
Chapter 5
Microscopic and Mesoscopic Traffic
Models

5.1 Uses and Applications of Traffic Models

Chapters 3 and 4 of this book are focused on macroscopic traffic models, which rep-
resent the dynamics of traffic flow by means of aggregate variables. The main clas-
sifications of macroscopic traffic models distinguish them according to the number
of variables whose dynamics is explicitly taken into account, corresponding to first-
order, second-order or higher-order models. Macroscopic models, generally allow
to represent large road networks with an acceptable computational load. This com-
putational advantage characterising macroscopic models is counterbalanced by the
drawback that these models cannot capture some specific traffic phenomena related
to the behaviour of individual drivers.

On the opposite side, microscopic models describe the dynamic behaviour of
each single vehicle in the traffic stream, trying to capture the interactions among
vehicles and between vehicles and the road infrastructure. These models can be very
detailed and accurate in representing specific features of traffic but, of course, are
very demanding from a computational point of view. Another important drawback
of microscopic models is that they are often characterised by a very high number
of parameters which must be properly calibrated. In case of models including het-
erogeneity among drivers or vehicles and stochasticity, the number of parameters
becomes higher. Section5.2 is devoted to some of the microscopic models present in
literature, but it does not aim to exhaustively cover the wide variety of microscopic
traffic models. The interested reader can refer to [1–3] and the references therein for
a comprehensive overview on the topic.

A very interesting use of microscopic models is their utilisation inside traffic sim-
ulation tools (see Sect. 5.2.4). Indeed, the complexity of the traffic stream behaviour
and the difficulties in performing experiments with real-world cases make computer
simulation an important analysis tool in the traffic engineering field. Bymaking use of
different traffic models, generally of microscopic type, one can simulate large-scale
real-world situations in great detail [4, 5].
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An intermediate class of traffic models, which bridges the gap between the higher
level of detail of microscopic models and the aggregate description of macroscopic
models, is constituted by the so-called mesoscopic models. These models represent
a link between microscopic and macroscopic modelling, where the characteristic
aspects of both levels of description are combined. In mesoscopic models, the traffic
flowdynamics is described in aggregate termsusing probability distribution functions
and the dynamics of these distributions is governed by individual drivers’ behaviour.
In fact, even if mesoscopic models do not distinguish individual vehicles (as it
happens instead with microscopic models), they specify individual behaviours in
probabilistic terms. In this sense, mesoscopic models provide an intermediate option
with their ability to model large road networks with limited coding and calibration
effort, while providing a better representation of the traffic dynamics and individual
travel behaviour than their macroscopic counterparts. Some mesoscopic traffic mod-
els are presented in Sect. 5.3, which, again, does not represent an exhaustive survey
of all the mesoscopic models appeared in the literature. The interested reader can
refer to [1, 2] and the references therein for amore detailed discussion onmesoscopic
models.

Taking into account all the traffic models present in the literature and partly
described in this book, i.e. macroscopic, mesoscopic and microscopic models, it
can be stated that the variety of modelling options is very wide. Of course, each
model is characterised by its own strengths and weaknesses, thus making the choice
of the most suitable model to be adopted strictly dependent on the objective of the
study under concern and on the scale of the system to be investigated.

Microscopic models are surely more suitable for applications in small size road
networks or, better, for specific road sections, especially in the urban context. More-
over, a very common use of microscopic models is for simulation, especially in case
of offline decisions, such as for long-term planning or road design. In these cases, it
is more relevant to have a highly detailed model, possibly stochastic, able to provide
accurate predictions of the system dynamics, even if it requires a high computational
load, rather than a fast but less accurate simulation. The use of macroscopic mod-
els is instead particularly relevant for model-based estimation and control purposes,
especially when real-time applications are considered and large traffic networks are
involved. In addition, if optimal control is applied, not only a small problem to be
solved is preferable (i.e. with less variables, as macroscopic models can provide) but
also the structure of the problem becomes relevant, and hence linear or linearisable
traffic models are aimed for. These aspects will be further discussed in Chap. 7 and
Chaps. 8–10, respectively, on traffic state estimation and traffic control, where all the
reported approaches are based on macroscopic modelling. It is also worth noting that
microscopic models can be used for real-time estimation and control, not as a basis
for the method but for validation purposes. There are indeed many research works
in which new estimation and control methods are developed and their effectiveness
is tested and validated by means of traffic simulators.

It is certainly unquestionable that the new developments in technologies and
computing devices will change the possible applications of trafficmodels. The devel-
opment of faster computers will probably give a chance to the use of microscopic
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models for real-time applications, aswell as the development of newdata sources (e.g.
probe vehicles) capturing more detailed aspects of the traffic flow and the individual
behaviour of drivers will require the use of more specific traffic models, especially of
mesoscopic and microscopic types. Surely, as suggested in [2], the development of
multi-class models, as well as the improvement of hybrid models properly combin-
ing macroscopic, mesoscopic and microscopic features, seems the most promising
future direction for traffic modelling.

5.2 Microscopic Traffic Models

Microscopic traffic models describe the behaviour of each single vehicle in the traffic
stream and how it interacts with the other vehicles and with the road infrastructure.
Specifically, in microscopic models, the vehicle–driver relation and vehicle–vehicle
interactions are represented via differential equations in which the longitudinal (car-
following) and/or the lateral (lane-changing) behaviour of individual vehicles can
be taken into account. Since microscopic models allow to explicitly represent the
dynamics of each single vehicle, it is straightforward to model different typologies
of vehicles, e.g. cars and trucks, by properly setting themodel parameters to represent
the different behaviours of the different classes.

Several microscopic models, considering at different extents the different aspects
of individual vehicle dynamics, are present in the literature. Among them, let us
consider in this section of the book the following classes of models: car-following
models, lane-changing models and cellular automata models.

Car-following models, also known as follow-the-leader models, were introduced
in the 50s [6–8]. These models represent the position and speed dynamics of
each vehicle through continuous-time differential equations, in which it is basically
assumed that the speed dynamics of a single vehicle depends on its speed, as well
as on the distance from the preceding vehicle and the speed of this latter. In more
sophisticated models, the behaviour of a driver depends on a platoon of preceding
vehicles instead of on one single leader. As discussed in [1, 9], these models have
seen various developments after their first appearance. In a first version proposed
by Pipes [7], the distance between the two vehicles (leader and follower) is deter-
mined as the safe distance computed on the basis of the vehicle length. Later, in [10],
the concepts of perception time, decision time and braking time were introduced,
allowing to identify the necessary safety distance to avoid collisions between two
vehicles. In other models, stimulus–response concepts were introduced, including
terms related to the acceleration [11] and sensitivity factors [12], calculated on the
basis of the speed difference between the leader and the follower. Further models
including the acceleration dynamics were presented in [13, 14]. Section5.2.1 reports
a brief overview of the main car-following models present in the literature.

Lane-changing models seek to describe the behaviour of drivers when a change
of lane occurs, regardless of the reason yielding the lane changing (overtaking of a
vehicle, merging to and from secondary roads or freeway on-ramps, need to avoid
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obstacles and so on). The representation of this phenomenon in a reliable manner
is, however, one of the most complex problems that the traffic theoreticians have
had to face. The lane-changing behaviour can be schematically subdivided into three
steps: the decision on lane changing, the selection of the desired lane and the gap
acceptance decision. Most of the modelling efforts focused on the last aspect, i.e. the
representation of the gap acceptance. Several lane-changing models can be found
in the literature, such as the lane-changing urban driving model described in [15]
or the advanced model aiming to capture the merging behaviour in severe jammed
traffic conditions proposed in [16]. Some more details on lane-changing models are
reported in Sect. 5.2.2.

Another class of microscopic models is represented by cellular automata models
(see, e.g. [17–19]), where the road topology is described by means of a grid of cells
and a discrete-time dynamics is adopted. The dimension of a single cell is generally
chosen in such a way that each cell can be occupied by only one vehicle (or it
can remain empty), whereas the discretisation in time is carried out considering the
reaction time of drivers. The traffic dynamics, given by the movement of vehicles,
is represented in terms of the state (free or occupied) of the road cells. The speed
is instead defined as the number of cells overtaken by a vehicle in a time step. The
dynamic evolution of the speed is defined considering some factors that are the
acceleration needed to reach a desired speed, the slowing down in order to decrease
the speed according to the distance gap to the preceding vehicle, and a random
term accounting for a deceleration which spontaneously decreases the vehicle speed
according to a certain probability. Even though cellular automata models are less
accurate than car-following ones, they allow to effectively replicate many traffic
phenomena with a lower computational burden. An overview of cellular automata
models can be found in Sect. 5.2.3.

Microscopic models are often adopted in traffic simulation tools, and a review of
their application in this field is reported in [4, 5]. Section5.2.4 reports a description
of the most common traffic simulators.

5.2.1 Car-Following Models

Car-following models describe the longitudinal interactions of vehicles in a road, i.e.
the behaviour according to which a driver follows the preceding vehicle in traffic.
The first car-followingmodels appeared in the 50s [7] and, since then, a great number
of models of this type were proposed by researchers.

Car-following models differentiate for the considered assumptions, but they
present a common notation which considers a pair of vehicles: the preceding vehicle
(i.e. the leader) is denoted with n − 1, whereas the vehicle following the leader (i.e.
the follower) is denoted with n, as shown in Fig. 5.1. The following notation is used:

• Ln−1, Ln are the lengths of vehicles n − 1, n, respectively [m];
• xn−1(t), xn(t) are the positions of vehicles n − 1, n, respectively, at time t [m];
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Fig. 5.1 The main notation
of car-following models

n n−1

Ln Ln−1

xn xn−1

• vn−1(t), vn(t) are the speeds of vehicles n − 1, n, respectively, at time t [m/s];
• an−1(t), an(t) are the accelerations of vehicles n − 1, n, respectively, at time t
[m/s2];

• �x(t) = xn−1(t) − xn(t) is the space headway between vehicle n − 1 and n at
time t [m];

• �v(t) = vn−1(t) − vn(t) is the speed difference between vehicle n − 1 and n at
time t [m/s];

• sn(t) = �xn(t) − Ln−1 is the spacing from the front edge of vehicle n to the rear
end of vehicle n − 1 [m];

• T is the reaction time [s].

Several overview papers on car-following models have appeared in the literature,
such as the historical survey proposed in [9], the one in [20] specifically focused on
driver heterogeneity aspects, and the more recent review especially addressing how
human factors are incorporated in car-following models [21]. Each of these papers
suggests a different classification of car-following models. In this book, we pro-
pose a classification based on four categories: Gazis–Herman–Rothery or stimulus–
response models, safety-distance or collision-avoidance models, reference-signal
models, and models including human factors.

GHR or Stimulus–Response Models Gazis–Herman–Rothery (GHR) models are
probably the most studied models of car-following type. The basic concept of GHR
models [12] is the definition of the acceleration of vehicle n at time t as

an(t) = c vmn (t)
�v(t − T )

�x(t − T )l
(5.1)

where c, l and m are the model parameters to be determined.
GHR models are also known as stimulus–response models; the stimulus being

defined by the speed difference between the preceding vehicle and the follower,
and the response being the braking or acceleration of the follower delayed by the
reaction time. If GHR models have the great advantage of being simple, they also
received a few critiques since they are rather unrealistic to represent some traffic
situations. Actually, in free-flow conditions, when the distance headway is very
large, the model assumes that drivers keep reacting to speed differences. Moreover,
the traffic is considered homogeneous, i.e. all the vehicles are assumed to react in the
same way. This is clearly not true in real situations in which heavy vehicles typically
behave differently from cars, for instance, slow trucks are not able to adapt their
speed to one of the possible leading fast cars.
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Different GHR models have been studied and developed during the last decades,
also trying to overcome the limitations mentioned above. Among others, it is worth
citing the asymmetrical version of GHR models in which different parameter values
are used for acceleration and deceleration situations (see, e.g. [22]). There are also
versions of the GHR model which use different parameter values for congested and
non-congested situations (see, e.g. [23]). This allows to model the fact that drivers
may have shorter reaction times in congested situations, since they are more alert. A
significant amount of work has been devoted to find suitable calibration procedures
for the GHR model parameters. The most reliable parameter values, according to
[9], are those indicated in [11, 24–26].

An interesting extension of GHRmodels is based on the use of fuzzy logic [27]. In
this framework, concepts like “too close” or “too fast” are described using fuzzy sets,
and logical rules are introduced tomodel the corresponding behaviour of drivers. The
fuzzy sets may overlap, so that probabilistic density functionsmust be used to deduce
how the driver perceives the considered variable (for instance, given a certain speed of
the leader vehicle, the fuzzy model describes whether it is regarded as low, moderate
or high by the follower). The first fuzzy version of the GHR model was proposed
in [28]. More recently, a fuzzy model has been presented in [29]. A discussion on
calibration and validation of car-following models based on fuzzy logic is contained
in [30].

Safety-Distance or Collision-Avoidance Models Safety-distance models are also
known as collision-avoidancemodels, since their basic relationship indicates a safety
distance between vehicles in order to avoid collisions. This is specified by the so-
called Pipes’ rule, stating that a good rule for following another vehicle at a safe
distance is to maintain a distance that is at least the length of a car for every ten miles
an hour (i.e. 16.1 km/h) of speed [7]. This rule can be mathematically expressed as
follows:

Dn(t) = Ln

[
1 + v(t)

16.1

]
(5.2)

where Dn(t) is the prescribed headway between vehicle n − 1 and vehicle n. In
alternative, (5.2) can be expressed as

Dn(t) = Ln

[
1 + v(t − T )

16.1

]
(5.3)

if the reaction time T is taken into account.
Safety distance models differ from GHR models since they assume that drivers

react to spacing with respect to the preceding vehicle, rather than to the relative
speed. This idea was elaborated in [31], where the proposed model assumes that
each vehicle always tries to keep the minimum safety distance from the preceding
vehicle, defined as

�x(t − T ) = αv2n−1(t − T ) + βv2n(t) + γ vn(t) + d (5.4)
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where α, β and γ are model parameters, whereas d is the minimum allowed spacing
between subsequent vehicles.

Models implementing the same philosophy are those presented in [10, 32, 33].
Yet, the most widely used safety-distance model is the Gipps model [34], which is
the car-following model implemented in the well-known traffic simulation software
Aimsun (see Sect. 5.2.4). The Gipps model assumes that any vehicle tends to travel
at the speed which allows to avoid a rear crash if the vehicle performs an emergency
braking. Despite presenting several advantages, the Gipps model has the limitation
that the following vehicle can only travel exactly at the safe distance with respect
to the preceding vehicle, which is clearly unrealistic. More realistic safety-distance
car-following models overcome such limitation by better defining the safe distance,
for instance, as a function of the relative speed between the leading vehicle and the
follower, such as in [35].

Reference-Signal Models This category includes models in which a desired refer-
ence signal is explicitly introduced to describe the tendency of any individual driver
to adjust his/her behaviour to track that signal. The nature of the reference signal dif-
fers frommodel to model. More specifically, the reference signal can be a prescribed
space headway or a desired speed or an adequate time gap.

The first example of model of this class was introduced by Helly in [13] and is
often known in the literature as the linear model. In this model, the acceleration of
any vehicle linearly depends on the relative speed and on the difference between the
relative distance and the prescribed space headway. The latter is defined by including
a term accounting for the follower’s acceleration, in contrast with (5.2). This can be
expressed mathematically as follows:

an(t) = C1�v(t − T ) + C2 [�x(t − T ) − Dn(t)] (5.5)

where the prescribed headway is computed as

Dn(t) = α + βvn(t − T ) + γ an(t − T ) (5.6)

where C1, C2, α, β and γ are parameters to be identified on the basis of real data. In
particular, Helly observed that C1 could be considered as dependent on the relative
distance between vehicles, whereas C2 could be made speed dependent. Several
works were then devoted to calibrate the Helly model parameters (see, for instance,
[36–39]).

Another example of reference-signal models is the so-called intelligent driver
model, proposed in [40, 41]. In this model, there are two reference signals, the
desired speed and the desired space headway, i.e.

an(t) = amax
n

[
1 −

(
vn(t)

ṽn(t)

)β

−
(
s̃n(t)

sn(t)

)2
]

(5.7)
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where amax
n is the maximum acceleration/deceleration of vehicle n, ṽn(t) is the speed

reference signal, s̃n(t) is the spacing reference signal and β is a model parameter. It
is worth noting that, when the spacing between two subsequent vehicles is high, the
third term becomes negligible, so that the considered vehicle just follows the speed
reference signal. In car-following situations, the spacing reference signal can depend
on several factors, such as the speed of vehicle n, the relative speed between vehicles
n and n − 1, the maximum acceleration, the desired time gap and so on.

A further example of reference-signal models is the optimal speed model, intro-
duced in [14]. In this model, the reference signal is a speed assumed to be optimal for
the considered vehicle, taking into account the distance from the preceding vehicle.
Hence, the acceleration of vehicle n can be determined according to the difference
between the actual speed and the optimal speed v∗

n , i.e.

an(t) = α
[
v∗
n(�xn(t)) − vn(t)

]
(5.8)

where α is a model parameter. Variations of the original optimal speed model were
proposed in [42], also to counteract the tendency of the model to produce unrealis-
tic accelerations or decelerations. Further extensions can be found, for instance, in
[43–46].

Models Including Human Factors The car-following models described so far are
mainly based on physical signals. Nevertheless, as highlighted in [47], the human
driving behaviour is not only influenced by physical signals but also by psychologi-
cal aspects. Moreover, many assumptions of standard car-following models are not
always true in real cases, for instance, drivers often adopt strategies that are adequate
for the current situation but not optimal, drivers do not continuously react to stimuli,
each driver has a different driving style and so on. Based on these considerations, a
wide literature has been developed in order to encompass psychophysical aspects,
typical of perceptual psychology, into car-following models.

The most famous car-following models which include human factors are the so-
calledpsychophysical oractionpointmodels. Thebasic idea is thatperception thresh-
olds characterise the human capability of perceiving spacing and speed differences
(see [48, 49] for perception-based experiments to quantify the thresholds). In prac-
tice, drivers do not continuously react to speed differences and spacings but only
when the current action significantly differs from the action which is regarded as
appropriate for the given situation. In other terms, the existence of these percep-
tion thresholds makes the acceleration (or, more in general, behavioural changes)
occur at asynchronous time instants, named action points. The thresholds and time
intervals between two subsequent action points are stochastic quantities. Referring
in particular to the vehicle acceleration, it is kept constant by the driver until it is
significantly different from the acceleration required to maintain the proper spacing
with respect to the preceding vehicle. This implies that, in case of large spacing, the
following driver tends to act rather independently, i.e. such driver is not influenced
by the relative speed, as if this were imperceptible. At small spacings, instead, the
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driver alertness is higher. The thresholds, and the regimes they define, are typically
presented in a relative space–speed diagram for a vehicle pair.

One of the first psychophysical models was introduced by Wiedermann [50], a
modified version of which has been used in the software tool Vissim (see Sect. 5.2.4).
The car-following model implemented in the software tool Paramics (see Sect. 5.2.4)
is based instead on the psychophysical model reported in [51]. Other psychophysical
models were investigated and can be found in the literature (see, e.g. [51–54]).

Another class of models including human factors are those modelling the driving
behaviour related to the visual angle subtended by the preceding vehicle. The first
car-following model of this type was introduced in [55], where the basic assumption
is that drivers approaching a vehicle react to the changes in the apparent size of
this vehicle. Then, compared to classical car-following models, the relative spacing
and speed are replaced by the visual angle and the angular speed. Different versions
of car-following models based on visual angles were developed (see, for instance,
[56, 57]).

More sophisticated car-following models were defined by researchers in order to
represent aspects related to risk anddriving errors. For instance, driving in risky situa-
tions wasmodelled in [58] as a human decision-making problem, relying on prospect
theory [59], and properly defining the subjective probability of being involved in a
collision with the preceding vehicle. This model was then extended in [60] to con-
sider response and behaviour of drivers in different surrounding traffic conditions.
Further efforts were devoted to include, in car-following models, driving errors and
distraction situations, which are the main cause of crashes in real traffic circum-
stances. For instance, in [61], the Helly model is extended to consider that the time
headway is influenced by different aspects, such as visual conditions and driver state,
in [62] the intelligent driver model is modified to consider the reactions of the driver
to the surrounding traffic environment, and in [63] the Gipps model is extended by
considering human perception limitations in processing information and adjusting
speed accordingly.

5.2.2 Lane-Changing Models

While car-following models have the main objective of representing the longitudinal
interactions among vehicles inside the traffic flow, lane-changing models are instead
devoted to describe lateral interactions on the road. These two primary modelling
tasks have often been treated separately, even if they are two fundamental compo-
nents of the microscopic traffic flowmodelling theory. Although car-following mod-
els have been widely studied for many years, lane-changing aspects have received
some attention only in recent years [64–66]. This recent interest in lane-changing
behaviours has been mainly due to the increasing evidence of their negative impact
on traffic safety and traffic congestion.

The impact of lane-changingmovements on traffic safetywas investigated in some
works, such as in [67, 68]. Many studies show that the stress of drivers significantly
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increases during lane-changing manoeuvres, thus making them more error-prone
and dangerous. Moreover, the lane-changing process plays a role in capacity drop
phenomena related to bottleneck discharge rate reduction at the onset of congestion
[69] and also in the formation and propagation of stop-and-go oscillations [70, 71].
More recently, in [72] it has been shown that lane changing is a primary trigger of
oscillations and is responsible for transforming minor and localised oscillations into
substantial disturbances.

Research efforts to represent the lane-changing aspects have rapidly increasedover
the last decade. The main lane-changing models in the literature can be distinguished
into two groups: models related to the lane-changing decision-making process (i.e.
how a driver reaches the lane-changing decision), and models devoted to quantify
the impact of lane-changing behaviours on surrounding vehicles. It can be noted that
a comprehensive lane-changing model should take into account both these aspects
together with car-following behaviours in order to fully represent the dynamics of
vehicles, but a widely recognised modelling tool covering all these aspects is not yet
available [66].

The different models developed in the literature differentiate for the way in which
they represent the lane-changing decision-making process, but, in any case, they
must take into consideration the interactions of the vehicle aiming to change lane
with the other vehicles in the surroundings. In particular, as shown in the scheme
presented in Fig. 5.2, let us consider the lane changer vehicle, denoted as LC, which
is travelling in the lane called initial lane and would like to move to the so-called
target lane. Vehicle LC has to interact, in some way, with the preceding vehicle (i.e.
the leader) and the following vehicle (i.e. the follower) in the initial lane, denoted
as LI and FI, respectively, and with the preceding and following vehicle in the target
lane, denoted as LT and FT, respectively.

The lane-changing decision-making process is based on several factors, one of
which is the so-called gap acceptance processwhich precedes an overtakingmanoeu-
vre. In this process, a driver who wants to overtake a vehicle preceding him estimates
both the space he needs and the available space. On the basis of the comparison
between required and available space, the driver decides whether to start the lane-
changing manoeuvre or not. Several gap acceptance models are present in the liter-

Initial lane

Target lane

Follow gap Lead gap

LC LIFI

LTFT

Fig. 5.2 Generic lane-changing process
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ature, not only for freeway systems but for any kind of road (and also for pedestrian
flows). These models are stochastic and they are based on the definition of a gap
acceptance function defining the probability that an arbitrary driver accepts an avail-
able gap, thus starting the overtaking manoeuvre. A description of gap acceptance
models can be found in [16].

A basic model describing a more general lane-changing decision-making process
is due to Gipps [15], in which various driving situations in an urban street context
are considered. In the Gipps model, the driver’s behaviour is governed by two basic
considerations typically arising in an urban network: the willingness to maintain
a desired speed and the desire to be in the correct lane for an intended turning
manoeuvre. The drivers’ behaviour is considered as deterministic and, thus, a set of
deterministic rules to be sequentially evaluated is defined.

One of the first works related to the lane-changing decision process in the freeway
context is [73], in which lane-changingmovements are classified as either mandatory
(when the lane change is necessary due to a lane drop, an accident or the use of an exit
junction) or discretionary (when a driver evaluates that in the target lane better driving
conditions can be experienced compared to those found in the current lane) and a
lane-changing probability is introduced to make the model more realistic. Several
variations and extensions were proposed, as, for instance, in [74], in which a novel
logic for simplifying and modelling lane-changing decisions is defined in terms of
single-lane accelerations.

In [16], the utility theory is applied to model the decision process of lane chang-
ing, whereas in [75] Markov processes are used to model mandatory lane-changing
actions. Furthermore, several lane-changing decision models based on fuzzy logic
have been developed in the last decades [29, 76].

The models discussed so far largely ignore the impact of lane changing on sur-
rounding vehicles. Several studies, such as [69, 77], address the influence between
lane-changing and critical traffic phenomena, such as breakdowns, capacity drop
and traffic oscillations. Some models for representing the impact of lane changing
on surrounding vehicles are reported in [66], where it is also discussed how this
aspect still needs to be investigated to define accurate lane-changing models.

5.2.3 Cellular Automata Models

Cellular Automata (CA) models, sometimes also called Particle Hopping models,
were first proposed in 1948 [78] and then revitalised in the 80s with the work reported
in [79]. CA models are basically characterised by four components, i.e. the physical
environment, the states of cells, the neighbourhoods of cells and the local transition
rules. The physical environment inwhichCAmodels are applied formodelling traffic
flow is a road segment, which is discretised into cells of the same length, typically
equal to the vehicle length, so that any cell can be exactly occupied by a single
vehicle. CA models are discrete-time models in which time is discretised and the
sample time is generally set equal to 1 s. The speed of a vehicle is then computed



124 5 Microscopic and Mesoscopic Traffic Models

as the number of cells that a vehicle hops in one time step (implying that speed is
discretised as well). The state of each cell can be either equal to 0 (if the cell is empty)
or equal to 1 (if it is occupied).

One of the most famous CA models is the one developed by Nagel and
Schreckenberg [17], which has a stochastic nature. According to this model, the
road is discretised into cells (approximately 7.5 m long) and a maximum speed
vmax is considered. At each time step, the model evolves according to the following
predefined rules:

• acceleration: if the speed v of a vehicle is lower than vmax and if the distance to
the vehicle in front is larger than v + 1, then the speed is increased by one;

• deceleration: if a vehicle in cell i finds the next vehicle in cell i + j , with j ≤ v,
then the vehicle decelerates to j − 1;

• randomisation: the nonzero speed of each vehicle is decreased by one, with prob-
ability p;

• vehicle motion: each vehicle is advanced by v cells.

The update of the states of cells can be done in different ways, i.e. in the direction
of travel, in the opposite direction or even in a random order, without affecting the
model behaviour. CA models are very simple and computationally low demanding,
and hence large size road networks with a high number of vehicles can be analysed
(and simulated) in short computational times, and this is surely a relevant advantage
of such models, especially for real-time applications.

Moreover, different traffic Fundamental Diagrams can be established by varying
the model parameters, specifically by varying vmax and p. Also, CA models describe
the spontaneous formation of traffic congestion and stop-and-go waves. As observed
in the various survey papers about CA models (see, e.g. the review papers [80–82]),
a large number of variations and extensions to the basic CAmodel have been defined
and studied. Let us report in the following a CA model including lane-changing
phenomena for a two-class traffic case.

A Two-Class CA Model with Lane Changing The considered model was defined
in [83], being based on the model reported in [84]. This model refers to the case
in which two classes of vehicles, i.e. cars and trucks, are present in a multi-lane
freeway stretch. Specifically, two-lane freeway stretches are taken into account, in
which cars can overtake other vehicles by occupying the left lane, with lane-changing
rules inspired from [85], while trucks are forced not to overtake other vehicles.

As it is common in CA models, the space is discretised, specifically each lane
is subdivided into cells with length equal to 1.5m. It is assumed that cars have an
occupancy of 3 cells, whereas trucks occupy 8 cells. The speed is expressed as the
number of cells that one vehicle can go over in one time step, being 1s the sample
time.

Themodel introduced in [84] presents some important features that makes it more
accurate than the original simple model reported in [17]. With reference to Fig. 5.3,
considering three vehicles, denoted as n, m and l, the main notation of the model is
the following:
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n m l

dSdS

dn,m(t) dm,l(t)

Fig. 5.3 The main notation in the two-class CA model

• dS is a fixed safety distance between vehicles [number of cells];
• dn,m(t) and dm,l(t) are the number of free cells between vehicles n and m, and
between m and l, respectively, at time t [number of cells];

• vn(t) is the speed of vehicle n at time t , i.e. the number of cells that vehicle n
can go over in one time step (analogously vm(t) and vl(t) for vehicles m and l)
[number of cells];

• bn(t) ∈ {on, off} is the state of the brake light of vehicle n at time t (analogously
bm(t) and bl(t) for vehicles m and l);

• ln(t) ∈ {straight, right, left} is the position that vehicle n would like to occupy at
time t , which can be obtained by going straight, moving to right or moving to left
(analogously lm(t) and ll(t) for vehicles m and l);

• ψn ∈ {car, truck} is the typology of vehicle n (analogously ψm andψl for vehicles
m and l).

The main rules adopted in the model presented in [84] are the following:

• anticipation: a generic vehicle n does not only consider the distance from the
preceding vehiclem but it also estimates how far this vehicle will move during the
time step; this is done by introducing and computing deff

n,m(t) as

deff
n,m(t) = dn,m(t) + max

{
vmin
m (t) − dS, 0

}
(5.9)

where vmin
m (t) is given by

vmin
m (t) = min

{
dm,l(t), vm(t)

} − 1 (5.10)

• brake lights: again considering a generic vehicle n, a time interval τ S
n (t) is referred

to the interaction with the brake light of the vehicle in front; specifically, vehicle
n reacts to the state bm(t) of the brake light if τH

n,m(t) < τ S
n (t), where quantities

τH
n,m(t) and τ S

n (t) are defined follows:

τH
n,m(t) = dn,m(t)

vm(t)
(5.11)

τ S
n (t) = min {vn(t), ν} (5.12)

where ν is a model parameter;
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• slow-to-start: vehicle n brakes according to a probability which depends on vn(t),
bm(t), τH

n,m(t) and τ S
n (t).

In the two-class CA model with lane changing proposed in [83], the algorithm
updating the position and the speed of every vehicle for every time step is composed
of four phases: definition of entrances from the on-ramps, check for possible lane
changes, application of vehicle motion and definition of exits through the off-ramps.
Each of these four phases is detailed in the following.

1. Entrances from on-ramps. The presence of vehicles at the on-ramps is modelled
by means of queues, where vehicles wait to access the mainstream. The queue
can contain up to qmax vehicles, and the number of vehicles accessing the queue
is generated at each time step according to a given probability pin depending on
the vehicle class. Moreover, the number of vehicles which enter the mainstream
depends on the space available in the mainstream (this number is reduced if the
freeway is congested) and on a maximum value of κ vehicles (where κ is a given
parameter related to the on-ramp capacity).

2. Lane change. As in [84], two different rules are adopted to define the lane-
changing process, from the right lane to the left one and vice versa. Moreover, it
is imposed that trucks cannot move to the left lane; hence, these two-lane change
rules are applied only to cars. Let us consider these two different rules separately.

• Rule for moving from right to left: let us consider vehicle n in the right lane
and let us identify the preceding vehicle m in the same lane, the preceding
vehicle s in the left lane and the vehicle r before vehicle s in the left lane (see
Fig. 5.4); the variable ln(t) is first set as follows:

ln(t) = straight (5.13)

Then, it is checked if the lane change is possible for vehicle n, i.e.

If (bn(t) = off) ∧ (
dn,m(t) < vn(t)

) ∧
(
deffn,s(t) ≥ vn(t)

)
∧ (

dr,n(t) ≥ vr (t)
)

then ln(t) = left
(5.14)

If, by applying (5.14), it results ln(t) = left, then vehicle n moves to the left
lane.

n m

r s

dr,n(t) dn,m(t)

dn,s(t)

Fig. 5.4 Lane change from right to left in the two-class CA model
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n m

r sdr,n(t)

dn,m(t)

Fig. 5.5 Lane change from left to right in the two-class CA model

• Rule for moving from left to right: let us consider vehicle n in the left lane and
let us identify the preceding vehicle m in the left lane, the preceding vehicle s
in the right lane and vehicle r before vehicle s in the right lane (see Fig. 5.5);
the variable ln(t) is initially fixed as

ln(t) = straight (5.15)

Then, the possibility of lane change is checked for vehicle n, i.e.

If (bn(t) = off) ∧ (
τH
n,s(t) > ξ

) ∧ (
τH
n,m > υ ∨ vn(t) > dn,m(t)

)
∧ (

dr,n(t) > vr (t)
)

then ln(t) = right
(5.16)

where ξ and υ are other parameters. Once (5.16) has been applied, if ln(t) =
right, then vehicle n moves to the right lane.

Summarising, for the two classes of vehicles, the lane changing rule is the fol-
lowing:

If ψn = truck

then ln(t) = straight (lane change not allowed)

else conditions (5.13)–(5.16) hold (lane change allowed)

(5.17)

3. Vehicle motion. The vehicle motion phase is the core of the algorithm and is
executed for every vehicle in each lane at each time step. Vehicle motion is based
on a set of rules in order to obtain the speed vn(t + 1) of vehicle n through some
consecutive steps, in which the intermediate values vn(t + 1/3) and vn(t + 2/3)
are computed. More specifically, let us consider vehicle n and the next vehicle
in front m, and let us set bn(t + 1) = off. According to the acceleration phase,
vn(t + 1/3) is computed as

vn(t + 1/3) =

⎧⎪⎨
⎪⎩
vn(t) if (bn(t) = on) ∨ (

bm(t) = on

∧ τH
n,m(t) < τ S

n (t)
)

min {vn(t) + 1, vmax} otherwise
(5.18)
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where vmax is another parameter representing the maximum speed. The braking
phase allows to compute vn(t + 2/3) as follows:

vn(t + 2/3) = min
{
vn (t + 1/3) , deff

n,m(t)
}

(5.19)

and the following rule is applied:

If vn(t + 2/3) < vn(t)

then bn(t + 1) = on
(5.20)

According to the randomisation phase, the value of vn(t + 1) is obtained as

vn(t + 1) =
{
max {vn(t + 2/3) − 1, 0} with probability p

vn(t + 2/3) otherwise
(5.21)

and the following rule is applied:

If p = p0 ∧ vn(t + 1) < vn (t + 2/3)

then bn(t + 1) = on
(5.22)

where p0 is a parameter. Finally, according to the move rule, the position of each
vehicle is updated according to the speed just determined, i.e.

xn(t + 1) = xn(t) + vn(t + 1) (5.23)

4. Exits from off-ramps. The number of vehicles exiting a freeway stretch is defined
by means of a probability pout depending on the vehicle class. Note that more
advanced approaches should consider the assignment of the final destination to
every vehicle. Moreover, it would be possible to model the off-ramp as a finite-
capacity buffer, so that, when the buffer is full, a queue grows backwards in the
freeway stretch creating a spillback phenomenon.

5.2.4 Traffic Simulation Tools

Traffic simulation tools are software systemswith a large variety of applications, both
in the urban and in the freeway context. These tools generally implement different
types of traffic models, such as microscopic and mesoscopic models, and provide a
visual framework useful for experimental studies, also in case of large-scale traffic
systems.

In the following, an analysis of the characteristics of the main traffic simulators
available on the market is reported, without presuming to provide in this book a
complete list of all the traffic simulation tools present worldwide. The interested
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Table 5.1 Traffic simulation tools

Name Developer Type of license

Paramics Quadstone Commercial

Aimsun Aimsun Commercial

PTV Vissim PTV Commercial

TSIS-CORSIM McTrans Commercial

MATSim Open Community Open Source

MITSIMLab Massachusetts Institute of Technology Open Source

SUMO DLR Open Source

reader can find more details in the books [4, 5], which are specifically dedicated to
the topic.

Someof the traffic simulators that are presently used by traffic experts and research
centres working on modelling, planning and control of road traffic systems are listed
in Table5.1. Among the commercial traffic simulators, it is worth citing Paramics,
Aimsun, PTV Vissim and TSIS-CORSIM. Paramics, developed by Quadstone, is a
microscopic traffic simulation software used by researchers, engineers and planners
worldwide, and it provides solutions for both freeway and urban networks, includ-
ing public transport, pedestrian modelling and ITS applications. Aimsun is an inte-
grated transport modelling software which has grown from being a micro-simulator
to becoming a fully integrated application with features of travel demand modelling,
macroscopic functionalities and mesoscopic–microscopic hybrid simulation allow-
ing to represent the traffic behaviour in a very detailed way, while preserving compu-
tational efficiency. PTV Vissim is a microscopic multimodal traffic flow simulation
software package developed by PTV. It is conceived for motorised private transport,
goods transport, rail and road public transport, pedestrians and cyclists, and allows to
make a detailed analysis and planning of urban and extra-urban road infrastructure.
TSIS-CORSIM is a microscopic traffic simulation software package for urban sig-
nalised traffic systems, freeway traffic systems or combined urban-freeway systems.
It is based on microscopic traffic models to represent the movements of individ-
ual vehicles, including the influences of geometric conditions, drivers’ behaviours,
presence of traffic control implementations and so on.

Besides these commercial software tools, many open-source traffic simulators
have been developed by open communities or research groups worldwide. Among
them, it is worth mentioning MATSim, MITSIMLab and SUMO. MATSim is an
agent-based micro-simulator, in which every part of the traffic system is represented
as an agent specified by a dynamic behaviour, and the evolution of the entire system
is given by interactions among the various agents. The intermodal simulation is
supported as well and advanced users can extend the source code, written in Java, to
create customised releases adapted to their own purposes. MITSIMLab is an open-
source application, written in C++, developed at the MIT Intelligent Transportation
Systems Program. This platform includes MITSIM, i.e. the traffic simulation tool,
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implementing microscopic traffic models, and TMS, i.e. the traffic management
simulator, whichmodels the implementation of traffic control strategies, such as ramp
metering, mainline control, route guidance and so on. SUMO is a free and open traffic
simulation suite developed in C++, basically devoted to urban mobility, including
intermodal traffic composed of road vehicles, public transport and pedestrians.

Each traffic simulation tool has its own characteristics and it is sometimes difficult
to find the best tool to be used for the simulation of a given traffic case. Some
works in the literature deal with the comparison among the characteristics and the
performance of different software tools for traffic simulations. These comparisons,
and the conclusions drawn in these works, are of course dependant on the considered
test case and on the software version that has been adopted. For instance, [86] reports
a comparison among three traffic simulation software programs, that are CORSIM,
Vissim and Paramics, referring to a test case of an intersection between the U.S.
Highway 50 and the Missouri Flat Road interchange near Placerville, California,
U.S. In this study, the application to the test case showed for instance that Paramics
andVissimare characterised by a larger number of parameters compared toCORSIM,
allowing to more accurate simulations but making the set-up phase more difficult.

Another comparison among traffic simulation tools was done and reported in
[87], where Aimsun, Paramics and Vissim are analysed with specific attention to
the effectiveness of car-following models. This comparative analysis was carried out
considering a real car-following experiment, set in Germany, in which instrumented
vehicles were used to record the speeds and relative distances on a one-lane road.
The same setting was implemented with the three traffic simulators and the simulated
results were compared with field data. The results show that the lowest errors are
obtainedwith theGipps-basedmodels implemented inAIMSUN,while higher errors
are obtained with the psychophysical models used in Paramics and Vissim.

Another comparison related with the car-following rules was discussed in [88],
where the simulators Aimsun, Paramics, Vissim and MITSIM were compared con-
sidering the same test case. According to this study, the number of parameters present
in Vissim and Paramics is very high, whereasMITSIM andAimsun are characterised
by fewer parameters, and, also, inAimsun the parameters have amore intuitivemean-
ing. In this study, some specific microscopic aspects are analysed in detail and the
way how they can be represented with the four traffic simulators is described. For
instance, referring to the reaction time of drivers, in [88] it is observed that AIM-
SUN uses a driver reaction time equal to the simulation time step, which is equal
for all drivers, MITSIM assigns possibly different individual reaction times to every
vehicle, while Vissim and Paramics do not model reaction times explicitly.

The results obtained from the described comparisons highlight how each simula-
tor has strengths and weaknesses; the choice is subject to specific user needs and a
trade-off between different features and performance. Despite the commercial simu-
lators offer the most comprehensive options with programming frameworks that are
carefully designed and optimised, guaranteeing support to the users, the open-source
simulators have the strength that the user can use the source code and properly mod-
ify it. This aspect is relevant for two main reasons: the former is the possibility for
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the users to create an ad-hoc version of the software that meets their precise needs
and the latter lies in the contribution that individual users can give to the developers’
community.

5.3 Mesoscopic Traffic Models

The class of mesoscopic traffic models represents an intermediate approach between
macroscopic traffic models, relying on the dynamics of aggregate variables, and
microscopic traffic models, representing instead the dynamics of each vehicle in the
traffic flow. Mesoscopic models describe the traffic flow dynamics in an aggregate
way but represent the individual behaviour of drivers using probability distribution
functions. In the literature, different mesoscopic modelling approaches are present
[1]. Among them, three main classes can be identified related to headway distribu-
tion models, cluster models and gas-kinetic models. Sections5.3.1–5.3.3 describe,
respectively, these three types of mesoscopic models.

5.3.1 Headway Distribution Models

In headway distributionmodels, attention is posed on the statistical properties of time
headways. Starting from an empirical observation of the distribution of time head-
ways (or, alternatively, of vehicle spacings) and assuming that they are independent
and identical distributed random variables, headway distribution models are based
on the definition of suitable probability density functions for such distributions.

In a first set of works dealing with headway distribution models (see, for example,
[89–91]), stationary distribution models were addressed. These models have shown
to effectively fit empirical data in free-flow traffic conditions but they are not com-
pletely adequate in congested situations.Mixed headway distribution models tackle
this drawback by distinguishing between free-driving vehicles and following vehi-
cles, with the headways of the two categories characterised by different probability
density distributions (see, e.g. [92]).

The characteristic of some stationary distribution models of being mainly suitable
for free-flow conditions is often motivated by the fact that they support an incom-
plete representation of the interactions among vehicles, which are typically weak
and negligible in free-flow conditions and consistent, instead, in congested traffic
cases. More recently, dynamic headway distribution models have been developed to
improve the way in which the dynamic role of traffic is considered. To this end, in
[93] different vehicle types in the different phases of traffic are explicitly modelled,
whereas random matrix theory is used in [94] to predict headway distributions in a
model in which traffic is represented as a set of strongly linked particles under fluc-
tuations. A further work on the topic is, for instance, [95], in which a variance-driven
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adaptation mechanism is defined, according to which drivers increase their safety
time gaps when the local traffic dynamics is unstable or largely varying.

5.3.2 Cluster Models

Cluster models represent the dynamics of traffic flow by describing the formation of
clusters of vehicles, i.e. groups of vehicles which share a specific property. Clusters
usually emerge because of restricted lane-changing possibilities or due to prevailing
weather or ambient conditions. Different aspects of clusters can be considered, such
as their size (the number of vehicles in a cluster) and their speed. Generally, the
size of a cluster is dynamic, i.e. clusters can grow and decay. Clusters are typically
considered as homogeneous, in a sense that the conditions of vehicles inside a cluster,
e.g. their headways or the speed differences, are not explicitly taken into account (see,
for example, [96, 97]).

In particular, clustermodels deal with the rules of cluster formation, the conditions
under which clusters can appear and their characteristics. The basic idea is to find a
physicallymotivated assumption for the transition rates of the attachment and detach-
ment of individual vehicles to a cluster consistent with the empirical observations in
real traffic.

Cluster models are first referred to the simplified case in which only one cluster
is present in the traffic system [97], and then extended to a multi-cluster case [98].
In the case in which a single cluster is considered, the cluster is specified by its size
n, which is the number of aggregated vehicles. Its internal parameters, namely the
headway distance and, consequently, the speed of vehicles in the cluster, are treated
as fixed values independent of the cluster size n. As depicted in Fig. 5.6, a cluster
grows when free vehicles join it at its upstream boundary, and it becomes instead
shorter when vehicles located near its downstream boundary accelerate to leave it.

The processes yielding changes in the cluster size are described as random pro-
cesses in which the probability function P(n, t) for the cluster to have size n at time
t is defined. This function evolves, thanks to the so-called one-step master equation
expressed as follows:

free flowfree flow

cluster size

cluster

q 1/τ

Fig. 5.6 Sketch of a single cluster



5.3 Mesoscopic Traffic Models 133

∂P(n, t)

∂t
= w+(n − 1)P(n − 1, t) + w−(n + 1)P(n + 1, t)

−[w+(n)P(n, t) + w−(n)P(n, t)] (5.24)

where w+(n) and w−(n) are the attachment rate and the rate of vehicles leaving the
cluster when it has size n, respectively. These rates can be considered as constant
values and expressed as w+ = q, w− = 1/τ , where q is the traffic flow before the
cluster and τ is the characteristic time needed to the first vehicle in the cluster to
leave it and to go out from its downstream boundary at a distance approximately
equal to the headway distance in the free-flow state.

On the basis of the balance equation (5.24) and the Fokker–Planck approximation
to calculate mean first passage times or escape rates, it is possible to determine the
dynamics of the traffic pattern formation and, specifically, the time in which the
traffic conditions vary from free-flow to congested, including the influence of the
parameters affecting the discharge and adhesion rates.

The single-cluster case can then be extended to consider the presence of several
clusters of different sizes [98]. It is in this case necessary to model the dynamics of
all the sizes of the clusters and to make the transition rates of the attachment and
detachment of individual vehicles to a cluster consistent with the empirical obser-
vations in real traffic. To this end, the analogy with first-order phase transitions and
nucleation phenomena in physical systems (like supersaturated vapour) is exploited.

In order to make a comparison with real measurements, the results are repre-
sented with a Fundamental Diagram of traffic flow (i.e. the steady-state flow–density
relation), and, then, compared with empirical data. It is also possible to analyse dif-
ferent traffic conditions (free-flow, congested mode and heavy viscous traffic) and to
include on-ramp effects.

5.3.3 Gas-Kinetic Models

Among mesoscopic approaches, the most known models are gas-kinetic models, in
which an analogy between the dynamics of gases and the dynamics of traffic flows
is exploited. In these models, some concepts of statistical physics are introduced,
such as the reduced phase-space density, which is related to the expected number of
vehicles present in an infinitesimal region, travellingwith a speed defined on the basis
of a probability distribution function. Such a concept can be seen as the mesoscopic
version of the macroscopic traffic density. Moreover, the distribution function of
the speed is affected by three processes: the process of convection, the process of
acceleration towards the desired speed and the process of deceleration due to the
interaction among vehicles.

An initial proposal of thesemodelswas presentedbyPrigogine andHerman in [99,
100]. These works introduce the concept of reduced phase-space density ρ̃(x, v, t).
Specifically, the reduced phase-space density ρ̃(x, v, t) can be used to compute the
expected number of vehicles present at time t in the infinitesimal region between
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position x and x + dx , with dx → 0, moving with a speed between v and v + dv,
with dv → 0. This expected number of vehicles can be obtained as ρ̃(x, v, t)dx dv.

The first relation encountered in gas-kinetic traffic flow models is the following
partial differential equation:

∂ρ̃(x, v, t)

∂t
+ v

∂ρ̃(x, v, t)

∂x
=

(
∂ρ̃(x, v, t)

∂t

)
acc

+
(

∂ρ̃(x, v, t)

∂t

)
int

(5.25)

where

• the second term of the left-hand side is the so-called convection term describing
the propagation of the phase-space density with speed v;

• the first term of the right-hand side is the acceleration/relaxation term modelling
the fact that vehicles tend to reach an equilibrium or desired speed;

• the second term of the right-hand side represents the interactionswith surrounding
vehicles; in this term the probability of overtaking is explicitly considered.

According to [100], the acceleration term depends on the desired speed
distribution, denoted as V0(x, v, t), and can be written with the following expres-
sion: (

∂ρ̃(x, v, t)

∂t

)
acc

= − ∂

∂v

(
ρ̃(x, v, t)

V0(x, v, t) − v

τ

)
(5.26)

where τ denotes the acceleration time. This expression represents a collective relax-
ation towards an equilibrium speed dependent on the traffic composition, thus assum-
ing that there is not a correlation between the speeds of slowing-down vehicles and
the speeds of impeding vehicles.

For the interaction term in (5.25), the model by Prigogine and Herman is based
on a set of assumptions, including the so-called vehicular chaos assumption, which
are listed below:

• the length of vehicles can be neglected;
• the interactions affect at most two vehicles;
• if a fast vehicle moving with speed v reaches a vehicle moving with speed w < v,
the fast vehicle either overtakes or reduces its speed to w and:

– the speed w of the slow vehicle is not affected by the interaction;
– the fast vehicle slows down immediately and overtakes immediately;
– the speed of the fast vehicle after overtaking remains equal to v;
– the overtaking event is associated with a probability π , while the slowing-down
event is associated with probability 1 − π .

To model the interactions between pairs of vehicles, the Prigogine–Herman mod-
els consider couples of vehicles located in the infinitesimal positions [x, x + dx)
and [x ′, x ′ + dx ′], driving with speeds [v + dv) and [v′ + dv′), respectively, and
introduces a two-vehicle distribution function φ̃(x, v, x ′, v′, t). This function has the
following meaning: φ̃(x, v, x ′, v′, t)dx dv dx ′ dv′ is the expected number of vehicle
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pairs located at the given infinitesimal areas and with the defined speeds. It can be
noted that the previous assumptions and, specifically, the vehicle-chaos assumption,
imply the following:

φ̃(x, v, x ′, v′, t) = ρ̃(x, v, t)ρ̃(x ′, v′, t) (5.27)

Then, the interaction is modelled with the so-called collision equation given by

(
∂ρ̃(x, v, t)

∂t

)
int

= (1 − π)

∫
(w − v)φ̃(x, v, x,w, t)dw (5.28)

which, by exploiting (5.27), becomes

(
∂ρ̃(x, v, t)

∂t

)
int

= (1 − π)ρ̃(x, v, t)
∫

(w − v)ρ̃(x,w, t)dw (5.29)

This model has received some critiques regarding both the acceleration/relaxation
term and the interaction term. Specifically, the acceleration/relaxation term has been
criticised referring to the fact that the speeds of slowing-down vehicles and the speeds
of impeding vehicles cannot be considered as uncorrelated quantities, meaning that
individual relaxation terms in place of the collective one should be more suitable
to be adopted. A way of overcoming this assumption was proposed in [101], where
a quadratic Boltzmann term is used to represent slowing-down and speeding-up
interactions. Suitable models for driver reaction and vehicular correlation are used
to determine the adopted Boltzmann term.

Other approaches modelling the acceleration term in different ways have been
proposed, by taking into account the individual desired speed v0 and a class-specific
acceleration time τ0. Let us consider in particular the two following extreme cases:

1. all the vehicles can accelerate towards v0 with an acceleration time equal to τ0
(see, e.g. [102]);

2. only vehicles in free-flow conditions can accelerate towards v0 with τ0 as accel-
eration time. Vehicles which are constrained (possibly gathered in platoons) do
not accelerate at all (see, e.g. [103]).

If the former assumption holds, it is

V0(x, v, t) = v0 τ = τ0 (5.30)

and these termsmust be substituted in (5.26). In case, instead, the latter assumption is
considered, the expected fraction θ of platooning vehicles is defined and the following
relation holds:

V0(x, v, t) = θv + (1 − θ)v0 τ = τ0 (5.31)

again to be inserted in (5.26).
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As aforementioned, the Prigogine–Hermanmodel received some critiques regard-
ing the relaxation term, since it appears that the relaxation of the distribution function
is a property of the road, it does not describe the behaviour of drivers, and it cor-
responds to discontinuous speed changes. Again in [102], it is discussed that also
the collision term (as the acceleration term) proposed in the gas-kinetic model by
Prigogine and Herman is only valid when vehicles are not platooning. By consider-
ing a scenario in which a free-flowing vehicle encounters a platoon, two cases are
analysed in [102]:

1. the free-flowing vehicle overtakes the whole queue of vehicles constituting the
platoon;

2. the free-flowing vehicle overtakes each single vehicle in the platoon as if it were
alone.

In [102], it is shown that the Prigogine–Hermanmodel is represented by the second
case, while the real cases stand between these two extreme situations. Moreover, in
[102], a new model is proposed, often known as the Paveri–Fontana model, which
considers a phase-space density explicitly dependent on the individual desired speed
v0, i.e. ρ(x, v, v0, t), being

ρ̃(x, v, t) =
∫

ρ(x, v, v0, t)dv0 (5.32)

Moreover, the interaction term is expressed as

(
∂ρ̃(x, v, t)

∂t

)
int

= −ρ(x, v, v0, t)
∫ v

0
(1 − π)(v − ω)ρ̃(x, ω, t)dω

+ρ̃(x, v, t)
∫ +∞

v
(1 − π)(ω − v)ρ(x, ω, v0, t)dω (5.33)

The overall Paveri–Fontana model can then be written in the following form:

∂ρ̃(x, v, t)

∂t
+ v

∂ρ̃(x, v, t)

∂x
+ ∂

∂v

(
ρ̃(x, v, t)

v0 − v

τ0

)

= −ρ(x, v, v0, t)
∫ v

0
(1 − π)(v − ω)ρ̃(x, ω, t)dω

+ρ̃(x, v, t)
∫ +∞

v
(1 − π)(ω − v)ρ(x, ω, v0, t)dω (5.34)

The complete Paveri–Fontana equation has not been solved in an analytical way,
but it is numerically solved in some special cases. However, it is used as the starting
point to construct macroscopic and mesoscopic models based on the gas-kinetic
theory.

Another issue which is raised with reference to the basic gas-kinetic models is
that the assumption that there are some drivers desiring to drive at any speed, no
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matter how small, seems somewhat unrealistic. The work in [104] addresses the case
in which this assumption does not hold, by showing that at high densities it happens
that a two-parameter family of solutions exist and, thus, continuously distributed
mean speeds can be identified for each density value. This result also gives reason to
the well-known scattering of observed data related to the relationship between speed
and density for high density values.

An extension of the Paveri–Fontana model was proposed in [105], in which a
multi-lane case is considered. Lane changing is explicitly modelled in the following
way: indicating with j the lane index, a multi-lane phase-space density ρ j (x, v, v0, t)
is defined and the following expression holds:

∂ρ j (x, v, v0, t)

∂t
+ v

∂ρ j (x, v, v0, t)

∂x
=

(
∂ρ j (x, v, v0, t)

∂t

)
acc

+
(

∂ρ j (x, v, v0, t)

∂t

)
int

+
(

∂ρ j (x, v, v0, t)

∂t

)
vc

+
(

∂ρ j (x, v, v0, t)

∂t

)
lc

+ v+
j (x, v, v0, t) − v−

j (x, v, v0, t) (5.35)

where v+
j (x, v, v0, t) and v

−
j (x, v, v0, t) are the rates of vehicles entering and leaving

the road at place x , respectively. These rates are different from zero only for merging
lanes at entrances and exits. As for the acceleration term in (5.35), it is assumed that
vehicles are split into a set of vehicles that can move freely and a set of impeded
vehicles that have to move slower than desired, since they are queued behind other
vehicles. As in [103], a proportion of freely moving vehicles is, then, defined and
the acceleration term is only related to the acceleration of these vehicles.

Moreover, the interaction term in (5.35) is similar to the one used in Paveri–
Fontana model, whereas four terms have been added to that previous model. The
first of these terms is a speed diffusion term expressed as

(
∂ρ j (x, v, v0, t)

∂t

)
vc

(5.36)

modelling individual fluctuations of the speed due to imperfect driving, while the
second is a lane-changing term given by

(
∂ρ j (x, v, v0, t)

∂t

)
lc

(5.37)

representing the changes in the phase-space density of a lane due to vehicles moving
to and from the lane itself. Finally, the third and forth terms are the rates of vehicles
entering and exiting the road through merging lanes.

A further extension of the basic gas-kinetic models refers to the explicit represen-
tation of different vehicle classes belonging to a setU . In [106], a multi-class phase-
space densityρu(x, v, v0, t) is introduced,with the index u ∈ U related to the vehicle
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class. In this case, a relation analogous to (5.25) is considered for each vehicle class
with (

∂ρu(x, v, v0, t)

∂t

)
acc

= − ∂

∂v

(
ρu(x, v, v0, t)

v0 − v

τu

)
(5.38)

where τu is the acceleration time of vehicles of class u. Moreover, the interaction
term is defined by separately considering the interactions of vehicles of class u with
vehicles of the same class and with vehicles of other classes. To this end, the two
terms Iu,s(x, t) and Ru,s(x, t) are introduced and expressed respectively as

Iu,s(x, t) =
∫ v

0
(v − w)ρu(x, v, v0, t)ρs(x,w,w0, t)dw dw0 (5.39)

Ru,s(x, t) =
∫ +∞

v
(w − v)ρu(x,w, v0, t)ρs(x, v,w0, t)dw dw0 (5.40)

The interaction term is given by

(
∂ρu(x, v, v0, t)

∂t

)
int

= −(1 − πu)
∑
s

Iu,s(x, t) − Ru,s(x, t) (5.41)

whereπu is the probability associatedwith an overtaking event for vehicles of class u.
It can be noted that the presence of different classes of users results in an asymmetric
slowing-down process for fast vehicles, i.e. fast vehicles are influenced by slow
vehicles more frequently than vice versa.

In [107], a generic traffic model including multi-lane and multi-class aspects
togetherwith the presence of platoons is described. Thismodel gathers all the features
of existing gas-kinetic approaches for representing the traffic behaviour. Specifically,
a phase-state density ρu, j,c(x, v, v0, t) is defined, depending on the vehicle class u,
on the road lane j and on the possible belonging of vehicles to a platoon (c =
2) or not (c = 1). Several drawbacks of previous gas-kinetic models are tackled,
since the model describes separately free-flowing and platooning vehicles instead of
considering vehicles as independent moving entities. This overcomes the limitations
due to the vehicular chaos assumption. Also, the acceleration term is determined in
the model by the platoon leader, as it happens in real cases.

These mesoscopic principles present in gas-kinetic models have been also
exploited to extend macroscopic models. For instance, in [108, 109], a macroscopic
trafficmodel based on gas-kinetic logics is introduced for the case of multiple classes
of vehicles. Analogously, gas-kinetic traffic flow modelling is the basis for a macro-
scopic model considering adaptive cruise control policies in [110]. Specifically, in
[110], two approaches are considered, the former is adapted from [111], while the
latter is a novel one and is based on the introduction of a new relaxation term which
satisfies the time/space-gap principle of adaptive cruise control systems. The kinetic
theory is also used in [112] to derive a new mathematical model of vehicular traffic,
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in which the assumption on the continuously distributed spatial position and speed
of the vehicles is relaxed, consequently resulting in a discretisation of position and
speed of the vehicles.
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