
Chapter 4
Second-Order Macroscopic Traffic
Models

4.1 Continuous Second-Order Models

In order to overcome the weaknesses of first-order models of continuous type (see
Sect. 3.2), second-order traffic flow models were developed and appeared approxi-
mately 20 years later. These models, besides considering the dynamics of the traffic
density, explicitly introduce a dynamic equation for the mean speed. The first contin-
uous second-order traffic flow model was proposed by Payne [1] and Whitham [2],
in the 70s and is generally known as the Payne–Whitham (PW) model. This model
received some critiques, the major one being formulated by Daganzo [3], showing
that classical second-order models can exhibit non-physical solutions. This critique
led to the development of new second-order models, such as those developed by Aw
and Rascle [4], on the one side, and Zhang [5], on the other side. This latter model is
often known as Aw–Rascle–Zhang (ARZ) model. These models are briefly described
in the following subsections, the interested reader can findmoremathematical details
in books specifically dedicated to continuous traffic models, for example, in [6, 7].

4.1.1 The PW Model

The PW model is a continuous traffic flow model of macroscopic type, i.e. it repre-
sents the dynamics of aggregate variables referred to the traffic flow. As described in
Sect. 3.1.1, the main variables considered in continuous macroscopic models are the
traffic density ρ(x, t) [veh/km], the mean speed v(x, t) [km/h], and the traffic flow
q(x, t) [veh/h], with x representing the location and t indicating time.

The PW model is based on the two basic equations of traffic flow models, i.e.
the hydrodynamic equation and the continuity equation, described in Sect. 3.1.1 and
reported in the following:

q(x, t) = ρ(x, t)v(x, t) (4.1)
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∂ρ(x, t)

∂t
+ ∂q(x, t)

∂x
= 0 (4.2)

In the PW model, (4.1) and (4.2) are coupled with a partial differential equation
describing the dynamics of the mean speed, analogously to the momentum equation
of fluid dynamics. This equation is derived from a car-following rule, by applying
Taylor expansion, and it yields

∂v(x, t)

∂t
+ v(x, t)

∂v(x, t)

∂x
= 1

τ
[V (ρ(x, t)) − v(x, t)] + 1

2τ ρ(x, t)

dV (ρ)

dρ

∂ρ(x, t)

∂x
(4.3)

where τ > 0 is a constant called speed adaptation time. The speed equation (4.3) is
composed of convection, relaxation and anticipation terms, which are now analysed
in detail.

The convection term given by

v(x, t)
∂v(x, t)

∂x
(4.4)

describes the fact that the vehicles travelling along the freeway do not adjust their
speed instantaneously.More specifically, let us consider the case inwhich vehicles are
travelling very fast and need to decrease their speed to adapt to a lower downstream
traffic mean speed. They do this gradually, which implies that a higher upstream
speed tends to increase the traffic speed downstream (and the opposite holds in case
of lower upstream speed). In other words, this term describes how the upstream speed
influences the downstream one.

The relaxation term expressed as

1

τ
[V (ρ(x, t)) − v(x, t)] (4.5)

models the fact that all the vehicles tend to adjust their speed to the steady-state
speed V (ρ(x, t)). The speed relaxation time τ is related to the reaction times of the
drivers.

The anticipation term given by

1

2τ ρ(x, t)

dV (ρ)

dρ

∂ρ(x, t)

∂x
(4.6)

describes the capability of the drivers to look ahead and to adjust their actual speed
to the speed compatible with the density downstream. Note that this term can also
be written as

− 1

ρ(x, t)

dp(ρ)

dρ

∂ρ(x, t)

∂x
(4.7)
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where p(ρ) = − 1
2τ V (ρ) is the pressure term, in analogy with fluid dynamics. By

virtue of the non-increasing nature of the steady-state relation between mean speed
and density (see Sect. 3.1.1), the traffic pressure is a non-decreasing function of
density.

It is worth noting that sometimes a diffusive acceleration term, or viscosity term,
is added at the second member of (4.3). Such term is given by

υ
∂2v(x, t)

∂x2
(4.8)

where υ ≥ 0 represents a diffusion coefficient, again by analogywith the fluid theory.

4.1.2 The ARZ Model

The continuous macroscopic models, and in particular the PW model described in
Sect. 4.1.1, rely on the equivalence between traffic and fluids. Yet, as observed in [3],
there are major differences between them, which need to be correctly captured by
traffic models. For instance, in contrast with fluids, vehicles are anisotropic particles
that mostly respond to frontal stimuli, i.e. they are influenced mainly (or only) by the
traffic dynamics ahead of them. Moreover, differently from molecules, drivers have
their own personality. These differences motivate the presence of inconsistencies in
the PW model, corresponding to an unrealistic behaviour, such as negative speeds,
the violation of the anisotropy principle, and the propagation of the information faster
than the speed of vehicles, as highlighted in [3].

Aw and Rascle in [4] proposed a simple modification of the PWmodel in order to
overcome its inconsistencies. Specifically, they consider a version of the PW model
in which both the relaxation term and the diffusive term are neglected and the traffic
pressure is defined as a smooth increasing function of the density ρ, i.e.

p(ρ) = ργ (4.9)

with γ > 0.
Then, instead of adopting the Eulerian point of view, i.e. the one of an exter-

nal observer placed in a fixed spatial position x , the Aw–Rascle model rely on the
Lagrangian point of view, i.e. the one of an internal observer flowing through x
with speed v, as a single vehicle in the traffic flow does. Hence, in the Aw–Rascle
model, the authors suggest to correct the anticipation factor involving the derivative
of the pressure with respect to x with the so-called convective derivative (or material
derivative) of the pressure term. Mathematically, this implies to use the convective
derivative operator Dt := ∂t + v∂x , where v is the actual fluid speed, to derive the
anticipation term of the model. This term can be expressed as
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Dt (p(ρ)) = ∂p(ρ)

∂t
+ v(x, t)

∂p(ρ)

∂t
(4.10)

so that the Aw–Rascle model is given by (4.1), (4.2) and

∂

∂t
(v(x, t) + p(ρ(x, t))) + v(x, t)

∂

∂x
(v(x, t) + p(ρ(x, t))) = 0 (4.11)

with the pressure p(ρ(x, t)) expressed as in (4.9). Note that, as highlighted by the
same authors in [4], the model can create some difficulties from the mathematical
point of view when the density is close to zero, since the model is not well-posed
near the vacuum.

An interesting paper dealing with the controversy on Daganzo’s criticism against
second-order models and the proposal by Aw and Rascle to overcome such draw-
backs is [8]. In this paper, the linear stability of these traffic models is analysed, by
mainly focusing on the characteristic speeds. One of the theoretical inconsistencies
associated with second-order macroscopic traffic models is related to the fact that
they predict two characteristic speeds, one of which is faster than the average speed.
In [8], arguments for and against this view are discussed, by comparing the PW
model with the Aw–Rascle model.

The Aw–Rascle model was extended by introducing relaxation terms, as can be
found, for example, in [9, 10]. Moreover, a model similar to the one proposed by
Aw and Rascle was developed independently and following a different rationale by
Zhang [5]. To correctly consider all the contributors, this model is now often referred
to as the Aw–Rascle–Zhang model or by its acronym ARZ, as for instance in [11].

Analogously to the application of the LWR model to networks (see Sect. 3.2.3),
also the ARZ model has been considered for modelling road networks. In this case,
the traffic dynamics on roads is given by the ARZ model, while specific conditions
or rules must be defined for junctions, in order to determine a unique solution. One
of the first works considering the second-order ARZ model applied to networks is
[12], where the Riemann problem at junctions is solved by specifying suitable rules
on traffic distributions and the maximisation of flows and other quantities. In [13], a
road network is considered as well, with the roads modelled by the ARZ model, in
which a different model for the junctions is taken into account in order to ensure the
conservation of all moments. A further extension of these two junction models can
be found in [14], where the solutions guarantee that all the moments are conserved
and, at the same time, the total flow at the junction is maximised.

4.1.3 Phase-Transition Models

As discussed in Sect. 2.1.3, a very relevant peculiarity of traffic flow is associated
with the form of the Fundamental Diagram, which is obtained from experimental
data. While the left side of this relation (corresponding to the free-flow case) can be
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easily approximated with a straight line, the left part of the curve (corresponding to
the congested regime) is more difficult to be approximated with a single line, since
real data are often very sparse. First-order traffic flow models, which assume that
the speed of vehicles instantaneously adapts to its steady-state value, cannot capture
the aforementioned phenomenon, and this is one of the reasons that have motivated
researchers to introduce second-order models.

By following the three-flow phase theory developed by Kerner [15], reporting that
three different behaviours can be observed in traffic flow (free-flow, synchronised
flow, and wide moving jams), some phase-transition models appeared in the litera-
ture. In [16], free-flow and congestion are seen as two different phases, governed by
different dynamic equations. In particular, in free-flow conditions, a classical LWR
model, of first-order type, is used, while the congested case is represented through
a second-order model with dynamic equations defined for the density and for the
linearised momentum.

A generalisation of the model proposed in [16] can be found in [17], where a
different Fundamental Diagram form is used for the free-flow phase and a variety of
possible Fundamental Diagrams is allowed for the congested case, depending on the
shape resulting from real data. The accuracy and practicality of this phase-transition
model were assessed in [18]. Another phase-transition model was proposed in [19],
where the first-order LWR model is coupled with the second-order ARZ model and
a transition dynamics from the free-flow to the congested behaviour is introduced.
Such model well fits the experimental data and is able to overcome some of the
drawbacks of the ARZ model.

The extension of phase-transition models to road networks was addressed for
the first time in [20], where, specifically, the phase-transition model presented in
[16] is taken into account. In [20], the existence of solutions is proved, without
any restriction on the network geometry. The same phase-transition model was also
adopted in [21], where a specific model for junctions is considered, also including
the presence of precedences among different incoming and outcoming flows.

4.2 Discrete Second-Order Models

The first discretised versions of the PW model appeared in the literature in the late
80s [22, 23], with applications to the Boulevard Périphérique in Paris. In particular,
in [22, 23], the PW model is discretised in space and time, considering new terms
to model the influence of on-ramp and off-ramp flows on the mainstream dynamic
behaviour. This model was then extended to consider a freeway network [24, 25], by
means of the simulation program calledMETANET, which is an acronym for ‘Modèle
d’Écoulement de Trafic sur Autoroute NETworks’. Even if the nameMETANETwas
firstly associated with the simulation tool for the freeway network, it is now normally
used to indicate the second-order traffic flow model in the discretised version. This
latter is the meaning of METANET adopted in this book.
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In the remainder of this chapter different versions of the METANET model are
reported, for a freeway stretch and for a freeway network, both in the single-class
case and in the multi-class version.

4.2.1 METANET for a Freeway Stretch

Let us consider the METANET model for a freeway stretch with on-ramps and
off-ramps, as proposed in [22, 23] and reported here with a slightly different math-
ematical notation in order to adapt to the notation adopted in this book.

As aforementioned, this model is discrete in space and time, i.e. the freeway
stretch is divided into a given number of road portions, called sections, and the time
horizon is partitioned into time intervals of equal length. Let N be the number of
sections, each one having length Li [km], i = 1, . . . , N , and K be the number of time
intervals, with sample time T [h]. In the METANETmodel, on-ramps and off-ramps
are assumed to be present within the sections, differently from the case considered in
the CTM, where ramps are assumed to be at the interface between subsequent cells
(see Sect. 3.3).

Figure4.1 shows a sketch of the subdivision of the freeway stretch into sections,
with the main variables of the METANET model. For each section i = 1, . . . , N ,
and for each time step k = 0, . . . K , the following quantities are defined:

• ρi (k) is the traffic density in section i at time kT [veh/km];
• vi (k) is the mean traffic speed in section i at time kT [km/h];
• qi (k) is the traffic flow leaving section i during time interval [kT, (k + 1)T )

[veh/h];
• ri (k) is the on-ramp traffic flow entering section i during time interval [kT,

(k + 1)T ) [veh/h];
• si (k) is the off-ramp traffic flow exiting section i during time interval [kT,

(k + 1)T ) [veh/h].

The parameters of the model are as follows: vfi is the free-flow speed [km/h] of
section i , ρcr

i is the critical density [veh/km] of section i , ρmax
i is the jam density

Fig. 4.1 Sketch of the division of the freeway stretch into sections and the relative notation in
METANET



4.2 Discrete Second-Order Models 91

[veh/km] of section i , i = 1, . . . , N , τ , ν, χ , δon are model parameters present in
the speed equation, while a is a parameter present in the steady-state speed–density
relation.

The METANET model is given by the following finite difference equations:

ρi (k + 1) = ρi (k) + T

Li

[
qi−1(k) − qi (k) + ri (k) − si (k)

]
(4.12)

vi (k + 1) = vi (k) + T

τ
[V (ρi (k)) − vi (k)] + T

Li
vi (k)

[
vi−1(k) − vi (k)

]

−νT
[
ρi+1(k) − ρi (k)

]

τ Li [ρi (k) + χ ]
− δonT

vi (k)ri (k)

Li [ρi (k) + χ ]
(4.13)

where i = 1, . . . , N , k = 0, . . . , K − 1, while the traffic flow to be used in (4.12) is

qi (k) = ρi (k)vi (k) (4.14)

and the steady-state speed–density relation adopted in (4.13) is given by

V (ρi (k)) = vfi exp

[
−1

a

(
ρi (k)

ρcr
i

)a]
(4.15)

Equation (4.12) represents the conservation of vehicles, while (4.13) is a
discretisation of the speed equation of the PWmodel, with an additional term. Hence,
as in the speed equation (4.3) of the PW model, relaxation, convection and anticipa-
tion terms can be identified, as well as a fourth term to model the influence of cars
entering from the on-ramp.

The relaxation term, i.e. T
τ
[V (ρi (k)) − vi (k)], models the fact that vehicles tend

to reach the steady-state speed depending on the experienced densityρi (k), according
to a parameter τ , which represents the swiftness of drivers. Hence, vehicles accelerate
if their actual speed is lower than the steady-state value, and theydecelerate otherwise.

The convection term, i.e. T
Li

vi (k)
[
vi−1(k) − vi (k)

]
, represents the fact that

vehicles arriving in section i from section i − 1 cannot adapt immediately their
speed. If vehicles travel in section i − 1 at a higher speed than in section i , they
decelerate when they reach section i but this change of speed is not instantaneous.
A similar argument applies in case of acceleration from section i − 1 to section i .

The anticipation term, i.e.− νT [ρi+1(k)−ρi (k)]
τ Li [ρi (k)+χ] , takes into account that drivers adjust

their speed also on the basis of the situation they see downstream, hence there is a
deceleration if a higher density is seen ahead, and an acceleration in the opposite
case.

Finally, the fourth term −δonT vi (k)ri (k)

Li [ρi (k)+χ] was introduced in [22] to model the
direct impact of the on-ramp entering flow ri (k) on the speed dynamics (note that a
similar term was also proposed in [26]). Indeed, vehicles entering from the on-ramps
normally have a lower speed than vehicles in themainstream, inducing a deceleration
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on these latter vehicles, which is more relevant if the entering flows are high. In [22],
the authors suggest to use a similar term with si (k) replacing ri (k) and δoff replacing
δon, to model the speed reduction due to the exit of vehicles through the off-ramps.

In theMETANETmodel for a freeway stretch, given by (4.12)–(4.15), the bound-
ary conditions are the trafficflowentering thefirst road section, i.e.q0(k), the on-ramp
and off-ramp traffic flows ri (k) and si (k), i = 1, . . . , N , the mean traffic speed in
the section before the first one, i.e. v0(k), the traffic density in the section after the
last one, i.e. ρN+1(k), k = 0, . . . , K .

Note that the variables referred to on-ramps and off-ramps are defined for all the
sections and are imposed to be equal to 0, i.e. ri (k) = 0, si (k) = 0, k = 0, . . . , K ,

in case section i ∈ {1, . . . , N } is not equipped with ramps.

4.2.2 METANET with On-Ramp Queue Dynamics

The METANET model reported in Sect. 4.2.1 describes the dynamic evolution of
the traffic density and the mean speed in a freeway stretch with on-ramps and off-
ramps, but it does not model the possible queues at the on-ramps. This latter aspect
is particularly relevant when ramp metering control approaches are studied, as, for
instance, in [27, 28].

As shown in Fig. 4.2, the following dynamic quantities are added to the model in
order to include the dynamics of the queues at the on-ramps and the possible presence
of a ramp metering controller:

• li (k) is the queue length of vehicles waiting in the on-ramp of section i at time kT
[veh];

• di (k) is the flow accessing the on-ramp of section i during time interval [kT, (k +
1)T ) [veh/h];

Fig. 4.2 Sketch of freeway stretch in case of on-rampqueues and the relative notation inMETANET
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• rCi (k) is the ramp metering control variable, i.e. the flow computed by the ramp
metering controller that should enter section i from the on-ramp during time inter-
val [kT, (k + 1)T ) [veh/h].

Besides the parameters of the model described in Sect. 4.2.1, another parameter
is considered. This parameter is rmax

i , which represents the capacity of the on-ramp
of section i , i = 1, . . . , N .

The dynamic equation of the on-ramp queue length, for i = 1, . . . , N , k =
0, . . . , K − 1, is given by

li (k + 1) = li (k) + T [di (k) − ri (k)] (4.16)

In this model, the flow ri (k) entering the mainstream from the on-ramp is not
a boundary condition, as in the model described in Sect. 4.2.1, since the boundary
condition is now given by the demand di (k). The flow ri (k) is computed in a different
way depending on the fact that the on-ramp in section i is uncontrolled or controlled
with ramp metering policies. Let us distinguish these two cases.

Uncontrolled On-Ramps In case the on-ramp of section i is uncontrolled, the flow
ri (k) entering the mainstream from the on-ramp of section i during time interval
[kT, (k + 1)T ) is computed as

ri (k) = min

{
di (k) + li (k)

T
, rmax

i , rmax
i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.17)

Equation (4.17) computes the on-ramp flow as the minimum between three val-
ues: the flow corresponding to the vehicles in the on-ramp (waiting in the queue
or reaching it), the on-ramp capacity, and the maximum flow that should enter the
mainstream due to the traffic conditions. Note that this third term is computed as a
reduction of the on-ramp capacity in case traffic conditions in themainstreambecome
congested, i.e. if ρi (k) > ρcr

i .

Controlled On-Ramps If the on-ramp of section i is controlled, the flow ri (k)

entering the mainstream from the on-ramp of section i during time interval [kT, (k +
1)T ) is given by

ri (k) = min

{
di (k) + li (k)

T
, rmax

i , rCi (k), rmax
i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.18)

in which the flow computed by the ramp metering controller rCi (k) is added as a
fourth term in the minimum function.

In some cases, it is preferable to represent the controlled case in a slightly different
way, i.e. instead of considering the flow rCi (k) as ramp metering control variable,
the metering rate μi (k) ∈ [μmin

i , 1] is adopted as control variable, μmin
i being the

minimum on-ramp metering rate. If μi (k) = 1, no ramp metering policy is applied,
while ramp metering becomes active if μi (k) < 1. In this case, (4.18) is replaced by
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the following:

ri (k) = μi (k)min

{
di (k) + li (k)

T
, rmax

i , rmax
i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.19)

The augmented METANET model to include the on-ramp queue dynamics for a
freeway with off-ramps and on-ramps is given by (4.12)–(4.16), with (4.17) if the
on-ramps are not controlled, and (4.18) or (4.19) for the controlled on-ramps. The
boundary conditions are, in this case, the traffic flow entering the first road section,
i.e. q0(k), the off-ramp traffic flows si (k), the on-ramp demands di (k), i = 1, . . . , N ,
the mean traffic speed in the section before the first one, i.e. v0(k), the traffic density
in the section after the last one, i.e. ρN+1(k), k = 0, . . . , K .

As in Sect. 4.2.1, the variables referred to on-ramps and off-ramps are defined
for all the sections. They are then fixed to 0, i.e. ri (k) = 0, di (k) = 0, li (k) = 0,
si (k) = 0, k = 0, . . . , K , if section i ∈ {1, . . . , N } is not equipped with ramps.

Note that the equation for the queue dynamics can be also adopted to consider
the possible queue which is created to enter the considered freeway stretch. In that
case, l0(k) denotes this queue length and its dynamics is modelled similarly to (4.16),
where the demand is d0(k) and the flow entering the mainstream is q0(k).

4.2.3 METANET for a Freeway Network

The METANET model described in the previous sections for a freeway stretch has
been extended to consider a freeway network of arbitrary topology, including freeway
stretches, bifurcations, on-ramps and off-ramps, in all types of traffic conditions, and
also in case of events causing capacity reduction [24, 25].

According to thismodel, the freewaynetwork is represented bymeans of a directed
graph (see Fig. 4.3) composed of:

• M freeway links, i.e. freeway stretches with homogeneous geometric char-
acteristics (number of lanes, curvatures and so on);

• O origin links, i.e. links which forward traffic flows from outside into the con-
sidered freeway network (they can represent either on-ramps or other freeway
stretches merging in the considered network);

• N nodes, representing junctions, bifurcations, merging on-ramps or diverging off-
ramps, connecting no more than three links.

Note that the assumptions aforementioned are not restrictive and allow to represent
any type of freeway network. As a matter of fact, in case a freeway stretch presents
inhomogeneous characteristics, it can be represented by two or more consecutive
links separated by nodes positioned where the road geometry changes. Moreover, in
case of a complex node connectingmore than three links, it can be easily decomposed
into more nodes meeting such condition, by introducing dummy links and dummy
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Origin link

Freeway link
Node

Fig. 4.3 Links and nodes in a freeway network according to METANET

nodes. Finally, note that the two directions of a freeway stretch should be represented
as separate links with opposite directions.

Each freeway linkm = 1, . . . , M is further divided into Nm sections which have a
length denoted with Lm [km] and a number of lanes indicated with λm . Also, for each
node n = 1, . . . , N , On is the set of exiting links, and In , Īn are the set of entering
freeway links and entering origin links, respectively.

The METANET model may be used to describe the traffic behaviour in a freeway
network in two different ways: in a non-destination-oriented mode, when the traffic
assignment problem is not considered and the destination of vehicles travelling in the
network is neglected, or in a destination-oriented mode, when instead the drivers’
route choice behaviour is considered and the choice of road users among alterna-
tive paths is explicitly modelled. In this section, the destination-oriented model is
reported, since it is more general and particularly useful in case route guidance con-
trol is applied to the traffic network. The model in the non-destination-oriented mode
is similar to the destination-oriented one, but it does not include the variables which
depend on the destination of drivers (see [25] for further details).

In the destination-oriented model, for each link and for each node, it is necessary

to specify the set of reachable destinations. Let us denotewith Jm , J̄o,
¯̄Jn , respectively,

the sets of destinations reachable from freeway link m = 1, . . . , M , from origin link
o = 1, . . . , O , and from node n = 1, . . . , N .

The time horizon is divided into K time intervals, with sample time interval T [h].
The variables referring to the freeway links, for each freeway link m = 1, . . . , M ,
for each section i = 1, . . . , Nm , and for each time step k = 0, . . . , K , are:

• ρm,i, j (k) is the partial traffic density in section i of link m at time instant kT with
destination j ∈ Jm [veh/km/lane];

• ρm,i (k) is the traffic density in section i of link m at time instant kT [veh/km/lane];



96 4 Second-Order Macroscopic Traffic Models

• vm,i (k) is the mean traffic speed in section i of link m at time instant kT [km/h];
• qm,i (k) is the traffic flow leaving section i of link m during time interval [kT, (k +
1)T ) [veh/h];

• γm,i, j (k) ∈ [0, 1] is the composition rate, i.e. the portion of flow in section i of
link m at time instant kT having destination j ∈ Jm ; the values of the composition
rates must verify that

∑
j∈Jm

γm,i, j (k) = 1.

The variables referring to the origin links, for each origin link o = 1, . . . , O and
for each time step k = 0, . . . , K , are:

• do, j (k) is the partial origin demand entering origin link o at time instant kT with
destination j ∈ J̄o [veh/h];

• do(k) is the origin demand entering origin link o at time instant kT [veh/h];
• lo, j (k) is the partial queue length at origin link o at time instant kT with destination

j ∈ J̄o [veh];
• lo(k) is the queue length at origin link o at time instant kT [veh];
• γo, j (k) ∈ [0, 1] is the composition rate, i.e. the portion of flow leaving origin link

o at time instant kT having destination j ∈ J̄o; the values of the composition rates
must verify that

∑
j∈ J̄o

γo, j (k) = 1;
• θo, j (k) ∈ [0, 1] is the portion of the demand originating in origin link o at time
instant kT having destination j ∈ J̄o; analogously to the composition rates, it holds
that

∑
j∈ J̄o

θo, j (k) = 1;
• qo(k) is the traffic flow leaving origin link o during time interval [kT, (k + 1)T )

[veh/h];
• rCo (k) is the ramp metering control variable, i.e. the flow computed by the ramp
metering controller that should enter from the origin link o during time interval
[kT, (k + 1)T ) [veh/h].

The variables referring to the nodes, for each node n = 1, . . . , N and for each
time step k = 0, . . . , K , are:

• Qn, j (k) is the flow entering node n during time interval [kT, (k + 1)T ) with

destination j ∈ ¯̄Jn [veh/h];
• βm,n, j (k) ∈ [0, 1] is the splitting rate, i.e. the portion of flow present in node n at

time instant kT which chooses link m to reach destination j ∈ ¯̄Jn; the values of
the splitting rates must verify that

∑
μ∈On

βμ,n, j (k) = 1.

The model parameters are: vfm is the free-flow speed [km/h] in each section of
link m, ρcr

m is the critical density [veh/km/lane] in each section of link m, ρmax
m is

the jam density [veh/km/lane] in each section of link m, m = 1, . . . , M , qmax
o is the

capacity of origin link o, o = 1, . . . , O , whereas τ , ν, χ , δon, φ are model parameters
present in the speed equation, and am , m = 1, . . . , M , is a parameter characterising
the steady-state speed–density relation.

Let us now distinguish the model equations of the freeway links, the origin links
and the nodes, in case of possible controlled on-ramps and route guidance control
actions. Moreover, an additional description is added to show how METANET has
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been extended to include the application of mainstream control actions in terms of
variable speed limits.

Freeway Links The equations characterising freeway links are an extension of
(4.12)–(4.15), taking into account that in the network model the traffic densities
are expressed per lane and that the destinations are taken into account. In particular,
the conservation equation is here written for the partial traffic density, i.e.

ρm,i, j (k + 1) = ρm,i, j (k) + T

Lmλm

[
γm,i−1, j (k)qm,i−1(k) − γm,i, j (k)qm,i (k)

]

(4.20)

where m = 1, . . . , M , i = 1, . . . , Nm , j ∈ Jm , k = 0, . . . , K − 1, and the following
relations hold:

ρm,i (k) =
∑

j∈Jm

ρm,i, j (k) (4.21)

γm,i, j (k) = ρm,i, j (k)

ρm,i (k)
(4.22)

The speed dynamic equation is

vm,i (k + 1) = vm,i (k) + T

τ

[
V

(
ρm,i (k)

) − vm,i (k)
]

+ T

Lm
vm,i (k)

[
vm,i−1(k) − vm,i (k)

] − νT
[
ρm,i+1(k) − ρm,i (k)

]

τ Lm
[
ρm,i (k) + χ

] (4.23)

where m = 1, . . . , M , i = 1, . . . , Nm , k = 0, . . . , K − 1. The traffic flow in (4.20)
and the steady-state speed–density relation in (4.23) are given by

qm,i (k) = ρm,i (k)vm,i (k)λm (4.24)

V
(
ρm,i (k)

) = vfm exp

[
− 1

am

(
ρm,i (k)

ρcr
m

)am
]

(4.25)

In (4.23), an additional term can be added to take into account the speed reduction
caused bymerging phenomena near on-ramps, analogous to the fourth term in (4.13).
In particular, let us consider a node in which an origin link o enters and let us denote
with m the link exiting that node; in the first section of link m there is a speed
reduction given by

− δonT
vm,1(k)qo(k)

Lmλm
[
ρm,1(k) + χ

] (4.26)

In (4.23), it is possible to add a further additional term tomodel the speed reduction
due to weaving phenomena in case of lane reductions in themainstream. By denoting
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with Δλ the number of lanes dropped between link m and the following one, the
speed reduction in the last section of link m is given by

− φT Δλ
vm,Nm (k)2ρm,Nm (k)

Lmλmρcr
m

(4.27)

The boundary conditions in (4.23) are the virtual downstream density ρm,Nm+1(k)

at the end of the link and the virtual upstream speed vm,0(k) at the beginning of the
link. In case of nodes with one input link and output link, these values are obtained
directly from adjacent links, but in case of nodes with more than two links, these
values must be computed as suitable weighted sums. In particular, if node n (at the
end of link m) has more than one leaving link, the virtual downstream density can
be computed as in (4.65), i.e.

ρm,Nm+1(k) =
∑

μ∈On
ρμ,1(k)2

∑
μ∈On

ρμ,1(k)
(4.28)

where the quadratical relation is used to represent the fact that a highly loaded link
contributes to the spillback more than proportionally.

In case node n (at the beginning of link m) has more than one entering link, the
virtual upstream speed may be computed as

vm,0(k) =
∑

μ∈In
vμ,Nμ

(k)qμ,Nμ
(k)

∑
μ∈In

qμ,Nμ
(k)

(4.29)

Origin Links The equations of the origin links are analogous to (4.16)–(4.19),
adapted to the network model. In particular, the dynamic evolution of the partial
queue length is calculated as

lo, j (k + 1) = lo, j (k) + T
[
do, j (k) − γo, j (k)qo(k)

]
(4.30)

where o = 1, . . . , O , j = 1, . . . , J̄o, k = 0, . . . , K − 1, and the following relations
hold:

lo(k) =
∑

j∈ J̄o

lo, j (k) (4.31)

γo, j (k) = lo, j (k)

lo(k)
(4.32)

do, j (k) = θo, j (k)do(k) (4.33)

The traffic flow leaving origin link o and entering the mainstream, i.e. entering
the downstream link m, is given by
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qo(k) = min

{
do(k) + lo(k)

T
, qmax

o , qmax
o

ρmax
m − ρm,1(k)

ρmax
m − ρcr

m

}
(4.34)

If, instead, the considered origin link o is a controlled on-ramp, the traffic flow
leaving origin link o and entering link m is computed as

qo(k) = min

{
do(k) + lo(k)

T
, qmax

o , rCo (k), qmax
o

ρmax
m − ρm,1(k)

ρmax
m − ρcr

m

}
(4.35)

As already mentioned in Sect. 4.2.2, in some cases the considered control variable
is the metering rate μo(k) ∈ [μmin

o , 1], μmin
o being the minimum on-ramp metering

rate. In these cases, (4.35) can be substituted by

qo(k) = μo(k)min

{
do(k) + lo(k)

T
, qmax

o , qmax
o

ρmax
m − ρm,1(k)

ρmax
m − ρcr

m

}
(4.36)

Equations (4.30)–(4.35) can be slightly modified to represent the so-called store-
and-forward links, which are links characterised not only by a capacity and a queue
length but also by constant travel times. These links are useful to consider urban
zones or motorway-to-motorway control [25].

Nodes The model of the nodes does not represent any dynamic behaviour, but only
conservation of flows. The total traffic flow entering node n = 1, . . . , N with des-

tination j ∈ ¯̄Jn , referred to time step k = 0, . . . , K , is computed as the sum of the
entering flows with destination j , i.e.

Qn, j (k) =
∑

μ∈In

qμ,Nμ
(k)γμ,Nμ, j (k) +

∑

o∈ Īn

qo(k)γo, j (k) (4.37)

The traffic flow exiting node n = 1, . . . , N and entering the first section of link
m = 1, . . . , M , referred to time step k = 0, . . . , K , is calculated as the sum of flows
choosing link m in the bifurcation, i.e.

qm,0(k) =
∑

j∈Jm

βm,n, j (k)Qn, j (k) (4.38)

Equation (4.38) is used to set the boundary conditions qm,0(k) in (4.20), where
other boundary conditions are γm,0, j (k), which are computed as

γm,0, j (k) = βm,n, j (k)Qn, j (k)

qm,0(k)
(4.39)

In presence of route guidance control, the splitting rates become the control vari-
ables, but it is in this case important to distinguish among different variables repre-
senting splitting rates. The following quantities are added to the model:
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• βC
m,n, j (k) ∈ [0, 1] is the route guidance control variable, i.e. the splitting rate

defined by a suitable traffic controller to be actuated at node n and representing
the portion of flow present in node n at time instant kT which should choose link

m to reach destination j ∈ ¯̄Jn;
• βN

m,n, j (k) ∈ [0, 1] is the nominal splitting rate, i.e. the portion of flow present in
node n at time instant kT which would spontaneously choose link m to reach

destination j ∈ ¯̄Jn .

Note that βC
m,n, j (k) is the splitting rate defined with a suitable control approach

and communicated to drivers through the visualisation of proper recommendations
on Variable Message Signs (VMSs). If, for instance, βC

m,n, j (k) = 1, this means that
it is recommended to drivers to choose link m to reach destination j .

The effective splitting rates depend both on these splitting rates suggested through
VMSs and the natural and spontaneous route choice of the drivers, according to a
compliance rate εm,n ∈ [0, 1], which is a model parameter. In the considered model,
the effective splitting rates βm,n, j (k) are obtained as a weighing sum of the sug-
gested rates βC

m,n, j (k) and the nominal rates βN
m,n, j (k) resulting in absence of route

recommendations, i.e.

βm,n, j (k) = (1 − εm,n)β
N
m,n, j (k) + εm,nβ

C
m,n, j (k) (4.40)

Freeway links controlled with variable speed limits The original METANET
model [25] does not describe the effect of variable speed limits applied in free-
way links through VMSs. There are many different ways in which researchers have
modelled this aspect but, up to now, there is not one model that is universally known
as a suitable representation of variable speed limits in freeways. We will report two
possible developments of METANET, widely adopted by researchers, which model
the presence of variable speed limits in a freeway link in terms of a variation of the
steady-state speed–density relation V

(
ρm,i (k)

)
given by (4.25).

The model proposed in [29, 30] was developed in contrast with early models [31]
in which the effect of speed limits was considered by scaling down the desired speed,
consequently changing the shape of the whole Fundamental Diagram and reducing
the capacity. According to the authors of [29, 30], that approach was not realistic
and, then, a more realistic model was introduced, by assuming that the steady-state
speed in case of variable speed limits is the minimum between the usual steady-state
speed and the speed caused by the limit imposed through VMSs. According to this
view, let us consider the following additional variable:

• vCm,i (k) is the variable speed limit control variable representing the traffic speed
to display in section i of link m during time interval [kT, (k + 1)T ) [km/h].

Then, the steady-state speed–density relationship becomes

V
(
ρm,i (k)

) = min

{
vfm exp

[
− 1

am

(
ρm,i (k)

ρcr
m

)am
]

, (1 + α)vCm,i (k)

}
(4.41)
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where α models the compliance rate of drivers. In (4.41), the control variable vCm,i (k)

ismultiplied for (1 + α) because drivers normally do not follow completely the speed
limits and their desired speed is usually higher than the imposed speed limit (see [29,
30] for more details on this model).

Another development of METANET to consider variable speed limits has been
proposed more recently [32, 33]. In [32, 33], again, the steady-state speed–density
relationship depends on the speed displayed onVMSs but the dependence is different
from the one provided in (4.41), as well as the meaning of the control variable.
Specifically, let us introduce the following additional variable:

• bm(k) ∈ [bmin, 1] is the variable speed limit control variable, representing the
variable speed limit rate to display in each section of link m during time interval
[kT, (k + 1)T ).

Note that bmin is a lower admissible bound for the control variable. This latter can
be interpreted as a rate limiting the speed of vehicles, hence bm(k) = 1means that no
variable speed limits are applied, while the control case corresponds to bm(k) < 1.
In this model, the steady-state speed–density relationship is written analogously to
(4.25) but with parameters dependent on bm(k), i.e.

V
(
ρm,i (k), bm(k)

) = vfm (bm(k)) exp

[

− 1

am (bm(k))

(
ρm,i (k)

ρcr
m (bm(k))

)am (bm (k))
]

(4.42)

where the dependence of the parameters on bm(k) is of affine type, as follows:

vfm (bm(k)) = vfmbm(k) (4.43)

ρcr
m (bm(k)) = ρcr

m [1 + Am(1 − bm(k))] (4.44)

am (bm(k)) = am [Em − (Em − 1)bm(k)] (4.45)

in which Am and Em are model parameters. Note that, when bm(k) = 1, (4.42) is
equal to (4.25).

To summarise, the METANET model for a freeway network is given by (4.20)–
(4.40), with (4.41) or (4.42)–(4.45) instead of (4.25) in case of variable speed limits.
The boundary conditions are the demands of the origin links do(k), with the ratios of
these demands for each destination, i.e. θo, j (k), o = 1, . . . , O , j ∈ J̄o, k = 0, . . . , K ,
and the traffic density in the sections downstream the considered freeway network,
i.e. ρm,Nm+1(k), k = 0, . . . , K , for links m ∈ {1, . . . , M}which are destination links.
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4.3 Multi-class Second-Order Models

As discussed in Sect. 3.4, there are many motivations for explicitly modelling the
presence of multiple classes of vehicles in the traffic flow. These motivations not
only apply for first-order traffic flow models but also for second-order models. Nev-
ertheless, less research studies have dealt with the developments of second-order
macroscopic models for the multi-class context, compared with first-order models,
and these studies are rather recent.

In particular, few works in the multi-class literature deal with continuous second-
order traffic flow models. For instance, in [34], starting from a car-following model
for heterogeneous traffic flow and exploiting the relationship between micro and
macro variables, a macroscopic traffic model is developed to represent the flow
dynamics of cars and buses. In [35], the Aw–Rascle model is extended to represent
heterogeneous traffic flow: in that paper, this model is calibrated using data from an
arterial section in India and the results are compared with those obtained from other
multi-class traffic models.

The literature on discrete second-order traffic flow models extended to the multi-
class case is limited as well. In [36], the METANET model is adapted to represent a
heterogeneous flow, considering an interpolation among the different Fundamental
Diagrams of each class of vehicles, and is exploitedwithin aModel PredictiveControl
(MPC) approach. A different multi-class second-order traffic model is proposed in
[37], extending the approach proposed in [38]. In [37], each vehicle class is subject to
its own single-class Fundamental Diagram, and is limited within an assigned space.

Anothermulti-class extension of theMETANETmodelwas proposed in [39], then
slightly modified in [40, 41] for a freeway stretch and in [42] for a freeway network.
In these latter models, the interaction among the different classes of vehicles is
modelled through a Fundamental Diagram, different for each class, in which the
flow of each class depends on the total density. In the following subsections, this
latter multi-class model is analysed more in detail, respectively for a freeway stretch
and for a network.

4.3.1 A Multi-class Second-Order Model for a Freeway
Stretch

The model reported in this section was proposed in [40, 41], for the case of a multi-
class ramp metering strategy. It is worth noting that considering a multi-class ramp
metering policy implies that separate lanes and separate traffic lights are present at
the on-ramps for different vehicles classes; the most realistic case is surely the one in
which cars and trucks are distinguished and the on-ramps are divided in two different
lanes.

The considered model extends the METANET model for a freeway stretch,
described in Sects. 4.2.1 and 4.2.2, to the case in which different classes of vehi-
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cles are taken into account. Even though some notation of the multi-class model is
common to the one-classmodel, for the reader’s convenience the entire nomenclature
of the multi-class model is reported and described in the following.

The consideredmulti-classmacroscopic traffic flowmodel is based on the division
of the freeway stretch into N sections and the discretisation of the time horizon into
K time intervals. Moreover, C classes of vehicles are considered. Let T indicate the
sample time interval and Li the length [km] of section i , i = 1, . . . , N .

In order to correctly model the presence of different types of vehicles, let us
introduce the parameter ηc, c = 1, . . . , C , which represents a conversion factor of
vehicles of class c into cars. This parameter has ameaning analogous to the definition
of Passenger Car Equivalents (PCE), that is the number of passenger cars displaced
by a single heavy vehicle of a particular type under specific traffic and control con-
ditions [43]. This parameter can vary depending on the traffic conditions in a road
portion [44], but in this multi-class traffic model, ηc, c = 1, . . . , C , is assumed to be
a constant value.

For each section i = 1, . . . , N , and for each time step k = 0, . . . K , the main
aggregate variables of the model are defined for each class c = 1, . . . , C :

• ρc
i (k) is the traffic density of class c in section i at time kT [vehc/km];

• vc
i (k) is the mean traffic speed of class c in section i at time kT [km/h];

• qc
i (k) is the traffic flow of class c leaving section i during time interval [kT, (k +
1)T ) [vehc/h];

• rc
i (k) is the on-ramp traffic flow of class c entering section i during time interval

[kT, (k + 1)T ) [vehc/h];
• sc

i (k) is the off-ramp traffic flow of class c exiting section i during time interval
[kT, (k + 1)T ) [vehc/h];

• lc
i (k) is the queue length of vehicles of class c waiting in the on-ramp of section i
at time kT [vehc];

• dc
i (k) is the flow of class c accessing the on-ramp of section i during time interval

[kT, (k + 1)T ) [vehc/h];
• rC,c

i (k) is the ramp metering control variable, i.e. the flow of class c, computed by
the ramp metering controller, that should enter section i from the on-ramp during
time interval [kT, (k + 1)T ) [vehc/h].

To correctly define the multi-class model, some variables referred to the total flow
of vehicles are also required, as follows:

• ρi (k) is the traffic density in section i at time kT [PCE/km];
• ri (k) is the total on-ramp traffic flow entering section i during time interval

[kT, (k + 1)T ) [PCE/h].

The considered model includes some traffic parameters. Specifically, vf,ci is the
free-flow speed [km/h] referred to class c and section i , ρcr

i is the critical density
[PCE/km] of section i , ρmax

i is the jam density [PCE/km] of section i , rmax,c
i is the

on-ramp capacity for class c and section i [vehc/h], c = 1, . . . , C , i = 1, . . . , N ,
while τ c, νc, χ c, δc

on are model parameters present in the speed equation, and lc, mc

are parameters of the steady-state speed–density relation, c = 1, . . . , C .
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On the basis of the single-class model (4.12)–(4.18), the multi-class traffic model
for a freeway stretch is given by the following dynamic equations:

ρc
i (k + 1) = ρc

i (k) + T

Li

[
qc

i−1(k) − qc
i (k) + rc

i (k) − sc
i (k)

]
(4.46)

vc
i (k + 1) = vc

i (k) + T

τ c

[
V c(ρi (k)) − vc

i (k)
] + T

Li
vc

i (k)
[
vc

i−1(k) − vc
i (k)

]

− νcT
[
ρi+1(k) − ρi (k)

]

τ c Li [ρi (k) + χ c]
− δc

onT
vc

i (k)ri (k)

Li [ρi (k) + χ c]
(4.47)

lc
i (k + 1) = lc

i (k) + T
[
dc

i (k) − rc
i (k)

]
(4.48)

where c = 1, . . . , C , i = 1, . . . , N , k = 0, . . . , K − 1. Note that, in the speed equa-
tion (4.47) for vehicles of class c, the anticipation term depends on the total density
ρi (k) downstream, as well as the fourth term depends on the total on-ramp flow ri (k)

merging in the mainstream, since the acceleration or deceleration of class c depends
on the total flow of vehicles seen ahead.

The traffic flow in (4.46) is obtained as

qc
i (k) = ρc

i (k)vc
i (k) (4.49)

whereas the total density and the total on-ramp traffic flow used in (4.47) can be
computed, respectively, as

ρi (k) =
C∑

c=1

ηcρc
i (k) (4.50)

ri (k) =
C∑

c=1

ηcr c
i (k) (4.51)

and the steady-state speed–density relation in (4.47) is given by

V c(ρi (k)) = vf,ci

[

1 −
(

ρi (k)

ρmax
i

)lc]mc

(4.52)

In (4.52) the steady-state speed of class c depends on the total density ρi (k) and on
parameters that are specific of class c, i.e. the free-flow speed vf,ci , and parameters lc

and mc. Note that, in the multi-class version of the freeway traffic model, the steady-
state relation (4.52) has been used, instead of considering a multi-class version of
(4.15), since this type of relation presents a more general form, as already discussed
in Sect. 3.1.2.
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If the on-ramps are not controlled, the on-ramp traffic flow is computed as

rc
i (k) = min

{
dc

i (k) + lc
i (k)

T
, rmax,c

i , rmax,c
i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.53)

whereas, in the controlled case, this flow is given by

rc
i (k) = min

{
dc

i (k) + lc
i (k)

T
, rC,c

i (k), rmax,c
i , rmax,c

i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.54)

If, as mentioned in Sect. 4.2.2, the considered control variable is the metering rate
μc

i (k) ∈ [μmin,c
i , 1], μmin,c

i being the minimum on-ramp metering rate, (4.54) can be
substituted by

rc
i (k) = μc

i (k)min

{
dc

i (k) + lc
i (k)

T
, rmax,c

i , rmax,c
i

ρmax
i − ρi (k)

ρmax
i − ρcr

i

}
(4.55)

Note that, in the last term in (4.53)–(4.55), the total density ρi (k) is considered,
since the reduction of the on-ramp entering flow due to congestion in the mainstream
is related to the density of all the vehicles present in the mainstream.

4.3.2 A Multi-class Second-Order Model for a Freeway
Network

The multi-class second-order model for a freeway network presented here is the
multi-class extension of the network model described in Sect. 4.2.3, taking into
account the multi-class concepts already described in Sect. 4.3.1. This model was
proposed in [42] for a freeway network in which the on-ramps are controlled and
route guidance policies are applied.

Even though some notation and some definitions are common to the models
described in the previous sections, all the notation of this model is described for the
reader’s convenience. On the other hand, the repeated information is only briefly
described, and the reader can find more details in the aforementioned sections.

The time horizon is divided into K time intervals, with sample time interval T [h],
and C classes of vehicles are considered, with ηc representing a conversion factor of
vehicles of class c into cars, c = 1, . . . , C . The freeway network is represented with
a directed graph composed of M freeway links, O origin links, and N nodes. Each
freeway link m = 1, . . . , M is further divided into Nm sections with length Lm [km]
and number of lanes λm . For each node n = 1, . . . , N , On is the set of exiting links,
and In , Īn are the set of entering freeway links and entering origin links, respectively.
The sets of destinations reachable from freeway linkm = 1, . . . , M , from origin link

o = 1, . . . , O , and fromnode n = 1, . . . , N are denotedwith Jm , J̄o,
¯̄Jn , respectively.
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The main variables referring to the freeway links, for each vehicle class c =
1, . . . , C , for each freeway link m = 1, . . . , M , for each section i = 1, . . . , Nm , and
for each time step k = 0, . . . , K , are:

• ρc
m,i, j (k) is the partial traffic density of class c in section i of link m at time instant

kT with destination j ∈ Jm [vehc/km/lane];
• ρc

m,i (k) is the traffic density of class c in section i of link m at time instant kT
[vehc/km/lane];

• ρm,i (k) is the traffic density in section i of linkm at time instant kT [PCE/km/lane];
• vc

m,i (k) is the mean traffic speed of class c in section i of link m at time instant kT
[km/h];

• qc
m,i (k) is the traffic flow of class c leaving section i of link m during time interval

[kT, (k + 1)T ) [vehc/h];
• γ c

m,i, j (k) ∈ [0, 1] is the composition rate, i.e. the portion of the traffic flow of class
c in section i of link m at time instant kT having destination j ∈ Jm ; it holds that∑

j∈Jm
γ c

m,i, j (k) = 1.

The main variables referring to the origin links, for each vehicle class c =
1, . . . , C , for each origin link o = 1, . . . , O and for each time step k = 0, . . . , K ,
are:

• dc
o, j (k) is the partial origin demand of class c entering origin link o at time instant

kT with destination j ∈ J̄o [vehc/h];
• dc

o(k) is the origin demand of class c entering origin link o at time instant kT
[vehc/h];

• lc
o, j (k) is the partial queue length of class c at origin link o at time instant kT with

destination j ∈ J̄o [vehc];
• lc

o(k) is the queue length of class c at origin link o at time instant kT [vehc];
• γ c

o, j (k) ∈ [0, 1] is the composition rate, i.e. the portion of flow of class c leaving

origin link o at time instant kT having destination j ∈ J̄o; it holds that
∑

j∈ J̄o

γ c
o, j (k) = 1;

• θ c
o, j (k) ∈ [0, 1] is the portion of the demand of class c originating in origin link o

at time instant kT having destination j ∈ J̄o; it holds that
∑

j∈ J̄o
θ c

o, j (k) = 1;
• qc

o(k) is the trafficflowof class c leaving origin linko during time interval [kT, (k +
1)T ) [vehc/h];

• qo(k) is the total traffic flow leaving origin link o during time interval [kT, (k +
1)T ) [PCE/h];

• rC,c
o (k) is the ramp metering control variable, i.e. the flow of class c, computed
by the ramp metering controller, that should enter from origin link o during time
interval [kT, (k + 1)T ) [vehc/h].

The variables referring to the nodes, for each vehicle class c = 1, . . . , C , for each
node n = 1, . . . , N and for each time step k = 0, . . . , K , are:

• Qc
n, j (k) is the flow of class c entering node n during time interval [kT, (k + 1)T )

with destination j ∈ ¯̄Jn [vehc/h];
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• βc
m,n, j (k) ∈ [0, 1] is the effective splitting rate, i.e. the portion of flow of class c

present in node n at time instant kT which chooses link m to reach destination

j ∈ ¯̄Jn; it holds that
∑

μ∈On
βc

μ,n, j (k) = 1;

• β
C,c
m,n, j (k) is the route guidance control variable, i.e. the splitting rate defined by a

traffic controller, representing the portion of flow of class c present in node n at

time instant kT which should choose link m to reach destination j ∈ ¯̄Jn;
• β

N,c
m,n, j (k) is the nominal splitting rate, i.e. the portion of flow of class c present

in node n at time instant kT which would spontaneously choose link m to reach

destination j ∈ ¯̄Jn .

The model parameters are: vf,cm,i is the free-flow speed [km/h] in section i of link
m for class c, ρcr

m,i is the critical density [PCE/km/lane] in section i of link m, ρmax
m,i is

the jam density [PCE/km/lane] in section i of link m, c = 1, . . . , C , m = 1, . . . , M ,
i = 1, . . . , Nm , qmax,c

o is the capacity of origin link o for class c, c = 1, . . . , C ,
o = 1, . . . , O , εc

m,n ∈ [0, 1] is the compliance rate with the route recommendations
for class c, c = 1, . . . , C , m = 1, . . . , M , N = 1, . . . , N , whereas τ c, νc, χ c, δc

on,
φc are model parameters present in the speed equation and specifically defined for
class c, c = 1, . . . , C , and lc, mc are parameters of the steady-state speed–density
relation, c = 1, . . . , C .

The equations of the multi-class network model are obtained from those of the
single-class case, i.e. (4.20)–(4.40), properly extended to consider multiple classes
of vehicles. Starting from the freeway links, the dynamic equations for the partial
traffic density and the mean speed are

ρc
m,i, j (k + 1) = ρc

m,i, j (k) + T

Lmλm

[
γ c

m,i−1, j (k)qc
m,i−1(k) − γ c

m,i, j (k)qc
m,i (k)

]

(4.56)

vc
m,i (k + 1) = vc

m,i (k) + T

τ c

[
V c

(
ρm,i (k)

) − vc
m,i (k)

]

+ T

Lm
vc

m,i (k)
[
vc

m,i−1(k) − vc
m,i (k)

] − νcT
[
ρm,i+1(k) − ρm,i (k)

]

τ c Lm
[
ρm,i (k) + χ c

] (4.57)

where c = 1, . . . , C ,m = 1, . . . , M , i = 1, . . . , Nm , j ∈ Jm , k = 0, . . . , K − 1, and
the following relations hold:

ρc
m,i (k) =

∑

j∈Jm

ρc
m,i, j (k) (4.58)

γ c
m,i, j (k) = ρc

m,i, j (k)

ρc
m,i (k)

(4.59)

ρm,i (k) =
C∑

c=1

ηcρc
m,i (k) (4.60)
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The traffic flow in (4.56) and the steady-state speed–density relation in (4.57) are
given, respectively, by

qc
m,i (k) = ρc

m,i (k)vc
m,i (k)λm (4.61)

V c
(
ρm,i (k)

) = vf,cm,i

⎡

⎣1 −
(

ρm,i (k)

ρmax
m,i

)lc⎤

⎦

mc

(4.62)

In (4.57), a term can be added to take into account the speed reduction due to
merging flows coming from on-ramps. Considering a node in which an origin link
o merges, in the first section of link m leaving that node there is a speed reduction
given by

− δc
onT

vc
m,1(k)qo(k)

Lmλm
[
ρm,1(k) + χ c

] (4.63)

A further additional term can be added to (4.57), to model the speed reduction due
to weaving phenomena in case of lane reductions. By denoting with Δλ the number
of lanes dropped between link m and the following one, the speed reduction in the
last section of link m is given by

− φcT Δλ
vc

m,Nm
(k)2ρm,Nm (k)

Lmλmρcr
m

(4.64)

The boundary conditions of (4.57) are the virtual downstream density at the end
of the link ρm,Nm+1(k) and the virtual upstream speed at the beginning of the link
vc

m,0(k). If node n (at the end of link m) has more than one leaving link, the virtual
downstream density can be computed as in (4.28), i.e.

ρm,Nm+1(k) =
∑

μ∈On
ρμ,1(k)2

∑
μ∈On

ρμ,1(k)
(4.65)

In case node n (at the beginning of link m) has more than one entering link, the
virtual upstream speed may be computed as

vc
m,0(k) =

∑
μ∈In

vc
μ,Nμ

(k)qc
μ,Nμ

(k)
∑

μ∈In
qc

μ,Nμ
(k)

(4.66)

Let us now consider the origin links. The dynamic evolution of the partial queue
length is given by

lc
o, j (k + 1) = lc

o, j (k) + T
[
dc

o, j (k) − γ c
o, j (k)qc

o(k)
]

(4.67)
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where c = 1, . . . , C , o = 1, . . . , O , j = 1, . . . , J̄o, k = 0, . . . , K − 1, and the
following relations hold:

lc
o(k) =

∑

j∈ J̄o

lc
o, j (k) (4.68)

γ c
o, j (k) = lc

o, j (k)

lc
o(k)

(4.69)

dc
o, j (k) = θ c

o, j (k)dc
o(k) (4.70)

The traffic flow of class c leaving each origin link o, having m as downstream
link, is given by

qc
o(k) = min

{

dc
o(k) + lc

o(k)

T
, qmax,c

o , qmax,c
o

ρmax
m,1 − ρm,1(k)

ρmax
m,1 − ρcr

m,1

}

(4.71)

In case the considered origin link o is a controlled on-ramp, the traffic flow of
class c leaving origin link o and entering link m is computed as

qc
o(k) = min

{

dc
o(k) + lc

o(k)

T
, qmax,c

o , rC,c
o (k), qmax,c

o

ρmax
m,1 − ρm,1(k)

ρmax
m,1 − ρcr

m,1

}

(4.72)

As for the node model, the total traffic flow entering node n with destination j is
computed as

Qc
n, j (k) =

∑

μ∈In

qc
μ,Nμ

(k)γ c
μ,Nμ, j (k) +

∑

o∈ Īn

qc
o(k)γ c

o, j (k) (4.73)

The traffic flow exiting node n and entering the first section of link m is calculated
as

qc
m,0(k) =

∑

j∈Jm

βc
m,n, j (k)Qc

n, j (k) (4.74)

and the relative composition rate is given by

γ c
m,0, j (k) = βc

m,n, j (k)Qc
n, j (k)

qc
m,0(k)

(4.75)

In presence of route guidance control actions, the splitting rates are computed
according to the following relation:

βc
m,n, j (k) = (1 − εc

m,n)β
N,c
m,n, j (k) + εc

m,nβ
C,c
m,n, j (k) (4.76)
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