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Abstract Granular materials tend to exhibit distinct patterns under deformation
consisting of layers of counter-rotating particles. In this article, we are going
to model this phenomenon on a continuum level by employing the calculus of
variations, specifically the concept of energy relaxation. In the framework of
Cosserat continuum theory the free energy of the material is enriched with an
interaction energy potential taking into account the counter rotations of the particles.
The total energy thus becomes non-quasiconvex, giving rise to the development of
microstructures. Relaxation theory is then applied to compute its exact quasiconvex
envelope. It is worth mentioning that there are no further assumptions necessary
here. The computed relaxed energy yields all possible displacement and micro-
rotation field fluctuations as minimizers. Based on a two-field variational principle
the constitutive response of the material is derived. Results from numerical compu-
tations demonstrating the properties of relaxed potential are shown.

1 Introduction

This paper focuses on the treatment of a non-quasiconvex, and therefore ill-posed
variational model for granular materials that arises as a consequence of the particle
counter rotations at the microscale. In continuum mechanics non-quasiconvex
potentials may arise due to various reasons, e.g., in the case of strain-softening
plasticity [34, 40] they can be caused by non-monotone constitutive behavior, in
the case of single slip plasticity they can be due to single slip constraints on the
deformation of crystal in association with cross-hardening [23, 24], for twinning
induced plasticity they stem from multi-phase energy potentials corresponding to
different martensitic variants [8, 14, 32, 35, 36].
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So far, different approaches have been discussed in the literature to treat
non-quasiconvex variational problems. One possibility is to use regularization
techniques which are based on a gradient-type enhancement of the original non-
quasiconvex energy function in (5). But the regularization method has its own
limitations as far as the physical properties of the unrelaxed problems are concerned.

Contrary to this is the method of relaxation is a more effective and natural way
to deal with non-quasiconvex energies. There are two ways to relax the original
non-quasiconvex energy minimization problem (5). Either to enlarge the space
of admissible deformations

(
W 1,p∈(1,∞) (Ω,Rn)

)
to the space of parametrized

measures [8, 47, 64], or, to replace the original non-quasiconvex energy with its
relaxed energy envelope. The methodology of constructing a relaxed minimization
problem by using parametrized measures is discussed by Carstensen and Roubíček
[15, 16], Nicolaides and Walkington [42, 43], Pedregal [47–49] and Roubíček [51–
53]. The references which suggests to replace the non-quasiconvex energy with its
corresponding relaxed energy function are found in Carstensen et al. [13], Conti
and Ortiz [23], Conti and Theil [24], Hackl and Heinen [35], Govindjee et al. [32],
Miehe and Gürses [34]. Numerical schemes for calculating relaxed envelopes have
been worked out by Aranda and Pedregal [4], Bartels [10], Carstensen, Conti and
Orlando [12], Carstensen and Plechac [14], Carstensen and Roubíček [15], Chipot
[19], Chipot and Collins [20], Collins, Kinderlehrer and Luskin [21], Dolzmann and
Walkington [29], Pedregal [49] and Roubíček [53]. For a detailed discussion on the
methods of relaxation the reader is referred to the work by Dacorogna [25], Ball [7]
and references therein.

Exact analytical results for the relaxed energy are known only for few variational
problems in the literature so far. For example the work of DeSimone and Dolzmann
[28] where they give an exact envelope of the relaxed energy potential for the
free energy of the nematic elastomers undergoing a transition from isotropic to
nematic-phase. Dret and Raoult [30] compute an exact quasiconvex envelope for
the Saint Venant-Kirchhoff stored energy function expressed in terms of singular
values. Some analytical examples of quasiconvex envelopes are also mentioned
by Raoult in [50] for different models in nonlinear elasticity. Kohn and Strang
[37, 38] gave an exact formula (see Theorem 1.1 in [37]) for the relaxed energy
for a variational problem which has its emergence from the shape optimization
problems for electrical conduction. Another exact relaxed result is given by Conti
and Theil in [24] for the incremental variational problem for rate-independent single
slip elastoplasticity. Conti and Ortiz [23] determine an exact analytical expression
for the relaxed energy in single crystal plasticity with a non-convex constraint on
the deformation of the crystal requiring all material points must deform via single
slip. They extended their analytical expression in [22] to the case of crystal plasticity
with arbitrary hardening features. Kohn and Vogelius studied the inverse problem of
applied potential tomography and come up with an analytical formula [39] for the
relaxed energy by using results from homogenization. In a similar manner but this
time with the use of Fourier analysis Kohn presents in Theorem 3.1 of [36] an exact
analytical expression for a two well energy function with application to solid-solid
phase transitions.
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In this paper, we provide an exact relaxation for the non-quasiconvex energy
which arises during our study on the rotational microstructures in granularmaterials.
Due to a large number of industrial applications and their use in everyday life gran-
ular materials have been studied extensively throughout the past years. Numerous
investigations have been performed in order to model the mechanical behavior of
these materials [2, 3, 18, 31, 44–46, 54–57, 59, 60]. In this work, the focus is to
consider the counter-rotations of granular particles at the microscale and to develop
a mechanical model that can predict the formation of distinct deformation patterns
that are related to the microstructures in these materials. For an overview on the
experimental observations of such patterns the reader is referred to the book by
Aranson and Tsimring [5]. For this purpose the continuum description of granular
materials is used, specifically the theory of Cosserat continuum.

The present work is organized as follows. In Sect. 2 the intergranular kinematics
is discussed and an interaction energy potential contributing to the strain energy of
the material is proposed. In Sect. 3 a relaxed variational model for granular materials
is presented where we state and prove a theorem on the explicit computation of the
relaxed envelope. Employing this result, the exact relaxed energy is derived where
all the material regimes are explicitly characterized. In Sect. 4 numerical results
demonstrating on the properties of computed relaxed potential are presented. Finally
in Sect. 5 conclusions are drawn.

2 Intergranular Interactions and Counter Rotations

Intergranular interactions and particle counter rotations in a granular medium
subjected to deformation are intriguing and experimentally well recognized [44,
54] phenomenon that contribute in the development of material microstructures
[9, 55, 58]. Because of intricate nature of particle rotations and complex behavior
of granular materials under deformation it is therefore difficult to understand the
intergranular cohesive interactions completely. In literature almost no comprehen-
sive study appeals which discuss the intergranular interactions and the arising
phenomenon in detail that can truly justify the naturally observed microstructural
patterns in deforming granular materials. Although the particle rotations at the
microscale has been considered by a number of authors, see e.g. [1, 17, 18, 45, 55,
58], the essence of their counter rotations especially their interactions in observing
the formation of distinct deformation patterns is not well understood. It is therefore
our aim to reconsider the intergranular kinematics of counter-rotating particles at
microscale and to develop an interaction energy potential for a granular medium
that arises as a consequence of these particle counter rotations.

Here, we develop an interaction energy potential that takes into account the inter-
granular kinematics at the continuum scale and define two new material parameters
as a suitable measure for the observation of microstructural phases of granular
materials. In this spirit, consider the granular material where two neighboring
particles are in contact with each other as shown in Fig. 1. These particle interactions
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counter-
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Fig. 1 Schematic of a granular medium subjected to shear with phenomenon of particle counter
rotations

leads to two important modes of deformations called translational and micro-
rotational motions of the particles which can play a crucial role in the dissipation
of the material energy [1, 45] at the continuum scale and therefore contribute to the
material strain energy. These independent translational and rotational motions of
the granules at the microscale are interlinked with a suitable deformation measure
analogous to the concept used in the theory of generalized continuum. Consider now
that at the continuum scale the translational motion of the two interacting particles
is represented by the vector field {ui ei} : R

d �→ R
d and the rotational motion

is represented by a field vector analogous to the micro-rotational vector {ϕi ei} :
R

d �→ R
d of the Cosserat continuum. Associated with these deformation field

vectors are the strain measures. Corresponding to translational and microrotational
vector field these measure are the deformation tensor

[
uj,i ei ⊗ ej

] : Rd �→ R
d×d

and
[
ϕj,i ei ⊗ ej

] : Rd �→ R
d×d respectively. The symmetric part of uj,i ei ⊗ ej is

the classical strain tensor εij ei ⊗ej . An investigation of the rotating phenomenon of

the interacting particles reveals that the macroscopic shear

(
εij − 1

d
εkk δij

)
ei ⊗ej

influence the microrotational deformation ϕj,i ei ⊗ ej of the granular particles.
This leads us to suggest a proportionality relation between the gradient of the
microrotational vector field and the macroscopic shear strain which in mathematical
terms is given by

√√
√√
√

d∑

i,j=1

(
ϕj,i

)2 ∝

√√
√√
√

d∑

i,j=1

(
εij − 1

d
εkk δij

)2

, (1)

where d is the dimension of the problem under consideration. This proportionality
relation is solved with the introduction of the length scale parameter β with the
dimension of the inverse of a length. Thus we can write

√√
√
√
√

d∑

i,j=1

(
ϕj,i

)2 = β

√√
√
√
√

d∑

i,j=1

(
εij − 1

d
εkk δij

)2

. (2)
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Equation (2) is indeed the simplest possible assumption taking into account such
an intergranular relationship. More complex forms can be envisioned, but we will
demonstrate in the sequel that the present one already leads to a very intricate
kinetics.

This brief but comprehensive discussion on itergranular kinematics enables us
to propose an interaction energy potential that will contribute to the material strain
energy function. This interaction energy potential is stated as

I = α

⎛

⎝
d∑

i,j=1

(
ϕj,i

)2 − β2
d∑

i,j=1

(
εij − 1

d
εkk δij

)2
⎞

⎠

2

, (3)

where Einstines summation convention is assumed. In tensorial notation it takes the
following form

I = α
(
‖∇ϕ‖2 − β

2 ‖symdev∇u‖2
)2

, (4)

where α and β are non-negative material constants, α is the interaction modulus
having information regarding frictional effect in the interacting particles and β is
related to the particle size having information regarding intrinsic length scale in
Cosserat continuum. The proposed interaction energy potential not only bridges
the gap between microstructural properties and the macroscopic behavior of the
material but also enables us to characterize different microstructural regimes in
granular materials.

3 A Relaxed Variational Model for Granular Materials

3.1 Variational Model

The mechanical response of granular materials can be computed from variational
models defined within the context of Cosserat continuum theory. Let Ω be a
bounded domain with Lipschitz boundary ∂Ω and u : Ω ⊂ R

d �→ R
d be

the displacement vector field where d being the dimension of the problem under
consideration, Φ : Ω ⊂ R

d �→ so(d) := {
R ∈ M

d×d | RT = −R
}
be the

microrotations such that the micromotions of the particles are collected in the vector
field ϕ = axl(Φ) : Ω ⊂ R

d �→ R
d , then the deformed configuration of these

materials can be completely determined from the following minimization problem

inf
u,Φ,ϕ

{
I (u, Φ, ϕ) ; (u,Φ,ϕ) ∈ W 1,p

(
Ω,Rd

)
× W 1,p(Ω, so (d)

)× W 1,p
(
Ω,Rd

)}
,

(5)

along with the prescribed boundary conditions u|∂Ωu = u◦ and ϕ|∂Ωϕ = ϕ◦. Here
W 1,p is the space of admissible deformations (also known as Sobolev space) with
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p ∈ (1,∞) related to the growth of the energy function W . The integral functional
I is defined as

I (u,Φ,ϕ) =
∫

Ω

W (∇u,Φ,∇ϕ) dV − 	 (u,ϕ) , (6)

where the potential 	 takes the contribution of external forces b, external couplesm,
traction forces tu and traction moments tϕ such that

	 (u,ϕ) =
∫

Ω

(b · u + m · ϕ) dV +
∫

∂Ωu

tu · u dS +
∫

∂Ωϕ

tϕ · ϕ dS. (7)

In reality, the deformation of granular media is a dissipative process which should
not be discussed in terms of energies and displacements. In this sense, our model
only covers the initiation of material microstructures. For a full description of
extended time-intervals, the variables u,Φ,ϕ would have to be replaced by their
corresponding velocities and the energy W by a dissipation function. An exposition
of this procedure in the case of rigid elasticity can be found in [61–63].

Within the framework of generalized elasticity the mechanical response of gran-
ular materials can be determined with the specification of an energy potential that
depends, in an independent way, on the particle displacement and microrotations. It
is therefore possible to replace the energy potential W in the integral functional (6)
by the following Cosserat energy function

Wcsrt (∇u,Φ,∇ϕ) = 1

2
e (u,ϕ) : C : e (u,ϕ) + 1

2
κ (ϕ) : C : κ (ϕ) , (8)

which do not only depends on the gradients of the macro and micro-motions of the
particles but also on a relative macro-rotational deformation tensorΦ that associates
the macro-deformationwith the micro-deformation of the particles. Here, e = ∇u−
Φ is the Cosserat deformation strain tensor, κ = ∇ϕ is the rotational deformation
strain tensor, C and C are the fourth order constitutive tensors of elastic constants.

The earlier discussion in Sect. 2 on the intergranular interactions and counter
rotations of the particles leads us to introduce an enhanced energy potential for the
granular materials. In this spirit, the interaction energy potential (4) is integrated
with the Cosserat energy function (8) to model the microstructures of the granular
materials. This enables us to define a new enhanced energy potential for the granular
materials in a Cosserat medium which is given by

W (∇u,Φ,∇ϕ) = Wcsrt (∇u,Φ,∇ϕ)
︸ ︷︷ ︸
Cosserat energy function

+ α
(
‖∇ϕ‖2 − β

2 ‖dev sym∇u‖2
)2

︸ ︷︷ ︸
Interaction energy potential

.

(9)
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Fig. 2 Unrelaxed energy (10) curve for E = 2.0 × 102 (MPa), ν = 0.3, μc = 1.0 × 10−2 (MPa),
λ = 1.15 × 102 (N), μ = 7.69 × 101 (N), μc = 1.00 × 101 (N), α = 1.0 × 101 (N.mm2) and
β = 1.20 × 102 (mm−1)

In an isotropic elastic Cosserat medium the enhanced energy potential (9) takes the
form

W (∇u, Φ,∇ϕ) =
(

λ

2
+ μ

d

)
(
tr ε
)2 + μ ‖dev ε‖2 + μc ‖asy∇u − Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2

(10)

Here, λ, μ, μc, λ̄, μ̄, μ̄c are the Cosserat material constants.
The nonconvexity and hence the non-quasiconvexity of the energy potential (10)

along some chosen strain paths can be seen from Fig. 2. Such non-quasiconvex
energy potential when enters in (6) will lead to work with non-quasiconvex energy
minimization problemwhose general analytical solutions are always of interest. But,
the solutions to such non-quasiconvex energyminimization problems do not exist in
general, which is highly due to fine scale oscillations of the gradients of infimizing
deformations. Here, in this case, the non-existence of these solutions is due to the
possible displacement and microrotation field fluctuations at fine scales. The fine
scale oscillations of the minimizing displacement and microrotation field variables
will lead to the development of internal structures in the material. Formation of such
microstructures can be extendedmicrostructures [6, 33] which is distributed through
the material domain or the localized microstructures [11, 27] which appear in the
form of narrow shearing bands. Moreover, the existence of the unique minimizing
translational and microrotational deformations are not guaranteed in this situation.
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Thus to avoid these problems and to resolve the internal structures of the materi-
als in consideration it is therefore necessary to compute a quasiconvex (relaxed)
energy potential W rel. The relaxed potential when enters in the minimization
problem (5) now assures the ellipticity of the resulting boundary value problem,
since it satisfy the Legendre-Hadamard condition (see definition by Ball and
Dacorogna [7, 25]). The study by Morrey [41], Dacorogna [25, 26] gives sufficient
justification for the relation of Legendre-Hadamard (ellipticity) condition with the
constitutive description of a related mechanical problem.

If possible to compute the exact relaxed envelope of the corresponding non-
quasiconvex energy in the energy minimization problem (5) one do not only
guarantee general solutions of the associated energy minimization problem but also
can predict on the formation of both the extended and localized microstructures in
the materials. It is worth mentioning that, in this case, we are enable to compute an
exact relaxed (quasi-convex) energy envelope corresponding to the non-quasiconvex
energy potential in (10).

Since quasiconvex envelopes possess only degenerate ellipticity, only existence
of minimizers can be guaranteed, no uniqueness. For numerical purposes it is
therefore advantageous to add a very small strongly elliptic regularization term.
This does not alter the character of the calculated solutions.

3.2 Computation of Relaxed Energy Envelope

In this section, we present our main result concerning the solutions of non-
quasiconvex energy minimization problem in (5). In this respect, we compute
an exact quasiconvex envelope of the energy function in (10). For other cases
where it was possible to construct exact relaxed envelopes corresponding to
energy minimization problems addressing different mechanical aspects the reader
is referred to the work by Conti and Theil [24], Conti and Ortiz [23], Conti et al.
[22], DeSimone and Dolzmann [28], Dret and Raoult [30], Kohn [36], Kohn and
Strang [37, 38], Kohn and Vogelius [39], Raoult [50]. The quasiconvex envelope
which here termed as the relaxed energy Wrel is thus stated as

Theorem 1 Assume d = 3, λ, μ, μc, λ̄, μ̄, μ̄c, α, β ≥ 0, μ◦ = min {μ̄, μ̄c}. Let

f = μ◦ s + μ c + α
(
s − β2 c

)2
, h =

{
(μ̄ − μ̄c) ‖sym κ‖2 if μ̄ ≥ μ̄c

(μ̄c − μ̄) ‖asy κ‖2 otherwise

and define g by

g = min
s,c; c≥‖dev ε‖2,

s≥(‖sym κ‖2+‖asy κ‖2)
f (s, c) .

(11)
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Then, the quasicovnex envelope of the Cosserat strain energy defined in (10) is
given by

Wrel =
(

λ

2
+ μ

d

)
(
tr ε
)2 + μc ‖asy ∇u − Φ‖2 + λ

2
(tr κ)2 + h

+ g
(
‖sym κ‖2 , ‖asy κ‖2 , ‖dev ε‖2

)
.

(12)

Proof Consider the rank-one line κ t = κ + t a ⊗ b; a,b ∈ R
d , t ∈ R, then

W (e, κ t ) =
(

λ

2
+ μ

d

)
(
tr ε
)2 + μ ‖dev ε‖2 + μc ‖asy∇u − Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ t‖2 + μc ‖asy κ t‖2 + α
(
‖sym κ t‖2 + ‖asy κ t‖2 − β2 ‖dev ε‖2

)2

(13)

Now, for any s ≥ ‖κ‖2 we can select t− < t ≤ 0 such that ‖κ t‖2 = s . A
lamination in this direction gives

Wrc ≤
(

λ

2
+ μ

d

)
(
tr ε
)2 + μc ‖asy∇u − Φ‖2 + λ

2
(tr κ)2 + h

+ min
s≥‖sym κ‖2+‖asy κ‖2

{
μ◦ s + μ ‖dev ε‖2 + α

(
s − β2 ‖devε‖2

)2}
.

(14)

Here, rc in the superscript stands for rank-one convex envelope. Working along the
rank-one line et = e + t c ⊗ d; c,d ∈ R

d and following the arguments above,
we obtain

Wrc ≤
(

λ

2
+ μ

d

)
(
tr ε
)2 + μc ‖asy∇u − Φ‖2 + λ

2
(tr κ)2 + h

+ min
c≥‖dev ε‖2

{
μ◦
(
‖sym κ‖2 + ‖asy κ‖2

)
+ μ c

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 c

)2}
.

(15)

Hence the upper bound is proved. The lower bound is based on Lemma 1 below and
on the fact that, for h1 : [0,∞)d �→ R

d convex and non-decreasing in each variable
and h2 : Rd×d �→ R

d component-wise convex, the function h1 ◦ h2 is convex. This
completes the proof.
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Lemma 1 Let f : [0,∞)2 �→ [0,∞) be convex. Then the function g defined by

g(x) = inf
s1≥x1,s2≥x2

f (s) (16)

is convex and non-decreasing in each variable.

Proof Fix x ′, x ′′, λ ∈ (0, 1). For any ε > 0 there are s′, s′′ such that x ′ ≤ s′, x ′′ ≤
s′′, and

f (s′) ≤ g(x ′) + ε, f (s′′) ≤ g(x ′′) + ε. (17)

Then λs′ + (1 − λ)s′′ ≥ λx ′ + (1 − λ)x ′′, and since f is convex we obtain

g(λx ′ + (1 − λ)x ′′) ≤ f (λs′ + (1 − λ)s′′) ≤ λf (s′) + (1 − λ)f (s′′)

≤ λg(x ′) + (1 − λ)g(x ′′) + ε. (18)

Therefore g is convex. Monotonicity is clear from the definition.

To compute the exact relaxed envelope in (12) one needs to solve the minimization
problem (11). The stationarity conditions to this minimization problem are as
follows

3.2.1 Stationarity Conditions

(1). for s = ‖sym κ‖2 + ‖asy κ‖2
and c ≥ ‖dev ε‖2 : ∂g

∂c
= 0,

∂g

∂s
≥ 0,

(19a)

(2). for s = ‖sym κ‖2 + ‖asy κ‖2
and c = ‖dev ε‖2 : ∂g

∂c
≥ 0,

∂g

∂s
≥ 0,

(19b)

(3). for c = ‖dev ε‖2
and s ≥ ‖sym κ‖2 + ‖asy κ‖2 : ∂g

∂s
= 0,

∂g

∂c
≥ 0.

(19c)

On the basis of these three stationarity conditions the material energy can be
characterized into the following three phases
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Fig. 3 A Couette shear cell where the two arrows indicates the shearing direction of the inner and
outer boundaries of the annular domain. In inset the microstructure patterns due to microrotational
motions of the particles is shown

3.2.2 Material Phase with Microstructure in Microrotational Motions
(Micromotions) (Phase 1)

This phase is corresponding to the material regime where there are microstructures
due to the micromotions (which are in fact the rotational degrees of freedom
assembled in the microrotational vector field ϕ) of the continuum particles. A
schematic representation of such microstructure is given in Fig. 3. The enhanced
energy potential (10) is nonconvex in this microstructural phase. It is observed
that whenever the norm of the curvature strain tensor is dominating over the norm
of the macroscopic shear strain tensor for some specific choice of the material
parameters μ, α and β, the material experiences a microstructure in micromotions.
This microstructural material phase is characterized by the following inequality
relation

‖κ‖2 ≥ β2 ‖dev ε‖2 + μ

2αβ2
. (20)

It is important to note the effect of shear modulus μ, internal length scale (e.g.,
the diameter of particles) β and the coherency interaction modulus or frictional
modulus α in conjunction with the curvature and macroscopic shear strains which
plays very crucial role in the observation of this internal structural phase of the
material. Using the first stationarity condition (19a) the minimizers of the problem
in (11) are obtained as

s = ‖sym κ‖2+‖asy κ‖2 , c = 1

β2

(
‖sym κ‖2 + ‖asy κ‖2

)
− μ

2αβ4 . (21)
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Thus, the scalar convex function g is given by

g =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
μ − μc + μ◦+ μ

β2

)
‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖asy κ‖2 − μ2

4αβ4
if μ̄ ≥ μ̄c

(
μ◦ + μ

β2

)
‖sym κ‖2 +

(
μc − μ + μ◦ + μ

β2

)
‖asy κ‖2 − μ2

4αβ4
if μ̄ < μ̄c

(22)

The relaxed energy of the material in this phase is obtained as

Wrel
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

)
(
tr ε
)2 + μc ‖asy ∇u − E · ϕ‖2 − μ2

4αβ4

if μ̄ ≥ μ̄c,

+ λ̄

2
(tr κ)2 + (μ̄ − μ̄c) ‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u − E · ϕ‖2 − μ2

4αβ4

if μ̄ < μ̄c

+ λ̄

2
(tr κ)2 − (μ̄ − μ̄c) ‖asy κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2

(23)

3.2.3 Material Phase with No Microstructure (Phase 2)

This phase is connected with the material regime where there is no internal structure
in the material. The second stationarity condition (19b) clearly shows that the

minimizers of the functional in (11) are itself
(
‖sym κ‖2 + ‖asy κ‖2

)
and ‖devε‖2

respectively. This indicates that the original energy potential in (10) is convex in this
material phase. The criteria for the recognition of this material phase is given by the
following inequality relation

β2 ‖dev ε‖2 − μ◦
2α

≤ ‖κ‖2 ≤ β2 ‖dev ε‖2 + μ

2αβ2 . (24)

The function g in this phase is given by

g = μ ‖sym κ‖2 + μc ‖asy κ‖2 + μ ‖dev ε‖2

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖devε‖2

)2
. (25)
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The relaxed energy potential in this phase is thus the original energy potential (10)
itself and we write

Wrel
2 =

(
λ

2
+ μ

d

)(
tr ε
)2 + μ ‖dev ε‖2 + μc

∥
∥asy∇u − E · ϕ

∥
∥2 + λ

2

(
tr κ
)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2

(26)

3.2.4 Material Phase with Microstructure in Translational Motions
(Phase 3)

This phase constitutes an unexpected outcome of the theory presented. It consists
of laminates formed by alternating displacements as for example formed by phase-
transforming materials. It would be interesting to see whether such structures can
be observed experimentally.

This phase is related to the material regime where there is a microstructure in
translational motions (which are in fact the displacement degrees of freedom of the
continuum particles and are assembled in the displacement vector field u) of the
continuum particles. A schematic representation of such microstructure formation
is shown in Fig. 4. The enhanced energy potential (10) thus becomes nonconvex in
this phase. Using the third stationarity condition (19c) it is observed that the norm
of the macroscopic shear strain tensor is dominating over the norm of the rotational
strain tensor. The material is said to be in this phase whenever the following criteria
is satisfied

β2 ‖devε‖2 − μ◦
2α

≥ ‖κ‖2 . (27)

It is important to note the effect the coherency modulus α and the Cosserat material
modulusμ◦ in the characterization of this microstructural phase. The minimizers of
the functional in (11) are obtained after solving the third stationarity condition (19c)

Fig. 4 A rectangular specimen under shear with two arrow head pointing towards the shearing
direction. In inset the microstructure patterns formed due to the translational motions of the
continuum particles is shown
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which are given as

c = ‖devε‖2 and s = β2 ‖dev ε‖2 − μ◦
2α

. (28)

Thus minimum potential g in (11) takes the following form

g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
μ − μc

) ‖sym κ‖2 + (μ◦β2 + μ
) ‖devε‖2 − μ2◦

4α
if μ̄ ≥ μ̄c

(
μc − μ

) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ2◦

4α
if μ̄ < μ̄c

(29)

Hence the relaxed energy potential in this phase is obtained as

Wrel
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε
)2 + μc ‖asy ∇u − E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ ≥ μ̄c

+(μ̄ − μ̄c) ‖sym κ‖2 +
(
μ◦β

2 + μ
)

‖dev ε‖2 − μ◦2

4α

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

)
(
tr ε
)2 + μc ‖asy ∇u − E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ < μ̄c

− (μ̄ − μ̄c) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ◦2

4α
(30)

3.2.5 Relaxed Energy

The total relaxed energy thus comprises all the three energies in each of the phase
and it acquires finally the following form

Wrel =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wrel
1 if ‖κ‖2 ≥ β

2 ‖dev ε‖2 + μ

2αβ2

Wrel
2 if − μ◦

2α
≤ ‖κ‖2 − β

2 ‖dev ε‖2 ≤ μ

2αβ2

Wrel
3 if ‖κ‖2 ≤ β2 ‖dev ε‖2 − μ◦

2α

(31)

where Wrel
1 , Wrel

2 and Wrel
3 are explicitly given as in (23), (26) and (30),

respectively. The computation of this analytical expression for the relaxed energy
corresponding to non-quasiconvex energy function in (10) thus enable us to
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predict all microstructural features of the material which are carried safely from
the microscopic to macroscopic computational scale. Hence we have extracted
all possible information regarding the development of microstructural regimes in
the granular materials pertinent to observing its macro-mechanical behavior. For
practical applications it is now more efficient and effective to reformulate the
original non-quasiconvex problem in (5) to a relaxed energy minimization problem
using this relaxed potential.

3.2.6 Nonlinear Constitutive Relations

The proposed granular material model is completed with the formulation of
constitutive relations between stress and strain tensors in a Cosserat medium. The
constitutive structure of the proposed theory thus comprises of three phases (as
discussed in Sect. 3.2) where in each phase the force-stress are explicitly related
to the Cosserat strain tensors according to the following formulas:

σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(
λ

2
+ μ

d

)
(
tr ε
)
I + 2μc

(
asy ∇u − Φ

)
, (Phase 1)

⎧
⎨

⎩
λ
(
tr ε
)
I + 2μ ε + 2μc

(
asy ∇u − Φ

)

− 4α β2
(

‖κ‖2 − β2 ‖dev ε‖2
) (

dev ε
)
,

(Phase 2)

λ
(
tr ε
)
I + 2μ ε + 2μ◦β2

(
dev ε

) + 2μc

(
asy ∇u − Φ

)
. (Phase 3)

(32)

The couple-stress tensor is related to the curvature strain tensors by the following
formulas:

μ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

λ̄
(
tr κ
)
I + 2 (μ̄ − μ̄c)

(
sym κ

)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ ≥ μ̄c,

λ̄
(
tr κ
)
I − 2 (μ̄ − μ̄c)

(
asy κ

)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ < μ̄c.

(Phase 1)

⎧
⎨

⎩
λ̄
(
tr κ
)
I + 2 μ̄

(
sym κ

) + 2 μ̄c

(
asy κ

)

+ 4α
(

‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2
)

κ
(Phase 2)

⎧
⎨

⎩
λ̄
(
tr κ
)
I + 2 (μ̄ − μ̄c)

(
sym κ

)
if μ̄ ≥ μ̄c,

λ̄
(
tr κ
)
I − 2 (μ̄ − μ̄c)

(
asy κ

)
if μ̄ < μ̄c.

(Phase 3)

(33)
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4 Numerical Results

Based on one-dimensional numerical computations the mechanical response of the
material is analyzed along some chosen macroscopic strain paths. A simple shear
and a tension-compression tests are briefly presented to observe the development
of microstructures which is characterized by the activation of different material
regimes as discussed in the Sect. 3.2.

4.1 A Simple Shear Test

Consider a two dimensional domain Ω = (0,X1) × (0,X2) where (X1,X2) ∈ R
2.

We choose the macroscopic strain paths as follows

ε = γ

2
(e1 ⊗ e2 + e2 ⊗ e1) ,

e = γ e2 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe =
(γ

2
+ ϕ3

)
(e2 ⊗ e1 − e1 ⊗ e2) ,

κ = b (e1 ⊗ e3 + e2 ⊗ e3) .

(34)

Here, γ is the macroscopic shear, ϕ3 is the material microrotational degree of
freedom and b is some fixed curvature. We assume that ϕ3 linearly depends on both
of the material coordinates X1 and X2 such that ϕ3 = b(X1 + X2). In this analysis

we take b = π

6
and calculate ϕ3 for all those material points which lies on the line

X1 +X2 = 1. Other than Lame’s constants λ = νE

(1 + ν)(1 − 2ν)
andμ = E

2(1 + ν)
there are eight additional material parameters that are pertinent to the material
microstructures and are described in Table 1. Initially the material experiences a
microstructure in micromotions of the particles. Upon further loading it transforms
its structure and enter into a regime where there is no microstructure in the material.
Further, upon increasing the load it changes its state to a material regime where it
experiences a microstructure in translational motions of the particles. It is observed
that all three phases of the material structure with two microstructural regimes and
one non-microstructural regime coexists. In Fig. 5a the constitutive response of the
material is shown, where it is observed that the non-monotone stress-strain curve
is replaced by its energetically equivalent Maxwell line corresponding to a uniform
vanishing stress. This vanishing stress regime is corresponding to the regime of
the material where it experiences a microstructure in micromotions of the particles.
In the material regime where there is no internal structure a nonlinear constitutive
response is seen. Whereas, in the material regime where there is a microstructure in
translational motions of the particles we observe a linear constitutive response in this



Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies 119

Table 1 Material parameters for the analytical computations in a simple shear test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0 × 102 (MPa) λ λ (N)

μc 1.0 × 10−1 (MPa) μ μ (N)

ν 0.3 (—) μc μc (N)

α 5.0 × 10−1 (N.mm2) β 1.0 × 101 (mm−1)
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Fig. 5 (a) Relaxed and unrelaxed stress-strain curve in different material regimes; (b) Relaxed
and unrelaxed curve for the Cosserat coupled modulus μc = 0.1; (c) Relaxed and unrelaxed curve
for the Cosserat coupled modulus μc = 1.0; and, (d) Relaxed and unrelaxed curve for the Cosserat
coupled modulus μc = 10.0

one dimensional analysis. The corresponding nonconvex and relaxed energy plots
are shown in Fig. 5b. In Fig. 5c and d the relaxed and unrelaxed energy is plotted
for two different values of the Cosserat coupled modulus μc = 1.0 and μc = 10.0
respectively. These figures demonstrate that not only the particle size in granular
material effects the development of microstructures but also the Cosserat coupled
shear modulus do have influence in the development of material microstructures in
granular materials.
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Table 2 Material parameters for the analytical computations in a tension-compression test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0 × 102 (MPa) λ 1.15 × 102 (N)

μc 1.0 × 10−2 (MPa) μ 7.69 × 101 (N)

ν 0.3 (—) μc 1.00 × 101 (N)

α 1.0 × 10−1 (N.mm2) β 1.20 × 102 (mm−1)

4.2 A Tension-Compression Test

In this example the material behavior in a plain strain tension-compression test is
investigated. The macroscopic strain tensors for this analysis takes the following
form

ε = δ e1 ⊗ e1,

e = δ e1 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe = ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) .

(35)

Here δ is the macroscopic stretch. The Cosserat rotational strain tensor κ is taken to
be the same as mentioned in the previous test. Moreover, the micro-rotational degree
of freedom, ϕ3 at each material point is calculated according to similar assumption
as in the case of simple shear test. The material parameters are chosen as described
in Table 2.

It is observed that all the three phases of material structure coexists in this case.
The constitutive behavior in the material microstructural and non-microstructural
regimes is shown in Fig. 6a where contrary to the case of shear test it is observed that
the stress do not vanish in the regime where material experiences a microstructure
in micromotions. Here the non-monotone stress-strain curve is replaced by its
energetically equivalent monotone curve. This is due to the non-constant slope
of the relaxed energy envelope in the globally non-convex range of the unrelaxed
energy potential, as seen in magnified picture in Fig. 6b. Moreover, the properties
of unrelaxed and relaxed energy envelope are studied for different values of the
interaction modulus α and the material parameter β related to the particle size.
A two-well energy structure is seen in Figure for three different values of the
interactionmodulus. Both the wells have same local minima. In Fig. 6c it is observed
that by varying the interaction modulus the local minima of the energy envelope do
not change. This is because the globally nonconvex range of these energy curves do
not vary. However it is important to note that the locally non-convex range of these
unrelaxed energy curves decreases with the increase in the interaction modulus.
The computed relaxed energy is plotted in Fig. 6d where it is seen that by varying
the interaction modulus the global minima of all the three energy curves do not
change. The influence of the particle size on the material strain energy is observed
in Figs. 6e and f. It is seen that the particle size do not only influence the range of
local non-convexity of the energy potential but also its global non-convexity range.
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Fig. 6 (a) Relaxed and unrelaxed stress-strain curve in different regimes of the material; (b)
Relaxed and unrelaxed energy curve in different material regimes; (c) Unrelaxed energy curves
for varying values of the material parameter α; (d) Relaxed energy curves for varying values of the
material parameter α; (e) Unrelaxed energy curves for varying values of the material parameter β;
and, (f) Relaxed energy curves for varying values of the material parameter β

It is important to note that the local maxima of the energy potential do not change
with the varying particle size. This is contrary to the case seen in Fig. 6c. Moreover,
the local and global minima of the potential are shifted and get a lower values with
the increased value of the material parameter β as seen in Figs. 6e and f.
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5 Conclusion

In nature granular materials exhibit distinct patterns under deformation. The forma-
tion of these patterns is strongly influenced by counter-rotations of the interacting
particle at the microscale. In this article, we study the counter-rotations of the
particles and the formation of rotational microstructures in granular materials.

By employing the direct methods in the calculus of variations it turns out to
be possible to derive an exact quasiconvex envelope of the energy potential. It
is worth mentioning that there are no further assumptions necessary to derive
this quasiconvex envelope. The computed relaxed potential yields all the possible
displacement and micro-rotation field fluctuations as minimizers. Hence, by doing
so we do not only resolve the issues concerning related non-quasiconvex variational
problem but also guarantee the existence and uniqueness of energy minimizers.
Moreover, the independence of these minimizers on the discretization of the spatial
domain is ensured. We conclude with the result that the granular material behavior
can be divided into three different regimes. Two of the material regimes are
exhibiting microstructures in rotational and translational motions of the particles,
respectively, and the third one is corresponding to the case where there is no internal
structure of the deformation field.

The proposed model is analyzed numerically in one-dimensional case where
the numerical computations performed are based on some chosen strain paths. We
demonstrate on different properties of the computed relaxed potential in a simple
shear and a tension-compression test. Moreover, It has been shown that all the
material phases can co-exist.
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