
Variational Analysis of Nematic Shells

Giacomo Canevari and Antonio Segatti

Abstract In this note we present some recent results on the Mathematical Analysis
of Nematic Shells. The type of results we present deal with the analysis of
defectless configurations as well as the analysis of defected configurations. The
mathematical tools include Topology, Analysis of Partial Differential Equations as
well as Variational Techniques like Γ convergence.

1 Introduction: The Model and the Role of the Topology

The occasion of writing this note came because the second author of this paper was
invited to lecture at the

INdAM-ISIMMWorkshop on Trends on Applications of Mathematics to Mechanics

in Rome. These note contains the results presented in the seminar. More precisely,
these results are the outcome of a research line started in 2012 and culminated in
the papers [9, 35, 36] and [8]. In this note we try to convey the main ideas behind
the results and leave the detailed proofs to the above mentioned papers.

A Nematic Shell is a rigid colloidal particle with a typical dimension in the
micrometer scale coated with a thin film of nematic liquid crystal whose molecular
orientation is subjected to a tangential anchoring. The study of these structures has
received a good deal of interest, especially in the physics community (see, e.g.,
[6, 23, 26, 27, 30, 37, 39, 41, 42] and [28]).

From a mathematical point of view, a Nematic Shell is usually identified with
a two dimensional compact (oriented by the choice of the unit normal field
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γ : M → R
3) surface M without boundary with the local orientation of the

molecules described via a unit norm tangent vector field, named director in analogy
with the “flat” case. More precisely, the local orientation of the molecules is
described via a unit-norm tangent vector field n : M → R

3 with n(x) ∈ TxM

for any x ∈ M , TxM being the tangent plane at the point x.
The study of these structures is particularly interesting and challenging due

to its interdisciplinary character as it combines in a non trivial way physics,
geometry, topology and variational techniques. In particular, the interplay between
the geometry and the topology of the fixed substrate and the tangential anchoring
constraint is a source of difficulties that will accompany us for the whole analysis.
Indeed, as observed in [41] and [6], the liquid crystal equilibrium (and all its stable
configurations, in general) is the result of the competition between two driving
principles: on the one hand the minimization of the “curvature of the texture”
penalized by the elastic energy, and on the other the frustration due to constraints
of geometrical and topological nature, imposed by anchoring the nematic to the
surface of the underlying particle. Different theoretical approaches for the treatment
of Nematic Shells are available. Differences arise in the choice of the form of the
elastic part of the free energy which could be of intrinsic or extrinsic nature. More
precisely, theories which employ only covariant derivatives will be named intrinsic
(see [26, 38, 39, 41]) while theories that comprise also how the shell sits in the three
dimensional space will be named extrinsic (see [27] and [28]). When restricting to
the simpler one-constant approximation, the extrinsic energy has the form

W(n) := κ

2

∫
M

|Dn|2 + |dγ (n)n|2 dS, (1)

while the intrinsic energy has the form

Wintr(n) := κ

2

∫
M

|Dn|2 dS. (2)

In the definitions above n is a tangent vector field with unit norm, κ is a positive
constant (from now on κ will be taken equal to one), the symbol D denotes the
covariant derivative on M , and dγ , the differential of the Gauss map, is the so called
shape operator. We refer to the quantity

∫
M |Dn|2 as the Dirichlet (or elastic) energy

of n.
The extrinsic energy (1) has been derived by Napoli & Vergori (see [27] and

[28]) by using a formal dimension reduction. More precisely, starting from the
Oseen-Frank energy WOF (see [40]) on a tubular neighborhood Mh of thickness
h (satisfying a suitable constraint related to the curvature of M), Napoli and Vergori
obtain that the limit

lim
h↘0

1

h
WOF(n,Mh) = Wextr(n).
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is well defined for any fixed and sufficiently smooth field n with the property of
being independent of the thickness direction and tangent to leaf of the foliation Mh.
The form of the limit energy is as follows

Wextr(n) := 1

2

∫
M

K1(divs n)2 + K2(n · curls n)2 + K3|n × curls n|2 dS, (3)

where the differential operators divs and curls in the display above are proper
surface counterparts of the divergence and the curl operators (see [28]). The
positive constants K1,K2,K3 are the analogous of the Frank’s constants in the
euclidean case (see [40]). Finally, the energy (1) corresponds to the one-constant
approximation, namely the energy Wextr with K1 = K2 = K3 = κ .

It is worthwhile noting that the above formal argument can be made rigorous
using the theory of Γ -convergence in the spirit of [24] (see [14] for the derivation
of the surface Q tensor energy).

An important problem in the modern Materials Science is the analysis and the
control of the complex microstructures that the material may develop. As observed
in [19], the appearance of microstructures is usually related to the occurrence of the
so-called defects, which are localized regions where the material behavior appears
to be drastically different from the prototypical one. This is the case of Nematic
Liquid Crystals for which defects can be easily seen in experiments. Defects are
regions where the director field changes abruptly, due to the topological behavior
of the field surrounding them. A prominent example of the appearance of defects is
that of Nematic Shells which may develop topological defects due to the interplay
between the topology of the substrate, the boundary conditions and the constraints
on the director field (see [9]).

More precisely, when dealing with Nematic Shells, the topology of the shell and,
possibly, of the boundary conditions is responsible for the emergence of defects
which manifest in points in the shell where the director field is not well defined and
consequently its energy ((1) or (2)) is infinite. The link between the topology of
the shell M and the number of singularities that a unit norm vector field must have
is given by the Poincaré-Hopf Index Theorem: If a unit norm has singularities of
degree di located at the points x1, . . . , xk then

k∑
i=1

di = χ(M),

where χ(M) is the Euler Characteristic of M . For example, a spherical shell has
χ(M) = 2, thus implying the necessity of having defects with total degree equal
to 2. A crucial step in the analysis of a variational problem is the understanding of
the correct functional framework where to set, for example, the minimization of the
given energy. In the context of Nematic Shells, a closer inspection of the energy (3)
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reveals that there exist constants such that (see Proposition 1)

K∗
2

∫
M

(|Dn|2 + |dγ (n)|2)dS ≤ Wextr(n) ≤ K∗

2

∫
M

(|Dn|2 + |dγ (n)|2)dS,

Consequently, the natural choice for the functional framework would be to set the
analysis in the space of tangent vector fields such that |n| and |Dn| belong toL2(M),
which means that we have to consider the Sobolev set

W
1,2
tan (M, S2) =

{
v : M → R

3, |v(x)| = 1, v(x) ∈ TxM for a.a. x ∈ M, |Dv| ∈ L2(M)
}
.

As it happens for smooth vector fields, the topology of the shell may introduce
possible obstructions to this program. This is again related to the Poincaré-Hopf
index Theorem. In particular, the following theorem clarifies the situation for vector
fields with W 1,2 regularity

Theorem 1.1 Let M be a compact smooth surface without boundary, embedded in
R
3. Let χ(M) be the Euler characteristic of M . Then

W
1,2
tan (M, S2) �= ∅ ⇔ χ(M) = 0.

The proof of this theorem is given in [36] and it is based on a purely PDE
argument. Interestingly, Theorem 1.1 is a consequence of the more general results
contained in [9] regarding the extension of the Poincaré-Hopf Theorem to vector
fields with VMO regularity defined on compact manifolds with, possibly, boundary.
Theorem 1.1 is in a certain sense a borderline case for the existence of unit norm
vector fields with Sobolev regularity. In fact, defining for p ≥ 1, the Sobolev set of
tangent vector fields

W
1,p
tan (M;S2) :=

{
v : M → R

3, |v(x)| = 1, v(x) ∈ TxM for a.a. x ∈ M, |Dv| ∈ Lp(M)
}
,

we have that

• For p ≥ 2, W 1,p
tan (M; S2) �= ∅ if and only if χ(M) = 0

• For 1 ≤ p < 2, W 1,p
tan (M; S2) �= ∅.

The first item when p > 2 is a consequence of the classical Poincaré-Hopf Theorem
and of the embedding W 1,p ⊂ C0 for p > 2 in two dimensions. The case p = 2
follows from Theorem 1.1. The second item follows from the fact that a vector field
that behaves like x

|x| around the singularities belong to W
1,p
tan (M; S2) for 1 ≤ p < 2

as a direct computation shows.
Coming back to the analysis of the energy (1), Theorem 1.1 gives that for shells

M with χ(M) �= 0 the energy (1) is infinite and thus clearly not adequate to describe
this situation.

The rest of the paper is divided according to Theorem 1.1. More precisely, we
will first discuss in Sect. 2 the results for shells with Euler Characteristic equal
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to zero and then in Sect. 3 we will concentrate on shells with non zero Euler
Characteristic.

When χ(M) = 0, we obtain results regarding the existence of minimizers, the
existence of the gradient flow and also some quantitative results on the structure of
the minimizers for axisymmetric toroidal shells. The proofs of the results use ideas
borrowed from the theory of harmonic maps.

Moreover, starting from a variant of the well known XY spin model, we perform
the rigorous derivation via Γ -convergence of the energy (1) in terms of a discrete
to continuum limit. More precisely, we consider a family of triangulations Tε

of M with the vertices i ∈ T 0
ε lying on M and with mesh size ε, i.e. ε =

maxT ∈Tε
diam(T ). At any point i ∈ T 0

ε sits a unit-norm tangent vector vε(i) ∈ TiM

named spin. We consider the following discrete energy

XYε(vε) := 1

2

∑
i �=j∈T 0

ε

κij
ε |vε(i) − vε(j)|2 , (4)

where the coefficients κ
ij
ε are the entries of the stiffness matrix of the Laplace-

Beltrami operator ofM . We show that, as ε → 0, the discrete energyXYε converges
to the continuum energy (1), in the sense of Γ -convergence.

The XY spin model has been widely used in the physics community due to
its simple use and effectiveness (among the others, we refer to the works of
Berezinskii [4] and of Kosterlitz and Thouless [22] who were awarded the 2016
Nobel Prize for Physics, together with Haldane) but has also attracted the attention
of the mathematics community, see for instance [1, 2, 7].

For shells M with χ(M) �= 0, the energy (1) is clearly not well defined due
to Theorem 1.1 and we have to face the emergence of configurations with defects.
In Sect. 3 we will discuss the location of defects and their energetics. A possible
strategy would be to relax one the above constraints, for instance the unit-norm
constraint as in the Ginzburg-Landau theory (see, for instance, [5, 20, 21, 31, 32]
and the recent papers [17] and [18] for the analysis on a Riemannian manifold).
In this note, we present the approach of [8] and instead of a continuous model we
rather consider the discrete XY spin model (4). Defects emerge when we let ε → 0
in (4). In particular, we will address the Γ -convergence of the energy

XYε(·) − πK | log ε|,

where K is an even, positive integer, such that |χ(M)| ≤ K . What appears in the
limit is the so called Renormalized Energy (introduced and studied first in [5] and
then in many other contributions, see [3, 32] and references therein) that describes
the energetics and the interaction between defects. The Renormalized Energy we
obtain is given by the sum of a purely intrinsic part and of an extrinsic part related
to the shape operator of M and thus the location of the defects also depends on how
the shell “sits” in the three dimensional space. At the level of minimizers, we have
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the following expansion

minXYε = π |χ(M)|| log ε| + W(v) +
|χ(M)|∑
i=1

γ (xi) + oε→0(1),

where v ∈ W
1,2
tan,loc(M \ {x1, . . . , x|χ(M)|}; S2) is the “continuum limit” of the

sequence of discrete minimizers and γ (xi) is a positive quantity that takes into
account the energy located in the core of the defects xi of v. An interesting feature
that is not shared in the planar case, both continuous and discrete (see [5] and [2]),
nor in the curved continuous case (see [17] and [18]), is that the core energy γ (xi)

depends on the singularity xi .
The interest in analyzing configurations with defects goes beyond the aesthetic

appeal of the question. In fact, the defect’s points could serve as anchoring bonds
between colloidal particles, as precognized by Nelson [29] and recently realized in
[43]. Thus, the understanding of the defects formation and of their energetics and
location could be of impact for this new chemistry for meta materials.

We conclude this long introduction with some differential geometry notation that
we use. We refer to the book [13] for all the material regarding differential geometry.

Given a compact two dimensional surface M with metric g, embedded in R3 and
oriented with the normal γ , we denote the area element induced by the choice of the
orientation with dS. We denote with ∇ the connection with respect to the standard
metric of R3, and we let Dvu be the covariant derivative of u in the direction v (u
and v are smooth tangent vector fields in M), with respect to the Levi Civita (or
Riemannian) connection D of the metric g on M .

Now, if u and v are extended arbitrarily to smooth vector fields on R
3, we have

the Gauss Formula :

∇vu = Dvu + 〈dγ (u), v〉γ . (5)

This decomposition is orthogonal, thus there holds

|∇u|2 = |Du|2 + |dγ (u)|2. (6)

Beside the covariant derivative, we introduce another differential operator for
vector fields on M , which takes into account also the way that M embeds in R3. Let
u be a smooth vector field on M . We extend it smoothly to a vector field ũ on R

3

and we denote its standard gradient by ∇ũ on R3. For x ∈ M , we define

∇su(x) := ∇ũ(x)PM(x),

where PM(x) := (Id−γ ⊗ γ )(x) is the orthogonal projection on TxM . In other
words, ∇s is the restriction of the standard derivative in R

3 to directions that are
tangent to M . This differential operator is well-defined, as it does not depend on the
particular extension ũ. In general, ∇su �= Du = PM(∇u) since the matrix product
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is non commutative. Moreover, thanks to (5) and (6) there holds

|∇su|2 = |Du|2 + |dγ (u)|2.

Note that, by identifying u with a map u = (u1, u2, u3) : M → R
3, the k-th row

of the matrix representing∇su coincides with the Riemannian gradient (that we still
denote with ∇s) of uk .

2 Shells of Zero Euler Characteristic

According to Theorem 1.1, unless otherwise stated, throughout this section we will
consider M to be a compact and smooth two-dimensional surface without boundary
such that

M has Euler characteristic equal to zero, that is χ(M) = 0

(7)

and we will leave to the next Sect. 3 the case of a shell M with χ(M) �= 0.
This section is organized as follows. First of all, in Sect. 2.1 we will discuss the
minimization of the full energy (3) while in Sect. 2.2 we will study the gradient flow
of the energy (1) with respect to the scalar product of L2. Finally, in Sect. 2.3 we
discuss the rigorous derivation (in terms of Γ -convergence) of the energy (1) from
the discrete energy (4). It is an open problem to justify in terms of a microscopic
derivation the full energy (3), even in the euclidean case.

2.1 Existence of Minimizers

We let M satisfy (7), in such a way that W
1,2
tan (M, S2) �= ∅, we have the following

(see [15] for the flat case)

Proposition 1 Let M be a smooth, compact surface in R
3, without boundary,

satisfying (7) and let W : W
1,2
tan (M, S2) → R be the energy functional (1). Set

K∗ := min {K1,K2,K3} and K∗ := 3(K1 + K2 + K3). We have that

K∗
2

∫
M

(|Dn|2 + |dγ (n)|2)dS ≤ Wextr(n) ≤ K∗

2

∫
M

(|Dn|2 + |dγ (n)|2)dS.

Moreover, the energy W is sequentially lower semicontinuous with respect to the
weak convergence of W 1,2(M;R3).

Thus, the existence of a minimizer of the energy W follows from the direct
method of calculus of variations.
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Proposition 2 There exists n ∈ W
1,2
tan (M, S2) such that Wextr(n) = infu∈W

1,2
tan (M, S2)

Wextr(u).

The proof of the existence of minimizers is simple being the energy quadratic. It
is interesting to discuss how the energy selects the minimizers. We leave to [36]
the discussion on the relation between the different tunings of K1,K2,K3 and
the energy landscape for constant deviation angle (namely the angle that n forms
with one of vectors generating the tangent plane to M , see formula (8) below)
and we rather concentrate on the one-constant approximation. We observe that
the energy (1) has the form of a “phase transition energy” since it is the sum of
a Dirichlet part and of a (vectorial) double well potential part. In fact the purely
extrinsic part |dγ (n)|2 is minimized when n is oriented along the direction of
minimal principal curvature (i.e. minimal normal curvature). Thus, the energy (1)
favors a parallel configuration (i.e. a vector field such that Dn = 0) in the direction
of minimal principal curvature. Already considering only the Dirichlet part (i.e.
the intrinsic energy) the minimization experiences an interesting frustration of
geometric nature due to the fact that the existence of globally defined unit norm
parallel vector fields requires the Gaussian curvature to vanish. The effect of the
competition between the two terms of the energy is particularly interesting on the
axisymmetric torus. Thus, we fix M to be the axisymmetric torus, namely the
surface parametrized by X : [0, 2π] × [0, 2π] → R

3 where

X(θ, φ) =
⎛
⎝(R + r cos θ) cosφ

(R + r cos θ) sinφ

r sin θ

⎞
⎠.

R and r are usually known as major and minor radius, respectively. We let e1 and e2
be the unit tangent vectors given by

e1 = Xθ

|Xθ | , e2 = Xφ

|Xφ| ,

and we let c1 and c2 be the principal curvatures

c1 = 1

r
, c2(θ, φ) = cos θ

R + r cos θ
.

Then, we proceed as in [36] and we represent the director field n as

n = cosα e1 + sinα e2. (8)

The angle α is named deviation angle. We restrict to vector fields n ∈ W
1,2
tan (M, S2)

with zero winding number (the general case is discussed in [36]). Thus the deviation
angle turns out to be periodic, namely α ∈ H 1

per(Q). The energy expressed in terms
of α is particularly appealing for the analysis. Setting W(α) = W(n), with n given
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by (8), we have

W(α) = 1

2

∫
Q

{
κ |∇sα|2 + η cos(2α)

}
dS + κπ2

(
2 − μ2√
μ2 − 1

+ 2μ

)
, (9)

where η(θ, φ) := κ
c21−c22(θ,φ)

2 = κ R2+2Rr cos θ
2r2(R+r cos θ)2

, and μ := R
r
. The number μ is

called aspect ratio and plays a prominent role in the minimization. In the next
Proposition we discuss the dependence of minimizers on the aspect ratio μ. In
particular, we discuss the stability of the minimizers.

Proposition 3 Let μ := R/r . There exists μ∗ ∈ (2/
√
3, 2] such that the constant

values α = π/2 + mπ , m ∈ Z, are local minimizers for W in H 1
per(Q) if and only

if μ ≥ μ∗. Moreover, if μ ≥ 2, there exists no non-constant solution w to the Euler
Lagrange equation

−Δsα = κ

2
(c21 − c22) sin(2α) in Q

such that

π

2
+ mπ ≤ w ≤ π

2
+ (m + 1)π.

The proof of the proposition is in [36]. It is worthwhile noting that it is an interesting
open problem to analytically determine the exact value of the critical threshold μ∗.
Numerics indicates that μ∗ ≈ 1.52.

Proposition 3 is important since it describes how the Napoli-Vergori energy (1)
acts. In particular, it shows the differences—for a toroidal shell—with the classical
intrinsic energy (2). It turns out that the presence of the extrinsic term related to
the shape operator acts as a selection principle for equilibrium configurations. More
precisely, when μ := R/r is sufficiently large then (see Proposition 3) the only
constant solution is α = π/2+mπ (m ∈ Z). Moreover, whenR/r < μ∗ a new class
of non constant solutions appears (see Fig. 1, obtained discretizing the gradient flow
equation). We make the following observation: This new solution tries to minimize
the effect of the curvature by orienting the director field along the meridian lines
(α = 0), which are geodesics on the torus, near the hole of the torus, while near
the external equator the director is oriented along the parallel lines α = π/2, which
are lines of curvature. The fact that the solution α = π/2 is no longer stable for
sufficiently small μ is due to the high bending energy associated to α = π/2 in the
internal hole of the torus. In fact, in a small strip close to the internal equator of the
torus, we can approximate (see [36])

c21 − c22 ≈ 1

r2
− 1

(R − r)2
, dS ≈ r(R − r)dθ dφ,
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Fig. 1 Configuration of the scalar field α and of the vector field n of a numerical solution to the
gradient flow of (9) in the case R/r = 1.2 (left). Zoom-in of the central region of the same fields
(right). The colour represents the angle α ∈ [0, π], the arrows represent the corresponding vector
field n

and therefore

(c21 − c22) cos(π)dS ≈ μ
2 − μ

μ − 1
dθ dφ,

which tends to +∞ as μ → 1.
Due to its “double well”-like structure, the energy (9) favors a smooth transition

between α = π/2 and α = 0. In this sense, the new solution can be understood as
an interpolation between α = π/2 and α = 0, which are the two constant stationary
solutions of the system.

2.2 Existence of Solutions of the Gradient Flow of (1)

We then focus on the L2-gradient flow of the one-constant approximation
energy (1). The study of the gradient flow for the energy (1) could be seen as a
starting point for the analysis of an Ericksen-Leslie type model for nematic shells.
This problem has already been addressed in [38] where various well-posedness and
long-time behavior results have been obtained for an Ericksen-Leslie type model
on Riemannian manifolds. However, it should be pointed out that the model in
[38] is purely intrinsic and does not take into account the way the substrate on
which the nematic is deposited sits in the three-dimensional space. Moreover, in the
equation describing the evolution of n (called d therein) the constraint |n| = 1 is
not considered.
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We prove (see Theorem 2.1) the well-posedness of the L2-gradient flow
of (1), i.e.

{
∂tn − Δgn + B2n = |Dn|2n + |dγ (n)|2n in M × (0,+∞),

n(x, 0) = n0 a.e. in M.
(10)

Here Δg is the rough Laplacian and B2 is the linear operator (B2u, v)R3 :=
(dγ (u), dγ (v))R3 for any u, v tangent vector fields. The right-hand side of (10) is
a result of the unit-norm constraint on the director n. The initial datum n0 is taken
in W

1,2
tan (M, S2) and we look for weak solutions with bounded energy. A proof of

the existence relying on (i) discretization, (ii) a priori estimates, (iii) convergence of
discrete solutions, would encounter a difficulty here, as the nonlinear term |Dn|2
in the right-hand side of (10) is not continuous with respect to the weak-W 1,2

convergence expected from the a priori estimates. We overcome this problem with
techniques employed in the study of the heat flow for harmonic maps (see [10, 11]):
we first relax the unit-norm constraint with a Ginzburg-Landau approximation, i.e.,
we allow for vectors n with |n| �= 1, but we penalize deviations from unitary length
at the order 1/ε2, for a small parameter ε > 0. More precisely, we construct (via a
time discretization argument) a sequence of fields nε which solve

{
∂tnε − Δgnε + B2nε + 1

ε2
(|nε|2 − 1)nε = 0, a.e. in M × (0,+∞),

nε(x, 0) = n0 a.e. in M.

The above equation has a gradient flow structure. Thus, we have

‖∂tnε(t)‖2 + d

dt
W(nε(t)) + 1

4ε2
d

dt

∫
M

(|nε(t)|2 − 1)2dS = 0.

which produces the following energy estimate when the initial condition n0 has
finite energy

‖∂tnε‖2
L2(0,T ;L2

tan(M))
+ ‖Dnε‖2

L∞(0,T ;L2
tan(M))

+ ‖dγ (nε)‖2
L∞(0,T ;L2

tan(M))

+ sup
t∈(0,T )

1

4ε2

∫
M

(|nε(t)|2 − 1)2dS ≤ 3W(n0).

Via standard compactness arguments, one obtains the existence of limit vector field
n with the energy regularity specified by the above estimate. The difficult part is
clearly to pass to the limit in the approximate equation and to show that the field n
is indeed a weak solution of (10) The crucial observation (borrowed from [10, 11])
is that for a smooth unit-norm field n, (10) is equivalent to

(∂tn − Δgn + B2n) × n = 0. (11)
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To highlight the importance of the reformulation (11), let us consider the case of an
harmonic map u : Ω → S

2 with Ω ⊂ R
n an open set. Being an harmonic map, u

solves the nonlinear elliptic equation

Δu + u|∇u|2 = 0 in Ω. (12)

Now, taking the vector product of the equation with u, one obtains that u solves (12)
if and only if it solves

Δu × u = 0 in Ω,

which is equivalent to

n∑
i=1

∂

∂xi

(u × ∂u

∂xi

) = 0 in Ω. (13)

Note that, differently from (12), the equation (13) is in divergence form and thus is it
more treatable in weak regularity contexts. The above strategy can be implemented
in our case and gives that (see [25, Lemma 7.5.4] for a similar argument)

Lemma 1 A vector field n ∈ W 1,2(0, T ; L2
tan(M)) ∩ L∞(0, T ; W

1,2
tan (M, S2)) is a

weak solution of (10) if and only if it solves

−
∫

M

(∂tn × n, γ )R3 ψ dS +
∫

M

gij (Din, γ × n)R3 ∂j ψ dS −
∫

M

(B2n × n, γ )R3 ψ dS = 0

(14)

for any smooth function ψ : M → R.

Thus the strategy is as follows. First of all, we test the weak formulation of (10)
with the vector field φ = ψγ × nε where ψ : M → R is smooth. We obtain

−
∫

M

(∂tnε × nε, γ )R3 ψ dS +
∫

M

gij (Dinε, γ × nε)R3 ∂jψ dS

−
∫

M

(B2nε × nε, γ )R3ψ dS = 0,

(15)

where the penalization term has disappeared thanks to (a, b×a)R3 = (b, a×a)R3 =
0, for a, b ∈ R

3. Now, (15) has a “divergence” structure and thus is adequate for
the limit procedure with respect to the convergences given by the energy estimate.
Consequently, we pass to the limit in (15) and we obtain that n solves (14) that is
equivalent to (10) thanks to the above lemma. Thus, we have (see [36, Theorem 5.1]
for the details)
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Theorem 2.1 Let M be a two-dimensional compact surface satisfying (7). Given
n0 ∈ W

1,2
tan (M, S2) there exists a global weak solution to (10) with n(·, 0) = n0(·)

in M .

2.3 Justification of the Energy (1): A Discrete to Continuum
Approach

In this subsection we show how the energy (1) emerges as the discrete to continuum
limit of a discrete energy of XY type. We recall that we will use the very same
discrete energy to understand the generation of defects for shells with non zero
Euler Characteristic in the next Sect. 3. The main tool of our analysis will be the
concept of Γ -convergence for which we refer to the book of G. Dal Maso [12].

The discrete energy we consider is defined on a triangulation of the surface M .
Thus, before introducing the discrete energy, we have to (briefly) introduce the
discrete formalism. We refer to the paper [8] for the details of the construction.

For any ε ∈ (0, ε0], we let Tε be a triangulation ofM , that is, a finite collection of
non-degenerate affine triangles T ⊆ R

3 with the following property: the intersection
of any two triangles T , T ′ ∈ Tε is either empty or a common subsimplex of T , T ′.
The parameter ε is the mesh size, namely we assume ε = maxT ∈Tε

diam(T ). The
set of vertices of Tε will be denoted by T 0

ε . We will always assume that T 0
ε ⊆ M .

We set M̂ε := ∪T ∈Tε
T , so M̂ε is the piecewise-affine approximation of M induced

by Tε . Given a piecewise-smooth function u : M̂ε → R
k , we denote by ∇εu the

restriction of the derivative ∇u to directions that lie in the triangles of M̂ε .
We will only consider family of triangulations (Tε) that satisfy the following

conditions.

(H1) There exists a constant Λ > 0 such that, for any ε ∈ (0, ε0] and any T ∈ Tε ,
the (unique) affine bijection φ : Tref → T satisfies

Lip(φ) ≤ Λε, Lip(φ−1) ≤ Λε−1,

where Tref ⊆ R
2 be a reference triangle of vertices (0, 0), (1, 0) and (0, 1).

Here Lip(φ) denotes the Lipschitz constant of φ, Lip(φ) := supx �=y |x −
y|−1|φ(x) − φ(y)|.

(H2) For any ε ∈ (0, ε0] and any i, j ∈ T 0
ε with i �= j , the stiffness matrix κ

ij
ε of

the Laplace Beltrami operator on M satisfies

κij
ε := −

∫
M̂ε

∇εϕ̂ε,i · ∇εϕ̂ε,j dS ≥ 0,

where the hat function ϕ̂ε,i is the unique piecewise-affine, continuous function
M̂ε → R such that ϕ̂ε,i(j ) = δij for any j ∈ T 0

ε .
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(H3) For any ε ∈ (0, ε0], M̂ε ⊆ U and the restriction of the nearest-point
projection P̂ε := P|M̂ε

: M̂ε → M has a Lipschitz inverse. Moreover, we

have Lip(P̂ε) + Lip(P̂−1
ε ) ≤ Λ for some ε-independent constant Λ.

An important consequence of the assumption (H3) is that the restriction of the
nearest-point projection P̂ε : M̂ε → M has a Lipschitz inverse P̂−1

ε : M → M̂ε .
Following [16], we use P̂ε and P̂−1

ε to construct the so called metric distorsion
tensor. This object will be important in our analysis since it will permit to rewrite our
discrete energy as an energy for a proper vector field interpolating the discrete spins.
To introduce the metric distorsion tensor, we proceed as follow. For any x ∈ M

such that P̂−1
ε (x) falls in the interior of a triangle of M̂ε (so that P̂−1

ε is smooth in
a neighbourhood of x), we let the metric distorsion tensor Aε(x) to be the unique
linear operator TxM → TxM that satisfies

(Aε(x)X, Y) =
(
dP̂−1

ε (x)[X], dP̂−1
ε (x)[Y]

)
(16)

for anyX,Y ∈ TxM . Themetric distorsion tensor is symmetric and positive definite,
since the right-hand side of (16) is. Consequently, we introduce a norm ‖ · ‖L∞(M)

on L∞(M; TM ⊗ T∗M) by

‖A‖L∞(M) := ess sup
x∈M

‖A(x)‖TM⊗T∗M,

where ‖ · ‖TM⊗T∗M is the operator norm. The following lemma (see [8, Lemma 2])
is important.

Lemma 2 Suppose that (Tε) satisfies (H1) and (H3). Then, there holds

‖Aε − Id ‖L∞(M) + ‖A−1
ε − Id ‖L∞(M) ≤ Cε.

Let gε ∈ L∞(M; T∗M⊗2) be the metric on M defined by gε(X, Y) :=
(AεX, Y), for any smooth fields X and Y on M . Given a function u ∈ W 1,2(M),
one can define the Sobolev W 1,2-seminorm of u with respect to gε , i.e.

|u|2
W

1,2
ε (M)

:=
∫

M

(
A−1

ε ∇su, ∇su
)

(detAε)
1/2 dS, (17)

where ∇s denotes the Riemaniann gradient and dS the volume form on M (with
respect to the metric induced by R

3). By construction (16), the map P̂−1
ε is an

isometry between M , equipped with the metric gε, and M̂ε , with the metric induced
by R3. Therefore, given v ∈ W 1,2(M̂ε; R) and a Borel set U ⊆ M , there holds

|v ◦ P̂−1
ε |2

W
1,2
ε (U)

=
∫

P̂−1
ε (U)

|∇εv|2 dS.
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Arguing component-wise, we see that the same equality holds for a (not necessarily
tangent) vector field v : M̂ε → R

3 in place of v.
Using assumption (H3), to any discrete vector field vε ∈ T(Tε; S2) we can

associate a continuous field wε : M → R
3 by setting

wε := v̂ε ◦ P̂−1
ε , (18)

where v̂ε : M̂ε → R
3 is the affine interpolant of vε. The field wε is Lipschitz-

continuous and satisfies wε = vε on T 0
ε , but it is not tangent to M nor unit-valued,

in general. However, one can still prove some useful properties that we collect in a
single lemma (see [8, Lemma 3, Lemma 4, Lemma 5] for the proofs).

Lemma 3 Suppose that (H1), (H2), (H3) are satisfied. Then, for any ε ∈ (0, ε0]
and any discrete field vε ∈ T(Tε; S2), wε is Lipschitz-continuous with Lipschitz
constant

Lip(wε) ≤ Cε−1.

Moreover, wε satisfies the following

• For any subset Û ⊆ M̂ε that can be written as union of triangles of Tε, there
holds

XYε(vε, Û ) := 1

2

∑
i,j∈T 0

ε ∩Û

κij
ε |vε(i) − vε(j)|2 = 1

2
|wε|2

W
1,2
ε (P (Û))

. (19)

• There exists a positive constant C such that

‖(wε, γ )‖L∞(M) ≤ Cε, and
1

ε2

∫
M̂ε

(
1 − |wε|2

)2 ≤ C XYε(vε). (20)

Another immediate but important consequence of the lemma above is a compact-
ness result for discrete sequences vε with equi-bounded energy with respect to ε.

Lemma 4 Let vε ∈ T(Tε; S2) be a sequence such that

XYε(vε) ≤ C for any ε > 0,

then there exists v ∈ W
1,2
tan (M, S2) and a subsequence of ε such that, definingwε as

in (18), there holds

wε
ε→0−−→ v strongly in L2(M;R3). (21)

Then, we have the following.



96 G. Canevari and A. Segatti

Theorem 2.2 Suppose that the assumptions (H1), (H2) and (H3) are satisfied.
Then, XYε Γ -converges with respect to weak convergence of L2(M;R3) to the
functional

W(v) :=
{

1
2

∫
M |Dv|2 + |dγ [v]|2dS, if v ∈ W

1,2
tan (M; S2)

+∞, otherwise in L2(M;R3).

The proof follows standard argument in the analysis of discrete to continuum limits
via Γ -convergence (see, e.g., [1, 7] and the LectureNotes [34] for a slightly different
model). We highlight the main points for future reference since, to the best of our
knowledge, the proof of this result is not contained in any contribution.

Proof (Proof—Γ -liminf Inequality) We are given a sequence of discrete vector
fields vε and we aim to prove that there exists a unit norm tangent vector field v
such that wε → v weakly in L2(M;R3) (actually much more is true) and

lim inf
ε→0

XYε(vε) ≥ W(v). (22)

Without loss of generality, we may assume that there exists a constant C such that
XYε(vε) ≤ C for any ε (if not (22) is trivially satisfied). Thus, we have that the
sequence wε defined in (18) is bounded, uniformly with respect to ε, in W 1,2

ε (M).
Then, the compactness result in Lemma 4 gives that there exists a subsequence, still
denoted with wε, and a vector field v ∈ W 1,2(M;R3) for which

wε
ε→0−−→ v strongly in L2(M;R3). (23)

This convergence, combined with (20), give that v is tangent and |v| = 1, namely
v ∈ W

1,2
tan (M, S2). Finally, since there holds (see (17))

XYε(vε) = 1

2
|wε|2

W
1,2
ε (M)

= 1

2

3∑
i=1

|wi
ε|2W 1,2

ε (M)
= 1

2

3∑
i=1

∫
M

(
A−1

ε ∇swi
ε, ∇swi

ε

)
(detAε)

1/2 dS,

Lemma 2 and the semicontinuity of norms with respect to weak convergence gives

lim inf
ε→0

1

2
|wε|2

W
1,2
ε (M)

≥ 1

2

∫
M

|∇sv|2dS = W(v),

that is (22).

Proof (Proof—Γ -limsup Inequality: Existence of a Recovery Sequence) Given
v ∈ W

1,2
tan (M, S2), we have to construct a sequence of discrete vector fields

vε ∈ T(Tε; S2) such that wε → v weakly in L2(M;R3) and

lim sup
ε→0

XYε(vε) ≤ W(v).
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The construction is as follows. First of all, we can assume that v is smooth, otherwise
we can approximate it with a density argument (see [33] and [9]). Now, we let vε be
the discrete vector field given by the restriction of v to the nodes of the triangulation,
namely vε(i) := v(i) for i ∈ T ε

0 . Then, constructing wε as in (18), it is not difficult
to realize that wε → v strongly in L2(M;R3) and that

lim sup
ε→0

XYε(vε) ≤ W(v),

hence the thesis follows.

3 Shells of Non-Zero Euler Characteristic: Emergence
of Defects

In this last section we are interested in understanding the energetics of defected
configurations and, consequently, locate the defects on the surface M . The results
we present are taken from [8] to which we refer for all the details and proofs. First
of all, we introduce the notion of vorticity and its discrete counterpart which, as it
happens for the discrete flat case and for the Ginzburg Landau case, encodes the
topological informations of the discrete sequence vε. Moreover, the concentration
of the discrete vorticity in the ε → 0 limit will be the indication of the emergence of
defects. We leave the precise introduction of this measure to the paper [8]. However,
for the sake of clarity we briefly sketch it here.

We first consider the continuum setting. Given a map u ∈ (W 1,1 ∩L∞)(M; R3),
we define the vorticity of u as the 1-form

j (u) := (γ , u ∧ du),

whose action on a smooth, tangent field w on M is given by

〈j (u), w〉 = (γ , u × ∇wu).

The role of the vorticity (actually of its differential) is expressed in the following
lemma (see [8, Lemma 6]).

Lemma 5 Let u ∈ W
1,1
tan (M; S2) be a unit, tangent field. Suppose that there exist a

finite number of points x1, . . . , xp such that

u ∈ W
1,2
loc (M \ {x1, . . . , xp}; R3).

Then

�dj (u) = 2π
p∑

i=1

ind(u, xi)δxi − G in D ′(M).
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In the lemma, � is the Hodge dual operator and ind(u, xi) the local degree of u at
the point xi , that is, the winding number of u around the boundary of a small disk
centred at xi (see e.g. [9] for more details).

Now, given a discrete field vε ∈ T(Tε; S2), we define the discrete vorticity
measure μ̂ε(vε) as follows. For any given triangle T ∈ Tε we let (i0, i1, i2) be its
vertices, sorted in counter-clockwise order with respect to the orientation induced
by γ and we let i3 := i0. The measure μ̂ε(vε) is defined as a linear combination
of Dirac delta measures supported on the baricenters of triangles T ∈ Tε , and the
weights are given in such a way that

μ̂ε(vε)[T ] =
2∑

k=0

(
γ (ik) + γ (ik+1)

2
, vε(ik) × vε(ik+1)

)
.

It turns out that the right-hand side approximates the integral
∫
T
dj (̂vε), where

v̂ε : M̂ε → R
3 is the affine interpolant of vε, hence μ̂ε(vε) is a discretization

of dj (̂vε). In the limit ε → 0, the appearance of defects is related to the convergence
μ̂ε(vε) → 2πμ − G dS, where μ is a measure concentrated on a finite number of
points {x1, . . . , xk} in M . This convergence is to be intended in the sense of the flat
topology, that is, the dual-norm topology on W 1,∞(R3)′.

The location of the defects is achieved by the analysis of the so called Renormal-
ized EnergyW introduced by Brezis, Bethuel and Hélein for the Ginzburg Landau
equation in [5]. In [8], we obtain the Renormalized Energy as the (first order) Γ -
limit of the discrete energy XYε as in [2, 3, 32] for the euclidean case.

Following [2], we introduce the following class of vector fields in M: for any k,
Vk is the set of fields v ∈ L2(M; S2) such that there exist (xi)

k
i=1 ∈ Mk, (di)

k
i=1 ∈

{−1, 1}k such that

v ∈ W
1,2
tan,loc

(
M \

k⋃
i=1

xi; S2
)

, �dj (v) = 2π
k∑

i=1

diδxi − G.

Given an even number K ∈ N such that K ≥ |χ(M)|, we define the intrinsic
Renormalized Energy as (see [2, Eq. (4.22)]):

Wintr(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limδ→0

(
1

2

∫
Mδ

|Dv|2dS − K π | log δ|
)

for v ∈ VK

−∞ for v ∈ Vk, k < K ,

+∞ otherwise in L2(M; R3),

where, given v ∈ VK and δ > 0 so small that the balls Bδ(xi) are pairwise disjoint,
we have set Mδ := M \⋃K

i=1 Bδ(xi). The definition above is shown to be well posed
(see [8]). It is important to note that for v ∈ VK there holds

|dγ [v]| ≤ C a.e. in M, (24)
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where the constant C depends only on M . Thus, the following quantity exists in
[−∞,+∞]:

W(v) := Wintr(v) + 1

2

∫
M

|dγ [v]|2dS.

W will be called the Renormalized Energy. Note that W contains both an intrinsic
and an extrinsic term but, due to (24), the latter is always finite. This shows, as
expected, that the concentration of the energy is due to the Dirichlet part of W
in (1).

A source of difficulties that emerges in the analysis of this discrete energy is
related to the fact that for a curved shell the vertices of the triangulation do not
necessarily sit on a structured lattice. In particular, this problem reflects on the study
of the so called core energy, namely the energy concentrated in each defect, for
which the typical scaling arguments used in the planar case (see [5] and [2]) are not
available. As already anticipated, as a result of our analysis we will obtain a core
energy that depends of the singularity and moreover it will depend on the (limit)
triangulation around each defect xi . To obtain such a result, we have to enforce our
assumptions on the triangulation Tε around the singularities in the limit ε → 0. At
base, we require that our triangulation Tε is somehow scale invariant. We express
this requirement as follows.

(H4) For any x ∈ M there exists a triangulation S = S(x) on R
2 such that, for

any δ > 0 smaller than the injectivity radius of M , there holds

lim
ε↘0

d(Sε, S|Bδ/ε ) |log ε| = 0,

where d(·, ·) is a properly defined distance between triangulations (see [8] for the
details) and S|Bδ/ε denotes the restriction of S to the ball Bδ/ε .

In [8, Theorem B] the following theorem is proved

Theorem 3.1 Suppose that the assumptions (H1), (H2), (H3) and (H4) are satis-
fied. Then the following Γ -convergence result holds.

(i) Compactness. Let K ∈ N and let vε be a sequence in T(Tε; S2) for which
there exists a positive constant CK such that

XYε(vε) − K π | log ε| ≤ CK . (25)

Then, up to a subsequence, there holds

μ̂ε(vε)
flat−→ 2πμ − GdS (26)

for some μ = ∑k
i=1 diδxi with

∑k
i=1 |di | ≤ K . If |μ| = K , then k =

K ≡ χ(M) mod 2, |di| = 1 for any i. Moreover, there exists v ∈ VK and a
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subsequence such that

wε → v strongly in L2(M;R3) and weakly in W
1,2
loc (M \

K⋃
i=1

xi;R3), (27)

where wε is the interpolant of vε defined by (18).
(ii) Γ -lim inf inequality. Let vε ∈ T(Tε; S2) be a sequence satisfying (25) with

K ≡ χ(M) mod 2 and converging to some v ∈ VK as in (26)–(27). Then,
there holds

lim inf
ε→0

(XYε(vε) − K π | log ε|) ≥ W(v) +
K∑
i=1

γ (xi),

where γ (xi) is the core energy around each defect xi .
(iii) Γ -lim sup inequality. Given v ∈ VK , there exists vε ∈ T(Tε; S2) such that

μ̂ε(vε)
flat−→ �dj (v), wε → v as in (27) and

lim
ε→0

(XYε(vε) − K π | log ε|) = W(v) +
K∑
i=1

γ (xi).
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