
Molecular Extended Thermodynamics
of a Rarefied Polyatomic Gas

Tommaso Ruggeri

Abstract Extended Thermodynamics can be considered as a theory of continuum
with structure because there are new field variables with respect to the classical
approach and they are dictated at mesoscopic level by the kinetic theory. In
this survey I present some recent results on the so called Molecular Extended
Thermodynamics (MET) in which the macroscopic fields are related to the moments
of a distribution function that for polyatomic gas contains an extra variable taking
into account the internal degrees of freedom of a molecule. The closure is obtained
via the variational procedure of the Maximum Entropy Principle (MEP). Particular
attention will be paid on the simple model of MET with six independent fields, i.e.,
the mass density, the velocity, the temperature and the dynamic pressure, without
adopting near-equilibrium approximation. The model obtained is the simplest
example of non-linear dissipative fluid after the ideal case of Euler. The system
is symmetric hyperbolic with the convex entropy density and the K-condition is
satisfied. Therefore, in contrast to the Euler case, there exist global smooth solutions
provided that the initial data are sufficiently smooth.

1 Continuum and Kinetic Approaches of a Non-Equilibrium
Gas

The study of nonequilibrium phenomena in gases is particularly important from
a theoretical point of view and also from a viewpoint of many possible practical
applications. We have two complementary approaches to study rarefied gases,
namely the continuum approach and the kinetic approach.

The continuum model consists in the description of the system by means of
macroscopic equations (e.g., fluid-dynamic equations) obtained on the basis of
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conservation laws and appropriate constitutive equations. A typical example is the
thermodynamics of irreversible processes (TIP). The applicability of this classical
macroscopic theory is, however, inherently restricted to a nonequilibrium state
characterized by a small Knudsen number Kn, which is a measure to what extent
the gas is rarefied:

Kn = mean free path of molecule

macroscopic characteristic length
.

The approach based on the kinetic theory postulates that the state of a gas can
be described by the velocity distribution function. The evolution of the distribution
function is governed by the Boltzmann equation. The kinetic theory is applicable
to a nonequilibrium state characterized by a large Kn, and the transport coefficients
naturally emerge from the theory itself. Therefore the range of the applicability of
the Boltzmann equation is limited to rarefied gases.

The Rational Extended Thermodynamics theory (RET) [1], which is a general-
ization of the TIP theory, also belongs to the continuum approach but is applicable
to a nonequilibrium state with largerKn. In a sense, RET is a sort of bridge between
TIP and the kinetic theory. An interesting point to be noticed is that, in the case of
rarefied gases, there exists a common applicability range of the RET theory and the
kinetic theory. Therefore, in such a range, the results from the two theories should be
consistent with each other. Because of this, we can expect that the kinetic-theoretical
considerations can motivate us at mesoscopic level to establish the mathematical
structure of the RET theory.

2 Extended Thermodynamics of Rarefied Monatomic Gases

The kinetic theory describes a state of a rarefied gas by using the phase density
(velocity distribution function) f (x, t, c), where f (x, t, c)dc is the number density
of (monatomic) molecules at the point x and time t that have velocities between
c and c + dc. Time-evolution of the phase density is governed by the Boltzmann
equation:

∂tf + ci ∂if = Q, (1)

where the right-hand side, the collision term, describes the effect of collisions
between molecules. Here

∂t ≡ ∂

∂t
and ∂i ≡ ∂

∂xi

,
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and as usual we omit the symbol of sum over repeated italic indexes between 1 to 3.
Most macroscopic thermodynamic quantities are identified as the moments of the
phase density

F =
∫
R3

f dc, Fk1k2···kj =
∫
R3

f ck1ck2 · · · ckj dc, (j = 1, . . . ) (2)

and due to the Boltzmann equation (1), the moments satisfy an infinite hierarchy of
balance laws in which the flux in one equation becomes the density in the next one:

∂tF + ∂iFi = 0

↙
∂tFk1 + ∂iFik1 = 0

↙
∂tFk1k2 + ∂iFik1k2 = P<k1k2>

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3

...

∂tFk1k2...kN + ∂iFik1k2...kN = Pk1k2...kN

...

(3)

where

Pk1k2···kj =
∫
R3

Qck1ck2 · · · ckj dc.

As Pkk = 0, we notice that the first five equations are exactly the conservation laws,
and correspond to the conservation laws of mass, momentum and energy (except for
the factor 2) of continuum thermomechanics. For this reason we have the expression,
in particular, for the flux of (3)2:

Fik = ρvivk − tik, (4)

where ρ is the mass density, vi the velocity, and tij denotes the stress tensor:

tik = −pδik + σik, σik = −Πδik + σ<ik>

with p,Π , and σ<ik> being, respectively, the equilibrium pressure, the dynamical
(non-equilibrium) pressure, and the shear viscous deviatoric tensor σ<ik>. While
the trace of the density in (3)3 denotes, except for the factor 2, the total energy:

Fll = 2ρε + ρv2, (5)
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where ε is the specific internal energy. As a consequence from the trace of (4)
and (5), we have the relationship 3(p + Π) = 2ρε. As Π is a nonequilibrium
quantity that vanishes in equilibrium, we obtain

p = 2

3
ρε and Π ≡ 0. (6)

Then the gas under consideration is indeed monatomic, and the dynamic pressure
vanishes identically. This is a strong limitation on the kinetic theory. It is valid only
for rarefied monatomic gases with viscous stress tensor σij that must be deviatoric,
i.e., traceless: Π ≡ 0.

When we cut the hierarchy at the density with tensor of rank N , we have the
problem of closure because the last flux and the production terms are not in the list
of the densities. The first idea of RET [1] was to view the truncated system as a
phenomenological system of continuum mechanics and then we consider the new
quantities as local constitutive functions of the densities:

Fk1k2...kN kN+1 ≡ Fk1k2...kN kN+1

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kN

)
,

P<k1k2> ≡ P<k1k2>

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kN

)
,

Pk1k2...kj ≡ Pk1k2...kj

(
F,Fk1 , Fk1k2, . . . Fk1k2...kN

)
, 3 ≤ j ≤ N.

(7)

According with the continuum theory, the restrictions on the constitutive equations
come only from universal principles, i.e.: Entropy principle, Objectivity Principle
and Causality and Stability (convexity of the entropy).

The most interesting physical cases was the 13 fields theory in classical
framework [2] and the 14 fields in the context of relativistic fluids [3]. In both cases
the previous universal principles are enough to determine completely the form of
the constitutive equations (7) at least in a theory not so far from a equilibrium state
(linear with respect the non-equilibrium variables).

3 Closure via the Maximum Entropy Principle
and Molecular Extended Thermodynamics of Monatomic
Gases

If the number of moments increases, it becomes to be too difficult to adopt the
pure continuum approach for a system with such a large number of field variables.
Therefore it is necessary to recall that the field variables are the moments of a
distribution function. To obtain the closure of the balance equations of the moments
truncated at some tensorial order N , we adopt the maximum entropy principle
(MEP). This is the procedure of the so-called molecular extended thermodynamics
(molecular RET) [4].
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The principle of maximum entropy has its root in statistical mechanics. It is
developed by Jaynes [5] in the context of the theory of information basing on
the Shannon entropy. Nowadays the importance of MEP is recognized fully due
to the numerous applications in many fields [6], for example, in the field of
computer graphics. MEP states that the probability distribution that represents the
current state of knowledge in the best way is the one with the largest entropy.
Another way of stating this is as follows: take precisely stated prior data or testable
information about a probability distribution function. Then consider the set of all
trial probability distributions that would encode the prior data. Of those, one with
maximal information entropy is the proper distribution, according to this principle.

Concerning the applicability of MEP in nonequilibrium thermodynamics, this
was originally by the observation made by Kogan [7] that Grad’s distribution [8]
function maximizes the entropy. The MEP was proposed in RET for the first time
by Dreyer [9]. In this way the 13-moment theory closure can be obtained in three
different ways: phenomenological RET, Grad kinetic method, and MEP. A remark-
able point is that all closures are equivalent to each other! The MEP procedure was
then generalized by Müller and Ruggeri to the case of any number of moments in
the first edition of their book proving that the closed system is symmetric hyperbolic
[4]. In MET the complete equivalence between the closures via the entropy principle
and via the MEP was finally proved by Boillat and Ruggeri in [10].

In the case of monatomic gases, we can define the moments (2) using a
multi-index:

FA =
{

F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,

and in this way the truncated system (3) at the tensorial order N can be rewritten in
a simple form:

∂tFA + ∂iFiA = PA, A = 0, . . . N (8)

with

FA = m

∫
R3

cA f dc, FiA = m

∫
R3

cicA f dc, PA = m

∫
R3

cA Qdc (9)

and

cA =
{
1 for A = 0

ck1ck2 · · · ckA for 1 ≤ A ≤ N.

The variational problem, from which the distribution function f render the entropy

h = −kB

∫
R3

f log f dc
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(kB is the Boltzmann constant) maximum for the prescribed moments, is obtained
through the functional (we omit the symbol of sum from 0 to N in the repeated
capital indexes A,B, . . . ):

LN (f ) = −kB

∫
R3

f log f dc + u′
A

(
FA − m

∫
R3

cA f dc
)

,

where u′
A are the Lagrange multipliers:

u′
A =

{
u′ for A = 0

u′
k1k2···kA

for 1 ≤ A ≤ N.

The distribution function fN which maximizes the functional LN is given by [1, 4,
11, 12]:

fN = exp
(
−1 − m

k
χN

)
, χN = u′

AcA. (10)

In an equilibrium state, (10) reduces to the Maxwellian distribution function f (M).
Then, the system may be rewritten as follows:

JAB∂tu
′
B + JiAB∂iu

′
B = PA(u′

C), A = 0, . . . , N (11)

where

JAB

(
u′

C

) = −m2

kB

∫
R3

fN cAcB dc, JiAB

(
u′

C

) = −m2

kB

∫
R3

fN cicAcB dc.

Because of the fact that the matrices JAB, JiAB are symmetric with respect to
the multi-index A,B and JAB is definite negative, the system (11) is symmetric
hyperbolic [1, 4, 11] and the Lagrange multipliers coincide with the main field
according with the general theory of systems of balance laws with a convex entropy
density [13–17]. We observe that fN is not a solution of the Boltzmann equation.
But we have the conjecture (open problem) that, forN → ∞, fN tends to a solution
of the Boltzmann equation.

4 Convergence Problem and Approximation Near
an Equilibrium State

All results explained above are valid also for a case far from equilibrium provided
that the integrals in (9) are convergent. The problem of the convergence of the
moments is one of the main questions in a far-from-equilibrium case. In particular
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the index of truncation N must be even [11, 18]. This implies, in particular, that
a theory with 13 moments is not allowed when far from equilibrium! Moreover,
if the conjecture that the distribution function fN , when N → ∞, tends to the
distribution function f that satisfies the Boltzmann equation is true, we need another
convergence requirement for χ given in (11). These problems were studied by
Boillat and Ruggeri [11].

To bypass the question of convergence of integrals, the distribution function
obtained as the solution of the variational problem is considered only in the
neighborhood of a local equilibrium state, and we formally expand the distribution
function (10) as the perturbation of the Maxwellian distribution f (M):

fN ≈ f (M)

(
1 − m

kB

ũ′
AcA

)
, ũ′

A = u′
A − u′E

A , (12)

where u′E
A are the main field components evaluated in the local equilibrium state.

More high expansion was considered in the paper [19].
This is a big limitation of the theory because the theory is valid only near

equilibrium and hyperbolicity exists only in some small domain of the configuration
space near equilibrium. Notice that fN given by (12) is not always positive!

5 ET Beyond the Monatomic Gas: Polyatomic Gas

The previous ET theory, being strictly connected with the kinetic theory, suffers
from nearly the same limitations as the Boltzmann equation.

In the case of polyatomic gases, on the other hand, the rotational and vibrational
degrees of freedom of a molecule, which are not present in monatomic gases, come
into play [20], and in the case of dense gases, as the average distance between
the constituent molecules is finite, the interaction between the molecules cannot
be neglected. From a mathematical standpoint, these effects are responsible for
intrinsic changes in the structure of the system of field equations. Single hierarchy
of field equations as in the case of monatomic gases is no longer valid. In particular,
the internal specific energy is no longer related to the pressure in a simple way.

After several tentative theories, a satisfactory 14-field ET theory for dense gases
and for rarefied polyatomic ones, was recently developed by Arima, Taniguchi,
Ruggeri and Sugiyama [21]. This theory adopts two parallel hierarchies (binary
hierarchy) for the independent fields: the mass density, the velocity, the internal
energy, the shear stress, the dynamic pressure and the heat flux. One hierarchy
consists of balance equations for the mass density, the momentum density and the
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momentum flux (momentum-like hierarchy), and the other one consists of balance
equations for the energy density and the energy flux (energy-like hierarchy):

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = Pk1k2 , ∂tGkk + ∂iGikk = 0,

∂tGkkk1 + ∂iGkkik1 = Qkkk1 .

(13)

These hierarchies cannot merge with each other in contrast to the case of rarefied
monatomic gases because the specific internal energy (the intrinsic part of the
energy density) is no longer related to the pressure (one of the intrinsic parts of
the momentum flux).

By means of the closure procedure of the ET theory, the constitutive equations
are determined explicitly by the thermal and caloric equations of state. For example,
let us consider the particular case of rarefied polyatomic gases with the thermal and
caloric equations of state given by (polytropic gas)

p = kB

m
ρT and ε = D

2

kB

m
T, (D = 3 + f i) (14)

where m is the atomic mass, T the absolute temperature, and the constant D is
related to the degrees of freedom of a molecule given by the sum of the space
dimension 3 for the translational motion and the contribution from the internal
degrees of freedom f i(≥ 0). For monatomic gases, D = 3 (see (6)1).

Concerning the kinetic counterpart, a crucial step towards the development of
the theory of rarefied polyatomic gases was made by Borgnakke and Larsen [22].
The distribution function is assumed to depend on an additional continuous variable
representing the energy of the internal modes of a molecule in order to take into
account the exchange of energy (other than translational one) in binary collisions.
This model was initially used for Monte Carlo simulations of polyatomic gases,
and later it was applied to the derivation of the generalized Boltzmann equation by
Bourgat, Desvillettes, Le Tallec and Perthame [23].

As a consequence of the introduction of one additional parameter I , the velocity
distribution function f (t, x, c, I ) is defined on the extended domain [0,∞) × R3 ×
R3 × [0,∞). Its rate of change is determined by the Boltzmann equation which
has the same form as the one of monatomic gases (1) but the collision integral
Q(f ) takes into account the influence of the internal degrees of freedom through
the collisional cross section.

Pavić, Ruggeri and Simić proved [24] 1 that, by means of the MEP, the kinetic
model for rarefied polyatomic gases presented in [22] and [23] yields appropriate
macroscopic balance laws. This is a natural generalization of the classical procedure

1There are some typos in the paper [24] that were corrected in the Chapter 12 of the book [12].
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of MEP from monatomic gases to polyatomic gases. They considered the case of 14
moments, and showed the complete agreement with the binary hierarchy (21). The
moments are defined by

⎛
⎝ F

Fi1

Fi1i2

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ 1

ci1

ci1ci2

⎞
⎠ f (t, x, c, I ) ϕ(I) dI dc,

(
Gpp

Gppk1

)
=

∫
R3

∫ ∞

0
m

(
c2 + 2 I

m(
c2 + 2 I

m

)
ck1

)
f (t, x, c, I ) ϕ(I) dI dc,

(
Pk1k2

Qkkkj

)
=

∫
R3

∫ ∞

0
m

(
ck1ck2(

c2 + 2 I
m

)
ck1

)
Qϕ(I) dI dc.

The weighting function ϕ(I) is determined in such a way that it recovers the
caloric equation of state in equilibrium for polyatomic gases. It can be shown
that ϕ(I) = Iα leads to an appropriate caloric equation for polytropic gas (14)
provided that

α = D − 5

2
. (15)

Therefore, also for rarefied polyatomic gases, the three closure procedures (ET,
MEP and Grad) give the same result as in the monatomic case!

5.1 ET of Polyatomic Rarefied Gases with Many Moments

In the case of many moments, by using similar notations as in (8)

FA =
{

F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,
GllA′ =

{
Gll for A′ = 0

Gllk1k2···kA′ for 1 ≤ A′ ≤ M,

PA =
{
0 for A = 0, 1

Pk1k2···kA for 2 ≤ A ≤ N,
QllA′ =

{
0 for A′ = 0

Qllk1k2···kA′ for 1 ≤ A′ ≤ M,

the system of moments can be rewritten in the form of a binary hierarchy:

∂tFA + ∂iFiA = PA, (A = 0, . . . , N),

∂tGllA′ + ∂iGillA′ = QllA′, (A′ = 0, . . . ,M),
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with

FA = m

∫
R3

∫ ∞

0
cA f ϕ(I) dI dc, FiA = m

∫
R3

∫ ∞

0
cicA f ϕ(I) dI dc,

PA = m

∫
R3

∫ ∞

0
cA Qϕ(I) dI dc,

GllA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ f ϕ(I)dIdc,

GlliA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cicA′ f ϕ(I)dIdc,

QllA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ Qϕ(I)dIdc,

cA =
{
1 for A = 0

ck1ck2 · · · ckA
for 1 ≤ A ≤ N,

cA′ =
{
1 for A′ = 0

ck1ck2 · · · ckA′ for 1 ≤ A′ ≤ M.

The variational problem, from which the distribution function f(N,M) maximizes
the entropy

h = −kB

∫
R3

∫ ∞

0
f log f ϕ(I) dI dc, (16)

is connected to the functional:

L(N,M) (f ) = − kB

∫
R3

∫ ∞

0
f log f ϕ(I) dI dc

+ u′
A

(
FA − m

∫
R3

∫ ∞

0
cA f ϕ(I) dI dc

)
+

+ v′
A′

(
GllA′ − m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ f ϕ(I)dIdc

)
,

where u′
A and v′

A′ are the Lagrange multipliers:

u′
A =

{
u′ for A = 0

u′
k1k2···kA

for 1 ≤ A ≤ N,
, v′

A′ =
{

v′ for A′ = 0

v′
k1k2···kA′ for 1 ≤ A′ ≤ M.

The distribution function f(N,M) which maximizes the functional L(N,M) is
given by

f(N,M) = exp
(
−1 − m

k
χ(N,M)

)
, χ(N,M) = u′

AcA +
(

c2 + 2I

m

)
v′
A′cA′ .
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Then, the system may be rewritten as follows:
(

J 0
AB J 1

AB ′

J 1
A′B J 2

A′B ′

)
∂t

(
u′

B

v′
B ′

)
+

(
J 0

iAB J 1
iAB ′

J 1
iA′B J 2

iA′B ′

)
∂i

(
u′

B

v′
B ′

)
=

(
PA

QllA′

)
, (17)

where

J 0
AB = −m2

k

∫
R3

∫ ∞

0
f cAcBϕ(I) dIdc,

J 0
iAB = −m2

k

∫
R3

∫ ∞

0
f cicAcBϕ(I) dIdc,

J 1
AB ′ = −m2

k

∫
R3

∫ ∞

0
f cAcB ′

(
c2 + 2I

m

)
ϕ(I) dIdc,

J 1
iAB ′ = −m2

k

∫
R3

∫ ∞

0
f cicAcB ′

(
c2 + 2I

m

)
ϕ(I) dIdc,

J 2
iA′B ′ = −m2

k

∫
R3

∫ ∞

0
f cicA′cB ′

(
c2 + 2I

m

)2

ϕ(I) dIdc.

Also in this case the closed system is symmetric hyperbolic [12, 25], and the theory
of monatomic gases is a singular limit of the theory of polyatomic gases [26].

In the present case we have in principle two index of truncation M and N . In the
paper [25], the following two theorems are proved:

Theorem 1 The differential system is Galilean invariant if and only if M ≤ N − 1.

Theorem 2 If M < N − 1, all characteristic velocities are independent of the
internal degrees of freedom D and coincide with the ones of F -hierarchy of
monatomic gases with the truncation order N .

The requirement that the system is Galilean invariant and the characteristic veloci-
ties are functions of D leads to the relationship M = N − 1. According with this
result, the most interesting cases are the Euler system N = 1,M = 0 and the system
with 14 fields that describes the ET of dissipative fluids in the presence of viscosity
and heat conduction N = 2,M = 1.

Also in the case of polyatomic gases, we have the same problematic concerning
the convergence of the integrals. In particular, not only the Grad theory of
monatomic gases but also the theory with 14 moments are invalid in the case far
from equilibrium!

Therefore as in the monatomic gas case, the distribution function obtained as
a solution of the variational problem is expanded in the neighborhood of a local
equilibrium state:

f ≈ f (E)

[
1 − m

k

(
ũ′
AcA +

(
c2 + 2I

m

)
ṽ′
A′cA′

)]
, ũ′

A = u′
A − u′E

A , ṽ′
A′ = v′

A′ − v′E
A′ ,
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where u′E
A and v′E

A′ are the main field components evaluated in the local equilibrium
state. The equilibrium distribution function is given by [12, 24]

f (E) = ρ

m A(T )

(
m

2πkBT

)3/2

exp

{
− 1

kBT

(
1

2
mC2 + I

)}
, (18)

where

A(T ) =
∫ ∞

0
exp

(
− I

kBT

)
ϕ(I)dI. (19)

This generalizes the Maxwellian distribution function in the case of polyatomic
gases, which was obtained first with different arguments in [23]. In the polytropic
case, (19) becomes

A(T ) = (kBT )1+αΓ (1 + α),

with α related with D through (15), and Γ denotes the Gamma function.
As an example we write down the differential closed system of 14 fields [12, 21]:

ρ̇ + ρ
∂vk

∂xk
= 0,

ρv̇i + ∂p

∂xi
+ ∂Π

∂xi
− ∂σ〈ij〉

∂xj
= 0,

Ṫ + 2

D
kB
m ρ

(p + Π)
∂vk

∂xk
− 2

D
kB
m ρ

∂vi

∂xk
σ〈ik〉 + 2

D
kB
m ρ

∂qk

∂xk
= 0,

σ̇〈ij〉 + σ〈ij〉
∂vk

∂xk
− 2Π

∂v〈i
∂xj〉

+ 2
∂v〈i
∂xk

σ〈j〉k〉 − 4

D + 2

∂q〈i
∂xj〉

− 2p
∂v〈i
∂xj〉

= − 1

τσ
σ〈ij〉,

Π̇ + 5D − 6

3D
Π

∂vk

∂xk
− 2(D − 3)

3D

∂v〈i
∂xk〉

σ〈ik〉 + 4(D − 3)

3D(D + 2)

∂qk

∂xk
+ 2(D − 3)

3D
p

∂vk

∂xk
= − 1

τΠ
Π,

q̇i + D + 4

D + 2
qi

∂vk

∂xk
+ 2

D + 2
qk

∂vk

∂xi
+ D + 4

D + 2
qk

∂vi

∂xk

+ kB

m
T

∂Π

∂xi
− kB

m
T

∂σ〈ik〉
∂xk

+ Π

[
−

kB
m T

ρ

∂ρ

∂xi
+ D + 2

2

kB

m

∂T

∂xi
− 1

ρ

∂Π

∂xi
+ 1

ρ

∂σ〈ik〉
∂xk

]

−σ〈ik〉
[
−

kB
m T

ρ

∂ρ

∂xk
+ D + 2

2

kB

m

∂T

∂xk
− 1

ρ

∂Π

∂xk
+ 1

ρ

∂σ〈pk〉
∂xp

]
+ D + 2

2

(
kB

m

)2
ρT

∂T

∂xi

= − 1

τq
qi ,

(20)



Molecular Extended Thermodynamics for a Rarefied Polyatomic Gas 277

where τσ , τΠ and τq are relaxation times. In the present case the thermal and caloric
equations of state are given by (14) and the dot indicate the material derivative:

˙ = ∂

∂t
+ vi

∂

∂xi

.

If we apply the so-called Maxwellian iteration [27] (a sort of Chapman-Enskog
formal expansion with respect the relaxation times) then (20)3,4 converges to the
Navier-Stokes constitutive equations, while (20)5 reduces to the Fourier law [12].
For this reason the relaxations times τσ , τΠ , and τq are connected, respectively,
with the shear viscosity, bulk viscosity, and heat conductivity. We conclude that the
Navier-Stokes-Fourier parabolic system of TIP is an approximation of the previous
hyperbolic system when the relaxation times are small. The reader who is interested
in how the usual constitutive equations (Navier-Stokes’, Fourier’s, Fick’s, Darcy’s)
are approximated from the hyperbolic balance laws when some relaxation times are
negligible can read the paper [28].

A relativistic theory with 14 fields was recently given by Pennisi and Ruggeri
[29].

6 The 6-Moment Case and Non-Linear Closure

The 14-field theory gives us a complete phenomenologicalmodel but its differential
system is rather complex and the closure is in any way limited within near
equilibrium. Let us consider now a simplified theory (ET6) with 6 independent
field-variables (ρ, vi , T ,Π). This simplified theory preserves the main physical
properties of the more complex theory of 14 variables, in particular, when the
bulk viscosity plays more important role than the shear viscosity and the heat
conductivity. ET6 has another advantage to offer us a more affordable hyperbolic
partial differential system. In fact, it is the simplest system that takes into account a
dissipation mechanism after the Euler system of perfect fluids. In the present case
we have

∂F

∂t
+ ∂Fi

∂xi

= 0,

∂Fj

∂t
+ ∂Fji

∂xi

= 0, (21)

∂Fll

∂t
+ ∂Flli

∂xi

= Pll,
∂Gll

∂t
+ ∂Glli

∂xi

= 0,

where (21)1,2,4 represent the conservation laws of mass, momentum and energy
provided that F = ρ, Fi = ρvi, Fij = ρvivj + (p + Π)δij , Gll = ρvlvl + 2ρε,
and Glli = (ρvlvl + 2ρε + 2p + 2Π)vi with p and ε being, respectively, the
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pressure and the specific internal energy. The phenomenological ET6 was studied in
the papers [12, 30, 31].

In the molecular approach we have

⎛
⎝ F

Fi

Fll

⎞
⎠ =

⎛
⎝ ρ

ρvi

ρv2 + 3(p + Π)

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ 1

ci

c2

⎞
⎠ f ϕ(I) dI dc (22)

and

Gll = ρv2 + 2ρε =
∫
R3

∫ ∞

0
m(c2 + 2I/m)f ϕ(I) dI dc, (23)

while the production term is given by

Pll = m

∫
R3

∫ ∞

0
c2Q ϕ(I) dI dc. (24)

Note that the internal energy density can be divided into the translational part εK

and the part of the internal degrees of freedom εI :

ρεK =
∫
R3

∫ ∞

0

1

2
mC2f (t, x,C, I )ϕ(I) dI dC,

ρεI =
∫
R3

∫ ∞

0
If (t, x,C, I )ϕ(I) dI dC, (25)

where we have introduced the peculiar velocity:

C ≡ (Ci), Ci = ci − vi . (26)

6.1 Molecular ET6 for a Polytropic Gas

The MEP in the nonlinear polytropic ET6 gives the following distribution function
f that maximizes the entropy (16) under the constraints (22), (23)

fPoly = ρ

m (kBT )1+αΓ (1 + α)

(
m

2πkBT

1

1 + Π
p

)3/2 (
1

1 − 3
2(1+α)

Π
p

)1+α

× exp

{
− 1

kBT

(
1

2
mC2

(
1

1 + Π
p

)
+ I

(
1

1 − 3
2(1+α)

Π
p

))}
.
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The proof was given in the paper [32]. It is important to remark that the distribution
function is non-linear in the dynamical pressure in contrast to the usual closure
of moment theory in which the non-equilibrium distribution function is a linear
perturbation of the equilibrium one. The closed system and the non-equilibrium
entropy thus obtained [32] are exactly the same as the ones obtained by the
phenomenological approach [12, 31].

6.2 Molecular ET6 for a Non-Polytropic Gas

In the case of ideal non-polytropic gases the specific heat cv = dε(T )/dT is,
in general, a nonlinear function of the temperature and the caloric and thermal
equations of state read:

ε ≡ ε(T ), p = kB

m
ρT . (27)

As cv can be measured by experiments as a function of the temperature T we can
obtain the specific internal energy ε as

ε(T ) = kB

m

∫ T

T0

ĉv(T
′) dT ′, (28)

where ĉv = (m/kB)cv is the dimensionless specific heat and T0 is an inessential
reference temperature.

From (25), inserting the equilibrium distribution (18) and taking into
account (19), we obtain the internal energy at equilibrium due to the internal motion:

εI (T ) = kB

m
T 2 d logA(T )

dT
, εI = ε − εK, (29)

with εK given by

εK = 3

2

kB

m
T .

Therefore if we know the caloric equation of state (28) we know from (29)2 εI

and therefore from (29)1 we can obtain A(T ):

A(T ) = A0 exp

(
m

kB

∫ T

T0

εI (T
′)

T ′2 dT ′
)

, (30)
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where A0 and T0 are inessential constants. As was observed in [33], the function A

is, according to (19), the Laplace transform of ϕ:

A(T ) = Lu [ϕ(I)] (s), s = 1

kBT
,

and then we can obtain the weighting function ϕ as the inverse Laplace transform
of A:

ϕ(I) = L−1
u [A(T )] (I), T = 1

kBs
.

Bisi, Ruggeri and Spiga [34] proved the following theorem about the nonequilib-
rium distribution function:

Theorem 3 The distribution function that maximizes the entropy (16) under the
constraints (22) and (23) has the form:

fNon-Poly = ρ

mA(Θ)

(
m

2πkBT

1

1 + Π
p

)3/2

exp

{
− 1

kBT

(
1

2
mC2

(
1

1 + Π
p

)
+ I

T

Θ

)}
,

(31)

where the nonequilibrium temperature Θ is related to the dynamical pressure Π

and the temperature T through the relation:

εI (T ) − εI (Θ)

εK(T )
= Π

p
,

and A(Θ) is the function (30) evaluated at the temperature Θ:

A(Θ) = A0 exp

(
m

kB

∫ Θ

T0

εI (T
′)

T ′2 dT ′
)

.

All the moments are convergent and the bounded solutions satisfy the inequalities:

− 1 <
Π

p
<

εI (T )

εK(T )
. (32)

The distribution function is non-linear in the dynamical pressure and is positive.

The proof of this theorem is given in [34]. In the polytropic case the non-equilibrium
distribution function (31) reduces to the expression (26).



Molecular Extended Thermodynamics for a Rarefied Polyatomic Gas 281

6.3 Closure and Field Equations

Substituting (31) into the fluxes we obtain the closed system of ET6:

∂ρ

∂t
+ ∂

∂xi
(ρvi) = 0,

∂(ρvj )

∂t
+ ∂

∂xi

[
(p + Π)δij + ρvivj

] = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂xi

{[
2(p + Π) + 2ρε + ρv2

]
vi

}
= 0,

∂

∂t
[3(p + Π) − 2ρε] + ∂

∂xi

{[3(p + Π) − 2ρε] vi} = Pll .

(33)

Concerning the production term Pll , the main problem is that, in order to have
explicit expression of the production (see (24)), we need a model for the collision
term, which is, in general, not easy to obtain in the case of polyatomic gases. In the
case of a BGK model we have:

Pll = −3
Π

τ
.

The system (33) with the thermal and caloric equations of state (27) is a closed
system for the 6 unknowns (ρ, vi , T ,Π), provided that we know the collision
term in (33)4. These results are in perfect agreement with the results derived
from the phenomenological theory [31]. The differential system is symmetric
hyperbolic for any possible field and the bounded solutions satisfy automatically
the inequalities (32).

6.4 Entropy Density and Main Field

Concerning the entropy density (16) it is possible to obtain the following explicit
expression [34]:

k = h − heq

ρ
=

∫ Θ

T

εI (T
′)

T ′2 dT ′ + 3

2

kB

m
log(1 + Z) + εI (Θ)

Θ
− εI (T )

T

Z = Π

p
= εI (T ) − εI (Θ)

εK(T )
,

(34)

where heq is the equilibrium entropy solution of the equilibrium Gibbs equation:

T d

(
heq

ρ

)
= dε − p

ρ2
dρ.
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The function k is a convex function and have a global maximum at the equilibrium
state. It is also interesting to see that expressions (34) coincide with those obtained
by the phenomenological ET approach [31].

By using the results given in [34] with some algebra, it is possible to prove that
the Lagrange multipliers have the following expressions:

λ = − g

T
+

∫ Θ

T

εI (u)

u2
du − 3

2

kB

m
ln(1 + Z) + v2

2T

1

1 + Z
,

λi = −vi

T

1

1 + Z
,

μll = 1

2Θ
,

λll = − 1

2T

(
1

1 + Z
− T

Θ

)
.

(35)

According with the general theory, the Lagrange multipliers (35) coincide with the
components of the main field for which the system (33) becomes to be symmetric
hyperbolic in the form (17) [11, 12]. Notice that, in equilibrium where Π = 0 we
have Z = 0 and Θ = T (see (34)2), then the first five components of the main
field (36) coincide with those obtained by Godunov for the Euler fluid [13]:

λ|E = − 1

T

(
g − v2

2

)
, λi |E = −vi

T
, μll |E = 1

2T
,

while λll |E = 0 according to the fact that the Euler fluid is a principal subsystem of
the 6-moment system. In the polytropic case,

εI (u) = D − 3

2

kB

m
u

and the expression (34) become the ones obtained in [32]:

k = kBρ

2m
ln

(
(1 + Z)3

(
1 − 3

D − 3
Z

)D−3
)

, Z = Π

p
,

and the main field reduces to

λ = − g

T
+ k + v2

2T

1

1 + Z
, λi = −vi

T

1

1 + Z
, μll = 1

2T

(
1 − 3

D − 3
Z

)−1

,

λll = − 1

2T

D

D − 3
Z (1 + Z)−1

(
1 − 3

D − 3
Z

)−1

.

(36)
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7 Comparison Between the ET6 Theory and Meixner’s
Theory

The field equations (33) with the linear production can be rewritten by using the
material derivative in the following simple form [12]:

ρ̇ + ρ div v = 0,

ρv̇i + ∂

∂xi

(p + Π) = 0,

ρε̇ + (p + Π)div v = 0,

τ Π̇ +
(

ν + τ
5D − 6

3D
Π

)
div v = −Π,

(37)

where the bulk viscosity ν ∝ D − 3. When D → 3 (monatomic gas) the previous
system has the same solution as that of the Euler fluid provided Π(x, 0) = 0 [12].
In [12, 30, 31] it was proved that the system (37) coincides with the well-known
Meixner theory with one internal variable [35, 36] and the hidden variable is strictly
related to the dynamical pressure Π .

Finally we note that, in the parabolic limit case where τ → 0, the system (37)
reduces to a simplified version of Navier-Stokes system for compressible fluids:

ρ̇ + ρ div v = 0,

ρv̇i + ∂

∂xi

(p + Π) = 0,

ρε̇ + (p + Π)div v = 0,

ν div v = −Π,

and the qualitative analysis of this parabolic system was studied in same papers, e.g.
in [37, 38].

8 Qualitative Analysis

In the general theory of hyperbolic conservation laws and hyperbolic-parabolic
conservation laws, the existence of a strictly convex entropy function, which is a
generalization of the physical entropy, is a basic condition for the well-posedness.
However, in the general case, and even for arbitrarily small and smooth initial
data, there is no global continuation for these smooth solutions, which may develop
singularities, shocks, or blow up in finite time, see for instance [39].
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On the other hand, in many physical examples, thanks to the interplay between
the dissipation due to the source term and the hyperbolicity there exist global smooth
solutions for a suitable set of initial data.

In physical dissipative case, the hyperbolic systems are of mixed type, some
equations are conservation laws and other ones are real balance laws, i.e., we are
in the case in which

ut + ∂iFi (u) = F(u)

with

F(u) ≡
(

0
g(u)

)
; g ∈ R

N−M.

In this case the coupling condition, which is discovered for the first time by
Kawashima and Shizuta (K-condition) [40] such that the dissipation in the second
block has an effect also on the first block of equation, plays a very important role in
this case for the global existence of smooth solutions.

In fact, if the system of balance law is endowed with a convex entropy law,
and it is dissipative, then the K-condition becomes a sufficient condition for the
existence of global smooth solutions provided that the initial data are sufficiently
smooth (Hanouzet and Natalini [41], Wen-An Yong [42], Bianchini, Hanouzet and
Natalini [43]):

Theorem 4 (Global Existence) Assume that the system of balance laws is strictly
dissipative and the K-condition is satisfied. Then there exists δ > 0, such that, if
‖u(x, 0)‖2 ≤ δ, there is a unique global smooth solution, which verifies

u ∈ C0
(
[0,∞); H 2(R) ∩ C1

(
[0,∞); H 1(R)

)
.

Moreover Ruggeri and Serre [44] proved in the one-dimensional case that the
constant states are stable:

Theorem 5 (Stability of Constant State) Under natural hypotheses of strongly
convex entropy, strict dissipativeness, genuine coupling and “zero mass” initial for
the perturbation of the equilibrium variables, the constant solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
.

Lou and Ruggeri [45] observed that the weaker K-condition in which we require
the K-condition only for the right eigenvectors corresponding to genuine nonlinear
is a necessary (but not sufficient) condition for the global existence of smooth
solutions. In [12, 32, 46] it was proved that ET theories satisfy the hypothesis of the
previous theorems and therefore there exist global solutions provided initial data are
sufficiently smooth.
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9 Shock Wave Structure in a Rarefied Polyatomic Gas

As an application of the previous thermodynamic models, let us consider a shock
wave propagating in a polyatomic gas. The shock wave structure in a rarefied
polyatomic gas is, under some conditions, quite different from the shock wave
structure in a rarefied monatomic gas due to the presence of the microscopic internal
modes in a polyatomic molecule such as the rotational and vibrational modes. For
examples: (1) The shock wave thickness in a rarefied monatomic gas is of the order
of the mean free path. On the other hand, owing to the slow relaxation process
involving the internal modes, the thickness of a shock wave in a rarefied polyatomic
gas is several orders larger than the mean free path. (2) As the Mach number
increases from unity, the profile of the shock wave structure in a polyatomic rarefied
gas changes from the nearly symmetric profile (Type A) to the asymmetric profile
(Type B), and then changes further to the profile composed of thin and thick layers
(Type C)

Schematic profiles of the mass density are shown in Fig. 1. Such change of the
shock wave profile with the Mach number cannot be observed in a monatomic gas.
In order to explain the shock wave structure in a rarefied polyatomic gas, there have
been two well-known approaches. One was proposed by Bethe and Teller and the
other is proposed by Gilbarg and Paolucci. Although the Bethe-Teller theory can
describe qualitatively the shock wave structure of Type C, its theoretical basis is
not clear enough. The Gilbarg-Paolucci theory, on the other hand, cannot explain
asymmetric shock wave structure (Type B) nor thin layer (Type C).

Recently it was shown that the ET14 [47] and also ET6 [48] theories can describe
the shock wave structure of all Types A to C in a rarefied polyatomic gas. This new
result indicates clearly the usefulness of the ET theory for the analysis of shock
wave phenomena.

Other interesting and successful applications of RET in polyatomic gas show
good agreement with experiments concerning the dispersion relation in the high
frequency limit, and in the light scattering problem (see [12] and reference therein).

x

ρ Type A

x

ρ Type B

x

ρ Type C

Δ

Ψ

Fig. 1 Schematic representation of three types of the shock wave structure in a rarefied polyatomic
gas, where ρ and x are the mass density and the position, respectively. As the Mach number
increases from unity, the profile of the shock wave structure changes from Type A to Type B,
and then to Type C that consists of the thin layer Φ and the thick layer Ψ
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24. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases.
Physica A 392, 1302–1317 (2013)

25. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied poly-
atomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140
(2014)

26. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of
polyatomic gas in molecular extended thermodynamics with many moments. Ann. Phys. 372,
83–109 (2016)



Molecular Extended Thermodynamics for a Rarefied Polyatomic Gas 287

27. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to
Maxwell’s kinetic theory. J. Rat. Mech. Anal. 5, 1–54 (1956)

28. Ruggeri, T.: Can constitutive relations be represented by non-local equations? Quart. Appl.
Math. 70, 597–611 (2012)

29. Pennisi, S., Ruggeri, T.: Relativistic extended thermodynamics of rarefied polyatomic gas. Ann.
Phys. 377, 414–445 (2017)

30. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases
with dynamic pressure: An extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803
(2012)

31. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Nonlinear extended thermodynamics of
real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)

32. Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the
dynamic pressure. Bull. Inst. Math. Acad. Sinica (New Series) 11(1), 1–22 (2016)

33. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Recent results on nonlinear extended
thermodynamics of real gases with six fields Part I: general theory. Ric. Mat. 65, 263–277
(2016)

34. Bisi, M., Ruggeri, T., Spiga, G.: Dynamical pressure in a polyatomic gas: Interplay between
kinetic theory and extended thermodynamic. Kinetic and related models (KRM) 11, 71–95
(2018)

35. Meixner, J.: Absorption und dispersion des schalles in gasen mit chemisch reagierenden und
anregbaren komponenten. I. Teil. Ann. Physik 43, 470 (1943)

36. Meixner, J.: Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter beruck-
sichtigung der transporterscheinungen. Acoustica 2, 101 (1952)

37. Secchi, P.: Existence theorems for compressible viscous fluid having zero shear viscosity,
Rend. Sem. Padova 70, 73–102 (1983)

38. Frid, H., Shelukhin, V.: Vanishing shear viscosity in the equations of compressible fluids for
the flows with the cylinder symmetry. SIAM J. Math. Anal. 31(5), 1144–1156 (2000)

39. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der
mathematischen Wissenschaften, vol. 325, 3rd edn. Springer, Berlin Heidelberg (2010)

40. Kawashima, S., Shizuta, Y.: Systems of equations of hyperbolic-parabolic type with applica-
tions to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

41. Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipative
hyperbolic systems with a convex entropy. Arch. Rat. Mech. Anal. 169, 89–117 (2003)

42. Yong, W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rat. Mech. Anal.
172(2), 247–266 (2004)

43. Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially
dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math., 60, 1559–
1622 (2007)

44. Ruggeri, T., Serre, D.: Stability of constant equilibrium state for dissipative balance laws
system with a convex entropy. Quart. Appl. Math 62(1), 163–179 (2004)

45. Lou, J., Ruggeri, T.: Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend.
Circ. Mat. Palermo. Non Linear Hyperbolic Fields and Waves. A tribute to Guy Boillat, Series
II, Suppl. 78, 187–200 (2006)

46. Ruggeri, T.: Entropy Principle and Global Existence of Smooth Solutions in Extended
Thermodynamics. In: Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, pp. 267–
274. Yokohama Publishers Inc. (2006)

47. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock
wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory., Phys. Rev. E 89
013025-1–013025-11 (2014)

48. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock
wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103-1–016103-15 (2014)


	Molecular Extended Thermodynamics of a Rarefied Polyatomic Gas
	1 Continuum and Kinetic Approaches of a Non-Equilibrium Gas
	2 Extended Thermodynamics of Rarefied Monatomic Gases
	3 Closure via the Maximum Entropy Principle and Molecular Extended Thermodynamics of Monatomic Gases
	4 Convergence Problem and Approximation Near an Equilibrium State 
	5 ET Beyond the Monatomic Gas: Polyatomic Gas
	5.1 ET of Polyatomic Rarefied Gases with Many Moments

	6 The 6-Moment Case and Non-Linear Closure
	6.1 Molecular ET6 for a Polytropic Gas
	6.2 Molecular ET6 for a Non-Polytropic Gas
	6.3 Closure and Field Equations
	6.4 Entropy Density and Main Field

	7 Comparison Between the ET6 Theory and Meixner's Theory
	8 Qualitative Analysis
	9 Shock Wave Structure in a Rarefied Polyatomic Gas
	References


