
Chapter 3
First-Order Macroscopic Traffic Models

3.1 Macroscopic Modelling Aspects

All macroscopic models, both of first-order type and of higher orders, describe the
evolution of aggregate quantities referred to the traffic system over time. This means
that two independent variables are involved, i.e. space and time. In continuous traffic
models, these independent variables are assumed to be continuous, while they are
discretised in discrete traffic models. In this latter case, a freeway stretch is divided
into a number of small road portions, and the time horizon is subdivided into a given
number of time intervals.

Let us now introduce the proper notation of macroscopic traffic models, specifi-
cally differentiated for the continuous and the discrete case.

3.1.1 The Continuous Case

Referring to a generic location x (in a given road, possibly composed of several lanes)
and time t , themain aggregate variables considered in continuousmacroscopic traffic
models are:

• ρ(x, t) is the traffic density [veh/km];
• v(x, t) is the average speed [km/h];
• q(x, t) is the traffic flow [veh/h].

A first relation constituting the basis of every macroscopic model is the hydrody-
namic equation, which computes the flow as the product of mean speed and density,
i.e.

q(x, t) = ρ(x, t)v(x, t) (3.1)

A second relation is the continuity equation or conservation equation, directly
derived from the conservation law of vehicle flows and expressed as
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∂ρ(x, t)

∂t
+ ∂q(x, t)

∂x
= 0 (3.2)

All the continuous macroscopic traffic models are based on (3.1) and (3.2) and
differ for the other equations which relate the variables ρ(x, t), v(x, t) and q(x, t).
This chapter and the following one will introduce the most important continuous
macroscopic models, respectively, of first-order and second-order type (see in par-
ticular Sects. 3.2 and 4.1). The interested reader can find an overview on continuous
traffic models in [1].

As already discussed in Sect. 2.1.3, the theoretical relation between density and
flow in steady-state conditions is the so-called Fundamental Diagram. This is a
relation Q (ρ(x, t)), which has to satisfy the following conditions

Q(0) = 0, Q(ρmax) = 0,
dQ(ρ)

dρ

∣
∣
∣
∣
ρ=ρcr

= 0 (3.3)

where ρcr is the critical density [veh/km] and ρmax is the jam density [veh/km].
Moreover, qmax is the capacity [veh/h].

Analogously, the steady-state relation between mean traffic speed and density is
denoted with V (ρ(x, t)) and must satisfy the following conditions

V (0) = vf , V (ρmax) = 0,
dV (ρ)

dρ
≤ 0 (3.4)

where vf indicates the free-flow speed [km/h].
Different shapes of these steady-state relations have been proposed in the litera-

ture. The first types of diagrams were introduced by Greenshields in 1935 [2] and
correspond to a linear form for V (ρ(x, t)) and a parabolic form for Q (ρ(x, t)), i.e.

V (ρ(x, t)) = vf
[

1 − ρ(x, t)

ρmax

]

Q (ρ(x, t)) = ρ(x, t)vf
[

1 − ρ(x, t)

ρmax

]

(3.5)

In case relations (3.5) are applied, it holds by definition that ρcr = 1
2ρ

max and
qmax = 1

4v
fρmax. An example of steady-state relations of type (3.5) is shown in

Fig. 3.1.
Other possible shapes, widely used in the literature and adopted in the next chap-

ters of this book, are

V (ρ(x, t)) = vf exp

[

−1

a

(
ρ(x, t)

ρcr

)a]

Q (ρ(x, t)) = ρ(x, t)vf exp

[

−1

a

(
ρ(x, t)

ρcr

)a]

(3.6)
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Fig. 3.1 Example of steady-state relations of type (3.5) with vf = 110 [km/h], ρmax = 430
[veh/km]
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Fig. 3.2 Example of steady-state relations of type (3.6) with vf = 110 [km/h], ρcr = 100 [veh/km],
a = 1.8

where a > 0 is a suitable parameter. Note that these exponential relations do not
meet the conditions V (ρmax) = 0 and Q(ρmax) = 0, respectively, in (3.4) and (3.3),
but it holds that the values of V (ρmax) and Q(ρmax) in (3.6) are very small, hence
in some way approximating conditions V (ρmax) = 0 and Q(ρmax) = 0. An example
of steady-state relations of type (3.6) is reported in Fig. 3.2.

Finally, other common shapes of steady-state relations are

V (ρ(x, t)) = vf
[

1 −
(

ρ(x, t)

ρmax

)l
]m

Q (ρ(x, t)) = ρ(x, t)vf
[

1 −
(

ρ(x, t)

ρmax

)l
]m

(3.7)
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Fig. 3.3 Example of steady-state relations of type (3.7) with vf = 110 [km/h], ρmax = 430
[veh/km], l = 2, m = 4

where l > 0,m > l are parameters. Note that (3.7) are very general and can represent
most of the shapes reported in the literature, such as (3.6), for given values of l and
m [3]. Figure3.3 provides an example of steady-state relations of type (3.7).

3.1.2 The Discrete Case

In case of discrete macroscopic traffic models, space is divided into N portions of
length L [km] and time is discretised into K time intervals of duration T [h]. Let us
denote with i = 1, . . . , N the generic road portion (in somemodels called cell and in
others called section), and with k = 0, . . . , K the generic time step. In some models,
the space discretisation is not uniform, hence each portion i may have a different
length Li , i = 1, . . . , N .

Referring to a generic portion i (in a roadwhich can be composed of several lanes)
and time step k, the main aggregate variables to be considered are:

• ρi (k) is the traffic density at time kT [veh/km];
• vi (k) is the mean speed at time kT [km/h];
• qi (k) is the traffic flow during time interval [kT, (k + 1)T ) [veh/h].

The hydrodynamic and continuity equations, in the discrete case, become

qi (k) = ρi (k)vi (k) (3.8)

ρi (k + 1) = ρi (k) + T

L
[Ii (k) − Oi (k)] (3.9)

where Ii (k) is the traffic flow entering portion i during time interval [kT, (k + 1)T )

[veh/h], and Oi (k) is the traffic flowexiting portion i in the same time interval [veh/h].
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Analogously to the continuous case, steady-state relations among flow, density
and mean speed can be defined. In particular, relation (3.5) becomes

V (ρi (k)) = vf
[

1 − ρi (k)

ρmax

]

Q (ρi (k)) = ρi (k)v
f

[

1 − ρi (k)

ρmax

]

(3.10)

Similarly, relation (3.6) can be written as

V (ρi (k)) = vf exp

[

−1

a

(
ρi (k)

ρcr

)a]

Q (ρi (k)) = ρi (k)v
f exp

[

−1

a

(
ρi (k)

ρcr

)a]

(3.11)

and (3.7) as

V (ρi (k)) = vf
[

1 −
(

ρi (k)

ρmax

)l
]m

Q (ρi (k)) = ρi (k)v
f

[

1 −
(

ρi (k)

ρmax

)l
]m

(3.12)

In some models, a different steady-state relation is considered for each road por-
tion. In these cases, the parameters of the previous relations can be indexed with i ,
namely, vfi , ρ

max
i , ρcr

i , ai , li , mi , i = 1, . . . , N .

3.2 Continuous First-Order Models

The first macroscopic traffic model was developed by Lighthill andWhitham [4] and
by Richards [5] in the 50s and is now known as the Lighthill–Whitham–Richards
(LWR) model. The basic assumption of the LWR model is that vehicles adjust their
speeds instantaneously to the value given by the steady-state relation depending on
the present density. This model has been extended to consider boundary conditions,
sources and inhomogeneities, as well as to represent traffic networks, as it will be
described in the following subsections.

Most of the results on the LWR model have been obtained considering that it
belongs to the class of conservation laws, for which a thorough theory has been
developed by mathematicians (see, e.g. the books [6–10]). Considering more specif-
ically the LWR model, especially its application for traffic networks, the interested
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reader can find more details in [11, 12], where all the related mathematical aspects
are discussed in detail.

The LWRmodel presents several limitations. For instance, it does not contain any
inertial effects, since it assumes that vehicles adjust their speeds instantaneously. This
can produce unrealistically high accelerations or decelerations of vehicles.Moreover,
it systematically predicts that the output flow from a congested area is equal to the
capacity flow, if the portion of road downstream is not congested. This is in con-
trast with the capacity drop phenomenon observed in real-world traffic networks, as
discussed in Sect. 2.2.4. Other qualitative considerations on first-order macroscopic
models are included in [13].

3.2.1 The LWR Model

The LWR model is based on the assumption that the traffic flow instantaneously
follows the density according to the Fundamental Diagram. The LWR model is then
given by (3.1), (3.2), and the following relation:

v(x, t) = V (ρ(x, t)) (3.13)

or, alternatively,
q(x, t) = Q (ρ(x, t)) (3.14)

Hence, the LWR model can be rewritten as

∂ρ(x, t)

∂t
+ ∂(Q (ρ(x, t)))

∂x
= 0 (3.15)

or

∂ρ(x, t)

∂t
+ ∂(ρ(x, t)V (ρ(x, t)))

∂x
= 0 (3.16)

The LWR model belongs to the class of first-order models, in the sense that it
captures the dynamics of a single variable, namely, the traffic density. Moreover,
this model, in its original version, makes some assumptions on the shape of the
Fundamental Diagram. Specifically, it assumes that Q (ρ(x, t)) is a C2 function, is
strictly concave, and ensures that Q(0) = 0 and Q(ρmax) = 0, as in (3.3). According
to these assumptions, (3.15) belongs to the class of hyperbolic conservation laws. The
theory of systems of conservation laws has been extensively studied in the literature
with particular attention to the problem of well-posedness, as done, for instance, in
[14–18].

A very peculiar aspect associated with conservation laws is the generation of
discontinuities. Referring in particular to the LWR model in the traffic case, the
discontinuities resulting from the solution of the LWRmodel satisfactorily reproduce
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the shockwaveswhich can be actually observed in traffic systems. These aspectswere
discussed in detail in [4, 5], where the wave theory is applied and the propagation of
kinematic waves is discussed in detail, with reference to the real behaviour of road
traffic systems. In [4], some preliminary comments to the traffic behaviour at road
junctions are reported as well.

From a mathematical point of view, a relevant effort was put by researchers on
solving the so-called LWR initial value problem, given by the conservation law
(3.15) with a specified initial condition for the density ρ(x, 0) = ρI (x). Referring to
the general theory on conservation laws, it can be easily shown that the solution to
this initial value problem can produce discontinuities in finite time, even in case of
continuous initial conditions. This can be shown by applying the method of charac-
teristics, allowing to rewrite the partial differential equation of the LWR model as a
system of ordinary differential equations; the characteristics can be seen as lines in
the (x, t) plane, starting from space–time points where initial conditions are known,
along which the solution remains constant. If these lines do not intersect, the solu-
tion is unique; if instead they intersect, this means that there is a discontinuity (a
shock) in the solution, and this is what normally happens with the LWR model. In
this latter case, weak solutions must be dealt with (see, for instance, [11] for further
mathematical details).

One of the most interesting cases to be analysed, especially when referring to
traffic applications, is the solution of the LWR initial value problem in case the initial
condition for the density ρI (x) is piecewise constant. This corresponds, for instance,
to the presence of vehicles waiting in front of a red traffic light: the density after the
traffic light is low, while the density before is high. The opposite example is the case
of queue formation for a red traffic light or for an accident in a freeway stretch: there
is a point in space after which the density is very high and before which free-flow
traffic conditions are present. The initial value problem in case of a discontinuous
initial condition is called Riemann problem. Let us consider specifically the Riemann
problem for (3.15) with the initial condition expressed as

ρ(x, 0) = ρI (x) =
{

ρ− if x < 0

ρ+ if x > 0
(3.17)

By applying the general results on conservation laws, it can be shown that this
Riemann problem has not unique solution. The conventional mathematical approach
to solve this problem is devoted to look for entropy-admissible solutions (see, for
instance, [11] for a rigorous definition of this type of solutions), which present good
properties, such as the uniqueness and the fact that they depend continuously on initial
data. In [19], an interesting discussion about the choice of adopting entropy solutions
for the LWR model is reported: the author explains, through an example, that the
choice of the entropy solution is a mathematical sound choice, which guarantees
existence, uniqueness and continuous dependency on initial conditions, but in some
cases, these entropy solutions are not the best choice in order to provide a realistic
behaviour of traffic.
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The entropy-admissible solution for the Riemann problem for (3.15) with initial
condition (3.17) can be written by distinguishing two cases:

1. if ρ− < ρ+, i.e. dQ(ρ−)

dρ >
dQ(ρ+)

dρ for the considered assumptions on Q (ρ(x, t)),
the entropy-admissible solution is given by the shock wave expressed as

ρ(x, t) =
{

ρ− if x < λt

ρ+ if x > λt
(3.18)

where λ is obtained by applying the so-called Rankine–Hugoniot condition and
is given by

λ = Q(ρ+) − Q(ρ−)

ρ+ − ρ− (3.19)

This solution corresponds to a discontinuity, inwhich the density abruptly changes
from ρ− to ρ+, propagating in space and timewith speed λ, which then represents
the shock front propagation speed;

2. if ρ− > ρ+, i.e. dQ(ρ−)

dρ <
dQ(ρ+)

dρ , the entropy-admissible solution is given by the
rarefaction wave expressed as

ρ(x, t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ρ− if x <
dQ(ρ−)

dρ t
[
dQ( x

t )

dρ

]−1
if dQ(ρ−)

dρ t < x <
dQ(ρ+)

dρ t

ρ+ if x >
dQ(ρ+)

dρ t

(3.20)

In this case, the solution is continuous, i.e. the propagation of the density in space
and time occurs in a smooth way.

It is worth noting that, in case 1, the characteristics on the (x, t) plane overlap, as
shown in the left graph of Fig. 3.4. Hence, the solution implies a discontinuity, which
is highlighted in the right graph of Fig. 3.4, where the shock wave is represented by a
dashed green line. Figure3.5 shows instead the characteristics in case 2: they do not
overlap; hence, there is a region in the (x, t) plane which appears to be empty. In that
region, called expansion fan, characteristics are rays of constant density originating at
x = 0 in order to guarantee continuity of the solution (see the right graph of Fig. 3.5).

The solution described so far holds for the case of strictly concave Fundamental
Diagram. Nevertheless, also the case in which the Fundamental Diagram is non-
concave can be interesting for real traffic applications. This case was treated in some
research papers, such as in [20, 21].

Another version of the LWR model was introduced to overcome the fact that the
LWR model produces discontinuities in finite time, leading to the so-called LWR
model with viscosity. In this model, a viscosity term is added to (3.15), i.e.
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Fig. 3.4 Characteristics in case 1: shock wave
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Fig. 3.5 Characteristics in case 2: rarefaction wave

∂ρ(x, t)

∂t
+ ∂(Q (ρ(x, t)))

∂x
= μ

∂2ρ(x, t)

∂x2
(3.21)

and the discontinuities in the solution are eliminated. Nevertheless, in [11], it is
shown that this model is not realistic to describe the traffic flow evolution.
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3.2.2 The LWR Model with Boundary Conditions, Sources
and Inhomogeneities

In the initial value problem described in Sect. 3.2.1, no boundary conditions are
defined for the boundaries of the space domain. Clearly, this is somewhat unrealistic
for a freeway traffic system, since normally a given road stretch is considered and
the traffic conditions at the beginning and at the end of the stretch must be taken into
account. To consider boundary conditions, an initial-boundary value problemmust be
addressed, inwhich the conservation lawmust satisfy, not only an initial condition but
also the boundary conditions.Also, the initial-boundary value problem for the general
class of hyperbolic conservation laws has been widely studied by mathematicians,
with specific attention to the well-posedness of the problem, developing conditions
for the existence and unicity of the solution (see, e.g. [18, 22, 23].

In the specific case of the LWR model for traffic systems, the initial-boundary
value problem is given by (3.15), with the initial condition ρ(x, 0) = ρI (x) and
boundary conditions that can be expressed in differentways. Theboundary conditions
can be related to the values of the density at the boundaries, i.e.

ρ(0, t) = ρ0(t), ρ(xL , t) = ρL(t) (3.22)

where x = 0 and x = xL indicate the initial and final location of the considered
freeway stretch. Another possibility is that the boundary conditions are related to
the values of the flow at the boundaries. This latter case is more realistic for many
traffic systems, since traffic sensors generally provide measurements of traffic flows,
whereas it is more difficult to estimate the values of the density in specific locations.
In this case, the boundary conditions are given by

q (ρ(0, t)) = q0(t), q (ρ(xL , t)) = qL(t) (3.23)

Some works in the literature deal with the initial-boundary value problem for
the LWR model specifically referred to the case of freeway traffic. For instance,
in [24], the boundary conditions are given in terms of traffic density, and the exis-
tence and uniqueness of a weak solution are proved. Also, the proposed numerical
scheme is applied to a freeway scenario with data of the Interstate-80 Eastbound in
West Berkeley and Emeryville, U.S. Another work dealing with the initial-boundary
value problem for the LWR model is [25], referred to freeway stretches. In [25], the
boundary conditions refer to the time-dependent flow entering a specific location,
namely, x = 0. Moreover, some constraints on the flow at another specific location
are included, namely, at x = xC , modelling the presence of toll gates, construction
sites or the occurrence of accidents, which limit the traffic flow. The boundary con-
ditions are then expressed as

q (ρ(0, t)) = q0(t), q (ρ(xC , t)) ≤ q̄C(t) (3.24)
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where q̄C(t) is the maximum flow allowed at x = xC . The well-posedness result
provided in [25] allows also to prove the existence of optimal management strategies
for freeway traffic systems.

The LWR model described so far does not take into account the presence of on-
ramps and off-ramps, which are instead a very important issue in modelling freeway
stretches. In order to consider entrances of vehicles from on-ramps, exits from off-
ramps, as well as local changes of the traffic flow due to inhomogeneities of the road,
the LWRmodel must be written as a conservation lawwith source or inhomogeneous
conservation law, i.e.

∂ρ(x, t)

∂t
+ ∂(Q (ρ(x, t)))

∂x
= s(x, t, ρ) (3.25)

where s(x, t, ρ) is the source term. Well-posedness results and numerical investiga-
tions for the inhomogeneous LWR model are presented in [26], where also second-
order models with source terms are analysed.

Another interesting aspect to be included in the LWR model, relevant especially
for real contexts, is related to consider the case in which the Fundamental Diagram
depends explicitly and (sometimes discontinuously) on x and on t . This can allow to
model intersections, sections with variable number of lanes, portions of the road with
local and temporary variations of the parameters (e.g. capacity or free-flow speed).
If the Fundamental Diagram only varies depending on time, the corresponding LWR
model is said to present time inhomogeneity, whereas it has space inhomogeneity if
the Fundamental Diagram only depends on space.

The LWR model with space inhomogeneity has been studied deeply and the
well-posedness of the associated initial value problem (both for continuous and dis-
continuous dependence of the Fundamental Diagram on x) has been proven [19, 27].
The case of space–time inhomogeneity has been studied more recently, for example,
in [28].

An alternative option for the solution of the LWR is given by theHamilton–Jacobi
theory, adopted, for instance, in [29, 30]. According to this theory, a Lagrangian
approach, which is trajectory-based, is adopted, in contrast with the standard Eule-
rian framework used to solve conservation laws. This approach can assume particular
relevance especially for the new type of sensors that are more and more widespread
in freeway networks, i.e. mobile sensors which travel inside the domain along tra-
jectories, providing internal conditions for the problem, in addition with boundary
conditions provided by standard traffic sensors.

3.2.3 The LWR Model on Networks

In order to represent large-scale freeway systems, the LWRmodel has been extended
to the case of networks, in which each road is modelled with the LWR model and
specific conditions must be defined for the junctions where roads intersect. The first
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work in this direction was reported in [31], where a network of unidirectional roads
is seen as a connected directed graph, with edges modelling the roads and vertices
corresponding to junctions. The junctions play a key role in these network models,
since at junctions the system is underdetermined even if the conservation of cars
is taken into account; in other words, in order to obtain a well-defined solution,
it is necessary to specify the distribution of vehicles at the junctions. In [31], the
Riemann problem for the considered system is solved by maximising the flow at
each intersection, and the existence of a solution to the general Cauchy problem is
proven.

In [32], the road network is modelled as a graph, similarly to the case proposed
in [31], but different conditions at junctions are taken into account. Specifically,
it is assumed that there are some prescribed preferences of drivers, i.e. the traffic
from incoming roads is distributed on outgoing roads according to fixed coefficients,
and, by following these preferences, the drivers behave in order to maximise the
traffic flows. Considering this model, the authors of [32] prove the existence of
solutions to the Cauchy problem and show that the Lipschitz continuous dependence
by initial data holds only under specific assumptions. Some other research works
have dealt with developments of the LWR model on networks (see, e.g. [33, 34]),
also considering specific types of junctions. For instance, the authors of [35] analyse
the case of a T-junction, in which the interactions among incoming and outcoming
flows are explicitly modelled. In [36], the specific case of freeways is addressed, and
the considered junction is composed of the mainstream, an off-ramp and an on-ramp,
this latter being modelled as a buffer of infinite capacity.

Some studies have also considered the case of nodes with buffer, i.e. the case in
which there is a dynamics inside the junction, generally described by ordinary dif-
ferential equations depending on incoming and outgoing flows. For instance, in [37],
the storage capacity of the junctions is taken into account by using a reformulation
of intersection models in terms of supply and demand functions. Similarly to [37], in
[38], the solution of the Riemann problem at the node is provided and existence and
well-posedness of solutions to the Cauchy problem are proven. Amulti-buffer model
is studied in [39], where a set of buffers, one for each outgoing road, is considered,
allowing to correctly respect the preferences of drivers.

3.3 Discrete First-Order Models

Different numerical methods for non-linear conservation laws have been studied by
researchers since many decades. While approximating a partial differential equation
with a finite-difference equation, it is of course interesting to evaluate the error due to
this approximation and to study relevant properties such as convergence and stability
of the numerical method (see, e.g. [7, 40] for a detailed description of numerical
methods for conservation laws).Moreover, to discretise partial differential equations,
one can use both explicit and implicit numerical methods. With the explicit solution
scheme, it is possible to explicitly express the dependence of each variable in the
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current time step on the variables in previous time steps. In the implicit case, instead,
it is necessary to solve a system of equations involving both current and past values
of the different variables (see, e.g. [41]). Implicit formulas are typically more stable
than explicit ones, but harder to implement [42].

Referring to the specific case of traffic, i.e. to the LWR model, different finite-
difference approximations have been proposed in the last decades. According to these
numerical methods, the road space is divided into portions of finite length, time is
discretised into time intervals of equal duration, and the partial differential equation
of the LWR model is transformed into a finite-difference equation.

The most famous discretised version of the LWR model is the Cell Transmission
Model (CTM), presented for the first time by Daganzo in [43, 44], making reference
to a one-way road without any intermediate entrances or exits, and then extended
in [45] for traffic networks with three-legged junctions, hence allowing to model
on-ramps, off-ramps, freeway intersections and so on. According to the CTM, the
discrete portions of the road are called cells, and two quantities are associated with
the intersection between two cells, i.e. a sending function depending on the density
before the intersection, and a receiving functiondependingon thedensity downstream
the intersection.

In [43, 44], it is shown that the CTM is a discrete equivalent of the classical
LWR model, both in case of continuous density and in presence of discontinuities.
Moreover, the author of [43, 44] argues that the CTM could capture real-life features,
such as stop-and-go phenomena, that the LWR theory is not able to model. This
analysis is carried out by considering the specific case of triangular or trapezoidal
Fundamental Diagram Q(ρ), but it is asserted that the considerations reported in
those papers can be generalised to other shapes of Q(ρ). In [46], the propagation of
disturbances of the CTM is also analysed and an asymptotic formula for the errors
introduced by the finite difference approximation is presented.

A very interesting analysis of discretisation of first-order traffic flow models was
conducted byLebacque in [19],where he focuses on a specific numericalmethod, that
is the so-called Godunov scheme [47]. This is a conservative finite-volume method
which solves Riemann problems at each cell interface forward in time. In [19], it is
shown that the CTM corresponds to the application of the Godunov scheme to the
LWRmodel. In particular, the sending and receiving functions computed at the inter-
section between subsequent cells in the CTM are equivalent to the values of the flow
at the singularity in the solution of the Riemann problem in the Godunov scheme. In
[19], Lebacque introduces the terminology demand and supply, respectively, for the
sending and receiving functions; this terminology is presently the most widespread
when using the CTM and it is also the one adopted in this book.

By applying the Godunov scheme, a condition for the space discretisation L and
the time discretisation T is also derived, which can be expressed as

T max
ρ∈[0,ρmax]

∣
∣
∣
∣

dQ(ρ)

dρ

∣
∣
∣
∣
≤ L (3.26)
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In [19], different shapes for the Fundamental Diagram Q(ρ) (and consequently
for the demand and supply functions) are investigated, also considering the case in
which Q(ρ) includes discontinuities, and it is argued that the concepts of supply and
demand can provide an effective tool also for modelling intersections and networks.

Among the different discretisations of the LWR model proposed in the literature,
it is worth mentioning also the Link Transmission Model (LTM), introduced for the
first time in [48]. In the LTM, the evolution of traffic on a generic road network
is represented in terms of the cumulative number of vehicles that pass the initial
and final locations of each link at each time step. Hence, the numerical procedure
characterising the LTM only requires calculations at the link boundaries, as in [49],
instead of at each cell boundary, as in the CTM. This results in a computational
advantage compared with the CTM. More efficient numerical schemes have been
developed starting from the LTM, such as the iterative algorithm described in [50].

In the following subsections, wewill focus on theCTMand its extensions, both for
a freeway stretch and for a freeway network, since this is surely the most widespread
first-order model in the traffic control engineering community, and, hence, of partic-
ular interest for the purposes of the present book.

3.3.1 The CTM for a Freeway Stretch

Let us start from the CTM for a freeway stretch including on-ramps and off-ramps.
Note that the CTM described hereafter is derived from the original version proposed
by Daganzo in [43–45], but it is presented with a different mathematical notation and
nomenclature in order to conform to the notation and model classification adopted
in this book.

As previously introduced in the general notation of a discrete traffic model, let N
be the number of cells and K the number of time intervals. Let T denote the sample
time [h] and L the length of each cell [km]. Moreover, in the CTM, on-ramps and
off-ramps are assumed to be present at the interface between two subsequent cells.

For each cell i = 1, . . . , N , and for each time step k = 0, . . . K , let us define the
following quantities:

• ρi (k) is the traffic density of cell i at time kT [veh/km];
• Φ+

i (k) is the total flow entering cell i during time interval [kT, (k + 1)T ) [veh/h];
• Φ−

i (k) is the total flow exiting cell i during time interval [kT, (k + 1)T ) [veh/h];
• φi (k) is the mainstream (interface) flow entering cell i from cell i − 1 during time
interval [kT, (k + 1)T ) [veh/h];

• ri (k) is the flow entering cell i from the on-ramp during time interval [kT,

(k + 1)T ) [veh/h];
• si (k) is the flow exiting cell i through the off-ramp during time interval [kT,

(k + 1)T ) [veh/h];
• βi (k) ∈ [0, 1) is the split ratio of cell i during time interval [kT, (k + 1)T );
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Fig. 3.6 Sketch of the division of the freeway stretch into cells and the relative notation in the CTM

• Di (k) is the demand of cell i (i.e. flow that can be sent from cell i to cell i + 1)
during time interval [kT, (k + 1)T ) [veh/h];

• Si (k) is the supply of cell i (i.e. flow that can be received by cell i from cell i − 1)
during time interval [kT, (k + 1)T ) [veh/h];

• Dramp
i (k) is the demand of the on-ramp of cell i (i.e. flow that can be sent from the

on-ramp into cell i) during time interval [kT, (k + 1)T ) [veh/h].

Figure3.6 depicts a sketch of the subdivision of the freeway stretch into cells,
with the main variables of the CTM.

The parameters of the CTM are as follows: vi is the free-flow speed of cell i
[km/h], wi is the congestion wave speed of cell i [km/h], qmax

i is the capacity of cell
i [veh/h], ρmax

i is the jam density of cell i [veh/km], pramp
i ∈ [0, 1] is the priority

of the on-ramp flow with respect to the mainstream flow in cell i , pi ∈ [0, 1] is the
priority of the mainstream flow with respect to the on-ramp flow in cell i , such that
pramp
i + pi = 1, i = 1, . . . , N .
TheCTM is characterised by the following equations describing the traffic density,

this latter being the state variable of dimension N :

ρi (k + 1) = ρi (k) + T

L

[

Φ+
i (k) − Φ−

i (k)
]

(3.27)

where i = 1, . . . , N , k = 0, . . . , K − 1, and the total flows entering and exiting cell
i are, respectively, given by

Φ+
i (k) = φi (k) + ri (k) (3.28)

Φ−
i (k) = φi+1(k) + si (k) (3.29)

The flow exiting through the off-ramp is computed as

si (k) = βi (k)

1 − βi (k)
φi+1(k) (3.30)

since si (k) = βi (k)Φ
−
i (k) = βi (k)[φi+1(k) + si (k)].

Two important concepts of the CTM are the demand and the supply, associated
with each cell. In particular, referring to the boundary between cell i − 1 and cell i ,
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Fig. 3.7 Demand function
in the CTM
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0 ρi−1(k)

Di−1(k)

qmax
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Fig. 3.8 Supply function in
the CTM
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i

ρmax
i

let us introduce the demand of cell i − 1, namely, Di−1(k), and the supply of cell i ,
namely, Si (k). The demand Di−1(k) is the flow that cell i − 1 could send to the next
cell i during time interval [kT, (k + 1)T ), while the supply Si (k) is the flow that cell
i could receive from cell i − 1 in the same time interval. These two quantities are
computed as

Di−1(k) = min
{

(1 − βi−1(k))vi−1ρi−1(k), q
max
i−1

}

(3.31)

Si (k) = min
{

wi (ρ
max
i − ρi (k)), q

max
i

}

(3.32)

The demand and the supply are shown in Figs. 3.7 and 3.8, respectively, as func-
tions of the density.

Themerge between the on-ramp and the mainstream is analogous to the merge of
two generic cells, as described in the original model proposed in [45]. In the generic
case described in [45], a merge is given by two sending cells (characterised by two
specific demands) and one receiving cell (characterised by a given supply); according
to [45], the two sending cells send the maximum possible flow that the receiving cell
is able to host. This merge model is adopted to compute the mainstream and on-
ramp flows, since this latter case can be seen as a situation of two sending cells (the
mainstream and the on-ramp) and one receiving cell downstream. In particular, for
a given cell i during time interval [kT, (k + 1)T ), the demands of the sending cells
are Di−1(k) and Dramp

i (k), while the supply of the receiving cell is Si (k).
Two cases must be distinguished, corresponding, respectively, to free-flow and

congested conditions.
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Free-Flow Case This is the case in which there is enough space for the two flows
that want to enter cell i , i.e.

If Di−1(k) + Dramp
i (k) ≤ Si (k)

then φi (k) = Di−1(k), ri (k) = Dramp
i (k)

(3.33)

Congested Case The congested case is the opposite situation in which not all the
flows that want to enter cell i can be received by it, i.e.

If Di−1(k) + Dramp
i (k) > Si (k)

then φi (k) = mid
{

Di−1(k), Si (k) − Dramp
i (k), pi Si (k)

}

ri (k) = mid
{

Dramp
i (k), Si (k) − Di−1(k), p

ramp
i Si (k)

}

(3.34)

where the function mid returns the middle value.
In order to better understand the merge model in the congested case, remind that

the case Di−1(k) + Dramp
i (k) ≥ Si (k) corresponds to a situation in which it is not

possible to completely satisfy the demand Di−1(k) from the mainstream and the
demand Dramp

i (k) from the on-ramp. Moreover, remind that parameters pi and pramp
i

model, respectively, the priority of the mainstream flow and the on-ramp flow in the
merge and that pramp

i + pi = 1.
The basic idea of the merge model is that the demand Di−1(k) has a ‘reserved’

flow equal to pi Si (k), while the demand Dramp
i (k) has a ‘reserved’ flow of pramp

i Si (k).
Another important assumption of the merge model proposed in [45] is that if one of
the two demands is lower than the corresponding ‘reserved’ flow, the complementary
flow will saturate the supply of the receiving cell.

By rewriting (3.34) as

If Si (k) − Dramp
i (k) ≤ pi Si (k) ≤ Di−1(k)

then φi (k) = pi Si (k), ri (k) = pramp
i Si (k)

If pi Si (k) ≤ Si (k) − Dramp
i (k) ≤ Di−1(k)

then φi (k) = Si (k) − Dramp
i (k), ri (k) = Dramp

i (k)

If Si (k) − Dramp
i (k) ≤ Di−1(k) ≤ pi Si (k)

then φi (k) = Di−1(k), ri (k) = Si (k) − Di−1(k)

(3.35)

it is possible to distinguish three sub-cases:

• if Di−1(k) ≥ pi Si (k) and Dramp
i (k) ≥ pramp

i Si (k), then the ‘reserved’ flows are
guaranteed, resulting in φi (k) = pi Si (k) and ri (k) = pramp

i Si (k);
• ifDi−1(k) ≥ pi Si (k) andD

ramp
i (k) ≤ pramp

i Si (k), i.e. the demand from theon-ramp
is lower than the ‘reserved’ flow, all the demand from the on-ramp enters the cell
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and the flow entering from cell i − 1 is obtained in order to saturate the supply
Si (k), resulting in φi (k) = Si (k) − Dramp

i (k) and ri (k) = Dramp
i (k);

• if Di−1(k) ≤ pi Si (k) and Dramp
i (k) ≥ pramp

i Si (k), i.e. the mainstream demand is
lower than the ‘reserved’ flow, all the mainstream demand enters the cell and the
flow entering from the on-ramp is obtained in order to saturate the supply Si (k),
resulting in φi (k) = Di−1(k) and ri (k) = Si (k) − Di−1(k).

Note that, in any case, in congested situations the total flow entering cell i is given
by Φ+

i (k) = φi (k) + ri (k) = Si (k).
Summarising, the CTM for a freeway with off-ramps and on-ramps in all the

cells is given by (3.27)–(3.34). The boundary conditions are the demand in the cell
before the first one, i.e. D0(k), the supply of the cell after the last one, i.e. SN+1(k),
the on-ramp demands, i.e. Dramp

i (k), and the split ratios, i.e. βi (k), i = 1, . . . , N ,
k = 0, . . . , K .

Finally, let us consider the case in which some cells have no off-ramps and no on-
ramps. To adapt the CTM previously described to the case in which some cells do not
present any ramps, it is possible to fix βi−1(k) = 0, Dramp

i (k) = 0 and pramp
i = 0 in

case there are not on-ramps and off-ramps between cell i − 1 and cell i , i = 1, . . . , N .
In this way, it is assured that ri (k) = 0 and si−1(k) = 0, k = 0, . . . , K . Note that in
this case the interface flow can be computed as

φi (k) = min{Di−1(k), Si (k)} (3.36)

according to the first CTM proposed in [43].

3.3.2 The CTM with On-Ramp Queue Dynamics

The CTM described in Sect. 3.3.1 considers a freeway stretch with on-ramps and
off-ramps and models the dynamic evolution of the traffic density. In the literature,
this version of the CTMhas been extended to consider also the dynamics of the queue
lengths present at the on-ramps and the possibility to regulate the flow entering from
the on-ramp via rampmetering control. This augmented version is adopted especially
when ramp metering control approaches are designed, for instance, in [51–53].

In this case, the following dynamic quantities are added to themodel (see Fig. 3.9):

• li (k) is the queue length of vehicles waiting in the on-ramp of cell i at time kT
[veh];

• di (k) is the flowaccessing the on-rampof cell i during time interval [kT, (k + 1)T )

[veh/h];
• rCi (k) is the ramp metering control variable, i.e. the flow determined by the ramp
metering controller to enter cell i from the on-ramp during time interval [kT,

(k + 1)T ) [veh/h].

The parameter rmax
i is also considered, representing the capacity of the on-ramp

of section i , i.e. the maximum flow that can enter from that on-ramp, i = 1, . . . , N .
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Fig. 3.9 Sketch of freeway stretch in case of on-ramp queues and the relative notation in the CTM

The dynamic equation of the on-ramp queue length, for i = 1, . . . , N , k =
0, . . . , K − 1, is given by

li (k + 1) = li (k) + T [di (k) − ri (k)] (3.37)

In this case, the on-ramp demand Dramp
i (k) to be used in (3.33) and (3.34) is no

more a boundary condition but it is computed by taking into account the queue length
evolution and the flow accessing the on-ramp. It is possible to distinguish between
two cases, corresponding, respectively, to uncontrolled and controlled on-rampflows.

Uncontrolled On-Ramps If the on-ramp in section i is not controlled, the on-ramp
demand of cell i during time interval [kT, (k + 1)T ) is given by

Dramp
i (k) = min

{

di (k) + li (k)

T
, rmax

i

}

(3.38)

ControlledOn-Ramps If the on-ramp in section i is controlled, the on-ramp demand
of cell i is given by

Dramp
i (k) = min

{

di (k) + li (k)

T
, rCi (k), rmax

i

}

(3.39)

The augmented CTM to include the on-ramp queue dynamics, for a freeway with
off-ramps and on-ramps in all the cells, is given by (3.27)–(3.34), (3.37), together
with (3.38) for the uncontrolled on-ramps and (3.39) for the controlled on-ramps. The
boundary conditions are now the demand in the cell before the first one, i.e. D0(k),
the supply of the cell after the last one, i.e. SN+1(k), the flows accessing the on-ramp
queues, i.e. di (k), and the split ratios, i.e. βi (k), i = 1, . . . , N , k = 0, . . . , K .
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3.3.3 The CTM in a Mixed-Integer Linear Form

Another version of the CTM is the reformulation of the model in a mixed-integer
linear form, i.e. as a Mixed Logical Dynamical (MLD) system. According to the
framework proposed in [54], an MLD system is a dynamic system characterised
by logic rules, on/off inputs, piecewise linear functions, discrete states, and can be
expressed with linear equalities and inequalities in which continuous and binary
variables are involved.

The CTM inMLD form has been first proposed in [51, 55], where it has been used
as prediction model in Model Predictive Control (MPC) schemes. The advantage of
using the CTM in MLD form is related to computational issues, since the non-
linearities present in the original model are avoided, resulting in a mixed-integer
linear model which is equivalent to the original one. This is obtained by adding
some equalities and inequalities, as well as some auxiliary variables, both binary and
continuous.

The non-linear relations present in the CTM are the minimum functions in (3.31)
and (3.32), as well as the relations (3.33) and (3.34). Let us start from equa-
tion (3.31) and let us introduce a binary variable δdi−1(k) such that [δdi−1(k) = 1]
iff [(1 − βi−1(k))vi−1ρi−1(k) ≤ qmax

i−1 ]. Exploiting the transformations of proposi-
tional logic in linear inequalities reported in [54], this latter relation can be trans-
formed as

(1 − βi−1(k))vi−1ρi−1(k) − qmax
i−1 ≤ Dmax

i−1 (1 − δdi−1(k))

(1 − βi−1(k))vi−1ρi−1(k) − qmax
i−1 ≥ ε + (Dmin

i−1 − ε)δdi−1(k)
(3.40)

where ε is a small tolerance, Dmax
i−1 and Dmin

i−1 are the maximum and minimum value
of function (1 − βi−1(k))vi−1ρi−1(k) − qmax

i−1 , respectively, i.e. D
max
i−1 = vi−1ρ

max
i−1 and

Dmin
i−1 = −qmax

i−1 . Now (3.31) can be substituted by the following equation:

Di−1(k) = δdi−1(k)[(1 − βi−1(k))vi−1ρi−1(k)] + (1 − δdi−1(k))q
max
i−1 (3.41)

which is still non-linear, since it contains a multiplication between variables. This
non-linearity can be overcome by introducing another auxiliary variable zdi−1(k),
such that zdi−1(k) = δdi−1(k)ρi−1(k). Then, (3.41) becomes

Di−1(k) = (1 − βi−1(k))vi−1z
d
i−1(k) + (1 − δdi−1(k))q

max
i−1 (3.42)

The definition zdi−1(k) = δdi−1(k)ρi−1(k) can be obtained with the following set
of inequalities

Rmin
i−1δ

d
i−1(k) ≤ zdi−1(k) ≤ Rmax

i−1 δ
d
i−1(k)

zdi−1(k) ≥ ρi−1(k) − Rmax
i−1 (1 − δdi−1(k))

zdi−1(k) ≤ ρi−1(k) − Rmin
i−1(1 − δdi−1(k))

(3.43)
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in which Rmax
i−1 and Rmin

i−1 can be estimated as the maximum and minimum value of
function ρi−1(k), i.e. Rmax

i−1 = ρmax
i−1 and Rmin

i−1 = 0.
Analogously, it is possible to consider Eq. (3.32), for which it is necessary to intro-

duce a binary variable δsi (k) with the following meaning: [δsi (k) = 1] iff [wi (ρ
max
i −

ρi (k)) ≤ qmax
i ]. Such relation can be transformed as follows:

wi (ρ
max
i − ρi (k)) − qmax

i ≤ Smax
i (1 − δsi (k))

wi (ρ
max
i − ρi (k)) − qmax

i ≥ ε + (Smin
i − ε)δsi (k)

(3.44)

where Smax
i and Smin

i are the maximum and minimum value of function wi (ρ
max
i −

ρi (k)) − qmax
i , respectively, i.e. Smax

i = wiρ
max
i and Smin

i = −qmax
i . Now (3.32) can

be written as

Si (k) = δsi (k)[wi (ρ
max
i − ρi (k))] + (1 − δsi (k))q

max
i (3.45)

which is still non-linear; to overcome this, another variable zsi (k) is defined as z
s
i (k) =

δsi (k)ρi (k). Then, (3.45) becomes

Si (k) = δsi (k)wiρ
max
i − wi z

s
i (k) + (1 − δsi (k))q

max
i (3.46)

The relation zsi (k) = δsi (k)ρi (k) can be replaced by the following set of inequali-
ties:

Rmin
i δdi (k) ≤ zsi (k) ≤ Rmax

i δsi (k)

zsi (k) ≥ ρi (k) − Rmax
i (1 − δsi (k))

zsi (k) ≤ ρi (k) − Rmin
i (1 − δsi (k))

(3.47)

The CTM in MLD form considers a simplified version of the merge model, i.e.
of relations (3.33), (3.34) and (3.39). In particular, the CTM in MLD form considers
the following simplified merge model:

If Di−1(k) + rCi (k) ≤ Si (k)

then φi (k) = Di−1(k)

else φi (k) = Si (k) − rCi (k)

(3.48)

Since (3.48) is non-linear, it is necessary to introduce a binary variable δmi (k)
defined as [δmi (k) = 1] iff [Di−1(k) + rCi (k) ≤ Si (k)], corresponding to the following
inequalities:

Di−1(k) + rCi (k) − Si (k) ≤ Mmax
i (1 − δmi (k))

Di−1(k) + rCi (k) − Si (k) ≥ ε + (Mmin
i − ε)δmi (k)

(3.49)
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where Mmax
i and Mmin

i are the maximum and minimum value of function Di−1(k) +
rCi (k) − Si (k), respectively, i.e. Mmax

i = qmax
i−1 + rmax

i and Mmin
i = −qmax

i . It is now
possible to write (3.48) as

φi (k) = δmi (k)Di−1(k) + (1 − δmi (k))[Si (k) − rCi (k)] (3.50)

which is still non-linear because of the products between variables. Then, other three
variables should be defined. First of all, the auxiliary variable zmd

i (k) is defined as
zmd
i (k) = δmi (k)Di−1(k) and corresponds to

Mmin
d,i δmi (k) ≤ zmd

i (k) ≤ Mmax
d,i δmi (k)

zmd
i (k) ≥ Di−1(k) − Mmax

d,i (1 − δmi (k))

zmd
i (k) ≤ Di−1(k) − Mmin

d,i (1 − δmi (k))

(3.51)

in which Mmax
d,i and Mmin

d,i are the maximum and minimum value of function Di−1(k),
i.e. Mmax

d,i = qmax
i−1 and Mmin

d,i = 0.

Then, the auxiliary variable zms
i (k) is defined as zms

i (k) = δmi (k)Si (k) and given
by

Mmin
s,i δmi (k) ≤ zms

i (k) ≤ Mmax
s,i δmi (k)

zms
i (k) ≥ Si (k) − Mmax

s,i (1 − δmi (k))

zms
i (k) ≤ Si (k) − Mmin

s,i (1 − δmi (k))

(3.52)

in which Mmax
s,i and Mmin

s,i are the maximum and minimum value of function Si (k),
i.e. Mmax

s,i = qmax
i and Mmin

s,i = 0.
Finally, the auxiliary variable zmr

i (k) is defined as zmr
i (k) = δmi (k)rCi (k) and cor-

responds to
Mmin

r,i δmi (k) ≤ zmr
i (k) ≤ Mmax

r,i δmi (k)

zmr
i (k) ≥ ri (k) − Mmax

r,i (1 − δmi (k))

zmr
i (k) ≤ ri (k) − Mmin

r,i (1 − δmi (k))

(3.53)

in which Mmax
r,i and Mmin

r,i can be estimated as the maximum and minimum value of
function ri (k), i.e. Mmax

r,i = rmax
i and Mmin

r,i = 0.
Then, (3.50) becomes

φi (k) = zmd
i (k) + Si (k) − rCi (k) − zms

i (k) + zmr
i (k) (3.54)

Moreover, the following inequalities must be verified:

rCi (k) ≤ rmax
i (3.55)
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rCi (k) ≤ di (k) + li (k)

T
(3.56)

The CTM in MLD form is given by (3.27)–(3.30), (3.40), (3.42)–(3.44), (3.46)–
(3.47), (3.49), (3.51)–(3.56). Note that the CTM in MLD form is characterised by
three sets of auxiliary binary variables, namely, δdi (k), δsi (k), δmi (k), i = 1, . . . , N ,
k = 0, . . . , K , and five sets of auxiliary continuous variables, namely, zdi (k), z

s
i (k),

zmd
i (k), zms

i (k), zmr
i (k), i = 1, . . . , N , k = 0, . . . , K .

3.3.4 The CTM Including Capacity Drop Phenomena

First-order trafficmodels, both of continuous and discrete type, are not able to capture
the capacity drop, which is a common traffic phenomenon detected in real cases (see
Sect. 2.2.4). In the literature, some research works have been devoted to include
capacity drop phenomena in first-order traffic models (see, e.g. [56–60]). In the
following, two interesting extended versions of the CTM are reported, respectively,
obtained by changing the demand function and by changing both the demand and
the supply according to a 5-step piecewise linear Fundamental Diagram.

CTM with Capacity Drop: Change in the Demand Function A possibility of
modelling capacity drop phenomena in the CTM has been proposed in [60, 61].
In this model, the drop is represented by simply modifying the demand function,
so that in case of congestion the demand function is linearly decreasing, as shown
in Fig. 3.10. More specifically, the demand of cell i − 1, for i = 1, . . . , N and k =
0, . . . K , instead of being represented by (3.31), is given by

Di−1(k) = min
{

(1 − βi−1(k))vi−1ρi−1(k), q
max
i−1 + w′

i−1(ρ
cr
i−1 − ρi−1(k))

}

(3.57)
wherew′

i is the decreasing capacity rate due to the capacity drop phenomenon referred
to cell i (w′

i < wi ), while ρcr
i is the critical density of cell i causing a breakdown in

capacity.

Fig. 3.10 Modified demand
function (CTM with capacity
drop)

0
0 ρi(k)

Di(k)

qmax
i

ρcr
i
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This simple modification of the demand function allows to model capacity drop
by maintaining a simple linear formulation of the model that is useful especially
for control purposes. Of course, this simple modification is not sufficient to create a
capacity drop at the head of a congestion under all circumstances [60].

A very recent extension of the CTM to include the capacity drop phenomenon has
been proposed in [62]. This model has been used in a model-based predictive control
scheme in [63], in which it has been extended to consider the application of variable
speed limits. In [63], the proposed modified CTM is described in comparison with
the one reported in [60]. The model discussed in [63] is validated in [64], where
it is calibrated with real traffic data from a Dutch freeway and compared with a
second-order traffic flow model.

CTM with Capacity Drop: a 5-step Piecewise Linear Fundamental Diagram
Another possibility of including the capacity drop in the CTM has been proposed in
[59]. In that work, a 5-step piecewise linear Fundamental Diagram is defined, based
on empirical data, in which two values of capacity are explicitly considered. Then,
the capacity drop (between these two values of capacity) is modelled by introducing
a memory-state binary variable which determines whether the bottleneck is active or
inactive.

Let us start from the 5-step piecewise linear Fundamental Diagram. In a given
location the steady-state relation between traffic flow and density is assumed to be a
5-step piecewise linear function, which can be written as follows:

Q(ρi (k)) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vρi (k) if 0 ≤ ρi (k) ≤ ρa ∧ σi (k) = 0

κ + v′ρi (k) if ρa ≤ ρi (k) ≤ ρb ∧ σi (k) = 0

qmax,h if ρb ≤ ρi (k) ≤ ρc ∧ σi (k) = 0

qmax,l if ρb ≤ ρi (k) ≤ ρd ∧ σi (k) = 1

w(ρmax − ρi (k)) if ρd ≤ ρi (k) ≤ ρmax ∧ σi (k) = 1

(3.58)

A representation of the piecewise linear relation (3.58) is given in Fig. 3.11. Each
block of this function is defined by the density boundaries ρa , ρb, ρc, ρd , the jam
density ρmax and the congestion state σi (k) ∈ {0, 1}. This latter is a binary quantity,

Fig. 3.11 5-step piecewise
linear approximation of the
Fundamental Diagram

ρa ρb ρc ρd ρmax

qmax,H

qmax,L

ρi(k)

Q(ρi(k))
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equal to 0 when the state is uncongested and equal to 1 when it is congested. Note
that the density boundaries must verify 0 < ρa < ρb < ρc < ρd < ρmax.

Thefirst twoblocks represent the uncongested phase of traffic. Thefirst block is for
light conditions in which vehicles move at free-flow speed v. The second block rep-
resents the undersaturated state of traffic, in which the interactions among vehicles
decrease the mean speed (that is equal to v′ < v). The third and fourth blocks repre-
sent, respectively, the pre-congestion and post-congestion situations. Indeed, there
is a time interval in which, despite the high density, the freeway works at the max-
imum capacity qmax,h. After that time, a breakdown occurs and capacity decreases
to a lower value, that is qmax,l. Finally, the fifth block represents the behaviour in
the congested phase; therefore, the (negative) slope is assumed to be equal to the
congestion wave speed w. Moreover, if the density value is equal to the maximum
value ρmax, the flow is equal to zero.

According to this 5-step piecewise linear Fundamental Diagram, the standard
CTM has been modified in [59], by changing the demand and supply functions, as
well as by introducing a relation to update the value of the congestion state variable.
Further parameters are added to the standard ones in the CTM. Such parameters,
referred to cell i , i = 1, . . . , N , are the undersaturated speed v′

i [km/h], the constant

κi [veh/h], the high and low capacity values qmax,h
i and qmax,l

i [veh/h], the density
boundaries ρa

i , ρ
b
i , ρ

c
i , ρ

d
i [veh/km].

Taking into account (3.58) and Fig. 3.11, it is possible to split the graph into two
parts: the left part of the graph (from the first to the third block) is related to the
demand function, while the right part (fourth and fifth blocks) is associated with
the supply function. Specifically, the demand of cell i − 1 and the supply of cell i ,
instead of being given by (3.31) and (3.32), are, respectively, defined as

Di−1(k) = min
{

(1 − βi−1(k))vi−1ρi−1(k), (1 − βi−1(k))
[

κi−1 + v′
i−1ρi−1(k)

]

, qmax,h
i−1

}

(3.59)

Si (k) =
⎧

⎨

⎩

min
{

wi (ρ
max
i − ρi (k)), q

max,h
i

}

if σi (k − 1) = 0

min
{

wi (ρ
max
i − ρi (k)), q

max,l
i

}

if σi (k − 1) = 1
(3.60)

The congested state variable σi (k) indicates if the state of cell i at time kT is
uncongested or congested and is given by

σi (k) =
{

1 if
(

ρi (k) ≥ ρc
i

) ∨ (

ρi (k) ≥ ρb
i ∧ σi (k − 1) = 1

)

0 otherwise
(3.61)

According to [59], in the 5-step piecewise linear Fundamental Diagram, there is
not one value for the critical density, but two values, i.e. ρb

i and ρc
i . These values of

density are responsible for changing σi (k) to 0 or to 1.
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3.3.5 The CTM for a Freeway Network

TheCTM for a freeway network has been first introduced in [45], inwhich only three-
legged junctions are modelled. According to this assumption, the cells are classified
into three types (see Fig. 3.12):

• a diverge cell is characterised by only one entering link and two leaving links;
• a merge cell presents two entering links and one exiting link;
• an ordinary cell has just one entering and one leaving link.

With these three types of cells, any freeway networks with three-legged junctions
can be modelled. Nevertheless, no generality is lost because the case of junctions
with more than three legs can be easily represented as combinations of three-legged
junctions, as discussed in [45].

The dynamics of ordinary cells has already been described in Sect. 3.3.1. As for
merge and diverge cells, the state equation for traffic density (3.27) still holds, but
the definition of entering and exiting flows should be modified. In particular, for a
merge cell i , the total flow Φ+

i (k) entering cell i during time interval [kT, (k + 1)T )

depends on the flows coming from the preceding cells. Conversely, for a diverge cell
i , the total flow Φ−

i (k) exiting cell i during time interval [kT, (k + 1)T ) depends on
the flows going to the following cells. Let us analyse these two cases separately.

Merge Cell Let us consider that cell i is a merge cell and let us denote with j and
l the two preceding cells. Let us denote with φ j,i (k) and φl,i (k) the flows entering
cell i during time interval [kT, (k + 1)T ), from cell j and l, respectively, as shown
in Fig. 3.13.

For cells j and l it is possible to define the demand, i.e. the flow that can be
sent from cell j and l, respectively, to cell i during time interval [kT, (k + 1)T ).
Analogously to (3.31), these demands can be computed as

Fig. 3.12 Different types of cells in a freeway network according to the CTM
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Fig. 3.13 Sketch of a merge
cell and the relative notation

Dj (k) = min
{

(1 − β j (k))v jρ j (k), q
max
j

}

(3.62)

Dl(k) = min
{

(1 − βl(k))vlρl(k), q
max
l

}

(3.63)

The supply of cell i represents the flow that can be received by cell i from cells
j and l during time interval [kT, (k + 1)T ) and is still given by (3.32).

The total flow Φ+
i (k) entering cell i is computed as the sum of the flows entering

from cells j and l, i.e.

Φ+
i (k) = φ j,i (k) + φl,i (k) (3.64)

As already analysed in Sect. 3.3.1 for the mainstream flow and the on-ramp flow,
we are again in the situation in which there are two sending cells and one receiving
cell. Two cases are distinguished, corresponding to free-flow and congested condi-
tions. In the free-flow case, in cell i there is enough space for the two flows coming
from cells j and l, and a condition analogous to (3.33) can be written, i.e.

If Dj (k) + Dl(k) ≤ Si (k)

then φ j,i (k) = Dj (k), φl,i (k) = Dl(k)
(3.65)

If the previous condition is not satisfied, this means that not all the flows coming
from cells j and l can be received by cell i , and, analogously to (3.34), the following
conditions for the congested case hold:

If Dj (k) + Dl(k) > Si (k)

then φ j,i (k) = mid
{

Dj (k), Si (k) − Dl(k), p j Si (k)
}

φl,i (k) = mid
{

Dl(k), Si (k) − Dj (k), pl Si (k)
}

(3.66)

where p j and pl are the priorities of cell j and l in the merge, with p j + pl = 1.
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Fig. 3.14 Sketch of a
diverge cell and the relative
notation

Diverge Cell Let us consider that cell i is a diverge cell and let us denote withm and
n the two following cells. Let us denote with φi,m(k) and φi,n(k) the flows exiting
cell i during time interval [kT, (k + 1)T ) and going to cells m and n, respectively,
as shown in Fig. 3.14.

For cell i , the demand Di (k) is the flow that can be sent from cell i to cells m and
n during time interval [kT, (k + 1)T ), respectively, and it is computed as in (3.31),
i.e.

Di (k) = min
{

(1 − βi (k))viρi (k), q
max
i

}

(3.67)

The supply of cellsm and n is instead the flow that can be received by cellsm and
n, respectively, from cell i during time interval [kT, (k + 1)T ). These quantities are
computed analogously to (3.32), i.e.

Sm(k) = min
{

wm(ρmax
m − ρm(k)), qmax

m

}

(3.68)

Sn(k) = min
{

wn(ρ
max
n − ρn(k)), q

max
n

}

(3.69)

The total flowΦ−
i (k) exiting cell i is computed by taking into account the assump-

tions of the diverge model. The basic idea is that this total flow is restricted in case at
least one of the two diverging branches cannot receive its allocated flow. According
to this assumption, vehicles which cannot go to the next cell prevent all the other
vehicles behind them to continue, supposing that vehicles at the diverge area are
served according to a first-in-first-out rule. Of course, this is not completely true
in real cases, especially for low exit percentages, but it is worth noting that some
blockage phenomena can occur in reality for high exit percentages and in specific
traffic conditions, in some way motivating this assumption.

By denoting with βm(k) and βn(k) the portions of traffic flow present in cell i
going, respectively, to cell m and n (supposing that these quantities are exogenously
determined), the total flow exiting cell i is computed as
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Φ−
i (k) = min

{

Di (k),
Sm(k)

βm(k)
,
Sn(k)

βn(k)

}

(3.70)

The flows exiting cell i and going to cells m and n are then computed as

φi,m(k) = βm(k)Φ−
i (k) (3.71)

φi,n(k) = βn(k)Φ
−
i (k) (3.72)

3.3.6 Other CTM Versions

Other modifications of the original CTM have been proposed in the literature in
the last two decades. Hereafter some of them are briefly commented for the reader’s
convenience, while others can be addressed with the relevant references in [65]. Note
that some of the modifications regard the extension of the CTM to include the case
of a freeway in which variable speed limits or route guidance strategies are applied.
These modifications to the CTM are not reported in this book, whereas these types
of control have been included in second-order models (see Chap.4), being this latter
the most common choice in the scientific literature.

Asymmetric Cell Transmission Model The Asymmetric Cell Transmission Model
(ACTM) is a modification of the CTM proposed in [52]. The relevant difference
between the two models is the treatment of traffic merges. More specifically, merges
in the ACTM are considered as asymmetric connections, such as the junctions of the
on-ramps into themainstream.According to the logic of the standardCTM, themerge
is oriented tomove asmuch of the demand as possible from the twomerging cells into
the receiving cell. The ACTM, instead, makes separate allocations of supply for each
merging flow. The flows can then be computed separately as the minimum among
the demand, the allocated supply, and the capacity. This modification is justified
by the fact that the non-concave/non-convex mid functions of the CTM in (3.34)
are replaced with concave min functions, which is an advantage when this model is
used as a basis to solve model-based traffic control problems. Moreover, in [52] it
is proved that the ACTM, as the CTM, ensures not to predict unrealistic behaviours
such as backward moving traffic, negative densities and densities exceeding the jam
density.

Link-Node Cell Transmission Model The Link-Node Cell Transmission Model
(LN-CTM) is an extension of the CTM to simulate traffic in road networks [66]. In
this model, the traffic network is represented with a directed graph, in which links
represent road segments and nodes are the junctions among links. Normal links are
used to connect two nodes, source links are used to introduce traffic in the network,
whereas sink links are used to receive trafficmoving out of the network. According to
this logic, the on-ramps are represented as source links, while the off-ramps are sinks.
The LN-CTM uses a more accurate model of the merging phenomena compared
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with the ACTM. In particular, in congested conditions, the available supply is shared
by the incoming flows proportionally to the demands. However, this more detailed
representation of the merge comes at an additional cost of added non-linearity [67],
and therefore the results proved in [52] cannot be applied for the LN-CTM.

Lagged Cell Transmission Model In order to improve the accuracy of the original
CTM, in [68] a modification of the model has been proposed, based on the fact that
the downstream density, used to calculate the supply, is measured at an earlier time
instant compared to the current time step, i.e. it is lagged. The introduction of lags
can be justified because traffic information travels more slowly in the upstream than
in the downstream direction. An improved version of the Lagged CTM has been
proposed in [69] to avoid the occurrence of negative densities and of densities larger
than the maximum value.

Variable-LengthCellTransmissionModelTheVariable-LengthCell Transmission
Model (VLM) has been proposed in [70] and differs from the standard CTM for the
fact that a limited number of cells (of variable length) are used. A road network is
subdivided into several sections which are assumed to be composed of a downstream
congested cell followed by a free upstream cell. Both cells have variable lengths and
are described by two lumped densities (one congested, the other free). The model
includes one more state describing the length variation for each cell.

Switched Interpretation of CTM In the literature, some switched interpretations of
the CTM have also appeared. Indeed, the CTM is a piecewise linear model and can
be regarded as a hybrid system that switches among different sets of linear difference
equations. Each set describes a specific operation mode of the freeway traffic system.
Since the number of modes can become very high [71, 72], some assumptions can
be made to reduce the number of modes. A typical assumption is to consider at most
one wave front in the considered freeway stretch. The presence of a single wave
front is an assumption reasonable for short freeway stretches with only one on-ramp
and one off-ramp. The switched interpretation of the CTM with the single-wave
front assumption is called in the literature Switching-Mode Model (SMM) [73]. The
reduced set of modes can be associated with a graph, since the transition between
modes has to follow specific rules, also dictated by the fact that the congestion moves
upwards or downwards. The switched model with the associated graph is regarded
as a Graph Constrained CTM [74].

3.4 Multi-class First-Order Models

Multi-class traffic models have been developed by researchers in order to distinguish
different classes of vehicles travelling in the same road system. Depending on the
objective of themodel, the vehicle classes can be referred to different types of vehicles
(e.g. cars, trucks, public transport vehicles and so on) or to specific features of the
drivers (such as driving behaviours, travel purposes and so on). In recent applications,
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it is becoming more and more relevant to distinguish vehicles according to the driver
information level, specifically representing the class of ‘intelligent vehicles’, i.e.
vehicles equipped with innovative technology enabling the exchange of data with
other vehicles and the traffic infrastructure.

3.4.1 Motivations for Multi-class Models

Regardless of the considered vehicle typologies,multi-classmodels are characterised
by a higher descriptive capability than single-class models, allowing to more realis-
tically represent the dynamic behaviour of a real traffic system. Multi-class models
may allow the description of relevant traffic phenomena that can not be captured
by models representing only one class of vehicles, in particular all the phenomena
related to the interaction of different groups of vehicles which have to share the same
infrastructure.

Referring specifically to macroscopic traffic models, a multi-class macroscopic
model assumes that the traffic behaviour is represented as the interaction of different
traffic flows corresponding to different vehicle categories, whereas a single-class
model assumes that the whole traffic is a homogeneous fluid. Let us consider in
particular the easiest and better known example of multi-class traffic, i.e. a freeway
traffic system in which both cars and trucks travel. In this case, it is easy to observe
that trucks have a strong impact on the overall traffic flow for many reasons (because
of their high dimensions and low operating capabilities, because their presence has
a psychological impact on the drivers of nearby vehicles and so on). Also, these two
classes of vehicles have different behaviours and, in many traffic scenarios, can be
seen as two different flows sharing the same infrastructure. In particular considering
roads with multiple lanes, as it normally happens in freeways, fast vehicles can
overtake slow vehicles, so that the traffic behaviour is given by the dynamics of two
different flows which influence each other. Representing explicitly the two flows and
the interaction between them, instead of modelling the whole traffic as a unique flow,
allows to better describe the real traffic system.

A further advantage of the multi-class modelling framework is related to the
possibility of designing multi-class controllers, providing different control actions
for different vehicle classes. This aspect will be further investigated in Chap. 10.

3.4.2 An Overview of Multi-class First-Order Models

Most of the multi-class first-order traffic models present in the literature are multi-
class versions of the LWR model, while only few are multi-class extensions of the
CTM.
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Multi-class Versions of the LWRModel In some cases, the heterogeneous proper-
ties of the traffic flow are represented through multi-lanemodels, as in [75], where a
general multi-lane rule is introduced, or in [76], where two types of vehicles and a set
of dedicated lanes are modelled. In particular, in [76], the vehicles of the first class
can use all the lanes, whereas those belonging to the second class are compelled to
travel in a subset of lanes usually located on the right side of the freeway.

Another multi-class first-order model is reported in [77], where the macroscopic
model is derived from mesoscopic principles, i.e. from gas-kinetic equations, in
order to model the fact that drivers accelerate/decelerate not only according to the
desired speed of their class but also due to interactions with other vehicles, both
belonging to their class and to other classes. The model proposed in [77] is extended
in [78], where a multi-class multi-lane model is proposed for explicitly representing
the presence of vehicles moving in platoons. A macroscopic behavioural theory of
traffic dynamics for homogeneous and multi-lane freeways is proposed in [79, 80].
Taking into account that drivers can be distinguished in timid and aggressive, this
theory can be used to make predictions for separate groups of lanes and is shown to
be consistent with experimental observations.

A kinematic wave model of multi-commodity network traffic flow is presented
in [81] and, then, extended in [82] to the lane-changing case. In these works, it is
assumed that all vehicles have predefined paths and each commodity is represented
by vehicles using the same path.

Another work developed in order to consider heterogeneous groups of drivers in
the traffic flow is [83], where an extension of the LWR model is formulated with
different speed distributions for each class of road users. Specifically, that model
describes the dynamic behaviour of heterogeneous users in the traffic flow, in which
faster vehicles can overtake the slower ones, both under uncongested and congested
conditions, whereas slower vehicles behave in order to slow down the faster ones.
In [84], the authors present a homogenised hyperbolic traffic flow model to take
into account the presence of several types of vehicles (such as cars, trucks, buses,
and so on). An n-population generalisation of the LWR model is proposed in [85],
allowing to mathematically explain some practical traffic phenomena, such as over-
taking among vehicles. In [86], a multi-class first-order model is presented to explain
non-linear traffic phenomena, such as hysteresis and capacity drop. In that model, in
free-flow conditions the different vehicle classes are characterised by specific desired
speeds and overtaking is allowed; in congested conditions, instead, all the vehicles
must travel at the same congested speed and it is not possible to overtake.

In [87], a new model is proposed for vehicle classes interacting in a non-
cooperativeway: slowvehicles can be seen asmoving bottlenecks for the fast vehicles,
which maximise their speed without influencing slower vehicles. In this model, each
class represents a homogeneous group of vehicles, which interacts with the other
vehicle classes within the traffic flow. According to this concept, each class is char-
acterised by a different Fundamental Diagram. Note that the specific case of moving
bottlenecks, i.e. the presence of slow vehicles moving in the traffic flow, resulting in a
reduction of the capacity, is studied in a number of research works based on the LWR
model (see, e.g. [88–92]). From a mathematical point of view, moving bottlenecks
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are normally represented as models in which the partial differential equations of the
LWR model are coupled with ordinary differential equations describing the motion
of slower vehicles.

Based on the same logic applied in [87], a model to describe a disordered traffic
system is presented in [93]. In a disordered traffic system, there is no lane discipline,
i.e. drivers of smaller vehicles exploit their manoeuvrability to move into lateral gaps
at low speeds, whereas at high speeds larger vehicles exploit their greater power
to move forward in the traffic flow. These types of systems are very common in
developing countries.

A more recent development of macroscopic first-order models for the multi-class
case is the Fastlane model, which was first developed in [94]. Fastlane was then
successively extended in [95] to be applied for developing multi-class rampmetering
in order to control separately the different vehicle classes. Fastlane is based on the
LWRmodel anddiffers fromearliermulti-class first-ordermacroscopic trafficmodels
for the fact that it models the system dynamics in terms of state-dependent (instead
of constant) passenger car equivalents. According to the Highway Capacity Manual,
the Passenger Car Equivalents (PCE) are defined as the number of passenger cars
displaced by a single heavy vehicle of a particular type under prevailing roadway,
traffic and control conditions [96]. This factor depends on the considered freeway
portion and the traffic conditions present in it, as discussed, for instance, in [97].

A recent work on multi-class traffic models is [98], where two types of vehicles
are considered. The model is able to capture overtaking dynamics and creeping
phenomena, these latter representing overtaking actions by small vehicles in highly
congested situations when larger vehicles have completely stopped. In [98], it is
shown that this two-class homogeneous model is equivalent to the ARZ model, of
second-order type (see Sect. 4.1.2).

Multi-class Versions of the CTM In [99], the conventional single-class CTM is
extended to a more generalised multi-class model in order to take into account the
mixed composition of vehicle classes. In the experimental results reported in the
paper, the multi-class model is compared with the single-class one and is proven to
be significantly more accurate in representing real traffic scenarios.

In [100], a multi-class CTM is developed with the aim of distinguishing two spe-
cific classes of vehicles, i.e. autonomous vehicles and conventional vehicles. Indeed,
autonomous vehicles may entail reduced headways and an increased capacity. Of
course, this impact depends on the proportion of autonomous vehicles in the entire
traffic flow. The idea of explicitly modelling the presence of Vehicle Automation and
Communication Systems (VACS) in the traffic network can be also found in [60],
where the CTM ismodified to consider lane-changing and capacity drop phenomena,
by specifically computing lateral and longitudinal flows.

A recent multi-class version of the CTM can be found in [101], where a unified
framework tomodel heterogeneous traffic flows for large-scale networks is proposed.
This model considers the interaction of different vehicle classes, each of which
is characterised by homogeneous car-following behaviours and vehicle attributes,
and represents three traffic states, corresponding, respectively, to free-flow, semi-
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congested, and full congested conditions. This model also allows the computation
of travel times for each vehicle class.

A multi-class version of the CTM, specifically modelling the presence of cars
and buses in the traffic flow, is presented in [102]. The proposed model is called
BUS-CTM and tries to replicate the phenomenon of moving bottlenecks, caused by
buses moving in the traffic flow. Specifically, buses and cars are considered as hetero-
geneous vehicles with different characteristics, such as free-flow speed, acceleration
and size.
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