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Abstract This note is concerned with a nonlinear diffusion problem of phase-field
type, consisting of a parabolic system of two partial differential equations, com-
plemented by boundary and initial conditions. The system arises from a model of
two-species phase segregation on an atomic lattice and was introduced by Podio-
Guidugli in Ric. Mat. 55 (2006), pp. 105–118. The two unknowns are the phase
parameter and the chemical potential. In contrast to previous investigations about
this PDE system, we consider here a dynamic boundary condition for the phase
variable that involves the Laplace-Beltrami operator and models an additional
nonconserving phase transition occurring on the surface of the domain. We are
interested in some asymptotic analysis and first discuss the asymptotic limit of the
system as the viscosity coefficient of the order parameter equation tends to 0: the
convergence of solutions to the corresponding solutions for the limit problem is
proven. Then, we study the long-time behavior of the system for both problems,
with positive or zero viscosity coefficient, and characterize the omega-limit set in
both cases.
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1 Introduction

A recent line of research originated from the following evolutionary system of
partial differential equations:

2ρ ∂tμ + μ ∂tρ − Δμ = 0 and μ ≥ 0 (1.1)

−Δρ + F ′(ρ) = μ (1.2)

in Q∞ := Ω × (0,+∞), where Ω ⊂ R
3 is a bounded and smooth domain

with boundary Γ . The system (1.1)–(1.2) comes out from a model for phase
segregation through atom rearrangement on a lattice that has been proposed by
Podio-Guidugli [48]. This model (see also [12] for a detailed derivation) is a
modification of the Fried–Gurtin approach to phase segregation processes (cf. [34,
41]). The order parameter ρ, which in many cases represents the (normalized)
density of one of the phases, and the chemical potential μ are the unknowns of
the system. Moreover, F ′ represents the derivative of a double-well potential F .
Besides everywhere defined potentials, a typical and important example of F is the
so–called logarithmic double-well potential given by

Flog(r) := (1 + r) ln(1 + r) + (1 − r) ln(1 − r) + α1(1 − r2) + α2r,

r ∈ (−1, 1), (1.3)

for some real coefficients α1, α2. Note that, if α2 is taken null and α1 > 1, it turns
out that F actually exhibits two wells, with a local maximum at r = 0. In the case
when α2 �= 0, then one of the two minima of F is preferred, in the sense that there is
a global minimum point (positive if α2 < 0, negative if α2 > 0) of the function. As
a particular feature of (1.3), observe that the derivative of the logarithmic potential
becomes singular at ±1.

About equations (1.1) and (1.2), we point out that the model developed in [48] is
based on a local free energy density (in the bulk) of the form

ψ(ρ,∇ρ,μ) = −μ ρ + F(ρ) + 1

2
|∇ρ|2. (1.4)

From (1.4) one derives equations (1.1)–(1.2), which must be complemented with
boundary and initial conditions. As far as the former are concerned, the standard
boundary conditions for this class of problems are the homogeneous Neumann ones,
namely

∂νμ = ∂νρ = 0 on Σ∞ := Γ × (0,+∞), (1.5)

where ∂ν denotes the outward normal derivative. Combining now (1.1)–(1.2)
with (1.5), we obtain a set of equations and conditions that is a variation of
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the celebrated Cahn–Hilliard system originally introduced in [1] and first studied
mathematically in [31] (for an updated list of references on the Cahn–Hilliard
system, see [42]). Nonetheless, an initial value problem for (1.1)–(1.2), (1.5) turns
out to be strongly ill-posed (see [15, Subsect. 1.4], where an example is given):
indeed, the related problem may have infinitely many smooth and even nonsmooth
solutions. Then, two small regularizing parameters ε > 0 and δ > 0 were introduced
and considered in [12], which led to the regularized model equations

(
ε + 2ρ

)
∂tμ + μ ∂tρ − Δμ = 0 , (1.6)

δ ∂tρ − Δρ + F ′(ρ) = μ . (1.7)

This regularized system has been deeply examined in [12], when both ε and δ are
positive and fixed. In addition, let us underline that, while one can let ε tend to
zero (see [16]) and obtain a solution to the limiting problem with ε = 0, it seems
extremely difficult to pass to the limit as δ goes to 0. In fact, ill-posedness still
holds for δ = 0, even if ε is kept positive. Hence, one has to assume that δ is a
fixed positive coefficient. Therefore, from now on, we take δ = 1, without loss of
generality. Let us point out that the long-time behavior of the solutions has been
studied both with ε > 0 (cf. [12]) and ε = 0 (cf. [16]).

The system (1.6)–(1.7) constitutes a modification of the so-called viscous Cahn–
Hilliard system (see [47] and the recent contributions[3, 20, 22] along with their
references). We point out that (1.6)–(1.7) was analyzed, in the case of the boundary
conditions (1.5), in the papers [12, 14, 18] concerning well-posedness, regularity,
and optimal control. Later, the local free energy density (1.4) was generalized to the
form

ψ(ρ,∇ρ,μ) = −μ g(ρ) + F(ρ) + 1

2
|∇ρ|2, (1.8)

thus putting g(ρ) in place of ρ, where g is a nonnegative function on the domain
of F . This leads to the system

(
ε + 2g(ρ)

)
∂tμ + μ g′(ρ) ∂tρ − Δμ = 0, (1.9)

∂tρ − Δρ + F ′(ρ) = μ g′(ρ), (1.10)

which is a generalization of (1.6)–(1.7) and has been studied in [13, 17] for the case
ε = 1. Let us mention also the contribution [9] dealing with the time discretization
of the problem and proving convergence results and error estimates. The related
phase relaxation system (in which the diffusive term −Δρ disappears from (1.10)),
has been dealt with in [10, 11, 19]. We also point out the recent papers [23–25],
where a nonlocal version of (1.9)–(1.10)—based on the replacement of the diffusive
term of (1.10) with a nonlocal operator acting on ρ—has been largely investigated,
also from the side of optimal control.
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Now, if we take ε = 0 in (1.9)–(1.10), we obtain

2g(ρ) ∂tμ + μ g′(ρ) ∂tρ − Δμ = 0 (1.11)

∂tρ − Δρ + F ′(ρ) = μ g′(ρ), (1.12)

which looks like a generalization of the viscous version of (1.1)–(1.2), where the
affine function ρ 	→ ρ is replaced by a concave function ρ 	→ g(ρ), with g

possessing suitable properties that are made precise in the later assumption (2.5).
In particular, the new g may be symmetric and strictly concave: a possible simple
choice of g satisfying (2.5) is

g(r) = 1 − r2, r ∈ [−1, 1]. (1.13)

Note that, if one collects (1.3) and (1.13) and assumes α2 �= 0, the combined
function

− μg(ρ) + Flog(ρ) (which is a part of ψ) (1.14)

shows a global minimum in all cases, and it depends on the values of (α1 − μ) and
α2 which minimum actually occurs. Let us notice that the function in (1.14) turns
out to be convex in the whole of (−1, 1) for sufficiently large values of μ. On the
other hand, the framework fixed by assumptions (2.5)–(2.8) allows for more general
choices of g and F .

However, until now the boundary conditions (1.5), of Neumann type for both μ

and ρ, have been considered in our discussion. Instead, in the present work we treat
the dynamic boundary condition for ρ, i.e., we complement the above systems with

∂νμ = 0 and ∂νρ + ∂tρΓ − ΔΓ ρΓ + F ′
Γ (ρΓ ) = 0 on Σ∞, (1.15)

where ρΓ is the trace of ρ, ΔΓ is the Laplace-Beltrami operator on the boundary,
F ′

Γ is the derivative of another potential FΓ having more or less the same behavior
as F , and the right-hand side of the dynamic boundary condition equals zero, just
for simplicity. Indeed, one could consider a nonzero forcing term satisfying proper
assumptions, as done in [26]. Once again, we have to add initial conditions.

Thus, we are concerned with a total free energy of the system which also
includes a contribution on the boundary; in fact, we postulate that a phase transition
phenomenon is occurring as well on the boundary, and the physical variable on the
boundary is just the trace of the phase variable in the bulk. This corresponds to a
total free energy functional of the form

�[ρ(t), ρΓ (t), μ(t)] =
∫

Ω

[
− μ g(ρ) + F(ρ) + 1

2
|∇ρ|2

]
(t)

+
∫

Γ

[
[−uΓ ρΓ + FΓ (ρΓ ) + 1

2
|∇Γ ρΓ |2

]
(t), t ≥ 0, (1.16)



Limiting Problems for a Nonstandard Viscous Cahn–Hilliard System. . . 221

where ∇Γ is the surface gradient and uΓ may stand for the source term that
exerts a (boundary) control on the system. From this expression of the total free
energy, one recovers the PDE system resulting from equations (1.11)–(1.12) and
the boundary conditions (1.15), with uΓ in place of 0 in the right-hand side of the
second condition. In relation to this, we would like to mention the contribution [27]
dealing with the optimal boundary control problem for the system (1.6)–(1.7), (1.15)
with ε = 1.

As for the dynamic boundary conditions, we would like to add some comments
on the recent growing interest in the mathematical literature, either for the justifi-
cation (see, e.g., [32, 33, 44]) or for the investigation of systems including dynamic
boundary conditions. Without trying to be exhaustive, we point out at least the
contributions [2, 4–8, 20–22, 28–30, 35–40, 43, 45, 46, 49, 50], which are concerned
with various types of systems endowed with the dynamic boundary conditions for
either some or all of the unknowns. Our citations mostly refer to phase-field models
involving the Allen–Cahn and Cahn–Hilliard equations, whose structure is generally
simpler than the one considered in the present paper.

Our aim here is investigating the long-time behavior of the full system in both
the cases ε > 0 and ε = 0 (similar to [12, 16], in which the Neumann boundary
conditions (1.5) were considered). More precisely, we show that the ω-limit of any
trajectory in a suitable topology consists only of stationary solutions. In order to
treat this problem also with ε = 0, we first study the asymptotics as ε tends to zero.
To do that, we underline that the reasonable and somehow natural assumptions (2.5)
for g along with the requirements (2.6)–(2.8) on F and FΓ allow us to show that
the variables ρ and ρΓ are strictly separated from the (singular) values ±1. Indeed,
we can prove this separation property and obtain the strict positivity of g(ρ) as a
consequence.

The paper is organized as follows: in the next section, we list our assumptions
and notations and state our results, while the corresponding proofs are given in the
last two sections. Precisely, in Sect. 3, we perform the asymptotic analysis as ε tends
to zero and prove the well-posedness of the problem for ε = 0; in Sect. 4, we study
the long-time behavior of the solution under the assumption ε ≥ 0.

2 Statement of the Problem and Results

In this section, we state precise assumptions and notations and present our results.
First of all, the set Ω ⊂ R

3 is assumed to be bounded, connected and smooth.
As in the Introduction, ∂ν and ΔΓ stand for the outward normal derivative and the
Laplace-Beltrami operator on the boundary Γ . Furthermore, we denote by ∇Γ the
surface gradient.

If X is a (real) Banach space, ‖ · ‖X denotes both its norm and the norm of X3,
X∗ is its dual space, and X∗〈 · , · 〉X is the dual pairing between X∗ and X. The only
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exception from this convention is given by the Lp spaces, 1 ≤ p ≤ ∞, for which we
use the abbreviating notation ‖ · ‖p for the norms in Lp(Ω). Furthermore, we put

H := L2(Ω) , V := H 1(Ω) and W := {v ∈ H 2(Ω) : ∂νv = 0}, (2.1)

HΓ := L2(Γ ) and VΓ := H 1(Γ ), (2.2)

H := H × HΓ and V := {(v, vΓ ) ∈ V × VΓ : vΓ = v|Γ }. (2.3)

We also set, for convenience,

Qt := Ω × (0, t) and Σt := Γ × (0, t) for 0 < t < +∞,

Q∞ := Ω × (0,+∞) and Σ∞ := Γ × (0,+∞), (2.4)

and often use the shorter notations Q and Σ if t = T , a fixed final time T ∈
(0,+∞).

Now, we list our assumptions. For the structure of our system, we are given three
functions g ∈ C2[−1, 1] and F, FΓ ∈ C2(−1, 1) which satisfy

g ≥ 0, g′′ ≤ 0, g′(−1) > 0 and g′(1) < 0, (2.5)

lim
r↘−1

F ′(r) = lim
r↘−1

F ′
Γ (r) = −∞ and lim

r↗1
F ′(r) = lim

r↗1
F ′

Γ (r) = +∞,

(2.6)

F ′′(r) ≥ −C and F ′′
Γ (r) ≥ −C, for every r ∈ (−1, 1), (2.7)

|F ′(r)| ≤ η|F ′
Γ (r)| + C for every r ∈ (−1, 1), (2.8)

with some positive constants C and η.
For the initial data, we make rather strong assumptions in order to apply the

results of [26] without any trouble. However, our first assumption on μ0 could be
replaced by μ0 ∈ V . Precisely, we assume that

μ0 ∈ W and μ0 ≥ 0 in Ω ; (2.9)

ρ0 ∈ H 2(Ω) , ρ0|Γ ∈ H 2(Γ ) , min ρ0 > −1 and max ρ0 < 1 . (2.10)

At this point, we are ready to state our problem. For ε ≥ 0, we look for a triplet
(μ, ρ, ρΓ ) satisfying the regularity requirements and solving the problem stated
below. As for the regularity, we pretend that

μ ∈ H 1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; W), (2.11)

(ρ, ρΓ ) ∈ W 1,∞(0, T ;H) ∩ H 1(0, T ;V) ∩ L∞(0, T ; H 2(Ω) × H 2(Γ )),

(2.12)

μ ≥ 0 , −1 < ρ < 1 and (F ′(ρ), F ′
Γ (ρΓ )) ∈ L∞(0, T ;H), (2.13)
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for every finite T > 0, and the problem reads

(
ε + 2g(ρ)

)
∂tμ + μg′(ρ)∂tρ − Δμ = 0 a.e. in Q∞ , (2.14)

∫

Ω

∂tρ v +
∫

Γ

∂tρΓ vΓ +
∫

Ω

∇ρ · ∇v +
∫

Γ

∇Γ ρΓ · ∇Γ vΓ

+
∫

Ω

F ′(ρ)v +
∫

Γ

F ′
Γ (ρΓ )vΓ =

∫

Ω

μg′(ρ)v

a.e. in (0,+∞) and for every (v, vΓ ) ∈ V , (2.15)

μ(0) = μ0 and ρ(0) = ρ0 a.e. in Ω . (2.16)

Notice that the Neumann boundary condition ∂νμ = 0 and the fact that ρΓ is
the trace of ρ on Σ are contained in (2.11) and (2.12), respectively, due to the
definitions (2.1)–(2.3) of the spaces involved. By accounting for the regularity con-
ditions (2.11)–(2.13), it is clear that the variational problem (2.15) is equivalent to

∂tρ − Δρ + F ′(ρ) = μg′(ρ) in Q∞ , (2.17)

∂νρ + ∂tρΓ − ΔΓ ρΓ + F ′
Γ (ρΓ ) = 0 on Σ∞ . (2.18)

Moreover, it follows from standard embedding results (see, e.g., [51, Sect. 8, Cor. 4])
that ρ ∈ C0(Q) and thus also ρΓ ∈ C0(Σ).

Our starting point is the well-posedness result for ε > 0 that we state below and
is already known. Indeed, recalling (2.6)–(2.7), we set

β̂(r) := F(r) − F(0) − F ′(0)r + C

2
r2 for r ∈ (−1, 1) and π̂ := F − β̂,

and analogously introduce β̂Γ and π̂Γ , starting from FΓ . Then, we consider the
convex and lower semicontinuous extensions of β̂ and β̂Γ to the whole of R and
smooth extensions of π̂ and π̂Γ with bounded second derivatives. Therefore, the
assumptions of [26, Thm. 2.1] are satisfied and the following well-posedness result
holds true.

Theorem 1 Assume (2.5)–(2.8) and ε > 0 for the structure and (2.9)–(2.10) for
the initial data. Then problem (2.14)–(2.16) has a unique solution (με, ρε, ρε

Γ )

satisfying the regularity properties (2.11)–(2.13).

Our aim is the following: i) by starting from the solution (με, ρε, ρε
Γ ), we let

ε tend to zero and prove that problem (2.14)–(2.16) with ε = 0 has a solution
(μ, ρ, ρΓ ); ii) such a solution is unique; iii) for ε ≥ 0, we study the ω-limit of
every trajectory.
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Indeed, for i) and ii), we prove the following result in Sect. 3:

Theorem 2 Assume (2.5)–(2.8) for the structure and (2.9)–(2.10) for the initial
data. Then problem (2.14)–(2.16) with ε = 0 has a unique solution (μ, ρ, ρΓ )

satisfying the regularity properties (2.11)–(2.13). Moreover, for some constants
ρ∗, ρ∗ ∈ (−1, 1) that depend only on the shape of the nonlinearities and on the
initial data, both (μ, ρ, ρΓ ) and the solution (με, ρε, ρε

Γ ) given by Theorem 1
satisfy the separation property

ρ∗ ≤ ρ ≤ ρ∗ and ρ∗ ≤ ρε ≤ ρ∗ in Ω × [0,+∞). (2.19)

Finally, (με, ρε, ρε
Γ ) converges to (μ, ρ, ρΓ ) in a proper topology.

The last Sect. 4 is devoted to study the long-time behavior of the solution in both
the cases ε > 0 and ε = 0. To this end, for a fixed ε ≥ 0, we use the simpler symbol
(μ, ρ, ρΓ ) for the solution on [0,+∞) and observe that the regularity (2.11)–(2.13)
on every finite time interval implies that (μ, ρ, ρΓ ) is a continuous (H × V)-
valued function. In particular, it can be evaluated at every time t , and the following
definition of ω-limit is completely meaningful:

ω(μ, ρ, ρΓ ) :=
{
(μω, ρω, ρωΓ ) ∈ H × V : (μ, ρ, ρΓ )(tn) → (μω, ρω, ρωΓ )

weakly in H × V for some sequence tn ↗ +∞
}
. (2.20)

Besides, we consider the stationary solutions. It is immediately seen that a stationary
solution is a triplet (μs, ρs, ρsΓ ) satisfying the following conditions: the first
component μs is a constant, and (ρs, ρsΓ ) ∈ V is a solution to the system

∫

Ω

∇ρs · ∇v +
∫

Γ

∇Γ ρsΓ · ∇Γ vΓ +
∫

Ω

F ′(ρs)v +
∫

Γ

F ′
Γ (ρsΓ )vΓ

=
∫

Ω

μs g′(ρs)v for every (v, vΓ ) ∈ V. (2.21)

In terms of a boundary value problem, the conditions (ρs, ρsΓ ) ∈ V and (2.21) mean
that

− Δρs + F ′(ρs) = μs g′(ρs) in Ω,

ρsΓ = ρs |Γ and ∂νρs − ΔΓ ρsΓ + F ′
Γ (ρsΓ ) = 0 on Γ.
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We prove the following result:

Theorem 3 Assume (2.5)–(2.8) and ε ≥ 0 for the structure and (2.9)–(2.10)
for the initial data, and let (μ, ρ, ρΓ ) be the unique solution to problem (2.14)–
(2.16) satisfying the regularity requirements (2.11)–(2.13). Then the ω-limit (2.20)
is nonempty and consists only of stationary solutions. In particular, there exists a
constant μs such that problem (2.21) has at least one solution (ρs, ρsΓ ) ∈ V.

Throughout the paper, we will repeatedly use the Young inequality

a b ≤ δ a2 + 1

4δ
b2 for all a, b ∈ R and δ > 0, (2.22)

as well as the Hölder inequality and the continuity of the embedding V ⊂ Lp(Ω)

for every p ∈ [1, 6] (since Ω is three-dimensional, bounded and smooth). Besides,
this embedding is compact for p < 6, and also the embedding W ⊂ C0(Ω) is
compact. In particular, we have the compactness inequality

‖v‖4 ≤ δ ‖∇v‖2 + C̃δ ‖v‖2 for every v ∈ H 1(Ω) and δ > 0, (2.23)

where C̃δ depends only on Ω and δ. We also recall some well-known estimates from
trace theory and from the theory of elliptic equations we use in the sequel. For any
v and vΓ that make the right-hand sides meaningful, we have that

‖∂νv‖H−1/2(Γ ) ≤ CΩ

(‖v‖H 1(Ω) + ‖Δv‖L2(Ω)

)
, (2.24)

‖∂νv‖L2(Γ ) ≤ CΩ

(‖v‖H 3/2(Ω) + ‖Δv‖L2(Ω)

)
, (2.25)

‖v‖H 2(Ω) ≤ CΩ

(‖v|Γ ‖H 3/2(Γ ) + ‖Δv‖L2(Ω)

)
, (2.26)

‖v‖H 2(Ω) ≤ CΩ

(‖v‖H 1(Ω) + ‖Δv‖L2(Ω)

)
if ∂νv = 0 on Γ , (2.27)

‖vΓ ‖H 2(Γ ) ≤ CΩ

(‖vΓ ‖H 1(Γ ) + ‖ΔΓ vΓ ‖L2(Γ )

)
, (2.28)

‖vΓ ‖H 3/2(Γ ) ≤ CΩ

(‖vΓ ‖H 1(Γ ) + ‖ΔΓ vΓ ‖H−1/2(Γ )

)
, (2.29)

with a constant CΩ > 0 that depends only on Ω .
We conclude this section by stating a general rule concerning the constants that

appear in the estimates to be performed in the sequel. The small-case symbol c

stands for a generic constant whose values might change from line to line and even
within the same line and depends only on Ω , on the shape of the nonlinearities, and
on the constants and the norms of the functions involved in the assumptions of our
statements. In particular, the values of c do not depend on ε and T if the latter is
considered. A small-case symbol with a subscript like cδ (in particular, with δ = T )
indicates that the constant might depend on the parameter δ, in addition. On the
contrary, we mark precise constants that we can refer to by using different symbols,
like in (2.7)–(2.8) and (2.23)–(2.29).
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3 Well-Posedness

This section is devoted to the proof of Theorem 2. First, we prove the separation
properties (2.19). Then, we show uniqueness. Finally, we prove convergence for the
family {(με, ρε, ρε

Γ )} and derive existence for the problem with ε = 0.

Separation We assume that ε ≥ 0 and that (μ, ρ, ρΓ ) is a solution to prob-
lem (2.14)–(2.16) satisfying (2.11)–(2.13). Recalling (2.10) and (2.5)–(2.7), we may
choose ρ∗, ρ∗ ∈ (−1, 1) such that ρ∗ ≤ ρ0 ≤ ρ∗ and

g′(r) > 0 and F ′(r) < 0 for − 1 < r ≤ ρ∗,

g′(r) < 0 and F ′(r) > 0 for ρ∗ ≤ r < 1.

Now, we show that ρ∗ ≤ ρ ≤ ρ∗, using the positivity of μ (see (2.13)). In fact, we
prove just the upper inequality, since the proof of the other is similar. We test (2.15),
written at the time s, by ((ρ − ρ∗)+, (ρΓ − ρ∗)+)(s) and integrate over (0, t) with
respect to s. We have

1

2

∫

Ω

|(ρ(t) − ρ∗)+|2 + 1

2

∫

Γ

|(ρΓ (t) − ρ∗)+|2

+
∫

Qt

|∇(ρ − ρ∗)+|2 +
∫

Σt

|∇Γ (ρΓ − ρ∗)+|2

+
∫

Qt

F ′(ρ) (ρ − ρ∗)+ +
∫

Σt

F ′
Γ (ρΓ ) (ρΓ − ρ∗)+ =

∫

Qt

μg′(ρ)(ρ − ρ∗)+ .

All of the terms on the left-hand side are nonnegative, while the right-hand side is
nonpositive. We conclude that (ρ(t) − ρ∗)+ = 0 in Ω for every t > 0, i.e., our
assertion.

Consequence Since g, F and FΓ are smooth on (−1, 1) and (2.5) implies that g is
strictly positive on (−1, 1), the separation inequalities (2.19) imply the bounds

g(ρ) ≥ g∗ > 0 and |Φ(ρ)| ≤ C∗ in Q∞, |ΦΓ (ρΓ )| ≤ C∗ on Σ∞,

(3.1)

for Φ ∈ {g, g′, g′′, F, F ′, F ′′} and ΦΓ ∈ {FΓ , F ′
Γ , F ′′

Γ }, and for some constants g∗
and C∗ that depend only on the shape of the nonlinearities and the initial datum ρ0.
In particular, they do not depend on ε.

Uniqueness We prove that the solution to problem (2.14)–(2.16) with ε = 0 is
unique. To this end, we fix T > 0 and two solutions (μi, ρi , ρiΓ ), i = 1, 2, and
show that they coincide on Ω × [0, T ]. We set for convenience μ := μ1 − μ2 and
analogously define ρ and ρΓ . Then, we write (2.14) for both solutions and test the
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difference by μ. Using the identity

{2g(ρ1)∂tμ1 + μ1g
′(ρ1)∂tρ1 − 2g(ρ2)∂tμ2 − μ2g

′(ρ2)∂tρ2}μ
= ∂t

(
g(ρ1) μ2) + 2∂tμ2

(
g(ρ1) − g(ρ2)

)
μ + μ2

(
g′(ρ1)∂tρ1 − g′(ρ2)∂tρ2

)
μ ,

we obtain that
∫

Ω

g(ρ1(t)) |μ(t)|2 +
∫

Qt

|∇μ|2

= −
∫

Qt

2∂tμ2
(
g(ρ1) − g(ρ2)

)
μ −

∫

Qt

μ2
(
g′(ρ1)∂tρ1 − g′(ρ2)∂tρ2

)
μ .

(3.2)

Next, we write (2.15) at the time s for both solutions, test the difference
by ∂t (ρ, ρΓ )(s), and integrate over (0, t) with respect to s. Then, we add∫
Qt

ρ ∂tρ + ∫
Σt

ρΓ ∂tρΓ to both sides. We get

∫

Qt

|∂tρ|2 +
∫

Σt

|∂tρΓ |2 + 1

2
‖ρ(t)‖2

V + 1

2
‖ρΓ (t)‖2

VΓ

= −
∫

Qt

(
F ′(ρ1) − F ′(ρ2)

)
∂tρ −

∫

Σt

(
F ′

Γ (ρ1Γ ) − F ′
Γ (ρ2Γ )

)
∂tρΓ

+
∫

Qt

(
μ1g

′(ρ1) − μ2g
′(ρ2)

)
∂tρ +

∫

Qt

ρ ∂tρ +
∫

Σt

ρΓ ∂tρΓ . (3.3)

At this point, we add (3.2)–(3.3) to each other and use the separation property, the
first inequality in (3.1) for ρ1, and the boundedness and the Lipschitz continuity of
the nonlinearities on [ρ∗, ρ∗]. We find that

g∗
∫

Ω

|μ(t)|2 +
∫

Qt

|∇μ|2 +
∫

Qt

|∂tρ|2

+
∫

Σt

|∂tρΓ |2 + 1

2
‖ρ(t)‖2

V + 1

2
‖ρΓ (t)‖2

VΓ

≤ c

∫

Qt

|∂tμ2| |ρ| |μ| + c

∫

Qt

μ2
(|∂tρ| + |ρ| |∂tρ2|

) |μ|

+ c

∫

Qt

|ρ| |∂tρ| + c

∫

Σt

|ρΓ | |∂tρΓ | + c

∫

Qt

(
μ1|ρ| + |μ|) |∂tρ| . (3.4)

Many integrals on the right-hand side can be dealt with just using the Hölder and
Young inequalities. Thus, we consider just the terms that need some treatment. In
the next lines, we owe to the continuous embeddings V ⊂ Lp(Ω) for p ∈ [1, 6]
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and W ⊂ C0(Ω), and δ is a positive parameter. We have

∫

Qt

|∂tμ2| |ρ| |μ| ≤
∫ t

0
‖∂tμ2(s)‖2‖ρ(s)‖4‖μ(s)‖4 ds

≤ δ

∫ t

0
‖μ(s)‖2

V ds + cδ

∫ t

0
‖∂tμ2(s)‖2

H ‖ρ(s)‖2
V ds ,

and we notice that the function s 	→ ‖∂tμ2(s)‖2
H belongs to L1(0, T ) by (2.11)

for μ2. We estimate the next integral as follows,

∫

Qt

μ2
(|∂tρ| + |ρ| |∂tρ2|

) |μ|

≤
∫ t

0
‖μ2(s)‖∞‖∂tρ(s)‖2‖μ(s)‖2 ds

+ c

∫ t

0
‖μ2(s)‖6‖ρ(s)‖6‖∂tρ2(s)‖6‖μ(s)‖6 ds

≤ δ

∫ t

0
‖∂tρ(s)‖2

H ds + cδ

∫ t

0
‖μ2(s)‖2

W ‖μ(s)‖2
H ds

+ δ

∫ t

0
‖μ(s)‖2

V ds + cδ

∫ t

0
‖μ2(s)‖2

V ‖∂tρ2(s)‖2
V ‖ρ(s)‖2

V ds ,

and we point out that the functions s 	→ ‖μ2(s)‖2
W , s 	→ ‖μ2(s)‖2

V , and
s 	→ ‖∂tρ2(s)‖2

V , belong to L1(0, T ), L∞(0, T ) and L1(0, T ), respectively, due
to (2.11)–(2.12) for μ2 and ρ2. Finally, we estimate one further term. We have that

∫

Qt

μ1|ρ| |∂tρ| ≤
∫ t

0
‖μ1(s)‖4‖ρ(s)‖4‖∂tρ(s)‖2 ds

≤ δ

∫ t

0
‖∂tρ‖2

H ds + cδ

∫ t

0
‖μ1(s)‖2

V ‖ρ(s)‖2
V ds ,

where the function s 	→ ‖μ1(s)‖2
V belongs to L∞(0, T ). Therefore, by choosing

δ small enough and coming back to (3.4), we can apply the Gronwall lemma to
conclude that (μ, ρ, ρΓ ) vanishes on Ω × [0, T ].

Now, we show the existence of a solution to problem (2.14)–(2.16) with ε = 0
and prove the last sentence of the statement of Theorem 2. To do that, it suffices
to establish a number of a priori estimates on the solution (με, ρε, ρε

Γ ) on an
arbitrarily fixed time interval [0, T ] and to use proper compactness results. As the
uniqueness of the solution to the limiting problem is already known, it follows that
the convergence properties proved below for a subsequence actually hold for the
whole family. In view of the asymptotic behavior that we aim to study in the
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next section, we distinguish in the notation the constants that may depend on T ,
as explained at the end of Sect. 2. Of course, we can assume ε ≤ 1. In order to
keep the length of the paper reasonable, we perform some of the next estimates just
formally.

First a Priori Estimate We observe that

{
(ε + 2g(ρε))∂tμ

ε + μεg′(ρε)∂tρ
ε
}
με = ∂t

((
ε
2 + g(ρε)

)|με|2).

Hence, if we multiply (2.14) by με and integrate over Qt , we obtain that

ε

2

∫

Ω

|με(t)|2 +
∫

Ω

g(ρε(t))|με(t)|2 +
∫

Qt

|∇με|2 = ε

2

∫

Ω

μ2
0 +

∫

Ω

g(ρ0)μ
2
0 .

By accounting for (2.19) and (3.1), we deduce, for every t ≥ 0, the global estimate

g∗
∫

Ω

|με(t)|2 +
∫

Qt

|∇με|2 ≤ 1

2

∫

Ω

μ2
0 +

∫

Ω

g(ρ0)μ
2
0 = c . (3.5)

Second a Priori Estimate We write (2.15) at the time s and choose the test
pair (v, vΓ ) = (∂tρ

ε, ∂tρ
ε
Γ )(s), which is allowed by the regularity (2.12). Then, we

integrate over (0, t). Thanks to the Schwarz and Young inequalities, we have

∫

Qt

|∂tρ
ε|2 +

∫

Σt

|∂tρ
ε
Γ |2 + 1

2

∫

Ω

|∇ρε(t)|2 + 1

2

∫

Γ

|∇Γ ρε
Γ (t)|2

+
∫

Ω

F(ρε(t)) +
∫

Γ

FΓ (ρε
Γ (t))

= 1

2

∫

Ω

|∇ρ0|2 + 1

2

∫

Γ

|∇Γ ρ0|Γ |2

+
∫

Ω

F(ρ0) +
∫

Γ

FΓ (ρ0|Γ ) +
∫

Qt

μεg′(ρε)∂tρ
ε

≤ c + 1

2

∫

Qt

|∂tρ
ε|2 + c

∫

Qt

|με|2.

Since |ρε| ≤ 1, (3.5) holds, and (2.7) implies that F and FΓ are bounded from
below, we deduce that

‖(ρε, ρε
Γ )‖H 1(0,T ;H)∩L∞(0,T ;V) + ‖F(ρε)‖L∞(0,T ;L1(Ω))

+ ‖FΓ (ρε
Γ )‖L∞(0,T ;L1(Γ )) ≤ cT . (3.6)
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Third a Priori Estimate By starting from (2.17)–(2.18) and accounting for (3.1)
and (3.5)–(3.6), we successively deduce a number of estimates with the help of the
inequalities (2.24)–(2.29), written with v = ρε(t) and vΓ = ρε

Γ (t) and then squared
and integrated over (0, T ). We have

‖Δρε‖L2(0,T ;H) ≤ cT from (2.17),

‖∂νρ
ε‖L2(0,T ;H−1/2(Γ )) ≤ cT from (2.24),

‖ΔΓ ρε
Γ ‖L2(0,T ;H−1/2(Γ )) ≤ cT from (2.18),

‖ρε
Γ ‖L2(0,T ;H 3/2(Γ )) ≤ cT from (2.29),

‖ρε‖L2(0,T ;H 2(Ω)) ≤ cT from (2.26),

‖∂νρ
ε‖L2(0,T ;HΓ ) ≤ cT from (2.25),

‖ΔΓ ρε
Γ ‖L2(0,T ;HΓ ) ≤ cT from (2.18),

‖ρε
Γ ‖L2(0,T ;H 2(Γ )) ≤ cT from (2.28).

In conclusion, we have proved that

‖ρε‖L2(0,T ;H 2(Ω)) + ‖ρε
Γ ‖L2(0,T ;H 2(Γ )) ≤ cT . (3.7)

Fourth a Priori Estimate We (formally) differentiate (2.15) with respect to time
and set ζ := ∂tρ

ε and ζΓ := ∂tρ
ε
Γ , for brevity. Then we write the variational

equation we obtain at the time s and test it by (ζ, ζΓ )(s). Finally, we integrate over
(0, t) and add C

∫
Qt

|ζ |2 + C
∫
Σt

|ζΓ |2 to both sides, where C is the constant that
appears in (2.7). We obtain the identity

1

2

∫

Ω

|ζ(t)|2 + 1

2

∫

Γ

|ζΓ (t)|2 +
∫

Qt

|∇ζ |2 +
∫

Σt

|∇Γ ζΓ |2

+
∫

Qt

(
F ′′(ρε) + C

)|ζ |2 +
∫

Qt

(
F ′′

Γ (ρε
Γ ) + C

)|ζΓ |2

= 1

2

∫

Ω

|ζ(0)|2 + 1

2

∫

Γ

|ζΓ (0)|2 +
∫

Qt

∂tμ
ε g′(ρε)ζ +

∫

Qt

μεg′′(ρε)|ζ |2

+ C

∫

Qt

|ζ |2 + C

∫

Σt

|ζΓ |2 . (3.8)

All of the terms on the left-hand side are nonnegative, while the second volume
integral over Qt on the right-hand side is nonpositive since με ≥ 0 and g′′ ≤ 0. It
remains to find bounds for the first volume integral over Qt on the right-hand side
and for the sum of the terms that involve the initial values. We handle the latter first.
To this end, we write (2.15) at the time t = 0 and test it by (v, vΓ ) = (ζ, ζΓ )(0).
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We obtain
∫

Ω

|ζ(0)|2 +
∫

Γ

|ζΓ (0)|2 = −
∫

Ω

∇ρ0 · ∇ζ(0) −
∫

Γ

∇Γ ρ0|Γ · ∇Γ ζΓ (0)

−
∫

Ω

F ′(ρ0)ζ(0) −
∫

Γ

F ′
Γ (ρ0|Γ )ζΓ (0) +

∫

Ω

μ0g
′(ρ0)ζ(0) . (3.9)

On account of (2.10), we have, using Young’s inequality and (2.25),

−
∫

Ω

∇ρ0 · ∇ζ(0) −
∫

Γ

∇Γ ρ0|Γ · ∇Γ ζΓ (0)

=
∫

Ω

Δρ0 ζ(0) −
∫

Γ

(
∂νρ0 − ΔΓ ρ0|Γ

)
ζΓ (0)

≤ 1

4

∫

Ω

|ζ(0)|2 + 1

4

∫

Γ

|ζΓ (0)|2 + c ‖ρ0‖2
H 2(Ω)

+ c ‖ρ0|Γ ‖2
H 2(Γ )

.

Moreover, it follows from (2.9), (2.10), (3.1), and Young’s inequality that the
expression in the second line of (3.9) is bounded by

1

4

∫

Ω

|ζ(0)|2 + 1

4

∫

Γ

|ζΓ (0)|2 + c .

We thus have shown that
∫

Ω

|ζ(0)|2 +
∫

Γ

|ζΓ (0)|2 ≤ c . (3.10)

It remains to bound the first volume integral over Qt in (3.8), which we denote by
I . This estimate requires more effort. At first, observe that (2.14) implies that

∂tμ
ε = 1

ε + 2g(ρε)
Δμε − g′(ρε)

ε + 2g(ρε)
ζ με , (3.11)

where, thanks to (3.1), 1/(ε + 2g(ρε)) ≤ 1/(2g∗) for all ε > 0. Now, using (3.11),
we find that

I =
∫

Qt

g′(ρε) ζ

ε + 2g(ρε)
Δμε −

∫

Qt

με (g′(ρε))2

ε + 2g(ρε)
ζ 2 =: I1 + I2 , (3.12)
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with obvious notation. The second integral is easy to handle. In fact, thanks
to (3.1), (2.23), and Hölder’s and Young’s inequalities, we infer that

I2 ≤ c

∫ t

0
‖με(s)‖4 ‖ζ(s)‖2 ‖ζ(s)‖4 ds

≤ 1

6

∫

Qt

|∇ζ |2 + c

∫ t

0

(
1 + ‖με(s)‖2

V

)
‖ζ(s)‖2

H ds , (3.13)

where we know from (3.5) that
∫ T

0 ‖με(s)‖2
V ds ≤ cT . For the first integral,

integration by parts and (3.1) yield that

I1 = −
∫

Qt

∇με · ∇
( g′(ρε) ζ

ε + 2g(ρε)

)

≤ C1

∫

Qt

|∇με| |∇ζ | + C1

∫

Qt

|∇με| |∇ρε| |ζ | =: C1(I11 + I12), (3.14)

with obvious notation. Clearly, owing to (3.5) and Young’s inequality, we find that

C1 I11 ≤ 1

6

∫

Qt

|∇ζ |2 + c . (3.15)

Moreover, invoking Hölder’s and Young’s inequalities, the compactness inequal-
ity (2.23), as well as the continuity of the embedding H 2(Ω) ⊂ W 1,4(Ω), we infer
that

C1 I12 ≤ C1

∫ t

0
‖∇με(s)‖2 ‖∇ρε(s)‖4 ‖ζ(s)‖4 ds

≤ 1

6

∫

Qt

|∇ζ |2 + c

∫

Qt

|ζ |2 + c

∫ t

0
‖∇με(s)‖2

2 ‖ρε(s)‖2
H 2(Ω)

ds .

(3.16)

Notice that
∫ T

0 ‖∇με(s)‖2
2 ds ≤ c for every T > 0, by virtue of (3.5). We now

aim to estimate ‖ρε(s)‖H 2(Ω) in terms of ζ and ζΓ . To this end, we derive a chain
of estimates which are each valid for almost every s ∈ (0, T ). To begin with, we
deduce from (3.5) and (3.6) that

‖Δρε(s)‖2 = ‖ζ(s) + F ′(ρε(s)) − με(s) g′(ρε(s))‖2 ≤ c + ‖ζ(s)‖2 . (3.17)

Consequently, by (2.24) we have that

‖∂νρ
ε(s)‖H−1/2(Γ ) ≤ CΩ

(‖ρε(s)‖V + ‖Δρε(s)‖2
) ≤ cT (1 + ‖ζ(s)‖2) ,

(3.18)
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and (2.18), (3.1) and (3.6) imply that

‖ΔΓ ρε
Γ (s)‖H−1/2(Γ ) ≤ ‖∂νρ

ε(s) + F ′
Γ (ρε

Γ (s)) + ζΓ (s)‖H−1/2(Γ )

≤ cT (1 + ‖ζ(s)‖2 + ‖ζΓ (s)‖HΓ ) . (3.19)

But then, thanks to (2.29) and (3.6), it is clear that

‖ρε
Γ (s)‖H 3/2(Γ ) ≤ CΩ

(‖ρε
Γ (s)‖H 1(Γ ) + ‖ΔΓ ρε

Γ (s)‖H−1/2(Γ )

)

≤ cT (1 + ‖ζ(s)‖2 + ‖ζΓ (s)‖HΓ ) , (3.20)

whence, owing to (2.26), we finally arrive at the estimate

‖ρε(s)‖H 2(Ω) ≤ cT

(
1 + ‖ζ(s)‖H + ‖ζΓ (s)‖HΓ

)
. (3.21)

We thus obtain from (3.16) that

C1 I12 ≤ 1

6

∫

Qt

|∇ζ |2 + c

∫

Qt

|ζ |2 + cT

+ cT

∫ t

0
‖∇με(s)‖2

2

(
‖ζ(s)‖2

H + ‖ζΓ (s)‖2
HΓ

)
ds . (3.22)

Therefore, recalling (3.8) and invoking the estimates (3.10), (3.13)–(3.16), we can
apply Gronwall’s lemma and conclude that

‖(∂tρ
ε, ∂tρ

ε
Γ )‖L∞(0,T ;H)∩L2(0,T ;V) ≤ cT . (3.23)

Fifth a Priori Estimate We now notice that (3.21) and (3.23) imply that

‖ρε‖L∞(0,T ;H 2(Ω)) ≤ cT . (3.24)

Then we may infer from (2.25), (2.18), (2.28), in this order, the estimates

‖∂νρ
ε‖L∞(0,T ;HΓ ) ≤ cT ,

‖ΔΓ ρε
Γ ‖L∞(0,T ;HΓ ) ≤ cT , ‖ρε

Γ ‖L∞(0,T ;H 2(Γ )) ≤ cT ,

so that

‖(ρε, ρε
Γ )‖L∞(0,T ;H 2(Ω)×H 2(Γ )) ≤ cT . (3.25)
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Sixth a Priori Estimate At this point, we can multiply (2.14) by ∂tμ
ε and

integrate over Qt . Then, we add
∫
Qt

με∂tμ
ε to both sides. By owing to the Hölder,

Sobolev and Young inequalities, we obtain

∫

Qt

(
ε + 2g(ρε)

)|∂tμ
ε|2 + 1

2
‖με(t)‖2

V

= 1

2
‖μ0‖2

V +
∫

Qt

με∂tμ
ε −

∫

Qt

μεg′(ρε)∂tρ
ε∂tμ

ε

≤ c +
∫ t

0
‖με(s)‖2‖∂tμ

ε(s)‖2 ds + c

∫ t

0
‖με(s)‖4‖∂tρ

ε(s)‖4‖∂tμ
ε(s)‖2 ds

≤ c + g∗
∫

Qt

|∂tμ
ε|2 + c ‖με‖2

L2(0,t;H)
+ c

∫ t

0
‖∂tρ

ε(s)‖2
V ‖με(s)‖2

V ds ,

where g∗ is the constant introduced in (3.1). As 2g(ρε) ≥ 2g∗, we may
use (3.5), (3.23) and Gronwall’s lemma to conclude that

‖με‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ cT . (3.26)

By comparison in (2.14), we estimate Δμε. Hence, by applying (2.27), we
derive that

‖με‖L2(0,T ;W) ≤ cT . (3.27)

Conclusion If we collect all the previous estimates and use standard compact-
ness results, then we have (in principle for a subsequence) that

με → μ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W) ,

(ρε, ρε
Γ ) → (ρ, ρΓ )

in W 1,∞(0, T ;H) ∩ H 1(0, T ;V) ∩ L∞(0, T ; H 2(Ω) × H 2(Γ )) ,

as ε ↘ 0, the convergence being understood in the sense of the corresponding
weak star topologies. Notice that the limiting triplet fulfills the regularity require-
ments (2.11)–(2.13). Next, by the compact embeddings V ⊂ L5(Ω), H 2(Ω) ⊂
C0(Ω), and H 2(Γ ) ⊂ C0(Γ ), and using well-known strong compactness results
(see, e.g., [51, Sect. 8, Cor. 4]), we deduce the useful strong convergence

με → μ in C0([0, T ]; L5(Ω)), (ρε, ρε
Γ ) → (ρ, ρΓ ) in C0(Q) × C0(Σ).

(3.28)
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This allows us to deal with nonlinearities and to take the limits of the products
that appear in the equations. Hence, we easily conclude that the triplet (μ, ρ, ρΓ )

solves (2.14) and the time-integrated version of (2.15) on (0, T ) (which is equivalent
to (2.15) itself) with ε = 0. Moreover, the initial conditions (2.16) easily pass to the
limit in view of (3.28). This concludes the existence proof. By uniqueness, the whole
family {(με, ρε, ρε

Γ )} converges to (μ, ρ, ρΓ ) in the above topology as ε ↘ 0. �

4 Long-Time Behavior

This section is devoted to the proof of Theorem 3. In the sequel, it is understood
that ε ∈ [0, 1] is fixed and that (μ, ρ, ρΓ ) is the unique solution to problem (2.14)–
(2.16) given by Theorems 1 and 2 in the two cases ε > 0 and ε = 0, respectively.
First of all, we have to show that the ω-limit (2.20) is nonempty. This necessitates
proper a priori estimates on the whole half-line {t ≥ 0}.
First Global Estimate From (3.5), we immediately deduce that

‖μ‖L∞(0,+∞;H) ≤ c and
∫

Q∞
|∇μ|2 ≤ c . (4.1)

Second Global Estimate We start by rearranging (2.14) as follows:

μg′(ρ)∂tρ = ∂t

(
(ε + 2g(ρ))μ

) − Δμ . (4.2)

Now, we test (2.15), written at the time s, by ∂t (ρ, ρΓ )(s), integrate over (0, t) and
replace the right-hand side with the help of (4.2). We obtain the identity

∫

Qt

|∂tρ|2 +
∫

Σt

|∂tρΓ |2 + 1

2

∫

Ω

|∇ρ(t)|2 + 1

2

∫

Γ

|∇Γ ρΓ (t)|2

+
∫

Ω

F(ρ(t)) +
∫

Γ

FΓ (ρΓ (t))

= 1

2

∫

Ω

|∇ρ0|2 + 1

2

∫

Γ

|∇Γ ρ0|Γ |2 +
∫

Ω

F(ρ0) +
∫

Γ

FΓ (ρ0|Γ ) +
∫

Qt

μg′(ρ)∂tρ

= c +
∫

Ω

(
ε + 2g(ρ(t))

)
μ(t) −

∫

Ω

(
ε + 2g(ρ0)

)
μ0 −

∫

Qt

Δμ .

The last integral vanishes since ∂νμ = 0. By recalling that F and FΓ are bounded
from below and that |ρ| ≤ 1, and using (4.1), we deduce that

‖(ρ, ρΓ )‖L∞(0,+∞;V) ≤ c ,

∫

Q∞
|∂tρ|2 ≤ c and

∫

Σ∞
|∂tρΓ |2 ≤ c . (4.3)
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First Conclusion The first inequalities of (4.1) and (4.3), along with the
continuity of (μ, ρ, ρΓ ) from [0,+∞) to H × V, ensure that the ω-limit (2.20)
is nonempty. Namely, every divergent sequence of times contains a subsequence
tn ↗ +∞ such that (μ, ρ, ρΓ )(tn) converges weakly in H × V.

After establishing the first part of Theorem 3, we prove the second one. Thus, we
pick any element (μω, ρω, ρωΓ ) of the ω-limit (2.20) and show that it is a stationary
solution of our problem, i.e., that μω is a constant μs and that the pair (ρω, ρωΓ )

coincides with a solution (ρs, ρsΓ ) to problem (2.21). To this end, we fix a sequence
tn ↗ +∞ such that

(μ, ρ, ρΓ )(tn) → (μω, ρω, ρωΓ ) weakly in H × V (4.4)

and study the behavior of the solution on the time interval [tn, tn + T ] with a fixed
T > 0. For convenience, we shift everything to [0, T ] by introducing (μn, ρn, ρn

Γ ) :
[0, T ] → H × V as follows

μn(t) := μ(tn + t), ρn(t) := ρ(tn + t)

and ρn
Γ (t) := ρΓ (tn + t) for t ∈ [0, T ] . (4.5)

As T is fixed once and for all, we do not care on the dependence of the constants
on T even in the notation, and write Q and Σ for QT and ΣT , respectively. The
inequalities (4.1) and (4.3) imply that

‖(μn, ρn, ρn
Γ )‖L∞(0,T ;H×V) ≤ c , (4.6)

lim
n→∞

( ∫

Q

|∇μn|2 +
∫

Q

|∂tρ
n|2 +

∫

Σ

|∂tρ
n
Γ |2

)
= 0 . (4.7)

The bound (4.6) yields a convergent subsequence in the weak star topology. If we
still label it by the index n to simplify the notation, we have

(μn, ρn, ρn
Γ ) → (μ∞, ρ∞, ρ∞

Γ ) weakly star in L∞(0, T ; H × V). (4.8)

Now, we aim to improve the quality of the convergence. Thus, we derive further
estimates.

First Auxiliary Estimate A partial use of (4.7) provides a bound, namely

‖μn‖L2(0,T ;V ) + ‖(∂tρ
n, ∂tρ

n
Γ )‖L2(0,T ;H) ≤ c . (4.9)

Second Auxiliary Estimate We can repeat the argument that led to (3.7) and
arrive at

‖(ρn, ρn
Γ )‖L2(0,T ;H 2(Ω)×H 2(Γ )) ≤ c . (4.10)
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Third Auxiliary Estimate We recall that μn and the space derivatives Diρ
n and

Dig(ρn) = g′(ρn)Diρ
n are bounded in

L∞(0, T ; H) ∩ L2(0, T ; L6(Ω)),

by (4.6), (4.9), (4.10), and the continuous embedding V ⊂ L6(Ω). On the other
hand, the continuous embedding

L∞(0, T ; H) ∩ L2(0, T ; L6(Ω)) ⊂ L4(0, T ; L3(Ω)) ∩ L6(0, T ; L18/7(Ω))

holds true, by virtue of the interpolation inequalities. Therefore, we conclude that

‖μn‖L4(0,T ;L3(Ω)) + ‖∇ρn‖L4(0,T ;L3(Ω)) + ‖∇g(ρn)‖L6(0,T ;L18/7(Ω)) ≤ c .

(4.11)

Fourth Auxiliary Estimate We want to improve the convergence of μn. How-
ever, we cannot multiply (2.14) by ∂tμ since we do not have any information
on ∇μ(tn). Therefore, we derive an estimate for ∂tμ

n in a dual space. By recalling
that g(ρ) ≥ g∗ (see (3.1)), we divide both sides of (2.14) by ε + 2g(ρ). Then, we
take an arbitrary test function v ∈ L4(0, T ; V ), multiply the equality we obtain
by v, integrate over Ω × (tn, tn + T ) and rearrange. We get

∫

Q

∂tμ
n v = −

∫

Q

μng′(ρn)∂tρ
nv

ε + 2g(ρn)
+

∫

Q

Δμn v

ε + 2g(ρn)
,

and we now treat the terms on the right-hand side separately. The first one is handled
using Hölder’s inequality, namely,

−
∫

Q

μng′(ρn)∂tρ
nv

ε + 2g(ρn)
≤ c‖μn‖L4(0,T ;L3(Ω))‖∂tρ

n‖L2(0,T ;L2(Ω))‖v‖L4(0,T ;L6(Ω)) .

We integrate the other term by parts and use the Hölder, Sobolev and Young
inequalities as follows:

∫

Q

Δμn v

ε + 2g(ρn)
= −

∫

Q

∇μn · (ε + 2g(ρn))∇v − 2vg′(ρn)∇ρn

(ε + 2g(ρn))2

≤ c‖∇μn‖L2(0,T ;H)‖v‖L2(0,T ;V ) + c

∫ T

0
‖∇μn(s)‖2‖v(s)‖6‖∇ρn(s)‖3 ds

≤ c‖∇μn‖L2(0,T ;H)

(‖v‖L2(0,T ;V ) + ‖∇ρn‖L4(0,T ;L3(Ω))‖v‖L4(0,T ;L6(Ω))

)
.
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Therefore, we have for every v ∈ L4(0, T ; V )

∫

Q

∂tμ
n v ≤ c‖μn‖L4(0,T ;L3(Ω))‖∂tρ

n‖L2(0,T ;H)‖v‖L4(0,T ;V )

+ c‖∇μn‖L2(0,T ;H)

(
1 + ‖∇ρn‖L4(0,T ;L3(Ω))

)‖v‖L4(0,T ;V ) .

Hence, on account of (4.1), (4.3) and (4.11), we conclude that

‖∂tμ
n‖L4/3(0,T ;V ∗) ≤ c . (4.12)

Conclusion By recalling the estimates (4.9)–(4.10) and (4.12), we see that the
convergence (4.8) can be improved as follows:

μn → μ∞ in W 1,4/3(0, T ; V ∗) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ) ,

(ρn, ρn
Γ ) → (ρ∞, ρ∞

Γ )

in H 1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ; H 2(Ω) × H 2(Γ )) ,

all in the sense of the corresponding weak star topologies. Now, we prove that
the limiting triple (μ∞, ρ∞, ρ∞

Γ ) solves problem (2.14)–(2.15), the first equation
being understood in a generalized sense. By [51, Sect. 8, Cor. 4] and the compact
embeddings H 2(Ω) ⊂ V ⊂ H ⊂ V ∗ and H 2(Γ ) ⊂ VΓ ⊂ HΓ , we also have (for a
not relabeled subsequence)

μn → μ∞ strongly in C0([0, T ]; V ∗) ∩ L2(0, T ; H) and a.e. in Q, (4.13)

(ρn, ρn
Γ ) → (ρ∞, ρ∞

Γ )

strongly in C0([0, T ];H) ∩ L2(0, T ;V) and a.e. on Q × Σ, (4.14)

∇g(ρn) = g′(ρn)∇ρn → g′(ρ∞)∇ρ∞ = ∇g(ρ∞) a.e. in Q. (4.15)

It follows that (F ′(ρn), F ′
Γ (ρn

Γ )) strongly converges to (F ′(ρ∞), F ′
Γ (ρ∞

Γ )) in
L∞(0, T ;H), just by Lipschitz continuity. This allows us to conclude that
(ρ∞, ρ∞

Γ ) solves the time-integrated version of (2.15), thus equation (2.15) itself.
As for (2.14), we recall (4.11) and notice that 4 < 6 and 2 < 18/7. Then, with the
help of (4.15) and the Egorov theorem, we deduce that

∇g(ρn) → ∇g(ρ∞) strongly in (L4(0, T ; L2(Ω)))3, whence

g(ρn) → g(ρ∞) strongly in L4(0, T ; V ).
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Therefore, if we assume that v ∈ L∞(0, T ; W 1,∞(Ω)), we have that

g(ρn)v → g(ρ∞)v strongly in L4(0, T ; V ), whence
∫

Q

(
ε + 2g(ρn)

)
∂tμ

n v → L4/3(0,T ;V ∗)〈∂tμ
∞,

(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V ) .

On the other hand, from the convergence almost everywhere, we also have

g′(ρn) → g′(ρ∞) strongly in L4(0, T ; L6(Ω)),

since g′(ρn) is bounded in L∞(Q). Moreover, (4.11) implies that μn converges
to μ∞ weakly in L4(0, T ; L3(Ω)). On the other hand, (4.7) yields the strong
convergence of ∂tρ

n to 0 in L2(0, T ; H) (by the way, 0 must coincide with ∂tρ
∞).

We deduce that

μng′(ρn)∂tρ
n → μ∞g′(ρ∞)∂tρ

∞ weakly in L1(Q) .

Therefore, we conclude that

L4/3(0,T ;V ∗)〈∂tμ
∞,

(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V )

+
∫

Q

μ∞g′(ρ∞)∂tρ
∞ v +

∫

Q

∇μ∞ · ∇v = 0 (4.16)

for every v ∈ L∞(0, T ; W 1,∞(Ω)). On the other hand, we know that μ∞ ∈
L4(0, T ; L3(Ω)) by (4.11) and that ∂tρ

∞ ∈ L2(0, T ; H). Since g′ is bounded and
the continuous embedding V ⊂ L6(Ω) implies L6/5(Ω) ⊂ V ∗, we also have that

μ∞g′(ρ∞)∂tρ
∞ ∈ L4/3(0, T ; L6/5(Ω)) ⊂ L4/3(0, T ; V ∗) .

Hence, by a simple density argument, we see that the variational equation (4.16) also
holds true for every v ∈ L4(0, T ; V ). At this point, we observe that (4.7) implies
that

∇μ∞ = 0 , ∂tρ
∞ = 0 and ∂tρ

∞
Γ = 0 . (4.17)

In particular, (4.16) reduces to

L4/3(0,T ;V ∗)〈∂tμ
∞,

(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V ) = 0 for every v ∈ L4(0, T ; V )

and we easily infer that ∂tμ
∞ = 0. Indeed, the inequality g(ρn) ≥ g∗ for every n

implies g(ρ∞) ≥ g∗. Thus, every ϕ ∈ C∞
c (Q) can be written as ϕ = (ε+2g(ρ∞))v

for some v ∈ L4(0, T ; V ) since ∇ρ∞ ∈ (L4(0, T ; H))3 by (4.11). Therefore,
∂tμ

∞ actually vanishes and we conclude that μ∞ takes a constant value μs .
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From (4.17) we also deduce that (ρ∞, ρ∞
Γ ) is a time-independent pair (ρs, ρsΓ ), so

that (2.15) reduces to (2.21). Finally, we show that (μs, ρs, ρsΓ ) = (μω, ρω, ρωΓ ).
Indeed, (4.13) and (4.14) imply that

(μn, (ρn, ρn
Γ )) → (μ∞, (ρ∞, ρ∞

Γ )) strongly in C0([0, T ]; V ∗)×C0([0, T ];H) ,

and we infer that

(μ, (ρ, ρΓ ))(tn) = (μn, (ρn, ρn
Γ ))(0) → (μ∞, (ρ∞, ρ∞

Γ ))(0) = (μs, (ρs, ρsΓ ))

weakly in V ∗ × H.

By comparing with (4.4), we conclude that (μs, ρs, ρsΓ ) = (μω, ρω, ρωΓ ), and the
proof is complete. �
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