
reaction forces, but only a part of it as the contribution of the non-impulsive reaction
forces λ̃ is excluded in the definition (50). The total (physical) impulse, denoted as
Λ∗(tn; tn+1), is evaluated by time integration of the measure of the reaction forces di

Λ∗(tn; tn+1) =
∫

(tn ,tn+1]
di = Λ(tn+1) +

∫ tn+1

tn

λ̃(τ ) dt. (53)

Similarly, the total double integral ν∗(tn; tn+1) is defined as

ν∗(tn; tn+1) =
∫ tn+1

tn

(
μ(t) +

∫
(tn ,t]

di
)
dt = ν(tn+1) +

∫ tn+1

tn

∫ t

tn

λ̃(t) dτ dt.

(54)

The contribution of μ is introduced in Eq. (54) so that ν∗(tn; tn+1) is conveniently
expressed in terms of the variables ν(tn; tn+1) and λ̃.

3.5 Active Sets in the Discrete Time System

Following a similar argumentation as developed in [12], the set of active unilateral
constraints at the position level over the time step (tn, tn+1] is defined as

UA(tn; tn+1) = {
j ∈ U : ν∗ j (tn; tn+1) − r g j (q(tn+1)) ≥ 0

}
. (55)

This activation rule based on the augmented Lagrange multiplier fixes the problem
of the spurious oscillations reported in [1] in a simple way.

The active unilateral constraints at the velocity level over the time step (tn, tn+1]
are defined as

UB(tn; tn+1)=
{
j ∈ UA(tn; tn+1) : 
∗ j (tn; tn+1) − r(g j

qv(tn+1) + e j g j
qv(tn)) ≥ 0

}
.

(56)
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Finally, if the third strategy is used for the activation of the constraints on the
smooth motion (see Sect. 3.2), the active unilateral constraints at the acceleration
level over the time step (tn, tn+1] are defined as

UC(tn; tn+1) = { j ∈ UB(tn; tn+1) :
λ̃ j (tn+1) − r(g j

q
˙̃v(tn+1) + h j (q(tn+1), v(tn+1))) ≥ 0

}
.

(57)

In [12], the unilateral constraints were never activated in the smooth equation, so

that λ̃
U = 0, ν∗U = νU and Λ∗U = ΛU . But if λ̃

U
differs from 0, it contributes

directly to the physical contact forces. This is the reason why the activation criteria in
Eqs. (55) and (56) need to be established based on the total impulse and total double
integral represented by ν∗ and Λ∗ (and not ν and Λ).

The definition ofUB also differs from [12] in the following way. Here, the defini-
tion ofUB involves the augmented Lagrange multipliers at the position level (as it is
a subset ofUA) and a criterion on the augmented Lagrange multiplier at the velocity
level. In [12], the criterion on the augmented Lagrangemultiplier at the position level
is replaced by a criterion on the penetration of the smooth motion g j (q̃(tn+1)) ≤ 0.
Thismodification allows us to completely eliminate the variable q̃ from the algorithm
and to simplify the formulation.

As discussed in [12], in this scheme, the variables ν and ν∗ do not have a clear
physical meaning, but are only useful for the exact enforcement of all active con-
straints at the position level at the end of the time step. So, the physical contact
impulse is solely represented by the variable Λ∗.

3.6 Generalized-α Time Integration

The integrals in Eqs. (44) and (45) can be approximated according to the generalized-
α method as

∫
(tn ,tn+1]

˙̃v dt = h(1 − γ )an + hγ an+1, (58)

∫ tn+1

tn

∫ t

tn

˙̃v(τ ) dτ dt = h2(0.5 − β)an + h2βan+1, (59)

(1 − αm)an+1 + αman = (1 − α f ) ˙̃vn+1 + α f
˙̃vn, (60)

where an+1 can be interpreted as a shifted approximation of the acceleration at time
tn+1 + (αm − α f )h. In the initialization procedure, the value of a0 at time t = 0 can
be approximated (i) by a0 = v̇((αm − α f )h) by solving Eq. (38) at t = (αm − α f )h
or (ii) by the order h approximation a0 = v̇(0). This second and simpler option
is retained in this work. The numerical parameters β, γ , αm , α f can be selected
according to the methods of Newmark [28], Hilber-Hughes-Taylor [21] or Chung
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and Hulbert [15]. This last option is considered here. The Chung-Hulbert method is
a second-order scheme with an adjustable level of numerical dissipation in the high-
frequency range. More precisely, based on the user-prescribed value of the spectral
radius at infinite frequencies ρ∞ ∈ [0, 1], which is an image of the level of numeri-
cal dissipation in the high-frequency range (ρ∞ = 1 means no dissipation, ρ∞ = 0
means maximal dissipation such that any high-frequency disturbance is eliminated
in one time step), the coefficients of the Chung-Hulbert method are determined as

αm = 2ρ∞ − 1

ρ∞ + 1
, α f = ρ∞

ρ∞ + 1
, γ = 0.5 + α f − αm, β = 0.25(γ + 0.5)2.

(61)
Finally, the integrals of the multipliers λ̃(t) that appear in the definition of the

active sets A and B are evaluated using a similar strategy as

∫ tn+1

tn

λ̃(t) dt = h(1 − γ )ηn + hγ ηn+1, (62)

∫ tn+1

tn

∫ t

tn

λ̃(τ ) dτ dt = h2(0.5 − β)ηn + h2βηn+1, (63)

(1 − αm)ηn+1 + αmηn = (1 − α f )λ̃n+1 + α f λ̃n, (64)

where ηn+1 is a shifted approximation of the multiplier λ̃ at time tn+1 + (α f − αm)h,
which is initialized as η0 = λ̃0.

3.7 Summary of the Time Stepping Scheme

Based on the definitions and results presented in the previous sections, the discrete
system of equations is finally obtained as

M(qn+1) ˙̃vn+1 − gTq (qn+1) λ̃n+1 = f(qn+1, vn+1, tn+1), (65a)

gSq (qn+1) ˙̃vn+1 + hS (qn+1, vn+1) = 0, (65b)

λ̃
S

n+1 = 0, (65c)

M(qn+1)Un+1 − gTq (qn+1)νn+1 = 0, (65d)

gA (qn+1) = 0, (65e)

νA
n+1 = 0, (65f)

M(qn+1)Wn+1 − gTq (qn+1)�n+1 = 0, (65g)

gBq (qn+1) vn+1 + EB gBq (qn) vn = 0, (65h)

�B
n+1 = 0, (65i)
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combined with the time integration formulae

qn+1 − qn = hvn + h2(0.5 − β)an + h2βan+1 + Un+1, (65j)

vn+1 − vn = h(1 − γ )an + hγ an+1 + Wn+1, (65k)

(1 − αm)an+1 + αman = (1 − α f ) ˙̃vn+1 + α f
˙̃vn. (65l)

The active sets A , B and S are evaluated as described in Sect. 3.5 based on the
discrete variables at time step n + 1, in particular, based on the variables Λ∗

n+1 and
ν∗
n+1 defined as

Λ∗
n+1 = Λ(tn+1) + h(1 − γ )ηn + hγ ηn+1, (65m)

ν∗
n+1 = ν(tn+1) + h2(0.5 − β)ηn + h2βηn+1, (65n)

(1 − αm)ηn+1 + αmηn = (1 − α f )λ̃n+1 + α f λ̃n. (65o)

The sets A , B and S thus implicitly depend on the solution at step tn+1. Let us
remark that the variables Λ∗

n+1 and ν∗
n+1 do not explicitly appear in the equations of

motion, but are necessary for the definition of the active sets A and B.
Initial conditions should be specified for the variables q0, v0, which should be

compatible with the constraints at the position and velocity levels. Based on these
initial conditions, the initial values of ˙̃v0 and λ̃0 are obtained by solving the algebraic
system (65a–65c). Finally, one can initialize a0 = ˙̃v0 and η0 = λ̃0.

One also observes that the smooth positions q̃n+1 and velocities ṽn+1 do not appear
in this scheme, which is a difference compared to the algorithm presented in [12].

3.8 Solution of the Discretized Problem

At each time step, the system of nonlinear equations represented by Eq. (65) should
be solved for the different variables at time tn+1. As the activation status of the
constraints depends on the unknowns of the problem, the problem implicitly includes
complementarity conditions.

For the sake of numerical efficiency, Eq. (65) can be condensed by elimination
of the linear equations that represent the time integration formulae (65j–65o). This
elimination relies on a distinction between the independent variables selected as ˙̃vn+1,
λ̃n+1, Un+1, νn+1, Wn+1, Λn+1, and the remaining dependent variables qn+1, vn+1,
an+1, ηn+1, ν

∗
n+1 and Λ∗

n+1. For a system with nq coordinates in q and ng constraints
in g, the problem is represented by a system of 3(nq + ng) nonlinear equations with
complementarity conditions for the 3(nq + ng) independent variables.

This nonlinear system can be solved using a semi-smooth Newton process, which
can also be interpreted as an active set method [10, 22–24]. This method relies on
iterations based on the linearized system with an update of the activation status at
each iteration.
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Algorithm 1 Nonsmooth generalized-α time integration scheme
Inputs: initial values q0 and v0
Compute the consistent value of ˙̃v0 and λ̃0 and initialize a0 := ˙̃v0 and η0 = λ̃0
for n = 0 to nfinal − 1 do
Predict the variables qn+1, vn+1, ˙̃vn+1, νn+1, Λn+1, λ̃n+1, an+1,ν∗

n+1, ηn+1 Λ∗
n+1

for i = 1 to imax do
Evaluate the sets A , B and S at time tn+1
Evaluate the residuals of the equations of motion given by Eqs. (65a–65i)
if all residuals are below the tolerance then
break

end if
Evaluate the iteration matrix of Eqs. (65a–65c) with respect to ˙̃vn+1 and λ̃n+1
Solve the resulting linearized problem and evaluate the corrections of ˙̃vn+1 and λ̃n+1
Update the dependent variables qn+1, vn+1, an+1, ηn+1, ν

∗
n+1 and Λ∗

n+1
Evaluate the residuals of Eqs. (65d–65f)
Evaluate the iteration matrix of Eqs. (65d–65f) with respect to Un+1 and νn+1
Solve the resulting linearized problem and evaluate the corrections of Un+1 and νn+1
Update the dependent variables qn+1 and ν∗

n+1
Evaluate the residuals of Eqs. (65g–65i)
Evaluate the iteration matrix of Eqs. (65g–65i) with respect toWn+1 and Λn+1
Solve the resulting linearized problem and evaluate the corrections of Wn+1 and Λn+1
Update the dependent variables vn+1 and Λ∗

n+1
end for

end for

A simplification of the linearized system can be obtained if some coupling terms
between equations are neglected in the iteration matrix that appears in the linearized
problem. In this case, the solution to the full linearized problem within each iteration
canbe approximated by a sequence of three subproblemsof sizenq + ng , as described
in Algorithm 1. A similar procedure was used in [12], and more implementation
details can be found in that paper. In many practical cases, it turns out that this
approximation of the iteration matrix does not significantly penalize the convergence
of the process, but significantly reduces the computational cost.

During the inner semismooth Newton iterations, the activation criteria are evalu-
ated in non-converged states for which the equilibrium is not reached. The definition
of these criteria based on the augmentedLagrangemultipliers is essential for ensuring
the robustness of the activation strategy and the convergence of the iterations towards
the equilibrium state. Another important detail is that, even though the dependent
variables are updated between the treatments of the different subsytems, the setsA ,
B andS are evaluated only once at the begining of the global Newton iteration, but
are not updated between the treatments of the different subsystems.
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4 Special Case: Smooth Motion

The above algorithm is general and can deal with rigid and flexible multibody sys-
tems with bilateral constraints, unilateral contact conditions and impacts, involving
velocity jumps and impulsive reaction forces. As a special case, it is also applicable
to systems without unilateral constraints or with strictly closed unilateral constraints.
In this case, no impact occurs and the dynamics evolves smoothly without velocity
jumps or impulsive phenomena.

Even thoughwe are interested in nonsmooth systems, the numerical performances
of the method should also be investigated in the smooth phases of motion between
impact phenomena. In this section, the equations of motion and the time integration
algorithm are first particularized to smooth systems. Then, more usual DAE solvers
for smooth systems will be reviewed and compared to the proposed algorithm.

If no impulsive contribution is present in Eqs. (21) and (23), we can write

dv = v̇ dt, (66)

di = λ dt, (67)

and, if all active constraints remain closed, the dynamics can be represented by

q̇ = v, (68a)

M(q) v̇ − gTq (q)λ = f(q, v, t), (68b)

g(q) = 0. (68c)

4.1 Special Form of the Proposed Algorithm

For a smooth dynamic system without impact, Eq. (43) becomes

M(q) ˙̃v − gTq (q) λ̃ = f(q, v, t), (69a)

gq(q) ˙̃v + h(q, v) = 0, (69b)

M(q)(q̇ − v) − gTq (q)μ = 0, (69c)

g(q) = 0, (69d)

M(q) (v̇ − ˙̃v) − gTq (q) ξ = 0, (69e)

gq(q) v = 0, (69f)

with ξ = λ − λ̃. This equation has the structure of a stabilized index-1 DAE, which
combines the constraints at the position, velocity and acceleration levels. One can
check that any solution toEq. (68) satisfies this formulationwithμ = 0, ξ = 0,λ = λ̃

and v̇ = ˙̃v. To the best of our knowledge, this form is not known in the multibody
dynamics community. Nevertheless, it can be used in combination with various time
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integration schemes, as index-1 DAEs are known to be less numerically sensitive
than higher index systems.

The discrete form of Eq. (69) becomes

M(qn+1) ˙̃vn+1 − gTq (qn+1) λ̃n+1 = f(qn+1, vn+1, tn+1), (70a)

gq(qn+1) ˙̃vn+1 + h(qn+1, vn+1) = 0, (70b)

M(qn+1)Un+1 − gTq (qn+1) νn+1 = 0, (70c)

g(qn+1) = 0, (70d)

M(qn+1)Wn+1 − gTq (qn+1)�n+1 = 0, (70e)

gq(qn+1) vn+1 = 0, (70f)

which needs to be combined with the time integration formulae in Eqs. (65j–65l). In
this case, the position correction Un+1 and the velocity jump Wn+1 are only needed
to compensate for the drift of the constraints at the position and velocity levels that
results from the time integration of the acceleration constraint at every time step.
These corrections are thus expected to be small.

4.2 Other Formulations for Smooth Systems with Constraints
at a Single Level

In multibody dynamics, one generally combines the kinematic equation and the
dynamic equilibrium

q̇ = v, (71a)

M(q) v̇ − gTq λ = f(q, v, t) (71b)

with the constraints either expressed at the position level (index-3 formulation),
velocity level (index-2 formulation) or acceleration level (index-1 formulation), or
based on a linear combination according to the index-1 Baumgarte stabilization
method as follows:

⎧⎪⎪⎨
⎪⎪⎩

g(q) = 0 if position constraint
gq(q) v = 0 if velocity constraint

gq(q) v̇ + h(q, v) = 0 if acceleration constraint
gq(q) v̇ + h(q, v) + 2 α gq(q) v + β2 g(q) = 0 if Baumgarte form.

(71c)
These equations can be solved for given initial conditions q(0) = q0 and v(0) = v0.
For the sake of consistency, these initial conditions need to verify the constraints at
the position and velocity levels.
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The index-3 formulation is widely used for the simulation of multibody systems
[8, 19]. Numerous theoretical results are available for implicit time integration
schemes based on this formulation. For example, using the generalized-α time
integration scheme, all solution components (position, velocities, accelerations and
Lagrange multipliers) converge to the exact solution with second-order accuracy on
finite time intervals. This result was first obtained for mechanical systems modelled
as DAEs on a vector space [5] and later extended to systems with finite rotation vari-
ables and modelled as DAEs on a Lie group [7, 13]. In order to reduce the influence
of numerical disturbances, a careful scaling strategy is recommended for the differ-
ent equations and variables of the discrete system [11]. The hidden constraints at the
velocity and acceleration levels are not exactly satisfied, but the constraint violation
error stays in certain limits and decreases with the time step as fast asO(h2) on finite
time intervals. However, order reduction phenomena were pointed out in [7], which
may affect the initial phase of a simulation by spurious transient numerical oscilla-
tions in the accelerations and Lagrange multipliers with O(h) amplitude. Also, the
index-3 formulation cannot be directly extended to build time-stepping schemes for
systems with unilateral constraints, as it does not lend itself to the incorporation of
the impact law.

The index-2 formulation based on the expression of the constraint at the velocity
level is equivalent to Eq. (36) in the special case of a smooth system without impact.
It is thus particularly relevant for nonsmooth systems, as the impact law may be
incorporated into the velocity constraint according toMoreau’s sweeping process. In
nonsmooth dynamics, the problem is usually integrated in time using a θ -method [2,
25, 27]. In this approach, the numerical solution is not forced to satisfy the con-
straint at the position level so that drift-off phenomena can occur as a result of the
accumulation of numerical integration errors.

The index-1 formulation based on the constraint at the acceleration level is even
less sensitive from a numerical point of view and can be solved using non-stiff time
integration methods. However, it suffers from important drift-off phenomena at the
velocity and position levels [4]. These drift-off phenomena can be eliminated by the
implementation of projection methods that bring the numerical solution back to the
constraint manifold. The Baumgarte stabilization also enforces a single constraint,
but is formed as a weighted linear combination of the constraints at the position,
velocity and acceleration levels [9, 17]. In a strict sense, the resulting numerical
solution does not satisfy any of these constraints individually. To the best of our
knowledge, these index-1 formulations have not been used in time-stepping schemes
for unilaterally constrained systems with impacts and velocity jumps because the
acceleration variable is not properly defined at the impact time. One of the original
contributions of this chapter is to exploit the acceleration variable that results from
the splitting procedure and is well-defined at any time for the formulation of the
active constraints at the acceleration level for nonsmooth mechanical systems.
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4.3 Gear-Gupta-Leimkuhler Formulation

The Gear-Gupta-Leimkuhler (GGL) formulation is another index reduction method
that was initially developed for smooth DAEs and that simultaneously enforces the
constraints at the position and velocity levels [18]. It is based on the reformulation
of the initial set of equations in index-2 form as

q̇ − gTq μ = v, (72a)

M(q) v̇ − gTq λ = f(q, v, t), (72b)

g(q) = 0, (72c)

gq(q) v = 0. (72d)

One can check that any exact solution to the initial DAE (68) is also a solution to
this set of equations with μ = 0.

As shown in [6, 7], this index-2 problem can be solved using the generalized-α
method. In this chapter, the notations from these references are slightly adapted to
match our previous developments. At time step n + 1, the unknown variables qn+1,
vn+1, v̇n+1, λn+1, Un = h(q̇n − vn) and νn = hμn should thus satisfy

Un − gTq (qn) νn = 0, (73a)

M(qn+1) v̇n+1 − gTq (qn+1)λn+1 = f(qn+1, vn+1, tn+1), (73b)

g(qn+1) = 0, (73c)

gq(qn+1) vn+1 = 0, (73d)

together with the integration formula

qn+1 = qn + hvn + h2(0.5 − β)an + h2βan+1 + Un, (73e)

vn+1 = vn + h(1 − γ )an + hγ an+1, (73f)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n. (73g)

Thismethod leads to a numerical solution that simultaneously satisfies the constraints
at the position and velocity levels. Unlike in the analytical solution, the multiplier
νn of the numerical solution is not exactly 0, with the consequence that Un �= 0,
i.e., q̇n �= vn . Compared to the index-3 formulation, this method is less numerically
sensitive and is not prone to the order reduction phenomenon mentioned in the
previous section [7].

In order to highlight the connection with the nonsmooth algorithm discussed in
this chapter and in [12], the method can be slightly adapted as

M(qn+1)Un+1 − gTq (qn+1) νn+1 = 0, (74a)

M(qn+1) v̇n+1 − gTq (qn+1)λn+1 = f(qn+1, vn+1, tn+1), (74b)
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g(qn+1) = 0, (74c)

gq(qn+1) vn+1 = 0, (74d)

with the time integration formulae

qn+1 = qn + hvn + h2(0.5 − β)an + h2βan+1 + Un+1,(74e)

vn+1 = vn + h(1 − γ )an + hγ an+1, (74f)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n. (74g)

Two changes can be observed between Eqs. (73) and (74). Firstly, the mass matrix
M now appears in Eq. (74a). Secondly, the position correction Un+1 that appears in
the position update Eq. (74e) is evaluated at time step n + 1 (and not at time step n,
as in Eq. (73e).

Various investigations have addressed the extension of the GGL formulation for
nonsmooth systems [1, 12, 36]. Also, the formulation presented in Sect. 4.1 can be
interpreted as a recursive application of the GGL method, so that the constraints at
the acceleration level are also incorporated.

4.4 Emulation of Post-impact Conditions

If an impact is followed by a free-flight phase on a finite time interval, the post-impact
numerical solutionwill be affected by disturbances thatwill propagate dynamically in
the free-flight phase. An important question is thus how to characterize the behaviour
of the algorithm for smooth mechanical systems with a particular focus on the sen-
sitivity to disturbances induced by impulsive phenomena and constraint activations.
This section shows that the behaviour of the nonsmooth generalized-α method in the
post-impact phase can be investigated based on the underlying smooth system with
disturbed initial conditions.

Let us consider a nonsmooth system and imagine that an isolated impact occurs
in the time interval [tn−1, tn), but that no other nonsmooth phenomenon arises for
t > tn . Over the time interval [tn−1, tn), the velocity is discontinuous, but the dis-
placement remains continuous in time. If the system is simulated either using the
method described in [12] or themethod proposed in this paper, the numerical solution
at tn+1 only depends on qn , vn , ˙̃vn and an (we do not need to evaluate ηn+1, Λ

∗
n+1 and

ν∗
n+1, as the constraint status is assumed to be known for t > tn). Let us analyze the

consistency of these variables (qn , vn , ˙̃vn , an) with respect to the bilateral constraints
in the post-impact phase.

The positions qn and velocities vn are, by construction, consistent with the bilat-
eral constraints at the position and velocity levels. Therefore, at those levels, the
discontinuity leads to new and consistent initial conditions and erases the pre-impact
time history.
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As the velocity is discontinuous, the acceleration ˙̃v defined according to our split-
ting method also undergoes an O(1) discontinuity over the time interval [tn−1, tn).
At tn , consistent values of the acceleration ˙̃vn and of the shifted value an could be
computed from Eq. (38) based on the value of qn and vn , using a similar technique
as for the definition of the initial conditions. The results would thus be consistent
and completely independent of the values of the pre-impact solution. This strategy
would be interpreted as a reinitialization of the time integration procedure after the
impact.

However, the method described in [12] and the method proposed here do not rely
on a reinitialization procedure, as we do not want to perform specific treatments
every time an impact occurs. Instead, the smooth acceleration is integrated over the
impact according to the generalized-α method as if no discontinuity were present.
Therefore, the pre-impact acceleration history influences the post-impact numerical
solution as follows:

• In the method described in [12], for given values of qn and vn , the values of ˙̃vn
and an still depend on the pre-impact values ˙̃vn−1, an−1 and vn−1.

• In the algorithm proposed here, the value of ˙̃vn is defined as an algebraic function
of qn and vn , and is thus independent of the pre-impact solution, but the value of
an still depends on the pre-impact values ˙̃vn−1 and an−1 (see Eq. (65l)).

Compared to a correct reinitialization of the acceleration variables solely based on
the post-impact state, the pre-impact solution influences the values an and possibly ˙̃vn
in both algorithms, leading toO(1) disturbances. As a consequence, an and possibly˙̃vn may violate the constraint at the acceleration level with O(1) errors. Thus, the
post-impact numerical solution can be emulated by a simulation of the underlying
smooth system for t > tn if the initial accelerations ˙̃vn and an are modified withO(1)
disturbances.

This situation is also representative of the transition of a unilateral constraint from
an open to a closed status inS over the time interval [tn−1, tn). Indeed, in this case,
the position qn and velocity vn satisfy the new constraint at the position and velocity
levels, but the acceleration ˙̃vn and the shifted variable an do not necessarily satisfy
the new constraint at the acceleration level.

5 Application to a Smooth System

The properties of the proposed method are first investigated in the context of the
numerical solution to smooth DAEs. The classical example of a pendulum modelled
as a constrained mechanical system serves for the comparison. Numerical meth-
ods derived from the generalized-α method using four different formulations of the
equations of motion are compared:

• the index-3 formulation with the constraints at the position level only, referred to
as the “P-constrained” method;
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• the index-2 formulation with the constraints at the velocity level only, referred to
as the “V-constrained” method;

• the index-2 Gear-Gupta-Leimkuhler formulation with the constraints at the posi-
tion and velocity levels, referred to as the “PV-constrained” method;

• the proposed index-1 formulation with the constraints imposed simultaneously at
the position, velocity and acceleration levels, referred to as the “PVA-constrained”
method.

5.1 Problem Description

Let us analyse the transient response of the pendulum depicted in Fig. 1. In order to
study the behaviour of the algorithm in the presence of constraints, a set of 3 absolute
but redundant coordinates is chosen q = [x y θ ]T , where x and y are the coordinates
of the center of mass and θ is the angle of the pendulum. These coordinates have to
satisfy 2 bilateral constraints

g1(q) ≡ x − L cos θ = 0, (75)

g2(q) ≡ y − L sin θ = 0. (76)

The physical parameters of the system are selected as: length of the pendulum
L = 1m, massm = 1kg, moment of inertia J = 0.1kgm2, and gravity acceleration
along the y-axis ag = 10 rad/s2. The initial conditions at the position and velocity
levels are defined as θ0 = π/6 rad and θ̇0 = 10 rad/s. The numerical parameters of
the numerical solvers are selected as h = 2. 10−3 s, ρ∞ = 0.9.

5.2 Results Based on Consistent Initial Conditions

Consistent initial positions q and velocities v are established from the initial values
θ0 and θ̇0. The initial acceleration v̇ is obtained by solving Eq. (38) at time t0 and the
shifted acceleration is initialized as a0 = v̇0. The results are presented in Fig. 2. On
certain graphs, high numerical oscillations are observed at the frequency of the step
size, which means that the variable under study jumps between a low to a high value

Fig. 1 Pendulum
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Fig. 2 Position (top), velocity (middle) and acceleration (bottom) constraints in the pendulum
example - left: full time interval, right: zoom on the initial phase. In the bottom-right plot, the
solution to the index-3 problem with the position constraint is not represented for the sake of
readibility

at each step. For the sake of readability, when zooming on these phenomena, only the
values at the successive time steps are represented by markers, but the interpolating
line between the time steps is not necessarily displayed.

In the index-3 solution based on the sole position constraint, spurious high fre-
quency oscillations of the constraint at the velocity and acceleration levels are
observed in the initial phase. After a transient phase, these high-frequency oscil-
lations are damped out and the hidden constraints do not converge to zero, but rather
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evolve in a continuous manner. The amplitude of the transient high-frequency oscil-
lations of the acceleration constraint is particularly large, and it can be shown that it
decreases only as O(h) when the time step is decreased, which reflects the presence
of an order reduction phenomenon, as discussed in Sect. 4.2.

In the index-2 solution based on the sole velocity constraint, a constraint drift
is observed at the position level, which increases as time goes by. Spurious high-
frequency oscillations are observed at the acceleration level, but it can be shown that
their amplitude is quite limited and decreases as fast as O(h2) when the time step
decreases, i.e., there is no order reduction phenomenon in this case. After a transient
phase, the spurious oscillations disappear and the acceleration constraint evolves in
a continuous manner.

In the index-2 GGL solution, which enforces the constraints at the position and
velocity levels, the constraints are indeed satisfied up to machine precision at those
levels. At the acceleration level, the behaviour is similar as for the other index-2
solution discussed in the previous paragraph.

In the proposed index-1 solution, the results confirm that the constraints are satis-
fied up to machine precision at the three levels (position, velocity and acceleration).
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Fig. 3 Acceleration constraint (top) and Lagrange multiplier (bottom) in the pendulum example
with post-impact initial conditions (left: full time interval, right: zoom on the initial phase)



364 O. Brüls et al.

5.3 Results Based on Post-impact Initial Conditions

In order to emulate the disturbances induced by an impact on the post-impact numer-
ical solution, the simulation of the rigid pendulum is run using disturbed initial
accelerations such that the constraint is not satisfied at the acceleration level.

Figure 3 presents the simulation results for the pendulum when the acceleration
and shifted acceleration are initialized as v̇0 = a0 = 0. Large spurious oscillations of
the acceleration constraint and Lagrange multiplier are observed for all algorithms,
except for the proposed method that enforces the constraints at the position, velocity
and acceleration levels. Thus, the proposed method appears much less sensitive to
the disturbances induced by impact phenomena.

6 Application to Nonsmooth Systems

In this section, three numerical examples are used to compare two algorithms for
nonsmooth dynamic systems:

• The algorithm described in [12], in which the constraint on the smooth motion
only includes the bilateral constraints that are imposed at the velocity level;

• The algorithm proposed here, in which the constraint on the smooth motion
includes the bilateral constraints, as well as the active unilateral constraints, both
imposed at the acceleration level.

These two algorithms will be respectively called the “PVV-constrained” method
and the “PVA-constrained” method in the following. In both algorithms, the smooth
motion is integrated using the generalized-α time integration formula.

The first example is a bouncing rigid pendulum, the second example is a bouncing
elastic pendulum modelled as a geometrically exact beam, and the last example is
the horizontal impact of an elastic bar. These three examples also served as a support
for the analysis of several algorithms for nonsmooth systems in [12, 14]. Here, these
examples are exploited to explore the properties of the PVA-constrained algorithm,
which is a novel contribution of this chapter.

6.1 Bouncing Rigid Pendulum

We consider the same pendulum as described in Sect. 5.1, but, as shown in Fig. 4, a
unilateral constraint restricts the motion of its center of mass as

g3(q) ≡ x − xmin ≥ 0, (77)
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Fig. 4 Bouncing pendulum

with xmin = √
2/2m. The initial conditions are θ0 = π/12 rad and θ̇0 = 0 rad/s. Con-

sistent initial conditions are then defined for q, v, ˙̃v and a. The time step and the
spectral radius are selected as h = 1. 10−3 s and ρ∞ = 0.9.

The evolution of the gap distance g3(q) during the motion is shown in Fig. 5. The
pendulum bounces several times against the hurdle and, at the end of the trajectory,
the system gets stabilized in the closed contact configuration after an accumulation
phenomenon.

The evolution of the bilateral constraint at the acceleration level (Fig. 6) reveals
significant numerical oscillations after each impact in the PVV-constrained algo-
rithm. In contrast, the solution obtained using the PVA-constrained method exactly
satisfies the acceleration constraints without any such oscillations. In the same figure,
similar oscillations are observed in the smooth bilateral multiplier λ̃1 evaluated using
the PVV-constrainedmethod. In the PVA-constrainedmethod, a discontinuity occurs
at each impact, but no oscillation is visible.

At the end of the trajectory, the nonsmooth phenomena disappear and the total
horizontal reaction force in the rigid body becomes constant and can simply be
estimated as λ̃1 + 
1/h. Considering Figs. 6 (bottom-left) and 7 (right), the same
total reaction force is obtained in the two methods at the end of the trajectory, but the
value of the relative impulse 
1 is equal to zero in the proposed algorithm. Indeed,
in this smooth part of the trajectory, the smooth equation captures the total motion
and, in this case, the corrections at the position and velocity levelsW and U tend to
zero for the PVA-constrained algorithm.

In the transient phase before the unilateral constraint gets closed, the relative
impulse 
1 can take negative values in the PVA-constrained method, as the comple-
mentarity condition is not applied to 
1, but rather to 
∗1.

The PVA-constrained method generally brings less numerical dissipation, since
the reaction forces are better integrated. This is in agreement with the observation of
a later stabilization of the system in the closed contact state in Fig. 7.

Finally, the results in Fig. 8 were obtained using a spectral radius ρ∞ = 1, i.e.,
without any numerical dissipation. The PVA-constrained method still gives the
expected results without any spurious numerical oscillation, whereas the Lagrange
multiplier obtained from the PVV-constrained method undergoes strong oscillations
after the first impact that never disappear from the solution.

In summary, this example has shown that both algorithms give a satisfactory
numerical solution that exactly satisfies the bilateral and unilateral constraints at the
position and velocity levels. Their comparison reveals (i) that imposing the con-
straints at the acceleration level improves the handling of the bilateral constraints
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Fig. 5 Unilateral constraint in the bouncing rigid pendulum example (left: position level, right:
velocity level)
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Fig. 6 Bouncing rigid pendulum: bilateral constraint at the acceleration level (top) and Lagrange
multipliers λ̃ (bottom) - left: full time interval, right: zoom on the first impact

after the impact phenomena and alleviates the need to introduce numerical dissi-
pation in the time integration scheme in this example, and (ii) that the unilateral
constraint can be activated at the acceleration level in the smooth motion. During
the free flight mode or the closed constraint mode, the smooth motion then captures
the full motion, which is thus integrated with second-order accuracy without any
spurious oscillations.
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Fig. 7 Lagrange multiplier � of the bilateral constraint in the bouncing pendulum example (left:
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Fig. 8 No numerical damping - Lagrange multiplier λ̃ of the bilateral constraint in the bouncing
pendulum example (left: full time interval, right: zoom on the first impact)

6.2 Bouncing Flexible Pendulum

In this example, shown in Fig. 9, a flexible pendulummodelled as an elastic beam hits
an obstacle. The beam is modelled according to the geometrically exact beam theory
and discretized into nonlinear finite elements [19]. Thus, this example highlights
nonlinear interactions between the beam and the non-penetration constraint at the
contact point.

Fig. 9 Bouncing elastic
pendulum
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The contact condition is modelled as a unilateral constraint applied at the tip node
of the beam mesh

g1(q) ≡ xtip − xmin ≥ 0. (78)

There is no bilateral constraint in this example. The properties of the beam are: unde-
formed length L = 1m, cross-section area A = 10−4 m2, cross-section inertia I =
8.33 10−10 m4, shear section area As = (5/6) A, Youngmodulus E = 2.1 1011 N/m2,
density ρ = 7800kg/m3, and Poisson coefficient ν = 0.3. At the initial time, the
beam is horizontal with zero velocity. The unilateral constraint is defined as xmin =
L
√
2/2.
The beam ismodelled using four finite elements. The time step is h = 5.10−6 s and

the spectral radius isρ∞ = 0.8.A restitution coefficient is included in the formulation
of the impact law and its value is defined as e = 0.

In the PVV-constrained method, the unilateral constraint is never activated at the
acceleration level in the definition of the smooth motion. As there is no bilateral
constraint in this case, the smooth motion is thus fully unconstrained. In the PVA-
constrained method, the unilateral constraint at the acceleration level gets activated
and deactivated in a dynamic manner, so that the constraint reaction force brings
some stronger disturbances on the smooth motion.

As the step-size h is quite small, the mean number of Newton iterations at each
time step is very close to one for both algorithms.

The constraints at the position, velocity and acceleration levels are depicted in
Fig. 10. The numerical response is characterized by rather complex dynamic phe-
nomena. The first contact phase is characterized by a finite duration on the interval
[0.327,0.348] s. However, the contacts at the position, velocity and acceleration lev-
els do not stay permanently activated over this time interval, but rather enter and
leave the system in an intermittent manner. The zooms on the initial contact phase
indicate a good agreement between the two algorithms at the position, velocity and
acceleration levels. The solutions tend to diverge later on, as the problem is particu-
larly sensitive. One also observes the activation of the constraint at the acceleration
level for some time intervals in the PVA-constrained method, whereas this constraint
is never activated in the PVV-constrained method.

The reaction forces at the contact point are represented in Fig. 11. During the first
contact phase, one observes a collection of rather close impulses.

In Fig. 12, the energy decays monotonously during the motion. During the first
contact phase, the energy decays progressively according to a kind of staircase func-
tion. One also observes the faster energy decay of the PVV-constrained method,
which can be attributed to the higher level of numerical dissipation in this scheme.

In summary, the bouncing elastic pendulum example shows the ability of both
algorithms to study the dynamics of a geometrically nonlinear beamwith a unilateral
constraint. Both methods show similar numerical performances in this case, which
involves high frequency activation and deactivation phenomena during the contact
phases.
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and acceleration levels (bottom) - left: full time interval, right: zoom on the first contact phase (the
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6.3 Horizontal Impact of an Elastic Bar

The horizontal impact of an elastic bar, as shown in Fig. 13 is now considered. The
problem was described in [16] and has an analytical solution. According to this
analytical solution, the contact stays closed for a period of �t = 2L

√
ρ/E and the

energy is conserved. The contact force remains finite, so there is no impact, even if
the velocity undergoes a discontinuity at the contact point when the contact closes.
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Fig. 12 Constraint at the velocity level and energy in the bouncing pendulum example (left: full
time interval, right: zoom on the first contact phase)

Fig. 13 Horizontal impact
of an elastic bar

In our finite element model, a restitution coefficient e is needed at the level of
the impact law. This coefficient has no physical meaning and simply represents the
energy dissipation in the last element of the mesh. In order to be able to represent
the instantaneous closing of the unilateral constraint, we propose choosing e = 0.

The physical parameters are defined as in [16]: Young modulus E = 900N/m2,
density ρ = 1kg/m3, undeformed length L = 10m, initial distance from the obstacle
d0 = 5m, initial velocity v0 = 10m/s. With these data, the closed contact period is
�t = 2/3s. The bar is discretized using 200 finite elements, the time step is taken as
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h = 2. 10−3 s, and the spectral radius of the generalized-α time integrator is chosen
as ρ∞ = 0.8.

The results are presented in Figs. 14, 15 and 16. The two algorithms give very
close results. The main difference is found in the mean number of Newton iterations
at each time step. In the PVV-constrained method, we have 2.94 iterations per time
step (about 10 iterations per step during the contact phase), whereas in the PVA-
constrained method, only 0.80 iterations are needed on average. The explanation
is that the PVV-constrained method completely disregards the unilateral constraint
when evaluating the smooth motion. Therefore, the physical solution is rather far
from the smooth solution, the position and velocity corrections U and W are quite
significant, and more iterations are needed to solve the coupled problem.

This example shows that the two methods provide relevant numerical solutions to
a unilaterally constrained structure with closed contacts. Once again, the constraints
at the position and velocity levels are exactly satisfied by the numerical solution.
This study also reveals the superiority of the PVA-constrained algorithm for flex-
ible systems when some unilateral constraints stay closed during rather long time
intervals.
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Fig. 16 Energy in the bar
impact example
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7 Conclusion

The nonsmooth generalized-α method was developed for the analysis of flexible
multibody systems with contact conditions and impact phenomena. It relies on a
splitting of the total motion into smooth (non-impulsive) and nonsmooth (impulsive)
contributions. A second-order time integration scheme is then used for the smooth
contributions, whereas a first-order scheme is used for the consistent integration of
impulsive contributions. Compared to the classicalMoreau-Jeanmethod, thismethod
leads to qualitatively better numerical solutions with less numerical dissipation.

This chapter addresses the formulation of the constraints that appear in the def-
inition of the smooth motion and which can have a deep impact on the numerical
properties of the scheme. We propose imposing all active constraints at the acceler-
ation levels on the smooth part of the motion, while the total motion simultaneously
satisfies the constraints at the position and velocity levels. Some advantages of this
formulation are the elimination of spurious numerical oscillations of the constraints
that generally occur after an impact and the possibility of accounting for the contri-
butions of the unilateral constraints to the smooth motion. When the contact remains
closed, the integration of the contact forces is performed with a higher accuracy,
which comes with a reduced level of numerical dissipation, and the convergence of
the approximatedNewton iterations is accelerated as the amplitudes of the nonsmooth
corrections are reduced. These properties were demonstrated in several numerical
examples of smooth and nonsmooth mechanical systems. It is remarkable that, in
rigid-body examples, the constraints and the overall numerical solution are inherently
stabilized (in the sense that no spurious numerical oscillation is observed), even if no
numerical dissipation is introduced at the level of the generalized-α time integrator.

Some key elements of the method can also be summarized. Firstly, the proposed
splitting strategy leads to a definition of the acceleration variable ˙̃v as an algebraic
function of the physical position and velocity at the current time, which permits the
dynamic activation and deactivation of unilateral constraints in a very simplemanner.
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The acceleration ˙̃v represents the standard acceleration for almost every time, but it
excludes impulsive contributions at the impact instants. Even though this acceleration
is discontinuous, the position and velocity of the smooth trajectory are continuous,
even in the presence of impacts. The definition of the activation criteria for the
unilateral constraints at the position, velocity and acceleration levels is particularly
critical for the robustness of the algorithm. The proposed criteria rely on the definition
of augmented Lagrange multipliers at the position, velocity and acceleration levels,
and can thus be used in a reliable way within the Newton semi-smooth iterations,
even if the solution is not yet converged.

As a perspective, the present algorithmcould be tested formore complex examples
with a larger number of bodies and contact conditions. The extension to frictional
contact conditions could also be investigated.
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On Solving Contact Problems with
Coulomb Friction: Formulations and
Numerical Comparisons

Vincent Acary, Maurice Brémond and Olivier Huber

Abstract In this chapter, we review several formulations of the discrete frictional
contact problem that arises in space and time discretized mechanical systems with
unilateral contact and three-dimensional Coulomb’s friction. Most of these formu-
lations are well–known concepts in the optimization community, or more generally,
in the mathematical programming community. To cite a few, the discrete frictional
contact problem can be formulated as variational inequalities, generalized or semi–
smooth equations, second–order cone complementarity problems, or optimization
problems, such as quadratic programmingproblemsover second-order cones. Thanks
to these multiple formulations, various numerical methods emerge naturally for solv-
ing the problem.We review themain numerical techniques that are well-known in the
literature, and we also propose new applications of methods such as the fixed point
and extra-gradient methods with self-adaptive step rules for variational inequalities
or the proximal point algorithm for generalized equations. All these numerical tech-
niques are compared over a large set of test examples using performance profiles.
One of the main conclusions is that there is no universal solver. Nevertheless, we are
able to give some hints for choosing a solver with respect to the main characteristics
of the set of tests.

1 Introduction

More than thirty years after the pioneering work of [21, 29, 30, 48–50, 61, 64,
83, 91, 93] on numerically solving mechanical problems with contact and friction,
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there are still active researches on this subject in the computational mechanics and
applied mathematics communities. This can be explained by the fact that problems
from mechanical systems with unilateral contact and Coulomb friction are difficult
to numerically solve and the mathematical results of convergence of the numerical
algorithms are rare, most of these requiring rather strong assumptions. In this chapter,
we want to give some insight into the advantages and weaknesses of standard solvers
found in the literature by comparing them on large sets of examples coming from the
simulation of a wide range of mechanical systems. Some new numerical schemes
are also introduced, mainly based on general solvers for variational inequalities and
the proximal point algorithms.

1.1 Problem Statement

In this section, we formulate an abstract, algebraic finite–dimensional frictional con-
tact problem. We cast this problem as a complementarity problem over cones, and
discuss the properties of the latter. We end by presenting some instances with contact
and friction phenomena that fit our problem description.

Abstract Problem

We want to discuss possible numerical solution procedures for the following three–
dimensional finite–dimensional frictional contact problem and some of its variants.
Let nc ∈ IN be the number of contact points and n ∈ IN the number of degrees of
freedom of a discrete mechanical system.

The problem data are: a positive definite matrix M ∈ IRn×n , a vector f ∈ IRn , a
matrix H ∈ IRn×m with m = 3nc, a vector w ∈ IRm and a vector of coefficients of
friction μ ∈ IRnc . The unknowns are two vectors v ∈ IRn , a velocity–like vector and
r ∈ IRm , a contact reaction or impulse, solution to

{
Mv = Hr + f

K � � û ⊥ r ∈ K
with

u := H�v + w

û := u + g(u),
(1)

where the set K is the Cartesian product of Coulomb’s friction cone at each contact,
that is,

K =
∏

α=1...nc

K α =
∏

α=1...nc

{rα, ‖rα
T ‖ � μα|rα

N |}, (2)

and K � is the dual cone of K . The function g : IRm → IRm is a nonsmooth function
defined as

g(u) = [[μα‖uα
T ‖, 0, 0]�, α = 1 . . . nc]�. (3)

Note that the variables u and û do not appear as unknowns, since they can be directly
obtained from v.
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A Second Order Cone Complementarity Problem (SOCCP)

From the mathematical programming point of view, the problem appears to be a Sec-
ond Order Cone Complementarity Problem (SOCCP) [39], which can be generically
defined as {

y = f (x)

K � � y ⊥ x ∈ K ,
(4)

where K is a second-order cone. If the nonlinear part of the problem (1) is neglected
(g(u) = 0), the problem is an associated friction problem with dilatation and,
by the way, is also gentle Second-Order Cone Linear Complementarity Problem
(SOCLCP) with a positive definite matrix W = H�M−1H (possibly semi–definite).
The assumption of an associated frictional law, i.e., a friction law in which the local
sliding velocity is normal to the friction cone differs dramatically from the standard
Coulomb friction, since it generates a non–vanishing normal velocity when the sys-
tem slides. In other words, the sliding motion implies the separation of the bodies.
When the non-associated character of the friction is taken into account through g(u),
the problem is non-monotone and nonsmooth, and therefore is very hard to solve
efficiently. For a given numerical algorithm, it is not so difficult to design mechanical
examples for which the algorithm runs into trouble [18].

Proofs of convergence of the numerical algorithms are rare, and most of these
require strong assumptions, including the following: (a) small values of the friction
coefficients, (b) full rank assumptions and the symmetry of the Delassus matrix W
or (c) the assumption that the problem is two-dimensional. Among these results, we
can cite the Czech school, where the coefficient of friction is assumed to be bounded
and small. This assumption allows us to use fixed point methods on the convex
sub–problems of Tresca friction (friction threshold that does depend on the normal
reaction, and then transforms the cone into a semi-cylinder). We can also mention
the results from [11, 94, 110], in which the friction cone is polyhedral (in 2D or
by a faceting process). In that case, if w = 0 or w ∈ im(H�), Lemke’s algorithm is
able to solve the problem. The question of the existence of solutions has also been
treated in [3, 68], recalled in Sect. 2.3, under similar assumptions but with different
techniques. The question of uniqueness remains a difficult problem in the general
case.

Range of Applicability

We clearly choose to greatly simplify the general problems of formulating the contact
problems with friction by avoiding the inclusion of too many side effects that are
themselves interesting but render the study too difficult to carry out in a single chapter.
We choose finite dimensional systems in which the time dependency does not appear
explicitly. Nevertheless, we believe that there is a strong interest in studying this
problem, since it appears to be relatively generic in numerous simulations of systems
with contact and friction. This problem is indeed at the heart of the simulation of
mechanical systems with 3D Coulomb’s friction and unilateral constraints in the
following cases:
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• It might be the result of the time–discretization by event–capturing time–stepping
methods or event–detecting (event–driven) techniques of dynamical systems with
friction; the variables are homogeneous to pairs of velocities/impulses or acceler-
ations/forces.

• It might also be the result of space–discretization (by FEM, for instance) of the
elastic quasi-static problems of frictional contact mechanics; in that case, the vari-
ables are homogenous to displacements/forces of displacement rates/forces.

• If the system is a dynamical mechanical system composed of flexible solids, the
problem is again obtained through a space and time discretization.

• If thematerial follows a nonlinearmechanical bulk behavior, we can use thismodel
after a standard Newton linearization procedure.

For a description of the derivation of such problems in various practical situations
we refer to [1, 2, 76, 119].

1.2 Objectives and Outline of the Chapter

In this chapter, after stating the problem in more detail in Sect. 2, we recall the
existence result of [3] for the problem (1) in Sect. 2.3. In this framework, we briefly
present, in Sect. 3, a few alternative formulations of the problem that enable the
design of numerical solution procedures: (a) finite–dimensional Variational Inequal-
ities (VI) and Quasi-Variational Inequalities (QVI), (b) nonsmooth equations and (c)
optimization-based formulations.

Right after these formulations, we list some of the most standard algorithms
dedicated to one of the previous formulations:

1. the fixed point and projection numerical methods for solving VI are reviewed,
with a focus on self-adaptive step rules (Sect. 4),

2. the nonsmooth (semi-smooth)Newtonmethods are described based on the various
nonsmooth equations formulations (Sect. 5),

3. Section 6 is devoted to the presentation of splitting and proximal point techniques,
4. and finally, in Sect. 7, the Panagiotopoulos alternating optimization technique,

the successive approximation technique and the SOCLCP approach are outlined.

Since it is difficult to be exhaustive on the approaches developed in the literature for
solving frictional contact problems,wedecided to leave out the following approaches,
which we felt were outside the scope of the chapter:

• the approaches that alter the fundamental assumptions of the 3D Coulomb friction
model by faceting the cone, as in the pioneering work of [67] and followed by [7,
11, 53, 94, 110], or by convexifying the Coulomb law (associated friction lawwith
normal dilatancy) [12, 59, 73, 112–114], or finally, by regularizing the friction
law [66].

• the recent developments of methods for the frictionless case [84, 85, 115].
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• the approaches that are based on domain decomposition and parallel comput-
ing [17, 38, 58, 72, 100, 118].We choose in this chapter to focus on single domain
computation and to skip the discussion about distributed computing, mainly for
the sake of the length of the chapter.

Finally, some possibly interesting approaches have not been reported. We are
thinking mainly of the interior point methods approach [22, 69, 84]. Some basic
implementations of such methods do not give satisfactory results. One of the reasons
for this is the fact that we were not able to get robustness and efficiency over a large
class of problems. As reported in [69, 73], it seems that it is necessary to alter the
friction Coulomb’s law by adding regularization or dilatancy into the model. In the
same spirit, we also skip the comparison of the possibly very promising methods
developed in [58, 59] that are based on Krylov subspace and spectral methods. It
could be very interesting to bench these methods against the actual Coulomb friction
model as well, that is to say, in the non-monotone case. Finally, our preliminary
results on the use of direct general SOCP or SOCLCP solvers off the shelf were not
convincing. Indeed, the structure of contact problems (product of a large number
of small second-order cones) has to be taken into account to obtain efficiency, and
unfortunately, these solvers are difficult to adapt to this structure.

Other comparisons have already been published in the literature. Some of the
first comparison studies were done in [20, 99]. In this work, several formulations
are detailed in the bidimensional case (variational inequality, linear complementarity
problem (LCP) and augmented Lagrangian formulation) and comparisons of fixed
point methods with projection, splitting methods and Lemke’s method for solving
LCP. Other comparisons have been done on 2D systems in [78–81]. In [23], a very
interesting comparison in the three-dimensional case has been carried out showing
the superiority of the semi-smooth Newton methods over the interior point methods.
Comparisons on simple multi-body systems composed of kinematic chains can be
found in [90].

As a difference with the previous publications, the comparisons are performed
over a large set of examples using performance profiles in this chapter. Let us summa-
rize the main conclusion from Sect. 8: on one hand, the algorithms based on Newton
methods for nonsmooth equations solve the problem quickly when they succeed,
but suffer from robustness issues, particularly if the matrix H is not full rank. On
the other hand, the iterative methods dedicated to solving variational inequalities are
quite robust but with an extremely slow rate of convergence. To sum up, as far as
we know, there is no option that combines time efficiency and robustness. The set of
problems used here are from the FCLIB collection.1 In this work, this collection is
solved with the software Siconos and its component Siconos/Numerics2 [5].

1https://frictionalcontactlibrary.github.io/index.html,which aims to providemanyproblems to com-
pare algorithms on a fair basis.
2http://siconos.gforge.inria.fr.

https://frictionalcontactlibrary.github.io/index.html
http://siconos.gforge.inria.fr
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1.3 Notation

The following notation is used throughout the chapter: the 2-norm for a function g is
denoted by ‖g‖ and for a vector x ∈ IRn by ‖x‖. The index α ∈ IN is used to identify
the variable pertaining to a single contact. A multivalued mapping T : IRn ⇒ IRn is
an operator whose images are sets. The second-order cone, also known as the Lorentz
or ice–cream cone, is defined as Kμ := {(x, t) ∈ IR × IR+ | ‖x‖ � μt}, μ � 0. By
polarity, the dual convex cone to a convex cone K is defined by

K � = {x ∈ IRn | y�x � 0, for all y ∈ K }. (5)

The normal cone NK : IRn ⇒ IRn to a closed convex set X is the set

NK (x) = {d ∈ IRn | d�(y − x) � 0}. (6)

The notation 0 � x ⊥ y � 0 denotes that x � 0, y � 0 and x�y = 0. A comple-
mentarity problem associated with a function F : IRn → IRn is to find x ∈ IRn

such that 0 � F(x) ⊥ x � 0. The generalized complementarity problem is given
by K � � F(x) ⊥ x ∈ K , where K is a closed convex cone. Finite-dimensional Vari-
ational Inequality (VI) problems subsume complementarity problems and the system
of equations. Solving a VI(X, F) is to find x ∈ X such that

F(x)�(y − x) � 0 for all y ∈ X. (7)

It is easy to see this problem is equivalent to solving a generalized equation

0 ∈ F(X) + NX (x). (8)

The Euclidean projector on a set X is denoted by PX .

2 Description of the 3D Frictional Contact Problems

2.1 Signorini’s Condition and Coulomb’s Friction

Let us consider the contact between two bodies A ⊂ lR3 and B ⊂ lR3 with sufficiently
smooth boundaries, as depicted in Fig. 1.

From the body A “perspective”, the point CA ∈ ∂ A is called a master point to
contact. The choice of thismaster pointCA for writing the contact condition is crucial
in practice and amounts to consistently discretizing the contact surface. The vector N
defines an outward unit normal vector to A at the point CA. With T1, T2 two vectors
in the plane orthogonal to N, we can build an orthonormal frame (CA, N, T1, T2)

called the local frame at contact. The slave contact point CB ∈ ∂ B is defined as the
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Fig. 1 Contact kinematic

Body A

Body B

CA

N

T1

T2

CB

gN

projection of the point CA on ∂ B in the direction given by N. Note that we assume
that such a point exists. The gap function is defined as the signed distance between
CA and CB

gN = (CB − CA)�N. (9)

Consider two strictly convex bodies, which are non-penetrating, i.e., A ∩ B = ∅;
the master and slave contact points can be chosen as the proximal points of each
body, and the normal vector N can be written as

N = CB − CA

‖CB − CA‖ . (10)

The contact force exerted by A on B is denoted by r ∈ IR3 and is decomposed in the
local frame as

r := rNN + rT1T1 + rT2T2, with rN ∈ IR and rT := [rT1 , rT2 ]� ∈ IR2. (11)

The Signorini condition states that

0 � gN ⊥ rN � 0, (12)

and models the unilateral contact. The condition (12), written at the position level,
can also be defined at the velocity level. To this end, the relative velocity u ∈ IR3 of
the point CB with respect to CA is also decomposed in the local frame as

u := uNN + uT1T1 + uT2T2 with uN ∈ IR and uT = [uT1 , uT2]� ∈ IR2. (13)
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At the velocity level, the Signorini condition is written as

{
0 � uN ⊥ rN � 0 if gN � 0
rN = 0 otherwise.

(14)

The Moreau’s viability Lemma [89] ensures that (14) implies (12) if gN � 0 holds
in the initial configuration.

In some mechanical problems, especially the rigid multi-body systems dynamics,
an impact law has to be introduced to complete the dynamics. The most simple law
is the Newton impact law that relates the post impact velocity uN to the pre-impact
velocity u−

N through a coefficient of restitution e � 0 as

uN = −eu−
N . (15)

Following the work of J.J. Moreau [89], the impact law is embedded in the Signorini
condition at the velocity level as

{
0 � uN + eu−

N ⊥ rN � 0 if gN � 0
rN = 0 otherwise,

(16)

where rN plays the role of an impulse. The pre-impact velocity is a known value, and
thus can be treated as a constant term in w of Eq. (1). For the sake of simplicity, we
will consider in the sequel that −eu−

N is included in the vector w.
Coulomb’s friction models the frictional behavior of the contact force law in the

tangent plane spanned by (T1, T2). Let us define the Coulomb friction cone K , which
is the isotropic second-order cone (Lorentz or ice–cream cone)

K = {r ∈ IR3 | ‖rT‖ � μrN}, (17)

where μ is the coefficient of friction. The Coulomb friction states for the sticking
case that

uT = 0, r ∈ K , (18)

and for the sliding case that

uT �= 0, r ∈ ∂K , and ∃ α > 0 such that rT = −αuT. (19)

With the Coulomb friction model, there are two relations between uT and rT. The
distinction is based on the value of the relative velocity uT between the two bodies.
If uT = 0 (sticking case), we have ‖rT‖ � μrN. Otherwise, we get the sliding case.

Disjunctive Formulation of the Signorini–Coulomb Model

If we consider the velocity-level Signorini condition (14) together with the Coulomb
friction (18)–(19), which is naturally expressed in terms of velocity, we obtain a
disjunctive formulation of the frictional contact behavior as
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r = 0 if gN > 0 (no contact)
r = 0, uN � 0 if gN � 0 (take–off)
r ∈ K , u = 0 if gN � 0 (sticking)
r ∈ ∂K , uN = 0, ∃ α > 0, uT = −αrT if gN � 0 (sliding).

(20)

In the computational practice, the disjunctive formulation is not suitable for solving
the Coulomb problem, as it suggests the use of enumerative solvers, with an expo-
nential complexity. In the sequel, alternative formulations of the Signorini–Coulomb
model suitable for numerical applications are delineated. The core idea is to translate
the cases in (20) into complementarity relations.

Inclusion into Normal Cones

The Signorini condition (12) and (14), in their complementarity forms, can be equiv-
alently written as an inclusion into a normal cone to IR+

− gN ∈ NIR+(rN) and − uN ∈ NIR+(rN), (21)

if gN � 0 and rN = 0 otherwise. An inclusion form of the Coulomb friction for the
tangential part can also be proposed: let D(c) be the disk of radius c:

D(c) := {x ∈ IR2 | ‖x‖ � c}. (22)

For the Coulomb friction, we get

− uT ∈ ND(μrN)(rT). (23)

Since D(μrN) is not a cone, the inclusion (23) is not a complementarity problem, but
a variational inequality. The formulation (23) is often related to Moreau’s maximum
dissipation principle of the frictional behavior:

rT ∈ argmax
‖z‖�μrN

z�uT. (24)

This means that the couple (rT, uT) maximizes the energy lost through dissipation.

SOCCP Formulation of the Signorini–Coulomb Model

In [1, 3], another formulation is proposed, inspired by the so-called bipotential [26,
27, 105]. The goal is to form a complementarity problem out of (21) and (23). To
this end, we introduce the modified relative velocity û ∈ IR3 defined by

û = u + [μ‖uT‖, 0, 0]�. (25)

The entire contact model (20) can be put into a Second Order Cone Complementarity
Problem (SOCCP) as

K � � û ⊥ r ∈ K , (26)

if gN � 0 and r = 0 otherwise (Fig. 2).
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Fig. 2 Coulomb’s friction law in the sliding case

2.2 Frictional Contact Discrete Problems

We assume that a finite set of nc contact points and their associated local frames have
been defined. In general, this task is not straightforward and amounts to correctly
discretizing the contact surfaces. For more details, we refer to [76, 119]. For each
contactα ∈ {1, . . . , nc}, the local velocity is denoted by uα ∈ IR3, the normal velocity
by uα

N ∈ IR and the tangential velocity by uα
T ∈ IR2 with uα = [uα

N , (u
α
T )�]�. The vec-

tors u, uN, uT respectively collect all the local velocities u = [(uα)�, α = 1 . . . nc]�,
all the normal velocities uN = [uα

N , α = 1 . . . nc]�, and all the tangential velocities
uT = [(uα

T )
�, α = 1 . . . nc]�. For a contact α, the modified local velocity, denoted by

ûα , is defined by

ûα = uα + gα(u) where gα(uα) = [μα‖uα
T ‖, 0, 0]�. (27)

The vector û and the function g collect all themodified local velocities at each contact
û = [ûα, α = 1 . . . nc]� and the function g(u) = [[μα‖uα

T ‖, 0, 0]�, α = 1 . . . nc]�.
For each contact α, the reaction vector rα ∈ IR3 is also decomposed in its normal

part rα
N ∈ IR and the tangential part rα

T ∈ IR2 as rα = [rα
N , (rα

T )�]�. The Coulomb
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friction cone for a contact α is defined by K α = {rα ∈ IR3 | ‖rα
T ‖ � μα|rα

N |} and the
set K α,� is its dual. The set K is the Cartesian product of Coulomb’s friction cone at
each contact, that is,

K =
∏

α=1,...,nc

K α and K � is its dual. (28)

In this chapter, we investigate the case when the problem is given in its reduced form.
We consider that the discretized and linearized dynamics is of the form

Mv = Hr + f, (29)

with M a positive-definite matrix. The local velocities at the point of contact are
given by

u = H�v + w. (30)

More information on the term w is given later in this section. The (global) velocities
v can be substituted in (30) by using a Schur-complement technique. This yields

u = H�M−1Hr + H�M−1 f + w. (31)

Let us define W , often called the Delassus matrix, as

W := H�M−1H (32)

and the vector q as

q := H�M−1 f + w. (33)

We are now ready to define the mathematical problem we want to solve.

Problem FC (Discrete frictional contact problem). Given:

• a positive semi–definite matrix W ∈ IRm×m called the Delassus matrix,
• a vector q ∈ IRm ,
• a vector μ ∈ IRnc of coefficients of friction,

find a vector r ∈ IRm such that ⎧⎪⎨
⎪⎩

K � � û ⊥ r ∈ K

u = Wr + q

û = u + g(u),

(34)

with g(u) = [[μα‖uα
T ‖, 0, 0]�, α = 1 . . . nc]�.

An instance of the problem is denoted by FC(W, q, μ) �
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Remark 1 We do not assume that the Delassus matrix W is symmetric in the general
case. Inmost of the applications, theDelassusmatrix is symmetric, since it represents
either amassmatrix or a stiffnessmatrix. Nevertheless, in the rigid body applications,
or more generally, when large rotations are taken into account, the Delassus matrix
is not symmetric. Indeed, in an implicit time-discretization, the Jacobian matrix of
the gyroscopic forces brings a skew symmetric matrix into the Delassus matrix.

2.3 Existence of Solutions

The question of the existence of a solution to the Problem FC has been studied in [3,
68] with different analysis techniques, under the assumption that the Delassus matrix
is symmetric. The key assumption for the existence of solutions in both articles is as
follows:

∃v ∈ IRm : H�v + w ∈ int K �, (35)

or equivalently,
w ∈ im H + int K �. (36)

Under the previous assumption, the Problem FC has a solution. Therefore, it makes
sense to design a procedure to solve the problem. In the sequel, we will compare
numerical methods only when this assumption is satisfied.

This assumption is easily verified in numerous applications. For applications in
nonsmooth dynamics where the unknown v is a relative contact velocity, the term w
vanishes if we have only scleronomic constraints. For w ∈ im(H�) (and especially
w = 0), the assumption is trivially satisfied. As explained in [2], the term w has
several possible sources. If the constraints are formulated at the velocity level, an
input term of w is given in the dynamics by the impact laws (see Eq. (16)). In the
case of the Newton impact law, it holds that w ∈ im(H�). For other impact laws,
this is not clear. Another input in w is given by constraints that depend explicitly
on time. In that case, we can have w /∈ im(H�) and the non-existence of solutions.
If the constraints are written at the position level, w can be given by initial terms
that come from the velocity discretization. In those cases, the existence is also not
ensured.

The assumption is also satisfied whenever im H = IRm or, in other words, if H�
has full row rank. Unfortunately, in a large number of applications, H� is rank
deficient. From the mechanical point of view, the rank deficiency of H and the
amount of friction seem to play a fundamental role in the question of the existence
(and uniqueness) of solutions. In the numerical comparisons, we will attempt to get
a deeper understanding of the role of these assumptions in the convergence of the
algorithms. The rank deficiency of H is related to the number of constraints that
are imposed on the system with respect to the number of degrees-of-freedom in the
system. This is closely related to the concept of hyperstaticity in overconstrained
mechanical systems. In the most favorable cases, it yields indeterminate Lagrange
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multipliers, but also unfeasible problems, and then the loss of solutions in the worst
cases. The second assumption about the amount of friction is also well–known. The
frictionless problem is easy to solve if it is feasible. It is clear that large friction
coefficients prevent sliding, and therefore increase the degree of hyperstaticity of the
system.

3 Alternative Formulations

In this section, various equivalent formulations of Problem FC are given. Our goal
is to show that such problems can be recast into several well-known problems in the
mathematical programming and optimization community. These formulations will
serve as a basis for numerical solution procedures that we develop in later sections.

3.1 Variational Inequality (VI) Formulations

Let us recall the definition of a finite-dimensional VI(X, F): find z ∈ X such that

F�(z)(y − z) � 0 for all y ∈ X, (37)

with X a nonempty subset of IRn and F a mapping from IRn into itself. We refer
to [39, 47] for the standard theory of finite–dimensional variational inequalities. The
easiest way to state equivalent VI formulations of Problem FC is to use the following
equivalences:

K � � û ⊥ r ∈ K ⇐⇒ −û ∈ NK (r) ⇐⇒ û�(s − r) � 0, for all s ∈ K .

(38)
For Problem FC, the equivalent formulation in VI is directly obtained from

− (Wr + q + g(Wr + q)) ∈ NK (r). (39)

The resulting VI is denoted by VI(Fvi, Xvi) with

Fvi(r) := Wr + q + g(Wr + q) and Xvi := K . (40)

Uniqueness Properties

In the general case, it is difficult to prove uniqueness of solutions to (40). If thematrix
H has full rank and the friction coefficients are “small”, a classical argument for the
uniqueness of the solution to VIs can be satisfied. Note that the full rank hypothesis
on H implies that W is positive-definite. Therefore, we have (x − y)�W (x − y) �
CW ‖x − y‖2 with CW > 0. Using this relation (40), it yields
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(Fvi(x) − Fvi(y))�(x − y) = (x − y)�W (x − y)

+∑nc
α=1 μα(xα

N − yα
N )[‖[W x + q]αT ‖ − ‖[W y + q]αT ‖]

� CW ‖x − y‖2 +∑nc
α=1 μα(xα

N − yα
N )[‖[W x + q]αT ‖ − ‖[W y + q]αT ‖].

(41)
Note that for small values of the coefficients of friction, the first term on the right-
hand side dominates the second one. Hence, the mapping Fvi is strictly monotone,
and this ensures that the VI has, at most, one solution [39, Theorem 2.3.3]. The fact
that H is full rank also implies that the Assumption (35) for the existence of solutions
is trivially satisfied. Hence, there exists a unique solution to the VI(Fvi, Xvi).

3.2 Quasi-Variational Inequalities (QVI)

Let us recast Problem FC into the QVI framework. A QVI is a generalization of the
VI, where the feasible set is allowed to depend on the solution. Let us define this
precisely: let X be a multi-valued mapping IRn ⇒ IRn and let F be a mapping from
IRn into itself. The quasi-variational inequality problem, denoted by QVI(X, F), is
to find a vector z ∈ X (z) such that

F�(z)(y − z) � 0, ∀y ∈ X (z). (42)

The QVI formulation of the frictional contact problems is obtained by considering
the inclusions (21) and (23). We get

u�(s − r) � 0, for all s ∈ C(rN), (43)

where C(rN) is the Cartesian product of the semi–cylinders of radius μαrα
N defined

as

C(rN) :=
nc∏

α=1

{
s ∈ IR3 | sN � 0, ‖sT‖ � μαrα

N

}
. (44)

Note that the QVI (43) involves only u and not û: this is the main interest of this
formulation. The price to pay is the dependence on r of the set C(rN). Problem FC
can be expressed as a QVI by substituting the expression of u, which yields

(Wr + q)�(s − r) � 0, for all s ∈ C(rN). (45)

This expression is compactly rewritten as QVI(Fqvi, Xqvi), with

Fqvi(r) := Wr + q and Xqvi(r) := C(rN). (46)

Since W is assumed to be a positive semi-definite matrix, Fqvi is monotone. Thus, we
get an affine monotone QVI(Fqvi, Xqvi) for Problem FC.
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3.3 Nonsmooth Equations

In this section, we expose a classical approach to solving a VI or a QVI, based
on a reformulation of the inclusion as a nonsmooth equation. The term nonsmooth
equation highlights that the mapping we consider fails to be differentiable. This
is the price to pay for this reformulation. We can apply fixed-point and Newton-
like algorithms to solve the resulting equation. Given the nonsmooth nature of the
problem, applying Newton’s method appears challenging, but it can still be done for
some reformulations. More precisely for Problem FC, we search for an equation of
the type

G(r) = 0, (47)

where G is generally only locally Lipschitz continuous. The mapping G is such that
the zeroes of (47) are the solutions to (34).

Natural and Normal Maps for the VI Formulations

A general-purpose reformulation of VI is obtained by using the normal and natural
maps (see [39] for details). The natural map Fnat : IRn → IRn associated with the
VI (37) is defined by

Fnat(z) := z − PX (z − F(z)), (48)

where PX is the Euclidean projector on the set X . A well-known result (see [39])
states that the solutions to a VI are related to the zeroes of the natural map:

z solves VI(X, F) ⇐⇒ Fnat(z) = 0. (49)

Using (37), it is easy to see that if z solves VI(X, F), then it is also a solution to
VI(X, ρF) for anyρ > 0. Therefore, we can define a parametric variant of the natural
map by

Fnat
ρ (z) = z − PX (z − ρF(z)). (50)

The relations given in (49) continue to hold for the parametric mapping. Using those
equivalences, the frictional contact problem can be restated as zeroes of nonsmooth
functions. With the natural map, Problem FC under the VI form (40) can be refor-
mulated as

Fnat
vi (r) := [

r − PK (r − ρ(Wr + q + g(Wr + q)))
] = 0. (51)

Following the same lines, the normal map may also be used to derive algorithms.
The normal map Fnor : IRn → IRn is defined by

Fnor(x) := F(PX (x)) + x − PX (x), (52)
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and its parametric variant

Fnor
ρ (x) = ρF(PX (x)) + x − PX (x). (53)

An equivalent result holds:

z solves VI(X, F) ⇐⇒ z = PX (x) for some x such that Fnor(x) = 0. (54)

The normal map based formulation of VI is also obtained in the same way.
In the seminal work of [106], iterative methods for solving monotone VIs are

based on the natural map and fixed point iterations. The role of ρ is recognized to be
very important for the rate of convergence. To improve the methods, [106] proposes
using a “skewed” projector based on a non-Euclideanmetric. Given a positive definite
matrix R ∈ Rn×n , a skewed projector PX,R onto X is defined as follows: z = PX,R(x)

is the unique solution to the convex program

⎧⎨
⎩min

1

2
(y − x)� R(y − x),

s.t. y ∈ X.
(55)

The skew natural map can also be defined and yields the following nonsmooth equa-
tion:

Fnat
R (z) = z − PX,R(z − R−1F(z)). (56)

The zeros of Fnat
R (z) are also the solution to the VI(X, F). Considering the skew

natural map, we obtain, for Problem FC under the VI form (40),

Fnat
vi,R(r) := [

r − PK ,R
(
r − R−1(Wr + q + g(Wr + q))

) ]
. (57)

The previous case is retrieved by choosing R = ρ−1 In×n .

Jean–Moreau’s and Alart–Curnier’s Functions

Using the alternative inclusion formulations (21)–(23) with a given set of parameters
ρN, ρT such that {−ρNuN ∈ NIRnc+ (rN), ρN > 0,

−ρTuT ∈ ND(μ(rn)+)(rT), ρT > 0,
(58)

we can substitute PK into PIRnc+ and PD(μ(rn)+), where

D(μ(rn)+) =
∏

α=1...nc

D(μα(rα
N )+). (59)

defines the Cartesian product of the Coulomb disks for each contact. The notation
x+ stands for x+ = max(0, x). Using this procedure, [23, 61] propose the following
nonsmooth equation formulation of the frictional contact condition:
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{
rN − PIRnc+ (rN − ρNuN) = 0,

rT − PD(μ(rN)+)(rT − ρTuT) = 0.
(60)

The parameters ρN, ρT may also be chosen contact by contact. Problem FC is then
reformulated as

Fmj(r) :=
[

rN − PIRnc+ (rN − ρN(Wr + q)N)

rT − PD(μ(rN)+)(rT − ρT(Wr + q)T)

]
= 0. (61)

In the seminal work of Alart and Curnier [10, 24], the augmented Lagrangian
approach is invoked (see Remark 3) to obtain a similar formulation motivated by the
development of nonsmooth (or generalized) Newton methods (see Sect. 5.2). To be
accurate, the original Alart–Curnier function is given by

{
rN − PIRnc+ (rN − ρNuN) = 0,

rT − PD(μ(rN−ρuN)+)(rT − ρTuT) = 0.
(62)

The difference between (60) and (62) is in the radius of the disk: D(μ(rN − ρuN)+)

rather than D(μ(rN)+). Problem FC can also be reformulated as in (61) using (62).
This yields

Fac(r) :=
[

rN − PIRnc+ (rN − ρN(Wr + q)N)

rT − PD(μ(rN−ρNuN)+)(rT − ρN(Wr + q)T)

]
= 0. (63)

Remark 2 From the QVI formulation (43), the following nonsmooth equation can
also be written:

r = PC(rN)(r − ρu), (64)

which corresponds to (60).

Remark 3 In the literature of computational mechanics [10, 24, 107], very similar
expressions are obtained using the concept of augmented Lagrangian functions. This
concept, introduced in the general framework of Optimization by [57] and developed
and popularized by [101, 102], is a strong theoretical tool for analyzing the existence
and regularity of solutions to constrained optimization problems. Its numerical inter-
est is still a subject of intense debate in the mathematical programming community.
In the nonconvex nonsmooth context of frictional contact problems, its invocation is
not so clear, but it has enabled the design of robust numerical techniques. Neverthe-
less, it is worth noting that some of these methods appear as variants of the methods
developed to solve variational inequalities in other contexts. The method developed
by [107] is a dedicated version of fixed point with projection for VI (see Algorithm 1)
and the method of [10] is a tailored version of semi–smooth Newton methods (see
Sect. 5). Nevertheless, the concept of an augmented Lagrangian has never been used
in the optimization literature for this purpose.
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Xuewen–Soh–Wanji Functions

Following the earlier work of [77, 96], the following function is proposed in [120]:

Fxsw(r) :=
⎡
⎣ min(uN, rn)

min(‖uT‖, μrN − ‖rT‖) = 0
|uT1rT2 − uT2rT1 + max(0, uT1rT1) = 0

⎤
⎦ = 0. (65)

In [120], the system is solved by a generalized Newton method with a line-search
procedure.

Hüeber–Stadler–Wolhmuth Functions

In [60, 109], and subsequently in [71], another function is used to reformulate the
problem FC:

Fhsw(r) :=
[

rN − PIRnc+ (rN − ρN(Wr + q)N)

max(μ(rN − ρNuN), ‖rt − ρt uT‖)rT − μmax(0, rn − ρNuN)(rt − ρTuT)

]
= 0.

(66)
In [60], this function is used considering the constraints at the position level, as
opposed to in [71], in which the formulation is at the velocity level.

General SOCC-Functions

More generally, a large family of reformulations of the SOCCP (26) in terms of
equations can be obtained by using a so-called Second-Order Cone Complementarity
(SOCC) function. Let us consider the following SOCCP over a symmetric cone
K � = K . A SOCC-function φ is defined by

K � x ⊥ y ∈ K ⇐⇒ φ(x, y) = 0. (67)

The frictional contact problem can be written as a SOCCP over symmetric cones by
applying the following transformations:

x = Tx û =
[

ûN

μûT

]
and y = Tyr =

[
μrN

rT

]
. (68)

Clearly, the nonsmooth equations of the previous sections provide several exam-
ples of SOCC-functions and the natural map offers the simplest one. In [43], the stan-
dard complementarity functions for Nonlinear Complementarity Problems (NCP)
such as the celebrated Fischer–Burmeister function are extended to the SOCCP by
means of Jordan algebra. Smoothing functions are also given with their Jacobians,
and they studied their properties in view of the application of Newton’s method.
For the second-order cone, the Jordan algebra can be defined with the following
non-associative Jordan product:

x · y =
[

x�y
yNxT + xNyT

]
(69)
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and the usual componentwise addition x + y. The vector x2 denotes x · x , and there
exists a unique vector x1/2 ∈ K , the square root of x ∈ K , defined as

(x1/2)2 = x1/2 · x1/2 = x . (70)

A direct calculation for the SOC in IR3 yields

x1/2 =
[

s
xT

2s

]
, where s =

√
(xN +

√
x2
N − ‖xT‖2)/2. (71)

We adopt the convention that 01/2 = 0. The vector |x | ∈ K denotes (x2)1/2. Thanks
to this algebra and its associated operator, the projection onto K can be written as

PK (x) = x + |x |
2

. (72)

This formula provides a new expression for the natural map and its associated non-
smooth equations. This is exactly what is done in [55], where the natural map (48)
is used, together with an expression of the projection operator based on the Jordan
algebra calculus. The resulting SOCCP is then solved with a semi–smooth Newton
method, and a smoothing parameter can be added.

Most of the calculus in Jordan algebra is based on the spectral decomposition,
a basic concept in Jordan algebra (see [43] for more details). For x = (xN, xT) ∈
IR × IR2, the spectral decomposition is defined by

x = λ1u1 + λ2u2, (73)

where λ1, λ2 ∈ IR and u1, u2 ∈ IR3 are the spectral values and the spectral vectors of
x given by

λi = xN + (−1)i‖xT‖, ui =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

⎡
⎣ 1

(−1)i xT

‖xT‖

⎤
⎦ , if xT �= 0

1
2

[
1

(−1)i w

]
, if xT = 0

i = 1, 2, (74)

withw ∈ IR2 any unit vector. Note that the decomposition is uniquewhenever xT �= 0.
The spectral decomposition enjoys very nice properties that simplify the computation
of basic functions such that

x1/2 = √
λ1u1 + √

λ2u2, for any x ∈ K ,

PK (x) = max(0, λ1)u1 + max(0, λ2)u2.
(75)
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More interestingly, general SOCC-functions can also be extended, and a smoothed
version of this function can also be developed (see [43] ). Let us start with the
Fischer–Burmeister function

φFB(x, y) = x + y − (x2 + y2)1/2. (76)

It can be shown that the zeroes of φFB are solutions of the SOCCP (67) using the
Jordan algebra associated with K . Using the spectral decomposition, the Fischer–
Burmeister function can be easily computed as

φFB(x, y) = x + y − (

√
λ̄1ū1 +

√
λ̄2ū2), (77)

where λ̄1, λ̄2 ∈ IR and ū1, ū2 ∈ IR3 are the spectral values and the spectral vectors of
x2 + y2, that is,

λ̄i = ‖x‖2 + ‖y‖2 + 2(−1)i‖xNxT + yNyT‖

ūi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

⎡
⎣ 1

(−1)i xNxT + yNyT

‖xNxT + yNyT‖

⎤
⎦ , if xNxT + yNyT �= 0

1
2

[
1

(−1)i w

]
, if xNxT + yNyT = 0

, i = 1, 2. (78)

Finally, Problem FC is then reformulated as

FFB(u, r) :=
⎡
⎣u − Wr − q

ΦFB

([
μrN

rT

]
,

[ 1
μ
(uN + μ‖uT‖)

uT

])⎤⎦ = 0, (79)

where the mapping ΦFB : IR3nc × IR3nc → IR3nc is defined as

ΦFB(x, y) = [
(φ(xα, yα), α = 1 . . . nc)

�] . (80)

3.4 Optimization Problems

In this section, several optimization-based formulations are proposed. The quest for
an efficient optimization formulation of the frictional problem is a hard task. Since
the problem is nonsmooth and nonconvex, the use of an associated optimization
problem is interesting from the numerical point of view if we want to improve the
robustness and the stability of the numerical methods.
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A straightforward optimization problem can be written whose cost function is
the scalar product r�û. Indeed, this product is always positive and vanishes at the
solution. Let us consider this first optimization formulation:

⎧⎪⎨
⎪⎩
min r�û = r�u +∑nc

α=1 μαrα
N ‖uα

T ‖
s.t. û ∈ K �,

r ∈ K ,

(81)

which amounts to minimizing the DeSaxcé’s bipotential function [26] over K � × K .
A first simplification can be made by noting that

û ∈ K � ⇐⇒ uN � 0, (82)

which leads to ⎧⎪⎨
⎪⎩
min r�u +∑nc

α=1 μαrα
N ‖uα

T ‖
s.t. uN � 0

r ∈ K .

(83)

Starting from Problem FC, a direct substitution of u = Wr + q yields

⎧⎪⎨
⎪⎩
min r�(Wr + q) +∑nc

α=1 μαrα
N ‖(Wr + q)αT ‖

s.t. (Wr + q)N � 0,

r ∈ K ,

(84)

which is a nonlinear optimization problem with a nonsmooth and nonconvex cost
function. From the numerical point of view, this problem may be very difficult, and
we have to ensure that the cost function has to be zero at the solution, which is not
guaranteed if some local minima are reached in the minimization process.

Other optimization-based formulations have been proposed in the literature. They
are not direct optimization formulation, but they try to identify an optimization sub-
problem that is well-posed and for which efficient numerical methods are available.
Three approaches can be listed in three categories: (a) the alternating optimiza-
tion problems, (b) the successive approximation method, and (c) the convex SOCP
approach.

The Panagiotopoulos Alternating Optimization Approach

The Panagiotopoulos alternating optimization approach aims at solving the frictional
contact problem by alternatively solving the Signorini condition for a fixed value of
the tangential reaction rT, and solving the Coulomb friction model for a fixed value
of the normal reaction rN. Let us split the matrix W and the vector q in the following
way:

u = Wr + q ⇐⇒
[

uN

uT

]
=
[

WNN WNT

WTN WTT

] [
rN

rT

]
+
[

qN

qT

]
. (85)
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Two sub-problems can therefore be identified: the first one is to find uN and rN such
that {

uN = WNNrN + q̃N,

0 � uN ⊥ rN � 0,
(86)

where q̃N = qN + WNTrT. The second problem is to find uT and rT such that

{
uT = WTTrT + q̃T,

−uT ∈ ND(μr̃N)(rT),
(87)

where r̃N is fixed and q̃T = qT + WTNrN.
If we assume for awhile that theDelassus W is a symmetric positive semi–definite

matrix, WNN and WTT are also symmetric semi–definite positive matrices. Therefore,
two convex optimization problems can be formulated:

⎧⎨
⎩min

1

2
r�
N WNNrN + r�

N q̃N

s.t. rN � 0
(88)

and ⎧⎨
⎩min

1

2
r�
T WTTrT + r�

T q̃T

s.t. rT ∈ D(μr̃N).
(89)

This approach has been proposed by [93] for two–dimensional applications in
soil foundation computing. It has also been used in other finite element applications
in [13, 116] and studied from the mathematical point of view in [50, 51].

Remark 4 If theDelassusmatrix is an unsymmetricmatrix but semi-definite positive,
the following quadratic programming problem is equivalent to (86):

⎧⎪⎨
⎪⎩
min r�

N WNNrN + r�
N q̃N

s.t. rN � 0

WNNrN + q̃N � 0.

(90)

The Successive Approximation

The successive approximation method identifies a single optimization problem by
introducing a function thatmaps the normal reaction to itself (or the friction threshold)
such that

h(rN) = rN. (91)
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Using this artifact, we can define a new problem from Problem FC such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ = h(rN)

u = Wr + q

−uN ∈ NIRnc+ (rN)

−uT ∈ ND(μθ)(rT).

(92)

If we assume for a while that the Delassus W is a symmetric positive semi–definite
matrix, the last three lines are equivalent to a convex optimization problem over the
product of semi–cylinders C(μ, θ), that is,

⎧⎪⎪⎨
⎪⎪⎩

θ = h(rN)⎧⎨
⎩min

1

2
r�Wr + r�q

s.t. r ∈ C(μ, θ).

(93)

The method of successive approximation has been extensively used for proving
the existence and uniqueness of solutions to the discrete frictional contact problems.
We refer to [51], which summarizes the seminal work of the Czech school [48, 49,
91]. We will see in the sequel that this approach also provides us with very efficient
numerical solvers in Sect. 7.2.

The Convex SOCP

The convexSOCPapproach is in the samevein as the previous one,with the difference
that a SOCQP sub-problem is identified. To this aim, we augment the problem by
introduction of an auxiliary variable s, the image of g(u) introduced in (27). We then
obtain ⎧⎪⎨

⎪⎩
s = g(u)

û = Wr + q + s

K � � û ⊥ r ∈ K .

(94)

Since W is a positive semi-definite matrix, a new convex optimization sub-problem
can be defined: ⎧⎪⎪⎨

⎪⎪⎩
s = g(u)⎧⎨
⎩min

1

2
r�Wr + r�(q + s)

s.t. r ∈ K .

(95)

This formulation introduced in [18] and developed in [2, 3] has been used to give
an existence criteria to the discrete frictional contact problems. Furthermore, this
existence criteria can be numerically checked by solving a linear programof a second-
order cone (SOCLP).
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4 Numerical Methods for VIs

4.1 Fixed Point and Projection Methods for VI

Starting from the VI formulations (37), or more precisely, an associated nonsmooth
equation through the natural map,

Fnat
R (z) = z − PX,R(z − R−1F(z)). (96)

The basic idea of the algorithm is to perform fixed point iterations on the mapping

z �→ PX,R(z − R−1F(z)), (97)

yielding to Algorithm 1 with the specific choice of R = ρ−1
k I . The choice of the

updating rule of ρk is detailed in Sect. 4.2.

Algorithm 1 Fixed point iterations for the VI (37)

Require: F, X Data of VI (37)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Require: ρ0 initial value for ρ

Ensure: z solution of VI (37)
k ← 0
while error > tol and k < itermax do

Update the value of ρk
zk+1 ← PX(zk − ρk F(zk))

Evaluate error.
k ← k + 1

end while
z ← zk

For the formulation (40), the following iterations are performed:

rk+1 ← PK ,R(rk − R−1(Wrk + q + g(Wrk + q))). (98)

In the sequel, when a parameter ρ is specified, it is assumed that R = ρ−1 I .
The convergence of such methods is generally shown for strongly monotone VI.

In our case, this assumption is not satisfied, but we will see in the sequel that such
methods can converge in practice.

Remark 5 Algorithm 1 with the iteration rule (98) and a fixed value of ρk was orig-
inally proposed in [27, 28]. The algorithm is called Uzawa’s algorithm as reference
to the algorithm credited to Uzawa in computing the optimal values of a convex pro-
gram by primal-dual techniques[42, 44]. Note that the algorithm in [107] is similar to
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the fixed point algorithmwith projection, though based on an augmented Lagrangian
concept (see Remark 3).

Extragradient Methods

The extragradient method [70] is also a well-known method for VI that improves the
previous projection method. It can be described as

z̄k ← PX (zk − ρF(zk))

zk+1 ← PX (zk − ρ F(z̄k))
(99)

and formally defined in Algorithm 2. The convergence of this method is guaran-

Algorithm 2 Extragradient method for the VI (37)

Require: F, X Data of VI (37)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Ensure: z solution of VI (37)

k ← 0
while error > tol and k < itermax do

Update the value of ρk
z̄k ← PX(zk − ρkF(zk))

zk+1 ← PX(zk − ρk F(z̄k))

Evaluate error.
k ← k + 1

end while
z ← zk

teed under the following assumptions: there exists a solution, and the function F is
Lipschitz–continuous and pseudo–monotone.

4.2 Self-adaptive Step-Size Rules

A key ingredient in this efficiency and the convergence of the numerical methods
for VI presented above is the choice of the sequence {ρk}. A sensible work has been
done in the literature, mainly motivated by some convergence proofs under specific
assumptions. Besides the relaxation of the assumption for the convergence, we are
interested in improving the numerical efficiency and robustness. We present in this
section the most popular approach for choosing the sequence {ρk}.

In [65], a method is proposed for improving the extragradient method of [70] by
adapting ρk in the following way. The goal is to find ρk that satisfies

0 < ρk � min

{
ρ̄, L

‖zk − z̄k‖
‖F(zk) − F(z̄k)‖

}
with L ∈ (0, 1), (100)
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where ρ̄ is the maximum value of ρk chosen in light of the specific problem. The
objective is to find a coefficient that is bounded by the local Lipschitz constant.
The standard way to do that is to use an Armijo–type procedure by successively
trying some values of ρk = ρ̄νm with m ∈ IN and ν ∈ (0, 1), with a typical value of
2/3. In the original article by [65], there is no procedure for sizing ρ̄ or updating
it. In [56] and in the context of prediction–correction, the authors propose using
the rule ρk = ρk−1ν

m , and if the criteria (100) is largely satisfied for ρk , the value
is increased. In [46], a similar procedure is used for the extragradient method by
adding an increasing step of ρk , which is done after the correction, as in [56]. The
criteria (100) is verified by computing the ratio

rk ← ρk‖F(zk) − F(z̄k)‖
‖zk − z̄k‖ . (101)

In [108], a similar Armijo–like technique is used, and the ratio rk is computed as
follows:

rk ← ρk(zk − z̄k)
�(F(zk) − F(z̄k))

‖zk − z̄k‖2
. (102)

The approach is summarized in Algorithm 3. The parameter L typically chosen
around 0.9 is a safety coefficient in the evaluation of ρk . The parameter Lmin that
triggers an increase of ρk is chosen around 0.3.

In [46], the update of the Armijo rule ρk ← ν ρk can also be replaced with
ρk ← ν ρk min {1, 1/rk}, but it appears that this trick does improve the self–adaptive
procedure.Othermore evolved step–length strategies that have been tried in this study
can be found in [117].

Algorithm 3 Updating rule for ρk

Require: F, X
Require: Search and safety parameters. L ∈ (0, 1), 0 < Lmin < L, ν ∈ (0, 1)

Require: Initial values zk ∈ X, ρk−1 > 0
ρk ← ρk−1
z̄k ← PX(zk − ρkF(zk))

Evaluate rk with (101) (or (102))
while rk > L do

ρk ← ν ρk
z̄k ← PX(zk − ρkF(zk))

Evaluate rk with (101) (or (102))
end while
Perform the correction step of extragradient or prediction–correction method.
if rk < Lmin then

ρk = 1
ν
ρk

end if
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Table 1 Naming convention for the algorithms based on VI formulations

Name Algorithm Additional information

FP-DS 1 Iteration rule (98) and fixed ρ

FP-VI-UPK 1 and 3 Iteration rule (98) and updating rule (101)

FP-VI-UPTS 1 and 3 Iteration rule (98) and updating rule (102)

EG-VI-UPK 2 and 3 Iteration rule (99) and updating rule (101)

EG-VI-UPTS 2 and 3 Iteration rule (99) and updating rule (102)

4.3 Nomenclature

A nomenclature for the algorithms based on the VI formulation is given in Table 1.

5 Newton-Based Methods

5.1 Principle of the Nonsmooth Newton Methods

In Sect. 3.3, several formulations of the frictional contact problem by means of
nonsmooth equations have been presented. These nonsmooth equations call for the
use of nonsmooth Newton’s methods. Remember that the standard Newton method
consists in solving

G(z) = 0 (103)

by performing the following Newton iteration:

zk+1 = zk − J−1(zk)G(zk). (104)

If the mapping G is smooth, the matrix J is the Jacobian matrix of G with respect
to z, that is, J (z) = ∇zG(z). Whenever G is nonsmooth but locally Lipschitz con-
tinuous, the Jacobian matrix J is replaced with an element Φ(z) of the generalized
Jacobian at z:Φ(z) ∈ ∂G(z). Let us recall the definition of the generalized Jacobian.
By Rademacher’s Theorem, if G is locally Lipschitz continuous, then G is almost
everywhere differentiable, and let us define the set DG by

DG := {z | G is differentiable at z}. (105)

The generalized Jacobian of G at z can be defined by

∂G(z) = conv∂B G(z), (106)

with
∂B G(z) = { lim

z̄→z,z̄∈DG

∇G(z̄)}. (107)
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If Φ(z) is nonsingular, then an iteration of the nonsmooth Newton method is given
by

zk+1 = zk − Φ−1(zk)(G(zk)). (108)

The resulting nonsmooth Newton method is detailed in Algorithm 4.

Algorithm 4 Nonsmooth Newton method for (103)

Require: G data of Problem (103)
Require: z0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the max number of iterations
Ensure: z solution of Problem (103)

k ← 0
while error > tol and k < itermax do

compute (select) �(zk) ∈ ∂G(zk)

zk+1 ← zk−�−1(zk)(G(zk))

Evaluate error.
k ← k + 1

end while
z ← zk

The convergence of nonsmoothNewtonmethods is based on the assumption of the
semi–smoothness of the nonsmooth function in (103). For this reason, they are often
called semi–smooth Newton methods (see [39, Sect. 7.5] and references therein).

5.2 Application to the Discrete Frictional Contact Problem

We use the Alart–Curnier function Fac(u, r) in (63), Jean–Moreau function Fmj(u, r)

in (61), Fischer–Burmeister function FFB(u, r) in (79), and the natural map Fnat
vi

in (51) to define a Newton method for the Problem FC.

Computation of an Element of ∂G

For any r0 in the nonsmooth domain of G, we compute Φ(r0) = limt→0 Φ(r(t))
with t → r(t) a parametrization such that limt→0 r(t) = r0 with r(t) in the smooth
domain for all t . Similar computations can also be found in [62], where a Newton
method based on the formulation (51) is used contact by contact in a Gauss–Seidel
loop.

Lipschitz Continuity Properties

For the mappings Fnat
vi , Fac, FFB, Fmj, Fxsw, whose expressions are mostly made of

the Lipschitz functions PX ,min,max and ‖.‖, the local Lipschitz properties can be
shown without difficulty. For the mapping FFB, the proof of Lipschitz continuity of
φFB can be found in [111] and references therein. This ensures the consistency of the
definition of the generalized Jacobians.
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5.3 Convergence and Robustness Issues

The local convergence of the nonsmooth Newton methods is based on the semi-
smoothness of the mapping G and the fact that all elements of the generalized
Jacobian at the solution point z�, Φ(z�) ∈ ∂G(z�) are non-singular (see [97] and
Chap.1 of [98] for a survey of mathematical results). For our application, the semi-
smoothness of the mapping Fac, Fmj, or Fhsw is proven in several papers [22, 60]. The
strong semi–smoothness of φFB can be found in [111].

On the other hand, the regularity of all elements of the generalized Jacobians is not
guaranteed. The first reason is the possible rank deficiency of the matrix W , which is
usual in rigid body applications, as discussed in Sect. 2.3. Even if we consider a full
rank matrix W , as in the standard one contact case for instance, the invertibility of all
the elements of the generalized Jacobian at the solution point is not straightforward.
For the mapping Fac, Fmj, some results are given in [8, 9, 63]. Some of the results
depend on the value of the coefficient of friction and the exact penalty ρ, ρN, ρT

parameters. For the mapping Fhsw, some other results can be found in [60].
In the numerical practice, and even if W is full-rank, it may happen that the ele-

ments of the generalized Jacobians are not regular or very badly conditionedwhenwe
are far from the solution. This fact is reported in [8, 9, 60, 63, 71]. Some divergence
of the Newton algorithm can be encountered. A few works has been done towards
understanding this problem. Among them, we cite [60], in which somemodifications
of the elements of the generalized Jacobian are performed far from the solution to
keep theNewton iterationmatrix regular andwell-conditionedwhen the function Fhsw

is chosen. This very interesting work opens new directions of research for the other
mappings. In [71], some other heuristics are developed to try to avoid divergence
of the Newton loop. In the two next sections, we present two complementary ways
to partly solve this problem by consistently choosing the parameters ρ, ρN, ρT and
applying some line–search techniques to globalize the convergence.

5.4 Estimation of ρ, ρN, ρT Parameters

One of the key parameters in the efficiency of the nonsmooth Newton methods is the
choice of the parameter ρ in the parameterized natural map (50) and the parameters
ρN and ρT in the Jean–Moreau and Alart–Curnier functions (61) and (63). The default
choice is to set these parameters equal to 1, but the numerical practice shows that the
convergence of the nonsmooth solvers is drastically deteriorated, especially if the
norm or the conditioning of the matrix W is far from this unit value. There are no
theoretical rules through which to size these parameters, but some heuristics may be
found in the literature for a single contact problem that we expose in the sequel.

Inverse of a Norm of W

A first simple choice is to consider the inverse of a norm of the matrix W . With these
heuristics, we set the ρ parameter before the Newton loop as follows:
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ρ = 1

‖W‖ , ρN = ρT = 1

‖W‖ . (109)

This choice is mainly based on a guess of the inverse of the local Lipschitz constant
of the operator Wr + q. In the case of the natural map, it amounts to neglecting
the nonlinear contribution of g. For the norm, whenever the matrix is symmetric
definite positive, choosing the 2-norm based on the spectral radius ‖W‖2 = ρ(W ) =
λmax(W ) would yield

ρ = 1

λmax(W )
, ρN = ρT = 1

λmax(W )
. (110)

Estimation Based on the Splitting WNN and WTT

A second possible choice for the map (61) and (63) is to use the fact that the problem
is split with respect to the normal and the tangent directions. In that case, we compute
a value of ρN that is based on the eigenvalues of WNN and a value of ρT based on the
eigenvalue of WTT. For a single contact, we set

ρN = 1

WNN

, ρT = 1

λmax(WTT)
(111)

A third option is also to take into account the conditioning of the matrix WTT by
choosing

ρN = 1

WNN

, ρT = λmin(WNN)

λ2
max(WTT)

. (112)

Again, these heuristics implicitly assume that the Delassus matrix W is symmetric
definite positive.

Adaptive Estimation of the Parameters

In [71], an adaptive way of updating ρ is proposed that has not been implemented
for our experiments.

Default Choices

By default, we use the rule (111) for the mapping (61) and (63) and the rule (110) for
the natural map. When other rules are chosen in the comparison, they are specified.

5.5 Damped Newton and Line-Search Procedures

We use mainly two types of line-search procedures: the Goldstein–Price and the
Armijo line-search. Usually, strong mathematical assumptions are needed to guar-
antee their success, especially on the smoothness of the merit function M (x). For
the Newton method, we use as the merit function the half of the norm of G, that is,
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M (x) = 1

2
‖G(x)‖, (113)

with G taken accordingly to the formulation equals to Fnat
vi , Fac, FFB, Fmj, Fxsw.

Clearly, the smoothness assumptions are not satisfied in our case. Even if the assump-
tions are fulfilled, and despite themathematical proofs, in practice, it is recommended
that some additional stopping criteria be added during extrapolation and interpola-
tion phases to avoid infinite loops. In the sequel, we use the recommendations in
Chap.3 of [15], where the reader can find all the mathematical explanations as to
why they terminate, under some assumptions about the merit function. The choice
of the values for the parameters m1, m2 for the Goldstein–Price line-search and the
parameter m1 alone for the Armijo line-search is also discussed, and it is advised to
choose m1 < 1

2 and m2 > 1
2 .

Termination requires the existence of a function q ∈ C1(IR)with q ′(0) < 0,which
is the value of the merit function in a given direction d. This function has to be
bounded from below. In our case, this function is q : t → 1

2‖G(r + td)‖. An addi-
tional stopping criterion is implemented as a maximum number of iterations, and
when the line-search fails, the Newton loop is continued with the last value of the
step found by the line–search.

The Goldstein–Price (GP) line search and Armijo line search are described in
Algorithms 5 and 6.

5.6 Nomenclature

Anomenclature for the algorithms based on the nonsmooth Newtonmethods is listed
in Table 2.

6 Splitting Techniques and Proximal Point Algorithm

Splitting techniques are standard techniques for solving VI(F, X)when the function
F is affine, that is, F(z) = Mz + q and the set X can be decomposed into a Cartesian
product of independent smaller sets X = Πi Xi . Usually, a block splitting of the
matrix M is performed and a Projected Successive Over Relaxation (PSOR) method
is used to solve the VI. Since the cone K is a product of second-order cones in IR3,
a natural way to split the problem is to form sub-problems by using single contact
as a building block. The sub-problems can be solved by any method for the VI that
has been presented in the previous sections. In the same way, the proximal point
algorithm can also be used, which amounts to solving the original VI(F, X) by
solving a sequence of (easier) VIs.
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Algorithm 5 Goldstein–Price (GP) line search
Require: x , the starting point of the line-search.
Require: d, the direction of search.
Require: t , an initial stepsize-value.
Require: t → q(t), for t � 0, with q ∈ C1 bounded from below and q ′(0) < 0, a merit func-

tion representing f (x + td)

Require: m1, m2, parameters with 0 < m1 < m2 < 1
Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search

tL ← 0
tR ← 0
Δ ← q(t)−q(0)

t
while m2q ′(0) > Δ or Δ > m1q ′(0) do
if m1q ′(0) < Δ then

tR ← t
end if
if Δ < m2q ′(0) then

tL ← t
end if
if tR = 0 then

t ← at
else

t ← tL +tR
2

end if
Δ ← q(t)−q(0)

t
end while

Algorithm 6 Armijo(A) line search
Require: x , the starting point of the line-search.
Require: d, the direction of search.
Require: t , an initial stepsize-value.
Require: t → q(t), for t � 0, with q ∈ C1 bounded from below and q ′(0) < 0, a merit func-

tion representing f (x + td)

Require: m1, a parameter with 0 < m1 < 1
Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search
while m1q ′(0) <

q(t)−q(0)
t do

if tR = 0 then
t ← at

else
tR ← t
t ← tR

2
end if

end while

6.1 Splitting and Relaxation Techniques

The particular structure of the cone K as a product of second-order cones in IR3 calls
for a splitting of the problem contact by contact. For Problem FC, the relation
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Table 2 Naming convention for the algorithms based on the nonsmooth Newton (NSN) method

Name Algorithm Additional information

NSN-NM 4 Natural map formulation (51)

NSN-AC 4 Alart–Curnier formulation (63)

NSN-JM 4 Jean–Moreau formulation (61)

NSN-FB 4 Fischer–Burmeister formulation (79)

NSN-NM-GP 4 and 5 Natural map formulation (51) and the Goldstein–Price (GP)
line search

NSN-AC-GP 4 and 5 Alart–Curnier formulation (63) and the Goldstein–Price (GP)
line search

NSN-JM-GP 4 and 5 Jean–Moreau formulation (61) and the Goldstein–Price (GP)
line search

NSN-FB-GP 4 and 5 Fischer–Burmeister formulation (79) and the Goldstein–Price
(GP) line search

NSN-NM-A 4 and 6 Natural map formulation (51) and the Armijo(A) line search

NSN-AC-A 4 and 6 Alart–Curnier formulation (63) and the Armijo(A) line search

NSN-JM-A 4 and 6 Jean–Moreau formulation (61) and the Armijo(A) line search

NSN-FB-A 4 and 6 Fischer–Burmeister formulation (79) and the Armijo(A) line
search

NSN-AC-
HYBRID

4 and 2 Alart–Curnier formulation (63) with a pre computation of the
initial guess with 100 iterations of EG-VI-UPK algorithm

u = Wr + q (114)

is split along each contact as follows:

uα = W ααrα +
∑
β �=α

W αβrβ + qα, for all α ∈ 1 . . . nc, (115)

where the matrices α and β are used to label the variable for each contact. The
matrices W αβ with α ∈ 1, . . . , nc and β ∈ 1, . . . , nc are easily identified from (114).
From (115), a projected Gauss–Seidel (PGS) method is obtained by using the fol-
lowing update rule at the kth iterate:

uα
k+1 = W ααrα

k+1 +
∑
β<α

W αβrβ

k+1 +
∑
β>α

W αβrβ

k + qα, for all α ∈ 1 . . . nc. (116)

A Projected Successive Over Relaxation (PSOR) scheme is derived by introducing
a relaxation parameter ω > 0 such that

uα
k+1 = 1

ω
W ααrα

k+1 − 1

ω
W ααrα

k +
∑
β<α

W αβrβ
k+1 +

∑
β�α

W αβrβ
k + qα, for all α ∈ 1 . . . nc.

(117)
At the kth iteration, the following problem is solved for each contact α:
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⎧⎪⎨
⎪⎩

uα
k+1 = W̄ ααrα

k+1 + q̄α
k+1,

ûα
k+1 = uα

k+1 + g(uα
k+1),

K α,� � ûα
k+1 ⊥ rα

k+1 ∈ K α,

(118)

where{
W̄ αα = 1

ω
W αα

q̄α
k+1 = − 1

ω
W ααrα

k +∑
β<α W αβrβ

k+1 +∑
β�α W αβrβ

k + qα
, for all α ∈ 1 . . . nc.

(119)
The problem (118) has exactly the same structure as Problem FC, but is of lower
size, since it is only for one contact. It is solved by a local solver, which can be any of
the algorithms presented in this chapter or even an analytical method (enumerating
all the possible cases, as in [16]).

The PSOR algorithm is summarized in Algorithm 7 and the NSGS correspond to
the case ω = 1.

Algorithm 7 PSOR algorithm for Problem FC

Require: W, q, μ

Require: r0 initial values
Require: tol > 0, tollocal tolerance values and itermax > 0, iterlocalmax > 0 the max number

of local iterations
Require: ω a relaxation parameter
Ensure: r, u solution of Problem FC
while error > tol and k < itermax do
for α = 1 . . . nc do

W̄αα
k+1← 1

ω
Wαα

q̄α
k+1← − 1

ω
Wααrαk +∑

β<α Wαβ rβk+1 +∑
β�α Wαβ rβk + qα

Solve the single contact problem FC(W̄αα, q̄α
k+1, μ) at accuracy tollocal with a maxi-

mum of iteration iterlocalmax
end for
Evaluate error.
k ← k + 1

end while
r ← rk
u ← uk

Applications in frictional contact date back to the work of [82, 83] for two-
dimensional friction. In [63], this method is developed in the Gauss–Seidel configu-
ration (ω = 1) with a local Newton solver based on the Alart–Curnier formulation.
If the local solver performs only one iteration of the VI solver based on projection,
we get a standard splitting technique for VI. In Table 3, the methods based on PSOR
used in the comparison are summarized.

6.2 Proximal Points Techniques

The first use of the proximal idea dates back to the early days of convex analysis [88].
The proximity operator of a proper, lower semi-continuous function f is defined as
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prox f (x) = min
z

f (z) + α
2 ‖z − x‖2, α > 0 (120)

and the point prox f (x) is called the proximal point. The latter is unique whenever
f is convex. Recently, there has been a surge in the use of the proximity operator
in optimization. There have been applications to non-differentiable, large-scale opti-
mization, mainly because the proximity operator enjoys nicer property: it is differen-
tiable and it may be easier to compute in some cases. There is a wealth of literature on
the use of proximal mapping in optimization [95]. The basic idea is to replace (part
of) the objective function with its proximal operator. Starting from an initial x0, a
proximal algorithm produces a sequence {xk} by the relation xk+1 = prox f (xk). The
sequence is guaranteed to converge whenever f is convex. This basic algorithm can
be enhanced by a proper choice of the parameter α: some acceleration techniques
ensure the convergence of the sequence {xk} with a different α at each iteration. In
the non-convex case, the mapping prox f is still well-behaved whenever f is said to
be prox-regular and α is small enough.

The proximal mapping can also be defined for set-valued mappings. Then, it
corresponds to a regularization of the (sub-) differential of f . More precisely, it
correspond to the resolvent of ∇ f , defined as Rα := α(α I + T )−1. Starting from
an initial guess x0, a sequence is computed as xk+1 = Rα(xk) (assuming the single-
valuedness of Rα). Much less attention has been given to this kind of algorithm, in
particular, few numerical studies have been conducted. From the theoretical point of
view, the convergence is shown in [104], when the mapping T is maximal monotone,
an extension of the convex case previously mentioned.With the same hypothesis, the
mapping Rα is single-valued for all α > 0. For concreteness, consider the variational
inequality

0 ∈ F(x) + NX (x) also written as 0 ∈ T (x). (121)

Then, the proximal point algorithm applied to this VI consists in solving, at each
step, the VI

0 ∈ F(x) + α I − αxk + NX (x) (122)

that can be compactly written as

0 ∈ Fα,xk (x) + NX (x). (123)

The parameter α can be changed for each sub-VI.
Other variants of the basic algorithm can be derived, such as adding a relaxation

parameter ω:
xk+1 = (1 − ω)xk + ωzk+1, (124)

where zk+1. The algorithm is described in Algorithm 8.
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Algorithm 8 Proximal point algorithm for the VI (37)

Require: F, X Data of VI (37)
Require: ω relaxation parameter
Require: α0 the initial value of the proximal point parameter
Require: x0 initial value
Require: tol > 0, tolin tolerance values and itermax > 0 the max number of iterations
Ensure: x solution of VI (37)

k ← 0
while error > tol and k < itermax do

Solve VI(Fαk ,xk , X) for zk+1 at accuracy tolint
xk+1 ← (1 − ω)xk + ωzk+1
Evaluate error.
Compute αk+1
k ← k + 1

end while
x ← xk+1

For solving the sub-problems VI(Fα,xk , X), any of the previous algorithms for VI
can be used. The main interest of the proximal point algorithm is that the mapping
Fα,xk is nicer than F . For instance, if F(x) = Mx + q, then the matrix in F(α, xk) is
M + α I . It is easy to see that for large enough α, M + α I is positive-definite, with
no assumption about M . With a nonlinear operator, choosing large enough α ensures
that Fα,xk is monotone (with some condition on F). In practice, this implies that a
greater number of algorithms are capable of solving the VI. This is a good indicator
of an easier problem to solve, and we observe that this approach is able to provide
some robustness to the VI-based approaches. The introduction of two additional
parameters (α and tolint) is the main drawback of this approach. Indeed, instead of
solving just one VI, this approach calls for solving multiple sub-VIs. This additional
computational effort can be reduced in twoways: the first one is to drive the proximal
parameter αk as quickly as possible to zero, in order to reduce the number of sub-VIs
to solve. The other option is to set the tolerance tolint to a higher value when αk is
large, so as to reduce the computational effort for the sub-VIs. The choice of tolint is
discussed in Sect. 6.3.

6.3 Control of the Tolerance of Internal Solvers tolint and
tollocal in the Splitting and Proximal Approaches

In Algorithms 7 and 8, an internal tolerance is used to control the required accuracy
of the internal solver. It is generally not useful to solve the internal problem at the
accuracy of the global one. For Algorithm 7, the local tolerance tollocal is set by
default to a very low value of 10−14. An adaptive local tolerance strategy has also
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been tested that sets the local tolerance to a fraction of the current error as, for
instance, tollocal = error/10. For the proximal point algorithm in Algorithm 8, the
internal tolerance tolint is set to a fraction of the error tolint = error/10.

6.4 Control of the Proximal Point Parameter αk

In Algorithm 8, the proximal point parameter αk is updated for each sub-VI. We
choose to implement two rules for its computation. The first one is inspired by the
work in [45], which is based on the current error or residual of the algorithm. The
parameter is computed thanks to the following rule:

αk = σ(error)ν, (125)

where σ > 0, ν > 0 are two additional parameters that influence the rate of driving
αk to zero. The other rule is an heuristic rule that starts from a given value of α0. If
the internal solver for the sub-VI succeeds in reaching the required accuracy, then
αk+1 is decreased and set to αk+1 = αk/10. If the internal solver does not succeed,
then we increase αk+1 as αk+1 = 5αk .

6.5 Nomenclature

Anomenclature for the algorithms based on the projection/splitting approach is given
in Table 3.

Table 3 Naming convention for the algorithms based on splitting and proximal algorithms

Name Algorithm Additional information

NSGS-AC 7 with ω = 1 Local solver: NSN-AC with tolerance tollocal

NSGS-JM 7 with ω = 1 Local solver: NSN-JM with tolerance tollocal

NSGS-AC-GP 7 with ω = 1 Local solver: NSN-AC-GP with tolerance tollocal

NSGS-JM-GP 7 with ω = 1 Local solver: NSN-JM=GP with tolerance tollocal

NSGS-FP-DS-One 7 with ω = 1 Local solver: one iteration of FP-DS

NSGS-FP-VI-UPK 7 with ω = 1 Local solver: FP-VI-UPK with tolerance tollocal

NSGS-EXACT 7 with ω = 1 Exact local solver

PSOR-AC 7 Local solver: NSN-AC with tolerance tollocal

PPA-NSN-AC 8 Internal solver: NSN-AC solver

PPA-NSGS-AC 8 Internal solver: NSGS-AC
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7 Optimization-Based Methods

In this section, the Delassus matrix is assumed to be symmetric in order to be able
to state simple convex optimization problems.

7.1 Alternating Optimization Problem

The Panagiotopoulos approach described in Sect. 3.4 generates a family of solvers
by choosing two specific solvers for the normal contact problem (88) and the tangen-
tial contact problem (89), respectively. This method may be viewed as a two-block
Gauss–Seidelmethod (as pointed out by [116]).More precisely, the following choices
may be made for the normal and tangent problems.

The normal contact problem

⎧⎨
⎩min

1

2
r�
N WNNrN + r�

N q̃N

s.t. rN � 0
with q̃N = qN + WNTrT,k (126)

is a convex quadratic program with simple bound constraints. In the literature, a
large number of solvers has been developed to solve such problems. Among others,
we might cite the active set strategy solvers [40, 92], which are mainly dedicated
to small–scale systems, the projected gradient [19] and projected conjugate gradient
methods [86, 87], which are more dedicated to large–scale systems. Note that there
also exists a wealth of methods in the literature that improves the methods of [86] for
large–scale systems. For the reader interested in those details, we refer to the book by
[33](see especially Sect. 8.7 for a review of the different approaches). It is clear that
we might also use semi-smooth Newton methods or interior point methods, but our
experience has shown that such methods are not efficient when ker(WNN) �= {0}. The
optimality conditions of this quadratic problem reduced to a linear complementarity
problem with a semi-definite matrix. In that case, it is also possible to solve the
problem with PSOR techniques with line-searches. Due to space constraints, we
decided in this work to use the projected Gauss–Seidel (PGS) algorithm and the
projected gradient algorithm of [19] to solve the normal problem described. The
projected gradient algorithm solved the following QP for a convex set C :

⎧⎨
⎩min q(r) := 1

2
r�Wr + r�b

s.t. r ∈ C,
(127)

with the algorithm described in Algorithm 9.
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Algorithm 9 Projected gradient algorithm for QP (127)

Require: W, b that defines q(r)

Require: C a convex set
Require: r0 initial values
Require: tol > 0 a tolerance value and itermax > 0 the maximum number of iterations
Require: ρ0 > 0, l, σ ∈ (0, 1)
Require: ilsmax maximum number of line-search iterations
Ensure: r solution of Problem (127)

rk ← r0 ; θ0 ← q(r0) ; k ← 0
while error > tol and k < itermax do

Armijo like–search procedure
ils ← 0
while criterion > 0 and ils < ilsmax do

ρ ← ρ0lils
r ← PC(rk − ρ(Mrk + b))

θ ← q(r)
criterion ← θ − θk − σ(Mrk + b)�(r − rk)
ils ← ils + 1

end while
rk ← r ; θk ← q(r);
evaluate error.

end while

The tangential problem

⎧⎨
⎩min

1

2
r�
T WTTrT + r�

T q̃T

s.t. rT ∈ D(μr̃N)
with q̃T = qT + WTNrN,k+1, (128)

is also a convex program but with a more complex structure, since the constraints are
quadratic. There exists a dedicated algorithm, as in [34], for QP with convex con-
straints. Earlier application of projected gradient and projected gradient techniques
for the frictionless problem can also be found in [14], including a comparison with
PSOR techniques.

In this section, we will use either (a) a reformulation of the optimality conditions
of this problem as a variational inequality, applying the fixed point algorithm and
the extra gradient algorithm of Sect. 4, or (b) an adaptation of one of the splitting
techniques detailed in Sect. 6. The algorithm is described inAlgorithm 10. In Table 4,
we detailed the algorithms used in the present study.
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Algorithm 10 Panagiotopoulos decomposition algorithm for Problem FC

Require: W, q, μ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

rk ← r0 ; k ← 0
while error > tol and k < itermax do

q̃N ← qN + WNTrT,k
solve (126) for rN,k+1 at accuracy tolint
q̃T ← qT + WTNrN,k+1
solve (128) for rT,k+1 at accuracy tolint
k ← k + 1
evaluate error.

end while
r ← rk
u ← Wr + q

7.2 Successive Approximation Method

Themethod of successive approximation is a natural tool for the numerical realization
of Problem FC. It is based on the Tresca approximation of the Coulomb cone, as
described in Sect. 3.4, and the work of the celebrated Czech school [48, 49, 51,
91]. Each iterative step is represented by an auxiliary contact problem with a given
friction threshold described by a quadratic program over a cylinder (93), which we
recall there: ⎧⎪⎪⎨

⎪⎪⎩
θ = h(rN)

min
1

2
r�Wr + r�q

s.t. r ∈ C(μ, θ).

(129)

The radius of the cylinder is then updated in an iterative procedure. The algorithm
is described in Algorithm 11.

Algorithm 11 Tresca approximation algorithm for Problem FC

Require: W, q, μ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

rk ← r0 ; k ← 0
while error > tol and k < itermax do

θ ← h(rN,k)

solve (129) for rN,k+1, rT,k+1 at accuracy tolint
k ← k + 1
evaluate error.

end while
r ← rk
u ← Wr + q
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In the literature, the successive approximation technique has been used in the
bidimensional case in [37, 52] with improved and dedicated QP solvers over box-
constraints. Two strategies are implemented: (a) the classical Tresca iteration (called
FPMI) and (b) the Panagiotopoulos decomposition plus a Fixed point (called FPMII).
They use a specific QP solver for box constraint [32], which is an improvement of
the Moré–Toraldo method [86]. This technique has been directly extended in the
three-dimensional case with a faceting of the cone in [53]. In the latter case, the
problem is still a box-constrained QP, since it contains only polyhedral constraints.
In [54], the authors propose a successive approximation technique in 3D with the
special solver of [74, 75], which is itself an extension to disk constraints of the
Polyak method (conjugate gradient with an active set on the bounds constraint) and
its improvements [32, 36]. Other improvements of the method may be found in [35]
with a last improvement of the method in [34]. All this work is summarized and
detail in [33].

7.3 ACLM Approach

In the convex SOCCP approach described in Sect. 3.4, we have to solve, for a given
value, the following problem:{

min
1

2
r�Wr + r�(q + s)

s.t. r ∈ K
(130)

which is again a convex quadratic program over a second–order cone. The approach
listed above could again be used to solve this problem. In this work, we solve it by
three different ways: (a) an adaptation of one of the splitting techniques detailed in
Sect. 6, (b) using the projected gradient algorithm dedicated to convex QP described
in Algorithm 9 or (c) the fixed point algorithm and the extra gradient algorithm of
Sect. 4 . The algorithm is described in Algorithm 12 and we detailed the algorithms
we use in the present study in Table 4.

Algorithm 12 ACLM approximation algorithm for Problem FC

Require: W, q, μ

Require: r0 initial values
Require: tol > 0, tolint tolerance values and itermax > 0 the max number of iterations
Ensure: r, u solution of Problem FC

u0 ← Wr0 + q ; k ← 0
while error > tol and k < itermax do

s ← g(uk)

solve (130) for rk+1 at accuracy tolint
uk+1 ← Wrk+1 + q
k ← k + 1
evaluate error.

end while
r ← rk
u ← uk
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Table 4 Naming convention for optimization based algorithms

Name Algorithm Additional information

PANA-PGS-FP-VI-UPK 10 The normal problem is solved with a PGS
algorithm and the tangent problem is solved
with the FP-VI-UPK algorithm

PANA-PGS-EG-VI-UPK 10 The normal problem is solved with a PGS
algorithm and the tangent problem is solved
with the EG-VI-UPK algorithm

PANA-PGS-CONVEXQP-PG 10 and 9 The normal problem is solved with a PGS
algorithm and the tangent problem is solved
with Algorithm 9

PANA-CONVEXQP-PG 10 and 9 Both normal and tangent problems are solved
with Algorithm 9

TRESCA-NSGS-FP-VI-UPK 11 The problem (129) is solved with the
FP-VI-UPK algorithm

TRESCA-FP-VI-UPK 11 and 1 The problem (129) is solved with the
FP-VI-UPK algorithm

TRESCA-EG-VI-UPK 11 and 2 The problem (129) is solved with the
EG-VI-UPK algorithm

TRESCA-CONVEXQP-PG 11 and 9 The problem (129) is solved with
Algorithm 9

ACLM-NSGS-FP-VI-UPK 12 The problem (130) is solved with the
NSGS-FP-VI-UPK algorithm

ACLM-FP-VI-UPK 12 and 1 The problem (130) is solved with the
FP-VI-UPK algorithm

ACLM-EG-VI-UPK and 2 12 The problem (130) is solved with the
EG-VI-UPK algorithm

ACLM-CONVEXQP-PG 12 The problem (130) is solved with the
Algorithm 9

A nomenclature for the algorithms based on the optimisation approach is given
in Table 4.

7.4 Convex Relaxation and the SOCCP Approach

Finally, we propose comparing the optimization-based algorithm to a complete con-
vex relaxation of the problem by solving the convex SOCCP (130) with s = 0. This
procedure is very similar to the approach in [12, 112, 113], in which only the convex
problem is solved.
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7.5 Control of the Tolerance of Internal Solvers tolint in the
Optimization Approach

In Algorithms 10, 11 and 12, an internal tolerance is used to control the accuracy
of the internal solver. It is generally not useful to solve the internal problem at the
accuracy of the global one. In the comparison study, we set the internal tolerance
tolint to error/10.

8 Comparison Framework

In this section, we present our comparison framework. In particular, we specify how
the performance is measured and how the performance profiles are built.

8.1 Measuring Errors

A key parameter in the measurement of performance of the solver is the definition
of the error. The absolute error is given by the norm of the natural map. A relative
error is computed with respect to the norm of the vector q. More precisely, the error
is given by

error = ‖Fnat
vi (r)‖
‖q‖ , (131)

assuming that ‖q‖ is larger than the machine accuracy. If not, we may assume that
q = 0, and a trivial solution can be computed. For all solvers, the error in (131) is
compared to the required tolerance tol given by the user.

For some iterative solvers such as VI-FP, VI-EG, NSGS and PSOR, the com-
putation of the error (131) at each iteration penalizes the performance of the solver:
it amounts to computing a matrix-vector product, an operation that is more compu-
tationally expensive than one iteration of the solver. Hence, a cheaper error mea-
surement is used inside the main loop in Algorithms 1, 2 and 7. This cheaper error
measurement is given by

errorcheap = ‖rk+1 − rk‖
‖rk‖ . (132)

The tolerance of the solver is then self-adapted in the loop to meet the required
tolerance based on the error given by (131).
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8.2 Performance Profiles

The concept of performance profiles was introduced in [31] for bench-marking opti-
mization solvers over a large set of problems. For a set P of n p problems, and a set
S of ns solvers, we define a performance criterion for a solver s, a problem p and a
required precision tol by

tp,s = computing time required for s to solve p at precision tol. (133)

A performance ratio over all the solvers is defined by

rp,s = tp,s

min {tp,s, s ∈ S} � 1 . (134)

For τ � 1, we define a distribution function ρs for the performance ratio for a solver
s as

ρs(τ ) = 1

n p
card{p ∈ P, rp,s � τ } � 1. (135)

This distribution computes the number of problems p that are solved with a perfor-
mance ratio belowagiven threshold τ . In otherwords,ρs(τ ) represents the probability
that the solver s has a performance ratio no larger than a factor τ of the best solver.
It is worth noting that ρs(1) represents the probability that the solver s beats the
other solvers, and ρs(τ ) characterizes the robustness of the method for large values
of τ . To summarize: the higher ρs is, the better the method is. In the sequel, the term
performance profile denotes a graph of the functions ρs(τ ), τ � 1.

The computational time is used to measure performance in (133). Other criteria
can be used, like the number of floating point operations (flops). It is a better measure
of performance, since it is independent of the computer. Unfortunately, it is usually
difficult to measure in an automatic and robust way over various platforms. Whence,
we stick with the computational time.

In our experiments, we decided to fix the required accuracy with the tolerance of
each solver. Another performance criteria could also be used: for instance, a timeout
could be defined and the metric would be the error at that time. This is a way to
measure the ability of a solver to give an approximate solution within a prescribed
time limit that may be interesting for real-time applications. Another way to measure
performance may also be to divide the computational time by the number of contacts
in order to judge the ability of the solver to be scalable. For the sake of conciseness,
this has not been done in this chapter.

8.3 Benchmarks Presentation

To perform the comparison of the solvers on a fair basis, we use a large set of
problems that comes from various applications. This collection is FCLib (Frictional
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Contact library), which is an open collection of problems in a hdf5 format described
in [4].3 In this work, we used the version v1.0 for the comparisons that contains
2368 problems.4

The test sets are illustrated in Fig. 3 and details on each test are given in Table 5.
All the problems have been generated thanks to the software codes LMGC905 and
Siconos. In Table 5, the number of degrees-of-freedom n corresponds to the degrees-
of-freedom of the system before its condensation (or reduction) to local variables. In
otherwords, the number of rows of thematrix M and H in (1). The contact density c is
the ratio of the number of contact unknowns over the number of degrees-of-freedom:

c = 3nc

n
= m

n
. (136)

The coefficient c also corresponds also to the ratio between the number of rows of
H over its number of columns. If this number is larger than 1, the matrix H can not
be full row rank, and thus the matrix W is also rank deficient. Whenever m > n,
we can observe, in Table 5, that this number c is a good approximation of the rank
ratio of the matrix W in our applications. The estimation of the rank of matrix W
shows that it is very close to the number of degrees-of-freedom of the system when
c > 1. For c ≫ 1, the contact density is really high and the system suffers from
hyperstaticity as we discussed in Sect. 2.3. In Table 5, we also give an estimation
of the conditioning of the matrix W . When it was possible from a computational
point of view, we performed a singular value decomposition (SVD) of the matrix
W to estimate the spectral radius, and then the conditioning, by cutting the small
eigenvalues. This process has two drawbacks. Firstly, the computation of the SVD
decomposition can be really expensive for large dense matrices. Secondly, the value
of the condition number of the matrix is very sensitive to the threshold for cutting off
the small eigenvalues. This is the reason why we also use the LSMR [41] algorithm
to give a better approximation of the condition number of the rank deficient matrix.

The four first tests in Table 5, Cubes_H8_2, Cubes_H8_5, Cubes_H8_20 and
LowWall_FEM, are examples that involve flexible elastic bodies meshed by finite
elementmethods. Due to a consistent choice of the space-discretization of the contact
surfaces, the Delassus matrix W in that case is full rank. In the sequel, we will call
these sets of examples the flexible test sets.

8.4 Software and Implementation Details

All the solvers that are used in this chapter are implemented in standard C99 in
the component of the open source software Siconos called numerics. The aim of
Siconos is to provide a common platform for the modeling, simulation, analysis and

3More information can be found at https://frictionalcontactlibrary.github.io.
4Thewhole collectionof problemscanbe foundat https://github.com/FrictionalContactLibrary/fclib-
library.
5https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home.

https://frictionalcontactlibrary.github.io
https://github.com/FrictionalContactLibrary/fclib-library
https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
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(a) Cubes_H8 (b) LowWall_FEM

(c) Aqueduct_PR (d) Bridge_PR

(e) 100_PR_Periobox (f) 945_SP_Box_PL

(g) Capsules (h) Chain (i) KaplasTower (j) BoxesStack

(k) Chute_1000,Chute_4000,Chute_local_problems

Fig. 3 Illustrations of the FClib test problems
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control of general nonsmooth dynamical systems.6 The linear algebra operations are
based on BLAS/LAPACK. The algorithms VI-FP, VI-EG, NSGS and PSOR use
the sparse block structure of the Delassus matrix W . The NSN solvers relies on a
standard sparse implementation given by csparse.7 We solve linear systems with the
LU factorization method embedded in csparse. The simulations are performed on
the University of Grenoble-Alpes cluster ciment.8

8.5 Simulation Campaign

The simulation campaign is described in Table 6. For some test sets, two simulation
runs have been performed with different precisions and prescribed time limits. A
trade-off between the time limit and the precision has been chosen such that all the
problems of the test sets are solved by at least one solver. In Sects. 9 and 10, we
report the results for the simulation campaign, which includes more that 27000 runs.
Given this wealth of data, we have chosen not to report profiles in which a family of
solvers failed to solve the instances in this chapter.9

9 Comparison of Methods by Family

In this section, we perform a comparison of the solvers by family. The goal is to study
the influence of the various parameters and possible strategies on the performance
of the solvers.

9.1 Numerical Methods for VI: FP-DS, FP-VI-� and
FP-EG-�

In Fig. 4, we compare the different VI numerical solvers described in Sect. 4. With
the exception of the FP-DS solver, the solvers FP-VI-� and FP-EG-� are very
robust. Nevertheless, they are quite slow to converge in practice for large problems
and/or with tight tolerances. Only the test sets for which the solvers have reached
the precision before the prescribed time limit are presented. For that reason, the
results for the test sets LowWall_FEM, LowWall_FEM II, Cubes_H8, Bridge_PR,

6More information on the software is available at http://siconos.gforge.inria.fr and the software can
be downloaded at https://github.com/siconos/siconos.
7http://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html.
8https://ciment-grid.ujf-grenoble.fr/.
9Nevertheless, the reader can have access to the complete list of performance profiles at
https://github.com/siconos/faf/blob/master/TeX/Full-test/full-test_current.pdf.

http://siconos.gforge.inria.fr
https://github.com/siconos/siconos
http://people.sc.fsu.edu/~jburkardt/c_src/csparse/csparse.html
https://ciment-grid.ujf-grenoble.fr/
https://github.com/siconos/faf/blob/master/TeX/Full-test/full-test_current.pdf
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Fig. 4 Comparison of numerical methods FP-DS, FP-VI-� and FP-EG-�

AqueducPR, 945_SP_Box_PL, BoxesStack, Chute_4000 and Chute_1000 are not
depicted. The main conclusions are as follows:

1. The solver FP-DS suffers from robustness problems and a lot of divergence has
been observed. This is mainly due to the fact that we set a priori the ρ parameter
in Algorithm 1 to a fixed value equal to 1, independently of the problem.

2. The solvers FP-VI-� and FP-EG-� are really robust but slow. They are able
to solve all the problems, but they require a lot of time. We did not observe
divergence issues on all the test sets for these solvers. Compared with FP-DS,
the self-adaptive rule for sizing the parameter ρk is of utmost importance for the
robustness and the convergence rate.
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3. Except for the test set KaplasTower II, the FP-EG-� performs better than FP-VI-
�. Otherwise, the performances are quite similar, since we plot the performance
for a quite narrow range of values of τ ∈ [1, 5]

4. The difference between the adaptive strategies for sizing ρk , UPK and UPTS, is
negligible in all the test sets. Therefore, the choice of the update rule is not really
important.

9.2 Splitting-Based Algorithms: NSGS-� and PSOR-�

In this section, we compare the family of solvers based on splitting and relaxation
techniques described in Sect. 6.1. Firstly, we start by comparing the choice of the
local solvers in NSGS-�, and then the effect of the local tolerance tollocal. Secondly,
we study the influence of the order of the contact list. Finally, we study the effect of
the relaxation parameter ω in PSOR-� solvers.

Influence of the Local Solver in NSGS-� Algorithms

In Fig. 5, we report the performance profiles of the NSGS-� for the different local
solvers. The main conclusions are:

1. When the prescribed time limit is sufficiently large and the tolerance is low
(10−4), we observe that the NSGS-� solvers are robust. Indeed, we are able to
find a local solver for each test set that is able to give a solution at the required
accuracy. Nevertheless, there is no universal efficient local solver that outper-
forms the other ones.

2. When the tolerance is equal to 10−8, the NSGS-� solvers have some difficulty
in reaching convergence for all the problems within the prescribed time limit.
This is the case for the test sets LowWall_FEM, Cubes_H8, Bridge_PR, Chain,
Capsules andBoxesStack. Generally, the convergence is so slow that it is difficult
to reach tight tolerance within a reasonable time limit.

3. With the exception of the test sets KaplasTower II and BoxesStack, the solver
NSGS-EXACT behaves poorly. This is mainly due to the fact that the local
solver is not robust enough to find a solution when the unknowns are far from
the global solution for all the other contacts. This behavior was already reported
in [25], in which another solver based on a nonsmooth Newton technique is used
when the exact solution is not satisfactory.

4. The NSGS-FP-DS-One solver is most efficient on the test sets Bridge_PR II,
KaplasTower II, Chain and BoxesStack. In these tests sets, a portion of the prob-
lems seems easier to solve and the NSGS-FP-DS-One solver seems sufficient
to get a global convergence. Nevertheless, this local solver seems slow or suffers
from robustness issues for other test sets.

5. On the flexible test sets, Cubes_H8_�, LowWall_FEM and the rigid test sets
945_SP_Box_PL and Chute_4000, the best solver is NSGS-FP-VI-UPK for
a relatively low required tolerance (tollocal = 10−06). For these test sets, an
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approximate solution of the single contact problems seems sufficient to ensure
an efficient convergence towards the solution without entailing robustness.

6. On the test sets 100_PR_PerioBox, KaplasTower, Chain, and Capsules, the
solvers NSGS-NSN-� are the best solvers and behave very well on Bridge_PR
II. It seems that when a tight accuracy is required, the solvers NSGS-NSN-�
are useful and help, with a tight local tolerance, to speed-up the convergence.

7. For the Chute_1000, Chute_4000 test sets, we observe large differences between
the local formulations of the nonsmooth equations for the Newton solvers
(NSGS-NSN-AC and NSGS-NSN-JM). The solver NSGS-NSN-JM is the
best solver, genuinely better than NSGS-NSN-AC, although their theoretical
formulations are very close. These two test sets are characterized by difficult
local problems in which the Delassus matrix W is unsymmetric with large extra-
diagonal terms.

8. For almost all the tests, the line–search procedures slow down the solverswithout
increasing the robustness. The only test sets in which it has a positive outcome
is Chute_4000, for which the NSGS-AC solver fails to get a solution and the
line–search seems to stabilize the algorithm.

Influence of the Tolerance of the Local Solver tollocal in NSGS-FP-VI-UPK Algo-
rithms

In this paragraph, the tolerance of the local solver tollocal is varied and its effect
on the global convergence of the solver is reported. In Fig. 6, we report the perfor-
mance profiles of NSGS-FP-VI-UPK algorithms for the tollocal within the range
[10−04, 10−16]. We also report the efficiency of the adaptive strategy for sizing the
value of the local tolerance (see Sect. 6.3). The main observations are:

1. For the test sets that are quickly solved (see Table 6), such as Capsules, a tight
tolerance on the local solver 10−16 improves the efficiency of the NSGS-FP-VI-
UPK solver. Similar results are obtained for BoxesStack, Chain, KaplasTower
and KaplasTower II; they are not depicted.

2. For the other problems that are harder to solve, that is, when we expect more
iterations of the NSGS-FP-VI-UPK solver, the adaptive rule, or a tight local
tolerance, is better.

From these results, it is quite difficult to guess in advance the internal dynamics of
the solver. By internal dynamics, we mean the propagation in the algorithm of the
error and the values of the unknowns, between the local problem solvers and the
global loop over contacts. Note that the range of τ that we used in the graph is quite
small, so the difference in performance between the solvers is not crucial.

Influence of the Tolerance of the Local Solver tollocal in NSGS-AC-GP Algorithms

In Fig. 7, we report the performance profiles of NSGS-AC-GP algorithms for the
tollocal in the range [10−04, 10−16]. We also test the adaptive strategy for the local
tolerance. Except for the test set Chute_local_problems, the main observation is that
the local tolerance does not noticeably change the convergence of the solver. For
the test set Chute_local_problems, there is no internal dynamics of the main loop of
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the NSGS, since there is only one contact. It is therefore reasonable to see that the
adaptive strategy performs better than the other.

Influence of the Choice of the Parameters ρN, ρT in the Local Solver of theNSGS-AC
Algorithms

In Fig. 8, we evaluate the influence of the choice of the parameters ρN, ρT on the
convergence of the solver. The main conclusions are:

1. For the test sets 945_SP_Box_PL, 100_PR_PerioBox, KaplasTower II, Kaplas-
Tower, Chute_local_problems, Chute_4000, Chute_1000, and Capsules, a fixed
value of ρN = ρT = 1 has a dramatic effect on the convergence of the algorithm.
The scaling of ρ is of utmost importance for the efficiency and robustness of
the solver. Note that the rule (112) that takes into account the condition number
of the local Delassus matrix W deteriorates the performance for Chute_4000,
Chute_1000. In these problems, the local matrix is unsymmetric with large extra-
diagonal terms due to large gyroscopic effects.

2. For the other tests, such as LowWall_FEM II, the choice of ρN, ρT does not
really change the results, mainly due the fact that the order of magnitude of
the chosen ρ with the rules (110), (111) or (112) is in [10−01, 1]. Cubes_H8
II, Cubes_H8, Bridge_PR II, Bridge_PR, 100_PR_PerioBox, Chain, BoxesStack
and AqueducPR are not displayed, since the results are similar.
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Fig. 8 Influence of the choice of the parameters ρN, ρT in the local solver of the NSGS-AC
algorithms

One of the conclusions of this study is as follows: the rules (110), (111) improve some
simulations a lot without increasing the computational cost for the others. Therefore,
it is strongly advised that they be used. Some further theoretical studies are needed to
understand the effect of ρ on the convergence. In particular, the rule (112) is usually
better, but sometimes completely destroys the convergence.

Influence of the Order of Contacts in NSGS Algorithms

In this section, we study the influence of the contact order within the loop of the
NSGS-AC-GP solver. We reproduce in Fig. 9 the result of the solvers with the
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Fig. 9 Influence of the contacts order in NSGS algorithms

original contact list of the problem (NSGS-AC-GP) and with two other ways of
iterating over the contacts. The solver NSGS-AC-GP Shuffled corresponds to a
single randomization of the list of contacts at the beginning of the algorithm. In
the solver NSGS-AC-GP Fully shuffled, the list is shuffled at each iteration. The
following observations can be made:

1. The solver NSGS-AC-GP Fully shuffled performs significantly better on the
flexible test sets (Cubes_H8_�, LowWall_FEM).

2. For the rigid test sets, we reproduce here only the test set 100_PR_PerioBox,
because the other test sets behave similarly. The NSGS-AC-GP Fully shuffled
has a really bad influence on the convergence of the solver. It seems that itmodifies
the internal dynamics of the solver in such a way that the rate of convergence is
significantly decreased.

Comparison of the PSOR Algorithm with Respect to the Relaxation Parameter ω

In Fig. 10, the relaxation parameterω is varied ranging in [0.5, 1.8]. Two conclusions
can be drawn:

1. For the flexible tests Cubes_H8_� and LowWall_FEM, the efficiency of the solver
improved significantly as we decreased the value of ω. Moreover, this is done
without destroying the robustness of the solver.

2. For the rigid tests, the effect of the relaxation is not so clear. For values of ω

greater than 1.0, the efficiency is improved but the robustness deteriorates. We
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Fig. 10 Effect of relation coefficient ω in PSOR-AC-GP algorithm

observe the contrary for the ω less than 1.0. Note, in particular, that, for the test
sets Chute_1000 and Chute_4000, the convergence is completely destroyed for
ω = 1.8.

To conclude, it is difficult to advise use of the PSOR algorithm with ω �= 1. It
drastically accelerates the rate of convergence of the algorithm for some problems,
but deteriorates the convergence for others. Further studieswould be needed to design
self–adaptive schemes for sizing ω.
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9.3 Comparison of NSN-� Algorithms

In this section, the nonsmooth Newton methods are compared. The performance
profiles are depicted in Fig. 11 for the test sets for which the NSN-� are able to solve
at least 10% of the problems. The main conclusions are as follows:

1. For the flexible tests Cubes_H8_� and LowWall_FEM,most of the Newtonmeth-
ods succeed in solving the problems within the prescribed time limit. The solver
NSN-AC-HYBRID appears to be the best solver. The effect of computing an ini-
tial guess with a robustmethod such asEG-VI-UPK improves the convergence. In
practice, we observe that the computation allows one to roughly determine the set
of closed and sliding contacts and it helps a lot with the convergence of the New-
ton solvers. The solvers without a line–search procedure also perform better than
those with a line–search procedure, which seems to slow down the convergence
without improving the robustness. For the different formulations, the NSN-AC
and NSN-JM give equivalent results and are better than the NSN-NM solver,
which is, in turn, better than the NSN-FB solver. Note that the Goldstein–Price
line search is usually better than the Armijo, despite the fact that the merit func-
tion is not necessarily smooth. Finally, we note that NSN-FB and NSN-FB-A
are really the slowest solvers within these flexible examples.

2. For the rigid test setswith a high value of the rank ratio or the contact density c (see
Table 5), the Newton methods fail to converge, and a lot of divergence issues have
been noted in practice. This is the case for the test sets Bridge_PR II, Bridge_PR,
AqueducPR, 945_SP_Box_PL, and 100_PR_PerioBox, which are not depicted
in Fig. 11.

3. For the rigid test sets with a low value of the rank ratio or contact density c less
than 1, such as Chute_1000 and Chain, we observe that the Newton methods are
able to solve some problems. We note also that in the Chain test set, the use of
a fixed value of ρ significantly penalizes the convergence of the solver. Contrary
to flexible test sets, the use of a line–search procedure helps in obtaining a better
robustness of the solver. This is particularly true for NSN-NM-GP.

4. Finally, for the test sets KaplasTower and Capsules, the NSN-FB-GP is able to
solve more than 80% of the tests in a very efficient way. Some further studies
would be needed to understand why this specific solver performs so much better
than the others.

As a general conclusion, the success of the NSN-� algorithms is conditioned by the
rank of the Delassus matrix W , and then by the contact density value c. For full
rank matrix W , the solvers are robust and efficient. For values of c no larger than
1, the methods are able to find a solution with tight accuracy. For larger values of c
and larger rank ratio, the nonsmooth Newton methods are not robust and generally
diverge.
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9.4 Comparison of the Proximal Point Algorithm
PPA-NSN-� and PPA-NSGS-� Algorithms

In Fig. 12, we compare the proximal point approach with various internal solvers
based on nonsmooth Newton methods NSN-�. The main observations are:

1. For the flexible test sets (see, for an illustration, the test set LowWall_FEM II), for
which the nonsmoothNewton solverswork prettywell, the use of a proximal point
algorithm has no interest, since it slows down the convergence of the algorithm by
performing a first iteration with a given, and possibly large, value of the parameter
α.

2. For the test sets KaplasTower, Chute_1000, Chain, Capsules and BoxesStack,
the proximal point approach greatly improves the efficiency of the NSN-AC-GP
solver andoften also improves its reliability (see, for comparison, Fig. 11).Clearly,
the regularization introduced in the proximal point algorithm increases the rank
of the matrix W and has a strong effect on the convergence of the nonsmooth
Newton methods.

3. The efficiency of the proximal point algorithm strongly depends on the internal
solver.

4. The strategy for updating the regularization parameter α also plays an important
role. Quite surprisingly, for the Bridge_PR test set, the adaptive rule that does not
take into account the current error is very efficient and allows us to get a robust
and efficient solver with respect to the others. Unfortunately, there is no updating
rule for the parameter α that works for all test sets.

In Fig. 13, we compare the NSGS-AC solver when it is used directly or inside the
proximal point algorithm. On most of the test sets, such as KaplasTower, a direct
application of the NSGS-AC solver is already efficient, and its embedding into a
proximal point algorithm does not bring any improvements. Nevertheless, we can
see, in Fig. 13, that the proximal point algorithm improves the robustness and the
efficiency for the test sets 945_SP_Box_PL and Capsules.

9.5 Comparison of Optimization-Based Algorithms PANA-�,
TRESCA-� and ACLM-�

In Fig. 14, we compare the algorithms based on the optimization approach presented
in Sect. 7. The pure convex relaxationSOCLCP-NSGS-PLImethod has been added
so that we might be able to understand the effect of the nonconvexity of the problems
on the efficiency and robustness of the solvers. The main conclusions are:

1. The pure convex relaxation in SOCLCP-NSGS-PLI drastically simplifies the
problems in the test sets LowWall_FEM II, AqueducPR, KaplasTower, and
BoxesStack and is slightly better in the Bridge_PR II, 100_PR_PerioBox, and
KaplasTower II test sets. In particular, we note that if we want to reach better
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Fig. 12 Comparison of internal solvers in PPA-NSN-� algorithms

accuracy, as in the KaplasTower test set, the convex relaxation helps much, but
this conclusion cannot be made for the Bridge_PR test set. Let us also note that
the convex relaxation does not help a lot in the test sets Cubes_H8, Bridge_PR,
Chute_1000, Chute_4000 and Capsules. One of the conclusions we can draw
may be that the nonconvexity of the problem is not the only difficulty in such
problems. Using a convex relaxation is not sufficient to solve all the problems.
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Fig. 13 Comparison of internal solvers in PPA-NSGS-� algorithms

2. The solvers based on the optimization approach are generally robust but slow.
There are two primary reasons for this. Firstly, we use iterative first order solvers
as an internal solver with a slow convergence rate. The fact that the Delassus
matrix does not have full rank in the rigid tests prevents the use of second-order
methods as nonsmooth Newton methods. For the flexible test, it could be of inter-
est to implement new dedicated solvers of the internal convex problems based on
nonsmooth Newtonmethods. Furthermore, the tests with off-the-shelf implemen-
tations of optimization methods were not really conclusive. The general convex
solvers are not capable of exploiting the particular structure of the constraints
given by a Cartesian product of a large number of second-order cones in IR3.
Secondly, the fixed point iteration that drives the convergence is generally slow.
Once again, it would be valuable to implement a second-order method to drive
the external loop.



On Solving Contact Problems with Coulomb Friction … 439

2 4 6 8 10 12 14 16 18
(a) LowWall_FEMII

2 4 6 8 10 12 14 16 18
(b) Cubes_H8II

2 4 6 8 10 12 14 16 18
(c) Cubes_H8

5 10 15 20 25
(d) Bridge_PRII

5 10 15 20 25
 (e) Bridge_PR

5 10 15 20 25
(f) AqueducPR

5 10 15 20 25
(g) 945_SP_Box_PL

5 10 15 20 25
(h) 100_PR_PerioBox

0

0.2

0.4

0.6

0.8

1
ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

0

0.2

0.4

0.6

0.8

1

ρ
(τ
)

Fig. 14 Comparison of the optimization based solvers
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Fig. 14 (continued)
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3. On the choice of a specific optimization-based strategy with respect to the
others, we can observe that the comparison is really problem–dependent. For
the test sets Cubes_H8, Bridge_PR, Bridge_PR II, LowWall_FEM and Aque-
ducPR, the ACLM-� solvers are the best. For the test problems KaplasTower,
945_SP_Box_PL, Chute_4000, Chute_1000 and BoxesStack, the TRESCA-�
solvers are better. Finally, thePANA-� solvers are better on the 100_PR_PerioBox
test set. Since the convex relaxation of the internal problem is effected in different
manners, it is expected that the different families of solvers will behave differ-
ently. In particular, if the coefficient of friction is large or if the number of sliding
contacts is low, we expect the ACLM-� solvers to behave better, because the s
variable in the fixed point iteration will not drastically influence the convergence.
On the contrary, when the coefficient of friction is low, we may expect the split-
ting introduced in the PANA-� to be better. An analysis of the contact status
(closed, sliding, sticking) in the problems would be a next step in understanding
the performance of each family.

10 Comparison of Different Families of Solvers

In this last section, we compare the most efficient solvers for each family. The per-
formance profiles are reported in Fig. 15. The main conclusions are as follows:

1. First of all, we can observe that, for all the test sets, at least one solver is capable
of solving all the problems within the prescribed time. Unfortunately, there is no
universal solver that outperforms all the other solvers for all the test sets.

2. For the flexible test sets, the nonsmooth Newton solvers NSN-� are the best
solvers. In the test set LowWall_FEM II, the NSN-� are followed NSGS-FP-VI-
UPK and NSGS-AC solvers. On this test set, the required accuracy is limited to
10−04, and the NSGS-� are still able to reach the tolerance in a competitive time.
Between the test sets Cubes_H8 II and Cubes_H8, and between LowWall_FEM
II and LowWall_FEM, the required accuracy is decreased to 10−08. With a tighter
tolerance, we observe that the relative efficiency of the NSN-� solvers increases.
This was already noted in [6]. In other words, on the flexible tests, we are able
to use nonsmooth Newton methods efficiently, since the Delassus matrix W has
full rank. In that case, the quadratic convergence rate helps in reaching tighter
tolerances. Note that in the flexible test sets, the proximal point algorithms PPA-
NSN-� are not really interesting, but as the required accuracy decreased, they
began to compete with the NSGS-� algorithms.

3. For most of the rigid test sets with a low required accuracy of 10−04, such as
AqueducPR, 945_SP_Box_PL, 100_PR_PerioBox, KaplasTower, Chute_4000
and Chute_1000, the NSGS-� are the most efficient and robust solvers. In the
case of the test sets Chute_4000 andChute_1000, theNSGS-FP-VI-UPK solvers
are better than theNSGS-AC-�, due to some robustness issues in the local solvers
based on nonsmooth Newton methods. These solvers are generally followed by
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Fig. 15 Comparison of the solvers between families
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optimization-based solvers such as ACLM-� and TRESCA-�, except for the test
set 945_SP_Box_PL, for which the more robust solver is TRESCA-NSGS-FP-
VI-UPK.

4. For the rigid test setswith a required accuracy of 10−08, such asBridge_PR,Chain,
Capsules and BoxesStack, the solvers PPA-� are the most efficient and robust
solvers. The regularization of the Delassus matrix introduced by the proximal
point algorithm has a very positive effect. In particular, it enables the use of
nonsmooth Newton techniques that help in reaching a tighter accuracy thanks to
their quadratic convergence rates. The PPA-� algorithms are generally followed
by NSGS-�, except in the case of the Chain test set, for which the NSN-� are
able to solve 60% of the problems quite efficiently. In the case of the Bridge_PR
test set, the proximal point technique PPA-NSN-AC-GP α0 = 10+03 is the only
one capable of solving all the problems at the tolerance of 10−08. As discussed in
Sect. 9.4, the rule for updating the proximal point parameter α plays an important
role and deserves further study.

5. In the case of the Chute_local_problems test set, we observe that the optimization-
based solvers are the best and allow one to circumvent the issues of robustness of
NSGS-AC-� solvers, which are reduced, in that case, to the NSN-� solvers. We
recall that these local problems are extracted from Chute_4000 and selected as
the most difficult local problems. These problems are characterized by strongly
unsymmetric matrices with large extra-diagonal terms compared to the diagonal
ones. In that case, the optimization solvers based on a convexification help in solv-
ing the problems, although the local Delassusmatrix is not necessarily symmetric.
We can also note, as in Chute_4000 andChute_1000, that theNSGS-FP-VI-UPK
solvers are less sensitive to this asymmetry of the Delassus matrix.

11 General Conclusions

In this chapter, we have reviewed several formulations of the discrete contact prob-
lem with Coulomb friction. These formulations open the way to various solving
procedures that have been detailed. Some are already well-known: (a) the split-
ting and relaxation techniques (NSGS-� and PSOR-� solvers), (b) the nonsmooth
Newton methods (NSN-� solvers) and (c) the optimization-based solvers (PANA-
�, TRESCA-� and ACLM-� solvers). For the first time, we present general solvers
based on the variational inequality formulation (FP-VI-� andFP-EG-�). Thesemeth-
ods extend the standard fixed point iteration (FP-DS, also known as Uzawa’s algo-
rithm) in various directions and provide some self-adaptive rules for updating the ρ

parameter that appears to be crucial in practice for the efficiency of the methods. As
far as we know, it is also the first application of the proximal point algorithms (PPA-
�) to the discrete frictional contact problem. This new family of solvers appears to
be a promising alternative when we want to reach tight accuracy for collections of
rigid bodies such as granular materials.
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Then, we presented a thorough comparison of solvers over a large set of test
problems. Using performance profiles, the solvers have been compared family by
family, and then altogether. The main conclusions and perspectives of this study are
as follows:

• The methods based on variational inequality formulations (FP-VI-�) are robust,
if a consistent self-adaptive rule for the parameter ρ is used. We presented two
rules that yield very satisfactory results. Thanks to their robustness, these methods
provide reliable solvers for the local problem in splitting techniques. Nevertheless,
the convergence is slow: these methods have difficulty obtaining a solution within
the prescribed time for tight tolerances, or if the problem size is large. The main
perspectives for these methods are (a) to adapt the values of ρ contact by contact to
try to improve the convergence speed and (b) to perform computation in parallel
for large-scale systems. Indeed, each iteration of the FP-VI-� solvers may be
straightforwardly implemented on distributed computer architectures.

• The methods based on splitting techniques, the NSGS-� solvers, provide us with
robust and efficient solvers, provided the local solver is robust. They are generally
more efficient than theFP-VI-�methods, since they exploit the particular structure
of the problem (sparse block sparsity and local solver routines). However, they
suffer from the same problems as the FP-VI-� solvers: the convergence rate is
low and high accuracy is difficult to reach within the prescribed time. The main
perspective for this solver is to improve the robustness and the efficiency of the
local solver, for instance, by using proximal point techniques or optimization-
based solvers. Regarding the PSOR-� solvers, for some values of the relaxation
parameterω, the convergence rate is greatly improved with respect to theNSGS-�
solvers. However, guessing the correct value of the parameter ω is challenging, as
some values may increase the computational effort or make the algorithm diverge.
Clearly, a self-adaptive rule for sizing the relaxation parameter ω would be a
notable improvement.

• The nonsmooth Newton solvers NSN-� appear to be a very efficient family of
solvers for problems that have a full-rank Delassus matrix or a very low contact
density. For instance, in the case of the flexible tests, they are the best solvers
among others and they are capable of reaching tight tolerances that are not reach-
able with theFP-VI-� andNSGS-� solvers. For the other test sets, they suffer from
robustness issues. To overcome this, we work on several options: (a) the choice
of the ρ parameters in the equation-based formulation, (b) using line-search pro-
cedures to stabilize the convergence (at the expense of the convergence speed)
and (c) improving the initial starting point of the solver with a FP-VI-�. All these
improvements appear to increase the robustness. Unfortunately, it was not suffi-
cient to circumvent all the divergence problems. Some pointers in the literature
try to modify the iteration matrix in the Newton loop to improve robustness when
the iterates are far from the solution. This solution has not been tested. The main
perspectives for these solvers are to improve their robustness by testing modifi-
cations of the iteration matrix or the self-adapting rule for sizing ρ. The question
of the scaling and the preconditioning must be more deeply studied. When these
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solvers are robust, they are also highly parallelizable for large systems, since we
can rely on massively parallel solvers for linear systems such as MUMPS.

• As we discussed before, the PPA-� solvers are a possible solution for improving
the robustness of the NSN-� methods while keeping their convergence rates. This
solution proves its efficiency on a lot of test sets. Nevertheless, we were not able
to find a universal rule for updating the parameter α such that it works for all test
sets. Clearly, this aspect deserves further study.

• The optimization-based solvers (PANA-�, TRESCA-� and ACLM-� might also
exhibit good robustness properties. Unfortunately, they suffer from the slow con-
vergence of the external loop based on a fixed point updating, which is not com-
pensated for by the efficiency of the convex problem solver. As we have seen,
the nonconvexity of the problems is not the only difficulty: most of the time, the
rank deficiency of the Delassus matrix is the main cause of the slow convergence
or divergence. Finally, it would be worthwhile investigating why an optimization
formulation is better than another for certain test sets. One of the reasons might be
that the contact status (closed, sticking, sliding) is not distributed in the same way
along the test sets. A study based on the contact status would be complementary
to the measure of the rank ratio and the contact density for guessing the cause of
the issues.
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Appendix 1. Basics in Convex Analysis

Definition 1 ([103]) Let X ⊆ IRn . Amultivalued (or point-to-set)mapping T : X ⇒
X is said to be (strictly) monotone if there exists c(>) � 0 such that, for all x̂, x̃ ∈ X ,

(v̂ − ṽ)�(x̂ − x̃) � c‖x̂ − x̃‖ with v̂ ∈ T (x̂), ṽ ∈ T (̃x). (137)

Moreover, T is said to be maximal when it is not possible to add a pair (x, v) to the
graph of T without destroying the monotonicity.

The Euclidean projector PX onto a closed convex set X : for a vector x ∈ IRn , the
projected vector z = PX (x) is the unique solution to the convex quadratic program

⎧⎨
⎩min

1

2
(y − x)�(y − x),

s.t. y ∈ X.
(138)
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The following equivalences are classical:

y = PK (x) ⇐⇒ min 1
2 (y − x)�(y − x)

s.t. y ∈ K
(139)

⇐⇒ −(y − x) ∈ NK (y) (140)

⇐⇒ (x − y)�(y − z) � 0,∀z ∈ K (141)

−F(x) ∈ NK (x) ⇐⇒ −ρF(x)�(y − x) � 0,∀y ∈ K (142)

⇐⇒ (x − (x − ρF(x))�(y − x) � 0,∀y ∈ K (143)

⇐⇒ x = PK (x − ρF(x)) thanks to (141). (144)

Sub-differential of the Euclidean Norm

The sub-differential of the Euclidean norm in IRn is given by

∂‖z‖ =
{ z

‖z‖ , z �= 0

{x, ‖x‖ � 1}, z = 0.
(145)

Euclidean Projection on the Unit Ball

Let B = {x ∈ IRn, ‖x‖ � 1}. The Euclidean projection on the unit ball is given by

PB(z) =
{

z if z ∈ B
z

‖z‖ if z /∈ B.
(146)

Its subdifferential can be computed as

∂ PB(z) =

⎧⎪⎪⎨
⎪⎪⎩

I if z ∈ B \ ∂ B
I + (s − 1)zz�, s ∈ [0, 1] if z ∈ ∂ B

I

‖z‖ − zz�

‖z‖3 if z /∈ B.

(147)

Euclidean Projection on the Second-Order Cone of IR3

Let K = {x = [xNxT]T ∈ IR3, xN ∈ IR, ‖xT‖ � μxN} be the second-order cone in IR3.
The Euclidean projection on K is

PK (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z if z ∈ K
0 if −z ∈ K ∗

1

1 + μ2 (zN + μ‖zT‖)
[

1

μ
zT

‖zT‖

]
if z /∈ K and − z /∈ K ∗.

(148)
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Direct Computation of an Element of the Subdifferential
The computation of the subdifferential of PK is given as follows:

• if z ∈ K \ ∂K , ∂z PK (z) = I ,
• if −z ∈ K ∗ \ ∂K ∗, ∂z PK (z) = 0,
• if z /∈ K and −z /∈ K ∗ and, ∂z PK (z) = 0, we get

∂zN PK (z) = 1

1 + μ2

[
1

μzT

]
(149)

and
∂zT [PK (z)]N = μ

1 + μ2

zT

‖zT‖ (150)

∂zT [PK (z)]T = μ

(1 + μ2)

[
μ

zT

‖zT‖
z�
T

‖zT‖ + (zN + μ‖zT‖)
(

I2
‖zT‖ − zTz

�
T

‖zT‖3
)]

,

(151)
that is,

∂zT [PK (z)]T = μ

(1 + μ2)‖zT‖
[
(zN + μ‖zT‖) I2 + zN

zTz
�
T

‖zT‖2
]

. (152)

Computation of the Subdifferential Using the Spectral Decomposition

In [55], the computation of the Clarke subdifferential of the projection operator is
also done by inspecting the different cases using the spectral decomposition

∂ PK (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I (λ1 > 0, λ2 > 0)
λ2

λ1 + λ2
I + Z (λ1 < 0, λ2 > 0)

0 (λ1 < 0, λ2 < 0)
co{I, I + Z} (λ1 = 0, λ2 > 0)
co{0, Z} (λ1 < 0, λ2 = 0)
co{0 ∪ I ∪ S} (λ1 = 0, λ2 = 0),

(153)

where

Z = 1
2

[−yN y�
T

yT −yNyTy�
T

]
,

S =
{

1
2 (1 + β)I + 1

2

[−β w�
w −βww�

]
| −1 � β � 1, ‖w‖ = 1

}
,

(154)

with y = x/‖xT‖. A simple verification shows that the previous computation is an
element of the subdifferential.



On Solving Contact Problems with Coulomb Friction … 449

Appendix 2. Computation of Generalized Jacobians for
Nonsmooth Newton Methods

Computation of Components of a Subgradient of Fnat
vi

Let us introduce the following notation for an element of the subdifferential:

Φ(u, r) =
[

ρ I −ρW
Φru(u, r) Φrr (u, r)

]
∈ ∂ Fnat

vi (u, r), (155)

where Φxy(u, r) ∈ ∂x [Fnat
vi ]y(u, r). Since Φuu(u, r) = I , a reduction of the system

is performed in practice and Algorithm 4 is applied or z = r with

{
G(z) = [Fnat

vi ]r (Wr + q, r)

Φ(z) = Φrr (r, Wr + q) + Φru(r, Wr + q)W.
(156)

Let us introduce the following notation for an element of the sub–differential with
an obvious simplification:

Φ(v, r) =
⎡
⎣ ρM −ρH

−ρH� ρ I 0
0 Φru(v, u, r) Φrr (v, u, r)

⎤
⎦ ∈ ∂ Fnat

vi (u, r), (157)

where Φxy(v, u, r) ∈ ∂x [Fnat
vi-1 ]y(v, u, r). A possible computation of Φru(v, u, r) and

Φrr (v, u, r) is directly given by (159) and (158). In this case, the variable u can also
be substituted.

For one contact, a possible computation of the remaining parts inΦ(u, r) is given
by

Φru(u, r) =
⎧⎨
⎩
0 if r − ρ(u + g(u)) ∈ K

I − ∂r [PK (r − ρ(u + g(u)))] if r − ρ(u + g(u)) /∈ K
(158)

Φru(u, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
I +

[
0 0 0
uT

‖uT‖ 0 0

])
if

{
r − ρ(u + g(u)) ∈ K

uT �= 0

ρ

(
I +

[
0 0 0
s 0 0

])
, s ∈ IR2, ‖s‖ = 1 if

{
r − ρ(u + g(u)) ∈ K

uT = 0

I + ρ

(
I +

[
0 0 0
uT

‖uT‖ 0 0

])
∂u [PK (r − ρ(u + g(u)))] if r − ρ(u + g(u)) /∈ K .

(159)
The computation of an element of ∂ PK is given in Appendix 11.
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For one contact, a possible computation of the remaining parts inΦ(u, r) is given by

ΦrNuN(u, r) =
{

ρN if rN − ρNuN > 0
0 otherwise

(160)

ΦrNrN(u, r) =
{
0 if rN − ρNuN > 0
1 otherwise

(161)

ΦrTuN(u, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ‖rT − ρTuT‖ � μmax(0, rN − ρNuN)

0 if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun � 0

μρN

rT − ρTuT

‖rT − ρTuT‖ if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun > 0

(162)

ΦrTuT(u, r) =

⎧⎪⎨
⎪⎩

ρT if ‖rT − ρTuT‖ � μmax(0, rN − ρNuN)

μρT(rN − ρNuN)+Γ (rT − ρTuT) if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun > 0

(163)

ΦrTrN(u, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ‖rT − ρTuT‖ � μmax(0, rN − ρNuN)

0 if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun � 0

−μ
rT − ρTuT

‖rT − ρTuT‖ if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun > 0

(164)

ΦrTrT (u, r) =

⎧⎪⎨
⎪⎩
0 if ‖rT − ρTuT‖ � μmax(0, rN − ρNuN)

I2 − μ(rN − ρNuN)+Γ (rT − ρTuT) if

{
‖rT − ρTuT‖ > μmax(0, rN − ρNuN)

rN − ρNun > 0,
(165)

with the function Γ (·) defined by

Γ (x) = I2×2

‖x‖ − x x�

‖x‖3 . (166)
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If the variant (60) is chosen, the computation of ΦrT• simplifies to

ΦrTuN(u, r) = 0 (167)

ΦrTuT(u, r) =
{

ρT if ‖rT − ρTuT‖ � μrN

−μρTrn,+Γ (rT − ρTuT) if ‖rT − ρTuT‖ > μrN

(168)

ΦrTrN(u, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ‖rT − ρTuT‖ � μrN

0 if

{
‖rT − ρTuT‖ > μrn

rN � 0

−μ
rT − ρTuT

‖rT − ρTuT‖ if

{
‖rT − ρTuT‖ > μrn

rN > 0

(169)

ΦrTrT(u, r) =
{
0 if ‖rT − ρTuT‖ � μrN

I2 − μ(rN)+Γ (rT − ρTuT) if ‖rT − ρTuT‖ > μrN.
(170)
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