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Preface

Mechanics and Mathematics have a long history of mutual development. Across
the centuries, mathematical formalism has imposed itself as the natural language of
Mechanics. On the other hand, applications to Mechanics have constantly driven the
progress of mathematical theories.

This volume originates from the INDAM Symposium on Trends on Applications
of Mathematics to Mechanics (STAMM), which was held at the INDAM headquar-
ters in Rome on 5–9 September 2016. STAMM is the biennial conference organized
by the International Society for the Interaction of Mechanics and Mathematics
(ISIMM), and the first meeting of this series dates back to 1975.

The book brings together original contributions at the interface of Mathematics
and Mechanics. Consistently with the purpose of ISIMM, the focus is on mathemat-
ical models of phenomena issued from various applications. Among others, these
include the following themes:

• Functional-analytic theories with applications to the Mechanics of Solids
• Modeling of nematic shells, thin films, dry friction, delamination, and damage
• Phase-field dynamics of Cahn-Hilliard type
• Thermodynamics of gases and continua

The papers in the volume, all of which have been refereed, present novel results and
identify possible future developments.

We express our deep gratitude to all the authors and referees for their truly
valuable commitment.

Pavia, Italy Elisabetta Rocca
Wien, Austria Ulisse Stefanelli
Paris, France Lev Truskinovsky
Povo di Trento, Italy Augusto Visintin
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Relaxation of p-Growth Integral
Functionals Under Space-Dependent
Differential Constraints

Elisa Davoli and Irene Fonseca

Abstract A representation formula for the relaxation of integral energies

(u, v) �→
∫
Ω

f (x, u(x), v(x)) dx,

is obtained, where f satisfies p-growth assumptions, 1 < p < +∞, and the fields
v are subjected to space-dependent first order linear differential constraints in the
framework of A -quasiconvexity with variable coefficients.

1 Introduction

The analysis of constrained relaxation problems is a central question in materials
science. Many applications in continuum mechanics and, in particular, in magnetoe-
lasticity, rely on the characterization of minimizers of non-convex multiple integrals
of the type

u �→
∫
Ω

f (x, u(x),∇u(x), . . . ,∇ku(x)) dx

or

(u, v) �→
∫
Ω

f (x, u(x), v(x)) dx, (1)
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2 E. Davoli and I. Fonseca

where Ω is an open, bounded subset of RN , u : Ω → R
m, m ∈ N, and the fields

v : Ω → R
d , d ∈ N, satisfy partial differential constraints of the type “A v = 0”

other than curl v = 0 (see e.g. [5, 9]).
In this paper we provide a representation formula for the relaxation of non-

convex integral energies of the form (1), in the case in which the energy density
f satisfies p-growth assumptions, and the fields v are subjected to linear first-order
space-dependent differential constraints.

The natural framework to study this family of relaxation problems is within
the theory of A -quasiconvexity with variable coefficients. In order to present this
notion, we need to introduce some notation.

For i = 1 · · · , N , let Ai ∈ C∞(RN ;Ml×d) ∩W 1,∞(RN ;Ml×d), let 1 < p <

+∞, and consider the differential operator

A : Lp(Ω;Rd)→ W−1,p(Ω;Rl), d, l ∈ N,

defined as

A v :=
N∑
i=1

Ai(x)
∂v(x)

∂xi
(2)

for every v ∈ Lp(Ω;Rd), where (2) is to be interpreted in the sense of distributions.
Assume that the symbol A : RN × R

N → M
l×d ,

A(x,w) :=
N∑
i=1

Ai(x)wi for (x,w) ∈ R
N × R

N,

satisfies the uniform constant rank condition (see [22])

rank A(x,w) = r for every x ∈ R
Nand w ∈ S

N−1. (3)

Let Q be the unit cube in R
N with sides parallel to the coordinate axis, i.e.,

Q :=
(
− 1

2
,

1

2

)N
.

Denote by C∞per(R
N ;Rm) the set of Rm-valued smooth maps that are Q-periodic in

R
N , and for every x ∈ Ω consider the set

Cx :=
{
w ∈ C∞per(R

N ;Rm) :
∫
Q

w(y) dy = 0, and
N∑
i=1

Ai(x)
∂w(y)

∂yi
= 0

}
.
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Let f : Ω×R
m×R

d → [0,+∞) be a Carathéodory function. The A -quasiconvex
envelope of f (x, u, ·) for x ∈ Ω and u ∈ R

m is defined for ξ ∈ R
d as

QA (x)f (x, u, ξ) := inf
{ ∫

Q

f (x, u, ξ +w(y)) dy : w ∈ Cx

}
.

We say that f is A -quasiconvex if f (x, u, ξ) = QA (x)f (x, u, ξ) for a.e. x ∈ Ω ,
and for all u ∈ R

m and ξ ∈ R
d .

The notion of A -quasiconvexity was first introduced by B. Dacorogna in [8],
and extensively characterized in [17] by I. Fonseca and S. Müller for operators A
defined as in (2), satisfying the constant rank condition (3), and having constant
coefficients,

Ai(x) ≡ Ai ∈M
l×d for every x ∈ R

N, i = 1, . . . , N.

In that paper the authors proved (see [17, Theorems 3.6 and 3.7 ]) that under p-
growth assumptions on the energy density f , A -quasiconvexity is necessary and
sufficient for the lower-semicontinuity of integral functionals

I (u, v) :=
∫
Ω

f (x, u(x), v(x)) dx for every (u, v) ∈ Lp(Ω;Rm)× Lp(Ω;Rd)

along sequences (un, vn) satisfying un → u in measure, vn ⇀ v in Lp(Ω;Rd), and
A vn → 0 in W−1,p(Ω). We remark that in the framework A = curl, i.e., when
vn = ∇φn for some φn ∈ W 1,p(Ω;Rm), d = n×m, A -quasiconvexity reduces to
Morrey’s notion of quasiconvexity.

The analysis of properties of A -quasiconvexity for operators with constant
coefficients was extended in the subsequent paper [6], where A. Braides, I.
Fonseca and G. Leoni provided an integral representation formula for relaxation
problems under p-growth assumptions on the energy density, and presented (via
Γ -convergence) homogenization results for periodic integrands evaluated along A -
free fields. These homogenization results were later generalized in [13], where I.
Fonseca and S. Krömer worked under weaker assumptions on the energy density
f . In [19, 20], simultaneous homogenization and dimension reduction was studied
in the framework of A -quasiconvexity with constant coefficients. Oscillations and
concentrations generated by A -free mappings are the subject of [14]. Very recently
an analysis of the case in which the energy density is nonpositive has been carried
out in [18], and applications to the theory of compressible Euler systems have been
studied in [7]. A parallel analysis for operators with constant coefficients and under
linear growth assumptions for the energy density has been developed in [1, 4, 15, 21].
A very general characterization in this setting has been obtained in [2], following
the new insight in [12].

The theory of A -quasiconvexity for operators with variable coefficients has been
characterized by P. Santos in [23]. Homogenization results in this setting have been
obtained in [10] and [11].



4 E. Davoli and I. Fonseca

This paper is devoted to proving a representation result for the relaxation of
integral energies in the framework of A -quasiconvexity with variable coefficients.
To be precise, let 1 < p, q < +∞, d,m, l ∈ N, and consider a Carathéodory
function f : Ω ×R

m × R
d → [0,+∞) satisfying

(H) 0 ≤ f (x, u, v) ≤ C(1+ |u|p + |v|q), 1 < p, q < +∞,

for a.e. x ∈ Ω , and all (u, v) ∈ R
m ×R

d , with C > 0.
Denoting by O(Ω) the collection of open subsets of Ω , for every D ∈ O(Ω),

u ∈ Lp(Ω;Rm) and v ∈ Lq(Ω;Rd) with A v = 0, we define

I ((u, v),D) := inf
{

lim inf
n→+∞

∫
D

f (x, un(x), vn(x)) : un → u strongly in Lp(Ω;Rm),

vn ⇀ v weakly in Lq(Ω;Rd) and A vn → 0 strongly in W−1,q (Ω;Rl )
}
. (4)

Our main result is the following.

Theorem 1 Let A be a first order differential operator with variable coefficients,
satisfying (3). Let f : Ω × R

m × R
d → [0,+∞) be a Carathéodory function

satisfying (H). Then,

∫
D

QA (x)f (x, u(x), v(x)) dx = I ((u, v),D)

for all D ∈ O(Ω), u ∈ Lp(Ω;Rm) and v ∈ Lq(Ω;Rd) with A v = 0.

Adopting the “blow-up” method introduced in [16], the proof of the theorem
consists in showing that the functional I ((u, v), ·) is the trace of a Radon measure
absolutely continuous with respect to the restriction of the Lebesgue measure L N

to Ω , and proving that for a.e. x ∈ Ω the Radon-Nicodym derivative dI ((u,v)·)(x)
dL N

coincides with the A -quasiconvex envelope of f .
The arguments used are a combination of the ideas from [6, Theorem 1.1] and

from [23]. The main difference with [6, Theorem 1.1], which reduces to our setting
in the case in which the operator A has constant coefficients, is in the fact that
while defining the operator I in (4) we can not work with exact solutions of the
PDE, but instead we need to study sequences of asymptotically A -vanishing fields.
As pointed out in [23], in the case of variable coefficients the natural framework
is the context of pseudo-differential operators. In this setting, we don’t know how
to project directly onto the kernel of the differential constraint, but we are able to
construct an “approximate” projection operator P such that for every field v ∈ Lp,
the W−1,p norm of A Pv is controlled by the W−1,p norm of v itself (we refer to
[23, Subsection 2.1] for a detailed explanation of this issue and to the references
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therein for a treatment of the main properties of pseudo-differential operators). For
the same reason, in the proof of the inequality

dI ((u, v)·)(x)
dL N

≤ QA (x)f (x, u(x), v(x)) for a.e. x ∈ Ω,

an equi-integrability argument is needed (see Proposition 3). We also point out that
the representation formula in Theorem 1 was obtained in a simplified setting in [11]
as a corollary of the main homogenization result. Here we provide an alternative,
direct proof, which does not rely on homogenization techniques.

The paper is organized as follows: in Sect. 2 we establish the main assumptions
on the differential operator A and we recall some preliminary results on A -
quasiconvexity with variable coefficients. Section 3 is devoted to the proof of
Theorem 1.

Notation Throughout the paper Ω ⊂ R
N is a bounded open set, 1 < p, q < +∞,

O(Ω) is the set of open subsets of Ω , Q denotes the unit cube in R
N , Q(x0, r) and

B(x0, r) are, respectively, the open cube and the open ball in R
N , with center x0 and

radius r . Given an exponent 1 < q < +∞, we denote by q ′ its conjugate exponent,
i.e., q ′ ∈ (1,+∞) is such that

1

q
+ 1

q ′
= 1.

Whenever a map v ∈ Lq,C∞, · · · is Q-periodic, that is

v(x + ei) = v(x) i = 1, · · · , N,

for a.e. x ∈ R
N , {e1, · · · , eN } being the standard basis of R

N , we write v ∈
L
q
per, C

∞
per, . . . We implicitly identify the spaces Lq(Q) and L

q
per(R

N).

We adopt the convention that C will denote a generic constant, whose value may
change from line to line in the same formula.

2 Preliminary Results

In this section we introduce the main assumptions on the differential operator A
and we recall some preliminary results about A -quasiconvexity.

For i = 1, · · · , N , x ∈ R
N , consider the linear operators Ai(x) ∈ M

l×d , with
Ai ∈ C∞(RN ;Ml×d) ∩W 1,∞(RN ;Ml×d ). For every v ∈ Lq(Ω;Rd) we set

A v :=
N∑
i=1

Ai(x)
∂v(x)

∂xi
∈ W−1,q(Ω;Rl).
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The symbol A : RN × R
N \ {0} → M

l×d associated to the differential operator
A is

A(x, λ) :=
N∑
i=1

Ai(x)λi ∈M
l×d

for every x ∈ R
N , λ ∈ R

N \ {0}. We assume that A satisfies the following uniform
constant rank condition:

rank
( N∑

i=1

Ai(x)λi

)
= r for all x ∈ R

N and λ ∈ R
N \ {0}. (5)

For every x ∈ R
N , λ ∈ R

N \ {0}, let P(x, λ) : Rd → R
d be the linear projection on

Ker A(x, λ), and let Q(x, λ) : Rl → R
d be the linear operator given by

Q(x, λ)A(x, λ)v := v − P(x, λ)v for all v ∈ R
d,

Q(x, λ)ξ = 0 if ξ /∈ Range A(x, λ).

The main properties of P(·, ·) and Q(·, ·) are recalled in the following proposition
(see e.g. [23, Subsection 2.1]).

Proposition 1 Under the constant rank condition (5), for every x ∈ R
N the opera-

tors P(x, ·) and Q(x, ·) are, respectively, 0-homogeneous and (−1)-homogeneous.
In addition, P ∈ C∞(RN ×R

N \ {0};Md×d) and Q ∈ C∞(RN ×R
N \ {0};Md×l).

Let η ∈ C∞c (Ω; [0, 1]), η = 1 in Ω ′ for some Ω ′ ⊂⊂ Ω . We denote by Aη the
symbol

Aη(x, λ) :=
N∑
i=1

η(x)Ai(x)λi, (6)

for every x ∈ R
N , λ ∈ R

N \ {0}, and by Aη the corresponding pseudo-differential
operator (see [23, Subsection 2.1] for an overview of the main properties of pseudo-
differential operators). Let χ ∈ C∞(R+;R) be such that χ(|λ|) = 0 for |λ| < 1
and χ(|λ|) = 1 for |λ| > 2. Let also Pη be the operator associated to the symbol

Pη(x, λ) := η2(x)P(x, λ)χ(|λ|) (7)

for every x ∈ R
N , λ ∈ R

N \ {0}. The following proposition (see [23, Theorem 2.2
and Subsection 2.1]) collects the main properties of the operators Pη and Aη.

Proposition 2 Let 1 < q < +∞, and let Aη and Pη be the pseudo-differential
operators associated with the symbols (6) and (7), respectively. Then there exists
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a constant C, depending on the dimension N , on q , and on the pseudo-differential
operators Aη and Pη, such that

‖Pηv‖Lq(Ω;Rd) ≤ C‖v‖Lq (Ω;Rd) (8)

for every v ∈ Lq(Ω;Rd), and

‖Pηv‖W−1,q (Ω;Rd) ≤ C‖v‖W−1,q (Ω;Rd),

‖v − Pηv‖Lq(Ω;Rd) ≤ C
(‖Aηv‖W−1,q (Ω;Rl) + ‖v‖W−1,q (Ω;Rd)

)
,

‖AηPηv‖W−1,q (Ω;Rl) ≤ C‖v‖W−1,q (Ω;Rd)

for every v ∈ W−1,q(Ω;Rd).

3 Proof of Theorem 1

Before proving Theorem 1 we state and prove a decomposition lemma, which
generalizes [17, Lemma 2.15] to the case of operators with variable coefficients.

Lemma 1 Let 1 < q < +∞. Let A be a first order differential operator with
variable coefficients, satisfying (5). Let v ∈ Lq(Ω;Rd), and let {vn} be a bounded
sequence in Lq(Ω;Rd) such that

vn ⇀ v weakly in Lq(Ω;Rd),

A vn → 0 strongly in W−1,q (Ω;Rl).

Then, there exists a q-equiintegrable sequence {ṽn} ⊂ Lq(Ω;Rd) such that

A ṽn → 0 strongly in W−1,s (Ω;Rl) for every 1 < s < q, (9)∫
Ω

ṽn(x) dx =
∫
Ω

v(x) dx,

ṽn − vn → 0 strongly in Ls(Ω;Rd) for every 1 < s < q, (10)

ṽn ⇀ v weakly in Lq(Ω;Rd). (11)

In addition, if Ω ⊂ Q then we can construct the sequence {ṽn} so that ṽn − v ∈
L
q
per(R

N ;Rd) for every n ∈ N.

Proof Arguing as in the first part of [23, Proof of Theorem 1.1], we construct a q-
equiintegrable sequence {v̂n} satisfying (9), (10) and (11). The conclusion follows
by setting ṽn := v̂n −

∫
Ω v̂n(x) dx +

∫
Ω v(x) dx.
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In the case in which Ω ⊂ Q, let {ϕi} be a sequence of cut-off functions in Q

with 0 ≤ ϕi ≤ 1 in Q, such that ϕi = 0 on Q \ Ω and ϕi → 1 pointwise in Ω .
Define wi

n := ϕi(v̂n − v). By (11) for every ψ ∈ Lq ′(Ω;Rd) we have

lim
i→+∞ lim

n→+∞

∫
Ω

wi
n(x)ψ(x) dx = 0.

By (9), (10), and the compact embedding of Lq(Ω;Rd) into W−1,q (Ω;Rd), there
holds

A wi
n = ϕiA v̂n +

( N∑
j=1

Aj ∂ϕ
i

∂xj

)
v̂n → 0 strongly in W−1,s (Ω;Rl)

as n → +∞, for every 1 < s < q . Extending the maps wi
n outside Q by

periodicity, by the metrizability of the weak topology on bounded sets and by
Attouch’s diagonalization lemma (see [3, Lemma 1.15 and Corollary 1.16]), we
obtain a sequence

wn := wi(n)
n ,

with {wn} ⊂ L
q
per(R

N ;Rd), and such that wn + v satisfies (9), (10) and (11). The
thesis follows by setting

ṽn := wn −
∫
Ω

wn(x) dx + v.

The following proposition will allow us to neglect vanishing perturbations of q-
equiintegrable sequences.

Proposition 3 For every n ∈ N, let fn : Q × R
d → [0,+∞) be a continuous

function. Assume that there exists a constant C > 0 such that, for q > 1,

sup
n∈N

fn(y, ξ) ≤ C(1+ |ξ |q ) for every y ∈ Q and ξ ∈ R
d, (12)

and that the sequence {fn(y, ·)} is equicontinuous in R
d , uniformly in y. Let {wn} be

a q-equiintegrable sequence in Lq(Q;Rd ), and let {vn} ⊂ Lq(Q;Rd) be such that

vn → 0 strongly in Lq(Q;Rd). (13)

Then

lim
n→+∞

∣∣∣
∫
Q

fn
(
y,wn(y)

)
dy −

∫
Q

fn
(
y, vn(y)+ wn(y)

)
dy

∣∣∣ = 0.
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Proof Fix η > 0. In view of (13), the sequence {C(1 + |vn|q + |wn|q)} is
equiintegrable in Q, thus there exists 0 < ε <

η
3 such that

sup
n∈N

∫
A

C
(
1+ |vn(y)|q + |wn(y)|q

)
dy <

η

3
(14)

for every A ⊂ Q with |A| < ε. By the q-equiintegrability of {wn} and {vn}, and by
Chebyshev’s inequality there holds

∣∣Q ∩ ({|wn| > M} ∪ {|vn| > M})∣∣ ≤ 1

Mq

∫
Q

(|wn(y)|q + |vn(y)|q) dy ≤ C

Mq

for every n ∈ N. Therefore, there exists M0 satisfying

sup
n∈N

∣∣Q ∩ ({|wn| > M0} ∪ {|vn| > M0}
)∣∣ ≤ ε

2
. (15)

By the uniform equicontinuity of the sequence {fn(y, ·)}, there exists δ > 0 such
that, for every ξ1, ξ2 ∈ B(0,M0), with |ξ1 − ξ2| < δ, we have

sup
y∈Q

|fn(y, ξ1)− fn(y, ξ2)| < ε (16)

for every n ∈ N. By (13) and Egoroff’s theorem, there exists a set Eε ⊂ Q, |Eε| <
ε
2 , such that

vn → 0 uniformly in Q \ Eε,

and, in particular,

|vn(x)| < δ for a.e. x ∈ Q \ Eε, (17)

for every n ≥ n0, for some n0 ∈ N.
We observe that

∫
Q

fn(y, vn(y) + wn(y)) dy =
∫
Q∩{|wn|≤M0}∩{|vn |≤M0}

fn(y, vn(y)+ wn(y)) dy

+
∫
Q∩({|wn|>M0}∪{|vn |>M0})

fn(y, vn(y) + wn(y)) dy.

(18)



10 E. Davoli and I. Fonseca

The first term in the right-hand side of (18) can be further decomposed as

∫
Q∩{|wn|≤M0}∩{|vn|≤M0}

fn(y, vn(y)+wn(y)) dy

=
∫
(Q\Eε)∩{|wn|≤M0}∩{|vn|≤M0}

fn(y, vn(y)+wn(y)) dy

+
∫
Eε∩{|wn|≤M0}∩{|vn|≤M0}

fn(y, vn(y)+wn(y)) dy

=
∫
(Q\Eε)∩{|wn|≤M0}∩{|vn|≤M0}

fn(y,wn(y)) dy

+
∫
(Q\Eε)∩{|wn|≤M0}∩{|vn|≤M0}

(
fn(y, vn(y)+wn(y))− fn(y,wn(y))

)
dy

+
∫
Eε∩{|wn|≤M0}∩{|vn|≤M0}

fn(y, vn(y)+wn(y)) dy

=
∫
Q

fn(y,wn(y)) dy −
∫
Eε∩{|wn|≤M0}∩{|vn|≤M0}

fn(y,wn(y)) dy

−
∫
Q∩({|wn|>M0}∪{|vn|>M0})

fn(y,wn(y)) dy

+
∫
(Q\Eε)∩{|wn|≤M0}∩{|vn|≤M0}

(
fn(y, vn(y)+wn(y))− fn(y,wn(y))

)
dy

+
∫
Eε∩{|wn|≤M0}∩{|vn|≤M0}

fn(y, vn(y)+wn(y)) dy.

We observe that by (15)

|Eε ∪ ({|wn| > M0} ∪ {|vn| > M0})| < ε.

Hence, for n ≥ n0, by (12), (14), (16), and (17) we deduce the estimate

∣∣∣
∫
Q

fn(y,wn(y)) dy −
∫
Q

fn(y, vn(y)+ wn(y)) dy

∣∣∣ (19)

≤ ε +
∫
Eε∪({|wn|>M0}∪{|vn|>M0})

2C(1+ |wn(y)|p + |vn(y)|p) dy ≤ ε + 2η

3
.

The thesis follows by the arbitrariness of η.

We now prove our main result.

Proof (Proof of Theorem 1) The proof is subdivided into 4 steps. Steps 1 and 2
follow along the lines of [6, Proof of Theorem 1.1]. Step 3 is obtained by modifying
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[6, Lemma 3.5], whereas Step 4 follows by adapting an argument in [23, Proof of
Theorem 1.2]. We only outline the main ideas of Steps 1 and 2 for convenience of
the reader, whilst we provide more details for Steps 3 and 4.

Step 1:

The first step consists in showing that

I ((u, v),D) = inf
{

lim inf
n→+∞

∫
D

f (x, u(x), vn(x)) dx : {vn} is q − equiintegrable ,

A vn → 0 strongly in W−1,s (D;Rl ) for every 1 < s < q

and vn ⇀ v weakly in Lq(D;Rd)
}
.

This identification is proved by adapting [6, Proof of Lemma 3.1]. The only
difference is the application of Lemma 1 instead of [6, Proposition 2.3 (i)].

Step 2:

The second step is the proof that I ((u, v), ·) is the trace of a Radon measure
absolutely continuous with respect to L N�Ω . This follows as a straightforward
adaptation of [6, Lemma 3.4]. The only modifications are due to the fact that [6,
Proposition 2.3 (i)] and [6, Lemma 3.1] are now replaced by Lemma 1 and Step 1.

Step 3:

We claim that

dI ((u, v), ·)
dL N

(x0) ≥ QA (x0)f (x0, u(x0), v(x0)) for a.e. x0 ∈ Ω. (20)

Indeed, since g(x, ξ) := f (x, u(x), ξ) is a Carathéodory function, by the Scorza-
Dragoni Theorem there exists a sequence of compact sets Kj ⊂ Ω such that

|Ω \Kj | ≤ 1
j

and the restriction of g to Kj × R
d is continuous. Hence, the set

ω :=
+∞⋃
j=1

(Kj ∩K∗
j ) ∩L (u, v), (21)

where K∗
j is the set of Lebesgue point for the characteristic function of Kj and

L (u, v) is the set of Lebesgue points of u and v, is such that

|Ω \ ω| ≤ |Ω \Kj | ≤ 1

j
for every j,



12 E. Davoli and I. Fonseca

and so |Ω \ ω| = 0. Let x0 ∈ ω be such that

lim
r→0+

1

rN

∫
Q(x0,r)

|u(x)− u(x0)|p dx= lim
r→0+

1

rN

∫
Q(x0,r)

|v(x)− v(x0)|q dx=0,

(22)

and

dI ((u, v), ·)
dL N

(x0) = lim
r→0+

I ((u, v),Q(x0, r))

rN
< +∞, (23)

where the sequence of radii r is such that I ((u, v), ∂Q(x0, r)) = 0 for every r .
(Such a choice of the sequence is possible due to Step 2).

By Step 1, for every r there exists a q-equiintegrable sequence {vn,r } such that

vn,r ⇀ v weakly in Lq(Q(x0, r);Rd),

A vn,r → 0 strongly in W−1,s (Q(x0, r);Rl ) for every 1 < s < q (24)

as n→+∞, and

lim
n→+∞

∫
Q(x0,r)

g(x, vn,r (x)) dx ≤ I ((u, v),Q(x0, r))+ rN+1.

A change of variables yields

dI ((u, v), ·)
dL N

(x0) ≥ lim inf
r→0+

lim
n→+∞

∫
Q

g(x0 + ry, v(x0)+ wn,r (y)) dy,

where

wn,r (y) := vn,r (x0 + ry)− v(x0) for a.e. y ∈ Q.

Arguing as in [6, Proof of Lemma 3.5], Hölder’s inequality and a change of variables
imply

wn,r ⇀ 0 weakly in Lq(Q;Rd) (25)

as n→+∞ and r → 0+, in this order. We claim that

A (x0 + r·)wn,r → 0 strongly in W−1,s (Q;Rl ), (26)

as n→+∞, for every r and every 1 < s < q .
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Indeed, let ϕ ∈ W
1,s ′
0 (Q;Rd). There holds

〈A (x0 + r·)wn,r , ϕ〉W−1,s (Q;Rl),W
1,s′
0 (Q;Rl)

= −
N∑
i=1

{
r

∫
Q

∂Ai(x0 + ry)

∂xi
vn,r (x0 + ry) · ϕ(y) dy

+
∫
Q

Ai(x0 + ry)vn,r (x0 + ry) · ∂ϕ(y)

∂yi
dy

}

= −
N∑
i=1

{
1

rN−1

∫
Q(x0,r)

∂Ai(x)

∂xi
vn,r (x) · ψr(x) dx

+ 1

rN−1

∫
Q(x0,r)

Ai(x)vn,r (x) · ∂ψr(x)

∂xi
dx

}

= 1

rN−1 〈A vn,r , ψr 〉
W−1,s (Q(x0,r);Rl),W

1,s′
0 (Q(x0,r);Rl)

,

where ψr(x) := ϕ
(
x−x0
r

)
for a.e. x ∈ Q(x0, r). Since ψr ∈ W

1,s ′
0 (Q(x0, r);Rd)

and

‖ψr‖
W

1,s′
0 (Q(x0,r);Rd)

≤ C(r)‖ϕ‖
W

1,s′
0 (Q;Rd)

,

we obtain the estimate

‖A (x0 + r·)wn,r‖W−1,s (Q;Rl) ≤ C(r)‖A vn,r‖W−1,s (Q(x0,r);Rl).

Claim (26) follows by (24).
In view of (25) and (26), a diagonalization procedure yields a q-equiintegrable

sequence {ŵk} ⊂ Lq(Q;Rd) satisfying

ŵk ⇀ 0 weakly in Lq(Q;Rd), (27)

A (x0 + rk·)ŵk → 0 strongly in W−1,s (Q;Rl ) for every 1 < s < q, (28)

and

dI ((u, v), ·)
dL N

(x0) ≥ lim inf
k→+∞

∫
Q

g(x0 + rky, v(x0)+ ŵk(y)) dy. (29)
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For every ϕ ∈ W
1,s ′
0 (Q;Rl ), 1 < s < q , there holds

〈(A (x0 + rk·)−A (x0))ŵk, ϕ〉
W−1,s (Q;Rl),W

1,s′
0 (Q;Rl)

= −
N∑
i=1

[
rk

∫
Q

∂Ai(x0 + rky)

∂xi
ŵk(y) · ϕ(y) dy

+
∫
Q

(Ai(x0 + rky)− Ai(x0))ŵk(y) · ∂ϕ(y)
∂yi

dy

]
.

Thus,

‖(A (x0 + rk ·)−A (x0))ŵk‖W−1,s (Q;Rl) ≤ rk

N∑
i=1

‖Ai‖W 1,∞(RN ;Rl×d)‖ŵk‖Lq(Q;Rd)

for every 1 < s < q . By (27) and (28) we conclude that

A (x0)ŵk → 0 strongly in W−1,s (Q;Rl ) for every 1 < s < q. (30)

In view of (27) and (30), an adaptation of [6, Corollary 3.3] yields a q-equiintegrable
sequence {wk} such that

wk ⇀ 0 weakly in Lq(Q;Rd),∫
Q

wk(y) dy = 0 for every k,

A (x0)wk = 0 for every k, (31)

and

lim inf
k→+∞

∫
Q

g(x0, v(x0)+ wk(y)) dy ≤ lim inf
k→+∞

∫
Q

g(x0 + rky, v(x0)+ ŵk(y)) dy.

(32)

Finally, by combining (29), (31), and (32), and by the definition of A -quasiconvex
envelope for operators with constant coefficients, we obtain

dI ((u, v), ·)
dL N

(x0) ≥ lim inf
k→+∞

∫
Q

g(x0, v(x0)+wk(y)) dy

= lim inf
k→+∞

∫
Q

f (x0, u(x0), v(x0)+ wk(y)) dy

≥ QA (x0)f (x0, u(x0), v(x0))

for a.e. x0 ∈ Ω . This concludes the proof of Claim (20).
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Step 4:

To complete the proof of the theorem we need to show that

dI ((u, v), ·)
dL N

(x0) ≤ QA (x0)f (x0, u(x0), v(x0)) for a.e. x0 ∈ Ω. (33)

To this aim, let μ > 0, and x0 ∈ ω be such that (22) and (23) hold. Let w ∈
C∞per(R

N ;Rd) be such that

∫
Q

w(y) dy = 0, A (x0)w = 0, (34)

and
∫
Q

f (x0, u(x0), v(x0)+w(y)) dy ≤ QA (x0)f (x0, u(x0), v(x0))+ μ. (35)

Let η ∈ C∞c (Ω; [0, 1]) be such that η ≡ 1 in a neighborhood of x0 and let r be
small enough so that

Q(x0, r) ⊂ {x : η(x) = 1} and Q(x0, 2r) ⊂⊂ Ω. (36)

Consider a map ϕ ∈ C∞c (Q(x0, r); [0, 1]) satisfying

L N(Q(x0, r) ∩ {ϕ �= 1}) < μrN, (37)

and define

zrm(x) := ϕ(x)w
(m(x − x0)

r

)
for x ∈ R

N . (38)

We observe that zrm ∈ Lq(Ω;Rd), and for ψ ∈ Lq ′(Ω;Rd) we have

∫
Ω

zrm(x) · ψ(x) dx =
∫
Ω

ϕ(x)w
(m(x − x0)

r

)
· ψ(x) dx

= rN
∫
Q

ϕ(x0 + ry)w(my) · ψ(x0 + ry) dy.

By (34) and by the Riemann-Lebesgue lemma we have

zrm ⇀ 0 weakly in Lq(Ω;Rd) (39)

as m→+∞. We claim that

lim sup
m→+∞

‖Aηz
r
m‖W−1,q (Ω;Rl ) ≤ Cr

N
q +1

, (40)
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where Aη is the pseudo-differential operator defined in (6). Indeed, by (36) we
obtain

Aηz
r
m = A zrm −A (x0)z

r
m +A (x0)z

r
m (41)

=
N∑
i=1

∂((Ai(x) − Ai(x0))z
r
m(x))

∂xi
+

N∑
i=1

Ai(x0)
∂zrm(x)

∂xi
−

N∑
i=1

∂Ai(x)

∂xi
zrm(x).

By the regularity of the operators Ai and by a change of variables, the first term in
the right-hand side of (41) is estimated as

∥∥∥
N∑
i=1

∂((Ai(x)− Ai(x0))z
r
m(x))

∂xi

∥∥∥
W−1,q (Ω;Rl)

(42)

≤
N∑
i=1

∥∥∥(Ai(x)− Ai(x0))ϕ(x)w
(m(x − x0)

r

)∥∥∥
Lq(Q(x0,r);Rl)

≤
N∑
i=1

‖Ai‖W 1,∞(RN ;Rl×d)‖ϕ‖L∞(Q(x0,r))‖w(m·)‖Lq(Q;Rd)r
N
q
+1 ≤ Cr

N
q
+1

.

In view of (34) the second term in the right-hand side of (41) becomes

N∑
i=1

Ai(x0)
∂zrm(x)

∂xi
=

N∑
i=1

Ai(x0)
∂ϕ(x)

∂xi
w
(m(x − x0)

r

)
,

and thus converges to zero weakly in Lq(Ω;Rl), as m→ +∞, due to (34) and by
the Riemann-Lebesgue lemma. Hence,

∥∥∥
N∑
i=1

Ai(x0)
∂zrm(x)

∂xi

∥∥∥
W−1,q (Ω;Rl)

→ 0 as m→+∞ (43)

by the compact embedding of Lq(Ω;Rl) into W−1,q (Ω;Rl). Finally, the third term
in the right-hand side of (41) satisfies

N∑
i=1

∂Ai(x)

∂xi
zrm(x) =

N∑
i=1

∂Ai(x)

∂xi
ϕ(x)w

(m(x − x0)

r

)
,

which again converges to zero weakly in Lq(Ω;Rl), as m → +∞, owing again
to (34) and the Riemann-Lebesgue lemma. Therefore,

∥∥∥
N∑
i=1

∂Ai(x)

∂xi
zrm(x)

∥∥∥
W−1,q (Ω;Rl )

→ 0 as m→+∞. (44)
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Claim (40) follows by combining (42)–(44).
Consider the maps

vrm := Pηz
r
m,

where Pη is the projection operator introduced in (7). By Proposition 2 we have

‖vrm‖Lq(Q(x0,r);Rd) ≤ C‖zrm‖Lq(Ω;Rd), (45)

‖vrm‖W−1,q (Q(x0,r);Rd) ≤ C‖zrm‖W−1,q (Ω;Rd), (46)

‖Aηv
r
m‖W−1,q (Q(x0,r);Rl) ≤ C‖zrm‖W−1,q (Ω;Rd), (47)

‖vrm − zrm‖Lq(Q(x0,r);Rd) ≤ C(‖Aηz
r
m‖W−1,q (Ω;Rl) + ‖zrm‖W−1,q (Ω;Rd)). (48)

By (39) and (45), the sequence {vrm} is uniformly bounded in Lq(Q(x0, r);Rd).
Thus, there exists a map vr ∈ Lq(Q(x0, r);Rd) such that, up to the extraction of a
(not relabelled) subsequence,

vrm ⇀ vr weakly in Lq(Q(x0, r);Rd) (49)

as m→ +∞. Again by (39), and by the compact embedding of Lq into W−1,q , we
deduce that

zrm → 0 strongy in W−1,q (Ω;Rd) (50)

as m→+∞. Therefore, by combining (46) and (49), we conclude that

vrm ⇀ 0 weakly in Lq(Q(x0, r);Rd)

as m → +∞, and the convergence holds for the entire sequence. Additionally,
by (36), (47), and (50), we obtain

A vrm = Aηv
r
m → 0 strongly in W−1,q(Q(x0, r);Rl)

as m→+∞. Finally, by (40), (48), and (50), there holds

lim
r→0

lim
m→+∞ r

−N
q ‖vrm − zrm‖Lq(Q(x0,r);Rd) = 0. (51)

We recall that, since x0 satisfies (23), Step 1 yields

dI (u, v)

dL N
(x0) = lim

r→0+
I ((u, v);Q(x0, r))

rN

≤ lim inf
r→0+

lim inf
m→+∞

1

rN

∫
Q(x0,r)

f (x, u(x), v(x)+ vrm(x)) dx. (52)
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We claim that

dI (u, v)

dL N
(x0) = lim

r→0+
I ((u, v);Q(x0, r))

rN

≤ lim inf
r→0+

lim inf
m→+∞

1

rN

∫
Q(x0,r)

g(x, v(x)+ zrm(x)) dx, (53)

where g is the function introduced in Step 3. Indeed, for every r ∈ R, consider the
function gr : Q× R

d → [0,+∞) defined as

gr (y, ξ) := g(x0 + ry, ξ) for every y ∈ Q, ξ ∈ R
d .

Since x0 ∈ ω, by (21) there exists Kj such that x0 ∈ Kj . In particular, this yields
the existence of r0 > 0 such that for r ≤ r0, the maps gr are continuous on Q×R

d ,
and the family {gr(y, ·)} is equicontinuous in R

d , uniformly with respect to y. A
change of variables yields

1

rN

∣∣∣
∫
Q(x0,r)

f (x, u(x), v(x)+ vrm(x)) dx −
∫
Q(x0,r)

f (x, u(x), v(x) + zrm(x)) dx

∣∣∣

=
∣∣∣
∫
Q

gr(y, v(x0 + ry)+ vrm(x0 + ry)) dy −
∫
Q

gr(y, v(x0 + ry)+ zrm(x0 + ry)) dy

∣∣∣.

On the other hand, by (51) we have

lim
r→0

lim
m→+∞ ‖z

r
m(x0 + r·)− vrm(x0 + r·)‖Lq(Q;Rd)

= lim
r→0

lim
m→+∞ r

−N
q ‖zrm − vrm‖Lq(Q(x0,r);Rd) = 0.

Therefore, by a diagonal procedure we extract a subsequence {mr } such that

lim sup
r→0

lim sup
m→+∞

∣∣∣
∫
Q

gr(y, v(x0 + ry)+ vrm(x0 + ry)) dy

−
∫
Q

gr(y, v(x0 + ry)+ zrm(x0 + ry)) dy

∣∣∣

= lim
r→0

∣∣∣
∫
Q

gr (y, v(x0 + ry)+ vrmr
(x0 + ry)) dy

−
∫
Q

gr(y, v(x0 + ry)+ zrmr
(x0 + ry)) dy

∣∣∣, (54)

and

zrmr
(x0 + r·)− vrmr

(x0 + r·)→ 0 strongly in Lq(Q;Rd ).
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In view of (22), (38) and the Riemann-Lebesgue lemma, the sequence {v(x0+ r·)+
zrmr

(x0+ r·)} is q-equiintegrable in Q. Hence, by (H) we are under the assumptions
of Proposition 3, and we conclude that

lim
r→0

∣∣∣
∫
Q

gr(y, v(x0 + ry) + vrmr
(x0 + ry)) dy −

∫
Q

gr(y, v(x0 + ry)+ zrmr
(x0 + ry)) dy

∣∣∣ = 0.

(55)

Claim (53) follows by combining (54) with (55).
Arguing as in [6, Proof of Lemma 3.5], for every x0 ∈ ω (where ω is the set

defined in (21)) we have

lim inf
r→0+

lim inf
m→+∞

1

rN

∫
Q(x0,r)

f (x, u(x), v(x)+ zrm(x)) dx

≤ lim inf
r→0+

lim inf
m→+∞

1

rN

∫
Q(x0,r)

f (x0, u(x0), v(x0)+ zrm(x)) dx,

hence by (53) we deduce that

dI (u, v)

dL N
(x0) ≤ lim inf

r→0+
lim inf
m→+∞

1

rN

∫
Q(x0,r)

f (x0, u(x0), v(x0)+ zrm(x)) dx.

By (38) we obtain

dI (u, v)

dLN
(x0) ≤ lim inf

r→0+
lim inf
m→+∞

1

rN

∫
Q(x0,r)

f (x0, u(x0), v(x0)+ zrm(x)) dx

≤ lim inf
r→0+

lim inf
m→+∞

1

rN

{∫
Q(x0,r)

f
(
x0, u(x0), v(x0)+ w

(m(x − x0)

r

))
dx

+
∫
Q(x0,r)∩{ϕ �=1}

f
(
x0, u(x0), v(x0)+ ϕ(x)w

(m(x − x0)

r

))
dx

}
.

The growth assumption (H) and estimate (37) yield

∫
Q(x0,r)∩{ϕ �=1}

f
(
x0, u(x0), v(x0)+ ϕ(x)w

(m(x − x0)

r

))
dx (56)

≤ C

∫
Q(x0,r)∩{ϕ �=1}

(
1+

∣∣∣w
(m(x − x0)

r

)∣∣∣q
)
dx

≤ C(1+ ‖w‖q
L∞(RN ;Rd)

)L N(Q(x0, r) ∩ {ϕ �= 1}) ≤ CμrN .
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Thus, by (56), the periodicity of w, and the Riemann-Lebesgue lemma, we deduce

dI (u, v)

dL N
(x0) ≤ Cμ

+ lim inf
r→0+

lim inf
m→+∞

1

rN

∫
Q(x0,r)

f
(
x0, u(x0), v(x0)+ w

(m(x − x0)

r

))
dx

= Cμ+ lim inf
m→+∞

∫
Q

f (x0, u(x0), v(x0)+ w(my)) dy

= Cμ+
∫
Q

f (x0, u(x0), v(x0)+ w(y)) dy

≤ Cμ+QA (x0)f (x0, u(x0), v(x0)),

where the last inequality is due to (35). Letting μ→ 0+ we conclude (33).
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Weak Lower Semicontinuity by Means
of Anisotropic Parametrized Measures

Agnieszka Kałamajska, Stefan Krömer, and Martin Kružík

Abstract It is well known that besides oscillations, sequences bounded only in L1

can also develop concentrations, and if the latter occurs, we can at most hope for
weak∗ convergence in the sense of measures. Here we derive a new tool to handle
mutual interferences of an oscillating and concentrating sequence with another
weakly converging sequence. We introduce a couple of explicit examples showing
a variety of possible kinds of behavior and outline some applications in Sobolev
spaces.

1 Introduction

Mutual interactions of oscillations and concentrations appears in many problems
of optimal control and calculus of variations. We refer, for example, to [7, 25] for
optimal control of dynamical systems with oscillations and concentrations, to [26]
for a model of mechanical debonding, or to analysis of mechanical problems [29,
30]. Analytical problems related to these phenomena in the calculus of variations are
described in detail in [6]. Moreover, oscillations, concentrations, and discontinuities
naturally appear in problems of the variational calculus where one is interested in
weak lower semicontinuity in the Sobolev space W 1,p(Ω;Rm) for a sufficiently
regular domain Ω ⊂ R

n and m,n ≥ 1. Indeed, consider

I (u) :=
∫
Ω

h(x, u(x),∇u(x)) dx , (1)
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where h : Ω̄ × R
m × R

m×n → R is continuous and such that |h(x, r, s)| ≤
C(1 + |r|q + |s|p) for some C > 0, p > 1, and q ≥ 1 so small that
W 1,p(Ω;Rm) compactly embeds into Lq(Ω;Rm). If one wants to investigate lower
semicontinuity of I with respect to the weak topology in W 1,p(Ω;Rm), a usual way
is to show first that

lim
k→∞

∫
Ω

h(x, u(x),∇uk(x)) dx = lim
k→∞

∫
Ω

h(x, uk(x),∇uk(x)) dx . (2)

for a suitable sequence uk ⇀ u in W 1,p(Ω;Rm), and then to prove that the left-
hand side of (2) is bounded from below by

∫
Ω h(x, u(x),∇u(x)) dx. That, however,

is not possible without some additional assumptions on h or {uk}. We refer to [1]
or [5] for such cases. Indeed, if p ≤ n then u and uk , k ∈ N, are not necessarily
continuous and if {|∇uk|p} is not equi-integrable then concentrations can interact
with {uk}k∈N. This phenomenon is clearly visible in the following example.

Example 1 Consider Ω = B(0, 1), the unit ball in R
n centered at the origin, a

mapping w ∈ W
1,p
0 (B(0, 1);Rm), p > 1, extended by zero to the whole space

and uk(x) := kn/p−1w(kx). Hence uk ⇀ u := 0 in W 1,p(B(0, 1);Rm) as k →
∞. Assume that h as above is positively p-homogeneous in the last variable, i.e.,
h(x, r, αs) = αph(x, r, s), for all (x, r, s) admissible and all α ≥ 0. Then a simple
calculation yields

lim inf
k→∞

∫
B(0,1)

h(x, uk(x),∇uk(x)) dx= lim inf
k→∞

∫
B(0,1)

knh(x, kn/p−1w(kx),∇w(kx)) dx

= lim inf
k→∞

∫
B(0,1)

h(
y

k
, kn/p−1w(y),∇w(y)) dy

=

⎧⎪⎪⎨
⎪⎪⎩

∫
B(0,1) h(0, w(y),∇w(y)) dy if p = n,∫
B(0,1) h(0, 0,∇w(y)) dy if p > n,

lim infk→∞
∫
B(0,1) h(y/k, k

n/p−1w(y),∇w(y)) dy if p < n.

(3)

We see that if p > n then (2) really holds. On the other hand, if p = n the
map u appears in the limit besides its gradient and the most complex case is
p < n where the limit cannot be calculated explicitly. Notice that the sequence
{|∇uk|p}k∈N ⊂ L1(Ω) is uniformly bounded in this space and concentrates at

x = 0, i.e., |∇uk|p ∗
⇀ ‖∇w‖p

Lp(Ω;Rm)
δ0 in M (B(0, 1)) as k →∞. Here δ0 denotes

the Dirac measure supported at the origin and M (B(0, 1)) denotes the set of Radon
measures on B(0, 1).

If p = 1, concentrations of the gradient can even interact with jump discontinuities.
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Example 2 Consider Ω = (−1, 1) and a sequence {uk}k∈N ⊂ W 1,1(−1, 1) such
that uk → u in Lq(−1, 1) for every 1 ≤ q < +∞. We are interested in

lim
k→∞

∫ 1

−1
f (uk(x))ψ(u′k(x)) dx

for continuous function ψ such that |ψ| ≤ C(1+|·|) with some constant C > 0 and
continuous f : R→ R. If ψ is the identity map then the calculation is easy, namely
the limit equals lim infk→∞(F (uk(1))−F(uk(−1))) where F is the primitive of f .
In case of more general ψ , the situation is more involved. Let

uk(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if − 1 ≤ x ≤ 0,

kx if 0 ≤ x ≤ 1/k,

1 if 1/k ≤ x ≤ 1.

Assume further that limt→∞ ψ(t)/t exists. Then it is easy to see that

lim
k→∞

∫ 1

−1
f (uk(x))ψ(u′k(x)) dx=(f (0)+f (1))ψ(0)+(

∫ 1

0
f (r) dr

)
lim
k→∞

ψ(k)

k
.

(4)

The sequence of {u′k}k∈N concentrates at zero which is exactly the point of
discontinuity of the pointwise limit of {uk}k∈N which we denote by u. Also notice

that u′k
∗
⇀ δ0 in M ([−1, 1]) for k →∞. Hence, the second term on the right-hand

side of (4) suggests that we should refine the definition of u at zero by saying that
u(0) is the Lebesgue measure supported on the interval of the jump of u, i.e., on the
interval (0, 1).

In this contribution, we introduce a new tool which allows us to describe limits
of nonlinear maps along sequences that oscillate, concentrate, and concentrations
possibly interfere with discontinuities. While oscillations are successfully treated
by Young measures [36] or [4], to handle oscillations and concentrations require
finer tools as in, e.g., Young measures and varifolds [2] or DiPerna-Majda measures
[9]. We also refer to [24] for an explicit characterization of the DiPerna-Majda
measures and to [14, 17] for characterization of those measures which are generated
by sequences of gradients, as well as to [21] and [3] for related results in case p = 1.

1.1 Basic Notation

Let us start with a few definitions and with the explanation of our notation. If not said
otherwise, we will assume throughout this article that Ω ⊂ R

n is a bounded domain
with a Lipschitz boundary. Furthermore, C(Ω;Rm) (respectively C(Ω̄;Rm)) is the
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space of continuous functions defined on Ω (respectively Ω̄ ) with values in R
m.

Here, as well as in similar notation for other function spaces, if the dimension of
the target space is m = 1, then R

m is omitted and we only write C(Ω). In what
follows M (S) denotes the set of regular countably additive set functions on the
Borel σ -algebra on a metrizable set S (cf. [10]), its subset, M+

1 (S), denotes regular
probability measures on a set S. We write “γ -almost all” or “γ -a.e.” if we mean
“up to a set with the γ -measure zero”. If γ is the n-dimensional Lebesgue measure
we omit writing γ in the notation. The support of a measure σ ∈ M (Ω) is the
smallest closed set S such that σ(A) = 0 if S ∩ A = ∅. If σ ∈ M (Ω̄) we
write σs and dσ for the singular part and density of σ defined by the Lebesgue
decomposition (with respect to the Lebesgue measure), respectively. By Lp(Ω;Rm)

we denote the usual Lebesgue space of Rm-valued maps. Further, W 1,p(Ω;Rm)

where 1 ≤ p ≤ +∞ denotes the usual Sobolev space (of Rm-valued functions)
and W

1,p
0 (Ω;Rm) denotes the completion of C∞0 (Ω,Rm) (smooth functions with

support in Ω) in W 1,p(Ω;Rm). We say that Ω has the extension property in W 1,p

if every function u ∈ W 1,p(Ω) can be extended outside Ω to ũ ∈ W 1,p(Rn)

and the extension operator is linear and bounded. If Ω is an arbitrary domain and
u,w ∈ W 1,p(Ω,Rm) we say that u = w on ∂Ω if u − w ∈ W

1,p
0 (Ω;Rm). We

denote by ‘w-lim’ or by ⇀ the weak limit. Analogously we indicate weak* limits

by
∗
⇀.

1.2 Quasiconvex Functions

Let Ω ⊂ R
n be a bounded domain. We say that a function ψ : Rm×n → R is

quasiconvex (cf. [28]) if for any s0 ∈ R
m×n and any ϕ ∈ W

1,∞
0 (Ω;Rm)

ψ(s0)|Ω | ≤
∫
Ω

ψ(s0 +∇ϕ(x)) dx .

If ψ : Rm×n → R is not quasiconvex we define its quasiconvex envelope Qψ :
R

m×n → R as

Qψ(s) = sup
{
h(s); h ≤ ψ; h : Rm×n → R quasiconvex

}
(5)

and we put Qψ = −∞ if the set on the right-hand side of (5) is empty. If ψ is
locally bounded and Borel measurable then for any s0 ∈ R

m×n (see [8])

Qψ(s0) = inf
ϕ∈W 1,∞

0 (Ω;Rm)

1

|Ω |
∫
Ω

ψ(s0 +∇ϕ(x)) dx . (6)
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1.3 Young Measures

For p ≥ 0 we define the following subspace of the space C(Rm×n) of all continuous
functions on R

m×n :

Cp(R
m×n) = {ψ ∈ C(Rm×n);ψ(s) = o(|s|p)textf or|s| → ∞} ,

with the obvious modification for any Euclidean space instead of Rm×n. The Young
measures on a measurable set Λ ⊂ R

l are weakly* measurable mappings x �→ νx :
Λ → M (Rm×n) with values in probability measures; and the adjective “weakly*
measurable” means that, for any ψ ∈ C0(R

m×n), the mapping Λ → R : x �→
〈νx, ψ〉 =

∫
Rm×n ψ(s)νx(ds) is measurable in the usual sense. Let us remind that, by

the Riesz theorem the space M (Rm×n), normed by the total variation, is a Banach
space which is isometrically isomorphic with C0(R

m×n)∗. Let us denote the set of
all Young measures by Y (Λ;Rm×n).

Below, we are mostly interested in the case Λ = Ω , i.e., a bounded domain.
It is known that Y (Ω;Rm×n) is a convex subset of L∞w∗(Ω;M (Rm×n)) ∼=
L1(Ω;C0(R

m×n))∗, where the index “w∗” indicates the property “weakly* mea-
surable”. A classical result [36] is that, for every sequence {yk}k∈N bounded in
L∞(Ω;Rm×n), there exists its subsequence (denoted by the same indices for
notational simplicity) and a Young measure ν = {νx}x∈Ω ∈ Y (Ω;Rm×n) such
that

∀ψ ∈ C0(R
m×n) : lim

k→∞ψ ◦ yk = ψν weakly* in L∞(Ω) , (7)

where [ψ ◦ yk](x) = ψ(yk(x)) and

ψν(x) =
∫
Rm×n

ψ(s)νx(ds) . (8)

Let us denote by Y ∞(Ω;Rm×n) the set of all Young measures which are created
by this way, i.e. by taking all bounded sequences in L∞(Ω;Rm×n). Note that (7)
actually holds for any ψ : Rm×n → R continuous.

A generalization of this result was formulated by Schonbek [34] (cf. also [4]): if
1 ≤ p < +∞: for every sequence {yk}k∈N bounded in Lp(Ω;Rm×n) there exists
its subsequence (denoted by the same indices) and a Young measure ν = {νx}x∈Ω ∈
Y (Ω;Rm×n) such that

∀ψ ∈ Cp(R
m×n) : lim

k→∞ψ ◦ yk = ψν weakly in L1(Ω) . (9)

We say that {yk} generates ν if (9) holds. Let us denote by Y p(Ω;Rm×n) the
set of all Young measures which are created by this way, i.e. by taking all
bounded sequences in Lp(Ω;Rm×n). The subset of Y p(Ω;Rm×n) containing
Young measures generated by gradients of W 1,p(Ω;Rm) maps will be denoted by
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GY p(Ω;Rm×n). An explicit characterization of this set is due to Kinderlehrer and
Pedregal [18, 19].

1.4 DiPerna-Majda Measures

1.4.1 Definition and Basic Properties

LetR be a complete (i.e. containing constants, separating points from closed subsets
and closed with respect to the Chebyshev norm) separable ring of continuous
bounded functions R

m×n → R. It is known [11, Sect. 3.12.21] that there is a
one-to-one correspondence R ↔ βRR

m×n between such rings and metrizable
compactifications of Rm×n (also see [20] concerning the metrizability); by a com-
pactification we mean here a compact set, denoted by βRR

m×n, into which R
m×n

is embedded homeomorphically and densely. For simplicity, we will not distinguish
betweenRm×n and its image in βRR

m×n. Similarly, we will not distinguish between
elements of R and their unique continuous extensions defined on βRR

m×n. This
means that if i : Rm×n → βRR

m×n is the homeomorphic embedding and ψ0 ∈ R
then the same notation is used also for ψ0 ◦ i−1 : i(Rm×n)→ R and for its unique
continuous extension to βRR

m×n.
Let σ ∈M (Ω̄) be a positive Radon measure on a closure of a bounded domain

Ω ⊂ R
n. A mapping ν̂ : x �→ ν̂x belongs to the space L∞w∗(Ω̄, σ ;M (βRR

m×n))
if it is weakly* σ -measurable (i.e., for any ψ0 ∈ C0(R

m×n), the mapping Ω̄ →
R : x �→ ∫

βRRm×n ψ0(s)ν̂x(ds) is σ -measurable in the usual sense). If additionally

ν̂x ∈M+
1 (βRR

m×n) for σ -a.a. x ∈ Ω̄ the collection {ν̂x}x∈Ω̄ is the so-called Young
measure on (Ω̄, σ ) [36, see also [4, 33]].

DiPerna and Majda [9] showed that given a bounded sequence in Lp(Ω;Rm×n)
with 1 ≤ p < +∞ defined on an open domain Ω ⊆ R

n, there exist a subsequence
(denoted by the same indices), a positive Radon measure σ ∈ M (Ω̄) and a Young
measure ν̂ : x �→ ν̂x on (Ω̄, σ ) such that (σ, ν̂) is attainable by a sequence
{yk}k∈N ⊂ Lp(Ω;Rm×n) in the sense that ∀g∈C(Ω̄) and ∀ψ0∈R:

lim
k→∞

∫
Ω

g(x)ψ(yk(x))dx =
∫
Ω̄

g(x)

∫
βRRm×n

ψ0(s)ν̂x(ds)σ (dx) , (10)

where

ψ ∈ Υ
p

R(Rm×n) := {ψ0(1+ | · |p); ψ0 ∈ R}. (11)

In particular, putting ψ0 ≡ 1 ∈ R in (10) we can see that

lim
k→∞(1+ |yk|p) = σ weakly* in M (Ω̄) . (12)
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If (10) holds, we say that {yk}∈N generates (σ, ν̂). Let us denote byDM
p

R(Ω;Rm×n)
the set of all pairs (σ, ν̂) ∈ M (Ω̄) × L∞w∗(Ω̄, σ ;M (βRR

m×n)) attainable by
sequences from Lp(Ω;Rm×n); note that, taking ψ0 = 1 in (10), one can see that
these sequences must be inevitably bounded in Lp(Ω;Rm×n).

It is well known [33] that (10) can also be rewritten with the help of classical
Young measures as

lim
k→∞

∫
Ω

g(x)ψ(yk(x))dx =
∫
Ω

∫
Rm×n

g(x)ψ(s)νx(ds)dx

+
∫
Ω̄

g(x)

∫
βRRm×n\Rm×n

ψ0(s)ν̂x(ds)σ (dx), (13)

where {νx}x∈Ω ∈ Y ∞(Ω,Rm×n) and {νx}x∈Ω are as in (10).
Formula (13) clarifies connections between Young measures and DiPerna-Majda

measures. Namely, the latter ones provide us with more details about behavior of
{yk}. If {|yk|p} ⊂ L1(Ω) is uniformly integrable then the second term on the right-
hand side of (13) vanishes and {yk} exhibits only oscillations. On the other hand, if
for almost all x ∈ Ω it holds that νx = δy(x) for some y ∈ Lp(Ω;Rm×n) then yk →
y in measure, {yk} does not oscillate but it still can concentrate. Concentrations are
then recorded in (σ, ν̂). We refer to formula (21) below which defines the Young
measure given a DiPerna-Majda one. See also [33] for more details.

There are two prominent examples of compactifications of Rm×n. The simplest
example is the so-called one point compactification which corresponds to the ring of
continuous bounded functions which have limits if the norm of its argument tends
to infinity, i.e., we denote ψ0(∞) := lim|s|→+∞ ψ0(s).

A richer compactification is the one by the sphere. In that case, we consider the
following ring of continuous bounded functions:

S := {ψ0∈C(Rm×n) : there exist c∈R, ψ0,0∈C0(R
m×n), and ψ0,1∈C(S(m×n)−1) s.t.

ψ0(s) = c + ψ0,0(s)+ ψ0,1

(
s

|s|
) |s|p

1+ |s|p if s �= 0 and ψ0(0) = ψ0,0(0)
}
,

(14)

where Sm×n−1 denotes the (mn − 1)-dimensional unit sphere in R
m×n. Then

βRR
m×n is homeomorphic to the unit ball B(0, 1) ⊂ R

m×n via the mapping
d : Rm×n → B(0, 1), d(s) := s/(1 + |s|) for all s ∈ R

m×n. Note that d(Rm×n) is
dense in B(0, 1).

The following proposition from [24] explicitly characterizes the set of DiPerna-
Majda measures DM

p

R(Ω;Rm×n).

Proposition 1 Let Ω ⊂ R
n be a bounded open domain such that |∂Ω | = 0, R

be a separable complete subring of the ring of all continuous bounded functions on
R

m×n and (σ, ν̂) ∈ M (Ω̄) × L∞w (Ω̄, σ ;M (βRR
m×n)) and 1 ≤ p < +∞. Then

the following two statements are equivalent with each other:
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(i) the pair (σ, ν̂) is the DiPerna-Majda measure, i.e. (σ, ν̂) ∈ DM
p

R(Ω;Rm×n),
(ii) The following properties are satisfied simultaneously:

1. σ is positive,
2. σν̂ ∈ M (Ω̄) defined by σν̂(dx) = (

∫
Rm×n ν̂x(ds))σ (dx) is absolutely

continuous with respect to the Lebesgue measure (dσν̂ will denote its
density),

3. for a.a. x ∈ Ω it holds

∫
Rm×n

ν̂x(ds) > 0, dσν̂ (x) =
(∫

Rm×n

ν̂x(ds)

1+ |s|p
)−1 ∫

Rm×n

ν̂x(ds) ,

4. for σ -a.a. x ∈ Ω̄ it holds

ν̂x ≥ 0,
∫
βRRm×n

ν̂x(ds) = 1 .

Remark 1 Consider a metrizable compactification βRR
m×n of R

m×n and the
corresponding separable complete closed ring R with its dense subset {ψk}k∈N.
We take a bounded continuous function ψ : R

m×n → R, ψ �∈ R and take a
closure (in the Chebyshev norm) of all the products of elements from {ψ}∪{ψk}k∈N.
The corresponding ring is again separable and the corresponding compactification
is metrizable but strictly finer than βRR

m×n.

2 Anisotropic Parametrized Measures Generated by Pairs of
Sequences

This section is devoted to a new tools which might be seen as a multiscale
oscillation/concentration measures. It is a generalization of the approach introduced
in [32] where only oscillations were taken into account. We also wish to mention
that if {uk}k∈N is bounded in W 1,p(Ω;Rm) for 1 < p < ∞ then (at least for a
nonrelabeled subsequence) the Young measure generated by the pair {(uk,∇uk)}
is ξx(d(r, s)) = δu(x)(dr)νx(ds) for almost all x ∈ Ω . Here u is the weak limit
of {uk}k∈N in W 1,p(Ω;Rm) and {νx}x∈Ω is the Young measure generated by
{∇uk}. We refer to [31] for the proof of this statement. If we are interested also in
concentrations of {|∇uk|p} and in their interactions with {uk} the situation is more
involved.

As before, let R be a complete separable ring of continuous bounded functions
R

m×n → R. Similarly, we take a complete separable ring U of continuous
bounded real-valued functions on R

m, and denote the corresponding metrizable
compactification of R

m by βU R
m. We will consider the ring C(Ω̄) ⊗ U ⊗ R,

the subset of bounded continuous functions on Ω × R
m × R

m×n spanned by
{(x, s, r) �→ g(x)f0(r)ψ0(s) : g ∈ C(Ω̄), f0 ∈ U , ψ0 ∈ R}.
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Remark 2 Notice that:

1) βU R
m × βRR

m×n = βU ⊗R(Rm × R
m×n);

2) the linear hull of {g ⊗ f0 ⊗ ψ0 : g ∈ C(Ω̄) , f0 ∈ C(βU ) , ψ0 ∈ C(βRR
m×n)}

is dense in C(Ω̄ × βU R
m × βRR

m×n) due to the Stone-Weierstrass theorem,
where [g ⊗ f0 ⊗ ψ0](x, r, s) := g(x)f0(r)ψ0(s) for all x ∈ Ω̄ , r ∈ R

m, and all
s ∈ R

m×n.

Remark 3 There always exists a separable ring into which a given continuous
bounded function f0 belongs. Indeed, consider a ring U0 of continuous functions
which possess limits if the norm of their argument tends to infinity. This ring to the
one-point compactification of Rm. If f0 does not belong to U0 we construct a larger
ring from f0 and U by taking the closure (in the maximum norm) of all products of
{f0} ∪U .

2.1 Representation of Limits Using Parametrized Measures

The following statement is rather standard generalization of the DiPerna-Majda
Theorem to the anisotropic case. It can be obtained using a special case of the
representation theorem in [16].1

Theorem 1 Let 1 ≤ q ≤ +∞, 1 ≤ p < +∞ and

Y q,p(Ω,U ,R) = {h0(r, s)(1+ |r|q + |s|p) : h0 ∈ C(Ω̄ × βU R
m × βRR

m×n)}.

Moreover, let {uk}k∈N be bounded sequence in Lq(Ω;Rm) and {wk} a bounded
sequence in Lp(Ω;Rm×n). Then there is a subsequence {(uk,wk)} (denoted by the
same indices), a measure σ̂ (dx) such that

(1+ |uk|q + |wk|p)dx ∗
⇀ σ̂,

and probability measures {γ̂x}x∈Ω̄ ∈ L∞w∗(Ω̄,M (βU R
m×βRR

m×n); σ̂ ) such that
for any h ∈ Y q,p(Ω,U ,R) and any g ∈ C(Ω̄) we have

lim
k→∞

∫
Ω

g(x)h0(uk(x),wk(x))(1+ |uk(x)|q + |wk(x)|p)dx →
∫
Ω̄

g(x)

∫
βU Rm×βRRm×n

h0(r, s)γ̂x(dr, ds)σ̂ (dx).

1In [16] it is assumed that the compactification of the entire space R
m × R

m×n is a subset in R
N

for some N ∈ N. This however is not required for the proof in [16] which only uses separability of
the compactification.
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Remark 4 In a sense, the pair (σ̂ , γ̂ ) is an anisotropic (q, p) DiPerna-Majda
measure generated by the sequence {(uk,wk)}, generalizing the isotropic case
p = q . However, while this approach is a rather intuitive generalization of
standard DiPerna-Majda measures, it has a drawback: Several extremely simple
and often prototypical choices for the integrands which we would like to use in
applications are not admissible. For instance, h(x, r, s) := |s|p never is an element
of Y q,p(Ω,U ,R). Indeed, the limit of h0(x, r, s) := |s|p(1 + |r|q + |s|p)−1 is 1
as |s| → ∞ for fixed r , and it is 0 as |s| → ∞ for fixed r . If h0 was continuous on
product of compactifications, for any (r, s) ∈ βU \Rm×βR \Rm×n we would have
h0(r, s) = limrn→r,rn∈Rm h0(rn, s) = 0 and h0(r, s) = limsn→s,sn→Rm×n h0(r, sn) =
1, a contradiction. Hence, this function h0 does not have a continuous extension to
the compactification βU × βR of Rm × R

m×n. Similarly, h(x, r, s) := |r|q is not
admissible, either. Note that this problem is completely independent of the choice
of compactifications.

In view of the issue pointed out in Remark 4, we will not use Theorem 1 and
its class of anisotropic DiPerna-Majda measures below. Instead, our next statement
provides an alternative approach which in particular does allow integrands of the
form h(x, r, s) := |s|p.

Theorem 2 Let 1 ≤ q ≤ +∞ and 1 ≤ p < +∞. Let {uk}k∈N be bounded
sequence in Lq(Ω;Rm) and {wk} a bounded sequence in Lp(Ω;Rm×n). Then there
is a (non-relabeled) subsequence {(uk,wk)}, a DiPerna-Majda measure (σ, ν̂) ∈
DM

p

R(Ω;Rm×n) and μ̂ ∈ Y (Ω̄×βRR
m×n; βU R

m), such that for every f0 ∈ U ,
every ψ0 ∈ R and every g ∈ C(Ω̄)

lim
k→∞

∫
Ω

g(x)f0(uk(x))ψ(wk(x)) dx

=
∫
Ω̄

∫
βRRm×n

∫
βU Rm

g(x)f0(r)ψ0(s)μ̂s,x(dr)ν̂x(ds)σ (dx) ,
(15)

where ψ(s) := ψ0(s)(1 + |s|p). Moreover, measure (σ, ν̂) is generated by {wk}.
Proof Due to separability of U , R and of C(Ω̄) there is a (non-relabeled)
subsequence of {(uk,wk)} such that for all [g ⊗ f0 ⊗ ψ0] ∈ C(Ω̄)× C(βU R

m)×
C(βRR

m×n) and ψ(s) := ψ0(s)(1+ |s|p)

lim
k→∞

∫
Ω

g(x)f0(uk(x))ψ(wk(x)) dx = 〈Λ, g ⊗ f0 ⊗ ψ0〉 , (16)

for some Λ ∈M (Ω̄ × βU R
m × βRR

m×n).
We further define T̂Λ : U × R → C(Ω̄)∗ = M (Ω̄) by

〈
T̂Λ(f0, ψ0), g

〉
:=

〈Λ, g ⊗ f0 ⊗ ψ0〉. Let σ ∈M (Ω̄) be the weak* limit of {1+|wk|p)}. Then we see
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that due to (16)

∣∣∣
〈
T̂Λ(f0, ψ0), g

〉 ∣∣∣ = | 〈Λ, g ⊗ f0 ⊗ ψ0〉 | ≤ ‖f0‖C(Rm)‖ψ0‖C(Rm×n)

∫
Ω̄

g(x) σ(dx) .

(17)

This means that T̂Λ(f0, ψ0) is absolutely continuous with respect to σ and by the
Radon-Nikodým theorem there is TΛ : U ×R → L1(Ω̄; σ) such that for any Borel
subset ω ⊂ Ω̄ we get T̂Λ(f0, ψ0)(ω) =

∫
ω TΛ(f0, ψ0)(x)σ (dx). Consequently, the

right-hand side of (16) can be written as
∫
Ω̄
TΛ(f0, ψ0)(x)g(x)σ (dx).

As U × R is separable, βU R
m × βRR

m×n is metrizable and separable (with
R

m × R
m×n a dense subset) and σ is a regular measure. Hence, the linear span of

C(Ω̄) ⊗ C(βU R
m) ⊗ C(βRR

m×n) is dense in L1(Ω̄, σ ;C(βU R
m × βRR

m×n))
[35, Thm. 1.5.25]. Because of this and (17), Λ can be continuously extended to a
continuous linear functional on the space L1(Ω̄, σ ;C(βU R

m × βRR
m×n)); how-

ever, the dual of this space is isometrically isomorphic to L∞w (Ω̄, σ ;M (βU R
m ×

βRR
m×n)). Arguing as in [33, p. 133] we get that there is a family λ := {λx}x∈Ω̄

of probability measures on βU R
m × βRR

m×n which is σ -weak* measurable, that
is to say, for any z ∈ C(βU R

m × βRR
m×n), the mapping Ω̄ → R : x �→∫

βU Rm×βRRm×n z(r, s)λx(drds) is σ -measurable in the usual sense. Moreover, for

σ -almost all x ∈ Ω̄ it holds that

TΛ(f0, ψ0)(x) =
∫
βU Rm×βRRm×n

f0(r)ψ0(s)λx(drds) . (18)

Altogether, we see that (16) can be rewritten as

lim
k→∞

∫
Ω

g(x)f0(uk(x))ψ(wk(x)) dx

=
∫
Ω̄

g(x)

∫
βU Rm×βRRm×n

f0(r)ψ0(s)λx(drds)σ (dx) . (19)

Applying the slicing-measure decomposition (e.g., [13, Theorem 1.45]) to λx , we
write λx(drds) = μ̂s,x(dr)ν̂x(ds), with a probability measure μ̂s,x on βU R

m for
each pair (s, x) and a probability measure ν̂x on βRR

m×n for each x.
Plugging this decomposition into (19) and testing it with f0 := 1, we get

lim
k→∞

∫
Ω

g(x)ψ(wk(x)) dx =
∫
Ω̄

g(x)

∫
βRRm×n

ψ0(s)ν̂x(ds)σ (dx) . (20)

This means that (σ, ν̂) is the DiPerna-Majda measure generated by {wk} [9]. ��
In the situation of Theorem 2, passing to a subsequence (not relabeled) if

necessary, we may assume in addition that {(uk,wk)} generates the (classical)
Young measure ξx . Using the slicing-measure decomposition [12, Thm. 1.5.1] as
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before, we can always decompose ξx(d(r, s)) = μx,s(dr)νx(ds), so that

∫
Ω

g(x)f0(uk)ψ0(wk) dx →
∫
Ω

∫
Rm×Rm×n

g(x)f0(r)ψ0(s) ξx(d(r, s))dx

=
∫
Ω

∫
Rm×n

∫
Rm

g(x)f0(r)ψ0(s) μx,s(dr)νx(ds)dx,

in particular for every f0 ∈ U , every ψ0 ∈ R and every g ∈ C(Ω̄). The link
between (μ, ν) and (μ̂, ν̂) is the following:

Corollary 1 In the situation of Theorem 2, let ξx(d(r, s)) = μx,s(dr)νx(ds) be the

Young measure generated by {(uk,wk)}. Then dx =
(∫

Rm×n
1

1+|t |p ν̂x(dt)
)
σ(dx),

and for a.e. x ∈ Ω ,

νx(ds) =
(∫

Rm×n

1

1+ |t|p ν̂x(dt)
)−1

ν̂x(ds)

1+ |s|p (21)

(this is actually the well known connection between the DiPerna-Majda-measure
and the associated Young measure) and

μx,s = μ̂x,s for ν̂x -a.e. s ∈ R
m×n (22)

Proof In the following, let ψ0 ∈ C0(R
m×n), i.e., ψ0 ∈ R with the added property

that ψ0(s) = 0 for every s ∈ βRR
m×n \ Rm×n. Consequently, ψ(s) := ψ0(s)(1 +

|s|p) satisfies (1 + |s|p)−1ψ(s) → 0 as |s| → ∞ (s ∈ R
m×n) and ψ(s)

1+|s|p = 0 for

s ∈ βRR
m×n \Rm×n. In addition, let g ∈ C(Ω̄) and f0 ∈ U . From (19), also using

the decomposition λx(drds) = μ̂s,x(dr)ν̂x(ds), we get that

lim
k→∞

∫
Ω

g(x)f0(uk(x))ψ(wk(x)) dx

=
∫
Ω̄

g(x)

∫
Rm×n

∫
βU Rm

f0(r)μ̂s,x(dr)
ψ(s)ν̂x (ds)

1+ |s|p σ(dx) . (23)

Moreover, since f0 is bounded, {wk} is bounded in Lp and ψ has less than p-
growth, the left hand side can be expressed using the Young measure ξx(d(r, s)) =
μx,s(dr)νx(ds) generated by {(uk,wk)}:

lim
k→∞

∫
Ω

g(x)f0(uk(x))ψ(wk(x)) dx=
∫
Ω

g(x)

∫
Rm×n

∫
Rm

f0(r)μs,x (dr)ψ(s)νx(ds)dx .

(24)

Since (σ, ν̂) is a DiPerna-Majda measure (the one generated by {wk}), we in
particular know that the density of the Lebesgue measure with respect to σ is
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given by

dL n

dσ
(x) =

∫
Rm×n

ν̂x(ds)

1+ |s|p ,

cf. Proposition 1 (ii). Hence, we can also write the outer integral on right hand side
of (24) as an integral with respect to σ , and then compare it to the right hand side
of (23). Since g is arbitrary, this implies that for σ -a.e. x ∈ Ω ,

( ∫
Rm×n

∫
Rm

f0(r)μs,x(dr)ψ(s)νx(ds)
)( ∫

Rm×n

ν̂x(dt)

1+ |t|p
)

=
∫
Rm×n

∫
βU Rm

f0(r)μ̂s,x(dr)
ψ(s)ν̂x(ds)

1+ |s|p .

(25)

Here, also notice that it is enough to state (25) for a.e. x ∈ Ω , because L n is
absolutely continuous with respect to σ and

∫
Rm×n

ν̂x (dt )
1+|t |p = 0 for σ s -a.e. x ∈ Ω̄ .

Using the probability measure given by the right hand side of (21), i.e.,

νx(ds) :=
( ∫

Rm×n

ν̂x(dt)

1+ |t|p
)−1 ν̂x(ds)

1+ |s|p ,

we see that (25) is equivalent to

∫
Rm×n

∫
Rm

f0(r)μs,x(dr)ψ(s)νx(ds)=
∫
Rm×n

∫
βU Rm

f0(r)μ̂s,x(dr)ψ(s)ν̃x(ds) .

(26)

Since (26) holds for all ψ0 ∈ C0(R
m×n) (and therefore all ψ with less than p-

growth, in particular all bounded ψ) and μs,x and μ̂s,x are probability measures,
choosing f0 ≡ 1 ∈ U in (26) yields that νx = ν̃x , i.e., (21). Finally, replacing ν̃x by
νx in (26), and using that the latter holds in particular for all bounded ψ ∈ C(Rm×n)
and all f0 ∈ C0(R

m) ⊂ U , we infer (22).

Remark 5 In the situation of Corollary 1, suppose in addition that uk → u in Lq

for some q ≥ 1 (for instance by compact embedding, if {uk} is bounded in W 1,p).
We recall that in this case, for the Young measure ξx(d(r, s)) = μx,s(dr)νx(ds)
generated by {(uk,wk} we have μx,s = δu(x) for a.e. x ∈ Ω (in particular
independent of s, cf. [31, Proposition 6.13], e.g.). Consequently, (22) implies that

μ̂x,s = δu(x) for a.e. x ∈ Ω and ν̂x -a.e. s ∈ R
m×n (27)

Remark 6 It is left to the interested reader to show that if uk → u in C(Ω̄;Rm) for
k → ∞ then μ̂s,x = δu(x) for σ -a.e. x ∈ Ω̄ . Also, μ̂s,x is then supported only on
R

m, so it is independent of the choice of the compactification βU R
m.
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The next statement is similar to Theorem 2, but now we consider the limits of the
sequence

∫
Ω
f0(uk)ψ0(wk)(1+|uk|q) dx where f0 ∈ U , ψ0 ∈ R. In particular, the

integrand |uk|q will thus be admissible. Its proof can easily be deduced by adapting
the proof of Theorem 2, essentially interchanging the role of the two sequences.

Theorem 3 Let 1 ≤ q < +∞ and 1 ≤ p ≤ +∞. Let {uk}k∈N be bounded
sequence in Lq(Ω;Rm) and {wk} a bounded sequence in Lp(Ω;Rm×n). Then there
is a (non-relabeled) subsequence {(uk,wk)}, a positive measure σ ∗ ∈ M (Ω̄) and
parametrized probability measures ν̂∗ ∈ Y (Ω̄; βRR

m×n) (defined σ ∗-a.e.) and
μ̂∗ ∈ Y (Ω̄×βRR

m×n; βU R
m) (defined σ ∗ ⊗ ν̂∗x -a.e.) such that for every f0 ∈ U ,

every ψ0 ∈ R and every g ∈ C(Ω̄)

lim
k→∞

∫
Ω

g(x)f (uk(x))ψ0(wk(x)) dx

=
∫
Ω̄

∫
βRRm×n

∫
βU Rm

g(x)f0(r)ψ0(s)μ̂
∗
s,x(dr)ν̂

∗
x (ds)σ

∗(dx) ,
(28)

where f (r) := f0(r)(1 + |r|q). Moreover, (σ ∗, μ̂∗x) ∈ DM
q

U (Ω̄;Rm) is the the

DiPerna-Majda measure generated by {uk}, where μ̂∗x is given as follows:

∫
βU Rm

f0(r)μ̂∗x(dr) =
∫
βRRm×n

∫
βU Rm

f0(r)μ̂
∗
s,x(dr)ν̂

∗
x (ds) (29)

for all f0 ∈ U and σ ∗-a.e. x ∈ Ω̄ .

Analogously to Corollary 1, we have

Corollary 2 In the situation of Theorem 3, let ξx(d(r, s)) = μx,s(dr)νx(ds) be the
Young measure generated by {(uk,wk)}. Then

dx =
(∫

βRRm×n

∫
Rm

1

1+ |z|q μ̂
∗
x,t (dz) ν̂

∗
x (dt)

)
σ ∗(dx),

and for a.e. x ∈ Ω ,

νx(ds) =
(∫

βRRm×n

∫
Rm

1

1+ |z|q μ̂
∗
x,t (dz)ν̂

∗
x (dt)

)−1 (∫
Rm

1

1+ |z|q μ̂
∗
x,s(dz)

)
ν̂∗x (ds),

(30)

μx,s(dr) =
(∫

Rm

1

1+ |z|q μ̂
∗
x,s(dz)

)−1
μ̂x,s(dr)

1 + |r|q for ν̂x-a.e. s ∈ βRR
m×n.

(31)
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Analogous to the case of Young measures or DiPerna-Majda-measures, we
say that (σ, ν̂, μ̂) [or (σ ∗, ν̂∗, μ̂∗), respectively] is generated by {(uk,wk)} when-
ever (15) [(28)] holds for all (g, f0, ψ0) ∈ C(Ω̄)×U ×R.

Theorems 2 and 3 can be combined, leading to the following statement. It
provides a representation for limits of rather general nonlinear functionals along
a given sequence. The suitable class of integrands is

H
q,p(Ω,U ,R) =

{
h

∣∣∣∣∣
h(x, r, s) = h

(1)
0 (x, r, s)(1+ |s|p)+ h

(2)
0 (x, r, s)(1+ |r|q)

h
(1)
0 , h

(2)
0 ∈ C(Ω̄ × βU R

m × βRR
m×n)

}
.

(32)

According to Remark 2 the linear hull of {g ⊗ f0 ⊗ ψ0 : g ∈ C(Ω̄) , f0 ∈
C(βU ) , ψ0 ∈ C(βRR

m×n)} is dense in C(Ω̄ × βU R
m × βRR

m×n) and we have
the following statement.

Theorem 4 (Representation Theorem) Let 1 ≤ q < +∞ and 1 ≤ p < +∞.
Let {uk}k∈N be bounded sequence in Lq(Ω;Rm) and {wk} a bounded sequence in
Lp(Ω;Rm×n). Then there is a (non-relabeled) subsequence {(uk,wk)} generating
the measures (σ, ν̂, μ̂) and (σ ∗, ν̂∗, μ̂∗) (in the sense of (15) and (28), respectively),
and in addition, for every h

(1)
0 , h

(2)
0 ∈ C(Ω̄ × βU R

m × βRR
m×n),

lim
k→∞

∫
Ω

(
h
(1)
0 (x, uk,wk)(1+ |wk|p)+ h

(2)
0 (x, uk,wk)(1+ |uk|q))

)
dx

=
∫
Ω̄

∫
βRRm×n

∫
βU Rm

h
(1)
0 (x, r, s)μ̂s,x(dr)ν̂x(ds)σ (dx)

+
∫
Ω̄

∫
βRRm×n

∫
βU Rm

h
(2)
0 (x, r, s)μ̂∗s,x(dr)ν̂∗x (ds)σ ∗(dx) .

(33)

Remark 7 The cases p = ∞ and q = ∞ are excluded in Theorem 4, but as long as
only one of the two is infinite, either Theorems 2 or 3 can then be used instead.

Remark 8 As a special case, we recover a representation of the limit for functionals
with integrands in Y q,p(Ω;U ;R) as in Theorem 1, since

h̃0(x, r, s)(1+ |r|q + |s|p) = h0(x, r, s)(1+ |r|q)+ h0(x, r, s)(1+ |s|p),

where

h0(x, r, s) := 1+ |r|q + |s|p
2+ |r|q + |s|p h̃0(x, r, s)
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The quotient which appears here does not matter, because (r, s) �→ 1+|r |q+|s|p
2+|r |q+|s|p

converges to the constant 1 as |(r, s)| → ∞, and therefore it is an element of
U ⊗R = C(βU R

m × βRR
m×n).

Remark 9 Given a sequence {(uk,wk)}, the generated measure (σ, ν̂, μ̂) is uniquely
determined by (15) in the following sense:

1) σ is unique as measure on Ω̄ ;
2) ν̂x is uniquely defined for σ -almost every x ∈ Ω̄;
3) there exists a set E ⊂ Ω̄ with full σ -measure such that for every x ∈ E and

ν̂x-a.e. s ∈ βRR
m×n, μs,x ∈ (C(βU R

m))∗ is uniquely defined.

A proof can be obtained by checking that if the right hand side of (15) coincides
for two measure triples and all admissible test functions, the measure triples already
must be equal in the sense outlined above. In particular, the uniqueness relies on the
fact that both ν̂x and μs,x are probability measures, which also makes them unique
as the slicing decomposition of λx in the proof of Theorem 2 (otherwise, arbitrary
constants factors could be moved from one to the other and only their “product” λx
would be unique). We omit the details.

The same holds when we deal with (σ ∗, ν̂∗, μ̂∗) instead of (σ, ν̂, μ̂) with obvious
modifications.

Remark 10 Notice that (σ, ν̂, μ̂) and (σ ∗, ν̂∗, μ̂∗) are not independent, because
they share the same underlying Young measure ξx(d(r, s)) = μx,s(dr)νx(ds), see
Corollary 1 and Corollary 2. Using that, we get yet another representation: For
h ∈ H

q,p(Ω,U ,R) (cf. (32)),

lim
k→∞

∫
Ω

h(x, uk,wk) dx

=
∫
Ω̄

∫
βRRm×n\Rm×n

∫
βU Rm

h
(1)
0 (x, r, s)μ̂s,x(dr)ν̂x(ds)σ (dx)

+
∫
Ω̄

∫
βRRm×n

∫
βU Rm\Rm

h
(2)
0 (x, r, s)μ̂∗s,x(dr)ν̂∗x (ds)σ ∗(dx)

+
∫
Ω

∫
Rm×n

∫
Rm

h(x, r, s)μs,x(dr)νx(ds)dx.

(34)

Remark 11 If either {|uk|q} or {|wk|q} is equi-integrable, then (34) can be further
simplified. For instance, if {uk} is bounded in Lq̃ for some q̃ > q), then {|uk|q} is
equi-integrable, and it that case, it is known (e.g., see [33, Lemma 3.2.14]) that for
the associated DiPerna-Majda measure (σ ∗, μ̂∗x), we have that σ ∗ is absolutely
continuous with respect to L n and μ̂∗x(βU R

m \ R
m) = 0 for a.e. x ∈ Ω .

Due to (29), the latter implies that μ̂∗x,s(βU R
m \ Rm) = 0 for a.e. x ∈ Ω and
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ν̂∗x -a.e. s ∈ βRR
m×n. Accordingly, for h ∈ H

q,p(Ω,U ,R) (cf. (32)),

lim
k→∞

∫
Ω

h(x, uk,wk) dx =
∫
Ω̄

∫
βRRm×n\Rm×n

∫
βU Rm

h
(1)
0 (x, r, s)μ̂s,x (dr)ν̂x (ds)σ (dx)

+
∫
Ω

∫
Rm×n

∫
Rm

h(x, r, s)μs,x (dr)νx(ds)dx. (35)

2.2 Analysis for Couples {(uk,∇uk)}

For the rest of the article, we are mainly interested in sequences of the form
(uk,wk) = (uk,∇uk), with a bounded sequence {uk} ⊂ W 1,p(Ω;Rm), 1 ≤ p <

∞, and integrands h ∈ H
q,p(Ω,U ,R) (cf. (32)) for some q < p∗. Here, p∗ is the

exponent of the Sobolev embedding, i.e.,

p∗ :=
{
pn/(n − p) if 1 ≤ p < n,

+∞ otherwise.

In particular, such integrands satisfy

|h(x, r, s)| ≤ C(1 + |r|q + |s|p) for all x ∈ Ω̄ , r ∈ R
m, s ∈ R

m×n, (36)

with a constant C ≥ 0.
Since we assume that q < p∗, we have that uk → u strongly in Lq(Ω;Rm). In

this case, the Young measure generated by {uk}k∈N is just {δu(x)}x∈Ω ; cf. e.g [31].
Hence, we can represent limits using (35) and μx,s = δu(x) for all s. This gives the
following result.

Theorem 5 Let (uk,wk) := (uk,∇uk), with a bounded sequence {uk} ⊂
W 1,p(Ω;Rm), 1 ≤ p <∞, such that uk ⇀ u in W 1,p(Ω;Rm), {(∇uk)} generates
the (classical) Young measure νx in the sense of (9) and {(uk,∇uk)} generates
the measure (σ, ν̂, μ̂) in the sense of (15). Then for every h ∈ H

q,p(Ω,U ,R)

(cf. (32)),

lim
k→∞

∫
Ω

h(x, uk(x),∇uk(x)) dx

=
∫
Ω

∫
Rm×n

h(x, u(x), s)νx(ds) dx

+
∫
Ω̄

∫
βRRm×n\Rm×n

∫
βU Rm

h
(1)
0 (x, r, s)μ̂s,x(dr)ν̂x(ds)σ (dx) . (37)
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Remark 12 If h(x, u(x), ·) is quasiconvex, we can further calculate in (37) as
follows:

∫
Ω

∫
Rm×n

h(x, u(x), s)νx(ds) dx ≥
∫
Ω

h(x, u(x),∇u(x)) dx . (38)

Here we exploit the fact that ν is generated by the sequence of gradients {∇uk}
and therefore it fulfills the mentioned Jensen-like inequality due to the well-
known characterization of gradient Young measures by Kinderlehrer and Pedregal
[18, 19, 31].

Remark 13 If p > n, W 1,p(Ω;Rm) is compactly embedded in C(Ω̄;Rm), and
therefore uk → u uniformly on Ω̄ . In view of Remark 6, we then have that μ̂s,x =
δu(x) for σ -a.e. x ∈ Ω̄ , for ν̂x -a.e. s ∈ βRR

m×n. Hence,

∫
βU Rm

h
(1)
0 (x, r, s)μ̂s,x(dr) = h

(1)
0 (x, u(x), s)

in the right hand side of (37).

Although an explicit characterization of measures (σ, ν̂, μ̂) generated by a
sequence of pairs {(uk,∇uk)}k∈N is not currently available, we can at least char-
acterize DiPerna-Majda measures generated by gradients. The following result can
be found in [17] and its extension in [23]. Here and in the sequel dσ denotes density
of the absolutely continuous part of σ with respect to the Lebesgue measure L n.

Theorem 6 Let Ω ⊂ R
n be a bounded domain with the extension property in W 1,p,

1 < p < +∞ and (σ, ν̂) ∈ DM
p

R(Ω;Rm×n). Then then there is a bounded
sequence {uk}k∈N ⊂ W 1,p(Ω;Rm) such that uk = uj on ∂Ω for any j, k ∈ N and
{∇uk}k∈N generates (σ, ν̂) if and only if the following three conditions hold:

∃u ∈ W 1,p(Ω;Rm) : for a.a. x ∈ Ω: ∇u(x) = dσ (x)

∫
βRRm×n

s

1+ |s|p ν̂x(ds) ,
(39)

for almost all x ∈ Ω and for all ψ0 ∈ R and ψ(s) := (1+ |s|p)ψ0(s),

Qψ(∇u(x)) ≤ dσ (x)

∫
βRRm×n

ψ0(s)ν̂x(ds) , (40)

for σ -almost all x ∈ Ω̄ and all ψ0 ∈ R with Qψ > −∞, where ψ(s) := (1 +
|s|p)ψ0(s),

0 ≤
∫
βRRm×n\Rm×n

ψ0(s)ν̂x(ds) . (41)
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Remark 14 Inequality (40) can be written in terms of ν = {νx}, the Young measure
generated by {uk}, as follows [18]: There exists a zero-measure set ω ⊂ Ω such that
for every x ∈ Ω \ ω

ψ(∇u(x)) ≤
∫
Rm×n

ψ(s)νx(ds) , (42)

for all ψ : Rm×n → R quasiconvex and such that |ψ| ≤ C(1 + | · |p) for some
C > 0.

2.3 Examples

Below, we give a couple of examples of sequences and measures from Theorem 2
generated by them (Fig. 1).

Example 3 Let uk ∈ W 1,1(0, 2) be such that

uk(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ 1− 1/k,

kx − k + 1 if 1− 1/k ≤ x ≤ 1,

−2kx + 2k + 1 if 1 ≤ x ≤ 1+ 1/k,

−1 if 1+ 1/k ≤ x ≤ 2.

Let wk := u′k , i.e.,

wk(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ 1− 1/k,

k if 1− 1/k ≤ x ≤ 1,

−2k if 1 ≤ x ≤ 1+ 1/k,

0 if 1+ 1/k ≤ x ≤ 2.

x

ku

1−1/

1+1/

−1

1

1+1/

k

−2k

kk

k

u

1−1/  k

k

0 0
2 2

x

Fig. 1 Sequence {uk, u′k}k∈N from Example 3
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Let f0 ∈ C(R) be bounded with its primitive denoted by F , i.e., F ′ = f0,
g ∈ C(Ω̄), and let ψ = ψ0(1 + | · |) where ψ0 ∈ R corresponding to the two-
point (or sphere) compactification βRR = R ∪ {±∞}, i.e., ψ0 ∈ C(R) is such that
lims→±∞ ψ0(s) =: ψ0(±∞) ∈ R. Then

lim
k→∞

∫ 2

0
f0(uk(x))ψ(wk(x))g(x) dx

= lim
k→∞

( ∫ 1−1/k

0
f0(0)ψ0(0)g(x) dx +

∫ 2

1+1/k
f0(−1)ψ0(0)g(x) dx

)

+ lim
k→∞

( ∫ 1

1−1/k
f0(kx − k + 1)ψ0(k)(1+ k)g(x) dx

+
∫ 1+1/k

1
f0(−2kx + 2k + 1)ψ0(−2k)(1+ 2k)g(x) dx

)

= ψ0(0)(f0(0)
∫ 1

0
g(x) dx + f0(−1)

∫ 2

1
g(x) dx)

+ lim
k→∞

( ∫ 1

1−1/k
[F(kx − k + 1)]′ψ0(k)

(1+ k)

k
g(x) dx

+
∫ 1+1/k

1
[F(−2kx + 2k + 1)]′ψ0(−2k)

(1+ 2k)

−2k
g(x) dx

)

= f0(0)ψ0(0)
∫ 1

0
g(x) dx + f0(−1)ψ0(0)

∫ 2

1
g(x) dx

+ g(1)(F (1)− F(0))ψ0(+∞)+ g(1)(F (1)− F(−1))ψ0(−∞)

=
∫ 2

0

∫
βRR

∫
βU R

g(x)f0(r)ψ0(s)μ̂s,x(dr)ν̂x(ds)σ (dx) ,

where σ = L 1 + 3δ1,

ν̂x =
{
δ0 if x ∈ [0, 1) ∪ (1; 2],
1
3δ∞ + 2

3δ−∞ if x = 1,

and

μ̂s,x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ0 if 0 ≤ x < 1,

δ−1 if 1 < x ≤ 2,

L 1�(0,1) if s = +∞ and x = 1,
1
2L

1�(−1,1) if s = −∞ and x = 1.
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ku

−1

0 0
2 2

x x1−1/k 1+1/k
k

−k

uk

1−1/k 1+1/k

Fig. 2 Sequence {uk, u′k}k∈N from Example 4

Changing the previous sequence slightly we get the same measure (σ, ν̂), the
same limit of {uk} but a different measure μ̂.

Example 4 Let uk ∈ W 1,1(0, 2) be such that (see also Fig. 2)

uk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ 1− 2/k,

−kx + k − 2 if 1− 2/k ≤ x ≤ 1− 1/k,

kx − k if 1− 1/k ≤ x ≤ 1,

−kx + k if 1 ≤ x ≤ 1+ 1/k,

−1 if 1+ 1/k ≤ x ≤ 2.

Let wk := u′k , i.e.,

wk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ x ≤ 1− 2/k,

−k if 1− 2/k ≤ x ≤ 1− 1/k,

k if 1− 1/k ≤ x ≤ 1,

−k if 1 ≤ x ≤ 1+ 1/k,

0 if 1+ 1/k ≤ x ≤ 2.

Then a computation analogous to the one above shows that
σ = L 1 + 3δ1,

ν̂x =
{
δ0 if x ∈ [0, 1) ∪ (1; 2],
1
3δ∞ + 2

3δ−∞ if x = 1,

and

μ̂s,x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ0 if 0 ≤ x < 1,

δ−1 if 1 < x ≤ 2,

L 1�(−1,0) if s = −∞ and x = 1,

L 1�(−1,0) if s = +∞ and x = 1,
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These two examples show that μ̂ captures behavior of {uk} and cannot be read
off either from (σ, ν̂) and/or from u.

Example 5 In the next example, we just set uk := u, where u(x) := 0 if x ∈ [0, 1]
and u(x) = −1 if x ∈ (1; 2], and {wk}k∈N for all k ∈ N as before. This gives us

lim
k→∞

∫ 2

0
f0(u(x))ψ(wk(x))g(x) dx

= lim
k→∞

( ∫ 1−1/k

0
f0(0)ψ0(0)g(x) dx +

∫ 2

1+1/k
f0(−1)ψ0(0)g(x) dx

)

+ lim
k→∞

(∫ 1

1−1/k
f0(0)ψ0(k)(1+ k)g(x) dx+

∫ 1+1/k

1
f0(−1)ψ0(−2k)(1+2k)g(x) dx

)

= f0(0)ψ0(0)
∫ 1

0
g(x) dx + f0(−1)ψ0(0)

∫ 2

1
g(x) dx

+ lim
k→∞

(
k

∫ 1

1−1/k
f0(0)ψ0(k)

1+k
k

g(x) dx+k

∫ 1+1/k

1
f0(−1)ψ0(−2k)

1+2k

k
g(x) dx

)

= f0(0)ψ0(0)
∫ 1

0
g(x) dx + f0(−1)ψ0(0)

∫ 2

1
g(x) dx

+ g(1)f0(0)ψ0(+∞)+ 2g(1)f0(−1)ψ0(−∞))

=
∫ 2

0

∫
βRR

∫
βU

g(x)f0(r)ψ0(s)νs,x(dr)ν̂x (ds)σ (dx) ,

where σ = L 1 + 3δ1,

ν̂x =
{
δ0 if x ∈ [0, 1) ∪ (1; 2],
1
3δ∞ + 2

3δ−∞ if x = 1,

and

μ̂s,x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ0 if 0 ≤ x < 1,

δ0 if x = 1 and s = +∞,

δ−1 if x = 1 and s = −∞,

δ−1 if 1 < x ≤ 2.

In the example below, we calculate the measure μ̂ of a strongly converging
sequence.

Example 6 Let p = 1, consider the one-point compactification βRR = R ∪ {∞}
of R, and let {uk}k∈N ⊂ W 1,1(0, 2), uk ⇀ u, be a sequence of nondecreasing
functions such that uk(0) = 0 and uk(2) = 1 for all k ∈ N. In addition, suppose that
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{u′k}k∈N ⊂ L1(0, 2) converges to zero in measure and it concentrates at x = 1, i.e.,
{u′k} generates (σ, ν̂) ∈ DM

p

R(Ω;Rm×n) given by

σ = L 1 + δ1, ν̂x =
{
δ0 if x ∈ [0, 1) ∪ (1, 2],
δ∞ if x = 1.

Moreover, let α ≥ 0, let f0(r) ∈ C0(R) be such that

f0(r) =
{
rα if 0 ≤ r ≤ 1

1 for r ≥ 1

and let ψ(s) := |s|. As uk is nondecreasing it must always satisfy uk ∈ [0, 1], so
that f0(uk) = uαk , and u′k ≥ 0. Consequently, in view of Theorem 2

lim
k→∞

∫ 2

0
f0(uk(x))ψ(u′k(x)) dx =

∫ 2

0

∫
βRR

∫
βU R

rαμ̂s,x(dr)
s

1+ |s| ν̂x(ds)σ (dx)

=
∫
βU R

rαμ̂∞,1(dr) .

On the other hand,

lim
k→∞

1

α + 1
(uα+1

k (2)− uα+1
k (0)) = lim

k→∞

∫ 2

0

1

α + 1
(uα+1

k (x))′ dx

= lim
k→∞

∫ 2

0
uαk (x)u

′
k(x) dx

=
∫
βU R

rαμ̂∞,1(dr)

= lim
k→∞

∫ uk(2)

uk(0)
rα dr =

∫ 1

0
rα dr .

Since α ≥ 0 is arbitrary and the polynomials are dense in the continuous functions
on all compact subsets of R, we infer that

μ̂s,x =
{
δu(x) if x ∈ [0, 1) ∪ (1, 2],
L 1�(0,1) if x = 1 and s = ∞.

The measure μ̂∞,1 is supported on (0, 1) because u jumps between zero and one at
x = 1. However, notice that particular behavior of {uk} in the vicinity of x = 1 is
not important for the measure.



46 A. Kałamajska et al.

Let us finally identify the measure generated by the {(uk, u′k)} from Example 2
in case of the one-point compactification for the DiPerna-majda measure. Here we
get σ = L + δ0 and

ν̂x =
{
δ0 if x ∈ [−1, 0) ∪ (0; 1],
δ∞ if x = 1,

and

μ̂s,x =

⎧⎪⎪⎨
⎪⎪⎩
δ0 if − 1 ≤ x < 0,

δ1 if 0 < x ≤ 1,

L 1�(0,1) if s =∞ and x = 1.

3 Applications to Weak Lower Semicontinuity in Sobolev
Spaces

We here focus on weak lower semicontinuity of “signed” integral functionals in
W 1,p, i.e., functional whose integrand may have a negative part which has p-growth
in the gradient variable. The case of non-negative integrands (or weaker growth in
the negative direction) is well-known, see e.g. [1].

Throughout this section, let U and R denote rings of bounded continuous func-
tions corresponding to suitable metrizable compactifications βU R

m and βRR
m×n

of Rm and R
m×n, respectively, as before. The choice of these rings can be adapted to

the particular integrand h at hand in the results presented below. Compactifications
by the sphere are sufficiently rich for most practical purposes.

If p > n, we can exploit the embedding of W 1,p(Ω;Rm) into continuous
functions on Ω̄ . Still, even for quasiconvex integrands concentration effects near
the boundary of the domain can prevent lower semicontinuity. However, as it turns
out this is the only remaining obstacle. Unlike in the related result of Ball and Zhang
[5] where small measurable (but otherwise pretty unknown) sets are removed from
the domain, for us it is enough to “peel” away a layer near ∂Ω :

Lemma 1 (Peeling Lemma for p > n) Let Ω ⊂ R
n be a bounded domain with

a boundary of class C1, let ∞ > p > n and let h ∈ H
q,p(Ω,U ,R) (cf. (32)).

Moreover, assume that h(x, r, ·) is quasiconvex for a.e. x ∈ Ω (and therefore all x ∈
Ω̄ , by continuity) and every r ∈ R

m, and let {uk} ⊂ W 1,p(Ω;Rm) be a bounded
sequence with uk ⇀ u in W 1,p(Ω;Rm). Then there exists an increasing sequence
of open set Ωj (possibly depending on the subsequence of {uk}) with boundary of
class C∞, Ω̄j ⊂ Ω and

⋃
j Ωj = Ω such that

lim inf
k→∞

∫
Ωj

h(x, uk(x),∇uk(x)) dx ≥
∫
Ωj

h(x, u(x),∇u(x)) dx.
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Proof We select a subsequence of {uk} so that “lim inf = lim” and such that {(uk)}
generates a Young measure ν, and {(uk,∇uk)} generates a measure (σ, ν̂, μ̂) in the
sense of (15). Now let Ω0 := ∅. For each j , we choose an open set Ωj with smooth
boundary such that

Kj := Ω̄j−1 ∪ {x ∈ Ω : dist(x; ∂Ω) ≥ 1
j
} ⊂ Ωj ⊂ Ω̄j ⊂ Ω

and

σ(∂Ωj ) = 0 (43)

Here, notice that since the distance of the compact set Kj to ∂Ω is positive, we
can find uncountably many pairwise disjoint candidates for Ωj . Since σ is a finite
measure, all but countably many of them must satisfy (43). Clearly, the measure
generated by {(uk,∇uk)} on Ωj coincides with (σ, ν̂, μ̂) on the open set Ωj , and
due to (43) even on Ω̄j . Hence, by Theorem 5 and Remark 13,

lim
k→∞

∫
Ωj

h(x, uk(x),∇uk(x)) dx =
∫
Ωj

∫
Rm×n

h(x, u(x), s)νx(ds) dx

+
∫
Ω̄j

∫
βRRm×n\Rm×n

h
(1)
0 (x, u(x), s)ν̂x (ds)σ (dx)

≥
∫
Ωj

h(x, u(x),∇u(x)) dx.

Here, the inequality above is due to Remark 12 and (41) with ψ0(s) :=
h
(1)
0 (x, u(x), s) (separately applied for each x); for ψ(s) := (1 + |s|p)ψ0(s) and

its quasiconvex hull Qψ we have Qψ > −∞ because h(x, u(x), ·) is quasiconvex
and ψ(s) − h(x, u(x), s) = h

(2)
0 (x, u(x), s)(1+ |u(x)|q) is bounded.

To get lower semicontinuity for all sequences and on the whole domain,
we need additional assumptions. Theorem 6 can be used to obtain weak lower
semicontinuity results along sequences with prescribed boundary data [17]. If we
do not control boundary conditions the situation is more complicated. To the best
of our knowledge, the first results in this direction are due to Meyers [27] who also
deals with higher-order variational problems. However, his condition is stated in
terms of sequences. A refinement was proved in [22], showing that even near the
boundary, the necessary and sufficient conditions for weak lower semicontinuity in
terms of the integrand can be expressed in terms of localized test functions, similar
to quasiconvexity:

Theorem 7 ([22, Thm. 1.6]) Let 1 < p < ∞, Ω ⊂ R
n be a bounded

domain with the C1-boundary. Let h̃ : Ω̄ × R
m×n → R be continuous and

such that h̃(·, s)/(1 + |s|p) is bounded and continuous in Ω̄ , uniformly in s. Then
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J (u) := ∫
Ω
h̃(x,∇u(x)) dx is weakly lower semicontinuous in W 1,p(Ω;Rm) if and

only if the following two conditions hold simultaneously:

(i) h̃(x, ·) is quasiconvex for all x ∈ Ω;
(ii) for every x0 ∈ ∂Ω and for every ε > 0, there exists Cε ≥ 0 such that

∫
D�

h̃(x0,∇ϕ(x)) dx ≥ −ε

∫
D�

|∇ϕ(x)|p dx−Cε for every ϕ ∈ C∞c (B(0, 1);Rm).

Here, D� := {x ∈ B(0, 1); x · � < 0} where � denotes the outer unit normal to ∂Ω

at x0.

Definition 1 (p-Quasisubcritical Growth from Below) If h̃ satisfies (ii) in Theo-
rem 7, we say that it has p-quasisubcritical growth from below (p-qscb) at x0.

With the help of the results of Sect. 2, we can provide an extension of this result to
integrands that also depend on u, at least if p > n:

Theorem 8 Let Ω ⊂ R
n be a bounded domain with a boundary of class C1,

let ∞ > p > n and let h ∈ H
q,p(Ω,U ,R) (cf. (32)). Then, if h(x, r, ·) is

quasiconvex for a.e. x ∈ Ω (and therefore all x ∈ Ω̄ , by continuity) and all
r ∈ R

m and h̃(x, s) := h(x, u(x), s) has p-quasisubcritical growth from below
for all x ∈ ∂Ω and all u ∈ W 1,p(Ω;Rm), w �→ ∫

Ω
h(x,w(x),∇w(x)) dx is

weakly lower semicontinuous in W 1,p(Ω;Rm).

Proof Let uk ⇀ u weakly in W 1,p(Ω;Rm). In view of Remark 13, the measures
generated by (subsequences of) {(u,∇uk)} and {(uk,∇uk)} in the sense of (15)
always coincide. As a consequence of (35) and (37), it therefore suffices to show
that for each u ∈ W 1,p(Ω;Rm) ⊂ C(Ω̄;Rm), w �→ ∫

Ω h(x, u(x),∇w(x)) dx is
weakly lower semicontinuous. The latter follows from Theorem 5.

Remark 15 In Theorem 8, quasiconvexity of h(x, u(x), ·) in Ω and p-qscb of
h(x, u(x), ·) at every x ∈ ∂Ω are also necessary for weak lower semicontinuity.
We omit the details.

As already briefly pointed out in the introduction, the situation becomes significantly
more complicated if p ≤ n. Using our measures to express the limit as in Theorem 5,
we can at least reduce the problem to a property of an integrand without explicit
dependence on u, for each given sequence:

Proposition 2 Let p ≤ n, suppose that h(x, r, ·) is quasiconvex, h ∈
H

q,p(Ω,U ,R), and let {uk} ⊂ W 1,p(Ω;Rm) be a bounded sequence such
that uk ⇀ u and {(uk,∇uk)} generates a measure (σ, ν̂, μ̂) in the sense of (15).
Then

lim inf
k→∞

∫
Ω

h(x, uk,∇uk) dx ≥
∫
Ω

h(x, u,∇u) dx,
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provided that for σ -a.e. x ∈ Ω̄ ,

∫
Ω̄

∫
βRRm×n\Rm×n

h̃(x, s) ν̂x(ds)σ (dx) ≥ 0, (44)

where h̃(x, s) := ∫
βU

h
(1)
0 (x, r, s) μ̂x,s(dr). Here, recall that h(x, r, s) =

h
(1)
0 (x, r, s)(1+ |s|p)+ h

(2)
0 (x, r, s)(1+ |r|q), cf. (32).

Proof This is a straightforward consequence of Theorem 5 and Remark 12.

Remark 16 Given h ∈ H
q,p(Ω,U ,R), h(1)0 (x, r, s) is uniquely determined for

s ∈ βRR
m×n \ Rm×n, but not for s ∈ R

m×n. Of course, (44) actually is only a
condition on the restriction of h(1)0 to Ω̄ × βU R

m × (βRR
m×n \ Rm×n).

4 Concluding Remarks

We have seen that generalized DiPerna-Majda measures introduced here can be
helpful in proofs of weak lower semicontinuity. Other applications are, for example,
in impulsive control problems where the concentration of controls typically results
in discontinuity of the state variable [15]. An open challenging problem is to find
some explicit characterization of generalized Diperna-Majda measures generated
by pairs of functions and their gradients, namely {(uk,∇uk)} ⊂ W 1,p(Ω;Rm) ×
Lp(Ω;Rm×n). This could then help us to find necessary and sufficient conditions
for weak lower semicontinuity of u �→ ∫

Ω h(x, u(x),∇u(x)) dx in W 1,p(Ω;Rm)

for 1 < p < +∞ and for h ∈ H
p.
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16-34894L and 17-04301S. The work of AK was supported by NCN grant 2011/03/N/ST1/00111.

References

1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration.
Mech. Anal. 86, 125–145 (1984)

2. Alibert, J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J.
Convex Anal. 4, 125–145 (1997)

3. Baía, M., Krömer, S., Kružík, M.: Generalized W1,1-Young measures and relaxation of
problems with linear growth. Preprint arXiv:1611.04160v1, submitted (2016)

4. Ball, J.M.: A version of the fundamental theorem for Young measures. In: Rascle, M., Serre,
D., Slemrod, M. (eds.) PDEs and Continuum Models of Phase Transition. Lecture Notes in
Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)



50 A. Kałamajska et al.

5. Ball, J.M., Zhang K.-W.: Lower semicontinuity of multiple integrals and the biting lemma.
Proc. Roy. Soc. Edinburgh 114A, 67–379 (1990)

6. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications.
SIAM Rev. 59, 703–766 (2017)

7. Claeys, M., Henrion, D., Kružík, M.: Semi-definite relaxations for optimal control problems
with oscillations and concentration effects. ESAIM Control Optim. Calc. Var. 23, 95–117
(2017)

8. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)
9. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incom-

pressible fluid equations. Commun. Math. Phys. 108, 667–689 (1987)
10. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1967)
11. Engelking, R.: General topology. Translated from the Polish by the author, 2nd edn. Helder-

mann Verlag, Berlin (1989)
12. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. AMS,

Providence (1990)
13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca

Raton (1992)
14. Fonseca, I., Müller, S., Pedregal, P.: Analysis of concentration and oscillation effects generated

by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)
15. Henrion, D., Kružík, M., Weisser, T.: Optimal control problems with oscillations, concentra-

tions, and discontinuities. In preparation (2017)
16. Kałamajska, A.: On Young measures controlling discontinuous functions. J. Conv. Anal. 13(1),

177–192 (2006)
17. Kałamajska, A., Kružík, M.: Oscillations and concentrations in sequences of gradients. ESAIM

Control Optim. Calc. Var. 14, 71–104 (2008)
18. Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients.

Arch. Ration. Mech. Anal. 115, 329–365 (1991)
19. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev

spaces. J. Geom. Anal. 4, 59–90 (1994)
20. Kozarzewski, P.: On certain compactifcation of an arbitrary subset of Rn and its applications

to DiPerna-Majda measures theory. In preparation
21. Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated

by sequences in W 1,1 and BV . Arch. Ration. Mech. Anal. 197, 539–598 (2010); Erratum 203,
693–700 (2012)

22. Krömer, S.: On the role of lower bounds in characterizations of weak lower semicontinuity of
multiple integrals. Adv. Calc. Var. 3, 387–408 (2010)

23. Krömer, S., Kružík, M.: Oscillations and concentrations in sequences of gradients up to the
boundary. J. Convex Anal. 20, 723–752 (2013)
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What Does Rank-One Convexity
Have to Do with Viscosity Solutions?

Pablo Pedregal

Abstract Relying on Hilbert’s classical theorem for non-negative polynomials as
a main tool, we show that rank-one convex functions for 2 × 2-matrices admit a
decomposition as a sum of a multiple of the determinant and a viscosity solution of
a certain equation.

1 Introduction

The paradigmatic problem in the Calculus of Variations for vector problems is that
of minimizing an integral cost functional of the form

∫
Ω

φ(∇u(x)) dx, u(x) : Ω ⊂ R
N → R

m,N,m > 1, (1)

where structural properties of the density

φ(F) : Rm×N → R

determine fundamental properties of the corresponding cost functional. Such
variational problems are of paramount importance in non-linear elasticity [1, 3, 5]
where they represent non-quadratic internal energies associated with deformations
u of the (hyper)elastic body under consideration, characterized by its own internal
energy density φ. In particular, minimizers of the integral energy in (1) represent
stable states of the body, and so a basic fundamental problem is to understand under
which sets of assumptions, the existence of such equilibrium configurations may be
shown. This job depends on the properties of the energy density φ.
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The way in which one can try to understand the existence of minimizers
in (1) under competing deformations u : Ω ⊂ R

N → R
m complying with

standard Dirichlet-type boundary conditions u − u0 ∈ W
1,p
0 (Ω;Rm) proceeds

through the direct methods of the Calculus of Variations [7], whose main ingredient
is the (sequential) weak lower semicontinuity properties ensuring that the weak
convergence uj ⇀ u in W 1,p(Ω;Rm) implies

∫
Ω

φ(∇u(x)) dx ≤ lim inf
j→∞

∫
Ω

φ(∇uj (x)) dx.

What are the properties of φ guaranteeing this weak lower semicontinuity? This has
been a main concern since the beginning of the discipline. For the scalar case when
either of the two dimensions N or m is unity, it was very well-understood since the
time of Tonelli [17] that convexity of φ was the necessary and sufficient condition
for the weak lower semicontinuity of the corresponding functional. However, it was
Morrey [12, 13], who in the 50’s, realized that for vector problems, when both
dimension N and m are greater than one, the situation could be much more involved.
Convexity was definitely a sufficient condition for weak lower semicontinuity, but
given that this property was incompatible with other physical requirements in non-
linear elasticity [5], more general conditions were to be found.

It was Morrey himself who introduced the concept of quasi convexity which, in
this context, means

∫
Q

φ(F+∇u(x)) dx ≥ φ(F), for all u,Q-periodic, and all F. (2)

Here Q is the unit cube in R
N . This is not the form in which Morrey introduced

quasi convexity , but it can easily be proved to be equivalent to this form. The issue
is, however, far from being settled because, in practice, (2) is almost impossible to
check. Necessary conditions were first sought, and rank-one convexity was shown
(by Morrey) to be the main such condition. A function φ like the integrand in (1) is
said to be rank-one convex if the sections

t �→ φ(F+ ta⊗ n)

are convex functions of the single variable t for all F ∈ R
m×N , a ∈ R

m, n ∈ R
N .

Then important sufficient conditions were given [3] in the form of polyconvexity.
An integrand like φ(F) is said to be polyconvex if

φ(F) = Φ(F,M(F)), M(F), vector of all subdeterminants of F,

and Φ is a convex (in the usual sense) function of all its arguments. This is the main
structural condition that allows for existence theorems in non-linear elasticity [3].
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It was then clear that

convexity  ⇒ polyconvexity  ⇒ quasiconvexity  ⇒ rank−one convexity,

and a lot of collective effort was devoted to distinguishing among all these convexity
notions. As it turns out, (almost) all reverse implications are false. In particular
the last one (whether rank-one convexity is equivalent to quasi convexity) stood
longer as unsolved, until the remarkable counterexample by V. Sverak [16] who
constructed a fourth degree, rank-one convex polynomial that is not quasi convex.
That kind of examples are valid for m ≥ 3, and several attempts to extend it to m = 2
failed [15], so that it is still a main open problem in the field to prove or disprove if
rank-one convexity implies quasi convexity for two-dimensional deformations.

This is the situation in which we would like to place ourselves for this
contribution. Our densities φ : M2×2 → R correspond to the case of mappings
u : Q ⊂ R

2 → R
2. To state our main result, we take into account the

following notation. The letter F is an independent variable with four components
corresponding to its four entries as a 2× 2-matrix. We focus on the function

λ1(X) : R2×2 → R

providing the smallest eigenvalue of the symmetric matrix X. The negative of this
function −λ1 is degenerate elliptic according to Example 1.8 in the celebrated
reference [6]. Our main result is the following.

Theorem 1 The C 2-smooth function φ : M2×2 → R is rank-one convex if and
only if there is a function α : M2×2 → R, such that φ(F) = ψ(F) + α(F)Det F
with ψ a viscosity sub-solution of

−λ1[∇2ψ(F)+ Det F∇2α(F)+∇α(F)⊗ DF+ DF⊗∇α(F)] = 0,

i.e.

λ1[∇2ψ(F)+ Det F∇2α(F)+∇α(F)⊗DF+ DF⊗∇α(F)] ≥ 0,

in every domain where α is smooth.

One may have an impression that those rank-one convex functions for which the
ψ’s in this result are in fact viscosity solutions, instead of just sub-solutions as this
theorem states, of the equation might play a special role. This is something to be
further investigated but, under a suitable set of assumptions, there are such rank-one
convex functions.

Theorem 2 Let α : M2×2 → R be C 2. Suppose that for a bounded, open subset
Ω ⊂ M2×2 two functions ψ+(F), ψ−(F), can be found so that ψ+ = ψ− on ∂Ω ,
and if we put

φ±(F) = ψ±(F)+ α(F)Det F,
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α is smooth (C 2) in Ω , φ+ is rank-one convex in Ω , and λ1(∇2φ−) ≤ 0 in Ω .
Then:

1. there are viscosity solutions ψ for the problem

−λ1[∇2ψ(F)+ Det F∇2α(F)+∇α(F)⊗ DF+ DF⊗∇α(F)] = 0 in Ω,

ψ(F) = ψ+(F) = ψ−(F) on ∂Ω.

2. the function

φ : M2×2 → R, φ(F) = ψ(F)+ α(F)Det F

is rank-one convex.

This result is a direct application of Perron’s method (Theorem 4.1 in [6]).
The material in this contribution builds in a fundamental way upon [4].

2 Non-Negative Polynomials

To motivate our claim that quasi convexity can be directly related to the general
issue of non-negativeness of polynomials, let us go back to the basic definition of a
quasi convex function (2)

∫
Q

φ(F+∇u(x)) dx ≥ φ(F), for all u,Q-periodic, and all F,

and rewrite it in the form

Φ(F,u) ≡
∫
Q

[φ(F+∇u(x))− φ(F)] dx ≥ 0, F ∈M
m×N ,u : Q→ R

m.

Because of the periodicity requirement for test fields u, we can use Fourier series to
have

u(x) = 1

2π

∑
n∈ZN

sin(2πn · x) an, an ∈ R
m,

∇u(x) =
∑

n∈ZN

cos(2πn · x) an ⊗ n.
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The quasi convexity condition for φ can be recast as the inequality

Φ(F, {an}) =
∫
Q

⎡
⎣φ

⎛
⎝F+

∑
n∈ZN

cos(2πn · x) an ⊗ n

⎞
⎠− φ(F)

⎤
⎦ dx ≥ 0.

If φ is a polynomial of a certain degree of all its variables, then the functional Φ will
also be a polynomial of the same degree, possibly in an infinite number of variables,
or in an arbitrary large number of variables, but still a polynomial. Hence, the quasi
convexity condition for a polynomial φ is equivalent to the non-negativeness of a
certain, more sophisticated polynomial, and this realization brings us to the subject
of non-negativeness of polynomials.

This is a main area in Algebraic Geometry of considerable relevance for global
optimization problems [10, 14]. The issue of the non-negativeness of polynomials is
a difficult question not fully understood or solved. Throughout the years, since the
time of Hilbert, researchers have been looking for efficient tests or certificates for
such non-negativeness.

2.1 Hilbert’s Theorem

The first, elementary condition to ensure the non-negativeness of polynomials is the
sum-of-squares test. If for a given polynomials p(x) of several variables x, we have
that

p(x) =
∑
i

pi(x)2, each pi , a polynomial,

we immediately have that p ≥ 0. The sum-of-squares test was deeply studied
by D. Hilbert [8], leading to his celebrated theorem on the equivalence between
the non-negativity of polynomials and the sum-of-squares condition. Put n for the
degree of the polynomial, and d for the number of variables.

Theorem 3 (D. Hilbert) Non-negative polynomials coincide with sums-of squares
polynomials, in the following three cases:

1. d = 1: polynomials of arbitrary degree in one variable;
2. n = 2: second degree polynomials in any number of variables;
3. n = 4, d = 2: quartic polynomials in two variables.

In all other cases, there are non-negative polynomials which are not sums of
squares.
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Hilbert later, and motivated by his result, proposed his 17th problem in his famous
list [9]: Does every non-negative polynomial have a representation as a sum of
squares of “rational” functions? He was essentially asking about the existence of a
polynomial q(x) so that q(x)2p(x) is a sum of squares of polynomials. Artin proved
in 1927 that this is so [2].

We would like to focus on the case n = 4, d = 2 of Hilbert’s theorem
to see if it can be utilized to show something interesting concerning our vector
variational problems. In particular, we want to work with rank-one convexity.
This convexity condition for smooth (C 2) functions is equivalent to the Legendre-
Hadamard condition demanding

∇2φ(F) : (a⊗ n)⊗ (a⊗ n) ≥ 0 (3)

for every matrix F, and vectors a, n of the appropriate dimensions.

3 The Fundamental Lemma

We first fix notation to avoid misunderstandings. We put

F =
(
F11 F12

F21 F22

)
�→ F = (F11, F12, F21, F22), (4)

D =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ , D : F⊗ F = FT DF = 2 det F,

Q, a 4× 4-symmetric matrix, φ(F) = Q : F⊗ F = FT QF.

Notice that we are here restricting attention to quadratic forms so that our φ is just
the function φ(F) = Q : F ⊗ F for a constant, 4 × 4-matrix Q. Note also that we
identify, in all of our formulas, the matrix F, a 2× 2-tensor, with the four-vector as
in (4).

Our main result is the following lemma which was already shown by Marcellini
[11] many years ago in a straightforward way.

Lemma 1 The quadratic form Q is rank-one convex if and only if there is a number
α such that Q = S+ αD, and S is non-negative definite.

Proof If Q is of the form S + αD for some number α, and a non-negative definite
matrix S, it is elementary to check that it is rank-one convex.
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Suppose Q is rank-one convex. According to the Legendre-Hadamard condi-
tion (3),

Q : (x⊗ y)⊗ (x⊗ y) ≥ 0, x = (x1, x2), y = (y1, y2).

By homogeneity, it is clear that this inequality is equivalent to

Q : (x̃⊗ ỹ)⊗ (x̃⊗ ỹ) ≥ 0, x̃ = (x, 1), x = x1/x2, ỹ = (y, 1), y = y1/y2,

and so, the positivity condition determining rank-one convexity becomes the non-
negativeness of the polynomial

P4(x, y) = Q : [(x, 1)⊗ (y, 1)] ⊗ [(x, 1)⊗ (y, 1)] ≥ 0,

P4(x, y) = Q : X⊗ X ≥ 0, X = (xy, x, y, 1).

This is precisely the situation of Hilbert’s theorem for the case of quartic polynomi-
als in two variables, and so there must be a representation of P4(x, y) as a sum of
squares. Given that

A : X⊗ X = 0 ⇐⇒ A = λD

all possible representations of P4 are of the form

P4(x, y) = (Q− αD) : X⊗ X, α ∈ R.

Hilbert’s theorem then implies that there must be, at least one real number α, such
that

(Q− αD) : X⊗ X = (CX)⊗ (CX), (Q− αD) = CT C,

and this finishes the proof.

4 Some Consequences for Rank-One Convexity

We can now use Lemma 1 to show some interesting characterization of rank-one
convexity of functions defined on 2× 2-matrices.

An immediate consequence follows.
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Corollary 1 A smooth function φ : M2×2 → R is rank-one convex if and only if
there is a scalar function α : M2×2 → R and a symmetric, non-negative definite
matrix field S : M2×2 → M4×4 such that

∇2φ(F) = S(F)+ α(F)D.

One can elaborate on the fact that the difference

∇2φ(F)− α(F)D

is a positive definite matrix to find a more explicit characterization. Namely, if we
set

φ−(F) = sup
G
{−∇2φ(F) : G⊗G : det G = −1},

φ+(F) = inf
G
{∇2φ(F) : G⊗G : det G = 1},

then we have the following statement.

Theorem 4 Such φ is rank-one convex if and only if, for each matrix F,

φ−(F) ≤ φ+(F).

Moreover, for every function α(F) such that

φ−(F) ≤ 2α(F) ≤ φ+(F),

we have that

∇2φ(F)− α(F)D

is non-negative definite.

Proof We start by exploring the fact that the combination

∇2φ(F)− α(F)D

ought to be positive definite for an appropriate function α(F). This means that

(∇2φ(F)− α(F)D) : G⊗G ≥ 0

for every matrix G, that is to say

∇2φ(F) : G⊗G ≥ 2α(F) det G.



What Does Rank-One Convexity Have to Do with Viscosity Solutions? 61

If det G = 1, then

α(F) ≤ 1

2
∇2φ(F) : G⊗G,

whereas if det G = −1,

α(F) ≥ −1

2
∇2φ(F) : G⊗G.

The arbitrariness of G in both cases leads to the statement in the theorem.

It is worth exploring a bit the two optimization problems defining φ±(F). For
a given fixed matrix F, put A = ∇2φ(F), and consider jointly the two quadratic
mathematical programming problems

a− = sup
G
{−1

2
A : G⊗G : det G = −1},

a+ = inf
G
{1
2

A : G⊗G : det G = 1}.

Note that the rank-one convexity of the quadratic form determined by a given,
constant matrix A amounts to having

a0 = min
G
{1
2

A : G⊗G : det G = 0, |G|2 = 1} ≥ 0.

However, the calculation of this minimum is not that elementary because there are
two quadratic constraints, one of which is not convex. We would like to relate a+
and a− to a0.

Lemma 2 If either the infimum determining a+ or the supremum determining a−
is achieved for matrices going to infinity, then a0 ≤ 0.

Proof We prove it by contradiction for the first case, the second one being
completely parallel. Take a sequence Gj with

|Gj | → ∞, det Gj = 1.

Without loss of generality, we can assume that there is some G such that

1

|Gj |Gj → G, det G = 0, |G|2 = 1.
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For instance, one can take

Gj =
(
j + 1 j

1 1

)
, G =

(√
2/2

√
2/2

0 0

)
.

If a0 > 0, then

1

2
A : G⊗G ≥ a0 > 0,

and

1

2
A : Gj ⊗Gj = |Gj |2 1

2
A : Gj

|Gj | ⊗
Gj

|Gj |
has to converge to +∞, a contradiction because a+ can never be +∞.

Lemma 3 Let λ+ be the least eigenvalue of the matrix AD among those having
eigenvectors with positive determinant. If the infimum determining a+ is achieved
in finite matrices, then a+ = λ+. Similarly, if λ− is the greatest of the eigenvalues of
AD among those having eigenvectors with negative determinant, and the supremum
determining a− is achieved for finite matrices, then a− = λ−.

This is elementary. Use optimality, and notice that D2 is the identity matrix.
We finally identify circumstances when the equality a+ = a− may take place.

Proposition 1 Suppose a+ = a−. Then, this common value must vanish.

Proof If a+ = a−, one of the two optimization problems defining a+ and a−
ought to be attained at infinity. Indeed if they both were attained by finite matrices,
Lemma 3 clearly implies that a± are taken from disjoint groups of (eigen)values,
and so they cannot match. In that case, Lemma 2 leads to a0 ≤ 0. But if a+ = a−,
the quadratic form must be rank-one convex, and then a0 ≥ 0. We conclude that
a0 = 0. Once we know this, by continuity, both a+ and a− must vanish. Notice
that there cannot be a real gap between the infimum defining a+, if it is taken on at
infinity, and the minimum determining a0.

Applying the previous conclusion to a non-quadratic rank-one convex function,
we find the following remarkable corollary.

Corollary 2 Let φ be smooth and rank-one convex. Suppose there is a subset S ⊂
M2×2 of matrices with non-empty interior where φ+ = φ−. Then

φ+
∣∣
S = φ−

∣∣
S = 0.
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5 Proof of Theorem 1

For the proof of Theorem 1, let us start with the condition in Corollary 1

∇2φ(F) = S(F)+ α(F)D. (5)

By looking at this identity, it is quite natural to consider the function

ψ(F) = φ(F)− α(F)Det F.

If we compute ∇2ψ(F), we find

∇2φ(F)− Det F∇2α(F)−∇α(F)⊗ DF− DF⊗∇α(F)− α(F)D.

Conclude by comparison with (5) that

S(F) = ∇2ψ(F)+ Det F∇2α(F)+∇α(F)⊗ DF+ DF⊗∇α(F) ≥ 0.

But this condition is saying that

−λ1[∇2ψ(F)+ Det F∇2α(F)+∇α(F)⊗ DF+ DF⊗∇α(F)] ≤ 0.
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On Friedrichs Inequality, Helmholtz
Decomposition, Vector Potentials,
and the div-curl Lemma

Ben Schweizer

Abstract We study connections between four different types of results that are
concerned with vector-valued functions u : Ω → R

3 of class L2(Ω) on a domain
Ω ⊂ R

3: Coercivity results in H 1(Ω) relying on div and curl, the Helmholtz
decomposition, the construction of vector potentials, and the global div-curl lemma.

1 Introduction

The original motivation of this text was to derive a variant of the div-curl
lemma. This important lemma treats the convergence properties of products of two
weakly convergent sequences of functions. Besides other applications, the lemma
plays an important role in homogenization theory, in particular in non-periodic
homogenization problems. At some places, the name “compensated compactness”
is used to refer to the div-curl lemma. We will use below the name “global” div-curl
lemma to indicate that we are not satisfied with the distributional convergence of the
product of functions, but that we want to obtain the convergence of the integral of
the product.

The usual proof of the div-curl lemma is based on the construction of vector
potentials, see e.g. [7]. In the global div-curl lemma, the construction of potentials
must be performed taking special care of appropriate boundary conditions. The
proof of the div-curl lemma becomes shorter if it is based on a Helmholtz
decomposition result. Once more, the global div-curl lemma requires a careful
analysis of the boundary conditions.

Both, the construction of vector potentials and the proof of the Helmholtz
decomposition, can be obtained from coercivity results involving divergence and
curl of a function u : R3 ⊃ Ω → R

3. We have not been able to find a clear
description of this connection in the literature. Moreover, the literature discusses the
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coercivity results usually in a form that is not strong enough to obtain the above-
mentioned consequences.

In this text we present coercivity results in various forms and provide sketches
of their proofs. We demonstrate how the other results can be obtained quite
directly from the coercivity estimates. Moreover, we obtain these other results
in a strong form, i.e. with a good control of boundary data. To summarize, we
treat the following closely connected subjects and describe their most relevant
connections:

(1) Coercivity results relying on div and curl
(2) The Helmholtz decomposition
(3) Construction of vector potentials
(4) The global div-curl lemma

More specifically, we will show the following: Let Ω be a domain for which the
coercivity estimate of Item (1) holds. Then Ω permits statements as in Items (2)–(4)
in a strong form.

Let us describe more clearly what is meant by the above items (1)–(4).

(1) The coercivity regards inequalities that allow to estimate, in the space L2(Ω),
all derivatives of a field u : Ω → R

3 in terms of its divergence divu : Ω → R

and its rotation curl u : Ω → R
3.

(2) In the Helmholtz decomposition we are interested in constructing, given f ∈
L2(Ω,R3), two functions φ and w such that f = ∇φ + w with divw = 0. In
strong Helmholtz decomposition results, we want to write curl ψ instead of w
and impose boundary conditions on ψ .

(3) Construction of vector potentials: Given a field f : Ω → R
3 with divf = 0,

we want to find a potential ψ : Ω → R
3 such that f = curl ψ , again imposing

boundary conditions on ψ .
(4) In the div-curl lemma one considers sequences fk ⇀ f and pk ⇀ p as k →

∞ in L2(Ω,R3). The additional information is that both ‖div fk‖L2(Ω) and
‖ curl pk‖L2(Ω) are bounded sequences. One is interested in the product fk ·pk .
In the standard div-curl lemma, one obtains the distributional convergence fk ·
pk → f · p as k →∞. We are interested in the global div-curl lemma, which
provides

∫
Ω
fk · pk →

∫
Ω
f · p as k →∞.

We note that the coercivity result (1) requires quite strong assumptions on
Ω ⊂ R

3 (the regularity C 1,1 or convexity of Ω , simple connectedness of Ω and
connectedness of the boundary ∂Ω). On the other hand, given (1), the results (2)–
(4) can be derived easily in strong forms. In particular, we obtain these results with
a control of the boundary data and with natural estimates.
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1.1 Disclaimer

All the results that are presented in this note are known to the experts in the field.
Moreover, the results are not stated with optimized assumptions. In particular, we
oftentimes make assumptions on the domain that are not necessary. Our goal in this
note is to show simple proofs for non-optimized results and to highlight connections
between the different results.

At this point we would like to express our gratitude to D. Pauly for useful
discussions and for pointing out an error in a first version of these notes.

1.2 Applications

As already mentioned, the div-curl lemma plays a crucial role in the derivation of
homogenization limits, in particular if one follows the Russian approach, which
is well adapted to perform stochastic homogenization limits, see [7]. A recent
application is the non-periodic homogenization of plasticity equations. For such
nonlinear non-periodic problems, the so-called “needle-problem approach” was
developed in [12]. The crucial step in this approach is to find, given a sequence
of functions uε on a domain Ω , a triangulation of Ω such that the global div-curl
lemma can be applied on every simplex of the triangulation. The method was applied
to perform the homogenization of plasticity equation in [5, 6]. The global div-curl
lemma is also needed in a recent existence result for plasticity equations with curl-
contribution, see [10].

1.3 An Observation

Since our proofs are based on coercivity estimates, we start with an observation
regarding divergence and curl of functions.

Remark 1 Let Ω ⊂ R
3 be a bounded domain. We consider functions u : Ω → R

3

with vanishing boundary values, u ∈ H 1
0 (Ω). For such functions, the control of

curl u and divu in L2(Ω) is equivalent to the control of the full gradient in L2(Ω).
Indeed, for u ∈ H 1

0 (Ω) (i.e.: all components of u vanish along the boundary), the
following calculation is valid

∫
Ω

{
|∇ · u|2 + | curl u|2

}
=
∫
Ω

[−∇(∇ · u)+ curl curl u] · u

=
∫
Ω

[−Δu] · u =
∫
Ω

|∇u|2 .
(1)
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Remark 1 indicates that all derivatives of u are controlled by ∇ ·u and curl u—at
least up to contributions from boundary integrals.

We note that Remark 1 has some similarity with the trivial Korn’s inequality
(Korn’s inequality for functions with vanishing boundary values): The integral
over squared gradients is (up to a factor 2) identical to the integral over squared
symmetrized gradients. This is similar to equation (1). Korn’s inequality (the non-
trivial version) shows that, indeed, the full gradient of u can be estimated in terms
of the symmetrized gradient of u.

2 Notation

In the following, Ω ⊂ R
3 always denotes a bounded open set, further properties

will be specified when needed. For Lipschitz domains Ω , we denote the exterior
normal by ν : ∂Ω → R

3 (ν is defined almost everywhere on the boundary).
We use the space H(Ω, curl) := {u ∈ L2(Ω,R3) | curl u ∈ L2(Ω,R3)}, where

curl u is understood in the distributional sense. The norm on this space is ‖u‖L2 +
‖ curl u‖L2 . The subspace of functions with vanishing boundary condition is defined
as H0(Ω, curl) = {u ∈ H(Ω, curl) | ν × u|∂Ω = 0}. We emphasize that, since only
the curl of u is controlled, only tangential boundary data can be evaluated in the
sense of traces. Since trace estimates require Lipschitz boundaries, we define the
space H0(Ω, curl) with a weak formulation as follows:

H0(Ω, curl) :=
{
u ∈ H(Ω, curl)

∣∣∣∣
∫
Ω

curl u · η =
∫
Ω

u · curl η ∀η ∈ H 1(Ω,R3)

}
.

(2)

Similarly, the space of functions with divergence in L2(Ω) can be defined as:
H(Ω, div) := {u ∈ L2(Ω,R3) | divu ∈ L2(Ω,R3)} and the corresponding space
with vanishing boundary data is H0(Ω, div) = {u ∈ H(Ω, div) | ν · u|∂Ω = 0},
defined as

H0(Ω, div) :=
{
u ∈ H(Ω, div)

∣∣∣∣
∫
Ω

(divu) η = −
∫
Ω

u · ∇η ∀η ∈ H 1(Ω,R)

}
.

(3)

We emphasize that the index 0 enforces in both cases that certain components of
the vector field vanish on the boundary; these are tangential components in the case
of H0(Ω, curl) and normal components in the case of H0(Ω, div).

Following [1], we use the space X(Ω) := H(Ω, curl) ∩H(Ω, div) and the two
subspaces

XN(Ω) := H0(Ω, curl) ∩H(Ω, div) = {u ∈ X(Ω) | ν × u|∂Ω = 0} , (4)

XT (Ω) := H(Ω, curl) ∩H0(Ω, div) = {u ∈ X(Ω) | ν · u|∂Ω = 0} . (5)
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We note that the boundary values ν × u|∂Ω are well defined in the sense of
distributions for functions u ∈ H(Ω, curl). Similarly, ν · u|∂Ω is well defined in the
sense of distributions for functions u ∈ H(Ω, div).

3 Friedrichs Inequality

Many references are available for the following coercivity estimate. See e.g. (11) in
[9] or Corollary 2.2 in [3], or Theorems 2.9 and 2.12 in [1].

We emphasize that the coercivity estimate of Theorem 1 remains valid on
convex Lipschitz domains (the regularity ∂Ω ∈ C 1,1 is replaced by the convexity
requirement), see Theorem 2.17 in [1]. It is also known as Gaffney-inequality.

Theorem 1 (Coercivity Estimate) Let Ω be a bounded Lipschitz domain with
∂Ω ∈ C 1,1. Then there exists a coercivity constant CC > 0 such that

‖u‖2
H 1 ≤ CC

∫
Ω

{
|∇ · u|2 + | curl u|2 + |u|2

}
(6)

for every u ∈ XT (Ω). The constant CC can be chosen such that (6) holds also for
every u ∈ XN(Ω).

Proof (Sketch) The proof of (6) relies on the fact that for u in either XT (Ω) or
XN(Ω) critical boundary terms in the calculation (1) cancel. The remaining terms
are products containing the curvature of the boundary and squares of values of u

on the boundary. It is important that, in the boundary integrals, no terms containing
derivatives of u remain. Moreover, for convex domains, the remaining terms have
the good sign (see Lemma 2.11 in [1]). Combining the calculation (1) with a trace
estimate for u and an interpolation, one obtains (6). The full proof requires density
results in the spaces XT (Ω) and XN(Ω).

Our next step is to improve inequality (6) so that the L2(Ω)-norm of u does not
appear on the right hand side. We call the result a Friedrichs inequality.

Let us describe why we call the result a Friedrichs inequality: The above sketch of
proof (more precisely, the positivity of boundary contributions for convex domains)
suggests that the following inequality holds on convex domains with CF = 1:

‖∇u‖2
L2(Ω,R3)

≤ CF

∫
Ω

{
|∇ · u|2 + | curl u|2

}
(7)

Inequality (7) is known as Friedrichs second inequality, see e.g. Theorem 3.1 in [11].
Using a general constant CF in (7) is necessary for non-convex domains. We note
that (7) for Lp(Ω)-spaces is treated in [13] with methods from potential theory.
Regarding the result in space dimension 2 we refer to [8], Theorem 4.3.

We want to improve (7) and estimate the full H 1-norm.
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Corollary 1 (Friedrichs Inequality) Let Ω be a simply connected bounded Lips-
chitz domain. We assume that (6) holds (we recall that ∂Ω ∈ C 1,1 or convexity of
Ω is sufficient). Then there exists a constant CF > 0 such that

‖u‖2
H 1(Ω,R3)

≤ CF

∫
Ω

{
|∇ · u|2 + | curl u|2

}
(8)

holds for all functions u in the space XT (Ω). If the boundary ∂Ω of the domain is
connected, the estimate (8) holds also for every u ∈ XN(Ω).

Proof We argue by contradiction. Let (uk)k be a sequence with ‖uk‖H 1(Ω) = 1 for
every k and with∇·uk → 0 and curl uk → 0 in L2(Ω). Rellich compactness allows
to extract a subsequence and to find u ∈ H 1(Ω) such that uk ⇀ u in H 1(Ω) and
uk → u in L2(Ω). Weak limits coincide with distributional limits, hence ∇ · u = 0
and curl u = 0.

The curl-free function u has a potential, u = ∇Φ for some Φ ∈ H 1(Ω). This fact
is known as Poincaré lemma, we use at this point that Ω is simply connected. The
potential Φ can be constructed for smooth curl-free functions u : Ω → R

3 with the
help of line integrals. The extension of the map u �→ Φ to functions u ∈ L2(Ω,R3)

is straightforward using the density of smooth functions and the fact that the gradient
of Φ is controlled (it is u). The potential Φ solves ΔΦ = 0 because of ∇ · u = 0.
Furthermore, the boundary condition u ∈ XT (Ω) implies that Φ has a vanishing
normal derivative on ∂Ω . The boundary condition u ∈ XN(Ω) implies that tangen-
tial components of ∇Φ vanish on the boundary, hence Φ can be chosen in H 1

0 (Ω).
In both cases, due to ΔΦ = 0, the potential Φ is a constant function and u vanishes.

The fact uk → u = 0 in L2(Ω) implies that the three terms on the right hand
side of (6) vanish in the limit k → ∞ for the sequence uk . Inequality (6) yields
‖uk‖H 1 → 0, which is the desired contradiction.

4 Helmholtz Decomposition

We formulate a strong Helmholtz decomposition result in Theorem 2. In order to
explain why we call Theorem 2 a strong Helmholtz decomposition result, let us first
state and prove an elementary version.

Proposition 1 (Elementary Helmholtz Decomposition) Let Ω ⊂ R
3 be a

bounded Lipschitz domain. Then there exists a constant CH > 0 such that, for
every vector field f ∈ L2(Ω,R3), the following holds:

1. Imposing a boundary condition for w. There exist φ : Ω → R and
w : Ω → R

3 such that

f = ∇φ +w , φ ∈ H 1(Ω,R) , (9)

w ∈ W0 :=
{
w ∈ L2(Ω)

∣∣∣∣
∫
Ω

w · ∇ϕ = 0 ∀ϕ ∈ H 1(Ω)

}
. (10)
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2. Imposing a boundary condition for φ. There exist φ : Ω → R and
w : Ω → R

3 such that

f = ∇φ +w , φ ∈ H 1
0 (Ω,R) , (11)

w ∈ W :=
{
w ∈ L2(Ω)

∣∣∣∣
∫
Ω

w · ∇ϕ = 0 ∀ϕ ∈ H 1
0 (Ω)

}
. (12)

Both decompositions are valid with the estimate

‖φ‖H 1(Ω) + ‖w‖L2(Ω) ≤ CH ‖f ‖L2(Ω) . (13)

Proof For Item (1), we define φ ∈ H 1(Ω) as the solution of the Neumann problem

∫
Ω

∇φ · ∇ϕ =
∫
Ω

f · ∇ϕ ∀ϕ ∈ H 1(Ω) . (14)

The solution exists by the Lax-Milgram theorem in the space of H 1-functions with
vanishing mean value. With this choice of φ, the remainder w := f − ∇φ satisfies
w ∈ W0 by definition.

For Item (2), we define φ ∈ H 1
0 (Ω) as the solution of the Dirichlet problem

∫
Ω

∇φ · ∇ϕ =
∫
Ω

f · ∇ϕ ∀ϕ ∈ H 1
0 (Ω) . (15)

The solution exists by the Lax-Milgram theorem in H 1
0 (Ω). With this choice of φ,

the remainder w := f −∇φ satisfies w ∈ W by definition.
In both cases, due to the solution estimate of the Lax-Milgram theorem, the norm

of φ in H 1(Ω) and, hence, the norm of w in L2(Ω) are controlled by the norm of
f in L2(Ω).

We next show a stronger Helmholtz decomposition result. Here, we write the
solenoidal function w as the curl of a vector potential ψ . Furthermore, we can
prescribe a boundary condition for the vector potential. Again, all norms are
controlled by the datum f .

Theorem 2 (Helmholtz Decomposition with Vector Potential) Let Ω ⊂ R
3 be

a simply connected bounded Lipschitz domain with a connected boundary ∂Ω of
class C 1,1. Then there exists a constant CH > 0 such that, for every vector field
f ∈ L2(Ω,R3), we have:

1. Imposing a boundary condition for ψ . There exist φ : Ω → R and
ψ : Ω → R

3 such that

f = ∇φ + curlψ , φ ∈ H 1(Ω,R) , ∇ · ψ = 0 , ψ ∈ XN(Ω) . (16)
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2. Imposing a boundary condition for φ. There exist φ : Ω → R and
ψ : Ω → R

3 such that

f = ∇φ + curlψ , φ ∈ H 1
0 (Ω,R) , ∇ · ψ = 0 , ψ ∈ XT (Ω) . (17)

In both cases, the decomposition satisfies the estimate

‖φ‖H 1(Ω) + ‖ψ‖H 1(Ω) ≤ CH ‖f ‖L2(Ω) . (18)

Remark 2 Many parts of Theorem 2 remain valid under the following weaker
assumption (A1) on Ω :

(A1) Let Ω be a bounded Lipschitz domain such that the Friedrichs inequality (8) holds.

Item (1) of the Theorem remains valid without any changes in the proof. Instead,
our proof of Item (2) makes use of the C 1,1-regularity of the boundary.

In order to clarify the connection with Proposition 1, we note the following:
With ψ as in Item (1) above, there holds w := curl ψ ∈ W0 (as in Item (1) of
Proposition 1). Indeed, for ϕ ∈ H 1(Ω),

∫
Ω

w · ∇ϕ =
∫
Ω

curl ψ · ∇ϕ =
∫
Ω

ψ · curl ∇ϕ = 0 . (19)

Proof Proof of Item (1).

Step 1. Construction of φ. In this first step, we compensate the divergence ∇ · f
and the normal boundary data f · ν with a scalar potential φ (as in (14) in the
proof of Item (1) of Proposition 1). We define φ ∈ H 1(Ω,R) as the solution
with vanishing average of the Neumann problem

∫
Ω

∇φ · ∇ϕ =
∫
Ω

f · ∇ϕ ∀ϕ ∈ H 1(Ω,R) . (20)

The solution φ satisfies the estimate (18). In the rest of the proof our aim is to
write the function f̃ := f −∇φ ∈ W0 as the curl of a vector potential.

Step 2. Construction of ψ . We introduce the bilinear form

b(u, v) :=
∫
Ω

{(∇ · u)(∇ · v)+ (curl u) · (curl v)} (21)

on the space XN(Ω) of (4). We consider the following auxiliary problem: Find
ψ ∈ XN(Ω) such that

b(ψ, ϕ) =
∫
Ω

f̃ · curl ϕ ∀ϕ ∈ XN(Ω) . (22)

The bilinear form b is coercive on XN(Ω) by the Friedrichs coercivity esti-
mate (8). This implies the solvability of problem (22) by some ψ ∈ XN(Ω).
We note that the solution ψ ∈ XN(Ω) satisfies the estimate (18).
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Step 3. The divergence of ψ . We claim that ψ satisfies ∇ · ψ = 0.
To verify this claim, we solve, for arbitrary η ∈ L2(Ω,R), the Dirichlet problem
ΔΦ = η with Φ ∈ H 1

0 (Ω). We want to use ϕ := ∇Φ as a test-function
in (22). The construction and the regularity Φ ∈ H 1(Ω) imply ϕ ∈ X(Ω)

(the distributional curl vanishes, since ϕ is a gradient, and the distributional
divergence is η). Concerning the boundary condition we calculate, for test
functions ξ ∈ H 2(Ω),

∫
Ω

curl ϕ · ξ =
∫
Ω

0 · ξ = 0 ,

and, exploiting that Φ has vanishing boundary values,

∫
Ω

ϕ · curl ξ =
∫
Ω

∇Φ · curl ξ =
∫
Ω

Φ ∇ · curl ξ = 0 .

By density, the equality of the two expressions remains valid for all test-functions
ξ ∈ H 1(Ω). By definition of XN(Ω), this provides ϕ = ∇Φ ∈ XN(Ω). From
now on, we may therefore use ϕ as a test function in (22).
Relation (22) allows to calculate

0 =
∫
Ω

f̃ · curl ϕ = b(ψ, ϕ)

=
∫
Ω

{(∇ · ψ) (∇ · ϕ)+ (curl ψ) · (curl ϕ)} =
∫
Ω

(∇ · ψ) η .

Since η was arbitrary, we obtain ∇ · ψ = 0.
Step 4. Properties of the remainder. We introduce the remainder R := f̃ − curl ψ

and claim that R vanishes.
We start with the observation that the property∇ ·ψ = 0 simplifies relation (22),
which now reads

∫
Ω

R · curl ϕ =
∫
Ω

(f̃ − curl ψ) · curl ϕ = 0 ∀ϕ ∈ XN(Ω) . (23)

This shows curl R = 0 in the sense of distributions.
Furthermore, R is a solenoidal field: The divergence of f̃ vanishes by the
construction in Step 1, and the divergence of curl ψ also vanishes.
We finally want to check the normal boundary condition for R. For every ϕ ∈
H 1(Ω) holds, using ψ ∈ XN(Ω) in the last step,

∫
Ω

R · ∇ϕ =
∫
Ω

f̃ · ∇ϕ −
∫
Ω

curl ψ · ∇ϕ (20)= −
∫
Ω

curl ψ · ∇ϕ = 0 .

This shows R ∈ XT (Ω).
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The Friedrichs estimate (8) on the space XT (Ω) allows to conclude from
curl R = 0 and divR = 0 the equality R = 0. This shows the decomposition
result f = ∇φ + curlψ .

Proof of Item (2). The proof of Item (2) follows along the same lines. In Step 1,
the scalar potential φ is constructed as the solution φ ∈ H 1

0 (Ω) of the Dirichlet
problem Δφ = ∇ · f . We consider the function f̃ = f −∇φ, which has vanishing
divergence (but, in general, not vanishing normal boundary data). In Step 2 we
consider once more the bilinear form

b(u, v) :=
∫
Ω

{(∇ · u)(∇ · v)+ (curl u) · (curl v)} , (24)

but now on the space XT (Ω); the bilinear form is now b : XT (Ω)×XT (Ω)→ R.
The vector potential ψ is once more constructed with the Lax-Milgram theorem;
now ψ ∈ XT (Ω) satisfies the identity of (22) for every test-function ϕ ∈ XT (Ω).
Step 3 can be performed as above and we obtain ∇ · ψ = 0; the test function
ϕ = ∇Φ must now be constructed by solving a Neumann problem for Φ in order to
have ϕ ∈ XT (Ω).

We provide some more details concerning Step 4: As in the proof of Item (1), we
define the remainder R := f̃ − curl ψ and show that R vanishes. By construction
of f̃ , there holds ∇ · R = 0. The fact ∇ · ψ = 0 simplifies the identity in (22) and
we find, in analogy to relation (23),

∫
Ω

R · curl ϕ = 0 ∀ϕ ∈ XT (Ω) . (25)

This equality shows curl R = 0 in the sense of distributions.
Because of curl R = 0, the equality of (25) is also satisfied for every function

ϕ ∈ XN(Ω). Indeed, the formal calculation for this fact is

∫
Ω

R · curl ϕ =
∫
Ω

curl R · ϕ = 0 .

The integration by parts is justified by definition of XN(Ω). A rigorous proof is
obtained by first regularizing R and then considering the limit.

An arbitrary function ϕ ∈ H 1(Ω) can be written as the sum ϕ = ϕN + ϕT

with ϕN ∈ XN(Ω) and ϕT ∈ XT (Ω) (the proof of this fact can easily been
performed using charts under the regularity assumption ∂Ω ∈ C 1,1). By linearity
of the expression in ϕ we obtain that the equality of (25) is satisfied for every
function ϕ ∈ H 1(Ω). Since curl R vanishes, this shows R ∈ XN(Ω). The
Friedrichs estimate (8) on the space XN(Ω) allows to conclude R = 0 and hence
the decomposition result.
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5 Construction of Vector Potentials

We next present a consequence on the existence of vector potentials: Given f with
∇ · f = 0, we look for a vector potential ψ such that curl ψ = f .

Classically, the construction of ψ is performed with Fourier transformation
methods, see [4]. In this approach, little regularity on ∂Ω is needed (Lipschitz
is sufficient). On the other hand, without further arguments, one cannot prescribe
boundary conditions for the potential ψ; see also [7], Lemma 4.4. The results of [4]
are stated and proved in [1].

The latter reference includes many extensions. In particular, very general
domains can be considered. The notion of pseudo-Lipschitz domains is introduced
and the existence of vector potentials is shown on pseudo-Lipschitz domains
(domains with cuts that are not Lipschitz domains can still be pseudo-Lipschitz
domains). The results of [1] include boundary conditions, see Theorems 3.12
and 3.17 of that reference.

The following result makes a strong statement on the existence of vector
potentials. We note that we have to assume a high regularity of the domain. Our
emphasis is on the fact that, essentially, the result can be obtained from Friedrichs
inequality (8). We use the boundary regularity only in Item (2), compare Remark 2.

Corollary 2 Let Ω ⊂ R
3 be a simply connected bounded Lipschitz domain with

connected boundary ∂Ω ∈ C 1,1. Then there exists a constant CV > 0 such that, for
every f ∈ L2(Ω,R3), we have:

1. f with boundary condition. If f has vanishing divergence and vanishing
normal boundary data, i.e. f ∈ W0 of (10), then there exists a vector potential
ψ ∈ XN(Ω) with

f = curlψ , ‖ψ‖H 1(Ω) ≤ CV ‖f ‖L2(Ω) . (26)

2. f without boundary condition. If f has vanishing divergence, i.e. f ∈ W

of (12), then there exists a vector potential ψ ∈ XT (Ω) with

f = curlψ , ‖ψ‖H 1(Ω) ≤ CV ‖f ‖L2(Ω) . (27)

Proof Item (1). We use the Helmholtz decomposition according to (16), f = ∇φ+
curlψ with φ ∈ H 1(Ω,R) and ψ ∈ XN(Ω). Upon multiplication with the
gradient ∇ϕ of a test function ϕ ∈ H 1(Ω), we obtain

0
f∈W0=

∫
Ω

f · ∇ϕ =
∫
Ω

(∇φ + curlψ) · ∇ϕ ψ∈XN=
∫
Ω

∇φ · ∇ϕ .

This shows that φ solves the homogeneous Neumann problem Δφ = 0 and is
therefore constant. This shows ∇φ = 0 and hence f = curlψ .
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Item (2). The proof is analogous to that of Item (1). We now use the Helmholtz
decomposition according to (17), f = ∇φ + curlψ with φ ∈ H 1

0 (Ω,R) and
ψ ∈ XT (Ω). Testing f = ∇φ + curlψ with the gradient ∇ϕ of a test function
ϕ ∈ H 1

0 (Ω), we obtain that φ solves the homogeneous Dirichlet problem Δφ =
0. This shows φ = 0 and hence ∇φ = 0. We obtain f = curlψ and have
therefore found the vector potential.

6 Global div-curl Lemma

One of our motivations to study the above classical decomposition results is the div-
curl lemma. Most often, this lemma is formulated in a local version, with the claim
that the product fk · pk of two weakly convergent sequences converges in the sense
of distributions. We are interested here in global results, i.e. in results that provide
the convergence of the integrals

∫
Ω fk · pk .

Lemma 1 (Global div-curl Lemma) Let Ω ⊂ R
3 be a simply connected bounded

Lipschitz domain with connected boundary ∂Ω ∈ C 1,1. Let fk ⇀ f in L2(Ω,R3)

and pk ⇀ p in L2(Ω,R3) be two weakly convergent sequences. We assume that
the distributional derivatives satisfy, for some C > 0,

‖∇ · fk‖L2(Ω) ≤ C , ‖ curl pk‖L2(Ω) ≤ C , (28)

for every k ∈ N. Let furthermore be one of the two boundary conditions (i) or (ii)
be satisfied for every k ∈ N:

(i) fk · ν|∂Ω = 0
(ii) pk × ν|∂Ω = 0

Then there holds, as k →∞,

∫
Ω

fk · pk →
∫
Ω

f · p . (29)

Let us include two remarks concerning the proof of the above lemma. Concerning
boundary condition (i), we could rely the proof also on the convexity of the domain
Ω and work without the assumption ∂Ω ∈ C 1,1. In the proof of boundary condition
(ii), we do not exploit the boundary condition ψ ∈ XT (Ω) on ψ . This means that
case (ii) can be proved also with a weaker version of Theorem 2.

Proof Proof for boundary condition (i). We write pk as pk = ∇φk + curl ψk with
potentials as in Theorem 2, Item (1), i.e. with ψk ∈ XN(Ω) and wk := curl ψk . We
recall that wk ∈ W0 and hence wk ∈ XT (Ω) is satisfied, compare (19).

We claim that wk := curl ψk converges strongly in L2(Ω). Indeed, we have
boundedness of wk in L2(Ω) by boundedness of pk in L2(Ω), furthermore
the obvious boundedness of ∇ · wk = 0. Finally, the boundedness of curl
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wk = curl pk in L2(Ω) holds by (28). The coercivity inequality (6) in XT (Ω)

provides boundedness of wk in H 1(Ω) and hence the compactness in L2(Ω).
With this compactness property for wk and the strong convergence φk → φ in

L2(Ω) (which follows from the compact Rellich embedding H 1(Ω) ⊂ L2(Ω)) we
can calculate
∫
Ω

fk · pk =
∫
Ω

fk · (∇φk + curl ψk) =
∫
Ω

(−∇ · fk) φk + fk · curl ψk

→
∫
Ω

(−∇ · f ) φ + f · curl ψ =
∫
Ω

f · (∇φ + curl ψ) =
∫
Ω

f · p .

We used in the last step that the limits φ and ψ are indeed the Helmholtz
decomposition functions for the limit p. This provides the claim for boundary
condition (i).

Proof for boundary condition (ii). We now decompose fk as fk = ∇φk+curl ψk

using Theorem 2, Item (2) (but we will not exploit ψk ∈ XT (Ω)). The a priori
bound ‖ψk‖H 1(Ω) ≤ C0 from (18) allows to select a subsequence k →∞ with the
strong convergence ψk → ψ in L2(Ω).

The functions φk ∈ H 1
0 (Ω) solve a Dirichlet problem: For every ϕ ∈ H 1

0 (Ω)

there holds
∫
Ω

∇φk · ∇ϕ =
∫
Ω

(fk − curl ψk) · ∇ϕ = −
∫
Ω

∇ · fk ϕ .

This is the weak form of the Dirichlet problemΔφk = ∇·fk . Since the solution map
H−1(Ω) → H 1

0 (Ω) of this Dirichlet problem is linear and continuous, the strong
convergence of ∇ · fk in H−1(Ω) implies the strong convergence ∇φk → ∇φ in
L2(Ω).

After this preparation we can calculate, using boundary condition (ii) for pk and
for p, in the limit k →∞,

∫
Ω

fk · pk =
∫
Ω

(∇φk + curl ψk) · pk =
∫
Ω

∇φk · pk + ψk · curl pk

→
∫
Ω

∇φ · p + ψ · curl p =
∫
Ω

∇φ · p + curl ψ · p =
∫
Ω

f · p .

This was the claim in (29).

Corollary 3 (The Usual div-curl Lemma on Arbitrary Domains) Let Ω ⊂ R
3

be an open set and let pk and fk be sequences with fk ⇀ f and pk ⇀ p in
L2(Ω,R3). We assume the div- and curl-control of (28). Then fk · pk → f · p in
the sense of distributions on Ω .

Proof Upon subtracting f and p from the sequences, we can assume p = 0 and
f = 0. The distributional convergence is a local property, it suffices to show that, for
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an arbitrary open ball B ⊂ B̄ ⊂ Ω and an arbitrary smooth function ϕ ∈ C∞c (B,R)

there holds
∫
B

fk · pk ϕ → 0 . (30)

The relation (30) is a direct consequence of the global div-curl lemma 1 (ii), applied
to the sequences fk and pk ϕ. The sequence pk ϕ converges weakly to 0, has L2(B)-
bounded curl and satisfies the homogeneous tangential boundary condition. The ball
B has a C 1,1-boundary. Lemma 1 provides (30) and thus the claim.

7 Comments and Generalizations

We emphasize that there is another route to prove the above div-curl result. One can
start the analysis from the simple Helmholtz decomposition of Proposition 1. This
requires no properties of Ω . When needed, one can use Theorem 3.12 or 3.17 of
[1] to write a solenoidal field w as a curl, w = curl ψ . This requires less regularity
on Ω than our Corollary 2 (essentially, Lipschitz domains with cuts are allowed).
Furthermore, on less regular domains (or for mixed boundary conditions), one must
avoid the space H 1(Ω) and work with the Maxwell compactness property to find
strongly convergent sequences. We make this observation more precise with the
following remark.

Remark 3 (Global div-curl Lemma on Lipschitz Domains) The statement of
Lemma 1 remains valid on bounded Lipschitz domains Ω that are simply connected
and have a connected boundary.

Proof Let us start with the boundary condition (i). We proceed as in the proof of
Lemma 1 (i) and decompose pk . We use the simple Helmholtz decomposition of
Proposition 1, Item (1), and write pk = ∇φk +wk with φk ∈ H 1(Ω) and wk ∈ W0.
We use the existence result for vector potentials from Theorem 3.17 of [1]: there
exists a potential ψk ∈ XN(Ω) with wk = curl ψk . The boundary condition for ψk

allows to conclude strong convergence of wk from

∫
Ω

|wk|2 =
∫
Ω

wk · curl ψk =
∫
Ω

curl wk · ψk =
∫
Ω

curl pk · ψk

→
∫
Ω

curl p · ψ =
∫
Ω

w · curl ψ =
∫
Ω

|w|2 .

In this calculation, the strong convergence of ψk cannot be concluded from the
compactness of the Rellich embedding H 1(Ω) ⊂ L2(Ω), since no H 1(Ω) property
for ψk is available. Instead, one has to use the Maxwell compactness property, see
e.g. [2].
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The proof for boundary condition (ii) follows closely the one of Lemma 1 (ii)
and uses no boundary conditions for the potentials ψk . We decompose fk = ∇φk +
wk with φk ∈ H 1

0 (Ω) and exploit the strong convergence of ∇φk . The functions
wk ∈ W are written as wk = curlψk . In the calculation of the integral, we can
integrate by parts in the term (curl ψk) · pk , due to the boundary condition for pk .

We conclude this contribution with a simple remark. As soon as higher integra-
bility properties of the functions are known, the case of general domains and the
case without boundary conditions can be treated easily:

Remark 4 (Global div-curl Lemma on Arbitrary Domains) The statement of
Lemma 1 without boundary conditions on either pk or fk remains valid on general
bounded domains Ω if the sequence fk (or the sequence pk) is bounded in Lq(Ω)

for some q > 2.

Proof The sequence fk · pk is bounded in the reflexive space L1+δ(Ω) for some
δ > 0. It therefore converges weakly in L1+δ(Ω) to its distributional limit, which
is f · p by Corollary 3. The weak convergence implies the convergence of
integrals (29). This proves the claim.
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Variational Analysis of Nematic Shells

Giacomo Canevari and Antonio Segatti

Abstract In this note we present some recent results on the Mathematical Analysis
of Nematic Shells. The type of results we present deal with the analysis of
defectless configurations as well as the analysis of defected configurations. The
mathematical tools include Topology, Analysis of Partial Differential Equations as
well as Variational Techniques like Γ convergence.

1 Introduction: The Model and the Role of the Topology

The occasion of writing this note came because the second author of this paper was
invited to lecture at the

INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics

in Rome. These note contains the results presented in the seminar. More precisely,
these results are the outcome of a research line started in 2012 and culminated in
the papers [9, 35, 36] and [8]. In this note we try to convey the main ideas behind
the results and leave the detailed proofs to the above mentioned papers.

A Nematic Shell is a rigid colloidal particle with a typical dimension in the
micrometer scale coated with a thin film of nematic liquid crystal whose molecular
orientation is subjected to a tangential anchoring. The study of these structures has
received a good deal of interest, especially in the physics community (see, e.g.,
[6, 23, 26, 27, 30, 37, 39, 41, 42] and [28]).

From a mathematical point of view, a Nematic Shell is usually identified with
a two dimensional compact (oriented by the choice of the unit normal field
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γ : M → R
3) surface M without boundary with the local orientation of the

molecules described via a unit norm tangent vector field, named director in analogy
with the “flat” case. More precisely, the local orientation of the molecules is
described via a unit-norm tangent vector field n : M → R

3 with n(x) ∈ TxM

for any x ∈ M , TxM being the tangent plane at the point x.
The study of these structures is particularly interesting and challenging due

to its interdisciplinary character as it combines in a non trivial way physics,
geometry, topology and variational techniques. In particular, the interplay between
the geometry and the topology of the fixed substrate and the tangential anchoring
constraint is a source of difficulties that will accompany us for the whole analysis.
Indeed, as observed in [41] and [6], the liquid crystal equilibrium (and all its stable
configurations, in general) is the result of the competition between two driving
principles: on the one hand the minimization of the “curvature of the texture”
penalized by the elastic energy, and on the other the frustration due to constraints
of geometrical and topological nature, imposed by anchoring the nematic to the
surface of the underlying particle. Different theoretical approaches for the treatment
of Nematic Shells are available. Differences arise in the choice of the form of the
elastic part of the free energy which could be of intrinsic or extrinsic nature. More
precisely, theories which employ only covariant derivatives will be named intrinsic
(see [26, 38, 39, 41]) while theories that comprise also how the shell sits in the three
dimensional space will be named extrinsic (see [27] and [28]). When restricting to
the simpler one-constant approximation, the extrinsic energy has the form

W(n) := κ

2

∫
M

|Dn|2 + |dγ (n)n|2 dS, (1)

while the intrinsic energy has the form

Wintr(n) := κ

2

∫
M

|Dn|2 dS. (2)

In the definitions above n is a tangent vector field with unit norm, κ is a positive
constant (from now on κ will be taken equal to one), the symbol D denotes the
covariant derivative on M , and dγ , the differential of the Gauss map, is the so called
shape operator. We refer to the quantity

∫
M |Dn|2 as the Dirichlet (or elastic) energy

of n.
The extrinsic energy (1) has been derived by Napoli & Vergori (see [27] and

[28]) by using a formal dimension reduction. More precisely, starting from the
Oseen-Frank energy WOF (see [40]) on a tubular neighborhood Mh of thickness
h (satisfying a suitable constraint related to the curvature of M), Napoli and Vergori
obtain that the limit

lim
h↘0

1

h
WOF(n,Mh) = Wextr(n).
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is well defined for any fixed and sufficiently smooth field n with the property of
being independent of the thickness direction and tangent to leaf of the foliation Mh.
The form of the limit energy is as follows

Wextr(n) := 1

2

∫
M

K1(divs n)2 +K2(n · curls n)2 +K3|n× curls n|2 dS, (3)

where the differential operators divs and curls in the display above are proper
surface counterparts of the divergence and the curl operators (see [28]). The
positive constants K1,K2,K3 are the analogous of the Frank’s constants in the
euclidean case (see [40]). Finally, the energy (1) corresponds to the one-constant
approximation, namely the energy Wextr with K1 = K2 = K3 = κ .

It is worthwhile noting that the above formal argument can be made rigorous
using the theory of Γ -convergence in the spirit of [24] (see [14] for the derivation
of the surface Q tensor energy).

An important problem in the modern Materials Science is the analysis and the
control of the complex microstructures that the material may develop. As observed
in [19], the appearance of microstructures is usually related to the occurrence of the
so-called defects, which are localized regions where the material behavior appears
to be drastically different from the prototypical one. This is the case of Nematic
Liquid Crystals for which defects can be easily seen in experiments. Defects are
regions where the director field changes abruptly, due to the topological behavior
of the field surrounding them. A prominent example of the appearance of defects is
that of Nematic Shells which may develop topological defects due to the interplay
between the topology of the substrate, the boundary conditions and the constraints
on the director field (see [9]).

More precisely, when dealing with Nematic Shells, the topology of the shell and,
possibly, of the boundary conditions is responsible for the emergence of defects
which manifest in points in the shell where the director field is not well defined and
consequently its energy ((1) or (2)) is infinite. The link between the topology of
the shell M and the number of singularities that a unit norm vector field must have
is given by the Poincaré-Hopf Index Theorem: If a unit norm has singularities of
degree di located at the points x1, . . . , xk then

k∑
i=1

di = χ(M),

where χ(M) is the Euler Characteristic of M . For example, a spherical shell has
χ(M) = 2, thus implying the necessity of having defects with total degree equal
to 2. A crucial step in the analysis of a variational problem is the understanding of
the correct functional framework where to set, for example, the minimization of the
given energy. In the context of Nematic Shells, a closer inspection of the energy (3)
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reveals that there exist constants such that (see Proposition 1)

K∗
2

∫
M

(|Dn|2 + |dγ (n)|2)dS ≤ Wextr(n) ≤ K∗

2

∫
M

(|Dn|2 + |dγ (n)|2)dS,

Consequently, the natural choice for the functional framework would be to set the
analysis in the space of tangent vector fields such that |n| and |Dn| belong to L2(M),
which means that we have to consider the Sobolev set

W
1,2
tan (M, S2) =

{
v : M → R

3, |v(x)| = 1, v(x) ∈ TxM for a.a. x ∈ M, |Dv| ∈ L2(M)
}
.

As it happens for smooth vector fields, the topology of the shell may introduce
possible obstructions to this program. This is again related to the Poincaré-Hopf
index Theorem. In particular, the following theorem clarifies the situation for vector
fields with W 1,2 regularity

Theorem 1.1 Let M be a compact smooth surface without boundary, embedded in
R

3. Let χ(M) be the Euler characteristic of M . Then

W
1,2
tan (M, S2) �= ∅ ⇔ χ(M) = 0.

The proof of this theorem is given in [36] and it is based on a purely PDE
argument. Interestingly, Theorem 1.1 is a consequence of the more general results
contained in [9] regarding the extension of the Poincaré-Hopf Theorem to vector
fields with VMO regularity defined on compact manifolds with, possibly, boundary.
Theorem 1.1 is in a certain sense a borderline case for the existence of unit norm
vector fields with Sobolev regularity. In fact, defining for p ≥ 1, the Sobolev set of
tangent vector fields

W
1,p
tan (M;S2) :=

{
v : M → R

3, |v(x)| = 1, v(x) ∈ TxM for a.a. x ∈ M, |Dv| ∈ Lp(M)
}
,

we have that

• For p ≥ 2, W 1,p
tan (M; S2) �= ∅ if and only if χ(M) = 0

• For 1 ≤ p < 2, W 1,p
tan (M; S2) �= ∅.

The first item when p > 2 is a consequence of the classical Poincaré-Hopf Theorem
and of the embedding W 1,p ⊂ C0 for p > 2 in two dimensions. The case p = 2
follows from Theorem 1.1. The second item follows from the fact that a vector field
that behaves like x

|x| around the singularities belong to W
1,p
tan (M; S2) for 1 ≤ p < 2

as a direct computation shows.
Coming back to the analysis of the energy (1), Theorem 1.1 gives that for shells

M with χ(M) �= 0 the energy (1) is infinite and thus clearly not adequate to describe
this situation.

The rest of the paper is divided according to Theorem 1.1. More precisely, we
will first discuss in Sect. 2 the results for shells with Euler Characteristic equal
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to zero and then in Sect. 3 we will concentrate on shells with non zero Euler
Characteristic.

When χ(M) = 0, we obtain results regarding the existence of minimizers, the
existence of the gradient flow and also some quantitative results on the structure of
the minimizers for axisymmetric toroidal shells. The proofs of the results use ideas
borrowed from the theory of harmonic maps.

Moreover, starting from a variant of the well known XY spin model, we perform
the rigorous derivation via Γ -convergence of the energy (1) in terms of a discrete
to continuum limit. More precisely, we consider a family of triangulations Tε
of M with the vertices i ∈ T 0

ε lying on M and with mesh size ε, i.e. ε =
maxT ∈Tε

diam(T ). At any point i ∈ T 0
ε sits a unit-norm tangent vector vε(i) ∈ TiM

named spin. We consider the following discrete energy

XYε(vε) := 1

2

∑
i �=j∈T 0

ε

κij
ε |vε(i)− vε(j)|2 , (4)

where the coefficients κ
ij
ε are the entries of the stiffness matrix of the Laplace-

Beltrami operator of M . We show that, as ε→ 0, the discrete energy XYε converges
to the continuum energy (1), in the sense of Γ -convergence.

The XY spin model has been widely used in the physics community due to
its simple use and effectiveness (among the others, we refer to the works of
Berezinskii [4] and of Kosterlitz and Thouless [22] who were awarded the 2016
Nobel Prize for Physics, together with Haldane) but has also attracted the attention
of the mathematics community, see for instance [1, 2, 7].

For shells M with χ(M) �= 0, the energy (1) is clearly not well defined due
to Theorem 1.1 and we have to face the emergence of configurations with defects.
In Sect. 3 we will discuss the location of defects and their energetics. A possible
strategy would be to relax one the above constraints, for instance the unit-norm
constraint as in the Ginzburg-Landau theory (see, for instance, [5, 20, 21, 31, 32]
and the recent papers [17] and [18] for the analysis on a Riemannian manifold).
In this note, we present the approach of [8] and instead of a continuous model we
rather consider the discrete XY spin model (4). Defects emerge when we let ε→ 0
in (4). In particular, we will address the Γ -convergence of the energy

XYε(·)− πK | log ε|,

where K is an even, positive integer, such that |χ(M)| ≤ K . What appears in the
limit is the so called Renormalized Energy (introduced and studied first in [5] and
then in many other contributions, see [3, 32] and references therein) that describes
the energetics and the interaction between defects. The Renormalized Energy we
obtain is given by the sum of a purely intrinsic part and of an extrinsic part related
to the shape operator of M and thus the location of the defects also depends on how
the shell “sits” in the three dimensional space. At the level of minimizers, we have
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the following expansion

minXYε = π |χ(M)|| log ε| +W(v)+
|χ(M)|∑
i=1

γ (xi)+ oε→0(1),

where v ∈ W
1,2
tan,loc(M \ {x1, . . . , x|χ(M)|}; S2) is the “continuum limit” of the

sequence of discrete minimizers and γ (xi) is a positive quantity that takes into
account the energy located in the core of the defects xi of v. An interesting feature
that is not shared in the planar case, both continuous and discrete (see [5] and [2]),
nor in the curved continuous case (see [17] and [18]), is that the core energy γ (xi)

depends on the singularity xi .
The interest in analyzing configurations with defects goes beyond the aesthetic

appeal of the question. In fact, the defect’s points could serve as anchoring bonds
between colloidal particles, as precognized by Nelson [29] and recently realized in
[43]. Thus, the understanding of the defects formation and of their energetics and
location could be of impact for this new chemistry for meta materials.

We conclude this long introduction with some differential geometry notation that
we use. We refer to the book [13] for all the material regarding differential geometry.

Given a compact two dimensional surface M with metric g, embedded in R
3 and

oriented with the normal γ , we denote the area element induced by the choice of the
orientation with dS. We denote with ∇ the connection with respect to the standard
metric of R3, and we let Dvu be the covariant derivative of u in the direction v (u
and v are smooth tangent vector fields in M), with respect to the Levi Civita (or
Riemannian) connection D of the metric g on M .

Now, if u and v are extended arbitrarily to smooth vector fields on R
3, we have

the Gauss Formula :

∇vu = Dvu+ 〈dγ (u), v〉γ . (5)

This decomposition is orthogonal, thus there holds

|∇u|2 = |Du|2 + |dγ (u)|2. (6)

Beside the covariant derivative, we introduce another differential operator for
vector fields on M , which takes into account also the way that M embeds in R

3. Let
u be a smooth vector field on M . We extend it smoothly to a vector field ũ on R

3

and we denote its standard gradient by ∇ũ on R
3. For x ∈ M , we define

∇su(x) := ∇ũ(x)PM(x),

where PM(x) := (Id−γ ⊗ γ )(x) is the orthogonal projection on TxM . In other
words, ∇s is the restriction of the standard derivative in R

3 to directions that are
tangent to M . This differential operator is well-defined, as it does not depend on the
particular extension ũ. In general, ∇su �= Du = PM(∇u) since the matrix product
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is non commutative. Moreover, thanks to (5) and (6) there holds

|∇su|2 = |Du|2 + |dγ (u)|2.

Note that, by identifying u with a map u = (u1, u2, u3) : M → R
3, the k-th row

of the matrix representing∇su coincides with the Riemannian gradient (that we still
denote with ∇s) of uk .

2 Shells of Zero Euler Characteristic

According to Theorem 1.1, unless otherwise stated, throughout this section we will
consider M to be a compact and smooth two-dimensional surface without boundary
such that

M has Euler characteristic equal to zero, that is χ(M) = 0

(7)

and we will leave to the next Sect. 3 the case of a shell M with χ(M) �= 0.
This section is organized as follows. First of all, in Sect. 2.1 we will discuss the
minimization of the full energy (3) while in Sect. 2.2 we will study the gradient flow
of the energy (1) with respect to the scalar product of L2. Finally, in Sect. 2.3 we
discuss the rigorous derivation (in terms of Γ -convergence) of the energy (1) from
the discrete energy (4). It is an open problem to justify in terms of a microscopic
derivation the full energy (3), even in the euclidean case.

2.1 Existence of Minimizers

We let M satisfy (7), in such a way that W 1,2
tan (M, S2) �= ∅, we have the following

(see [15] for the flat case)

Proposition 1 Let M be a smooth, compact surface in R
3, without boundary,

satisfying (7) and let W : W
1,2
tan (M, S2) → R be the energy functional (1). Set

K∗ := min {K1,K2,K3} and K∗ := 3(K1 +K2 +K3). We have that

K∗
2

∫
M

(|Dn|2 + |dγ (n)|2)dS ≤ Wextr(n) ≤ K∗

2

∫
M

(|Dn|2 + |dγ (n)|2)dS.

Moreover, the energy W is sequentially lower semicontinuous with respect to the
weak convergence of W 1,2(M;R3).

Thus, the existence of a minimizer of the energy W follows from the direct
method of calculus of variations.
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Proposition 2 There exists n ∈ W
1,2
tan (M, S2) such that Wextr(n) = infu∈W 1,2

tan (M, S2)

Wextr(u).

The proof of the existence of minimizers is simple being the energy quadratic. It
is interesting to discuss how the energy selects the minimizers. We leave to [36]
the discussion on the relation between the different tunings of K1,K2,K3 and
the energy landscape for constant deviation angle (namely the angle that n forms
with one of vectors generating the tangent plane to M , see formula (8) below)
and we rather concentrate on the one-constant approximation. We observe that
the energy (1) has the form of a “phase transition energy” since it is the sum of
a Dirichlet part and of a (vectorial) double well potential part. In fact the purely
extrinsic part |dγ (n)|2 is minimized when n is oriented along the direction of
minimal principal curvature (i.e. minimal normal curvature). Thus, the energy (1)
favors a parallel configuration (i.e. a vector field such that Dn = 0) in the direction
of minimal principal curvature. Already considering only the Dirichlet part (i.e.
the intrinsic energy) the minimization experiences an interesting frustration of
geometric nature due to the fact that the existence of globally defined unit norm
parallel vector fields requires the Gaussian curvature to vanish. The effect of the
competition between the two terms of the energy is particularly interesting on the
axisymmetric torus. Thus, we fix M to be the axisymmetric torus, namely the
surface parametrized by X : [0, 2π] × [0, 2π] → R

3 where

X(θ, φ) =
⎛
⎝(R + r cos θ) cosφ
(R + r cos θ) sinφ

r sin θ

⎞
⎠.

R and r are usually known as major and minor radius, respectively. We let e1 and e2
be the unit tangent vectors given by

e1 = Xθ

|Xθ | , e2 = Xφ

|Xφ| ,

and we let c1 and c2 be the principal curvatures

c1 = 1

r
, c2(θ, φ) = cos θ

R + r cos θ
.

Then, we proceed as in [36] and we represent the director field n as

n = cosα e1 + sinα e2. (8)

The angle α is named deviation angle. We restrict to vector fields n ∈ W
1,2
tan (M, S2)

with zero winding number (the general case is discussed in [36]). Thus the deviation
angle turns out to be periodic, namely α ∈ H 1

per(Q). The energy expressed in terms
of α is particularly appealing for the analysis. Setting W(α) = W(n), with n given
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by (8), we have

W(α) = 1

2

∫
Q

{
κ |∇sα|2 + η cos(2α)

}
dS + κπ2

(
2− μ2√
μ2 − 1

+ 2μ

)
, (9)

where η(θ, φ) := κ
c2

1−c2
2(θ,φ)

2 = κ R2+2Rr cos θ
2r2(R+r cos θ)2 , and μ := R

r
. The number μ is

called aspect ratio and plays a prominent role in the minimization. In the next
Proposition we discuss the dependence of minimizers on the aspect ratio μ. In
particular, we discuss the stability of the minimizers.

Proposition 3 Let μ := R/r . There exists μ∗ ∈ (2/
√

3, 2] such that the constant
values α = π/2 + mπ , m ∈ Z, are local minimizers for W in H 1

per(Q) if and only
if μ ≥ μ∗. Moreover, if μ ≥ 2, there exists no non-constant solution w to the Euler
Lagrange equation

−Δsα = κ

2
(c2

1 − c2
2) sin(2α) in Q

such that

π

2
+mπ ≤ w ≤ π

2
+ (m+ 1)π.

The proof of the proposition is in [36]. It is worthwhile noting that it is an interesting
open problem to analytically determine the exact value of the critical threshold μ∗.
Numerics indicates that μ∗ ≈ 1.52.

Proposition 3 is important since it describes how the Napoli-Vergori energy (1)
acts. In particular, it shows the differences—for a toroidal shell—with the classical
intrinsic energy (2). It turns out that the presence of the extrinsic term related to
the shape operator acts as a selection principle for equilibrium configurations. More
precisely, when μ := R/r is sufficiently large then (see Proposition 3) the only
constant solution is α = π/2+mπ (m ∈ Z). Moreover, when R/r < μ∗ a new class
of non constant solutions appears (see Fig. 1, obtained discretizing the gradient flow
equation). We make the following observation: This new solution tries to minimize
the effect of the curvature by orienting the director field along the meridian lines
(α = 0), which are geodesics on the torus, near the hole of the torus, while near
the external equator the director is oriented along the parallel lines α = π/2, which
are lines of curvature. The fact that the solution α = π/2 is no longer stable for
sufficiently small μ is due to the high bending energy associated to α = π/2 in the
internal hole of the torus. In fact, in a small strip close to the internal equator of the
torus, we can approximate (see [36])

c2
1 − c2

2 ≈
1

r2 −
1

(R − r)2 , dS ≈ r(R − r)dθ dφ,
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Fig. 1 Configuration of the scalar field α and of the vector field n of a numerical solution to the
gradient flow of (9) in the case R/r = 1.2 (left). Zoom-in of the central region of the same fields
(right). The colour represents the angle α ∈ [0, π], the arrows represent the corresponding vector
field n

and therefore

(c2
1 − c2

2) cos(π)dS ≈ μ
2− μ

μ− 1
dθ dφ,

which tends to +∞ as μ→ 1.
Due to its “double well”-like structure, the energy (9) favors a smooth transition

between α = π/2 and α = 0. In this sense, the new solution can be understood as
an interpolation between α = π/2 and α = 0, which are the two constant stationary
solutions of the system.

2.2 Existence of Solutions of the Gradient Flow of (1)

We then focus on the L2-gradient flow of the one-constant approximation
energy (1). The study of the gradient flow for the energy (1) could be seen as a
starting point for the analysis of an Ericksen-Leslie type model for nematic shells.
This problem has already been addressed in [38] where various well-posedness and
long-time behavior results have been obtained for an Ericksen-Leslie type model
on Riemannian manifolds. However, it should be pointed out that the model in
[38] is purely intrinsic and does not take into account the way the substrate on
which the nematic is deposited sits in the three-dimensional space. Moreover, in the
equation describing the evolution of n (called d therein) the constraint |n| = 1 is
not considered.
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We prove (see Theorem 2.1) the well-posedness of the L2-gradient flow
of (1), i.e.

{
∂tn−Δgn+B2n = |Dn|2n+ |dγ (n)|2n in M × (0,+∞),

n(x, 0) = n0 a.e. in M.
(10)

Here Δg is the rough Laplacian and B2 is the linear operator (B2u, v)R3 :=
(dγ (u), dγ (v))R3 for any u, v tangent vector fields. The right-hand side of (10) is
a result of the unit-norm constraint on the director n. The initial datum n0 is taken
in W

1,2
tan (M, S2) and we look for weak solutions with bounded energy. A proof of

the existence relying on (i) discretization, (ii) a priori estimates, (iii) convergence of
discrete solutions, would encounter a difficulty here, as the nonlinear term |Dn|2
in the right-hand side of (10) is not continuous with respect to the weak-W 1,2

convergence expected from the a priori estimates. We overcome this problem with
techniques employed in the study of the heat flow for harmonic maps (see [10, 11]):
we first relax the unit-norm constraint with a Ginzburg-Landau approximation, i.e.,
we allow for vectors n with |n| �= 1, but we penalize deviations from unitary length
at the order 1/ε2, for a small parameter ε > 0. More precisely, we construct (via a
time discretization argument) a sequence of fields nε which solve

{
∂tnε −Δgnε +B2nε + 1

ε2 (|nε|2 − 1)nε = 0, a.e. in M × (0,+∞),

nε(x, 0) = n0 a.e. in M.

The above equation has a gradient flow structure. Thus, we have

‖∂tnε(t)‖2 + d

dt
W(nε(t))+ 1

4ε2

d

dt

∫
M

(|nε(t)|2 − 1)2dS = 0.

which produces the following energy estimate when the initial condition n0 has
finite energy

‖∂tnε‖2
L2(0,T ;L2

tan(M))
+ ‖Dnε‖2

L∞(0,T ;L2
tan(M))

+ ‖dγ (nε)‖2
L∞(0,T ;L2

tan(M))

+ sup
t∈(0,T )

1

4ε2

∫
M

(|nε(t)|2 − 1)2dS ≤ 3W(n0).

Via standard compactness arguments, one obtains the existence of limit vector field
n with the energy regularity specified by the above estimate. The difficult part is
clearly to pass to the limit in the approximate equation and to show that the field n
is indeed a weak solution of (10) The crucial observation (borrowed from [10, 11])
is that for a smooth unit-norm field n, (10) is equivalent to

(∂tn−Δgn+B2n)× n = 0. (11)
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To highlight the importance of the reformulation (11), let us consider the case of an
harmonic map u : Ω → S

2 with Ω ⊂ R
n an open set. Being an harmonic map, u

solves the nonlinear elliptic equation

Δu+ u|∇u|2 = 0 in Ω. (12)

Now, taking the vector product of the equation with u, one obtains that u solves (12)
if and only if it solves

Δu× u = 0 in Ω,

which is equivalent to

n∑
i=1

∂

∂xi
(u× ∂u

∂xi
) = 0 in Ω. (13)

Note that, differently from (12), the equation (13) is in divergence form and thus is it
more treatable in weak regularity contexts. The above strategy can be implemented
in our case and gives that (see [25, Lemma 7.5.4] for a similar argument)

Lemma 1 A vector field n ∈ W 1,2(0, T ;L2
tan(M)) ∩ L∞(0, T ;W 1,2

tan (M, S2)) is a
weak solution of (10) if and only if it solves

−
∫
M

(∂tn× n, γ )R3 ψ dS +
∫
M

gij (Din, γ × n)R3 ∂jψ dS −
∫
M

(B2n× n, γ )R3 ψ dS = 0

(14)

for any smooth function ψ :M → R.

Thus the strategy is as follows. First of all, we test the weak formulation of (10)
with the vector field φ = ψγ × nε where ψ : M → R is smooth. We obtain

−
∫
M

(∂tnε × nε, γ )R3 ψ dS +
∫
M

gij (Dinε, γ × nε)R3 ∂jψ dS

−
∫
M

(B2nε × nε, γ )R3ψ dS = 0,

(15)

where the penalization term has disappeared thanks to (a, b×a)
R3 = (b, a×a)

R3 =
0, for a, b ∈ R

3. Now, (15) has a “divergence” structure and thus is adequate for
the limit procedure with respect to the convergences given by the energy estimate.
Consequently, we pass to the limit in (15) and we obtain that n solves (14) that is
equivalent to (10) thanks to the above lemma. Thus, we have (see [36, Theorem 5.1]
for the details)
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Theorem 2.1 Let M be a two-dimensional compact surface satisfying (7). Given
n0 ∈ W

1,2
tan (M, S2) there exists a global weak solution to (10) with n(·, 0) = n0(·)

in M .

2.3 Justification of the Energy (1): A Discrete to Continuum
Approach

In this subsection we show how the energy (1) emerges as the discrete to continuum
limit of a discrete energy of XY type. We recall that we will use the very same
discrete energy to understand the generation of defects for shells with non zero
Euler Characteristic in the next Sect. 3. The main tool of our analysis will be the
concept of Γ -convergence for which we refer to the book of G. Dal Maso [12].

The discrete energy we consider is defined on a triangulation of the surface M .
Thus, before introducing the discrete energy, we have to (briefly) introduce the
discrete formalism. We refer to the paper [8] for the details of the construction.

For any ε ∈ (0, ε0], we let Tε be a triangulation of M , that is, a finite collection of
non-degenerate affine triangles T ⊆ R

3 with the following property: the intersection
of any two triangles T , T ′ ∈ Tε is either empty or a common subsimplex of T , T ′.
The parameter ε is the mesh size, namely we assume ε = maxT ∈Tε

diam(T ). The
set of vertices of Tε will be denoted by T 0

ε . We will always assume that T 0
ε ⊆ M .

We set M̂ε := ∪T ∈Tε
T , so M̂ε is the piecewise-affine approximation of M induced

by Tε . Given a piecewise-smooth function u : M̂ε → R
k , we denote by ∇εu the

restriction of the derivative ∇u to directions that lie in the triangles of M̂ε .
We will only consider family of triangulations (Tε) that satisfy the following

conditions.

(H1) There exists a constant Λ > 0 such that, for any ε ∈ (0, ε0] and any T ∈ Tε ,
the (unique) affine bijection φ : Tref → T satisfies

Lip(φ) ≤ Λε, Lip(φ−1) ≤ Λε−1,

where Tref ⊆ R
2 be a reference triangle of vertices (0, 0), (1, 0) and (0, 1).

Here Lip(φ) denotes the Lipschitz constant of φ, Lip(φ) := supx �=y |x −
y|−1|φ(x)− φ(y)|.

(H2) For any ε ∈ (0, ε0] and any i, j ∈ T 0
ε with i �= j , the stiffness matrix κ

ij
ε of

the Laplace Beltrami operator on M satisfies

κij
ε := −

∫
M̂ε

∇εϕ̂ε,i · ∇εϕ̂ε,j dS ≥ 0,

where the hat function ϕ̂ε,i is the unique piecewise-affine, continuous function
M̂ε → R such that ϕ̂ε,i(j ) = δij for any j ∈ T 0

ε .
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(H3) For any ε ∈ (0, ε0], M̂ε ⊆ U and the restriction of the nearest-point
projection P̂ε := P|M̂ε

: M̂ε → M has a Lipschitz inverse. Moreover, we

have Lip(P̂ε)+ Lip(P̂−1
ε ) ≤ Λ for some ε-independent constant Λ.

An important consequence of the assumption (H3) is that the restriction of the
nearest-point projection P̂ε : M̂ε → M has a Lipschitz inverse P̂−1

ε : M → M̂ε .
Following [16], we use P̂ε and P̂−1

ε to construct the so called metric distorsion
tensor. This object will be important in our analysis since it will permit to rewrite our
discrete energy as an energy for a proper vector field interpolating the discrete spins.
To introduce the metric distorsion tensor, we proceed as follow. For any x ∈ M

such that P̂−1
ε (x) falls in the interior of a triangle of M̂ε (so that P̂−1

ε is smooth in
a neighbourhood of x), we let the metric distorsion tensor Aε(x) to be the unique
linear operator TxM → TxM that satisfies

(Aε(x)X, Y) =
(

dP̂−1
ε (x)[X], dP̂−1

ε (x)[Y]
)

(16)

for any X, Y ∈ TxM . The metric distorsion tensor is symmetric and positive definite,
since the right-hand side of (16) is. Consequently, we introduce a norm ‖ · ‖L∞(M)

on L∞(M; TM ⊗ T∗M) by

‖A‖L∞(M) := ess sup
x∈M

‖A(x)‖TM⊗T∗M,

where ‖ · ‖TM⊗T∗M is the operator norm. The following lemma (see [8, Lemma 2])
is important.

Lemma 2 Suppose that (Tε) satisfies (H1) and (H3). Then, there holds

‖Aε − Id ‖L∞(M) + ‖A−1
ε − Id ‖L∞(M) ≤ Cε.

Let gε ∈ L∞(M; T∗M⊗2) be the metric on M defined by gε(X, Y) :=
(AεX, Y), for any smooth fields X and Y on M . Given a function u ∈ W 1,2(M),
one can define the Sobolev W 1,2-seminorm of u with respect to gε , i.e.

|u|2
W

1,2
ε (M)

:=
∫
M

(
A−1

ε ∇su, ∇su
)
(det Aε)

1/2 dS, (17)

where ∇s denotes the Riemaniann gradient and dS the volume form on M (with
respect to the metric induced by R

3). By construction (16), the map P̂−1
ε is an

isometry between M , equipped with the metric gε, and M̂ε , with the metric induced
by R

3. Therefore, given v ∈ W 1,2(M̂ε; R) and a Borel set U ⊆ M , there holds

|v ◦ P̂−1
ε |2

W
1,2
ε (U)

=
∫
P̂−1
ε (U)

|∇εv|2 dS.
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Arguing component-wise, we see that the same equality holds for a (not necessarily
tangent) vector field v : M̂ε → R

3 in place of v.
Using assumption (H3), to any discrete vector field vε ∈ T(Tε; S2) we can

associate a continuous field wε : M → R
3 by setting

wε := v̂ε ◦ P̂−1
ε , (18)

where v̂ε : M̂ε → R
3 is the affine interpolant of vε. The field wε is Lipschitz-

continuous and satisfies wε = vε on T 0
ε , but it is not tangent to M nor unit-valued,

in general. However, one can still prove some useful properties that we collect in a
single lemma (see [8, Lemma 3, Lemma 4, Lemma 5] for the proofs).

Lemma 3 Suppose that (H1), (H2), (H3) are satisfied. Then, for any ε ∈ (0, ε0]
and any discrete field vε ∈ T(Tε; S2), wε is Lipschitz-continuous with Lipschitz
constant

Lip(wε) ≤ Cε−1.

Moreover, wε satisfies the following

• For any subset Û ⊆ M̂ε that can be written as union of triangles of Tε, there
holds

XYε(vε, Û ) := 1

2

∑
i,j∈T 0

ε ∩Û
κij
ε |vε(i)− vε(j)|2 = 1

2
|wε|2

W
1,2
ε (P (Û))

. (19)

• There exists a positive constant C such that

‖(wε, γ )‖L∞(M) ≤ Cε, and
1

ε2

∫
M̂ε

(
1− |wε|2

)2 ≤ C XYε(vε). (20)

Another immediate but important consequence of the lemma above is a compact-
ness result for discrete sequences vε with equi-bounded energy with respect to ε.

Lemma 4 Let vε ∈ T(Tε; S2) be a sequence such that

XYε(vε) ≤ C for any ε > 0,

then there exists v ∈ W
1,2
tan (M, S2) and a subsequence of ε such that, defining wε as

in (18), there holds

wε
ε→0−−→ v strongly in L2(M;R3). (21)

Then, we have the following.
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Theorem 2.2 Suppose that the assumptions (H1), (H2) and (H3) are satisfied.
Then, XYε Γ -converges with respect to weak convergence of L2(M;R3) to the
functional

W(v) :=
{

1
2

∫
M |Dv|2 + |dγ [v]|2dS, if v ∈ W

1,2
tan (M; S2)

+∞, otherwise in L2(M;R3).

The proof follows standard argument in the analysis of discrete to continuum limits
via Γ -convergence (see, e.g., [1, 7] and the Lecture Notes [34] for a slightly different
model). We highlight the main points for future reference since, to the best of our
knowledge, the proof of this result is not contained in any contribution.

Proof (Proof—Γ -liminf Inequality) We are given a sequence of discrete vector
fields vε and we aim to prove that there exists a unit norm tangent vector field v
such that wε → v weakly in L2(M;R3) (actually much more is true) and

lim inf
ε→0

XYε(vε) ≥ W(v). (22)

Without loss of generality, we may assume that there exists a constant C such that
XYε(vε) ≤ C for any ε (if not (22) is trivially satisfied). Thus, we have that the
sequence wε defined in (18) is bounded, uniformly with respect to ε, in W 1,2

ε (M).
Then, the compactness result in Lemma 4 gives that there exists a subsequence, still
denoted with wε, and a vector field v ∈ W 1,2(M;R3) for which

wε
ε→0−−→ v strongly in L2(M;R3). (23)

This convergence, combined with (20), give that v is tangent and |v| = 1, namely
v ∈ W

1,2
tan (M, S2). Finally, since there holds (see (17))

XYε(vε) = 1

2
|wε|2

W
1,2
ε (M)

= 1

2

3∑
i=1

|wi
ε|2W 1,2

ε (M)
= 1

2

3∑
i=1

∫
M

(
A−1

ε ∇swi
ε, ∇swi

ε

)
(det Aε)

1/2 dS,

Lemma 2 and the semicontinuity of norms with respect to weak convergence gives

lim inf
ε→0

1

2
|wε|2

W
1,2
ε (M)

≥ 1

2

∫
M

|∇sv|2dS = W(v),

that is (22).

Proof (Proof—Γ -limsup Inequality: Existence of a Recovery Sequence) Given
v ∈ W

1,2
tan (M, S2), we have to construct a sequence of discrete vector fields

vε ∈ T(Tε; S2) such that wε → v weakly in L2(M;R3) and

lim sup
ε→0

XYε(vε) ≤ W(v).
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The construction is as follows. First of all, we can assume that v is smooth, otherwise
we can approximate it with a density argument (see [33] and [9]). Now, we let vε be
the discrete vector field given by the restriction of v to the nodes of the triangulation,
namely vε(i) := v(i) for i ∈ T ε

0 . Then, constructing wε as in (18), it is not difficult
to realize that wε → v strongly in L2(M;R3) and that

lim sup
ε→0

XYε(vε) ≤ W(v),

hence the thesis follows.

3 Shells of Non-Zero Euler Characteristic: Emergence
of Defects

In this last section we are interested in understanding the energetics of defected
configurations and, consequently, locate the defects on the surface M . The results
we present are taken from [8] to which we refer for all the details and proofs. First
of all, we introduce the notion of vorticity and its discrete counterpart which, as it
happens for the discrete flat case and for the Ginzburg Landau case, encodes the
topological informations of the discrete sequence vε. Moreover, the concentration
of the discrete vorticity in the ε→ 0 limit will be the indication of the emergence of
defects. We leave the precise introduction of this measure to the paper [8]. However,
for the sake of clarity we briefly sketch it here.

We first consider the continuum setting. Given a map u ∈ (W 1,1∩L∞)(M; R3),
we define the vorticity of u as the 1-form

j (u) := (γ , u ∧ du),

whose action on a smooth, tangent field w on M is given by

〈j (u), w〉 = (γ , u× ∇wu).

The role of the vorticity (actually of its differential) is expressed in the following
lemma (see [8, Lemma 6]).

Lemma 5 Let u ∈ W
1,1
tan (M; S2) be a unit, tangent field. Suppose that there exist a

finite number of points x1, . . . , xp such that

u ∈ W
1,2
loc (M \ {x1, . . . , xp}; R3).

Then

�dj (u) = 2π
p∑

i=1

ind(u, xi)δxi −G in D ′(M).
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In the lemma, � is the Hodge dual operator and ind(u, xi) the local degree of u at
the point xi , that is, the winding number of u around the boundary of a small disk
centred at xi (see e.g. [9] for more details).

Now, given a discrete field vε ∈ T(Tε; S2), we define the discrete vorticity
measure μ̂ε(vε) as follows. For any given triangle T ∈ Tε we let (i0, i1, i2) be its
vertices, sorted in counter-clockwise order with respect to the orientation induced
by γ and we let i3 := i0. The measure μ̂ε(vε) is defined as a linear combination
of Dirac delta measures supported on the baricenters of triangles T ∈ Tε , and the
weights are given in such a way that

μ̂ε(vε)[T ] =
2∑

k=0

(
γ (ik)+ γ (ik+1)

2
, vε(ik)× vε(ik+1)

)
.

It turns out that the right-hand side approximates the integral
∫
T

dj (̂vε), where
v̂ε : M̂ε → R

3 is the affine interpolant of vε, hence μ̂ε(vε) is a discretization
of dj (̂vε). In the limit ε→ 0, the appearance of defects is related to the convergence
μ̂ε(vε) → 2πμ − G dS, where μ is a measure concentrated on a finite number of
points {x1, . . . , xk} in M . This convergence is to be intended in the sense of the flat
topology, that is, the dual-norm topology on W 1,∞(R3)′.

The location of the defects is achieved by the analysis of the so called Renormal-
ized Energy W introduced by Brezis, Bethuel and Hélein for the Ginzburg Landau
equation in [5]. In [8], we obtain the Renormalized Energy as the (first order) Γ -
limit of the discrete energy XYε as in [2, 3, 32] for the euclidean case.

Following [2], we introduce the following class of vector fields in M: for any k,
Vk is the set of fields v ∈ L2(M; S2) such that there exist (xi)ki=1 ∈ Mk, (di)ki=1 ∈
{−1, 1}k such that

v ∈ W
1,2
tan,loc

(
M \

k⋃
i=1

xi; S2

)
, �dj (v) = 2π

k∑
i=1

diδxi −G.

Given an even number K ∈ N such that K ≥ |χ(M)|, we define the intrinsic
Renormalized Energy as (see [2, Eq. (4.22)]):

Wintr(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limδ→0

(
1

2

∫
Mδ

|Dv|2dS −K π | log δ|
)

for v ∈ VK

−∞ for v ∈ Vk, k < K ,

+∞ otherwise in L2(M; R3),

where, given v ∈ VK and δ > 0 so small that the balls Bδ(xi) are pairwise disjoint,
we have set Mδ := M \⋃K

i=1 Bδ(xi). The definition above is shown to be well posed
(see [8]). It is important to note that for v ∈ VK there holds

|dγ [v]| ≤ C a.e. in M, (24)
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where the constant C depends only on M . Thus, the following quantity exists in
[−∞,+∞]:

W(v) :=Wintr(v)+ 1

2

∫
M

|dγ [v]|2dS.

W will be called the Renormalized Energy. Note that W contains both an intrinsic
and an extrinsic term but, due to (24), the latter is always finite. This shows, as
expected, that the concentration of the energy is due to the Dirichlet part of W

in (1).
A source of difficulties that emerges in the analysis of this discrete energy is

related to the fact that for a curved shell the vertices of the triangulation do not
necessarily sit on a structured lattice. In particular, this problem reflects on the study
of the so called core energy, namely the energy concentrated in each defect, for
which the typical scaling arguments used in the planar case (see [5] and [2]) are not
available. As already anticipated, as a result of our analysis we will obtain a core
energy that depends of the singularity and moreover it will depend on the (limit)
triangulation around each defect xi . To obtain such a result, we have to enforce our
assumptions on the triangulation Tε around the singularities in the limit ε → 0. At
base, we require that our triangulation Tε is somehow scale invariant. We express
this requirement as follows.

(H4) For any x ∈ M there exists a triangulation S = S(x) on R
2 such that, for

any δ > 0 smaller than the injectivity radius of M , there holds

lim
ε↘0

d(Sε, S|Bδ/ε ) |log ε| = 0,

where d(·, ·) is a properly defined distance between triangulations (see [8] for the
details) and S|Bδ/ε denotes the restriction of S to the ball Bδ/ε .

In [8, Theorem B] the following theorem is proved

Theorem 3.1 Suppose that the assumptions (H1), (H2), (H3) and (H4) are satis-
fied. Then the following Γ -convergence result holds.

(i) Compactness. Let K ∈ N and let vε be a sequence in T(Tε; S2) for which
there exists a positive constant CK such that

XYε(vε)−K π | log ε| ≤ CK . (25)

Then, up to a subsequence, there holds

μ̂ε(vε)
flat−→ 2πμ−GdS (26)

for some μ = ∑k
i=1 diδxi with

∑k
i=1 |di | ≤ K . If |μ| = K , then k =

K ≡ χ(M) mod 2, |di| = 1 for any i. Moreover, there exists v ∈ VK and a
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subsequence such that

wε → v strongly in L2(M;R3) and weakly in W
1,2
loc (M \

K⋃
i=1

xi;R3), (27)

where wε is the interpolant of vε defined by (18).
(ii) Γ -lim inf inequality. Let vε ∈ T(Tε; S2) be a sequence satisfying (25) with

K ≡ χ(M) mod 2 and converging to some v ∈ VK as in (26)–(27). Then,
there holds

lim inf
ε→0

(XYε(vε)−K π | log ε|) ≥W(v)+
K∑
i=1

γ (xi),

where γ (xi) is the core energy around each defect xi .
(iii) Γ -lim sup inequality. Given v ∈ VK , there exists vε ∈ T(Tε; S2) such that

μ̂ε(vε)
flat−→ �dj (v), wε → v as in (27) and

lim
ε→0

(XYε(vε)−K π | log ε|) =W(v)+
K∑
i=1

γ (xi).
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Modeling of Microstructures in a
Cosserat Continuum Using Relaxed
Energies

Muhammad Sabeel Khan and Klaus Hackl

Abstract Granular materials tend to exhibit distinct patterns under deformation
consisting of layers of counter-rotating particles. In this article, we are going
to model this phenomenon on a continuum level by employing the calculus of
variations, specifically the concept of energy relaxation. In the framework of
Cosserat continuum theory the free energy of the material is enriched with an
interaction energy potential taking into account the counter rotations of the particles.
The total energy thus becomes non-quasiconvex, giving rise to the development of
microstructures. Relaxation theory is then applied to compute its exact quasiconvex
envelope. It is worth mentioning that there are no further assumptions necessary
here. The computed relaxed energy yields all possible displacement and micro-
rotation field fluctuations as minimizers. Based on a two-field variational principle
the constitutive response of the material is derived. Results from numerical compu-
tations demonstrating the properties of relaxed potential are shown.

1 Introduction

This paper focuses on the treatment of a non-quasiconvex, and therefore ill-posed
variational model for granular materials that arises as a consequence of the particle
counter rotations at the microscale. In continuum mechanics non-quasiconvex
potentials may arise due to various reasons, e.g., in the case of strain-softening
plasticity [34, 40] they can be caused by non-monotone constitutive behavior, in
the case of single slip plasticity they can be due to single slip constraints on the
deformation of crystal in association with cross-hardening [23, 24], for twinning
induced plasticity they stem from multi-phase energy potentials corresponding to
different martensitic variants [8, 14, 32, 35, 36].
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So far, different approaches have been discussed in the literature to treat
non-quasiconvex variational problems. One possibility is to use regularization
techniques which are based on a gradient-type enhancement of the original non-
quasiconvex energy function in (5). But the regularization method has its own
limitations as far as the physical properties of the unrelaxed problems are concerned.

Contrary to this is the method of relaxation is a more effective and natural way
to deal with non-quasiconvex energies. There are two ways to relax the original
non-quasiconvex energy minimization problem (5). Either to enlarge the space
of admissible deformations

(
W 1,p∈(1,∞) (Ω,Rn)

)
to the space of parametrized

measures [8, 47, 64], or, to replace the original non-quasiconvex energy with its
relaxed energy envelope. The methodology of constructing a relaxed minimization
problem by using parametrized measures is discussed by Carstensen and Roubíček
[15, 16], Nicolaides and Walkington [42, 43], Pedregal [47–49] and Roubíček [51–
53]. The references which suggests to replace the non-quasiconvex energy with its
corresponding relaxed energy function are found in Carstensen et al. [13], Conti
and Ortiz [23], Conti and Theil [24], Hackl and Heinen [35], Govindjee et al. [32],
Miehe and Gürses [34]. Numerical schemes for calculating relaxed envelopes have
been worked out by Aranda and Pedregal [4], Bartels [10], Carstensen, Conti and
Orlando [12], Carstensen and Plechac [14], Carstensen and Roubíček [15], Chipot
[19], Chipot and Collins [20], Collins, Kinderlehrer and Luskin [21], Dolzmann and
Walkington [29], Pedregal [49] and Roubíček [53]. For a detailed discussion on the
methods of relaxation the reader is referred to the work by Dacorogna [25], Ball [7]
and references therein.

Exact analytical results for the relaxed energy are known only for few variational
problems in the literature so far. For example the work of DeSimone and Dolzmann
[28] where they give an exact envelope of the relaxed energy potential for the
free energy of the nematic elastomers undergoing a transition from isotropic to
nematic-phase. Dret and Raoult [30] compute an exact quasiconvex envelope for
the Saint Venant-Kirchhoff stored energy function expressed in terms of singular
values. Some analytical examples of quasiconvex envelopes are also mentioned
by Raoult in [50] for different models in nonlinear elasticity. Kohn and Strang
[37, 38] gave an exact formula (see Theorem 1.1 in [37]) for the relaxed energy
for a variational problem which has its emergence from the shape optimization
problems for electrical conduction. Another exact relaxed result is given by Conti
and Theil in [24] for the incremental variational problem for rate-independent single
slip elastoplasticity. Conti and Ortiz [23] determine an exact analytical expression
for the relaxed energy in single crystal plasticity with a non-convex constraint on
the deformation of the crystal requiring all material points must deform via single
slip. They extended their analytical expression in [22] to the case of crystal plasticity
with arbitrary hardening features. Kohn and Vogelius studied the inverse problem of
applied potential tomography and come up with an analytical formula [39] for the
relaxed energy by using results from homogenization. In a similar manner but this
time with the use of Fourier analysis Kohn presents in Theorem 3.1 of [36] an exact
analytical expression for a two well energy function with application to solid-solid
phase transitions.
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In this paper, we provide an exact relaxation for the non-quasiconvex energy
which arises during our study on the rotational microstructures in granular materials.
Due to a large number of industrial applications and their use in everyday life gran-
ular materials have been studied extensively throughout the past years. Numerous
investigations have been performed in order to model the mechanical behavior of
these materials [2, 3, 18, 31, 44–46, 54–57, 59, 60]. In this work, the focus is to
consider the counter-rotations of granular particles at the microscale and to develop
a mechanical model that can predict the formation of distinct deformation patterns
that are related to the microstructures in these materials. For an overview on the
experimental observations of such patterns the reader is referred to the book by
Aranson and Tsimring [5]. For this purpose the continuum description of granular
materials is used, specifically the theory of Cosserat continuum.

The present work is organized as follows. In Sect. 2 the intergranular kinematics
is discussed and an interaction energy potential contributing to the strain energy of
the material is proposed. In Sect. 3 a relaxed variational model for granular materials
is presented where we state and prove a theorem on the explicit computation of the
relaxed envelope. Employing this result, the exact relaxed energy is derived where
all the material regimes are explicitly characterized. In Sect. 4 numerical results
demonstrating on the properties of computed relaxed potential are presented. Finally
in Sect. 5 conclusions are drawn.

2 Intergranular Interactions and Counter Rotations

Intergranular interactions and particle counter rotations in a granular medium
subjected to deformation are intriguing and experimentally well recognized [44,
54] phenomenon that contribute in the development of material microstructures
[9, 55, 58]. Because of intricate nature of particle rotations and complex behavior
of granular materials under deformation it is therefore difficult to understand the
intergranular cohesive interactions completely. In literature almost no comprehen-
sive study appeals which discuss the intergranular interactions and the arising
phenomenon in detail that can truly justify the naturally observed microstructural
patterns in deforming granular materials. Although the particle rotations at the
microscale has been considered by a number of authors, see e.g. [1, 17, 18, 45, 55,
58], the essence of their counter rotations especially their interactions in observing
the formation of distinct deformation patterns is not well understood. It is therefore
our aim to reconsider the intergranular kinematics of counter-rotating particles at
microscale and to develop an interaction energy potential for a granular medium
that arises as a consequence of these particle counter rotations.

Here, we develop an interaction energy potential that takes into account the inter-
granular kinematics at the continuum scale and define two new material parameters
as a suitable measure for the observation of microstructural phases of granular
materials. In this spirit, consider the granular material where two neighboring
particles are in contact with each other as shown in Fig. 1. These particle interactions
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Shear direction Deformed configuration
Particle
counter-
rotation

Fig. 1 Schematic of a granular medium subjected to shear with phenomenon of particle counter
rotations

leads to two important modes of deformations called translational and micro-
rotational motions of the particles which can play a crucial role in the dissipation
of the material energy [1, 45] at the continuum scale and therefore contribute to the
material strain energy. These independent translational and rotational motions of
the granules at the microscale are interlinked with a suitable deformation measure
analogous to the concept used in the theory of generalized continuum. Consider now
that at the continuum scale the translational motion of the two interacting particles
is represented by the vector field {ui ei} : Rd �→ R

d and the rotational motion
is represented by a field vector analogous to the micro-rotational vector {ϕi ei} :
R

d �→ R
d of the Cosserat continuum. Associated with these deformation field

vectors are the strain measures. Corresponding to translational and microrotational
vector field these measure are the deformation tensor

[
uj,i ei ⊗ ej

] : Rd �→ R
d×d

and
[
ϕj,i ei ⊗ ej

] : Rd �→ R
d×d respectively. The symmetric part of uj,i ei ⊗ ej is

the classical strain tensor εij ei⊗ej . An investigation of the rotating phenomenon of

the interacting particles reveals that the macroscopic shear

(
εij − 1

d
εkk δij

)
ei⊗ej

influence the microrotational deformation ϕj,i ei ⊗ ej of the granular particles.
This leads us to suggest a proportionality relation between the gradient of the
microrotational vector field and the macroscopic shear strain which in mathematical
terms is given by

√√√√√
d∑

i,j=1

(
ϕj,i

)2 ∝
√√√√√

d∑
i,j=1

(
εij − 1

d
εkk δij

)2

, (1)

where d is the dimension of the problem under consideration. This proportionality
relation is solved with the introduction of the length scale parameter β with the
dimension of the inverse of a length. Thus we can write

√√√√√
d∑

i,j=1

(
ϕj,i

)2 = β

√√√√√
d∑

i,j=1

(
εij − 1

d
εkk δij

)2

. (2)
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Equation (2) is indeed the simplest possible assumption taking into account such
an intergranular relationship. More complex forms can be envisioned, but we will
demonstrate in the sequel that the present one already leads to a very intricate
kinetics.

This brief but comprehensive discussion on itergranular kinematics enables us
to propose an interaction energy potential that will contribute to the material strain
energy function. This interaction energy potential is stated as

I = α

⎛
⎝ d∑

i,j=1

(
ϕj,i

)2 − β2
d∑

i,j=1

(
εij − 1

d
εkk δij

)2
⎞
⎠

2

, (3)

where Einstines summation convention is assumed. In tensorial notation it takes the
following form

I = α
(
‖∇ϕ‖2 − β

2 ‖sym dev∇u‖2
)2

, (4)

where α and β are non-negative material constants, α is the interaction modulus
having information regarding frictional effect in the interacting particles and β is
related to the particle size having information regarding intrinsic length scale in
Cosserat continuum. The proposed interaction energy potential not only bridges
the gap between microstructural properties and the macroscopic behavior of the
material but also enables us to characterize different microstructural regimes in
granular materials.

3 A Relaxed Variational Model for Granular Materials

3.1 Variational Model

The mechanical response of granular materials can be computed from variational
models defined within the context of Cosserat continuum theory. Let Ω be a
bounded domain with Lipschitz boundary ∂Ω and u : Ω ⊂ R

d �→ R
d be

the displacement vector field where d being the dimension of the problem under
consideration, Φ : Ω ⊂ R

d �→ so(d) := {
R ∈M

d×d | RT = −R
}

be the
microrotations such that the micromotions of the particles are collected in the vector
field ϕ = axl(Φ) : Ω ⊂ R

d �→ R
d , then the deformed configuration of these

materials can be completely determined from the following minimization problem

inf
u,Φ,ϕ

{
I (u,Φ,ϕ) ; (u,Φ,ϕ) ∈ W 1,p

(
Ω,Rd

)
×W 1,p(Ω, so (d)

)×W 1,p
(
Ω,Rd

)}
,

(5)

along with the prescribed boundary conditions u|∂Ωu = u◦ and ϕ|∂Ωϕ = ϕ◦. Here
W 1,p is the space of admissible deformations (also known as Sobolev space) with
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p ∈ (1,∞) related to the growth of the energy function W . The integral functional
I is defined as

I (u,Φ,ϕ) =
∫
Ω

W (∇u,Φ,∇ϕ) dV −  (u,ϕ) , (6)

where the potential  takes the contribution of external forces b, external couples m,
traction forces tu and traction moments tϕ such that

 (u,ϕ) =
∫
Ω

(b · u+m · ϕ) dV +
∫
∂Ωu

tu · u dS +
∫
∂Ωϕ

tϕ · ϕ dS. (7)

In reality, the deformation of granular media is a dissipative process which should
not be discussed in terms of energies and displacements. In this sense, our model
only covers the initiation of material microstructures. For a full description of
extended time-intervals, the variables u,Φ,ϕ would have to be replaced by their
corresponding velocities and the energy W by a dissipation function. An exposition
of this procedure in the case of rigid elasticity can be found in [61–63].

Within the framework of generalized elasticity the mechanical response of gran-
ular materials can be determined with the specification of an energy potential that
depends, in an independent way, on the particle displacement and microrotations. It
is therefore possible to replace the energy potential W in the integral functional (6)
by the following Cosserat energy function

Wcsrt (∇u,Φ,∇ϕ) = 1

2
e (u,ϕ) : C : e (u,ϕ) + 1

2
κ (ϕ) : C : κ (ϕ) , (8)

which do not only depends on the gradients of the macro and micro-motions of the
particles but also on a relative macro-rotational deformation tensor Φ that associates
the macro-deformation with the micro-deformation of the particles. Here, e = ∇u−
Φ is the Cosserat deformation strain tensor, κ = ∇ϕ is the rotational deformation
strain tensor, C and C are the fourth order constitutive tensors of elastic constants.

The earlier discussion in Sect. 2 on the intergranular interactions and counter
rotations of the particles leads us to introduce an enhanced energy potential for the
granular materials. In this spirit, the interaction energy potential (4) is integrated
with the Cosserat energy function (8) to model the microstructures of the granular
materials. This enables us to define a new enhanced energy potential for the granular
materials in a Cosserat medium which is given by

W (∇u,Φ,∇ϕ) = Wcsrt (∇u,Φ,∇ϕ)︸ ︷︷ ︸
Cosserat energy function

+ α
(
‖∇ϕ‖2 − β

2 ‖dev sym∇u‖2
)2

︸ ︷︷ ︸
Interaction energy potential

.

(9)
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Fig. 2 Unrelaxed energy (10) curve for E = 2.0 × 102 (MPa), ν = 0.3, μc = 1.0 × 10−2 (MPa),
λ = 1.15 × 102 (N), μ = 7.69 × 101 (N), μc = 1.00 × 101 (N), α = 1.0 × 101 (N.mm2) and
β = 1.20 × 102 (mm−1)

In an isotropic elastic Cosserat medium the enhanced energy potential (9) takes the
form

W (∇u,Φ,∇ϕ) =
(
λ

2
+ μ

d

) (
tr ε

)2 + μ ‖dev ε‖2 + μc ‖asy∇u− Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2

(10)

Here, λ, μ, μc, λ̄, μ̄, μ̄c are the Cosserat material constants.
The nonconvexity and hence the non-quasiconvexity of the energy potential (10)

along some chosen strain paths can be seen from Fig. 2. Such non-quasiconvex
energy potential when enters in (6) will lead to work with non-quasiconvex energy
minimization problem whose general analytical solutions are always of interest. But,
the solutions to such non-quasiconvex energy minimization problems do not exist in
general, which is highly due to fine scale oscillations of the gradients of infimizing
deformations. Here, in this case, the non-existence of these solutions is due to the
possible displacement and microrotation field fluctuations at fine scales. The fine
scale oscillations of the minimizing displacement and microrotation field variables
will lead to the development of internal structures in the material. Formation of such
microstructures can be extended microstructures [6, 33] which is distributed through
the material domain or the localized microstructures [11, 27] which appear in the
form of narrow shearing bands. Moreover, the existence of the unique minimizing
translational and microrotational deformations are not guaranteed in this situation.
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Thus to avoid these problems and to resolve the internal structures of the materi-
als in consideration it is therefore necessary to compute a quasiconvex (relaxed)
energy potential W rel. The relaxed potential when enters in the minimization
problem (5) now assures the ellipticity of the resulting boundary value problem,
since it satisfy the Legendre-Hadamard condition (see definition by Ball and
Dacorogna [7, 25]). The study by Morrey [41], Dacorogna [25, 26] gives sufficient
justification for the relation of Legendre-Hadamard (ellipticity) condition with the
constitutive description of a related mechanical problem.

If possible to compute the exact relaxed envelope of the corresponding non-
quasiconvex energy in the energy minimization problem (5) one do not only
guarantee general solutions of the associated energy minimization problem but also
can predict on the formation of both the extended and localized microstructures in
the materials. It is worth mentioning that, in this case, we are enable to compute an
exact relaxed (quasi-convex) energy envelope corresponding to the non-quasiconvex
energy potential in (10).

Since quasiconvex envelopes possess only degenerate ellipticity, only existence
of minimizers can be guaranteed, no uniqueness. For numerical purposes it is
therefore advantageous to add a very small strongly elliptic regularization term.
This does not alter the character of the calculated solutions.

3.2 Computation of Relaxed Energy Envelope

In this section, we present our main result concerning the solutions of non-
quasiconvex energy minimization problem in (5). In this respect, we compute
an exact quasiconvex envelope of the energy function in (10). For other cases
where it was possible to construct exact relaxed envelopes corresponding to
energy minimization problems addressing different mechanical aspects the reader
is referred to the work by Conti and Theil [24], Conti and Ortiz [23], Conti et al.
[22], DeSimone and Dolzmann [28], Dret and Raoult [30], Kohn [36], Kohn and
Strang [37, 38], Kohn and Vogelius [39], Raoult [50]. The quasiconvex envelope
which here termed as the relaxed energy Wrel is thus stated as

Theorem 1 Assume d = 3, λ, μ, μc, λ̄, μ̄, μ̄c, α, β ≥ 0, μ◦ = min {μ̄, μ̄c}. Let

f = μ◦ s + μc + α
(
s − β2 c

)2
, h =

{
(μ̄− μ̄c) ‖sym κ‖2 if μ̄ ≥ μ̄c

(μ̄c − μ̄) ‖asy κ‖2 otherwise

and define g by

g = min
s,c; c≥‖dev ε‖2,

s≥(‖sym κ‖2+‖asy κ‖2
)
f (s, c) .

(11)



Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies 111

Then, the quasicovnex envelope of the Cosserat strain energy defined in (10) is
given by

Wrel =
(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy ∇u−Φ‖2 + λ

2
(tr κ)2 + h

+ g
(
‖sym κ‖2 , ‖asy κ‖2 , ‖dev ε‖2

)
.

(12)

Proof Consider the rank-one line κ t = κ + t a⊗ b; a,b ∈ R
d , t ∈ R, then

W (e, κ t ) =
(
λ

2
+ μ

d

) (
tr ε

)2 + μ ‖dev ε‖2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2

+ μ ‖sym κ t‖2 + μc ‖asy κ t‖2 + α
(
‖sym κ t‖2 + ‖asy κ t‖2 − β2 ‖dev ε‖2

)2

(13)

Now, for any s ≥ ‖κ‖2 we can select t− < t ≤ 0 such that ‖κ t‖2 = s . A
lamination in this direction gives

Wrc ≤
(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy∇u− Φ‖2 + λ

2
(tr κ)2 + h

+ min
s≥‖sym κ‖2+‖asy κ‖2

{
μ◦ s + μ ‖dev ε‖2 + α

(
s − β2 ‖dev ε‖2

)2
}
.

(14)

Here, rc in the superscript stands for rank-one convex envelope. Working along the
rank-one line et = e + t c⊗ d; c,d ∈ R

d and following the arguments above,
we obtain

Wrc ≤
(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy∇u−Φ‖2 + λ

2
(tr κ)2 + h

+ min
c≥‖dev ε‖2

{
μ◦
(
‖sym κ‖2 + ‖asy κ‖2

)
+ μc

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 c

)2
}
.

(15)

Hence the upper bound is proved. The lower bound is based on Lemma 1 below and
on the fact that, for h1 : [0,∞)d �→ R

d convex and non-decreasing in each variable
and h2 : Rd×d �→ R

d component-wise convex, the function h1 ◦ h2 is convex. This
completes the proof.
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Lemma 1 Let f : [0,∞)2 �→ [0,∞) be convex. Then the function g defined by

g(x) = inf
s1≥x1,s2≥x2

f (s) (16)

is convex and non-decreasing in each variable.

Proof Fix x ′, x ′′, λ ∈ (0, 1). For any ε > 0 there are s′, s′′ such that x ′ ≤ s′, x ′′ ≤
s′′, and

f (s′) ≤ g(x ′)+ ε, f (s′′) ≤ g(x ′′)+ ε. (17)

Then λs′ + (1− λ)s′′ ≥ λx ′ + (1− λ)x ′′, and since f is convex we obtain

g(λx ′ + (1− λ)x ′′) ≤ f (λs′ + (1− λ)s′′) ≤ λf (s′)+ (1− λ)f (s′′)

≤ λg(x ′)+ (1− λ)g(x ′′)+ ε. (18)

Therefore g is convex. Monotonicity is clear from the definition.

To compute the exact relaxed envelope in (12) one needs to solve the minimization
problem (11). The stationarity conditions to this minimization problem are as
follows

3.2.1 Stationarity Conditions

(1). for s = ‖sym κ‖2 + ‖asy κ‖2
and c ≥ ‖dev ε‖2 : ∂g

∂c
= 0,

∂g

∂s
≥ 0,

(19a)

(2). for s = ‖sym κ‖2 + ‖asy κ‖2
and c = ‖dev ε‖2 : ∂g

∂c
≥ 0,

∂g

∂s
≥ 0,

(19b)

(3). for c = ‖dev ε‖2
and s ≥ ‖sym κ‖2 + ‖asy κ‖2 : ∂g

∂s
= 0,

∂g

∂c
≥ 0.

(19c)

On the basis of these three stationarity conditions the material energy can be
characterized into the following three phases
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Fig. 3 A Couette shear cell where the two arrows indicates the shearing direction of the inner and
outer boundaries of the annular domain. In inset the microstructure patterns due to microrotational
motions of the particles is shown

3.2.2 Material Phase with Microstructure in Microrotational Motions
(Micromotions) (Phase 1)

This phase is corresponding to the material regime where there are microstructures
due to the micromotions (which are in fact the rotational degrees of freedom
assembled in the microrotational vector field ϕ) of the continuum particles. A
schematic representation of such microstructure is given in Fig. 3. The enhanced
energy potential (10) is nonconvex in this microstructural phase. It is observed
that whenever the norm of the curvature strain tensor is dominating over the norm
of the macroscopic shear strain tensor for some specific choice of the material
parameters μ, α and β, the material experiences a microstructure in micromotions.
This microstructural material phase is characterized by the following inequality
relation

‖κ‖2 ≥ β2 ‖dev ε‖2 + μ

2αβ2
. (20)

It is important to note the effect of shear modulus μ, internal length scale (e.g.,
the diameter of particles) β and the coherency interaction modulus or frictional
modulus α in conjunction with the curvature and macroscopic shear strains which
plays very crucial role in the observation of this internal structural phase of the
material. Using the first stationarity condition (19a) the minimizers of the problem
in (11) are obtained as

s = ‖sym κ‖2+‖asy κ‖2 , c = 1

β2

(
‖sym κ‖2 + ‖asy κ‖2

)
− μ

2αβ4 . (21)
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Thus, the scalar convex function g is given by

g=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
μ− μc + μ◦+ μ

β2

)
‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖asy κ‖2 − μ2

4αβ4
if μ̄ ≥ μ̄c

(
μ◦ + μ

β2

)
‖sym κ‖2 +

(
μc − μ+ μ◦ + μ

β2

)
‖asy κ‖2− μ2

4αβ4
if μ̄ < μ̄c

(22)

The relaxed energy of the material in this phase is obtained as

Wrel
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy ∇u− E · ϕ‖2 − μ2

4αβ4

if μ̄ ≥ μ̄c,

+ λ̄

2
(tr κ)2 + (μ̄− μ̄c) ‖sym κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy ∇u− E · ϕ‖2 − μ2

4αβ4

if μ̄ < μ̄c

+ λ̄

2
(tr κ)2 − (μ̄− μ̄c) ‖asy κ‖2 +

(
μ◦ + μ

β2

)
‖κ‖2

(23)

3.2.3 Material Phase with No Microstructure (Phase 2)

This phase is connected with the material regime where there is no internal structure
in the material. The second stationarity condition (19b) clearly shows that the

minimizers of the functional in (11) are itself
(
‖sym κ‖2 + ‖asy κ‖2

)
and ‖dev ε‖2

respectively. This indicates that the original energy potential in (10) is convex in this
material phase. The criteria for the recognition of this material phase is given by the
following inequality relation

β2 ‖dev ε‖2 − μ◦
2α
≤ ‖κ‖2 ≤ β2 ‖dev ε‖2 + μ

2αβ2 . (24)

The function g in this phase is given by

g = μ ‖sym κ‖2 + μc ‖asy κ‖2 + μ ‖dev ε‖2

+ α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2
. (25)
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The relaxed energy potential in this phase is thus the original energy potential (10)
itself and we write

Wrel
2 =

(
λ

2
+ μ

d

)(
tr ε

)2 + μ ‖dev ε‖2 + μc

∥∥asy∇u− E · ϕ∥∥2 + λ

2

(
tr κ

)2

+ μ ‖sym κ‖2 + μc ‖asy κ‖2 + α
(
‖sym κ‖2 + ‖asy κ‖2 − β2 ‖dev ε‖2

)2

(26)

3.2.4 Material Phase with Microstructure in Translational Motions
(Phase 3)

This phase constitutes an unexpected outcome of the theory presented. It consists
of laminates formed by alternating displacements as for example formed by phase-
transforming materials. It would be interesting to see whether such structures can
be observed experimentally.

This phase is related to the material regime where there is a microstructure in
translational motions (which are in fact the displacement degrees of freedom of the
continuum particles and are assembled in the displacement vector field u) of the
continuum particles. A schematic representation of such microstructure formation
is shown in Fig. 4. The enhanced energy potential (10) thus becomes nonconvex in
this phase. Using the third stationarity condition (19c) it is observed that the norm
of the macroscopic shear strain tensor is dominating over the norm of the rotational
strain tensor. The material is said to be in this phase whenever the following criteria
is satisfied

β2 ‖dev ε‖2 − μ◦
2α
≥ ‖κ‖2 . (27)

It is important to note the effect the coherency modulus α and the Cosserat material
modulus μ◦ in the characterization of this microstructural phase. The minimizers of
the functional in (11) are obtained after solving the third stationarity condition (19c)

Fig. 4 A rectangular specimen under shear with two arrow head pointing towards the shearing
direction. In inset the microstructure patterns formed due to the translational motions of the
continuum particles is shown
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which are given as

c = ‖dev ε‖2 and s = β2 ‖dev ε‖2 − μ◦
2α

. (28)

Thus minimum potential g in (11) takes the following form

g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
μ− μc

) ‖sym κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ2◦

4α
if μ̄ ≥ μ̄c

(
μc − μ

) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ2◦

4α
if μ̄ < μ̄c

(29)

Hence the relaxed energy potential in this phase is obtained as

Wrel
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy ∇u− E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ ≥ μ̄c

+(μ̄− μ̄c) ‖sym κ‖2 +
(
μ◦β

2 + μ
)
‖dev ε‖2 − μ◦2

4α

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ

2
+ μ

d

) (
tr ε

)2 + μc ‖asy ∇u− E · ϕ‖2 + λ̄

2
(tr κ)2

if μ̄ < μ̄c

− (μ̄− μ̄c) ‖asy κ‖2 + (μ◦β2 + μ
) ‖dev ε‖2 − μ◦2

4α
(30)

3.2.5 Relaxed Energy

The total relaxed energy thus comprises all the three energies in each of the phase
and it acquires finally the following form

Wrel =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wrel
1 if ‖κ‖2 ≥ β

2 ‖dev ε‖2 + μ

2αβ2

Wrel
2 if − μ◦

2α
≤ ‖κ‖2 − β

2 ‖dev ε‖2 ≤ μ

2αβ2

Wrel
3 if ‖κ‖2 ≤ β2 ‖dev ε‖2 − μ◦

2α

(31)

where Wrel
1 , Wrel

2 and Wrel
3 are explicitly given as in (23), (26) and (30),

respectively. The computation of this analytical expression for the relaxed energy
corresponding to non-quasiconvex energy function in (10) thus enable us to
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predict all microstructural features of the material which are carried safely from
the microscopic to macroscopic computational scale. Hence we have extracted
all possible information regarding the development of microstructural regimes in
the granular materials pertinent to observing its macro-mechanical behavior. For
practical applications it is now more efficient and effective to reformulate the
original non-quasiconvex problem in (5) to a relaxed energy minimization problem
using this relaxed potential.

3.2.6 Nonlinear Constitutive Relations

The proposed granular material model is completed with the formulation of
constitutive relations between stress and strain tensors in a Cosserat medium. The
constitutive structure of the proposed theory thus comprises of three phases (as
discussed in Sect. 3.2) where in each phase the force-stress are explicitly related
to the Cosserat strain tensors according to the following formulas:

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(
λ

2
+ μ

d

) (
tr ε

)
I+ 2μc

(
asy ∇u−Φ

)
, (Phase 1)

⎧⎨
⎩
λ
(

tr ε
)

I + 2μ ε + 2μc

(
asy ∇u−Φ

)
− 4α β2

(
‖κ‖2 − β2 ‖dev ε‖2

) (
dev ε

)
,

(Phase 2)

λ
(

tr ε
)

I + 2μ ε + 2μ◦β2
(

dev ε
) + 2μc

(
asy ∇u−Φ

)
. (Phase 3)

(32)

The couple-stress tensor is related to the curvature strain tensors by the following
formulas:

μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
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λ̄
(

tr κ
)

I+ 2 (μ̄− μ̄c)
(

sym κ
)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ ≥ μ̄c,

λ̄
(

tr κ
)

I− 2 (μ̄− μ̄c)
(

asy κ
)+ 2

(
μ◦ + μ

β2

)
κ if μ̄ < μ̄c.

(Phase 1)

⎧⎨
⎩
λ̄
(

tr κ
)

I + 2 μ̄
(

sym κ
) + 2 μ̄c

(
asy κ

)
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(
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)
κ
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⎩
λ̄
(

tr κ
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I + 2 (μ̄− μ̄c)
(

sym κ
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if μ̄ ≥ μ̄c,
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(

tr κ
)

I − 2 (μ̄− μ̄c)
(

asy κ
)

if μ̄ < μ̄c.
(Phase 3)

(33)
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4 Numerical Results

Based on one-dimensional numerical computations the mechanical response of the
material is analyzed along some chosen macroscopic strain paths. A simple shear
and a tension-compression tests are briefly presented to observe the development
of microstructures which is characterized by the activation of different material
regimes as discussed in the Sect. 3.2.

4.1 A Simple Shear Test

Consider a two dimensional domain Ω = (0,X1)× (0,X2) where (X1,X2) ∈ R
2.

We choose the macroscopic strain paths as follows

ε = γ

2
(e1 ⊗ e2 + e2 ⊗ e1) ,

e = γ e2 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe =
(γ

2
+ ϕ3

)
(e2 ⊗ e1 − e1 ⊗ e2) ,

κ = b (e1 ⊗ e3 + e2 ⊗ e3) .

(34)

Here, γ is the macroscopic shear, ϕ3 is the material microrotational degree of
freedom and b is some fixed curvature. We assume that ϕ3 linearly depends on both
of the material coordinates X1 and X2 such that ϕ3 = b(X1 + X2). In this analysis

we take b = π

6
and calculate ϕ3 for all those material points which lies on the line

X1+X2 = 1. Other than Lame’s constants λ = νE

(1+ ν)(1− 2ν)
and μ = E

2(1+ ν)
there are eight additional material parameters that are pertinent to the material
microstructures and are described in Table 1. Initially the material experiences a
microstructure in micromotions of the particles. Upon further loading it transforms
its structure and enter into a regime where there is no microstructure in the material.
Further, upon increasing the load it changes its state to a material regime where it
experiences a microstructure in translational motions of the particles. It is observed
that all three phases of the material structure with two microstructural regimes and
one non-microstructural regime coexists. In Fig. 5a the constitutive response of the
material is shown, where it is observed that the non-monotone stress-strain curve
is replaced by its energetically equivalent Maxwell line corresponding to a uniform
vanishing stress. This vanishing stress regime is corresponding to the regime of
the material where it experiences a microstructure in micromotions of the particles.
In the material regime where there is no internal structure a nonlinear constitutive
response is seen. Whereas, in the material regime where there is a microstructure in
translational motions of the particles we observe a linear constitutive response in this
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Table 1 Material parameters for the analytical computations in a simple shear test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0 × 102 (MPa) λ λ (N)

μc 1.0 × 10−1 (MPa) μ μ (N)

ν 0.3 (—) μc μc (N)

α 5.0 × 10−1 (N.mm2) β 1.0 × 101 (mm−1)
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Fig. 5 (a) Relaxed and unrelaxed stress-strain curve in different material regimes; (b) Relaxed
and unrelaxed curve for the Cosserat coupled modulus μc = 0.1; (c) Relaxed and unrelaxed curve
for the Cosserat coupled modulus μc = 1.0; and, (d) Relaxed and unrelaxed curve for the Cosserat
coupled modulus μc = 10.0

one dimensional analysis. The corresponding nonconvex and relaxed energy plots
are shown in Fig. 5b. In Fig. 5c and d the relaxed and unrelaxed energy is plotted
for two different values of the Cosserat coupled modulus μc = 1.0 and μc = 10.0
respectively. These figures demonstrate that not only the particle size in granular
material effects the development of microstructures but also the Cosserat coupled
shear modulus do have influence in the development of material microstructures in
granular materials.
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Table 2 Material parameters for the analytical computations in a tension-compression test

Parameter Numerical value Units Parameter Numerical value Units

E 2.0 × 102 (MPa) λ 1.15 × 102 (N)

μc 1.0 × 10−2 (MPa) μ 7.69 × 101 (N)

ν 0.3 (—) μc 1.00 × 101 (N)

α 1.0 × 10−1 (N.mm2) β 1.20 × 102 (mm−1)

4.2 A Tension-Compression Test

In this example the material behavior in a plain strain tension-compression test is
investigated. The macroscopic strain tensors for this analysis takes the following
form

ε = δ e1 ⊗ e1,

e = δ e1 ⊗ e1 + ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) ,

ωe = ϕ3 (e2 ⊗ e1 − e1 ⊗ e2) .

(35)

Here δ is the macroscopic stretch. The Cosserat rotational strain tensor κ is taken to
be the same as mentioned in the previous test. Moreover, the micro-rotational degree
of freedom, ϕ3 at each material point is calculated according to similar assumption
as in the case of simple shear test. The material parameters are chosen as described
in Table 2.

It is observed that all the three phases of material structure coexists in this case.
The constitutive behavior in the material microstructural and non-microstructural
regimes is shown in Fig. 6a where contrary to the case of shear test it is observed that
the stress do not vanish in the regime where material experiences a microstructure
in micromotions. Here the non-monotone stress-strain curve is replaced by its
energetically equivalent monotone curve. This is due to the non-constant slope
of the relaxed energy envelope in the globally non-convex range of the unrelaxed
energy potential, as seen in magnified picture in Fig. 6b. Moreover, the properties
of unrelaxed and relaxed energy envelope are studied for different values of the
interaction modulus α and the material parameter β related to the particle size.
A two-well energy structure is seen in Figure for three different values of the
interaction modulus. Both the wells have same local minima. In Fig. 6c it is observed
that by varying the interaction modulus the local minima of the energy envelope do
not change. This is because the globally nonconvex range of these energy curves do
not vary. However it is important to note that the locally non-convex range of these
unrelaxed energy curves decreases with the increase in the interaction modulus.
The computed relaxed energy is plotted in Fig. 6d where it is seen that by varying
the interaction modulus the global minima of all the three energy curves do not
change. The influence of the particle size on the material strain energy is observed
in Figs. 6e and f. It is seen that the particle size do not only influence the range of
local non-convexity of the energy potential but also its global non-convexity range.
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Fig. 6 (a) Relaxed and unrelaxed stress-strain curve in different regimes of the material; (b)
Relaxed and unrelaxed energy curve in different material regimes; (c) Unrelaxed energy curves
for varying values of the material parameter α; (d) Relaxed energy curves for varying values of the
material parameter α; (e) Unrelaxed energy curves for varying values of the material parameter β;
and, (f) Relaxed energy curves for varying values of the material parameter β

It is important to note that the local maxima of the energy potential do not change
with the varying particle size. This is contrary to the case seen in Fig. 6c. Moreover,
the local and global minima of the potential are shifted and get a lower values with
the increased value of the material parameter β as seen in Figs. 6e and f.
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5 Conclusion

In nature granular materials exhibit distinct patterns under deformation. The forma-
tion of these patterns is strongly influenced by counter-rotations of the interacting
particle at the microscale. In this article, we study the counter-rotations of the
particles and the formation of rotational microstructures in granular materials.

By employing the direct methods in the calculus of variations it turns out to
be possible to derive an exact quasiconvex envelope of the energy potential. It
is worth mentioning that there are no further assumptions necessary to derive
this quasiconvex envelope. The computed relaxed potential yields all the possible
displacement and micro-rotation field fluctuations as minimizers. Hence, by doing
so we do not only resolve the issues concerning related non-quasiconvex variational
problem but also guarantee the existence and uniqueness of energy minimizers.
Moreover, the independence of these minimizers on the discretization of the spatial
domain is ensured. We conclude with the result that the granular material behavior
can be divided into three different regimes. Two of the material regimes are
exhibiting microstructures in rotational and translational motions of the particles,
respectively, and the third one is corresponding to the case where there is no internal
structure of the deformation field.

The proposed model is analyzed numerically in one-dimensional case where
the numerical computations performed are based on some chosen strain paths. We
demonstrate on different properties of the computed relaxed potential in a simple
shear and a tension-compression test. Moreover, It has been shown that all the
material phases can co-exist.
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From Nonlinear to Linear Elasticity in a
Coupled Rate-Dependent/Independent
System for Brittle Delamination

Riccarda Rossi and Marita Thomas

Abstract We revisit the weak, energetic-type existence results obtained in (Rossi
and Thomas, ESAIM Control Optim. Calc. Var. 21, 1–59, (2015)) for a system
for rate-independent, brittle delamination between two visco-elastic, physically
nonlinear bulk materials and explain how to rigorously extend such results to the
case of visco-elastic, linearly elastic bulk materials. Our approximation result is
essentially based on deducing the MOSCO-convergence of the functionals involved
in the energetic formulation of the system. We apply this approximation result in
two different situations at small strains: Firstly, to pass from a nonlinearly elastic
to a linearly elastic, brittle model on the time-continuous level, and secondly, to
pass from a time-discrete to a time-continuous model using an adhesive contact
approximation of the brittle model, in combination with a vanishing, super-quadratic
regularization of the bulk energy. The latter approach is beneficial if the model also
accounts for the evolution of temperature.

1 Introduction

In the spirit of generalized standard materials, cf. e.g. [12], delamination processes
along a prescribed interface ΓC between two elastic materials Ω+,Ω− ⊂ R

d can be
modeled with the aid of an internal delamination variable z : [0, T ] × ΓC → [0, 1],
which describes the state of the glue located in ΓC during a time interval [0, T ].
In particular, in our notation z(t, x) = 1, resp. z(t, x) = 0, shall indicate that the
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glue is fully intact, resp. broken, at (t, x) ∈ [0, T ] × ΓC. Such a type of modeling
approach in the framework of delamination dates back to e.g. [10, 13]. In the case of
a rate-independent evolution law for z, analytical results for delamination models
have been obtained e.g. in [14, 22] in the case of adhesive contact and brittle
delamination in the framework of the energetic formulation of rate-independent
processes. Instead, [26], also in the fully rate-independent setting, constructed
for the brittle system local (or semistable energetic) solutions, i.e. fulfilling a
minimality property for the displacements and a semistability inequality for the
internal variable, combined with an energy-dissipation inequality, cf. also [20]. The
approach in [26] was based on time discretization using an alternate minimization
scheme. Semistable energetic solutions to the adhesive contact system were also
obtained in [27] by a vanishing-viscosity approach. In [21] existence of semistable
energetic solutions for an adhesive contact model with rate-independent evolution of
the delamination variable was discussed for the first time in combination with other
rate-dependent effects: Therein, the displacements are subjected to viscosity and
acceleration, and in addition also the evolution of temperature is taken into account.
Based on this, [23] addressed the existence of (weak, energetic-type) solutions
for a brittle delamination system, extending the isothermal, fully rate-independent
model addressed in [22] to the coupled rate-independent/rate-dependent setting of
[21]. The aim of this work is to further extend the analytical results that were
developed in [23] for rate-independent delamination in visco-elastic physically
nonlinear materials at small strains, to the case of physically linear materials at
small strains.

More precisely, the existence of solutions to the coupled rate-dependent/
independent system for brittle delamination was shown in [23] by passing to
the limit in an approximate system for adhesive contact, under the condition that
the elastic energy density W = W(e) fulfilled

c|e|p ≤ W(e) ≤ C(|e|p + 1) with p > d. (1.1)

This kind of nonlinear growth is used in the engineering literature to model strain
hardening or softening of so-called power-law materials, see e.g. [11, 15]. In
particular, the exponent p > d is applied at small strains in [4] to describe strain
hardening. Yet, for our analytical results in [23], the condition p > d also had a
very specific, technical motivation. In fact, our analysis relied on the validity of a
Hardy inequality, applied to the displacement variable u, which at that time was
only available for functions in W 1,p(Ω;Rd) with p > d . In the meantime, an
improved version of this Hardy inequality, also valid for p = 2, was obtained in [8],
thus making the restriction p > d unnecessary. This was already reflected in [26],
where the existence of semistable energetic solutions was shown by a constructive
approach combining the adhesive-to-brittle limit and the discrete-to-continuous
limit passages in a time discretization scheme. A quadratic growth for the elastic
energy density was also allowed in [25], where the existence of solutions to the
brittle delamination system in visco-elastodynamics (i.e., encompassing inertial
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effects) was still obtained by passing to the limit in the adhesive contact approximate
system.

The aim of this note is to close the gap between the results in [23] and those in
[25, 26]. Namely, we will perform

(1) the limit passage from nonlinear to linear small-strain elasticity in the mechan-
ical force balance for the brittle delamination system;

(2) the joint adhesive-to-brittle, discrete-to-continuous, nonlinearly elastic-to-
linearly elastic limit passage in a delamination system at small strains, also
encompassing thermal effects.

We do not consider the case of geometrically nonlinear materials, which would be
treated in a different way in the framework of finite-strain elasticity, e.g. using tools
like polyconvexity.

In Sect. 2.1, we are going to describe the brittle delamination and adhesive
contact systems, confining the discussion to the quasistatic (without inertia in the
mechanical force balance for the displacements) and isothermal case. Yet, as we
discuss in more detail in Sect. 4.2, it is possible to encompass thermal effects in our
analysis, still remaining quasistatic for the displacements. But here, unhampered
by the technical problems related to the handling of inertia and temperature, we
will focus on the analytical difficulties attached to the adhesive-to-brittle limit. We
will then explain the technique for taking the adhesive-to-brittle limit passage in
the equation for the displacements first developed in [23]. This will help us put into
context the main result of this paper, Theorem 3, stating the MOSCO-convergence of
the energy functionals underlying the brittle (small-strain) mechanical force balance
from the nonlinearly to linearly elastic case. While Theorem 3 will be stated in
Sect. 2.2 and proved throughout Sect. 3, its applications to the limit passages (1) &
(2) will be carried out in Sect. 4.

Let us finally fix some notation that will be used throughout the paper: We will
denote by ‖ · ‖X both the norm of a Banach space X and, often, the norm in any
power of it, and by 〈·, ·〉X the duality pairing between X∗ and X. Moreover, we
shall often denote by the symbols c, c′, C, C′ various positive constants, whose
meaning may vary from line to line, depending only on known quantities.

2 Our Main Result: Motivation and Statement

2.1 The Brittle Delamination System, Its Adhesive Contact
Approximation, and the Adhesive-to-Brittle Limit

Let us now gain insight into the PDE system for brittle delamination between two
bodies Ω+ and Ω− ⊂ R

d , d ≥ 2. We enforce the

brittle constraint:
[[
u(t)

]] = 0 a.e. on (0, T )× supp z(t) , (2.1)
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where [[u]] = u+|ΓC − u−|ΓC is the jump of u across the interface ΓC = Ω− ∩
Ω+, u±|ΓC denoting the traces on ΓC of the restrictions u± of u to Ω±, and
supp z the support of the delamination variable z ∈ L∞(ΓC), cf. (2.19) ahead.
Hence, (2.1) ensures the continuity of the displacements, i.e. [[u(t, x)]] = 0, in
the (closure of the) set of points where (a portion of) the bonding is still active,
i.e. z(t, x) > 0, and it allows for displacement jumps only in points x ∈ ΓC where
the bonding is completely broken, where z(t, x) = 0. Therefore, (2.1) distinguishes
between the crack set ΓC\ supp z(t), where the displacements may jump, and the
complementary set with active bonding, where it imposes a transmission condition
on the displacements. We also enforce the

non-penetration condition:
[[
u(t)

]]·n ≥ 0 a.e. on (0, T )×supp z(t) , (2.2)

with n the unit normal to ΓC, oriented from Ω+ to Ω−.
The PDE system for brittle delamination between two visco-elastic bodies

addressed in this paper consists of the quasistatic mechanical force balance for the
displacements

− div(σ (e, ė)) = F in (0, T )× (Ω+∪Ω−), (2.3a)

where e = e(u) := 1
2 (∇u+∇u-) is the linearized strain tensor and ė = e(u̇), while

F is a time-dependent applied volume force. The stress tensor σ , encompassing the
visco-elastic response of the body, is given by the following constitutive law

σ(e, ė) = Dė + DW(e),

where D ∈ R
d×d×d×d is the symmetric and positive definite viscosity tensor and

the elastic energy density W : Rd×d → [0,∞), with Gâteaux derivative DW ,
is specified by (2.18) below. Equation (2.3a) is supplemented with homogeneous
Dirichlet boundary conditions on the Dirichlet part ΓD of the boundary ∂Ω , where
Ω := Ω+ ∪ ΓC ∪ Ω−, and subject to an applied traction f on the Neumann part
ΓN = ∂Ω \ ΓD, i.e.

u = 0 on (0, T )× ΓD, σ (e, ė)|ΓNν = f on (0, T )× ΓN, (2.3b)

with ν the outward unit normal to ∂Ω . For technical reasons, we will require ΓD to
have positive distance from ΓC, cf. Assumption 1 ahead. The evolution of u and of
the delamination parameter z are coupled through the following (formally written)
boundary condition on the contact surface ΓC

σ(e, ė)|ΓCn+ ∂uJ̃∞(
[[
u
]]
, z)+ ∂IC(x)(

[[
u
]]
) . 0 on (0, T )× ΓC, (2.4)

where the subdifferential terms render the brittle and non-penetration constraints,
respectively. Indeed, ∂uJ̃∞ : Rd × R ⇒ R

d is the subdifferential (in the sense
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of convex analysis) of the functional J̃∞ : R
d × R → [0,∞] defined by the

indicator function of the set individuated by (a slightly weaker version of) the brittle
constraint, namely

J̃∞(v, z) := I{vz=0}(v, z) =
{

0 if vz = 0,

∞ otherwise.
(2.5)

The non-penetration constraint is imposed through the multivalued mapping C :
ΓC ⇒ R

d defined by

C(x) := {v ∈ R
d : v · n(x) ≥ 0} for a.a. x ∈ ΓC. (2.6)

Further coupling is provided by the flow rule for the delamination parameter

∂R(ż)+ ∂G(z)+ ∂zJ̃∞(
[[
u
]]
, z) . 0 on (0, T )× ΓC, (2.7)

featuring the dissipation potential density

R(ż) :=
{
a1|ż| if ż ≤ 0,

∞ otherwise,

(with a1 > 0 the phenomenological specific energy per area dissipated by
disintegrating the adhesive) and ∂G the (still formally written) subdifferential of a
functional G encompassing a suitable gradient regularization, given in (2.16) below.

The brittle and non-penetration constraints are reflected in the variational
formulation of the mechanical force balance for the displacements. To properly give
it, we introduce the time-dependent spaces

Vq
z (t) := {v ∈ W

1,q
D (Ω\ΓC;Rd) : [[v]] = 0 a.e. on supp z(t) ⊂ ΓC and[[

v(x)
]] ∈ C(x) for a.a. x ∈ ΓC} ,

where the exponent q > 1 depends on the growth properties of the density W and we
use the notation W

1,q
D (A;Rd) for the space of W 1,q -functions on a domain A with

null trace on ΓD. In this work, we will in particular deal with the cases q = p > d

and q = 2. Thus, the weak formulation of (2.3) reads

u(t) ∈ Vq
z (t) for a.a. t ∈ (0, T ),∫

Ω\ΓC

(
De(u̇(t))+ DW(e(u(t)))

) : e(v − u(t)) dx ≥ 〈L(t), v − u(t)〉

for all v ∈ Vq
z (t), for a.a. t ∈ (0, T ),

(2.8)
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with L : (0, T )→ W
1,q
D (Ω\ΓC;Rd)∗ a functional subsuming the external forces F

and f , i.e.

〈L(t), v〉 :=
∫
Ω

F(t) · v dx +
∫
ΓN

f (t) · v dHd−1(x) ; (2.9)

more details on the above duality pairing and the conditions on the forces F and f

will be given in Sect. 4.1. In this paper, along the footsteps of [19, 24], we will
weakly formulate the coupled rate-dependent/independent system (2.3, 2.4, 2.7)
by means of an extension of the concept of semistable energetic solution from
[20]. As we will see in Definition 3 ahead, the semistable energetic solutions of
system (2.3, 2.4, 2.7) are defined by fulfilling the weak mechanical force balance
for the displacements (2.8) combined with a suitable energy-dissipation inequality
and a semistability condition, weakly rendering the flow rule (2.7).

In [23] we showed the existence of semistable energetic solutions of the
brittle system, by passing to the limit in an approximate system where the brittle
constraint (2.1) is penalized by the

adhesive contact term:∫
ΓC

Jk(
[[
u
]]
, z) dHd−1(x) with Jk(

[[
u
]]
, z) := k

2
z|[[u]]|2 for k > 0,

(2.10)

featured in the energy functional underlying the mechanical force balance for the
displacements. Above, Hd−1 denotes the (d−1)-dimensional Hausdorff measure.
In fact, the existence of energetic solutions to the purely rate-independent brittle
system was proved in [22] by passing to the limit in this adhesive contact approx-
imation, as the parameter k → ∞. For our coupled rate-dependent/independent
brittle system, the adhesive contact approximation consists of the mechanical force
balance (2.3) for the displacements coupled with the following contact surface
condition and flow rule for the delamination parameter

σ(e, ė)|ΓCn+ ∂uJk(
[[
u
]]
, z)+ ∂IC(x)(

[[
u
]]
) . 0 on (0, T )× ΓC, (2.11)

∂R(ż)+ ∂G(z)+ ∂zJk(
[[
u
]]
, z) . 0 on (0, T )× ΓC, (2.12)

which replace (2.4) and (2.7), respectively. Accordingly, the weak formulation of
the mechanical force balance for the adhesive contact system (2.3, 2.11, 2.12) reads

∫
Ω\ΓC

(
De(u̇(t))+DW(e(u(t)))

) :e(v − u(t)) dx +
∫
ΓC

kz(t)
[[
u(t)

]] · [[v − u(t)
]]

dHd−1(x)

≥ 〈L(t), v − u(t)〉 for all v ∈ Vq, for a.a. t ∈ (0, T ),

(2.13)
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where the (no longer time-dependent) space for the test functions now only
encompasses the non-penetration condition (2.2), i.e.

Vq := {v ∈ W
1,q
D (Ω\ΓC;Rd) : [[v(x)]] ∈ C(x) for a.a. x ∈ ΓC} .

The limit-passage argument for the adhesive-to-brittle limit developed in
[22] was based on the Evolutionary Gamma-convergence theory for (purely)
rate-independent systems from [17]: Basically, it only necessitated the Gamma-
convergence of the underlying energy and dissipation functionals, combined
with a mutual recovery sequence condition that ensured the limit passage in the
global stability condition. For coupled rate-dependent/independent systems, it is
not sufficient to solely rely on the abstract toolbox of [17]: In particular, in our
specific context, the Gamma-convergence of the energies no longer guarantees
the limit passage, as k → ∞, from the weak mechanical force balance for the
displacements (2.13) to its brittle analogue (2.8). For that, given a sequence of
semistable energetic solutions (uk, zk)k converging to a pair (u, z), which is a
candidate semistable energetic solution of the brittle system, it is indeed necessary
to construct, for every admissible test function v ∈ Vq

z (t) for the brittle mechanical
force balance (2.8), with t ∈ (0, T ) fixed, a sequence (vk)k of test functions
for (2.13) such that

1. (vk)k converge to v in a suitable sense, ensuring the limit passage in the bulk
terms of (2.13);

2. the functions vk also satisfy the non-penetration condition (2.2);
3. there holds

lim sup
k→∞

∫
ΓC

kzk(t)
[[
uk(t)

]] · [[vk − uk(t)
]]

dHd−1(x) ≤ 0 .

Since lim infk→∞
∫
ΓC

kzk(t)|[[uk(t)]]|2 dHd−1(x) ≥ 0 for almost all t ∈ (0, T ), it is
immediate to check that the above property is ensured as soon as

lim sup
k→∞

∫
ΓC

kzk(t)
[[
uk(t)

]] · [[vk]] dHd−1(x) ≤ 0 . (2.14)

In [23] we were able to construct a sequence (vk)k complying with (2.14), starting
from a test function v such that [[v]] = 0 a.e. on supp z(t), by modifying v in such a
way that the support of the obtained [[vk]] fitted to the null set of zk , approximating
z. This construction hinged on two crucial ingredients:

1. First, we preliminarily obtained refined convergence properties of the delamina-
tion variables (zk)k . In particular, we proved the support convergence

supp zk(t) ⊂ supp z(t)+ Bρk (0) and ρk → 0 as k →∞, (2.15)
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at every t ∈ (0, T ) via arguments from geometric measure theory. In fact, our
proof of (2.15) heavily relied on the following, specific choice for the gradient
regularizing term for the delamination flow rule

G(z) :=
{

b|Dz|(ΓC) if z ∈ SBV(ΓC; {0, 1}),
∞ otherwise,

(2.16)

with b > 0, SBV(ΓC; {0, 1}) the set of the special bounded variation functions on
ΓC, taking values in {0, 1}, and |Dz|(ΓC) the variation on ΓC of the Radon measure
Dz. The set SBV(ΓC; {0, 1}) thus only consists of characteristic functions of
sets with finite perimeter in ΓC, and the total variation |Dz|(ΓC) of z = χZ ∈
SBV(ΓC; {0, 1}) is given by the perimeter of Z in ΓC. With (2.16) we thus
imposed that z only takes the values 0 and 1, i.e. we encompassed in the model
only two states of the bonding between Ω+ and Ω−, the fully effective and the
completely ineffective ones. Relying on the information zk ∈ {0, 1} and on the
support convergence (2.15), we in fact constructed a sequence (vk)k such that

zk(t)|
[[
vk(t)

]]|2 = 0 for all k ∈ N and all t ∈ [0, T ]. (2.17)

2. Second, for establishing the convergence properties of the recovery sequence of
test functions for the displacements, we resorted to a Hardy inequality given
in [16] for closed sets of arbitrarily low regularity, but applicable only to
functions in W 1,p(Ω;Rd), with p > d . To enforce this integrability property
for the gradients of the displacements, we thus had to impose the growth
condition (1.1) on the elastic energy density and, accordingly, to consider the
variational formulation of the adhesive contact and of the brittle equations for
the displacements in the spaces Vp and Vp

z (t), respectively.
However, this condition can be weakened to quadratic growth in view of the

improved Hardy’s inequality recently proved in [8].

As a matter of fact, our construction of recovery test functions did guarantee the
MOSCO-convergence of the energy functionals underlying the adhesive contact
mechanical force balance (2.13) to that of the brittle mechanical force balance (2.8).

Indeed, in Sect. 2.2, we are going to state the main result of this paper in terms
of MOSCO-convergence of functionals. This result will ensure the passage from
elastic energy densities with (p>d)-growth to quadratic densities in the following
two situations:

1. in the brittle delamination system: for this, we will resort to the convergence of
the functionals (Φk)k to Φ∞, cf. (2.21) & (2.23);

2. jointly with the adhesive-to-brittle and discrete-to-continuous limit passage
in thermo-visco-elastic delamination systems: for this, we will resort to the
convergence of the functionals (Φadh

k )k to Φ∞, cf. (2.22) & (2.23).
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2.2 Our Main Result

Definition of MOSCO-Convergence
We recall the definition from, e.g. [3, Sec. 3.3, p. 295]): Given a Banach space X

and proper functionals Φk, Φ∞ : R→ (−∞,∞], k ∈ N, we say that the sequence
(Φk)k MOSCO-converges to Φ as k →∞ if the following conditions hold:

– lim inf-inequality: for every u ∈ X and all (uk)k ⊂ X there holds

uk ⇀ u weakly in X ⇒ lim inf
k→∞ Φk(uk) ≥ Φ∞(u);

– lim sup-inequality: for every v ∈ X there exists a sequence (vk)k ⊂ X such that

vk → v strongly in X and lim sup
k→∞

Φk(vk) ≤ Φ∞(v).

The Functionals
Throughout the paper, we will consider elastic energy densities of the type

Wq : Rd×d → [0,∞) convex, differentiable, and such that

∃ cq, Cq > 0 ∀ e ∈ R
d×d : cq |e|q ≤ Wq(e) ≤ Cq(|e|q+1)

(2.18)

for some q ∈ (1,∞) and the associated integral functionals on Ω\ΓC. We will also
consider the integral functional induced by Jk from (2.10), i.e.

Jk(v, z) :=
∫
ΓC

Jk(v(x), z(x)) dHd−1(x) ,

whose domain of definition depends on the choice of q from (2.18), cf. Remark 1
for more details. While Jk will contribute to Φadh

k , the functionals Φk and Φ∞ will
feature a term J∞ accounting for the brittle constraint (2.1), which in turn involves
the closed set supp z. We will consider J∞ to be defined for z ∈ SBV(ΓC; {0, 1}),
which can be thus identified with the characteristic function of a finite perimeter set
Z. In a measure-theoretic sense, supp z is given by

supp z :=
⋂
{A ⊂ ΓC ⊂ R

d−1; A closed , Hd−1(Z\A) = 0}. (2.19)

We now define

J∞ : L1(ΓC;Rd)× SBV(ΓC; {0, 1})→ [0,∞] ,

J∞(v, z) :=
{

0 if v = 0 Hd−1-a.e. on supp z,

∞ otherwise.

(2.20)
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Finally, we introduce the integral functional induced by the indicator functions of
the sets C(x) from (2.6), i.e.

IC : L1(ΓC;Rd)→ [0,∞], IC(v) :=
∫
ΓC

IC(x)(v(x)) dHd−1(x) .

Then, we define the functionals

Φk : H 1
D(Ω\ΓC;Rd)× SBV(ΓC; {0, 1})→ [0,∞] given by

Φk(u, z) :=
⎧⎨
⎩
∫
Ω\ΓC

(
W2(e(u)) + 1

kp
Wp(e(u))

)
dx + J∞([[u]], z) if u ∈ W

1,p
D (Ω\ΓC;Rd),

∞ otherwise,

(2.21)

with p > d,

Φadh
k : H 1

D(Ω\ΓC;Rd)× L1(ΓC)→ [0,∞] given by

Φadh
k (u, z) :=

⎧⎨
⎩
∫
Ω\ΓC

(
W2(e(u)) + 1

kp
Wp(e(u))

)
dx + Jk([[u]], z) if u ∈ W

1,p
D (Ω\ΓC;Rd ),

∞ otherwise,

(2.22)

with p > d. We will show that, given a sequence (zk)k ⊂ SBV(ΓC; {0, 1})
and suitably converging to some z ∈ SBV(ΓC; {0, 1}) (cf. Theorem 3 below),
both functionals Φk(·, zk) and Φadh

k (·, zk) MOSCO-converge in the H 1
D(Ω\ΓC;Rd)-

topology, as k →∞, to the functional Φ∞(·, z) defined by

Φ∞ : H 1
D(Ω\ΓC;Rd)× SBV(ΓC; {0, 1})→ [0,∞],

Φ∞(u, z) :=
∫
Ω\ΓC

W2(e(u)) dx + J∞(
[[
u
]]
, z) .

(2.23)

Remark 1

1. Due to the condition p > d and to trace theorems, for every u ∈
W

1,p
D (Ω\ΓC;Rd) there holds

[[
u
]] ∈ W 1−1/p,p(ΓC;Rd) ⊂ C0(ΓC) . (2.24)

Therefore, for the term Jk([[u]], z) to be well defined, it is in principle sufficient
to have z ∈ L1(ΓC).

2. As already mentioned, in [23] we performed the adhesive-to-brittle limit passage
in the mechanical force balance staying in the context of nonlinear (small-strain)
elasticity, with an elastic energy having p-growth, with p > d . In fact, we
proved the MOSCO-convergence of the functionals (w.r.t. the variable u, with the
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second entry given by a sequence (zk)k in SBV(ΓC; {0, 1}) suitably converging
to some z)

Φ
adh,p
k : W 1,p

D (Ω\ΓC;Rd)× L1(ΓC)→ [0,∞),

Φ
adh,p
k (u, z) :=

∫
Ω\ΓC

Wp(e(u)) dx + Jk(
[[
u
]]
, z),

to the functional

Φ̃
p∞ : W 1,p

D (Ω\ΓC;Rd )×L1(ΓC)→ [0,∞], Φ̃
p∞(u, z) :=

∫
Ω\ΓC

Wp(e(u)) dx+ J̃∞(
[[
u
]]
, z),

with J̃∞ the integral functional induced by the indicator function J̃∞ from (2.5).
Observe that, in view of (2.24), for u ∈ W

1,p
D (Ω\ΓC;Rd) there holds

z
[[
u
]] = 0 Hd−1-a.e. on ΓC ⇐⇒

[[
u
]] = 0 Hd−1-a.e. on supp z,

hence J̃∞(
[[
u
]]
, z) = J∞(

[[
u
]]
, z) .

Instead, for the functional Φ∞, defined with u ∈ H 1
D(Ω\ΓC;Rd) it is essential

to have the contribution with J∞, which enforces constraint (2.1) in terms of
supp z, stronger than z[[u]] = 0 a.e. on ΓC. In fact, our argument for MOSCO-
convergence relies on the support convergence (2.15).

Assumptions
Let us now specify our geometric assumptions on the domain Ω , as well as the
properties required of a sequence (zk)k ⊂ SBV(ΓC; {0, 1}), converging to some z ∈
SBV(ΓC; {0, 1}), to ensure that the functionals Φk(·, zk) and Φadh

k (·, zk) MOSCO-
converge to Φ∞(·, z). In order to obtain a result as independent as possible from
the problem of passing to the limit in the coupled system for brittle delamination,
we will directly impose here certain additional regularity properties on (zk)k and z,

which are in fact induced by semistability, see Sect. 4.1.
We will suppose that the Dirichlet boundary ΓD and the finite perimeter sets Zk

and Z associated with zk and z enjoy a regularity property, which prevents outward
cusps, introduced by Campanato as the Property a, cf. e.g. [6, 7], and also known as
lower density estimate in e.g. [2, 9]. We recall it in the following definition.

Definition 1 (Property a) A set M ⊂ R
n has the Property a if there exists a

constant C such that

∀ y ∈ M ∀ ρ� > 0 : Ln(M ∩ Bρ�(y)) ≥ Cρn
� . (2.25)

Here, Bρ�(y) denotes the open ball of radius ρ� with center in y.
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We now fix our conditions on the domain Ω .

Assumption 1 We suppose that

Ω ⊂ R
d , d ≥ 2, is boundedΩ−, Ω+, Ω are Lipschitz domains,Ω+ ∩Ω− = ∅ , (2.26a)

∂Ω = ΓD ∪ ΓN, s.th. ΓN = ∂Ω\ΓD, ΓD ⊂ ∂Ω is closed with Property a, and (2.26b)

ΓD ∩ ΓC = ∅, Hd−1(ΓD ∩Ω−) > 0 , Hd−1(ΓD ∩Ω+) > 0 , (2.26c)

dist(ΓD, ΓC) = γ > 0 , (2.26d)

ΓC = Ω− ∩Ω+ ⊂ R
d−1 is a “flat” surface, i.e. contained in a hyperplane of Rd ,

such that, in particular, Hd−1(ΓC) = Ld−1(ΓC) > 0 ,
(2.26e)

where Hd−1, resp. Ld−1, denotes the (d−1)-dimensional Hausdorff measure, resp.
Lebesgue measure.

Here, the condition that ΓC is contained in a hyperplane has no substantial role in
our analysis, but to simplify arguments and notation.

As for the functions (zk)k, z ⊂ SBV(ΓC; {0, 1}), in addition to weak∗ conver-
gence in SBV(ΓC) we will suppose that they fulfill a lower density estimate, holding
uniformly w.r.t. the parameter k ∈ N ∪ {∞}.
Assumption 2 There are constants R, a(ΓC) > 0 such that for every k ∈ N ∪ {∞}
there holds

∀ y ∈ supp zk ∀ ρ� > 0 : Ld−1(Zk ∩ Bρ�(y)) ≥
{
a(ΓC)ρ

d−1
� if ρ� < R,

a(ΓC)R
d−1 if ρ� ≥ R,

(2.27)

where Zk is the finite perimeter set such that zk = χZk .

As we will see in Sect. 3.1, this condition, combined with the weak∗ convergence in
SBV(ΓC; {0, 1}), ensures the support convergence (2.15) for the functions zk .

We are now in a position to state the main result of this paper.

Theorem 3 Under Assumption 1, let (zk)k, z ∈ SBV(ΓC; {0, 1}) fulfill as k →∞

zk
∗
⇀ z in SBV(ΓC; {0, 1}) (2.28)

and Assumption 2. Then, the functionalsΦk(·, zk) and Φadh
k (·, zk) MOSCO-converge

as k →∞ to Φ∞(·, z), with respect to the topology of H 1
D(Ω\ΓC;Rd).

Its proof, carried out in Sect. 3, is based on a nontrivial adaptation of the arguments
for the aforementioned MOSCO-convergence result from [23].
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3 Proof of Theorem 3

Let (zk)k, z ∈ SBV(ΓC; {0, 1}) fulfill the conditions of Theorem 3. In order to prove
MOSCO-convergence of the functionals Φk(·, zk) and Φadh

k (·, zk) to Φ∞(·, z), we
have to check the lim inf- and the lim sup-estimates. While the proof of the latter is
more involved and will be carried out throughout Sects. 3.1 and 3.2, the argument
for the former will be developed in the following lines. It relies on this key result.

Lemma 1 ([25], Lemma 4.5) Let z ∈ SBV(ΓC; {0, 1}) and let Z ⊂ ΓC be the
associated finite perimeter set such that z = χZ. Suppose that z fulfills the lower
density estimate (2.25). Then,

Hd−1(supp z\Z) = 0. (3.1)

The lim inf-Estimate
Let (uk), u ∈ H 1

D(Ω\ΓC;Rd) fulfill uk ⇀ u. Since W2 is convex and continuous
on H 1

D(Ω\ΓC;Rd) and since Wp ≥ 0 by (2.18), we have

lim inf
k→∞

∫
Ω\ΓC

(
W2(e(uk))+ 1

kp
Wp(e(uk))

)
dx ≥

∫
Ω\ΓC

W2(e(u)) dx .

We now distinguish the analysis for Φk(·, zk) from that for Φadh
k (·, zk), cf. (2.21)

& (2.22).

(i) We may of course suppose that supk∈NΦk(uk, zk) ≤ C < ∞. Therefore, we
have

sup
k∈N

J∞(
[[
uk
]]
, zk) ≤ C, hence

[[
uk
]] = 0 Hd−1-a.e. on supp zk .

Since zk → z in Lq(ΓC) for every 1 ≤ q <∞ by (2.28), and since [[uk]] → [[u]]
in L2(ΓC;Rd) by the compact embedding H 1(Ω;Rd) ⊂ L2(ΓC;Rd), we find
a subsequence (zk, [[uk]])k converging pointwise a.e. in ΓC to (z, [[u]]). More
precisely, along this subsequence it holds 0 = zk[[uk]] → z[[u]] a.e. in ΓC and
hence we conclude

z
[[
u
]] = 0 Hd−1-a.e. on ΓC, which implies

[[
u
]] = 0 Hd−1-a.e. on supp z

(3.2)

thanks to (3.1). Therefore,

lim inf
k→∞ J∞(

[[
uk
]]
, zk) ≥ 0 = J∞(

[[
u
]]
, z) ,

which concludes the proof of the lower semicontinuity estimate.
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(ii) From supk Φ
adh
k (uk, zk) ≤ C <∞we now infer that supk∈N Jk([[uk]], zk) ≤ C,

which again yields (3.2), because of 0 ≤ ∫ΓC
zk|[[uk]]|2 dHd−1(x) ≤ C/k → 0.

Then, also

lim inf
k→∞ Jk(

[[
uk
]]
, zk) ≥ 0 = J∞(

[[
u
]]
, z) .

Outline of the Proof of the lim sup-Estimate
Let v ∈ H 1

D(Ω\ΓC;Rd) fulfill Φ∞(v, z) < ∞: in particular, z and v satisfy the
brittle constraint (2.1). It is our task to construct a sequence (vk)k with the following
properties:

vk ∈ W
1,p
D (Ω\ΓC;Rd) for all k ∈ N, sup

k∈N
Φk(vk, zk) <∞, and

vk → v in H 1
D(Ω\ΓC;Rd) & Φk(vk, zk)→ Φ∞(v, z) as k→∞.

(3.3)

Obviously, in order to improve the regularity of v ∈ H 1
D(Ω\ΓC;Rd) to

W
1,p
D (Ω\Γ ;Rd) with p > d, v has to be mollified. For this, we will introduce

a mollification operator M±
εk
, with a vanishing sequence (εk)k, which involves

the H 1-extension of v|Ω± from Ω± to R
d and the convolution with a mollifier

ηεk ∈ C∞0 (Rd ). However, in general, the convolution of v|Ω± with a mollifier
ηk ∈ C∞0 (Rd ) will spoil its zero-trace on the Dirichlet boundary ΓD ∩ Ω±. In

order to construct an element of W 1,p
D (Ω\Γ ;Rd) one has to set v|Ω± to zero in a

sufficiently large, k-dependent neighborhoodΓD+Brk (0) of ΓD, before convolving
with ηk . For this modification of a function v ∈ H 1

D(Ω\Γ ;Rd), leading to a
function with zero values in a neighborhood of radius ρ of a closed set M ⊂ Ω , we
will apply a suitably defined recovery operator that is a function of the radius ρ, of
the points in M , and of the elements in H 1

D(Ω\Γ ;Rd). Namely,

Rec : {ρ ∈ [0,∞)} ×M ×H 1
D(Ω\Γ ;Rd)

→ {ṽ ∈ H 1
D(Ω\Γ ;Rd) : supp ṽ ⊂ Ω\(M + Bρ(0))};

its definition is given in Definition 2 below. The now suitably mollified function ṽk

given by ṽk |Ω± = ṽ±k := ηk ∗ Rec(rk, ΓD ∩ Ω±, v|Ω±) ∈ W
1,p
D (Ω±;Rd), with

a vanishing sequence (rk)k , will have to be further modified in such a way that
the brittle constraint (2.1) is satisfied with the given sequence (zk)k . For this, the
recovery operator Rec will be once more applied to the triple (ρk, supp z, ṽanti

k ),

where ṽanti
k is the antisymmetric part of ṽk, cf. (3.19), and

ρk := inf{ρ ∈ [0,∞), supp zk ⊂ supp z+ Bρk (0)} . (3.4)
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In other words, the construction of the recovery sequence (vk)k complying with (3.3)
consists of the following three steps:

Step 1: Set v|Ω± to zero in ΓD+Brk (0) using Rec, with a vanishing sequence (rk)k:
this yields

Rec(rk, Γ
±

D , v|Ω±), where Γ ±D := ΓD ∩Ω±. (3.5a)

Here, the vanishing sequence (rk)k has to be chosen in such a way that (ΓD +
Brk (0))∩ΓC = ∅. This is possible thanks to Assumption (2.26d), which provides
that dist(ΓD, ΓC) = γ > 0.

Step 2: Mollify Rec(rk, Γ
±

D , v|Ω±) using a suitably defined mollification operator
M±

εk
∈ C∞0 (Rd) for a vanishing sequence (εk)k: this results in

ṽk ∈ W 1,p(Ω\ΓC;Rd) with ṽ±k := M±
εk
(Rec(rk, Γ

±
D , v|Ω± )). (3.5b)

Step 3: Adapt ṽk to zk in such a way as to obtain a sequence (vk)k satisfying

zk
[[
vk
]] = 0 Hd−1-a.e. on ΓC for each k ∈ N. (3.6)

The technical tools for this construction will be provided in Sect. 3.1, whereas in
Sect. 3.2 we will carry out the proof that the sequence (vk)k indeed converges to v

as stated in (3.3), cf. Theorem 4.

3.1 Preliminary Definitions and Results

We start by introducing the mollification operators. Since Ω± ⊂ R
d are Lipschitz

domains, by [1, p. 91, Thm. 4.32], they are extension domains (for Sobolev
functions); we introduce the linear extension operator

E± : H 1(Ω±;Rd)→ H 1(Rd;Rd) with the properties:

• ∀ v ∈ H 1(Ω±;Rd) : E±(v)(x) = v(x) a.e. in Ω±,

• ∃C± > 0 ∀ v ∈ H 1(Ω±;Rd) : ‖E±(v)‖H 1(Rd ;Rd) ≤ C±‖v‖H 1(Ω±;Rd) .

(3.7)

In order to define a suitable mollification operator, we make use of the standard
mollifier η1 ∈ C∞0 (Rd), cf. e.g. [1, p. 29, 2.17],

η1(x) :=
{
ζ exp

(− 1/(1− |x|2)) if |x| < 1,
0 if |x| ≥ 1,

(3.8a)
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with a constant ζ > 0 such that
∫
Rd η1(x) dx = 1, and for ε > 0 we set

ηε(x) := ε−dη1(x/ε) . (3.8b)

The Mollification Operator M±
ε

Now, for ε > 0 we define the mollification operator

M±
ε : H 1(Ω±;Rd)→ C∞(Ω±;Rd),

M±
ε (v) := ηε ∗E±(v)|Ω± =

∫
Rd

ηε(x − y)E±(v)(y) dy

∣∣∣∣
Ω±

(3.9)

and collect its properties in the following result.

Proposition 1 (Properties of M±
ε ) Let p ∈ (1,∞) fixed.

1. For every ε > 0 the linear operator M±
ε : H 1(Ω±;Rd) → H 1(Ω±;Rd)

satisfies

∃C > 0 ∀ v ∈ H 1(Ω±;Rd) : ‖M±
ε (v)‖H 1(Ω±;Rd) ≤ C‖v‖H 1(Ω±;Rd) .

(3.10)

2. Consider a sequence ε → 0 and let v ∈ H 1(Ω±;Rd). Then, M±
ε v → v in

H 1(Ω±;Rd).
3. Let p > d fixed. There is a constant Cd,p > 0, only depending on Ω , on d , and

p, such that for all v ∈ H 1(Ω±;Rd)

‖∇M±
ε (v)‖Lp(Ω±;Rd) ≤ ε−d/2Cp‖v‖H 1(Ω±;Rd) (3.11)

Proof The proof of Items 1 & 2 is a direct consequence of classical results on
mollifiers for W 1,p(Rd)-functions, see e.g. [5, p. 39, Lemma 1], combined with
the continuity of the extension operator. Indeed, we have

‖M±
ε (v)‖H 1(Ω±;Rd) ≤ ‖ηε ∗E±(v)‖H 1(Rd ;Rd)

≤ ‖η1‖L1(Rd)‖E±(v)‖H 1(Rd ;Rd) ≤ C±‖η1‖L1(Rd)‖v‖H 1(Ω±;Rd) ,

whence (3.10) with C := max{C+, C−}, and Item 2.
Ad 3.: For the mollifiers defined in (3.8), observe that

∇zη1(z) = ζ exp(−(1− |z|2)−1)(−(1− |z|2)−22z) for all z with |z| < 1,

∇xηε(x) = ε−d∇x

(
η1

(x
ε

))
= ε−(d+1)∇zη1

(x
ε

)
for all x with |x| < ε .

(3.12)
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Let q ′ ≥ 1; using the transformation (y − x)/ε = z, dzi = ε−1dyi for i ∈
{1, . . . , d}, the Lq ′ -norm of ∇ηε reads as follows

‖∇xηε(x − •)‖Lq′ (Rd)

=
( ∫

Rd

∣∣∇xηε(x − y)
∣∣q ′ dy)1/q ′

=
( ∫

Rd

ε(d−q ′(d+1))
∣∣∇zη1(z)

∣∣q ′ dz)1/q ′ = ε(d−q ′(d+1))/q ′‖∇zη1‖Lq′ (Rd)
.

(3.13)

For v ∈ H 1(Ω±;Rd) the above considerations are now used to estimate
‖∇M±

ε (v)‖Lp(Rd ;Rd). For this, we will in particular apply Hölder’s inequality
with the Sobolev exponent q = 2d/(d−2), for which ‖v‖Lq(Ω±;Rd) is well-defined

due to the continuous embedding H 1(Ω±;Rd) ⊂ Lq(Ω±;Rd), i.e. there is CS > 0
such that

‖v‖Lq(Ω±;Rd) ≤ CS‖v‖H 1(Ω±;Rd). (3.14)

Furthermore, note that, for q = 2d/(d − 2), it is q ′ = q/(q − 1) = 2d/(d + 2) and
hence, ε(d−q ′(d+1))/q ′ = ε−d/2 in (3.13) above. Thus, we obtain

‖∇xMε(v)‖pLp(Ω±;Rd)
≤
∫
Ω±

( d∑
i=1

( ∫
Rd

∣∣∇xηε(x − y)E±(vi)(y)
∣∣ dy)2)p/2

dx

≤
∫
Ω±

( d∑
i=1

‖∇xηε(x − •)‖2
Lq′ (Rd)

‖E±(vi)‖2
Lq(Rd)

)p/2
dx

≤ Cd,p

d∑
i=1

∫
Ω±
‖∇xηε(x − •)‖p

Lq′ (Rd)
‖E±(vi)‖pLq(Rd)

dx

≤ ε−dp/2Cd,p‖∇zη1‖p
Lq′ (Rd)

‖v‖p
H 1(Ω±;Rd)

.

where the positive constant Cd,p, varying from the third to the fourth line, only
depends on d and p, and Ω , and for the fourth estimate we have used relation (3.13),
as well as the continuity of the extension and the embedding operators, cf. (3.7)
and (3.14).

The Recovery Operator Rec
We now introduce the recovery operator Rec.
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Definition 2 (Recovery OperatorRec) Suppose that M is a closed subset of ∂Ω±
fulfilling property a from Definition 1. Set

W
1,r
M (Ω±;Rd) := {v ∈ W 1,r (Ω±;Rd), v = 0 on M},

dM(x) := min
x̃∈M

|x − x̃| for all x ∈ Ω±.

Let ρ ≥ 0. Then, for all v ∈ W
1,r
M (Ω±;Rd) and every x ∈ Ω±, we define

Rec(ρ,M, v)(x) := v(x)ξρ(x) with ξρ(x) := min

{
1

ρ
(dM(x)− ρ)+, 1

}
,

(3.15)

where (·)+ denotes the positive part, i.e. (z)+ := max{0, z}.
The proof that Rec(ρ,M, v) → v in H 1(Ω±;Rd) is based on a Hardy-type
inequality recently deduced in [8, Thm. 3.4]:

Proposition 2 (Hardy’s Inequality for r ∈ (1,∞)) Let Ω± satisfy (2.26a).
Suppose that the closed set M ⊂ ∂Ω± has Property a. Then, for all r ∈ (1,∞)

there exists a constant CM = C(M, r) such that the following Hardy’s inequality is
fulfilled in W

1,r
M (Ω±,Rd):

∀ v ∈ W
1,r
M (Ω±,Rd ) : ∥∥v/dM∥∥Lr(Ω±,Rd)

≤ CM

∥∥∇v∥∥
Lr(Ω±,Rd×d)

. (3.16)

With this Hardy’s inequality at hand it is possible to deduce the following properties
of Rec. We refer to [18, Cor. 2] for the proof of Proposition 3 below.

Proposition 3 (Properties of Rec) Let the assumptions of Proposition 2 hold true.
Keep r ∈ (1,∞) fixed. Consider a countable family {ρ} with ρ → 0 and let v ∈
W

1,r
M (Ω±,Rd ).

1. There is a constant cr = cr(Ω±) such that for every ρ > 0 the following
estimates hold:

‖Rec(ρ,M, v)‖rLr (Ω±) ≤ ‖v‖rLr (Ω±) and

‖∇Rec(ρ,M, v)‖rLr (Ω±) ≤ cr‖∇v‖rLr (Ω±) .
(3.17)

2. Rec(ρ,M, v)→ v strongly in W 1,r (Ω±) as ρ → 0.

The bounds (3.17) will later be applied for the exponent r = p, whereas the strong
convergence result shall be exploited for r = 2. As already mentioned, the recovery
operator will be applied with M = ΓD, which is indeed required to fulfill property a.
It will also be applied with M = supp z, with the sequence of radii defined by (3.4).
That is why, we need to impose on z the lower density estimate from Assumption 2
in Theorem 3. Assumption 2 is also at the basis of the following result, proved in
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[23, Prop. 6.7, 6.8], which ensures that the sequence (ρk)k from (3.4) tends to 0 as
k →∞.

Proposition 4 Assume (2.26e) on ΓC. Let (zk)k, z ∈ SBV(ΓC; {0, 1}) fulfill (2.28)
and Assumption 2. Then, for the sequence (ρk)k of radii given by (3.4) we have

supp zk ⊂ supp z+ Bρk (0) and ρk → 0 as k →∞. (3.18)

3.2 Construction of the Recovery Sequence and Proof
of the Γ -lim sup Inequality

We are now in a position to carry out the construction of the recovery sequence
outlined at the beginning of this Section. In order to simplify the subsequent
arguments, in accordance with condition (2.26e) ensuring the “flatness” of ΓC, we
suppose without loss of generality that Ω is rotated in such a way that the normal
n on ΓC points in the x1-direction and that the origin 0 ∈ ΓC. Moreover, for every
x ∈ Ω we may use the notation x = (x1, y) with y = (x2, . . . , xd) ∈ R

d−1. We
then define the symmetric and antisymmetric parts of a function v = (vsym+vanti) ∈
H 1

D(Ω\ΓC;Rd) via

vsym(x) := 1
2

(
v(x1, y)+ v(−x1, y)

)
and vanti(x) := 1

2

(
v(x1, y)− v(−x1, y)

)
.

(3.19)

In particular, vsym ∈ H 1(Ω,Rd). Moreover, for v ∈ H 1
D(Ω\ΓC;Rd) with

Φ∞(v, z) <∞, there holds vanti = 0 a.e. on supp z.
With our next result we give the precise definition of the recovery sequence and

prove the Γ -lim sup inequality for the functionals Φk and Φadh
k .

Theorem 4 Let Assumptions (2.26) be satisfied. Let (zk)k, z ∈ SBV(ΓC; {0, 1})
satisfy (2.28) and Assumption 2. Let (ρk)k be defined by (3.4). For every k ∈ N

set rk := γ
4k , with γ = dist(ΓD, ΓC), and consider Mεk from (3.9) with εk := k−α for

α ∈ (0, 2/d). Then, for v ∈ H 1
D(Ω\ΓC;Rd) with Φ∞(v, z) <∞, set

vk := ṽ
sym
k +Rec(ρk, supp z, ṽanti

k ) , (3.20)

with ṽk from (3.5), (ρk)k from (3.4), and the recovery operator Rec from (3.15).
Then, for the functionals from (2.21)–(2.23) there holds

lim
k→∞Φk(vk, zk) = Φ∞(v, z) and lim

k→∞Φadh
k (vk, zk) = Φ∞(v, z) . (3.21)
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Proof First of all, recall that both M±
ε from (3.9) and Rec(ρ,M, ·) from (3.15) are

linear operators. Hence, in (3.20) we have

v±k =M±
εk
(Rec(rk, Γ

±
D , vsym|Ω±))+Rec(ρk, supp z,M±

εk
(Rec(rk, Γ

±
D , vanti|Ω±))) .

(3.22)

With ṽ ∈ H 1(Ω±,Rd) as a placeholder for usym|Ω±, resp. uanti|Ω±, and
using (3.10), we deduce

‖M±
εk
(Rec(rk, Γ

±
D , ṽ))− ṽ‖H 1(Ω±)

≤ ‖M±
εk
(Rec(rk, Γ

±
D , ṽ))−M±

εk
(ṽ)‖H 1(Ω±) + ‖M±

εk
(ṽ)− ṽ‖H 1(Ω±)

≤ C‖Rec(rk, Γ
±

D , ṽ)− ṽ‖H 1(Ω±) + ‖M±
εk
(ṽ)− ṽ‖H 1(Ω±) → 0 ,

(3.23)

and both terms on the right-hand side tend to 0 according to Propositions 1 & 3,
since both sequences (εk)k and (rk)k are null and since rk = γ /(4k) < dist(ΓD, ΓC)

by assumption. Furthermore, thanks to (3.11), the Lp-norm of the gradient can be
estimated as follows

‖∇M±
εk
(Rec(rk, Γ

±
D , ṽ))‖Lp(Ω±) ≤ ε

−d/2
k Cd,p‖Rec(rk, Γ

±
D , ṽ)‖H 1(Ω±) ≤ ε

−d/2
k C .

(3.24)

Estimate (3.23) implies that

M±
εk
(Rec(rk, Γ

±
D , vsym|Ω±))→ vsym|Ω± strongly in H 1(Ω±,Rd). (3.25)

Moreover, by estimate (3.24) we conclude that

k−p‖∇M±
εk
(Rec(rk, Γ

±
D , ṽ))‖Lp(Ω±) ≤ k−pε−dp/2

k Cp → 0 as k →∞,

(3.26)

due to εk = k−α with α ∈ (0, 2/d).
It remains to verify similar relations for the term involving vanti|Ω±, again

abbreviated with ṽ. With the aid of (3.17) and the linearity of Rec, we obtain

‖Rec(ρk, supp z,M±
εk
(Rec(rk, Γ

±
D , ṽ)))− ṽ‖H 1(Ω±)

≤ ‖Rec(ρk, supp z,M±
εk
(Rec(rk, Γ

±
D , ṽ)))−Rec(ρk, supp z, ṽ)‖H 1(Ω±)

+ ‖Rec(ρk, supp z, ṽ)− ṽ‖H 1(Ω±)

≤ C‖M±
εk
(Rec(rk, Γ

±
D , ṽ))− ṽ‖H 1(Ω±) + ‖Rec(ρk, supp z, ṽ)− ṽ‖H 1(Ω±) → 0

(3.27)
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by (3.23) and Proposition 3. In order to deduce an estimate for the Lp-norm of

the gradient we rewrite Rec(ρk, supp z,M±
εk
(Rec(rk, Γ

±
D , ṽ))) = ξ

supp z
ρk M±

εk
(ξ

Γ ±D
rk v)

with the aid of (3.15), and hence find that ∇Rec(ρk, supp z,M±
εk
(Rec(rk, Γ

±
D , ṽ)))

= ξ
supp z
ρk ∇M±

εk
(ξ

Γ ±D
rk ṽ)+M±

εk
(ξ

Γ ±D
rk ṽ)⊗∇ξ supp z

ρk . Thus, by (3.17) and (3.11) it is

‖∇Rec(ρk, supp z,M±
εk
(Rec(rk, Γ

±
D , ṽ)))‖Lp(Ω±)

≤ ‖∇M±
εk
(ξ

Γ ±D
rk ṽ)‖Lp(Ω±) + ‖M±

εk
(ξ

Γ ±D
rk ṽ)⊗∇ξ supp z

ρk ‖Lp(Ω±)

≤ ε
−d/2
k (Cd,p + C)‖ξΓ

±
D

rk ṽ‖H 1(Ω±) ≤ ε
−d/2
k C′ .

(3.28)

Let us now conclude the proof of (3.21). It follows from (3.23) and (3.27)
that vk → v as k → ∞ strongly in H 1(Ω\ΓC,R

d). Hence we can choose a
(not relabeled) subsequence that converges pointwise a.e. in Ω\ΓC. Then, for the
quadratic part W2 of the elastic energy we easily conclude that

∫
Ω\ΓC

W2(e(vk)) dx →
∫
Ω\ΓC

W2(e(v)) dx (3.29)

via the the dominated convergence theorem. As for the term k−pWp , we have that

∫
Ω\ΓC

k−pWp(e(vk)) dx → 0 . (3.30)

due to growth property of Wp in combination with estimates (3.24) & (3.28). Finally,
there holds

zk
[[
vk
]] = zk

[[
ṽ

sym
k

]]+ zk
[[
Rec(ρk, supp z, ṽanti

k )
]] = 0 Hd−1-a.e. on ΓC,

(3.31)

since for the symmetric part we have [[ṽsym
k ]] = 0 a.e. on ΓC, while, by construction,

[[Rec(ρk, supp z, ṽanti
k )]] = 0 on supp z + Bρk which contains supp zk , cf. (3.18).

Since the functions zk fulfill the lower density estimate from Assumption 2,
Lemma 1 is applicable. Therefore, from (3.31) we infer that [[vk]] = 0 a.e. on
supp zk , i.e. that

both J∞(
[[
vk
]]
, zk) = 0 and Jk(

[[
vk
]]
, zk) = 0 for every k ∈ N. (3.32)

From (3.29), (3.30), and (3.32) we conclude (3.21) and thus complete the proof.
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4 Applications

4.1 From Nonlinear to Linear Elasticity in the Brittle
Delamination System

Let us now address the limit passage from nonlinear to linear (small-strain)
elasticity in the coupled rate-dependent/independent system for brittle delamination
consisting of

1. the mechanical force balance for the displacements (2.3), with the stored elastic
energy density W(e) = W2(e)+ 1

kp
Wp(e), where we let k →∞;

2. the contact boundary condition (2.4);
3. the brittle delamination flow rule (2.7).

Due to the rate-independent character of the flow rule, which possibly leads to
jump discontinuities of z as a function of time, system (2.3, 2.4, 2.7) has to be
weakly formulated. As already mentioned in Sect. 2, for this we resort to the notion
of semistable energetic solution for coupled rate-dependent/independent systems,
first proposed in [19] for rate-independent processes in viscous solids, and recently
extended and generalized in [24]. We now recall this definition in the context of

• the nonlinearly elastic brittle delamination system, i.e. (2.3, 2.4, 2.7) with
W(e) = W2(e)+ 1

kp
Wp(e);

• the linearly elastic brittle delamination system, i.e. (2.3, 2.4, 2.7) with W(e) =
W2(e),

where, of course, the terms ‘nonlinearly elastic’ and ‘linearly elastic’ have been used
with slight abuse, only to refer to the nonlinear/linear character of the equation for
the displacements (at small strains).

Prior to giving Definition 3, we need to fix our conditions on the forces
F and f : we assume that F ∈ W 1,1(0, T ;H 1

D(Ω\ΓC;Rd)∗) and f ∈
W 1,1(0, T ;L2(d−1)/d(ΓN;Rd)), so that the total loading L defined by (2.9) fulfills

L ∈ W 1,1(0, T ;H 1
D(Ω\ΓC;Rd)∗) . (4.1)

We then introduce the energy functionals driving the nonlinearly and linearly elastic
systems, respectively:

Ek, E∞ : [0, T ] ×H 1
D(Ω\ΓC;Rd)× SBV(ΓC; {0, 1}),→ (−∞,∞],

Ek(t, u, z) := Φk(u, z)+ G(z)− 〈L(t), z〉H 1
D(Ω\ΓC;Rd),

E∞(t, u, z) := Φ∞(u, z)+ G(z)− 〈L(t), z〉H 1
D(Ω\ΓC;Rd),

(4.2)
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with G defined by (2.16). Finally, we consider the dissipation potential

R : L1(ΓC)→ [0,∞], R(ż) :=
∫
ΓC

R(ż) dx , with R(v) :=
{
a1|v| if v ≤ 0,
∞ otherwise

(4.3)

and a1 > 0. The fact that R(v) = ∞ if v > 0 ensures the unidirectionality of the
delamination process, i.e. a crack can only increase or stagnate but its healing is
excluded. With R we associate the total variation functional

VarR(z; [s, t ]) := sup

⎧⎨
⎩

N∑
j=1

R(z(rj )−z(rj−1)) : s = r0 < r1 < . . . < rN−1 < rN = t

⎫⎬
⎭ .

for all [s, t] ⊂ [0, T ]. Observe that the unidirectionality encoded in R provides
monotonicity with respect to time of functions z with VarR(z; [s, t]) < ∞. Hence,
VarR(z; [s, t]) = R(z(t)− z(s)) in this case.

We are now in a position to give the following

Definition 3 We say that a pair (u, z), with u : [0, T ] → W
1,p
D (Ω\ΓC;Rd)

in the nonlinear case and u : [0, T ] → H 1
D(Ω\ΓC;Rd) for the linear case,

and z : [0, T ] → SBV(ΓC; {0, 1}), is a semistable energetic solution of the
nonlinearly/linearly elastic brittle delamination system, if

u ∈ H 1(0, T ;H 1
D(Ω\ΓC;Rd)) ∩

⎧⎨
⎩
L∞(0, T ;W1,p

D (Ω\ΓC;Rd)) in the nonlinear case,

L∞(0, T ;H 1
D(Ω\ΓC;Rd )) in the linear case,

z ∈ L∞(0, T ;SBV(ΓC; {0, 1})) ∩ BV([0, T ];L1(ΓC)),

the pair (u, z) fulfills

– the weak formulation (2.8) of the mechanical force balance, with q = p > d for
the nonlinear case and q = 2 for the linear one;

– the semistability condition

Ek(t, u(t), z(t)) ≤ Ek(t, u(t), z̃)+ R(z̃ − z(t)) for all z̃ ∈ L1(ΓC) and all t ∈ [0, T ],
(4.4)

– the energy-dissipation inequality for all t ∈ [0, T ]

VarR(z; [0, t])+
∫ t

0
De(u̇) : e(u̇) dx + Ek(t, u(t), z(t))

≤ Ek(0, u(0), z(0))+
∫ t

0
∂tEk(r, u(r), z(r)) dr,

(4.5)

with k ∈ N (k =∞) for the nonlinearly (linearly, respectively) elastic system.
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Note that the existence of semistable energetic solutions to the nonlinearly elastic
brittle system was proved in [23].

The following result formalizes the limit passage from nonlinear to linear
elasticity for semistable energetic solutions of the brittle delamination system. For
technical reasons that will be expounded in the proof, we need to strengthen our
Assumption 1 on the domain, by requiring in addition that ΓC is convex.

Theorem 5 Under Assumption 1 suppose, in addition, that ΓC is convex. Let
(uk0, z

k
0)k ⊂ W

1,p
D (Ω\ΓC;Rd) × SBV(ΓC;Rd) be a sequence of data for the

nonlinearly elastic brittle systems, and suppose that

(uk0, z
k
0)→ (u0, z0) in H 1

D(Ω\ΓC;Rd)× SBV(ΓC;Rd) with

Ek(u
k
0, z

k
0)→ E∞(u0, z0) as k →∞.

(4.6a)

Also, suppose that (u0, z0) fulfill the semistability condition at t = 0, vit.

E(0, u0, z0) ≤ E(0, u0, z̃)+ R(z̃−z0) for all z̃ ∈ L1(ΓC). (4.6b)

Let (uk, zk)k be a sequence of semistable energetic solutions of the nonlinearly
elastic brittle system emanating from the initial data (uk0, z

k
0)k . Then, there exist

a (not relabeled) subsequence and functions u ∈ H 1(0, T ;H 1
D(Ω\ΓC;Rd)) and

z ∈ L∞(0, T ; SBV(ΓC; {0, 1}))∩ BV([0, T ];L1(ΓC)) such that, as k →∞,

uk ⇀ u in H 1(0, T ;H 1
D(Ω\ΓC;Rd)),

uk(t) ⇀ u(t) in H 1
D(Ω\ΓC;Rd) for all t ∈ [0, T ],

zk
∗
⇀ z in L∞(0, T ; SBV(ΓC; {0, 1}))∩ L∞((0, T )× ΓC),

zk(t)
∗
⇀ z(t) in SBV(ΓC; {0, 1})∩ L∞(ΓC) for all t ∈ [0, T ],

(4.7)

u(0) = u0, z(0) = z0, and the pair (u, z) is a semistable energetic solution of the
linearly elastic brittle system in the sense of Definition 3.

Remark 2 (Alternative Scaling & Energy-Dissipation Balance) In [23, 25, 26] also
an alternative scaling for certain energy contributions was investigated. More,
precisely, we replaced the perimeter regularization G in (4.2) and dissipation
potential R in (4.3) by their scaled versions

Gk(z) := 1
k
G(z) and Rk(v) := 1

k
R(v) . (4.8)

In [26] this was shown to be beneficial for modeling the onset of rupture when
performing the adhesive contact approximation of brittle delamination. Still, the
associated semistability inequality yielded compactness for the perimeters and the
dissipation terms of the approximate solutions, as can be verified by a multiplication
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with a factor k. The uniform bound on the perimeters independent of k thus entailed
that Gk(zk(t)) → 0 along semistable energetic solutions as k → ∞. Thus, given
that the initial data are well-prepared, it was possible in [26] to deduce an energy-
dissipation balance for the limit system. A similar result is also expected if the
scaling (4.8) is applied in the setup presented in Theorem 5.

Proof (Sketch of the Proof of Theorem 5) We will not develop the proof in its
completeness but rather highlight its main ingredients, focusing in particular on the
limit passage in the mechanical force balance for the displacements. We will often
refer to [23] for all details. We now split the proof into five steps.

Step 0: A Priori Estimates and Compactness
Exploiting regularity assumption (4.1), which allows us to estimate the work of the
external loadings, as well as the information that supk∈N Ek(u

k
0, z

k
0) ≤ C < ∞,

from the energy-dissipation inequality for the nonlinearly elastic case (i.e. k ∈ N),
written on the interval [0, T ], we deduce that

∃C > 0 ∀ k ∈ N :

VarR(zk; [0, t])+
∫ t

0
De(u̇k) : e(u̇k) dx + sup

t∈[0,T ]
|Ek(t, uk(t), zk(t))| ≤ C .

(4.9)

This yields the uniform bounds

sup
k∈N

(
‖uk‖H 1(0,T ;H 1

D(Ω\ΓC;Rd)) + ‖zk‖L∞(0,T ;SBV(ΓC;{0,1}))∩BV([0,T ];L1(ΓC))

)
≤ C,

also by exploiting Korn’s inequality for the displacements. Then, standard compact-
ness arguments imply convergences (4.7), cf. the proof of [23, Thm. 4.3], which in
particular give u(0) = u0, z(0) = z0. It also follows from (4.7), via standard lower
semicontinuity arguments, that

lim inf
k→∞ Ek(t, uk(t), zk(t)) ≥ E∞(t, u(t), z(t)) for every t ∈ [0, T ]. (4.10)

Step 1: Fine Properties of the Semistable Sequence (zk)k
Exploiting the additional condition that ΓC is convex, in [23, Thm. 6.6] it was proved
that the semistability condition (4.4) guarantees the validity of the lower density
estimate (2.27) for every k ∈ N ∪ {∞}, with constants uniform w.r.t. k ∈ N ∪ {∞}.
Therefore, the sequence (zk)k fulfills Assumption 2 of Theorem 3.

Step 2: Limit Passage in the Mechanical Force Balance for the Displacements
We apply Theorem 3 and conclude the MOSCO-convergence of the functionals
Φk(·, zk) to Φ(·, z) w.r.t. the topology of H 1

D(Ω\ΓC;Rd)). Then, in order to pass
to the limit in the mechanical force balance (2.8) as k → ∞, we easily adapt
the arguments from the proof of [23, Prop. 5.6]. They are based on the fact
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that, for k ∈ N, the weak formulation (2.8) can be reformulated in terms of the
subdifferential (in the sense of convex analysis) of Φk w.r.t. the variable u, namely
∂uΦk : H 1

D(Ω\ΓC;Rd))× SBV(ΓC; {0, 1}) ⇒ H 1
D(Ω\ΓC;Rd))∗ given by

ξ ∈ ∂uΦk(u, z) if and only if u ∈ W
1,p
D (Ω\ΓC;Rd ) and

〈ξ, v〉
W

1,p
D (Ω\ΓC;Rd )

=
∫
Ω\ΓC

(
DW2(e(u))+k−pDWp(e(u))

) : e(v) dx + 〈λ, v〉H 1
D(Ω\ΓC;Rd )

for all v ∈ W
1,p
D (Ω\ΓC;Rd), with λ an element of the subdifferential ∂u(IC +

Jk(·, z)) : H 1
D(Ω\ΓC;Rd) ⇒ H 1

D(Ω\ΓC;Rd)∗. Then, the nonlinearly elastic version
of the mechanical force balance (2.8) is equivalent to

∫
Ω\ΓC

(
Dė(t)+ DW2(e(u))+k−pDWp(e(u))

) : e(v) dx + 〈λ(t), v〉H 1
D(Ω\ΓC;Rd)

= 〈L(t), v〉H 1
D(Ω\ΓC;Rd)

(4.11)

for all v ∈ W
1,p
D (Ω\ΓC;Rd), with λ(t) a selection in ∂u(IC + Jk(·, z(t)))(u(t)).

Analogously, in the linearly elastic case (2.8) reformulates in terms of the subd-
ifferential ∂uΦ∞ : H 1

D(Ω\ΓC;Rd) × SBV(ΓC; {0, 1}) ⇒ H 1
D(Ω\ΓC;Rd)∗. Now,

the MOSCO-convergence of the functionals Φk(·, zk) to Φ∞(·, z) guarantees the
convergence in the sense of graphs of the corresponding subdifferentials ∂uΦk(·, zk)
to ∂uΦ∞(·, z), cf. [3]. This is the key observation for passing to the limit in (4.11),
arguing in the very same way as for [23, Prop. 5.6]. These arguments also yield, as
a by-product, that

uk(t)→ u(t) in H 1
D(Ω\ΓC;Rd) and k−p

∫
Ω\ΓC

Wp(e(uk(t)) dx → 0 as k →∞

for almost all t ∈ (0, T ), hence

Φk(uk(t), zk(t))→ Φ∞(u(t), z(t)) as k →∞ for a.a. t ∈ (0, T ).

(4.12)

Step 3: Limit Passage in the Semistability Condition
First of all, observe that, for k ∈ N ∪ {∞} condition (4.4) reduces to

J∞(
[[
uk(t)

]]
, zk(t))+ G(zk(t)) ≤ J∞(

[[
uk(t)

]]
, z̃)+ G(z̃)+ R(z̃− zk(t))

for all z̃ ∈ L1(ΓC) and for all t ∈ [0, T ].
(4.13)
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We now aim to pass to the limit as k → ∞ in (4.13) for every t ∈ (0, T ] (the
semistability condition holds at t = 0 thanks to (4.6b)) and show that the functions
(u, z) fulfill it for k = ∞. Following a well-consolidated procedure for energetic
solutions to purely rate-independent systems (cf. [17]), for t ∈ (0, T ] fixed and
given z̃ ∈ L1(ΓC) such that R(z̃ − z(t)) < ∞ and J∞([[u(t)]], z̃) + G(z̃) < ∞
(otherwise (4.13) trivially holds), we exhibit a recovery sequence (z̃k)k , suitably
converging to z̃ and fulfilling

lim sup
k→∞

(
J∞(

[[
uk(t)

]]
, z̃k)+ G(z̃k)+R(z̃k − zk(t)) − J∞(

[[
uk(t)

]]
, zk(t)) − G(zk(t))

)

≤ J∞(
[[
u(t)

]]
, z̃)+ G(z̃)+R(z̃ − z(t))− J∞(

[[
uk(t)

]]
, z)− G(z(t)) .

(4.14)

For this, we borrow the construction from the proof of [23, Prop. 5.9] and set

z̃k := z̃χAk + zk(1−χAk) with Ak := {x ∈ ΓC : 0 ≤ z̃(x) ≤ zk(x)}

and χAk its characteristic function. Observe that 0 ≤ z̃k ≤ zk a.e. on ΓC by
construction, therefore from supk∈N supt∈(0,T ) J∞([[uk(t)]], zk(t)) = 0 due to (4.9)
we gather that J∞([[uk(t)]], z̃k) = 0 for all k ∈ N. Therefore,

lim sup
k→∞

(
J∞(

[[
uk(t)

]]
, z̃k)−J∞(

[[
uk(t)

]]
, zk(t))

) = 0 = J∞(
[[
u(t)

]]
, z̃)−J∞(

[[
u(t)

]]
, z(t)) .

We refer to the proof of [23, Prop. 5.9] for the calculations on the remaining
contributions to (4.14).

Step 4: Proof of the Energy-Dissipation Inequality (4.5)
It follows by taking the lim infk→∞ of (4.5) for the nonlinearly elastic brittle system.
For the left-hand side, we rely on convergences (4.7), the lower semicontinuity
properties of the dissipative contributions to (4.5), and (4.10). For the right-hand
side, we resort to the energy convergence (4.6a) for the initial data and to the
continuity properties of the power term ∂tE, in view of (4.1).

This concludes the proof of Theorem 5.

4.2 The Joint Discrete-to-Continuous and Adhesive-to-Brittle
Limit in the Mechanical Force Balance
of the Thermoviscoelastic System

In this final section we shortly discuss how the MOSCO-convergence statement of
Theorem 3 concerning the functionals (Φadh

k )k from (2.22) can be used to prove
the existence of solutions for a model for brittle delamination, also encompassing
thermal effects. More precisely, the evolution of the displacement u, of the
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delamination variable z, and of the absolute temperature ϑ is governed by the
following PDE system:

− div σ(e, ė, ϑ) = F in (0, T )× (Ω+∪Ω−),
(4.15a)

ϑ̇ − div
(
K(e, ϑ)∇ϑ) = ė:D:ė − ϑB:ė +G in (0, T )× (Ω+∪Ω−),

(4.15b)

u = 0 on (0, T )× ΓD, (4.15c)

σ(e, ė, ϑ)
∣∣
ΓN

n = f on (0, T )× ΓN, (4.15d)

(K(e, θ)∇θ)n = g on (0, T )× ∂Ω, (4.15e)

σ(e, ė, ϑ)|ΓC n+ ∂uJ̃∞(
[[
u
]]
, z)+ ∂IC(x)(

[[
u
]]
) . 0 on (0, T )× ΓC, (4.15f)

∂R(ż)+ ∂G(z)+ ∂zJ̃∞(
[[
u
]]
, z) . 0 on (0, T )× ΓC, (4.15g)

1
2

(
K(e, ϑ)∇ϑ |+ΓC

+K(e, ϑ)∇ϑ |−ΓC

)·n+ η(
[[
u
]]
, z)
[[
ϑ
]] = 0 on (0, T )× ΓC, (4.15h)

[[
K(e, ϑ)∇ϑ]]·n = −a1ż on (0, T )× ΓC. (4.15i)

Here, the stress tensor σ encompasses both Kelvin-Voigt rheology and thermal
expansion in a linearly elastic way, i.e.

σ(e, ė, ϑ) = Dė+ DW2(e)− θB. (4.16)

The heat equation (4.15b), featuring the positive definite matrix of heat conduction
coefficients K(e, ϑ) and the positive heat source G, is complemented by the two
boundary conditions (4.15h) and (4.15i) (with g ≥ 0 another external heat source
on the boundary ∂Ω), which balance the heat transfer across ΓC with the ongoing
crack growth. In particular, the function η is a heat-transfer coefficient, determining
the heat convection through ΓC, which depends on the state of the bonding and on
the distance between the crack lips.

In [23] we proved the existence of semistable energetic solutions (with the heat
equation formulated in a suitably weak way) for system (4.15) in the nonlinearly
elastic (small-strain) case, i.e. with σ(e, ė, ϑ) = Dė + DWp(e) − θB and p > d .
As explained in Sect. 2, the latter constraint can be now overcome. Nonetheless, in
order to show the existence of solutions to system (4.15) with (4.16), it is necessary
to resort to a nonlinear approximation of the mechanical force for the displacements.

In fact, mimicking [21, 23] one can construct approximate solutions for sys-
tem (4.15) with (4.16) by a carefully devised time discretization scheme, illustrated
below (however neglecting the boundary conditions). In this scheme the equation
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for the displacements is discretized in the following way

− div

(
De

(
u
j
τ − u

j−1
τ

τ

)
+ DW2(e(u

j
τ ))+ τDWp(e(u

j
τ ))− ϑj

τ B

)
= Fj

τ in Ω+∪Ω−,
(4.17a)

where τ is the time-step associated with a (for simplicity equidistant) partition
{0 = t0

τ < t1
τ < . . . < t

j
τ < . . . < t

Jτ
τ = T } of the interval [0, T ] and

F
j
τ = 1

τ

∫ t
j
τ

t
j−1
τ

F (s) ds. The nonlinear regularizing term DWp(e(u
j
τ )), with p > 4,

is added to the discrete momentum balance in order to compensate the quadratic
growth of the terms on the right-hand side of the (discretized) heat equation, namely

ϑ
j
τ − ϑ

j−1
τ

τ
− div

(
K(e(ujτ ), ϑ

j
τ )∇ϑj

τ

)

= e

(
u
j
τ − u

j−1
τ

τ

)
:D:e

(
u
j
τ − u

j−1
τ

τ

)
− ϑj

τ B:e
(
u
j
τ − u

j−1
τ

τ

)
+Gj

τ

(4.17b)

in Ω+∪Ω−, with G
j
τ defined by local means like F

j
τ . In this way, the right-hand

side of (4.17b) turns out to be in L2(Ω), and classical Leray-Schauder fixed point
arguments can be applied to prove the existence of solutions to (4.17a,4.17b).
Finally, we mention that the flow rule for the delamination parameter is discretized
and further approximated by penalizing the brittle constraint, i.e. replacing J̃∞
in (4.15g) by Jk .

Semistable energetic solutions of the time-continuous system (4.15), with (4.16),
then arise from taking the limit of its time-discrete version, as τ ↓ 0 and k →
∞ simultaneously. Without entering into the analysis of the heat equation and of
the delamination flow rule, let us only comment on the limit passage in the weak
formulation of the (discrete) equation for the displacements. For that, a key role is
played the MOSCO-convergence properties as k →∞ of the functionals

Φadh
k (u, z) :=

⎧⎨
⎩
∫
Ω\ΓC

(
W2(e(u)) + τkWp(e(u))

)
dx + Jk([[u]], z) if u ∈ W

1,p
D (Ω\ΓC;Rd),

∞ otherwise,

with (τk = k−p)k a null sequence as k → ∞. We have denoted the above
functionals with the same symbol used for the functionals (2.22), to highlight that
Theorem 3 holds for them as well and guarantees the MOSCO-convergence of the
functionals (Φadh

k )k to Φ∞ from (2.23), and thus the limit passage in the mechanical
force balance for the displacements.
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Three Examples Concerning the
Interaction of Dry Friction and
Oscillations

Alexander Mielke

Abstract We discuss recent work concerning the interaction of dry friction, which
is a rate independent effect, and temporal oscillations. First, we consider the
temporal averaging of highly oscillatory friction coefficients. Here the effective dry
friction is obtained as an infimal convolution. Second, we show that simple models
with state-dependent friction may induce a Hopf bifurcation, where constant shear
rates give rise to periodic behavior where sticking phases alternate with sliding
motion. The essential feature here is the dependence of the friction coefficient on
the internal state, which has an internal relaxation time. Finally, we present a simple
model for rocking toy animal where walking is made possible by a periodic motion
of the body that unloads the legs to be moved.

1 Introduction

The phenomenon as well as the microscopic origins of dry friction are well studied
(see e.g. [10, 16–18, 21]). Here we understand dry friction in a generalized sense,
namely in the sense of rate-independent friction that includes an activation threshold
(critical force) to enable motion but then the friction force does not increase with
the velocity (or more generally the rate). New nontrivial phenomena arise in cases
where the critical force depends periodically on time, either given by an external
process or because of the dependence on another state variable of the system. The
three examples emphasize different realizations of this dependence.
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We will study the effect that, in contrast to systems with viscous friction, systems
with rate-independent friction tend to wait in a sticking mode until the relevant
friction coefficient is small, and then they can make a very fast move (or even jump)
to compensate for the past waiting time. To be more precise, we denote by (q, z)

the state of a system, where z is the friction variable, and by R the dissipation
potential for the dry friction. Then R(q, z, q̇, ż) is nonnegative, convex in (q̇, ż) and
positively homogeneous of degree 1 in ż, namely R(q, z, q̇, γ ż) = γR(q, z, q̇, ż)

for all γ > 0. For simplicity we will assume that R has an additive structure in the
form

R(q, z, q̇, ż) = Rvi(q, z, q̇)+Rr.i(q, ż),

where “vi” stands for the viscous friction in the variable q , while “r.i” stands for
the rate-independent friction in the variable z. Note that we further simplified by
assuming that Rr.i does not depend on z itself (see [2, 11, 12] for more general
cases).

The mathematical models we are interested in are given in the form

0 = Mq̈ + ∂q̇Rvi(q, z, q̇)+ DqE (t, q, z), 0 ∈ ∂żRr.i(q, ż)+ DzE (t, q, z).

The simplest case of such a system occurs when q(t) displays oscillatory behavior
that is totally independent of the variable z, but Rr.i depends on q . In that case we
may reduce to the equation for z alone and study

0 ∈ Rr.i(t/ε, ż)+ DzE (t, z), (1)

where ε > 0 is a small parameter indicating the ratio between the period of
oscillations and the changes in the loading through t �→ E (t, z). A typical
application is a plate compactor (see Fig. 1a), where an internal imbalance oscillates
rapidly and thus changes the normal pressure in the contact friction. In Sect. 2
we summarize the results from [8], where an explicit formula for the effective
homogenized friction for ε→ 0 was derived, see Theorem 2 below.

In Sect. 3 we consider a system of the form

0 ∈ ∂żRr.i(α, ż)+ νż + DzE (t, α, z), α̇ = F(α, z).

Our system is stimulated by applications in geophysics that relate to earthquakes
and fault evolution, see [14, 15, 20]. There so-called internal states α are needed
to describe the relaxation effects after a sudden tectonic movement or change of
shearing motions. We will show that a very simple system under constant shear
loading can generate oscillatory behavior that is similar to the famous squeaking
chalk on the blackboard or the vibrations arising when moving a rubber over a
smooth surface.

Finally, Sect. 4 is devoted to the mechanism of walking of humans or animals.
Clearly, an animal wants to reduce friction when moving the extremities on the
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(A) (B)

Fig. 1 (a) Because of the in-built unbalance, the plate compactor vibrates vertically leading to
an oscillatory normal pressure. When pushing the plate compactor horizontally it will move only
when the normal pressure is very low. (b) The toy ramp walker in form of a frog walks down only,
when alternating the weight between the rigid downhill leg and the hinged uphill leg

ground. To do so, the weight on the leg to be moved has to be reduced. Thus,
for making walking efficient it turns out that the body should oscillate in such
a manner that without much extra energy the weight on the legs to be moved is
minimal. Simple mechanical toys, where this interplay can easily be studied, are the
so-called descending woodpecker (cf. [13]), the toy ramp walker, see Fig. 1b, and
the rocking toy animal, see Fig. 6. We refer to [4–7] for models on locomotion for
micro-machines or animals and to [19] for the slip-stick dynamics of polymers on
inhomogeneous surfaces.

We suggest a simple ODE model for the walking of simple mechanical toys such
as the rocking toy animal, where the essential point is that there is some internal
oscillatory mechanism that moves the normal pressure from one leg to the other
such that the leg with lowest friction can move. One non-trivial feature is that the
natural damping of the rocking motion has to be compensated by some energy
supply, where the walking motion feeds energy back into the rocking motion.

2 Prescribed Oscillatory Friction

In this section we summarize the results from [8] concerning the averaging of
highly oscillatory rate-independent friction. As we will see there is a major difficulty
intrinsic to rate-independent systems that we only obtain a priori bounds for the rate
in BV([0, T ];X), but not in a weakly closed Banach space like W1,p([0, T ];X) for
p ∈ ]1,∞[. Thus, even in the case of classical evolutionary variational inequalities
we will not be able to pass to the limit variational inequality but have to use the
more flexible formulation in terms of energetic solutions.

2.1 Evolutionary Variational Inequalities

While [8] contains more general results, we restrict our discussion to the case of
a Hilbert space Z and a quadratic energy E (t, z) = 1

2 〈Az, z〉 − 〈 (t), z〉 with a
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loading  ∈ W1,∞([0, T ], Z∗) and a bounded, symmetric and positive definite linear
operator A : Z → Z∗. The dissipation potential is given in the form Rε

r.i(t, ż) =
Ψ (t/ε, ż), where Ψ : S1×Z → [0,∞[ is assumed to be continuous, and we assume
Ψ (0, v) ≤ CΨ (s, v) ≤ C2Ψ (0, v) for some C > 1 and all (s, v) ∈ S× Z.

Clearly, the equation 0 ∈ ∂żΨ (t/ε, ż(t)) + Az(t) −  (t) is equivalent to the
variational inequality

∀a.a.t ∈ [0, T ] ∀ v ∈ Z : 〈Az(t)− (t), v−ż(t)〉 + Ψ (t/ε, v) − Ψ (t/ε, ż(t)) ≥ 0.
(2)

The key to the analysis in [8] is that z : [0, T ] → Z solves (2) if and only if it is an
energetic solution, i.e.

(S) ∀ t ∈ [0, T ] ∀ ẑ ∈ Z : E (t, z(t)) ≤ E (t, ẑ)+ Ψ (t/ε, ẑ−z(t));

(E) E (T , z(T ))+
∫ T

0
Ψ (s/ε, ż(s))ds ≤ E (0, z(0))−

∫ T

0
〈 ̇(s), z(s)〉ds.

(3)

2.2 A Scalar Hysteresis Operator

We now illustrate the difficulty in passing to the limit ε → 0 in (2) by a very simple
scalar hysteresis model by choosing Z = R and

E (t, z) = 1

2
z2 −  (t)z, Ψ (s, ż) = ρ(s)|ẏ|, and z(0) = 0

with  (t) = 5t − t2 and an arbitrary ρ ∈ C1(S) (where S := R/Z) satisfying
ρmin := min{ ρ(s) | s ∈ S } > 0.

Starting from the initial condition z(0) = 0, we see that z cannot decrease but
needs to lie in the stable interval [ (t)−ρ(t/ε),  (t)+ρ(t/ε)], see (S) in (3). Thus,
the solution zε : [0, T ] → R of 0 ∈ ρ(t/ε) Sign(ż(t)) + z(t) −  (t) has, for
sufficiently small ε > 0, the representation

zε(t) =
{

max{ 0,  (τ) − ρ(τ/ε) | τ ∈ [0, t] } for t ∈ [0, 5
2+
√
ρmin],

min{ 25
4 −ρmin,  (τ)+ρ(τ/ε) | τ ∈ [ 5

2+
√
ρmin, t] } for t ≥ 5

2+
√
ρmin.

It can be checked by direct calculation that this is the unique solution. Moreover, we
obtain uniform convergence to the limit solution given in the form

z0(t) =
{

max{0,  (τ )− ρmin} for t ∈ [0, 5
2+
√
ρmin],

min{ 25
4 −ρmin,  (τ )+ρmin} for t ∈ [ 5

2+
√
ρmin, T ].

In particular, we have ‖zε − z0‖∞ ≤ Cε.
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Fig. 2 Left: the energetic solution zε : [0, 5] → R for ε = 0.1 lies in the ε-depending stable
region (as shaded between wiggly boundaries). Right: the energetic solution z0 : [0, 5] → R for
ε = 0. The limiting stable region (between parabolas) can be understood as the intersection of all
stable regions for ε > 0

However, the situation for the rates żε : [0, T ] → R is quite different. From
the explicit formula we see that żε(t) either equals 0 (stiction) or żε(t) =  ̇(t) −
1
ε
ρ′(t/ε). Thus, within the intervals [kε, (k+1)ε] we typically have żε = 0 for

most of the time and żε ≈ 1/ε for intervals of length O(ε2), see Fig. 2. As a
consequence we conclude that żε does not converge weakly to ż0 in Lp([0, T ])
for any p ∈ [1,∞[. We only have żε

∗
⇀ ż0 in M([0, T ]) = C0([0, T ])∗, i.e. in the

sense of measures when testing with continuous test functions.

2.3 The Averaging Result for Oscillatory Friction

We now provide the announced averaging result, which can be understood in terms
of integral infimal convolutions as follows. We define

Ψav(V ) := inf
{ ∫

S

Ψ (s, v(s))ds
∣∣∣ v ∈ L1(S),

∫
S

v(s)ds = V
}
. (4)

This formulation justify the colloquial term that oscillatory rate-independent sys-
tems watch for the easiest opportunity to move: during the microscopic time
s = t/ε ∈ S there is an instant such that moving in the direction v(s) ∈ Z is optimal,
hence the overall motion in direction V ∈ Z will be decomposed into an oscillatory
motion s �→ v(s).

Example 1 For Z = R
2 consider Ψ (s, v) = (2− cos(2πs))|v1| + (2+ cos(2πs))

|v2|. Then, Ψav(v) = |v1| + |v2|, since moving in z1-direction is optimal for s ≈ 0
while motion in z2-direction is optimal for s ≈ 1/2.



164 A. Mielke

The first observation is that Ψav can be characterized in terms of its conjugate
Ψ ∗(s, ξ) = sup

{ 〈ξ, v〉 − Ψ (s, v)
∣∣ v ∈ Z

}
obtained by the Legendre-Fenchel

transformation. From the 1-homogeneity of Ψ (s, ·) we see that

Ψ ∗(s, ·) = χK(s)(ξ) =
{

0 for ξ ∈ K(s),

∞ otherwise,
(5)

where K(s) := ∂Ψ (s, 0) is a closed convex set containing ξ = 0 ∈ Z∗. In [8,
Prop. 3.6] it is shown that

Ψ ∗
av(ξ) = χKav(ξ) with Kav =

⋂
s∈S

K(s).

The averaging result now reads as follows.

Theorem 2 (See [8, Thm. 1.1]) Consider a quadratic energetic system (Z,E , Ψ )

as in Sect. 2.1 and an initial condition ẑ0 ∈ Z such that

0 ∈ ∂żΨ (s, 0)+ Âz0 −  (0) for all s ∈ S.

Under the unique solutions zε : [0, T ] → Z of (2) with zε(0) = ẑ0 satisfy zε(t) ⇀

z0(t) in Z, where z0 is the unique solution of the averaged equation

0 ∈ ∂Ψav(ż(t))+ Az(t)−  (t), z0(0) = ẑ0.

The proof relies heavily on the following asymptotic equicontinuity result:

∃modulus of cont. ω ∀ ε ∈ ]0, 1[ ∀ t1, t2 ∈ [0, T ] :
‖zε(t2)− zε(t1)‖Z ≤ ω(ε)+ ω

(|t2−t1|
)
.

(6)

As is seen by the scalar example in Sect. 2.2 it is not possible to provide a better
equicontinuity result. First it is then standard to extract a subsequence such that
zεn(t) converges to some z0(t) weakly for all t ∈ [0, T ]. The limit passage is
then done in the energetic formulation (3). Using the definition of Ψav in (4) we
have Ψav ≤ Ψ (s, ·), and it is easy to obtain the upper energy estimate (E), namely
E (T , z0(T )+ ∫ T

0 Ψav(ż0)dt ≤ E (0, ẑ0)−
∫ T

0 〈 ̇, z0〉ds.
For the stability condition (S) we use the equivalent formulation 0 ∈

∂Ψ (t/ε, 0) + Azε(t) −  (t). Exploiting the equicontinuity (6) we can also have
zε(̂τ (t, s, ε)) ⇀ z0(t) whenever τ̂ (t, s, ε) → 0. Thus, we may choose τ̂ (t, s, ε)

such that τ̂ (t, s, ε)ε mod 1 = s and obtain 0 ∈ ∂Ψ (s, 0) + Az0(t) −  (t) for all
s ∈ S. By (5) we conclude 0 ∈ ∂Ψav(0) + Az0(t) −  (t) which is (S) for the limit
equation. By standard arguments we then conclude that z0 is the desired unique
solution.
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3 Self-Induced Oscillations in State-Dependent Friction

The modeling of rate-and-state dependent friction is a classical area in geophysics as
it describes basic mechanisms in the frictional movement of tectonic plates or faults
in the earth crust, see [1, 15] and [15, 20] for more mathematical approaches. In [9]
the following work will be presented in the wider context of continuum mechanics.
Here we rather restrict to a simple ODE in the spirit of the spring-block sliders
studied in [1].

Our simple scalar model of a block slider is described by the position z(t) over
the flat surface and a state variable α (that may be interpreted as a local temper-
ature). The importance is that the friction coefficient μ for the rate-independent
friction occurring through ż depends nontrivially on α, namely μ = μ̃(α) with
μ′(α) < 0, while friction |ż| increases α.

For simplicity we restrict to the following simple coupled system:

0 ∈ μ̃(α) Sign(ż)+ νż + k
(
z− 

)
, α̇ = α0 − α + μ̃(α)|ż| + νż2. (7)

Here k > 0 is the elastic constant of the spring connecting the time-dependent
external loading  (t) with the body, ν ≥ 0 is a small viscosity coefficient in the
friction law, and α0 > 0 is the constant rest state. Thus the friction is rate-dependent
through νż as well as state-dependent through α, namely for ż > 0 we have ξfrict =
μ̃(α)+ νż. Note that the relaxation time for the state variable α was set to 1 without
loss of generality.

For the later analysis it is advantageous to rewrite the first equation in (7) as an
explicit ODE. Defining the functions

G(ξ, α) :=
⎧⎨
⎩
(
ξ−μ̃(α)

)
/ν for ξ ≥ μ̃(α),

0 for |ξ | ≤ μ̃(α),(
ξ+μ̃(α)

)
/ν for ξ ≤ −μ̃(α),

we find the equivalent form

ż = G
(
k( −z, α)), α̇ = 1− α + k( −z)G(k( −z), α

)
. (8)

The typical experiment is the model with a constant shear velocity V , i.e.
 (t) = V t . Indeed, the problem is translationally invariant if  and z are changed
together. Thus, it is useful to work with V (t) =  ̇(t) and to consider the difference
U(t) =  (t)− z(t), which satisfies the ODE system

U̇(t) = V (t)−G
(
kU(t), α(t)

)
, α̇(t) = α0 − α(t) + kU(t)G

(
kU(t), α(t)

)
.

(9)

In [9] the response of the system to varying shear rates V (t) is studied in regimes
where the system prefers to return into a steady state, whenever V (t) has a plateau.
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Here, we want to show that under suitable conditions on the function α �→ μ(α)

the system displays self-induced oscillations for constant shear rates V (t) ≡ V∗. In
that case (9) is a planar autonomous system which can be discussed in the phase
plane for (U, α). Without loss of generality we assume V∗ > 0 and choose k =
α0 = 1 for notational simplicity. We first calculate the equilibria (U∗, α∗) and note
that no equilibria with U∗ ≤ μ̃(α∗) can exist because then G(U∗, α∗) ≤ 0. Hence,
the relations for equilibria reduce to

U∗ = μ̃(α∗)+ νV∗ and α∗ = 1+ V∗U∗.

Using our major assumption μ̃′(α) ≤ 0 we immediately see that there is a unique
equilibrium determined by the relation α∗ = 1 + V∗μ̃(α∗) + νV 2∗ . Clearly, α∗ as a
function of V∗ is monotonously increasing from α∗ = 1 at V∗ = 0.

To study the stability of the solution we calculate the linearization of the vector
field d

d

(
U
α

) = F(U, α) in q∗ = (U∗, α∗) giving the Jacobi matrix

DF(q∗) =
( −∂UG(q∗) −∂αG(q∗)/ν
V∗+U∗∂UG(q∗) −1+U∗∂αG(q∗)

)
=
( −1/ν −μ̃′(α∗)
V∗+U∗/ν −1−U∗μ̃′(α∗)/ν

)
.

As a result we find that the determinant det DF(q∗) = (1−V∗μ̃′(α∗))/ν is always
positive. For the trace we obtain

tr
(
DF(q∗)

) = −1− (1+U∗μ̃′(α∗))/ν = −1− μ̃′(α∗)V∗ −
(
1+ μ̃(α∗)μ̃′(α∗)

)
/ν.

Clearly the equilibrium is stable if trace
(
DF(q∗)

)
< 0, undergoes a Hopf-

bifurcation for trace
(
DF(q∗)

) = 0, and is unstable for trace
(
DF(q∗)

)
> 0.

Theorem 3 (Periodic Oscillations) Assume that V∗ > 0 is chosen such that the
unique equilibrium q∗ = (U∗, α∗) satisfies trace

(
DF(q∗)

)
> 0, then there exists a

stable periodic orbit.

Proof The result follows from standard phase-plane arguments, since the equi-
librium is unstable, and there exists a positively invariant region. Indeed, setting
Umax = μ̃(0) + νV∗ we find U̇ = V∗ − G(U, α) ≤ 0 for whenever U ≥ Umax.
Hence, for U ∈ [0, Umax] we have G(U, α) ≤ Gmax = U2

max/ν and conclude
that α̇ = 1 − α + UG(U, α) ≤ 0 for α ≥ αmax = 1 + Gmax. Thus, the
rectangle [0, Umax] × [0, αmax] is positively invariant. By the Poincaré–Bendixson
the existence of at least one limit cycle follows. Standard argument show that there
must also be one stable periodic orbit.

We also want to understand the limit behavior ν → 0, which means that the
friction part converges to its rate-independent limit while the variable α remains
rate dependent. In that case, we expect that the oscillations become very fast with a
period of order O(νδ) for some δ > 0. To analyze this case we consider a special
scaling limit that shows a non-standard bifurcation. In particular, we assume that V
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is positive but also small with ν, i.e. we unfold ν and V simultaneously. Moreover,
to simplify the notations we assume that the bifurcation takes place at α = 1 already.

In particular, we consider the scalings

V = νv̂, U = μ̃(α)+ ν2β, α = 1+ νγ, μ̃(α) = μ(νγ )−√νB,

where B ∈ R is an unfolding parameter, which is chosen with a particular scaling to
generate periodic solutions with a phase of sticking and a phase of frictional sliding.
The function μ is assumed to satisfy

1+ μ(0)μ′(0) = 0 with μ0 := μ(0) > 0 and μ′(0) = −1/μ0 < 0. (10)

This gives the following equivalent system

νβ̇ = v̂ − β+ − μ′(νγ )γ̇ , γ̇ = −γ + (μ(νγ )−√νB + ν2β
)
β+,

where β+ := max{β, 0}. The special assumption in (10) leads to a cancellation
when we insert the equation for γ̇ into the equation for β̇, namely

β̇ = v̂

ν
+ A(ν, γ )β+ + μ′(νγ )

ν
γ − νμ′(νγ )ββ+,

γ̇ = −γ + (μ(νγ )−√νB
)
β+ + ν2ββ+,

(11)

where the coefficient A(ν, γ ) stays is order 1/
√
ν for ν → 0, namely

A(ν, γ ) := μ′(νγ )
(√

νB − μ(νγ )
)− 1

ν
= B

μ0
√
ν
+O(1)ν→0,

where we used the first relation in (10).
The solutions we will construct below will satisfy estimates of the form γ (t) ∈

[0, C] and β(t) ≤ [−Cv̂/ν,C/
√
ν], hence it will be justified to drop the higher

order terms. Using b = B/μ0 we will consider the simplified system

β̇ = v̂ν
(
1−b√ν

)+ b√
ν
β+ − 1

νμ0
γ, γ̇ = μ0β

+ − γ, (12)

which is a piecewise linear system and has the unique steady state (β∗, γ∗) =
(̂v, μ0v̂). Since the system is positively homogeneous of degree 1, the solutions
for general v̂ are obtained from the solution (β1(t), γ1(t)) for v̂ = 1 by a simple
multiplication, namely (̂vβ1(t), v̂γ1(t)).

We are especially interested in the case b ∈ ]0, 2[ where the fixed point is an
unstable focus with eigenvalues

λ1,2 = b/2√
ν
± i

ωb√
ν
+O(1), where ωb =

√
1−b2/4.
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Fig. 3 The phase plane for the piecewise linear system (12) for v̂ = 1 and μ0 = 1: For β ≥ 0 we
have an unstable focus, while for β ≤ 0 we have the simple system β̇ = 1/ν− γ/(νμ0), γ̇ = −γ

In the phase plane for (β, γ ) we can construct periodic solutions by piecing together
the piecewise linear systems, see Fig. 3. For the explicit construction of a periodic
orbits we decompose the axis { (0, γ ) | γ ≥ 0 } into the two parts {0} ×Aj with

A1 := [0, μ0v̂[ and A2 := ]μ0v̂,∞[.

Then solutions starting in A1 will move according to the unstable focus in
(β∗, γ∗) = (̂v, μ0v̂): First they rapidly move to the right, then turn slowly upwards,
and reach β̇ = 0 when β is of order 1/

√
ν. Then, the solutions move rapidly back to

the axis β = 0. Let us denote this Poincaré mapping by Φ+ : A1 → A2, see Fig. 4.
Since the motion between β = 0 and β = v̂ only takes a time of order ν, it can be
neglected compared to the travel time around the fixed point. Thus the travel time
associated to Φ+ is half the period, namely πωb/

√
ν. During that time the solutions

are stretched, so that

Φ+(ν, ·) :
{
A1 → A2,

γ �→ μ0v̂ + ρb(μ0v̂−γ )+O(
√
ν),

with a stretching factor ρb := eπb/(2ωb) > 1.
Similarly the linear flow for β ≤ 0 provides a Poincaré map Φ− : A2 → A1,

see Fig. 4. As the solutions starting in A2 are given by γ (t) = e−(t−t0)γ (t0) and
νβ(t) = v̂(t−t0) + 1

μ0
(1−et0−t )γ (t0) we obtain Φ−(γ (t0)) = γ (t1), where t1 =

t0+T is defined via v̂T = (1−e−T )γ (t0)/μ0. Since the function B : ]0,∞[ →
]0, 1[; T �→ (1−e−T )/T is strictly decreasing it has a smooth inverse C : ]0, 1[ →
]1,∞[ which gives

Φ−(ν, ·) :
{
A2 → A1,

γ �→ e−C (μ0v̂/γ )γ ,

which is even independent of ν, because this regime relates to the sticking phase
U < μ(α) where the viscosity ν is irrelevant. By construction it follows that Φ− is
convex and monotonously decreasing with slopes in ]−1, 0[.
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Fig. 4 On the left, the two Poincaré maps Φ+ : A1 → A2 and Φ− : A2 → A1 are displayed. The
right shows Φ− ◦Φ+ : A1 → A1, where the unique fixed point gives to the stable limit cycle

Periodic solutions are now obtained as fixed points of Ψ := Φ− ◦ Φ+ : A1 →
A1. From the lowest order expansions of Φ± we see that Ψ is convex and strictly
increasing. Moreover Ψ (μ0v̂) is slightly below μ0v̂ and Ψ ′(μ0v̂) = ρb > 1. Thus,
there is a unique fixed point γb in the interior, while the fixed point at γ = μ0v̂ of
the lowest-order expansion does not survive. As ρb = eπb/(2ωb) is strictly increasing
with b ∈ ]0, 2[ from 1 to ∞, we see that b �→ γb is strictly decreasing with limits
γ0 = μ0v̂ to γ2 = 0. Since 0 < Ψ ′(γb) < 1, we also conclude that the associated
periodic orbit is stable.

The important observation is that the travel times in the two Poincaré mappings
Φ+ and Φ− are quite different. The time with β > 0 is of order

√
νπ/ωb + O(ν)

while the time with β < 0 is of order 1. Thus, looking at the temporal behavior we
have a relatively long period of sticking, while there is a relatively short period of
sliding. Transforming our solutions back into the original variables we obtain, in the
case β > 0 the expansion

U(t) = μ(νγ )−√νB+ν2β = μ0−√νB−ν
γ (t)

μ0
+O(ν3/2), α(t) = 1+νγ (t),

whereas in the case β(t) < 0 we have β = O(1/ν) and thus

U(t) = μ0−√νB + νv̂ (t−tk)− ν
γ (tk)

μ0
+O(ν3/2), α(t) = 1+ νe−(t−tk)γ (tk),

where tk is the last time, where the solution switched from β > 0 to β < 0. The
behavior is illustrated in Fig. 5.

We emphasize that all the solutions we have obtained in this scaling limit have
a phase in the lower half plane, which means U(t) ≤ μ̃(α(t)) and hence U̇ = V .
In the original variables this means ż = 0 which is the sticking phase. Physically
this means that the system rest for a short time until the shear has build up to reach
the critical threshold. However, then the state α (e.g. the temperature) is increased
so that the friction coefficient drops. Thus z(t) = V t − U(t) moves forward a lot
and reduces the shear stress significantly. But then α again decreases and thus the
friction coefficient again raises, which leads to the next sticking phase.
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Fig. 5 The periodic functions U(t), α(t) displaying long phases of sticking and short phases of
fast slip

4 A Model for the Rocking Toy Animal

Our third example concerning the interaction of Coulomb friction and oscillations
relates to a very simplistic model for walking of so-called rocking toy animals.
A similar model could be derived for the toy ramp walker shown in Fig. 1b.

4.1 Description of the Mechanical Toy

The toy animal has two right and two left legs that usually move together so we
identify them and speak of the right and the left leg. The toy is pulled forward by
a string that hangs over the edge of a table, where a suitable weight provides a
constant pulling force. A related walking toy is the ramp walker, which oscillates
in the direction of walking. It has only two legs, the forward and the backward
one, which are alternately loaded and unloaded, see Fig. 6 for a pictures and two
schematic views of a rocking toy cow.

Fig. 6 Rocking toy animal. Left: A weight beyond the table edge pulls the toy animal forward,
while the perpendicular rocking motions allows the lifted legs to swing forward because of the
reduced normal pressure. Middle: changes in the perpendicular rocking angle ψ(t) lifts either the
right or the left leg. Right: the string pulls the animal forward and increases the potential energy
slightly when the hinge of a leg is moved over the leg’s contact point
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This model has the following features:

(i) Walking is a periodic motion that is enabled by perpendicular oscillations,
which change the weight on the left and right legs.

(ii) The force in the pulling string needs to be substantially less for the oscillating
motion than for the sliding motion without oscillations. For very small pulling
force no motion occurs.

(iii) To compensate for damping in the perpendicular oscillations, energy has to be
transferred from the forward motion into the perpendicular oscillation.

4.2 A Model with Inertia

We model the system of the toy animal by three degrees of freedom, i.e. we
assume that both legs on the right side and both legs on the left side move together
respectively and can be described by the average position xR(t) ∈ R and xL(t) ∈ R.
To simplify notations we abbreviate x = (xR, xL). The third degree of freedom is
given by the angle ψ of the animals symmetry line against the vertical axis.

The total energy E (x, ψ, ẋ, ψ̇) = Eani(x, ψ, ẋ, ψ̇)+ Eweight(x, ẋ) is given by

Eanimal(x, ψ, ẋ, ψ̇) = Φ(xR−xL, ψ)+ mb

2
(ẋR+ẋL)

2 + mleg

2

(
(ẋR)

2+(ẋL)
2)+ Ib

2
ψ̇2,

Eweight(x, ẋ) = −gmwe
1

2
(xR+xL)+ mwe

2
(ẋR+ẋL)

2,

where Ib is the rotational inertia of the body, and mb, mleg, and mwe are the masses
of the body, the legs, and the weight, respectively.

The main mechanism for walking originates from the dissipation, which we
assume to have the form

R(x, ψ, ẋ, ψ̇) = δ

2
(ψ̇)2+(ρ+HR(ψ)

)|ẋR|+
(
ρ+HL(ψ)

)|ẋL|+ ν

2

(
ẋR
)2+ ν

2

(
ẋL
)2
,

where δ, ν > 0 induce simple viscous friction. The main feature of the model is
the dependence of the rate-independent Coulomb friction of the two legs on the tilt
angle ψ through the two functions HR and HL, which indicate the normal pressure
times the friction coefficient on the right and the left leg, respectively, while ρ > 0
is the dry friction in the joints, which is independent of the normal pressure. We
assume

HR(ψ)+HL(ψ) = H∗ = const., HR(ψ) = HL(−ψ),

HR(ψ) = HL(ψ) = 1

2
H∗ for |ψ| ≤ ψ0, HR(ψ) = 0 for ψ ≥ ψ1 > ψ0.
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An important point in the modeling is that 0 < ρ 0 H∗/2, i.e. the friction in the
joints is much smaller than the friction of moving the non-rocking animal.

Denoting by q = ψ, xR, xL) the state of the system, the equation to be studied is
the damped Hamiltonian system

d

dt

(
∂q̇E (q, q̇)

)
+ ∂q̇R(q, q̇)+ ∂qE (q, q̇) = 0.

Thus, the full model takes the form of a coupled three-degrees of freedom system:

Ibψ̈ + δψ̇ + ∂ψΦ(xR−xL, ψ) = 0,
(13a)

(mwe+mb)(ẍR+ẍL)+mlegẍR

+νẋR +
(
ρ+HR(ψ)

)
Sign(ẋR)+ ∂dΦ(xR−xL, ψ) = gmwe/2,

(13b)

(mwe+mb)(ẍR+ẍL)+mlegẍL

+νẋL +
(
ρ+HL(ψ)

)
Sign(ẋL)− ∂dΦ(xR−xL, ψ) = gmwe/2,

(13c)

where d = xR − xL is the (signed) distance between the right and the left leg.
The main mathematical task in studying this model is to show that there are time-

periodic translating motions, i.e.

ψ(t) = Ψper(t), xR(t) = vt + Rper(t), yL(t) = vt + Lper(t),

where v is the average walking speed while (Ψper, Rper, Lper) : R→ R
3 is periodic.

The trivial solution is the non-rocking solution (Ψper, Rper, Lper) ≡ 0, where the
velocity and the pulling force are related by

νv + ρ + 1

2
H∗ = 1

2
gmwe.

Thus, even for arbitrary small velocities v > 0, the pulling force must overcome the
full Coulomb friction for the full weight of the toy. The point is that a symmetry
breaking leading to an oscillatory behavior can lead to larger velocities v even for
much lower pulling forces gmwe.

In principle, this model could be studied for the desired oscillatory behavior,
but we will simplify the model further such that the existence of relevant periodic
motions can be shown more easily.
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4.3 A Simplified Model Without Translational Inertia

We consider a simplified model, where we neglect inertial effects in the translation
direction but not in the transverse oscillations. This can be justified for the rocking
toy animal, since the forward motions are relatively slow and masses are low;
whereas the rocking motion in transverse direction has relatively fast giving rise
to a transverse oscillations dominated by inertia. Numerically, it can be shown that
the model with transverse inertia still displays the same solutions, but the associated
mathematical analysis would be significantly more difficult and thus obscure the
main mechanism of feeding energy from the forward motion into the rocking motion
by a suitable coupling, see c �= 0 below.

Thus, we neglect all terms in the energy arising through (ẋR, ẋL). Similarly, we
may keep the

pulling force P := gmwe

constant and then set mleg = mb = mwe = 0. Moreover, we choose a simple
quadratic energy potential, where it is important to couple the leg distance d =
xR − xL and the angle ψ , namely

Φ(d,ψ) = a

2
d2 + b

2
ψ2 − c dψ with a, b, ab−c2 > 0.

Hence, the trivial symmetric state (xR−xL, ψ) = (0, 0) is stable. It is important
to have c �= 0 (we choose c > 0 without loss of generality), which reflects the
fact of symmetry breaking for the walking toy: the tilt angle restoring force is
∂ψΦ(d,ψ) = bψ − cd , so if d > 0 (right leg before left one) then there is a
stronger tendency to fall to the left than to fall to the right.

The simplified system now takes the form

Ibψ̈ + δψ̇ + bψ − c(xR−xL) = 0, (14a)(
ρ+HR(ψ)

)
Sign(ẋR)+ a(xR−xL)− cψ = P, (14b)(

ρ+HL(ψ)
)

Sign(ẋL)− a(xR−xL)+ cψ = P. (14c)

The equations (14b) and (14c) for xR and xL, respectively, are simple play operators
(cf. [3, 22]), however the thresholds ρ + HR,L(ψ(t)) vary in time and are even
influenced by x through (14a).

Nevertheless, we will be able to reduce this coupled system to an oscillator for
ψ involving a hysteresis operator induced by the relations for xR and xL. For this
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we first observe that the relations (14b) and (14c) restrict the leg distance d(t) :=
xR(t)− xL(t) because of Sign(ẋR,L) ∈ [−1, 1] as follows:

g(t) ∈ [G−R (ψ),G+R (ψ)] ∩ [G−L (ψ),G+L (ψ)] with

G±R (ψ) = 1

a

(
P + cψ ± (ρ+HR(ψ)

))
,

G±L (ψ) = 1

a

(
−P + cψ ± (ρ+HL(ψ)

))
.

We now explain that for a given continuous function t �→ ψ(t) there is a hysteresis
operator H such that the output d(t) =H [ψ(·)](t) is explicitly given through the
boundary curves G+ > G− via the formulas

G+(ψ) := min{G+L (ψ),G+R (ψ)} and G−(ψ) := max{G−L (ψ),G−R (ψ)}.

Of most interest are the local minimum of G+ at ψ1 > 0 and the local maximum
of G− at −ψ1 < 0 (see ψ1 = 1 in Fig. 7). For simplicity, we choose constants
ψ∗,H∗ > 0 with H∗ > 2cψ∗ and restrict to the piecewise affine case

HR(ψ) =
⎧⎨
⎩

0 for ψ ≤ −ψ∗,
H∗(ψ+ψ∗)/(2ψ∗) for |ψ| ≤ ψ∗,

H∗ for ψ ≥ ψ.

Fig. 7 Sketch of the sets [G−R (ψ),G+R (ψ)] and [G−L (ψ),G+L (ψ)]. The solutions have to stay
inside the intersection of the two shaded regions. We have ḋ ≤ 0 at the upper curve G+ : ψ �→
min{G+L (ψ),G+R (ψ)} and ḋ ≥ 0 at the lower curve G− : ψ �→ max{G−L (ψ),G−R (ψ)}. Between
these two curves we have ḋ ≡ 0
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Thus, we can calculate the local minimum of G+ and the local maximum of G−
explicitly, namely

(ψ∗,−Ξ) and (−ψ∗,Ξ) with Ξ := 1

a

(
P − ρ − cψ∗

)
,

where we further assume Ξ > 0 (i.e. P > ρ + cψ∗) and H∗ > 2P .

4.4 Restriction to Simple Period Motions

We now restrict to a special period motion where the hysteresis operator can be
replaced by an ordinary function, namely in the region

ψ ∈ [−ψ2, ψ2
]

with ψ2 := 2ρ/c+ ψ∗.

where we set d(t) = G (ψ(t), ψ̇ (t)) with

G (ψ, ψ̇) =
{

Γ (ψ) if ψ̇ ≥ 0,
−Γ (−ψ) if ψ̇ < 0.

with Γ (ψ) :=
⎧⎨
⎩

Ξ for ψ ∈ [−ψ2, ψ3],
G+L (ψ) for [ψ3, ψ∗],
−Ξ for ψ ∈ [ψ∗, ψ2],

where ψ3 is the unique solution of Ξ = G+L (ψ) in [0, ψ∗]. (Note that G+L (0) =
(ρ+H∗/2−D)/a > 0 and G+L (ψ∗) = −Ξ < 0.)

Thus, we have eliminated all dependence on the variables xR and xL and are left
with a nonlinear oscillator equation for ψ , namely

Ibψ̈ + δψ̇ + bψ − cG (ψ, ψ̇) = 0.

Note that this is a piecewise linear equation, where G switches between the two
constant values ±Ξ with some linear transition region in between (Fig. 8). The
point is that this switching feeds energy into the system which may compensate
the damping through δ > 0.

It is now possible to show that there are suitable parameters such that this
equation has a periodic orbit. This can be done in a similar way using Poincaré
sections as in the previous section. We refer to subsequent work for precise

Fig. 8 Two branches of the function G (ψ, ψ̇), namely Γ (ψ) for ψ̇ > 0 and −Γ (−ψ) for ψ̇ < 0
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Fig. 9 Simulation for the simplified system (14). Left: (ψ(t), ψ̇(t) spirals towards a stable
limit cycle. Right: The functions ψ(t), xR(t), and xL(t) show periodic behavior up to a linear
translational mode for xR,L

statements and proofs. We conclude with some numerical results, displayed in
Fig. 9, that show the convergence into a stable periodic orbit for ψ and x(t)−v(t, t)

with a suitable walking speed v > 0.
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Numerical Approach to a Model for
Quasistatic Damage with Spatial
BV -Regularization

Sören Bartels, Marijo Milicevic, and Marita Thomas

Abstract We address a model for rate-independent, partial, isotropic damage in
quasistatic small strain linear elasticity, featuring a damage variable with spatial
BV -regularization. Discrete solutions are obtained using an alternate time-discrete
scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth
optimization problem that determines the damage variable at each time step. We
prove stability of the method and show that a discrete version of a semistable
energetic formulation of the rate-independent system holds. Moreover, we present
our numerical results for two benchmark problems.

1 The Damage Model, Its Solution Concept, and Our Results

By damage evolution we understand the formation and growth of cracks and voids
in the microstructure of a solid material. This process is monitored over a time
interval [0,T] for a body with reference configuration Ω ⊂ R

d, d > 1. In the
spirit of generalized standard materials [27] and continuum damage mechanics
[32, 33] this degradation phenomenon is modeled by a volumetric internal damage
variable z : [0,T] × Ω → [0, 1] which is incorporated into the constitutive
law in order to reflect the changes of the elastic behavior due to damage. It is
assumed that the length scale of the specimen of the considered material is much
larger than that of the respective reference volume. The reference volume of a
material is a characteristic volume such that all relevant properties of the material
are comprised in this amount of material and such that the material can be regarded
as homogeneous if it is considered in a much larger length scale than the length
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scale of the reference volume. The value z(t, x) at (t, x) ∈ [0,T] ×Ω can then be
understood as the undamaged fraction of the reference volume at time t located in
x ∈ Ω .

The evolution of the damage variable is driven by time-dependent external
loads, which cause the deformation of the body and increase its stresses. To relax,
damage evolves and thus turns stored energy into dissipated energy. These two
energy contributions can be described by an energy functional E and a dissipation
potential R. In literature many different assumptions have been made with regard
to the growth properties of the two functionals, which directly affect the regularity
properties of the damage variable with regard to time and space. In this way the
contributions to damage processes in mathematical and engineering literature can
be divided into two major classes: One class considers the evolution of damage
as a rate-dependent phenomenon, mostly modeled by a viscous dissipation with
quadratic growth, cf., e.g., [7, 8, 17, 18, 29, 46], and a further class understands
damage as a rate-independent process described by a positively 1-homogeneous
dissipation potential, cf., e.g., [11, 15, 28, 35, 42, 53–55]. While the first growth
property leads comparably smooth evolution in time settled in L2(Ω), the latter only
provides bounded variations in time, so that the damage variable may jump in time.
Indeed, the use of a rate-independent model, resp. the neglection of rate-effects,
is also seen as a feasible approximation for certain damage processes observed
in experiments, cf., e.g., [25]. We will follow the latter concept and consider the
positively 1-homogeneous dissipation potential R : Z → R ∪ {∞},

R(v) :=
∫
Ω

R(v) dx, with R(v) :=
{
�|v| dx if v ∈ (−∞, 0],
+∞ if v > 0

(1a)

with Z := L1(Ω) , (1b)

and with a constant dissipation rate � > 0. Due to the convention z = 1 for the
unbroken and z = 0 for the broken state of the material, the dissipation potential
ensures the unidirectionality of the process and thus prevents healing of the material.

Also for the energy functional E different regularity assumptions have been
made for the damage variable: By now, it has become a well-accepted approach
to incorporate damage gradients into the energy, in order to account for nonlocal
effects of damage from a physical point of view, and to benefit from its regularizing
effect in the mathematical analysis and numerical simulations. The vast majority
of contributions considers a damage gradient with growth of power p = 2
[2, 7, 8, 17, 18, 26, 34, 37–39, 52, 56]. For technical reasons, sometimes also p > d

is chosen, cf., e.g., [29, 41, 46]. It has to be remarked that this choice has direct
influence on the effects of damage that can be observed with this model: For gradient
regularizations of this type, mathematically, the damage variable is an element in a
Sobolev space, and transitions between damaged and undamaged material phases
have to be smooth and thus have to take place in zones of a certain positive
width. The assumption p > d enforces that the damage variable even has to be
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continuous in space. Yet, from own experience one can also observe situations where
the transition between damaged and undamaged regions is very sharp. This effect
cannot be described by a regularization in Sobolev spaces. Therefore it is the aim
of this work to contribute to the toolbox for the investigation of damage processes
with a model that allows for sharp transitions between damaged and undamaged
material phases. To capture this effect, but still to benefit from regularizing effects
of gradients, we propose to replace the Sobolev-gradient by a BV -gradient. More
precisely, we shall consider the function spaces

U := {v ∈ H 1(Ω,Rd), v = 0 on ΓD in trace sense} , (2a)

X := BV (Ω) , (2b)

and an energy functional Ê : [0,T] × U× X → R ∪ {∞} of the form

Ê (t, u, z) := 1

2

∫
Ω

f (z)
(
λ
∣∣ tr e(u+ g(t))

∣∣2 + 2μ|e(u+ g(t))|2) dx

+ κ |D z|(Ω)+
∫
Ω

I[0,1](z) dx −
∫
ΓNeu

uNeu(t) · (u+ g(t)) ds

(3)

with the Lamé constants λ,μ > 0, e(u) := 1
2 (∇u + ∇u-) the linear-strain tensor,

g : [0,T] × Ω → R
d a suitable extension of a given Dirichlet datum into the

domain Ω and uNeu : [0,T] × ΓNeu → R
d a given surface loading acting along

the Neumann-boundary ΓNeu. Due to the mapping properties of the monotonously
increasing function f : [0, 1] → [a, b] with constants 0 < a < b the model will
capture partial damage only: It is f (0) ≥ a and hence, even in the state of maximal
damage the solid has the ability to counteract external loadings with suitable stresses
and displacements; for models allowing for complete damage, where this property is
lost, we refer, e.g., to [9, 30, 43]. The compactness information needed to handle the
product of f (z) and quadratic terms in e is provided by the total variation |D z|(Ω)

of z in Ω, weighted with a constant κ > 0,. Finally, the indicator function I[0,1]
confines the values of z to the interval [0, 1], i.e., I[0,1](z) = 0 if z ∈ [0, 1] and
I[0,1](z) = ∞ otherwise. In view of (1b), we will work with the extended energy
functional E : [0,T] ×U× Z → R ∪ {∞}

E (t, u, z) :=
{
Ê (t, u, z) if (u, z) ∈ U×X,

∞ otherwise.
(4)

It is the aim of this paper to study the existence of solutions for the rate-independent
system (U × Z,E ,R) given by (2), (4), (1a) by proving the convergence of
a numerical method. For this, we will impose a partition ΠN := {tkN, k ∈
{0, 1, . . . , N}, 0 = t0

N < . . . < tNN = T} of the time-interval [0,T] and a
space discretization in terms of P1 finite elements, yielding finite-element spaces



182 S. Bartels et al.

Uh,Xh. At each time-step tkN ∈ ΠN , we will determine approximate solutions in
Uh,Xh via an alternating minimization scheme, i.e., starting from an approximation
(u0h, z0h) ∈ Uh × Xh of the initial datum (u0, z0) at t0

N, we alternatingly compute
for given (u0

Nh, z
0
Nh) = (u0h, z0h)

ukNh = argminu∈Uh
E (tk, u, z

k−1
Nh ), (5a)

zkNh ∈ argminz∈Xh
E (tk, u

k
Nh, z)+R(z− zk−1

Nh ) . (5b)

While the computation of ukNh reduces to the solution of a linear system of
equations, the computation of zkNh requires the solution of a constrained nonsmooth
minimization problem. This problem is qualitatively of the form of the Rudin-
Osher-Fatemi (ROF) problem [51] for which various numerical schemes have been
proposed for its iterative solution, cf., e.g., [3, 6, 13, 14, 23, 24, 31, 36, 47, 57].
We approximate a minimizer zkNh by converting the minimization problem into
a saddle-point problem and use a variant of the alternate direction method of
multipliers (ADMM) [16, 19–22] recently introduced in [5] as Variable-ADMM for
the approximate solution of the saddle-point problem.

We show stability of the alternate minimization scheme and prove that suitable
interpolants constructed from (5) satisfy a discrete version of a semistable energetic
formulation of the system (U× Z,E ,R):

Definition 1.1 (Semistable Energetic Solution) A function q = (u, z) : [0,T] →
U× Z is called semistable energetic solution for the system (U× Z,E ,R), if t →
∂tE (t, q) ∈ L1((0,T)) and if for all s, t ∈ [0,T] we have E (t, q(t)) < ∞, if
for a.a. t ∈ (0,T) minimality condition (6a) is satisfied and if for all t ∈ [0,T]
semistability (6b) as well as the upper energy-dissipation estimate (6c) hold true,
i.e.:

for all ũ ∈ U : E (t, u(t), z(t)) ≤ E (t, ũ, z(t)) , (6a)

for all z̃ ∈ X : E (t, u(t), z(t)) ≤ E (t, u(t), z̃)+R(z̃− z(t)), (6b)

E (t, q(t))+R(z(t)− z(0)) ≤ E (0, q(0))+
∫ t

0
∂ξE (ξ, q(ξ)) dξ , (6c)

where the dissipated energy up to time t is given by the total variation induced
by the dissipation potential R with unidirectionality constraint and, by the induced
monotonicity of z : [0,T] → Z, takes the form R(z(t)− z(0)).

Let us note here that the alternate minimization scheme (5) directly leads to the
notion of semistable energetic solutions. In the quasistatic, rate-independent setting
they form a much wider class than the well-known energetic solutions, cf., e.g.,
[40, 42], which replace conditions (6a) & (6b) by the joint global stability condition
∀ (ũ, z̃) ∈ U×Z : E (t, u(t), z(t)) ≤ E (t, ũ, z̃)+R(z̃− z(t)) and the upper energy-
dissipation estimate (6c) by an energy-dissipation balance. In fact, the existence
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of energetic solutions for the above system (U × Z,E ,R) was investigated in
[53]. As a matter of concept, energetic solutions are obtained from a time-discrete
scheme with a monolithic minimization in the pair (u, z) in each time step. In
the case that E (t, ·, ·) is jointly convex in the pair (u, z) it can be shown that
semistable energetic solutions are also energetic solutions. However, this is not
true if the energy functional does not enjoy the property of joint convexity. In this
case it can be observed that energetic solutions tend to evolve earlier than semistable
energetic solutions, cf., e.g., [48]. Indeed, many energy functionals taken from
engineering literature are separately convex in the variables u and z but not jointly
convex, cf. [55, Sec. 5] for examples on convexity properties of damage models.

Our paper is organized as follows: In Sect. 2 we state the main assumptions
needed for the analysis. Section 3 introduces the numerical algorithms used to
calculate approximate solutions in the sense of (5). We present the Variable-ADMM
adjusted to the present setting, address its stability and the monotonicity of the
residual and prove that the residual controls the difference between the optimal
energy and the energy of the iterates. Based on this, in Sect. 4 we prove the stability
of the fully discretized problem. We also show that the solutions satisfy a discrete
version of the semistable energetic formulation as well as uniform apriori estimates.
This is the basis for the limit passage to the notion of solution given in Definition 1.1,
which, however, we do not carry out in this work. Finally, in Sect. 5 we report
our numerical results for an academic example and a benchmark problem from
engineering.

2 Setup and Notation

Throughout this work, we consider the time interval [0,T] for some time horizon
T > 0 and an open bounded Lipschitz domain Ω ⊂ R

d , d = 2, 3, with Dirichlet
boundaryΓD ⊂ ∂Ω with (d−1)-dimensional Hausdorff-measureH d−1(ΓD) > 0.
We denote by (·, ·) the L2-inner product, by ‖ · ‖ the L2-norm, and by | · | the
Euclidean norm on R

d . Moreover, by B([0,T], •) we denote the space of functions
f mapping time into a space •, which are bounded and defined everywhere in [0,T].

Regarding the given data appearing in (3) we make the following assumptions:

Assumption 2.1 (Assumptions on the Given Data)

1. The function f : R→ R is continuously differentiable and convex and such that
f |[0,1] : [0, 1] → [a, b] is monotonically increasing.

2. The Lamé constants satisfy λ,μ > 0.
3. The extension of the Dirichlet datum is of regularity g ∈ C1([0,T],H 1(Ω;Rd))

with Cg := ‖g‖C1([0,T],H 1(Ω;Rd)).
4. The Neumann datum uNeu is of regularity uNeu ∈ C1([0,T], L2(ΓNeu;Rd)) with

CuNeu := ‖uNeu‖C1([0,T],L2(ΓNeu;Rd))
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Moreover, for the space discretization we will use the following notation related to
finite element spaces: Let (Th)h>0 be a family of triangulations of Ω where the
index h denotes the mesh size h = maxT ∈Th

hT with hT being the diameter of
the simplex T . The minimal diameter is given by hmin = minT ∈Th

hT . The sets
Nh and Eh contain all nodes and edges, respectively, of the triangulation Th. We
will use the finite element space of continuous, piecewise affine functions (r = 1)
or vector fields (r = d), denoted by S 1(Th)

r and of elementwise constant vector
fields L 0(Th)

d, i.e.,

S 1(Th)
r := {vh ∈ C(Ω;Rr ) : vh|T affine for all T ∈ Th} , (7a)

L 0(Th)
d := {p̃h ∈ L∞(Ω;Rd) : p̃h|T constant for all T ∈ Th}. (7b)

Moreover, denoting by Ih : C0(Ω) → S 1(Th) the standard nodal interpolation
operator we will consider the discrete inner products

(vh,wh)h :=
∫
Ω

Ih[vhwh] dx =
∑
y∈Nh

βyvh(y)wh(y) on S 1(Th) ,

(ph, p̃h)w := hdmin(ph, p̃h) on L 0(Th)
d ,

where βy =
∫
Ω
ϕy dx with ϕy the nodal basis function associated to y ∈ Nh. We

have the relations

‖vh‖ ≤ ‖vh‖h ≤ (d + 2)1/2‖vh‖, and ‖p̃h‖w ≤ c‖p̃h‖L1(Ω),

for all vh ∈ S 1(Th) and p̃h ∈ L 0(Th)
d , see [4, Lemma 3.9] and [12, Thm. 4.5.11].

Finally, for a sequence of step sizes (τj )j∈N and functions (aj )j∈N we will denote
the backward difference quotient by

dta
j = aj − aj−1

τj
.

3 Numerical Method

We now discuss the numerical algorithms used to solve the alternate minimization
problem (5) on the discrete level. With S 1(Th)

d and S 1(Th) from (7) we set
Uh := S 1(Th)

d∩{v ∈ C(Ω;Rd), v = 0 on ΓD} ⊂ H 1
D(Ω;Rd) in (5a) and Xh :=

S 1(Th) ⊂ BV (Ω) in (5b). While the minimization problem (5a) to determine
ukNh reduces to the solution of a linear system of equations, the minimization
problem (5b) to find zkNh is more difficult due to the non-differentiability of the
BV -seminorm and the occurrence of non-smooth constraints in E and R. We will
deal with the minimization problem (5b) in Sect. 3.1 and subsequently explain the
algorithm for the full alternate minimization problem in Sect. 3.2.
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3.1 Minimization with Respect to z in (5b)

For the following discussion we consider a partition ΠN of [0,T] with N ∈ N fixed.
We also keep tkN ∈ ΠN and ukNh the solution of (5a) fixed. For simpler notation
we here write tk = tkN , ukh = ukNh, and zkh = zkNh, i.e., we do not indicate the
dependence of these quantities on N ∈ N fixed. We first of all note that a minimizer
zkh = zkNh obtained in (5b) is required to satisfy zkh − zk−1

h ≤ 0 almost everywhere
in Ω since otherwise R(zkh − zk−1

h ) is infinite. Since zkh, z
k−1
h ∈ Xh = S 1(Th) are

globally continuous and piecewise affine this is equivalent to zkh(x) ≤ zk−1
h (x) for

all x ∈ Nh. Particularly, |zkh(x) − zk−1
h (x)| = zk−1

h (x) − zkh(x). Hence, letting for
k ≥ 1

Kk := {vh ∈ S 1(Th) : 0 ≤ vh(x) ≤ zk−1
h (x) ∀ x ∈ Nh} (8)

we define the auxiliary functional Ẽ (tk, ·, ·) : Uh × Xh → R ∪ {∞},

Ẽ (tk, uh, zh) := 1

2

∫
Ω

f (zh)
(
λ| tr e(uh + g(tk))|2 + 2μ|e(uh + g(tk))|2

)
dx

−
∫
ΓNeu

uNeu(tk) · (uh + g(tk)) ds + κ

∫
Ω

|∇zh| dx + IKk (zh).

We obtain that minimality property (5b) is equivalent to

zkh ∈ argminzh∈Xh
Ẽ (tk, u

k
h, zh)− ρ(zh, 1).

In order to approximate a minimizer zkh we consider for τj > 0 andCA = λ tr(A)I+
2μA for A ∈ R

d×d the augmented Lagrangian functional

Lk
h(zh, ph, sh; ηh, ζh) := 1

2

∫
Ω

f (zh)e(u
k
h + g(tk)) : Ce(ukh + g(tk)) dx − ρ(zh, 1)

+ κ

∫
Ω

|ph| dx + (ηh,∇zh − ph)w + τj

2
‖∇zh − ph‖2

w

+ IKk (sh)+ (ζh, zh − sh)h + τj

2
‖zh − sh‖2

h.

For the approximation of a minimizer zkh we use the following algorithm
[5] which generalizes the alternating direction method of multipliers (ADMM)
established and analyzed, e.g., in [16, 19–22] by using variable step sizes.

Algorithm 3.1 (Variable-ADMM) Choose z0
h = zk−1

h , η0
h = 0 and ζ 0

h = 0.
Choose τ , τ > 0 with τ ≤ τ , δ ∈ (0, 1), γ , γ ∈ (0, 1) with γ ≤ γ , and R 1 1. Set
j = 1.



186 S. Bartels et al.

(1) Set γ1 = γ , τ1 = τ and R0 = R.

(2) Compute a minimizer (pj

h, s
j

h) ∈ L 0(Th)
d ×S 1(Th) of

(ph, sh) �→ Lk
h(z

j−1
h , ph, sh; ηj−1

h , ζ
j−1
h ).

(3) Compute a minimizer zjh ∈ S 1(Th) of

zh �→ Lk
h(zh, p

j

h, s
j

h; ηj−1
h , ζ

j−1
h ).

(4) Update

η
j
h = η

j−1
h + τj (∇zjh − p

j
h),

ζ
j
h = ζ

j−1
h + τj (z

j
h − s

j
h).

(5) Define

Rj =
(‖ηjh−η

j−1
h ‖2

w+τ 2
j ‖∇(zjh−z

j−1
h )‖2

w+‖ζ j
h−ζ

j−1
h ‖2

h+τ 2
j ‖zjh−z

j−1
h ‖2

h

)1/2
.

(6) Stop if Rj is sufficiently small.
(7) Define (τj+1, γj+1) as follows:

• If Rj ≤ γjRj−1 or if τj = τ and γj = γ set

τj+1 = τj and γj+1 = γj .

• If Rj > γjRj−1 and τj > τ set

τj+1 = max{δτj , τ } and γj+1 = γj .

• If Rj > γjRj−1, τj = τ and γj < γ set

τj+1 = τ , γj+1 = min
{γj + 1

2
, γ
}
, uj = u0 and λj = λ0.

(8) Set j = j + 1 and continue with (2).

In the following proposition we prove that the iterates are bounded, that the
algorithm terminates and that the residuals Rj are monotonically decreasing. To
this extent we define the functionals

F(ph) = κ

∫
Ω

|ph| dx, H(sh) = IKk (sh),

G(zh) = 1

2

∫
Ω

f (zh)e(u
k
h + g(tk)) : Ce(ukh + g(tk)) dx − ρ(zh, 1).
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Proposition 3.1 (Termination of Algorithm 3.1 and Monotonicity of Resid-
uals) Let (zh, ph, sh; ηh, ζh) be a saddle-point for Lk

h. For the iterates

(z
j
h, p

j
h, s

j
h; ηjh, ζ j

h ), j ≥ 0, of Algorithm 3.1, the corresponding differences

δ
j
η := ηh − η

j

h, δjζ := ζh − ζ
j

h , δjp := ph − p
j

h, δjs := sh − s
j

h , and δ
j
z := zh − z

j

h,
and the distance

D2
j = ‖δjη‖2

w + ‖δjζ ‖2
h + τ 2

j ‖∇δjz ‖2
w + τ 2

j ‖δjz ‖2
h,

we have that for every J ≥ 1 it holds

D2
J +

J∑
j=1

R2
j ≤ D2

0 .

In particular, Rj → 0 as j →∞ and Algorithm 3.1 terminates. Moreover, we have

R2
j+1 ≤ R2

j ,

i.e., the residual is non-increasing.

Proof The optimality conditions for a saddle-point of Lk
h are given by

(ηh, p̃h − ph)w + F(ph) ≤ F(p̃h) ∀ p̃h ∈ L 0(Th)
d ,

(ζh, rh − sh)h +H(sh) ≤ H(rh) ∀ rh ∈ S 1(Th),

−(ηh,∇(wh − zh))w − (ζh,wh − zh)h +G(zh) ≤ G(wh) ∀ wh ∈ S 1(Th),

(9)

and ph = ∇zh and sh = zh. On the other hand, with η̃
j
h = η

j−1
h + τj (∇zj−1

h −
p
j
h) and ζ̃

j
h = ζ

j−1
h + τj (z

j−1
h − s

j
h), the optimality conditions for the iterates of

Algorithm 3.1 read

(̃η
j

h, p̃h − p
j

h)w + F(p
j

h) ≤ F(p̃h) ∀ p̃h ∈ L 0(Th)
d,

(̃ζ
j
h , rh − s

j
h)h +H(s

j
h) ≤ H(rh) ∀ rh ∈ S 1(Th),

−(η
j
h,∇(wh − z

j
h))w − (ζ

j
h ,wh − z

j
h)h +G(z

j
h) ≤ G(wh) ∀ wh ∈ S 1(Th).

(10)

Testing (9) and (10) with (p̃h, rh,wh) = (p
j
h, s

j
h, z

j
h) and (p̃h, rh,wh) =

(ph, sh, zh), respectively, and adding corresponding inequalities gives

(̃η
j

h − ηh, ph − p
j

h)w ≤ 0,

(̃ζ
j
h − ζh, sh − s

j
h)h ≤ 0,

(ηh − η
j
h,∇(zh − z

j
h))w + (ζh − ζ

j
h , zh − z

j
h)h ≤ 0.

The rest of the proof of the first estimate is analogous to the proof of [5, Thm. 3.7].
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The proof of the monotonicity follows by testing (10) at iterations j and j + 1
with (p̃h, rh,wh) = (p

j+1
h , s

j+1
h , z

j+1
h ) and (p̃h, rh,wh) = (p

j
h, s

j
h, z

j
h), respec-

tively, and adding the inequalities, which gives

0 ≤ − (̃η
j+1
h − η̃

j
h, p

j
h − p

j+1
h )w − (η

j
h − η

j+1
h ,∇(zjh − z

j+1
h ))w

− (̃ζ
j+1
h − ζ̃

j
h , s

j
h − s

j+1
h )h − (ζ

j
h − ζ

j+1
h , z

j
h − z

j+1
h )h.

The monotonicity then follows as in the proof of [5, Prop. 3.11]. �
In the next step, we show that the residual Rj controls the difference in the

objective values.

Lemma 3.1 Let (zh, ph, sh; ηh, ζh) be a saddle-point of Lk
h. Then there exists a

constant C0 > 0 such that we have for any j ≥ 1

Ẽ (tk, u
k
h, s

j
h)+R(s

j
h − zk−1

h )− Ẽ (tk, u
k
h, zh)−R(zh − zk−1

h ) ≤ C0Rj . (11)

Proof We use the short notation δ
j
η , δ

j
ζ , δ

j
p, δ

j
s and δ

j
z as in Proposition 3.1.

Testing (10) with (p̃h, rh,wh) = (ph, sh, zh), adding the inequalities, noting that
ph = ∇zh and sh = zh and using η

j
h−η̃

j
h = τj∇(zjh−z

j−1
h ), ζ j

h−ζ̃
j
h = τj (z

j
h−z

j−1
h )

we obtain

F(p
j
h)+G(z

j
h)+H(s

j
h)− F(ph)−G(zh)−H(sh)

≤ − (̃η
j

h, δ
j
p)w + (η

j

h,∇δjz )w − (̃ζ
j

h , δ
j
s )h + (ζ

j

h , δ
j
z )h

= − (η
j
h, dtη

j
h)w − τ 2

j (∇dtδjz , δjp)w − (ζ
j
h , dt ζ

j
h )h − τ 2

j (dt δ
j
z , δ

j
s )h.

(12)

Testing the optimality conditions of z
j
h and z

j−1
h with wh = z

j−1
h and wh = z

j
h,

respectively, and adding the corresponding inequalities gives

0 ≤ −τ 2
j (dtη

j

h,∇dtzjh)w − τ 2
j (dt ζ

j

h , dtz
j

h)h.

Using dtη
j
h = ∇zjh − p

j
h and dtζ

j
h = z

j
h − s

j
h and inserting ph = ∇zh and sh = zh

on the right-hand side gives

0 ≤ −τ 2
j (∇δjz ,∇dtδjz )w + τ 2

j (δ
j
p,∇dtδjz )w − τ 2

j (δ
j
z , dt δ

j
z )h + τ 2

j (δ
j
s , dt δ

j
z )h.

(13)

Adding (12) and (13) we get

F(p
j
h
)+G(z

j
h
)+H(s

j
h
)− F(ph)−G(zh)−H(sh)

≤ − (η
j
h, dt η

j
h)w + τ2

j (∇δjz ,∇dt zjh)w − (ζ
j
h , dt ζ

j
h )h + τ2

j (δ
j
z , dt z

j
h)h

≤ ‖ηj
h
‖w‖dt ηjh‖w + τ2

j ‖∇δjz ‖w‖∇dt zjh‖w + ‖ζ jh ‖h‖dt ζ jh ‖h + τ2
j ‖δjz ‖h‖dt zjh‖h ≤ C0Rj ,

with C0 being bounded due to Proposition 3.1.
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Let us furthermore note that by Proposition 3.1 we have that s
j
h and z

j
h are

bounded, particularly 0 ≤ s
j
h ≤ zk−1

h for all j ≥ 0. Since f is Lipschitz continuous
on bounded intervals, the Hölder inequality, the Lipschitz continuity of f and the
inverse estimate ‖wh‖L∞(Ω) ≤ h−d/2‖wh‖ (cf. [12, Thm. 4.5.11]) yield

1

2

∫
Ω

(f (s
j
h)− f (z

j
h))e(u

k
h + g(tk)) : Ce(ukh + g(tk)) dx ≤ ch−d/2‖sjh − z

j
h‖.

We finally observe that using s
j
h ≤ zk−1

h , zh ≤ zk−1
h , the triangle inequality, the

inverse estimate ‖∇wh‖L1(Ω) ≤ ch−1‖wh‖L1(Ω) and the equivalence of ‖ · ‖ and
‖ · ‖h we have

Ẽ (tk, u
k
h, s

j

h)+R(s
j

h − zk−1
h )− Ẽ (tk, u

k
h, zh)−R(zh − zk−1

h )

= F(p
j

h)+G(z
j

h)+H(s
j

h)− F(ph)−G(zh)−H(sh)+ κ

∫
Ω

(|∇sjh | − |pj

h|
)

dx

+ 1

2

∫
Ω

(f (s
j

h)− f (z
j

h))e(u
k
h + g(tk)) : Ce(ukh + g(tk)) dx + ρ

∫
Ω

(
z
j

h − s
j

h

)
dx

≤ C0Rj + cκh−d/2‖∇zjh − p
j
h‖w + cκh−1‖sjh − z

j
h‖h + c(ρ + h−d/2)‖zjh − s

j
h‖h

≤ C0Rj .

which proves the assertion. �

Remark 3.1 In general, the iterates (z
j
h)j≥0 of Algorithm 3.1 may penetrate

the obstacles, i.e., z
j
h /∈ Kk for some j ∈ N, cf. (8). Therefore, if

(z
stop
h , p

stop
h , s

stop
h ; ηstoph , ζ

stop
h ) is the output of the algorithm, we set zkh = s

stop
h ∈

Kk to ensure the coercivity of the bulk energy.

3.2 Alternate Minimization (5)

In order to solve the full problem (5) we apply the following scheme:

Algorithm 3.2 (Alternate Minimization) Choose a stable initial pair (u0
h, z

0
h) ∈

S 1(Th)
d×S 1(Th) and a partition 0 = t = 0 < . . . < tN = T of the time interval

and set k = 1.

(1) Compute the unique minimizer ukh of

uh �→ Ẽ (tk, uh, z
k−1
h ).
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(2) Compute an approximate minimizer zkh of

zh �→ Ẽ (tk, uh, zh)− ρ(zh, 1)

by using Algorithm 3.1, i.e., set zkh = s
stop
h with s

stop
h computed by Algo-

rithm 3.1.
(3) Stop if k = N . Otherwise, increase k → k + 1 and continue with (1).

The optimality condition for ukh in step (1) of the algorithm reads
∫
Ω

f (zk−1
h )e(ukh) : Ce(vh) dx = −

∫
Ω

e(g(tk)) : Ce(vh) dx +
∫
ΓNeu

uNeu(tk) · vh ds

for all vh ∈ Uh. In our computation we replace g by gh = Ihg on the right-hand
side with Ih being the nodal interpolant and g sufficiently smooth. We further use
the midpoint rule to compute for T ∈ Th and e ∈ Eh the integrals

∫
T

f (zk−1
h ) dx, and

∫
e

uNeu(tk) · vh ds.

The computation of ukh then amounts to solving a linear system of equations with a
weighted stiffness matrix.

4 Existence Result on a Discrete Level

In this section we show that suitable time-interpolants of the solutions (ukNh, z
k
Nh)Nh

obtained at each time step tkN via the alternate minimization problem (5) satisfy
a discrete version of the semistable energetic formulation (6). To this end, with
S 1(Th)

d and S 1(Th) from (7), we set in (5)

Uh := S 1(Th)
d ∩ {v ∈ C(Ω;Rd), v = 0 on ΓD} and Xh := S 1(Th) . (14)

We recall that Uh ⊂ H 1
D(Ω;Rd) and Xh ⊂ BV (Ω) for all h > 0 and

⋃
h

Uh ⊂ H 1
D(Ω;Rd) densely and

⋃
h

Xh ⊂ BV (Ω) densely . (15)

We now choose a sequence (h(N))N∈N such that h(N) → 0 as N → ∞ and
consider a sequence of partitions (ΠN)N of [0,T] such that the time-step size
ΔN → 0 as N → ∞. With E from (4) we introduce the energy functionals
EN : [0,T] ×U× Z → R ∪ {∞},

EN(t, u, z) :=
{
E (t, u, z) if (u, z) ∈ Uh(N) × Xh(N),

∞ otherwise,
(16)
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where the given data g(t) and uNeu(t) are replaced by suitably interpolated versions
gN(t) and uNeuN(t) in the discrete spaces, which are uniformly bounded and
converge strongly to the original datum. We thus compute for every N ∈ N and
h(N) > 0, for each tkN ∈ ΠN a solution (ukN, zkN ) = (ukNh(N), z

k
Nh(N)) to (5)

using Algorithm 3.2. In particular, according to Algorithm 3.1 the pair (ukN , zkN) =
(ukNh(N), z

k
Nh(N)) satisfies

∀ u ∈ U : EN(tkN , ukN , zk−1
N ) ≤ EN(tkN , u, zk−1

N ) , (17a)

∀ z ∈ X :
EN(tkN , ukN , zkN )+R(zkN − zk−1

N ) ≤ EN(tkN , ukN , z)+R(z− zk−1
N )+ TOL(N) (17b)

with some h(N)-dependent tolerance TOL(N), which bounds the residual Rh
j , cf.

Algorithm 3.1, Step (5). In view of Lemma 3.1 a sequence (TOL(N))N can be
chosen such that

TOL(N)N → 0 as N →∞ . (18)

We evaluate the given data in the partition {t0
N, . . . , tNN } which results in an

(N + 1)-tupel. Moreover, for any tupel (v0
N, . . . , vNN ) we introduce the piecewise

constant left-continuous (right-continuous) interpolant vN (vN):

vN(t) := vk+1
N for all t ∈ (tkN, tk+1

N ] , (19a)

vN(t) := vkN for all t ∈ [tkN , tk+1
N ) . (19b)

Accordingly, E , resp. E , indicates that the interpolants gN and uNeuN, resp. gN and
uNeuN

are used. In particular, thanks to Assumptions 2.1 we have for all t ∈ [0,T]

gN(t)→ g(t) in U & uNeuN(t)→ uNeu(t) in L2(ΓNeu;Rd) . (20)

This puts us in the position to find the following properties of the interpolants
(uN , uN, zN , z

N
) constructed from (ukN , zkN)Nk=0 via (19):

Theorem 4.1 (Discrete Version of (6) and Apriori Estimates) Let the assump-
tions of Sect. 2 hold true and keep N ∈ N fixed. For each k ∈ {0, 1, . . . , N}
let (ukN , zkN) satisfy (17). Then the corresponding interpolants (uN , uN, zN , z

N
)

obtained via (19), fulfill the following discrete version of (6) for all t ∈ [0,T]:

for all ũ ∈ U : EN(t, uN (t), zN(t)) ≤ EN(t, ũ, zN (t)) , (21a)

for all z̃ ∈ X : EN(t, uN (t), zN (t)) ≤ EN(t, uN (t), z̃)+R(z̃− zN (t))+ TOL(N),

(21b)

EN(t, qN (t))+ DissR(zN , [0, t]) ≤ EN(0, q0
N)+

∫ t

0
∂ξEN(ξ, q

N
(ξ)) dξ + TOL(N)N .

(21c)
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In particular, there is a constant C > 0 such that the following bounds hold true
uniformly for all N ∈ N:

for all t ∈ [0,T] : ‖uN(t)‖U ≤ C , (22a)

for all t ∈ [0,T] : ‖zN(t)‖X + ‖zN(t)‖L∞(Ω) ≤ C , (22b)

R(zN(T)− z0
N) ≤ C & ‖zN‖BV (0,T;Z) ≤ C , (22c)

where (uN , zN) in (22a) & (22b) stands for both (uN , zN) and (uN , z
N
).

Proof Proof of properties (21): Taking into account the definition (19) of the
interpolants (uN , uN, zN, z

N
) we see that minimality properties (17) can be directly

translated into (21a) & (21b). To find the discrete upper energy-dissipation esti-
mate (21c) we test the minimality of ukN in (17a) by uk−1

N and the minimality of zkN
in (17b) by zk−1

N . This results in

EN(tkN , ukN , zk−1
N ) ≤ EN(tkN , uk−1

N , zk−1
N )

EN(tkN , ukN , zkN)+R(zkN − zk−1
N ) ≤ EN(tkN , ukN , zk−1

N )+ TOL(N) .

Let now t ∈ (0, tnN ] for some n ≤ N . Adding the above two inequalities, adding and
subtracting EN(tk−1

N , uk−1
N , zk−1

N ), and summing over k ∈ {1, . . . , n} we find

EN(tnN , unN , znN)+R(znN − z0
N)

≤ EN(t0
N, u0

N, z0
N)+

n∑
k=1

Eh(t
k
N , uk−1

N , zk−1
N )− EN(tk−1

N , uk−1
N , zk−1

N )+ nTOL(N)

= EN(t0
N, u0

N, z0
N)+

n∑
k=1

∫ t kN

tk−1
N

∂ξEN(ξ, uk−1
N , zk−1

N ) dξ + nTOL(N) ,

(23)

which yields (21c) for all t ∈ (0, tnN ] and integers n ≤ N .
Proof of estimates (22): Observe that there are constants c0, c1 > 0, such that for
all (t, u, z) ∈ [0,T]×U×Z with EN(t, u, z) <∞ it holds |∂tEN(t, u, z)| ≤ c1(c0+
EN(t, u, z)). This entitles us to apply a Gronwall estimate under the time-integral
in (23). Following the classical arguments for energy-dissipation inequalities in the
rate-independent setting, cf., e.g., [42, Prop. 2.1.4], results in the estimates

c0 + E N(tkN , ukN , zkN) ≤ (c0 + E N(0, u0
N, z0

N))exp(c1T ) ≤ C , (24a)

R(zkN − z0
N) ≤ (c0 + E N(0, u0

N, z0
N))exp(c1T ) ≤ C , (24b)

where the uniform boundedness by C > 0 is due to (20) and Assumption 2.1.
The estimate (22a) is then standardly obtained from the bound (24a), exploiting



Numerical Approach to a Model for Quasistatic Damage with Spatial BV -. . . 193

that f (0) ≥ a > 0 and μ > 0 by Assumption 2.1, as well as Korn’s and Young’s
inequality. The estimate (22b) follows from the uniform boundedness of the damage
gradients and the fact that I[0,1](zN(t)) = 0 a.e. in Ω, ensured by (24a), whereas the
first estimate in (22c) is due to (24b) and the second is a direct consequence taking
into account the form of R, see (1a). This concludes the proof of Prop. 4.1. �

5 Numerical Experiments

We report in this section the numerical results for two two-dimensional benchmark
problems taken from [1] and [38].

5.1 Membrane with Hole

In the sequel we specify all relevant information for the first benchmark problem
from [1].

Problem Specification
We consider a body occupying a square domain with a hole around the center and
which is pulled from above and below. Due to symmetry we regard only the upper
right quarter of the domain. We summarize all relevant information for the first
example in the following.

• Geometry: Length scale L = 1 mm;
Domain Ω = (0, L)2 \ {x ∈ R

2 : |x| ≤ L
√

2/3};
Dirichlet boundary ΓD = ([L√2/3, L]× {0})∪ ({0}× [L√2/3, L])

• Time horizon: T = 1 s
• Load: Dirichlet data:

uD(t, x)1 = 0 mm/s if x ∈ Γ
lef t
D ,

uD(t, x)2 = 0 mm/s if x ∈ Γ bottom
D ;

Neumann data:

uNeu(t, x) =
[

0 N
mm2s

t · 1 N
mm2s

]
if x ∈ Γ

top
Neu,

uNeu(t, x) =
[

0 N
mm2s

0 N
mm2s

]
if x ∈ Γ

right
Neu ;

The geometry and the applied traction are illustrated in Fig. 1.
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Fig. 1 Left: Domain Ω and illustration of applied traction for membrane with hole: the material
is pulled from above. Right: Coarse triangulation (hmin = 0.055)

• Material parameters: Young’s modulus E = 2900 N/mm2;
Poisson’s ratio ν = 0.4;
Lamé constants

λ = Eν

(1+ ν)(1− 2ν)
≈ 4142.9

N

mm2 , μ = E

2(1+ ν)
≈ 1035.7

N

mm2 ;

The function f is chosen as f (z) = a + (b − a)z with
a = 1/2, b = 1;
Damage toughness ρ = 4 · 10−4 N/mm2;
Regularization factor κ = 10−6 N/mm2

• Initialization: Initial stable state u0
h ≡ 0, z0

h ≡ 1.
• Discretization: Four triangulations Th generated with distmesh (see [45])

with mesh sizes (in mm)

h ≈ 0.204, hmin ≈ 0.055; h ≈ 0.09, hmin ≈ 0.034;
h ≈ 0.054, hmin ≈ 0.016; h ≈ 0.029, hmin ≈ 0.008;

Equidistant partition of [0,T] with Δt = 10/(2T/h2
min3)

• Algorithm: Algorithm 3.1 stops if Rj ≤ 10−6/(2 max{1, 1/(τjhmin)});
τ = h−2

min, τ = 10−4, δ = 0.5, γ = 0.5, γ = 0.999

Aim
Since we are dealing with a BV -regularized damage model, i.e., the damage variable
is allowed to jump in space, we want to investigate if the interfaces between
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t 0.487 t 0.723 t = 1

Fig. 2 Damage evolution with mesh size hmin ≈ 0.008 and time step size Δt = 1/1492. Top: BV -
regularization. Bottom: Unweighted H 1-regularization. Displacements are magnified by factor 40

damaged and undamaged parts of the material are sharp at least on the scale h of
the mesh resolution. We will also compare the results with an H 1-regularization,
i.e., we replace κ |D z|(Ω) by κ‖∇z‖2 and by κhmin‖∇z‖2 in order to investigate
the influence of the chosen regularization term on the damage evolution. The
dependence of the solutions on the mesh size will also be analyzed.

Results
In Fig. 2 three time steps of the damage evolution computed by Algorithm 3.2 for
hmin = 0.008 are depicted, both for the damage model with BV -regularization
and unweighted H 1-regularization of the damage variable. The displacements are
magnified by a factor of 40. One can clearly observe that the BV -regularization
leads to sharp jumps (on the scale of h) while the transitions from undamaged
(z = 1) to damaged (z = 0) parts of the material are smeared out for the H 1-
regularization as it could be expected. The evolutions are more similar to each other
if the H 1 regularization term is scaled with the factor hmin as it can be seen from
Fig. 3. However, it is not clear whether the regularization term κhmin‖∇z‖2 can be
analytically justified, particularly with respect to the limit h→ 0.

In Fig. 4 we verify the energy estimate (21c) as a function of tnN , n ≤ N , for three
mesh sizes hmin = 0.055, 0.016, 0.008. Obviously, the energy inequality holds and
is increasing in time which is in accordance to (21c) since the inequality holds for
all tkN < tnN , 1 ≤ k ≤ n ≤ N .
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hmin = 0.034 hmin = 0.016 hmin = 0.008

Fig. 3 Damage at t = 1 for different mesh sizes and time step sizes. Top: BV -regularization.
Bottom: Weighted H 1-regularization with κhmin‖∇z‖2. Displacements are magnified by factor 40
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5.2 Notched Square

The relevant information for the second test, which is taken from [38], are given
below.

Problem Specification
We consider a body occupying a square domain with a notch reaching from the
middle of the left edge to the center of the specimen. The specimen is pulled from
above and clamped at the bottom. We summarize all relevant information for this
example in the following.

• Geometry: Length scale L = 1 mm;
Domain Ω = (0, L)2 \ conv{(0, 0.5075), (0.5, 0.5), (0, 0.4925)};
Dirichlet boundary ΓD = ([0, L] × {0}) ∪ ([0, L] × {L})

• Time horizon: T = 1 s
• Load: Dirichlet data:

uD(t, x)2 = t · 0.002 mm/s if x ∈ Γ
top

D ,

uD(t, x) =
[

0 mm/s
0 mm/s

]
if x ∈ Γ bottom

D ;

Neumann data:

uNeu(t, x) =
[

0 N
mm2s

0 N
mm2s

]
if x ∈ ΓNeu;

The geometry is illustrated in Fig. 5.

Fig. 5 Left: Domain Ω and illustration of boundary conditions for notched square: the material is
pulled from above. Right: Initial locally refined mesh
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• Material parameters: Young’s modulus E = 210 kN/mm2;
Poisson’s ratio ν = 0.3;
Lamé constants

λ = Eν

(1+ ν)(1− 2ν)
≈ 121.15

kN

mm2 , μ = E

2(1+ ν)
≈ 80.77

kN

mm2 ;

The function f is chosen as f (z) = a + (b − a)z with
a = 10−6, b = 1;
Damage toughness ρ = 2.7 · 10−3 kN/mm2;
Regularization factor κ = 10−7 kN/mm2

• Initialization: Initial stable state u0
h ≡ 0, z0

h ≡ 1.
• Discretization: Three triangulations Th generated by uniform refinement of

an initial mesh refined locally in region of expected damage
evolution with mesh sizes (in mm)

h ≈ 0.25, hmin ≈ 0.0156; h ≈ 0.125, hmin ≈ 0.0078; h ≈ 0.0625, hmin ≈ 0.0039;

Equidistant partition of [0,T] with Δt = 10/(2T/h2
min3)

• Algorithm: Algorithm 3.1 stops if Rj ≤ 10−7/(2 max{1, 1/(τjhmin)});
τ = h−2

min, τ = 10−3, δ = 0.5, γ = 0.5, γ = 0.999

Aim
The aim of this experiment is to compare the resulting damage evolution with estab-
lished numerical experiments for damage or crack propagation reported in [38, 56],
which are based on a phase field approach, and to check whether our damage model
yields qualitatively the same results.

Results
In Figs. 6 and 7 three snapshots of the damage evolution computed by Algorithm 3.2
for hmin ≈ 0.0078 are depicted for the damage model with BV -regularization
and H 1-regularization, respectively, of the damage variable. Let us remark that
the damage evolution observed in Fig. 6 qualitatively matches with the evolution
reported in [38, Fig. 8] and [56, Fig. 4], i.e., the damage concentrates in a thin region
around the horizontal line connecting the tip of the notch and the boundary on the
right. Moreover, in contrast to the models discussed in [38, 56] the model presented
in this paper is a damage model without phase field character and models by a > 0
only partial damage. Particularly, our model is not of Ambrosio-Tortorelli type.

In Fig. 8 the energy curves corresponding to (21c) as a function of tnN are depicted
for three different mesh sizes. One can again observe that the energy inequality
holds and that the gap is increasing in time. Furthermore, one can observe in
Fig. 8 that the damage evolves relatively fast to the right boundary after the damage
process has been initiated, e.g., for hmin = 0.0039 it takes only a few milliseconds
from initiation of the damage until damage reaches the boundary which is also in
accordance with the observations made in [38, 56]. Note that the damage is triggered
earlier for smaller mesh sizes which is on the one hand due to the singularity of



Numerical Approach to a Model for Quasistatic Damage with Spatial BV -. . . 199

t ≈ 0.624 t ≈ 0.638 t ≈ 0.662

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Fig. 6 BV -regularized evolution for notched square with mesh size hmin ≈ 0.0078 and
time step size Δt = 1/1638. Top: Evolution of damage variable z. Bottom: Stress√
f (z)e(u + g(t)) : Ce(u+ g(t))

t ≈ 0.673 t ≈ 0.687 t ≈ 0.711

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Fig. 7 H 1-regularized evolution for notched square with mesh size hmin ≈ 0.0078 and
time step size Δt = 1/1638. Top: Evolution of damage variable z. Bottom: Stress√
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N) = 0). Left: with BV -
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the stress at the crack tip and on the other hand due to the finer partition of the
time interval for smaller mesh sizes. This underlines the need for proper adaptive
refinement techniques both for the space and the time variable.

6 Conclusion

The numerical experiments show that our damage model can qualitatively capture
the important features of damage evolution or crack propagation already reported
in [10, 38, 56] for a phase field approach and, e.g., in [44, 49, 50] for similar
numerical experiments based on energetic formulations. Depending on the particu-
lar setting the BV -regularization of the damage variable can lead to transitions from
damaged to undamaged zones in the material that are significantly sharper than for
an H 1-regularization as it has been observed in our first experiment.
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functions of bounded variation and application to models of damage, fracture, and plasticity within
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41. Mielke, A., Roubíček, T.: Rate-independent damage processes in nonlinear elasticity. Math.
Models Methods Appl. Sci. 16(2), 177–209 (2006)
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Rigidity Effects for Antiferromagnetic
Thin Films: A Prototypical Example

Andrea Braides

Abstract We consider two-dimensional discrete thin films obtained from N layers
of a triangular lattice, governed by an antiferromagnetic energy. By a dimension-
reduction analysis we show that, in contrast with the “total frustration” of the
triangular lattice, the overall behaviour of the thin film is described by a limit
interfacial energy on functions taking 2N distinct parameters. In a sense, then the
total frustration is recovered as N tends to infinity.

1 Introduction

We consider lattice energies defined on “spin functions” (i.e., functions u = {ui}
taking the only values −1 or 1), of the form

−
∑
i,j

cij uiuj , (1)

where i, j are nodes of a (connected) portion of a lattice L in R
d and cij are

interactions coefficients. In the case that cij ≥ 0 the system is called ferromagnetic
and its ground states are the two constant states ±1. The overall behavior of the
system when a large number of nodes are taken into account can then be described
by a scaling procedure, by considering a scaling parameter ε > 0, a fixed parameter
set Ω , and the scaled energies (obtained from the previous ones by scaling and
adding constants)

∑
i,j

εd−1 cij (ui − uj )
2 (2)
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Fig. 1 A ‘disordered’
minimizer in a portion of the
triangular lattice (black and
white dots represent −1 and
+1 values, respectively)

defined for i, j belonging to L ∩ 1
ε
Ω . A discrete-to-continuum process allows to

define an approximating continuum energy of interfacial type on Ω

∫
Ω∩∂{u=1}

ϕ(x, νu)dH
d−1(x),

where u : Ω → {−1, 1} is a macroscopic parameter (the magnetization) defined as
the limit of piecewise-constant functions uε defined from spin functions {uεi } as

uε(x) = uε�x/ε4 x ∈ Ω

(up to some corrections close to ∂Ω). The surface tension ϕ depends on the
orientation νu of the interface between the two zones where u = 1 or u = −1.
In many cases it is also homogeneous, and is characterized by the Wulff shape; i.e.,
the characteristic shape of minimizers with given measure.

If the system is antiferromagnetic; i.e., cij ≤ 0, or a mixture of ferromagnetic and
antiferromagnetic interactions, in general ground states are frustrated. This means
that the energies in (1) cannot be minimized for each single interaction (as pictured
in Fig. 1), which, in the case of antiferromagnetic coefficients would imply that
ui = −uj . The simplest case of frustration is when L is a triangular lattice and
we take cij different from zero only for nearest-neighbours, for which, for example
cij = −1. In this case, ground states present no regularity and can arbitrarily mix
the values ui = 1 and ui = −1. For antiferromagnetic-ferromagnetic mixtures this
is “generically” not the case in the square lattice if we have a small percentage of
antiferromagnetic interactions [4]. In [6] examples are shown also of mixtures of
nearest-neighbour ferromagnetic and antiferromagnetic interactions in the square
lattice with a similar “total frustration”. This behaviour is not present in every
system with antiferromagnetic interactions. Indeed, long-range antiferromagnetic
interactions, also in the square lattice, may present a finite collection of striped or
checkerboard-type ground states (see e.g. [8, 9]). Using the analysis of ground states,
sometimes those systems can be described in a discrete-to-continuum fashion by a
surface energy defined on partitions of the underlying reference set Ω indexed by
the different textures and modulated phases [6]. For a review on the subject we refer
to [3].



Rigidity Effects for Antiferromagnetic Thin Films: A Prototypical Example 207

In this paper we consider an example of thin films for spin energies. A discrete
thin film is obtained by limiting the interactions to a Nε-neighbourhood of a d − 1-
dimensional set ω (as in [2, 5]). We then scale the energies accordingly, as

∑
i,j

εd−2 cij (ui − uj )
2

(see [5]). In the simplest case of a “coordinate thin film”, when ω is contained in
R

d−1 × {0} then the sum above may be considered as performed for i, j belonging
to L ∩ ( 1

ε
ω × [0, N]). The limit behaviour of these energies can be then described

by a dimensionally-reduced energy of the form

∫
∂{u=1}

ϕ(x, νu)dH
d−2(x),

where the limit magnetization is interpreted as a function u : ω → {−1, 1} and the
form of ϕ takes into account also optimization of the interactions in the “vertical”
direction; i.e., in the d-coordinate (for an analog thin-film theory for bulk surface
energies see [7]).

In our case, we consider d = 2 and L = T the regular triangular lattice; i.e., the
Bravais lattice generated by (1, 0) and (1/2,

√
3/2). The nearest neighbours in T are

points at distance 1; i.e., differing by ±(1, 0), ±(1/2,
√

3/2), or ±(−1/2,
√

3/2).
For each N ∈ N, N > 0, we then consider the related discrete thin film composed
of N layers with underlying set an interval I ; namely,

ΩN,ε = I × [0, (N − 1)ε
√

3/2].

If we consider nearest neighbour uniform anti-ferromagnetic interactions, the thin-
film energy then simply reads

EN
ε (u) = −

∑
i,j

(ui − uj )
2, (3)

where the sum i, j runs on nearest-neighbours in
( 1
ε
I
)× [0, (N − 1)

√
3/2].

The simplest case is N = 1, when the underlying set Ω0,ε reduces to I × {0},
which can be directly identified with I . The energy E1

ε can then be seen as a “bulk”
spin energy with underlying lattice Z, and can be reduced to a ferromagnetic energy
by adding the constant 4 in each interaction in order to make the sum positive; i.e.,
considering

E1
ε (u) = −

∑
i

((ui − ui−1)
2 − 4), (4)
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and by the change of variables wi = (−1)iui (see also [1]). Then the thin-film limit
is defined on piecewise-constant functions w on I with values in {−1, 1} and is
given by

F 1(w) = 4 #(S(w)),

where S(w) is the discontinuity set of w. Note that the constant w = 1 corresponds
to taking ui = (−1)i , while the constant w = −1 corresponds to ui = (−1)i+1, so
that the two ground states in terms of v correspond to two variants of oscillating u

(modulated phases).
As compared to the “total frustration” of the triangular lattice the case N = 1

already hints that a dimensional-reduction process applied to this example of
antiferromagnetic interactions may give a continuum limit taking into account only
a finite number of parameters. However, this case seems oversimplified since no
trace of the triangular geometry of the original lattice remains. In the rest of the
paper we analyze the case N > 1 to show how an N-dependent finite-parameter
description holds.

2 Analysis of the Thin-Film Limit

We first consider more in detail the case N = 2, which is pictured in Fig. 2. In the
notation above, the underlying thin film is

Ω2,ε = I × [0, ε√3/2].

In order to simplify the notation we also introduce a non-orthogonal coordinate
system as in figure, so that the points in the thin film are parameterized by

Z2 := {(n,m) : n ∈ Z,m ∈ {0, 1}}.

Fig. 2 Two-layer thin film with reference axes
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We can write the energy as a sum of terms of the form

−
(
(u(n+1,0)−u(n,0))

2+(u(n,1)−u(n,0))
2+(u(n+1,1)−u(n,1))

2+(u(n+1,1)−u(n,0))
2
)
.

We may consider the case when the underlying interval is simply R. In this case,
we may sum on Z after adding a constant and regrouping the interactions as follows
to avoid +∞−∞ indeterminate forms:

E2
ε (u) = −

∑
n∈Z

(
(u(n+1,0) − u(n,0))

2

+1

2
(u(n+1,1) − u(n,0))

2 + 1

2
(u(n+1,1) − u(n+1,0))

2 − 6
)

(5)

−
∑
n∈Z

(
(u(n+1,1) − u(n,1))

2 + 1

2
(u(n+1,1) − u(n,0))

2 + 1

2
(u(n,1) − u(n,0))

2 − 6
)
.

In this way the energy is split in its contributions in each triangle. The first sum takes
into account triangles with a side in the lower layer m = 0 and the second sum takes
into account triangles with a side in the upper layer m = 1. The factor 1/2 takes
into account that non-horizontal sides belong to two neighbouring triangles. Note
that not having alternate states on the horizontal (boundary) sides is more “costly”
than on the others.

Note that the term

−
(
(u(n+1,0) − u(n,0))

2 + 1

2
(u(n+1,1) − u(n,0))

2 + 1

2
(u(n+1,1) − u(n+1,0))

2 − 6
)

is always non-negative, and it is zero only if

u(n+1,0) �= u(n,0).

In the same way, each term in the second sum is minimized only when u(n+1,1) �=
u(n,1). This observation implies that ground states, with zero energy are all u that
satisfy

u(n,0) = (−1)n for all n or u(n,0) = (−1)n+1 for all n,

u(n,1) = (−1)n for all n or u(n,1) = (−1)n+1 for all n;

i.e., with alternating values of u on the two horizontal layers. Hence, we have four
ground states determined by their values at n = 0

(u(0,0), u(0,1)) ∈ {−1, 1}2 =: X2.
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Fig. 3 A picture of ground states, with black/white circles indicating −1/1 values

For x ∈ X2 we define

vx : Z2 → {−1, 1}

as the ground state with (vx(0, 0), vx(0, 1)) = x.
Note that the two ground states determined by ±(1, 1) (or by ±(−1, 1),

correspondingly), differ by a horizontal translation by (1, 0), while those determined
by (−1, 1) and (1,−1) are obtained by a reflection around a vertical line from (1, 1)
and (−1,−1) (see Fig. 3).

Note, moreover, that if u is a function with finite energy then there are a finite
number of indices n such that u does not minimize the terms in the sum in (5). This
implies that a sequence of functions with equibounded energy is precompact for the
following notion of convergence.

The discrete-to-continuum convergence of a family of functions uε : Z2 →
{−1, 1} to a function v : R → X2 with a finite number of points of discontinuity
S(v) = {t1, . . . , tK } is defined by the requirement that, denoted by xj (j =
0, . . . ,K) the constant value of v on (tj , tj+1) (where t0 = −∞ and tK+1 = +∞),
for every δ > 0 if ε is small enough then uεn is equal to the ground state vxj

respectively for

− 1

εδ
< n <

1

ε
(t1 − δ) if j = 0

1

ε
(tj + δ) < n <

1

ε
(tj+1 − δ) if j ∈ {1, . . . ,K − 1}

1

ε
(tK + δ) < n <

1

εδ
if j = K.

This convergence may be equally stated as the convergence of the auxiliary
functions ũε : R→ V ∪ {(0, 0)} defined by

ũε(t) =
⎧⎨
⎩
x if uεj = vx on

{⌊ t
ε

⌋
,
⌊ t
ε

⌋
+ 1

}
× {0, 1}

(0, 0) otherwise



Rigidity Effects for Antiferromagnetic Thin Films: A Prototypical Example 211

in L1
loc(R). In the definition of the function ũε we scale the domain by ε and

identify the value on two consecutive triangles (i.e., on the vertices of a unit square
in the parameterization on Z2) with the common parameter x ∈ X2 when the
corresponding uε coincides with vx on those triangles. This parameter x ∈ X2 is
well defined except for a finite number of � t

ε
4, so we may arbitrarily extend the

definition by (0, 0) on the complement.
We may describe the limit behaviour of the energies E2

ε as defined in (5) by
exhibiting a Γ -limit with respect to the convergence above, of the form

F 2(v) =
∑

t∈S(v)
ϕ(v(t−), v(t+)), (6)

where t± ∈ X2 are the left-hand and right-hand limit values of v at t . The energy
function ϕ(x, x ′) is obtained by computing the optimal transition between two states
vx and vx

′
.

The picture in Fig. 4 describes an optimal transition when x = (1, 1) and x ′ =
(−1,−1), or the converse. We may consider v(t) = x for t > 0 and v(t) = x ′ for
t < 0 and uε → v. In this case there must be some index n with a non-optimal
interaction uε(n, 0) = uε(n + 1, 0) and some index n′ with uε(n′, 1) = uε(n′ +
1, 1). In the picture such a uε is shown, optimizing all other interactions. The thick
lines correspond to frustrated interactions. Computing the energy of such uε , which
amounts just to the contributions of the two triangles highlighted in the picture,
we obtain the value ϕ((1, 1), (−1,−1)) = 4. The same argument and a vertical
symmetry argument shows that ϕ((1,−1), (−1, 1)) has the same value.

Similarly, in order to describe the optimal transition when x = (1, 1) and
x ′ = (−1, 1) or the converse, we may remark that optimal uε must have uε(n, 0) =
uε(n+ 1, 0) for some index n. In Fig. 5 we picture an optimal such uε, for which all
interactions are optimal except one with uε(n, 0) = uε(n+1, 0). The corresponding
computation gives ϕ((1, 1), (−1, 1)) = 2.

Finally, in the case x = (1, 1) and x ′ = (1,−1), or the converse, we again note
that optimal uε must have uε(n, 1) = uε(n + 1, 1) for some index n, but there are
two equivalent optimal arrangements, whether uε(n, 0) = uε(n, 1) or uε(n, 0) �=

Fig. 4 An optimal transition between (1, 1) and (−1,−1)

Fig. 5 An optimal transitions between (1, 1) and (−1, 1)
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Fig. 6 Optimal transitions between (1, 1) and (1,−1)

Fig. 7 Split optimal transitions between (1, 1) and (1,−1)

Fig. 8 Three-layer thin film with reference axes

uε(n, 1). These two cases are pictured in Fig. 6 and both give ϕ((1, 1), (−1, 1)) = 6.
Note that another optimal arrangement is obtained e.g. by combining the transitions
between (1, 1) and (−1, 1) and between (−1, 1) and (1,−1). This corresponds to
the lower case in Fig. 6 splitting the three non-optimal triangles into a pair with a
common side and an isolated one (see Fig. 7). Analogously, the two joined triangles
can be similarly split.

The Γ -limit result is finally obtained by superposing these constructions to obtain
a recovery sequence for an arbitrary v.

Using a notation analogous to the one introduced above, we can now generalize
this computation to a larger number of layers. For N > 2 we will not compute
the energy function ϕ as above, but focus on its definition and in particular on its
domain.

We first consider the case N = 3, whose underlying thin film is pictured in Fig. 8
together with the reference axes. The corresponding reference set is

Z3 := {(n,m) : n ∈ Z,m ∈ {0, 1, 2}}.
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Fig. 9 A non-periodic minimizer

We can again consider the antiferromagnetic energy as a sum of the contribution
of each triangle. The difference with the case N = 2 is that, while the energy of a
triangle with a horizontal side on the top or bottom layer is as before, triangles with
horizontal sides in the interior give an energy with a weight 1/2 for all sides. For
example, we have the contribution

− 1
2

(
(u(n+1,1) − u(n,1))

2 + (u(n,1) − u(n,0))
2 + (u(n+1,1) − u(n,0))

2 − 4
)

for triangles in the lower row of triangles and a side in the middle layer of points.
For every x = (x0, x1, x2) ∈ {±1}3 we denote the ground state given by

ux(n,m) = xm(−1)n for all n ∈ Z and m ∈ {0, 1, 2}.

Differently than the case N = 2, we note that a function u with zero energy is not
necessarily one of those eight ground states, but may otherwise coincide with two
of those for n ≥ M and for n < −M , respectively, for some M ∈ N. Such a case
is pictured in Fig. 9. Note that all functions with zero energy must have alternating
values for m = 0 and m = 2. This implies that if, for example, u(n, 2) = u(n, 1)
for some n then the value of u is determined for (n′, 1) and (n′, 2) for all n′ ≤ n as
an alternating state. Similarly, if u(n− 1, 0) = u(n, 1). A symmetric argument also
applies for minimizers which are determined for n′ ≥ n. This observation eventually
implies that the one in Fig. 9 is the only non-periodic minimizer, up to translations.

As a consequence, we may define a convergence uε → v analog to the case
N = 2, where now v : R → X3 := { −1, 1}3. We may describe the Γ -limit as
a thin-film limit F 3 with the same form as (6), with ϕ(x, x ′) the optimal-transition
energy. The observations above show that ϕ > 0 except for

ϕ((1,−1,−1), (1, 1,−1)) = ϕ((−1, 1, 1), (−1− 1, 1)) = 0.

Note that ϕ((1,−1,−1), (1, 1,−1)) �= ϕ((1, 1,−1), (1,−1,−1)) so that ϕ is not
symmetric, and that the energyF 3 is coercive even though its integrand is not strictly
positive.

The two cases above carry the relevant information to treat the general case,
which shows that the description of the thin-film limit needs a parameter space of
increasing, but finite, cardinality; namely 2N where N is the number of layers. We
briefly sketch the argument, which generalizes what has been noticed above.
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We consider a minimizer u.

1) we first note that the upper layer must be alternating; i.e., u(n+1, N) �= u(n,N)

for all n
2) we either have u(n,N) �= u(n−1, N−1) for all n or u(n1, N) = u(n1−1, N−1)

for some n1. In this case by minimality we have u(n1, N−1) �= u(n1−1, N−1).
By Step 1 above we have u(n1+ 1, N) = u(n1, N − 1), so that we may proceed
by induction and conclude that u(n,N) = u(n−1, N−1) for all n ≥ n1. Hence,
either u is alternating on the N − 1-th layer, or it is alternating for n < n1 and
n > n1.

3) proceeding in the same way we deduce that u is alternating in the (N − 2)-th
layer up to at most three indices (one less than n1, one larger than n1, and n1
itself). We note that, as in Step 2, for n > n1 there may exist a unique n2 such
that u(n,N−1) = u(n−1, N−2) for n ≥ n2 and u(n,N−1) �= u(n−1, N−2)
for n < n2, but not the converse.

4) Proceeding by finite induction on the label of the layer, we deduce that n �→
u(n, k) is alternating for each k ∈ {1, . . . , N} up to a bounded number of n, with
the bound independent of n. Moreover, in each interval of n where n �→ u(n, k)

is alternating there may exist a unique n such that u(n, k) = u(n− 1, k − 1) for
n ≥ n and u(n, k) �= u(n− 1, k − 1) for n < n, but not the converse. Moreover,
n �→ u(n,N) and n �→ u(n, 0) are alternating.

Note that this characterization also holds locally if we suppose that u has zero
energy in an interval of n.

From this characterization, we deduce that if uε is a sequence with bounded
energy, then it must coincide with an alternating state on each layer up to a finite
number of indices. At this point we may proceed as above. The description in
the general case is summarized in the conclusions below.

3 Conclusions

We consider an infinite thin film parameterized on the set

TN,ε =
(
R× [0, (N − 1)ε

√
3/2]) ∩ εT,

where T is a regular triangular lattice with one lattice vector (1, 0), and the
corresponding nearest-neighbour antiferromagnetic energy EN

ε . In order to avoid
indeterminate forms such energy is written as the sum of the contribution of
each triangle of side-length ε contained in TN,ε , renormalized so that separately
minimizing in each triangle gives zero energy. Note that the normalization is
different if the triangle has one horizontal side on the upper or lower layer.
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We have shown that there are 2N distinct ground states of EN
1 , which are

two-periodic in the direction (1, 0). On each of the layers such ground states are
alternating, so that each of these ground states ux can be parameterized by a point x
in the set

ZN := {±1}N .

We may define a compact convergence of discrete functions uε : TN,ε →
{−1, 1} to a function v : R → ZN with a finite number of discontinuities, which
highlights that, up to a finite number of locations, a function uε with bounded energy
EN

ε coincides with a scaled version of the periodic minimizers.
With respect to this convergence the Γ -limit has the form

FN(v) =
∑

t∈S(v)
ϕN(v(t−), v(t+)),

where S(v) is the set of discontinuity points of v. The function ϕN : ZN × ZN →
[0,+∞) is an optimal-transition energy defined by

ϕN(x, x ′) = min
{
EN

1 (u) : u = ux on TN,1 ∩ (−∞,−M],

u = ux
′
on TN,1 ∩ [M,+∞),M ∈ N

}

(note that it suffices to take M = N since we have a bound by a test function for
which only at most one column of N triangles is not optimal). The energy FN is
coercive; i.e., its finiteness implies a finite number of discontinuity points of v. Note
that the description above also holds for thin films with R substituted by a finite
interval [a, b], up to adding a boundary term. This extra term is not of interest since
we focus on the number of limit parameters and not on the details of the energy.

The analysis above shows that the surface effects of the thin-film environment
(i.e., the fact that ground states need to be alternating on the upper and lower layers
due to the asymmetry of boundary sites) propagates inside the thin-film to limit the
number of parameters needed to describe the limit. This rigidity effect “weakens” as
the number of layers tends to infinity, as is testified by the (exponentially) diverging
number of parameters. In a sense then, the “total frustration” of the triangular lattice
can be seen as a limit behaviour as N →+∞.

Acknowledgements This work stems from very inspiring discussions with Roberto Alicandro
and Marco Cicalese at TU Munich.
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Limiting Problems for a Nonstandard
Viscous Cahn–Hilliard System
with Dynamic Boundary Conditions

Pierluigi Colli, Gianni Gilardi, and Jürgen Sprekels

Abstract This note is concerned with a nonlinear diffusion problem of phase-field
type, consisting of a parabolic system of two partial differential equations, com-
plemented by boundary and initial conditions. The system arises from a model of
two-species phase segregation on an atomic lattice and was introduced by Podio-
Guidugli in Ric. Mat. 55 (2006), pp. 105–118. The two unknowns are the phase
parameter and the chemical potential. In contrast to previous investigations about
this PDE system, we consider here a dynamic boundary condition for the phase
variable that involves the Laplace-Beltrami operator and models an additional
nonconserving phase transition occurring on the surface of the domain. We are
interested in some asymptotic analysis and first discuss the asymptotic limit of the
system as the viscosity coefficient of the order parameter equation tends to 0: the
convergence of solutions to the corresponding solutions for the limit problem is
proven. Then, we study the long-time behavior of the system for both problems,
with positive or zero viscosity coefficient, and characterize the omega-limit set in
both cases.
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1 Introduction

A recent line of research originated from the following evolutionary system of
partial differential equations:

2ρ ∂tμ+ μ∂tρ −Δμ = 0 and μ ≥ 0 (1.1)

−Δρ + F ′(ρ) = μ (1.2)

in Q∞ := Ω × (0,+∞), where Ω ⊂ R
3 is a bounded and smooth domain

with boundary Γ . The system (1.1)–(1.2) comes out from a model for phase
segregation through atom rearrangement on a lattice that has been proposed by
Podio-Guidugli [48]. This model (see also [12] for a detailed derivation) is a
modification of the Fried–Gurtin approach to phase segregation processes (cf. [34,
41]). The order parameter ρ, which in many cases represents the (normalized)
density of one of the phases, and the chemical potential μ are the unknowns of
the system. Moreover, F ′ represents the derivative of a double-well potential F .
Besides everywhere defined potentials, a typical and important example of F is the
so–called logarithmic double-well potential given by

Flog(r) := (1+ r) ln(1+ r)+ (1− r) ln(1− r)+ α1(1− r2)+ α2r,

r ∈ (−1, 1), (1.3)

for some real coefficients α1, α2. Note that, if α2 is taken null and α1 > 1, it turns
out that F actually exhibits two wells, with a local maximum at r = 0. In the case
when α2 �= 0, then one of the two minima of F is preferred, in the sense that there is
a global minimum point (positive if α2 < 0, negative if α2 > 0) of the function. As
a particular feature of (1.3), observe that the derivative of the logarithmic potential
becomes singular at ±1.

About equations (1.1) and (1.2), we point out that the model developed in [48] is
based on a local free energy density (in the bulk) of the form

ψ(ρ,∇ρ,μ) = −μρ + F(ρ)+ 1

2
|∇ρ|2. (1.4)

From (1.4) one derives equations (1.1)–(1.2), which must be complemented with
boundary and initial conditions. As far as the former are concerned, the standard
boundary conditions for this class of problems are the homogeneous Neumann ones,
namely

∂νμ = ∂νρ = 0 on Σ∞ := Γ × (0,+∞), (1.5)

where ∂ν denotes the outward normal derivative. Combining now (1.1)–(1.2)
with (1.5), we obtain a set of equations and conditions that is a variation of
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the celebrated Cahn–Hilliard system originally introduced in [1] and first studied
mathematically in [31] (for an updated list of references on the Cahn–Hilliard
system, see [42]). Nonetheless, an initial value problem for (1.1)–(1.2), (1.5) turns
out to be strongly ill-posed (see [15, Subsect. 1.4], where an example is given):
indeed, the related problem may have infinitely many smooth and even nonsmooth
solutions. Then, two small regularizing parameters ε > 0 and δ > 0 were introduced
and considered in [12], which led to the regularized model equations

(
ε + 2ρ

)
∂tμ+ μ∂tρ −Δμ = 0 , (1.6)

δ ∂tρ −Δρ + F ′(ρ) = μ . (1.7)

This regularized system has been deeply examined in [12], when both ε and δ are
positive and fixed. In addition, let us underline that, while one can let ε tend to
zero (see [16]) and obtain a solution to the limiting problem with ε = 0, it seems
extremely difficult to pass to the limit as δ goes to 0. In fact, ill-posedness still
holds for δ = 0, even if ε is kept positive. Hence, one has to assume that δ is a
fixed positive coefficient. Therefore, from now on, we take δ = 1, without loss of
generality. Let us point out that the long-time behavior of the solutions has been
studied both with ε > 0 (cf. [12]) and ε = 0 (cf. [16]).

The system (1.6)–(1.7) constitutes a modification of the so-called viscous Cahn–
Hilliard system (see [47] and the recent contributions[3, 20, 22] along with their
references). We point out that (1.6)–(1.7) was analyzed, in the case of the boundary
conditions (1.5), in the papers [12, 14, 18] concerning well-posedness, regularity,
and optimal control. Later, the local free energy density (1.4) was generalized to the
form

ψ(ρ,∇ρ,μ) = −μg(ρ)+ F(ρ)+ 1

2
|∇ρ|2, (1.8)

thus putting g(ρ) in place of ρ, where g is a nonnegative function on the domain
of F . This leads to the system

(
ε + 2g(ρ)

)
∂tμ+ μg′(ρ) ∂tρ −Δμ = 0, (1.9)

∂tρ −Δρ + F ′(ρ) = μg′(ρ), (1.10)

which is a generalization of (1.6)–(1.7) and has been studied in [13, 17] for the case
ε = 1. Let us mention also the contribution [9] dealing with the time discretization
of the problem and proving convergence results and error estimates. The related
phase relaxation system (in which the diffusive term −Δρ disappears from (1.10)),
has been dealt with in [10, 11, 19]. We also point out the recent papers [23–25],
where a nonlocal version of (1.9)–(1.10)—based on the replacement of the diffusive
term of (1.10) with a nonlocal operator acting on ρ—has been largely investigated,
also from the side of optimal control.
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Now, if we take ε = 0 in (1.9)–(1.10), we obtain

2g(ρ) ∂tμ+ μg′(ρ) ∂tρ −Δμ = 0 (1.11)

∂tρ −Δρ + F ′(ρ) = μg′(ρ), (1.12)

which looks like a generalization of the viscous version of (1.1)–(1.2), where the
affine function ρ �→ ρ is replaced by a concave function ρ �→ g(ρ), with g

possessing suitable properties that are made precise in the later assumption (2.5).
In particular, the new g may be symmetric and strictly concave: a possible simple
choice of g satisfying (2.5) is

g(r) = 1− r2, r ∈ [−1, 1]. (1.13)

Note that, if one collects (1.3) and (1.13) and assumes α2 �= 0, the combined
function

− μg(ρ)+ Flog(ρ) (which is a part of ψ) (1.14)

shows a global minimum in all cases, and it depends on the values of (α1 − μ) and
α2 which minimum actually occurs. Let us notice that the function in (1.14) turns
out to be convex in the whole of (−1, 1) for sufficiently large values of μ. On the
other hand, the framework fixed by assumptions (2.5)–(2.8) allows for more general
choices of g and F .

However, until now the boundary conditions (1.5), of Neumann type for both μ

and ρ, have been considered in our discussion. Instead, in the present work we treat
the dynamic boundary condition for ρ, i.e., we complement the above systems with

∂νμ = 0 and ∂νρ + ∂tρΓ −ΔΓ ρΓ + F ′Γ (ρΓ ) = 0 on Σ∞, (1.15)

where ρΓ is the trace of ρ, ΔΓ is the Laplace-Beltrami operator on the boundary,
F ′Γ is the derivative of another potential FΓ having more or less the same behavior
as F , and the right-hand side of the dynamic boundary condition equals zero, just
for simplicity. Indeed, one could consider a nonzero forcing term satisfying proper
assumptions, as done in [26]. Once again, we have to add initial conditions.

Thus, we are concerned with a total free energy of the system which also
includes a contribution on the boundary; in fact, we postulate that a phase transition
phenomenon is occurring as well on the boundary, and the physical variable on the
boundary is just the trace of the phase variable in the bulk. This corresponds to a
total free energy functional of the form


[ρ(t), ρΓ (t), μ(t)] =
∫
Ω

[
− μg(ρ)+ F(ρ)+ 1

2
|∇ρ|2

]
(t)

+
∫
Γ

[
[−uΓ ρΓ + FΓ (ρΓ )+ 1

2
|∇Γ ρΓ |2

]
(t), t ≥ 0, (1.16)
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where ∇Γ is the surface gradient and uΓ may stand for the source term that
exerts a (boundary) control on the system. From this expression of the total free
energy, one recovers the PDE system resulting from equations (1.11)–(1.12) and
the boundary conditions (1.15), with uΓ in place of 0 in the right-hand side of the
second condition. In relation to this, we would like to mention the contribution [27]
dealing with the optimal boundary control problem for the system (1.6)–(1.7), (1.15)
with ε = 1.

As for the dynamic boundary conditions, we would like to add some comments
on the recent growing interest in the mathematical literature, either for the justifi-
cation (see, e.g., [32, 33, 44]) or for the investigation of systems including dynamic
boundary conditions. Without trying to be exhaustive, we point out at least the
contributions [2, 4–8, 20–22, 28–30, 35–40, 43, 45, 46, 49, 50], which are concerned
with various types of systems endowed with the dynamic boundary conditions for
either some or all of the unknowns. Our citations mostly refer to phase-field models
involving the Allen–Cahn and Cahn–Hilliard equations, whose structure is generally
simpler than the one considered in the present paper.

Our aim here is investigating the long-time behavior of the full system in both
the cases ε > 0 and ε = 0 (similar to [12, 16], in which the Neumann boundary
conditions (1.5) were considered). More precisely, we show that the ω-limit of any
trajectory in a suitable topology consists only of stationary solutions. In order to
treat this problem also with ε = 0, we first study the asymptotics as ε tends to zero.
To do that, we underline that the reasonable and somehow natural assumptions (2.5)
for g along with the requirements (2.6)–(2.8) on F and FΓ allow us to show that
the variables ρ and ρΓ are strictly separated from the (singular) values ±1. Indeed,
we can prove this separation property and obtain the strict positivity of g(ρ) as a
consequence.

The paper is organized as follows: in the next section, we list our assumptions
and notations and state our results, while the corresponding proofs are given in the
last two sections. Precisely, in Sect. 3, we perform the asymptotic analysis as ε tends
to zero and prove the well-posedness of the problem for ε = 0; in Sect. 4, we study
the long-time behavior of the solution under the assumption ε ≥ 0.

2 Statement of the Problem and Results

In this section, we state precise assumptions and notations and present our results.
First of all, the set Ω ⊂ R

3 is assumed to be bounded, connected and smooth.
As in the Introduction, ∂ν and ΔΓ stand for the outward normal derivative and the
Laplace-Beltrami operator on the boundary Γ . Furthermore, we denote by ∇Γ the
surface gradient.

If X is a (real) Banach space, ‖ · ‖X denotes both its norm and the norm of X3,
X∗ is its dual space, and X∗〈 · , · 〉X is the dual pairing between X∗ and X. The only
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exception from this convention is given by the Lp spaces, 1 ≤ p ≤ ∞, for which we
use the abbreviating notation ‖ · ‖p for the norms in Lp(Ω). Furthermore, we put

H := L2(Ω) , V := H 1(Ω) and W := {v ∈ H 2(Ω) : ∂νv = 0}, (2.1)

HΓ := L2(Γ ) and VΓ := H 1(Γ ), (2.2)

H := H ×HΓ and V := {(v, vΓ ) ∈ V × VΓ : vΓ = v|Γ }. (2.3)

We also set, for convenience,

Qt := Ω × (0, t) and Σt := Γ × (0, t) for 0 < t < +∞,

Q∞ := Ω × (0,+∞) and Σ∞ := Γ × (0,+∞), (2.4)

and often use the shorter notations Q and Σ if t = T , a fixed final time T ∈
(0,+∞).

Now, we list our assumptions. For the structure of our system, we are given three
functions g ∈ C2[−1, 1] and F, FΓ ∈ C2(−1, 1) which satisfy

g ≥ 0, g′′ ≤ 0, g′(−1) > 0 and g′(1) < 0, (2.5)

lim
r↘−1

F ′(r) = lim
r↘−1

F ′Γ (r) = −∞ and lim
r↗1

F ′(r) = lim
r↗1

F ′Γ (r) = +∞,

(2.6)

F ′′(r) ≥ −C and F ′′Γ (r) ≥ −C, for every r ∈ (−1, 1), (2.7)

|F ′(r)| ≤ η|F ′Γ (r)| + C for every r ∈ (−1, 1), (2.8)

with some positive constants C and η.
For the initial data, we make rather strong assumptions in order to apply the

results of [26] without any trouble. However, our first assumption on μ0 could be
replaced by μ0 ∈ V . Precisely, we assume that

μ0 ∈ W and μ0 ≥ 0 in Ω ; (2.9)

ρ0 ∈ H 2(Ω) , ρ0|Γ ∈ H 2(Γ ) , minρ0 > −1 and maxρ0 < 1 . (2.10)

At this point, we are ready to state our problem. For ε ≥ 0, we look for a triplet
(μ, ρ, ρΓ ) satisfying the regularity requirements and solving the problem stated
below. As for the regularity, we pretend that

μ ∈ H 1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W), (2.11)

(ρ, ρΓ ) ∈ W 1,∞(0, T ;H) ∩H 1(0, T ;V) ∩ L∞(0, T ;H 2(Ω)×H 2(Γ )),

(2.12)

μ ≥ 0 , −1 < ρ < 1 and (F ′(ρ), F ′Γ (ρΓ )) ∈ L∞(0, T ;H), (2.13)
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for every finite T > 0, and the problem reads

(
ε + 2g(ρ)

)
∂tμ+ μg′(ρ)∂tρ −Δμ = 0 a.e. in Q∞ , (2.14)

∫
Ω

∂tρ v +
∫
Γ

∂tρΓ vΓ +
∫
Ω

∇ρ · ∇v +
∫
Γ

∇Γ ρΓ · ∇Γ vΓ

+
∫
Ω

F ′(ρ)v +
∫
Γ

F ′Γ (ρΓ )vΓ =
∫
Ω

μg′(ρ)v

a.e. in (0,+∞) and for every (v, vΓ ) ∈ V , (2.15)

μ(0) = μ0 and ρ(0) = ρ0 a.e. in Ω . (2.16)

Notice that the Neumann boundary condition ∂νμ = 0 and the fact that ρΓ is
the trace of ρ on Σ are contained in (2.11) and (2.12), respectively, due to the
definitions (2.1)–(2.3) of the spaces involved. By accounting for the regularity con-
ditions (2.11)–(2.13), it is clear that the variational problem (2.15) is equivalent to

∂tρ −Δρ + F ′(ρ) = μg′(ρ) in Q∞ , (2.17)

∂νρ + ∂tρΓ −ΔΓ ρΓ + F ′Γ (ρΓ ) = 0 on Σ∞ . (2.18)

Moreover, it follows from standard embedding results (see, e.g., [51, Sect. 8, Cor. 4])
that ρ ∈ C0(Q) and thus also ρΓ ∈ C0(Σ).

Our starting point is the well-posedness result for ε > 0 that we state below and
is already known. Indeed, recalling (2.6)–(2.7), we set

β̂(r) := F(r)− F(0)− F ′(0)r + C

2
r2 for r ∈ (−1, 1) and π̂ := F − β̂,

and analogously introduce β̂Γ and π̂Γ , starting from FΓ . Then, we consider the
convex and lower semicontinuous extensions of β̂ and β̂Γ to the whole of R and
smooth extensions of π̂ and π̂Γ with bounded second derivatives. Therefore, the
assumptions of [26, Thm. 2.1] are satisfied and the following well-posedness result
holds true.

Theorem 1 Assume (2.5)–(2.8) and ε > 0 for the structure and (2.9)–(2.10) for
the initial data. Then problem (2.14)–(2.16) has a unique solution (με, ρε, ρε

Γ )

satisfying the regularity properties (2.11)–(2.13).

Our aim is the following: i) by starting from the solution (με, ρε, ρε
Γ ), we let

ε tend to zero and prove that problem (2.14)–(2.16) with ε = 0 has a solution
(μ, ρ, ρΓ ); ii) such a solution is unique; iii) for ε ≥ 0, we study the ω-limit of
every trajectory.
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Indeed, for i) and ii), we prove the following result in Sect. 3:

Theorem 2 Assume (2.5)–(2.8) for the structure and (2.9)–(2.10) for the initial
data. Then problem (2.14)–(2.16) with ε = 0 has a unique solution (μ, ρ, ρΓ )

satisfying the regularity properties (2.11)–(2.13). Moreover, for some constants
ρ∗, ρ∗ ∈ (−1, 1) that depend only on the shape of the nonlinearities and on the
initial data, both (μ, ρ, ρΓ ) and the solution (με, ρε, ρε

Γ ) given by Theorem 1
satisfy the separation property

ρ∗ ≤ ρ ≤ ρ∗ and ρ∗ ≤ ρε ≤ ρ∗ in Ω × [0,+∞). (2.19)

Finally, (με, ρε, ρε
Γ ) converges to (μ, ρ, ρΓ ) in a proper topology.

The last Sect. 4 is devoted to study the long-time behavior of the solution in both
the cases ε > 0 and ε = 0. To this end, for a fixed ε ≥ 0, we use the simpler symbol
(μ, ρ, ρΓ ) for the solution on [0,+∞) and observe that the regularity (2.11)–(2.13)
on every finite time interval implies that (μ, ρ, ρΓ ) is a continuous (H × V)-
valued function. In particular, it can be evaluated at every time t , and the following
definition of ω-limit is completely meaningful:

ω(μ, ρ, ρΓ ) :=
{
(μω, ρω, ρωΓ ) ∈ H × V : (μ, ρ, ρΓ )(tn)→ (μω, ρω, ρωΓ )

weakly in H × V for some sequence tn ↗ +∞
}
. (2.20)

Besides, we consider the stationary solutions. It is immediately seen that a stationary
solution is a triplet (μs, ρs, ρsΓ ) satisfying the following conditions: the first
component μs is a constant, and (ρs, ρsΓ ) ∈ V is a solution to the system

∫
Ω

∇ρs · ∇v +
∫
Γ

∇Γ ρsΓ · ∇Γ vΓ +
∫
Ω

F ′(ρs)v +
∫
Γ

F ′Γ (ρsΓ )vΓ

=
∫
Ω

μs g
′(ρs)v for every (v, vΓ ) ∈ V. (2.21)

In terms of a boundary value problem, the conditions (ρs, ρsΓ ) ∈ V and (2.21) mean
that

−Δρs + F ′(ρs) = μs g
′(ρs) in Ω,

ρsΓ = ρs |Γ and ∂νρs −ΔΓ ρsΓ + F ′Γ (ρsΓ ) = 0 on Γ.
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We prove the following result:

Theorem 3 Assume (2.5)–(2.8) and ε ≥ 0 for the structure and (2.9)–(2.10)
for the initial data, and let (μ, ρ, ρΓ ) be the unique solution to problem (2.14)–
(2.16) satisfying the regularity requirements (2.11)–(2.13). Then the ω-limit (2.20)
is nonempty and consists only of stationary solutions. In particular, there exists a
constant μs such that problem (2.21) has at least one solution (ρs, ρsΓ ) ∈ V.

Throughout the paper, we will repeatedly use the Young inequality

a b ≤ δ a2 + 1

4δ
b2 for all a, b ∈ R and δ > 0, (2.22)

as well as the Hölder inequality and the continuity of the embedding V ⊂ Lp(Ω)

for every p ∈ [1, 6] (since Ω is three-dimensional, bounded and smooth). Besides,
this embedding is compact for p < 6, and also the embedding W ⊂ C0(Ω) is
compact. In particular, we have the compactness inequality

‖v‖4 ≤ δ ‖∇v‖2 + C̃δ ‖v‖2 for every v ∈ H 1(Ω) and δ > 0, (2.23)

where C̃δ depends only on Ω and δ. We also recall some well-known estimates from
trace theory and from the theory of elliptic equations we use in the sequel. For any
v and vΓ that make the right-hand sides meaningful, we have that

‖∂νv‖H−1/2(Γ ) ≤ CΩ

(‖v‖H 1(Ω) + ‖Δv‖L2(Ω)

)
, (2.24)

‖∂νv‖L2(Γ ) ≤ CΩ

(‖v‖H 3/2(Ω) + ‖Δv‖L2(Ω)

)
, (2.25)

‖v‖H 2(Ω) ≤ CΩ

(‖v|Γ ‖H 3/2(Γ ) + ‖Δv‖L2(Ω)

)
, (2.26)

‖v‖H 2(Ω) ≤ CΩ

(‖v‖H 1(Ω) + ‖Δv‖L2(Ω)

)
if ∂νv = 0 on Γ , (2.27)

‖vΓ ‖H 2(Γ ) ≤ CΩ

(‖vΓ ‖H 1(Γ ) + ‖ΔΓ vΓ ‖L2(Γ )

)
, (2.28)

‖vΓ ‖H 3/2(Γ ) ≤ CΩ

(‖vΓ ‖H 1(Γ ) + ‖ΔΓ vΓ ‖H−1/2(Γ )

)
, (2.29)

with a constant CΩ > 0 that depends only on Ω .
We conclude this section by stating a general rule concerning the constants that

appear in the estimates to be performed in the sequel. The small-case symbol c

stands for a generic constant whose values might change from line to line and even
within the same line and depends only on Ω , on the shape of the nonlinearities, and
on the constants and the norms of the functions involved in the assumptions of our
statements. In particular, the values of c do not depend on ε and T if the latter is
considered. A small-case symbol with a subscript like cδ (in particular, with δ = T )
indicates that the constant might depend on the parameter δ, in addition. On the
contrary, we mark precise constants that we can refer to by using different symbols,
like in (2.7)–(2.8) and (2.23)–(2.29).
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3 Well-Posedness

This section is devoted to the proof of Theorem 2. First, we prove the separation
properties (2.19). Then, we show uniqueness. Finally, we prove convergence for the
family {(με, ρε, ρε

Γ )} and derive existence for the problem with ε = 0.

Separation We assume that ε ≥ 0 and that (μ, ρ, ρΓ ) is a solution to prob-
lem (2.14)–(2.16) satisfying (2.11)–(2.13). Recalling (2.10) and (2.5)–(2.7), we may
choose ρ∗, ρ∗ ∈ (−1, 1) such that ρ∗ ≤ ρ0 ≤ ρ∗ and

g′(r) > 0 and F ′(r) < 0 for − 1 < r ≤ ρ∗,

g′(r) < 0 and F ′(r) > 0 for ρ∗ ≤ r < 1.

Now, we show that ρ∗ ≤ ρ ≤ ρ∗, using the positivity of μ (see (2.13)). In fact, we
prove just the upper inequality, since the proof of the other is similar. We test (2.15),
written at the time s, by ((ρ − ρ∗)+, (ρΓ − ρ∗)+)(s) and integrate over (0, t) with
respect to s. We have

1

2

∫
Ω

|(ρ(t)− ρ∗)+|2 + 1

2

∫
Γ

|(ρΓ (t)− ρ∗)+|2

+
∫
Qt

|∇(ρ − ρ∗)+|2 +
∫
Σt

|∇Γ (ρΓ − ρ∗)+|2

+
∫
Qt

F ′(ρ) (ρ − ρ∗)+ +
∫
Σt

F ′Γ (ρΓ ) (ρΓ − ρ∗)+ =
∫
Qt

μg′(ρ)(ρ − ρ∗)+ .

All of the terms on the left-hand side are nonnegative, while the right-hand side is
nonpositive. We conclude that (ρ(t) − ρ∗)+ = 0 in Ω for every t > 0, i.e., our
assertion.

Consequence Since g, F and FΓ are smooth on (−1, 1) and (2.5) implies that g is
strictly positive on (−1, 1), the separation inequalities (2.19) imply the bounds

g(ρ) ≥ g∗ > 0 and |Φ(ρ)| ≤ C∗ in Q∞, |ΦΓ (ρΓ )| ≤ C∗ on Σ∞,

(3.1)

for Φ ∈ {g, g′, g′′, F, F ′, F ′′} and ΦΓ ∈ {FΓ , F ′Γ , F ′′Γ }, and for some constants g∗
and C∗ that depend only on the shape of the nonlinearities and the initial datum ρ0.
In particular, they do not depend on ε.

Uniqueness We prove that the solution to problem (2.14)–(2.16) with ε = 0 is
unique. To this end, we fix T > 0 and two solutions (μi, ρi , ρiΓ ), i = 1, 2, and
show that they coincide on Ω × [0, T ]. We set for convenience μ := μ1 − μ2 and
analogously define ρ and ρΓ . Then, we write (2.14) for both solutions and test the
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difference by μ. Using the identity

{2g(ρ1)∂tμ1 + μ1g
′(ρ1)∂tρ1 − 2g(ρ2)∂tμ2 − μ2g

′(ρ2)∂tρ2}μ
= ∂t

(
g(ρ1) μ

2)+ 2∂tμ2
(
g(ρ1)− g(ρ2)

)
μ+ μ2

(
g′(ρ1)∂tρ1 − g′(ρ2)∂tρ2

)
μ ,

we obtain that
∫
Ω

g(ρ1(t)) |μ(t)|2 +
∫
Qt

|∇μ|2

= −
∫
Qt

2∂tμ2
(
g(ρ1)− g(ρ2)

)
μ−

∫
Qt

μ2
(
g′(ρ1)∂tρ1 − g′(ρ2)∂tρ2

)
μ .

(3.2)

Next, we write (2.15) at the time s for both solutions, test the difference
by ∂t (ρ, ρΓ )(s), and integrate over (0, t) with respect to s. Then, we add∫
Qt

ρ ∂tρ +
∫
Σt

ρΓ ∂tρΓ to both sides. We get

∫
Qt

|∂tρ|2 +
∫
Σt

|∂tρΓ |2 + 1

2
‖ρ(t)‖2

V +
1

2
‖ρΓ (t)‖2

VΓ

= −
∫
Qt

(
F ′(ρ1)− F ′(ρ2)

)
∂tρ −

∫
Σt

(
F ′Γ (ρ1Γ )− F ′Γ (ρ2Γ )

)
∂tρΓ

+
∫
Qt

(
μ1g

′(ρ1)− μ2g
′(ρ2)

)
∂tρ +

∫
Qt

ρ ∂tρ +
∫
Σt

ρΓ ∂tρΓ . (3.3)

At this point, we add (3.2)–(3.3) to each other and use the separation property, the
first inequality in (3.1) for ρ1, and the boundedness and the Lipschitz continuity of
the nonlinearities on [ρ∗, ρ∗]. We find that

g∗
∫
Ω

|μ(t)|2 +
∫
Qt

|∇μ|2 +
∫
Qt

|∂tρ|2

+
∫
Σt

|∂tρΓ |2 + 1

2
‖ρ(t)‖2

V +
1

2
‖ρΓ (t)‖2

VΓ

≤ c

∫
Qt

|∂tμ2| |ρ| |μ| + c

∫
Qt

μ2
(|∂tρ| + |ρ| |∂tρ2|

) |μ|

+ c

∫
Qt

|ρ| |∂tρ| + c

∫
Σt

|ρΓ | |∂tρΓ | + c

∫
Qt

(
μ1|ρ| + |μ|

) |∂tρ| . (3.4)

Many integrals on the right-hand side can be dealt with just using the Hölder and
Young inequalities. Thus, we consider just the terms that need some treatment. In
the next lines, we owe to the continuous embeddings V ⊂ Lp(Ω) for p ∈ [1, 6]
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and W ⊂ C0(Ω), and δ is a positive parameter. We have

∫
Qt

|∂tμ2| |ρ| |μ| ≤
∫ t

0
‖∂tμ2(s)‖2‖ρ(s)‖4‖μ(s)‖4 ds

≤ δ

∫ t

0
‖μ(s)‖2

V ds + cδ

∫ t

0
‖∂tμ2(s)‖2

H ‖ρ(s)‖2
V ds ,

and we notice that the function s �→ ‖∂tμ2(s)‖2
H belongs to L1(0, T ) by (2.11)

for μ2. We estimate the next integral as follows,

∫
Qt

μ2
(|∂tρ| + |ρ| |∂tρ2|

) |μ|

≤
∫ t

0
‖μ2(s)‖∞‖∂tρ(s)‖2‖μ(s)‖2 ds

+ c

∫ t

0
‖μ2(s)‖6‖ρ(s)‖6‖∂tρ2(s)‖6‖μ(s)‖6 ds

≤ δ

∫ t

0
‖∂tρ(s)‖2

H ds + cδ

∫ t

0
‖μ2(s)‖2

W ‖μ(s)‖2
H ds

+ δ

∫ t

0
‖μ(s)‖2

V ds + cδ

∫ t

0
‖μ2(s)‖2

V ‖∂tρ2(s)‖2
V ‖ρ(s)‖2

V ds ,

and we point out that the functions s �→ ‖μ2(s)‖2
W , s �→ ‖μ2(s)‖2

V , and
s �→ ‖∂tρ2(s)‖2

V , belong to L1(0, T ), L∞(0, T ) and L1(0, T ), respectively, due
to (2.11)–(2.12) for μ2 and ρ2. Finally, we estimate one further term. We have that

∫
Qt

μ1|ρ| |∂tρ| ≤
∫ t

0
‖μ1(s)‖4‖ρ(s)‖4‖∂tρ(s)‖2 ds

≤ δ

∫ t

0
‖∂tρ‖2

H ds + cδ

∫ t

0
‖μ1(s)‖2

V ‖ρ(s)‖2
V ds ,

where the function s �→ ‖μ1(s)‖2
V belongs to L∞(0, T ). Therefore, by choosing

δ small enough and coming back to (3.4), we can apply the Gronwall lemma to
conclude that (μ, ρ, ρΓ ) vanishes on Ω × [0, T ].

Now, we show the existence of a solution to problem (2.14)–(2.16) with ε = 0
and prove the last sentence of the statement of Theorem 2. To do that, it suffices
to establish a number of a priori estimates on the solution (με, ρε, ρε

Γ ) on an
arbitrarily fixed time interval [0, T ] and to use proper compactness results. As the
uniqueness of the solution to the limiting problem is already known, it follows that
the convergence properties proved below for a subsequence actually hold for the
whole family. In view of the asymptotic behavior that we aim to study in the
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next section, we distinguish in the notation the constants that may depend on T ,
as explained at the end of Sect. 2. Of course, we can assume ε ≤ 1. In order to
keep the length of the paper reasonable, we perform some of the next estimates just
formally.

First a Priori Estimate We observe that

{
(ε + 2g(ρε))∂tμ

ε + μεg′(ρε)∂tρ
ε
}
με = ∂t

((
ε
2 + g(ρε)

)|με|2).
Hence, if we multiply (2.14) by με and integrate over Qt , we obtain that

ε

2

∫
Ω

|με(t)|2 +
∫
Ω

g(ρε(t))|με(t)|2 +
∫
Qt

|∇με|2 = ε

2

∫
Ω

μ2
0 +

∫
Ω

g(ρ0)μ
2
0 .

By accounting for (2.19) and (3.1), we deduce, for every t ≥ 0, the global estimate

g∗
∫
Ω

|με(t)|2 +
∫
Qt

|∇με|2 ≤ 1

2

∫
Ω

μ2
0 +

∫
Ω

g(ρ0)μ
2
0 = c . (3.5)

Second a Priori Estimate We write (2.15) at the time s and choose the test
pair (v, vΓ ) = (∂tρ

ε, ∂tρ
ε
Γ )(s), which is allowed by the regularity (2.12). Then, we

integrate over (0, t). Thanks to the Schwarz and Young inequalities, we have

∫
Qt

|∂tρε|2 +
∫
Σt

|∂tρε
Γ |2 +

1

2

∫
Ω

|∇ρε(t)|2 + 1

2

∫
Γ

|∇Γ ρε
Γ (t)|2

+
∫
Ω

F(ρε(t))+
∫
Γ

FΓ (ρε
Γ (t))

= 1

2

∫
Ω

|∇ρ0|2 + 1

2

∫
Γ

|∇Γ ρ0|Γ |2

+
∫
Ω

F(ρ0)+
∫
Γ

FΓ (ρ0|Γ )+
∫
Qt

μεg′(ρε)∂tρ
ε

≤ c + 1

2

∫
Qt

|∂tρε|2 + c

∫
Qt

|με|2.

Since |ρε| ≤ 1, (3.5) holds, and (2.7) implies that F and FΓ are bounded from
below, we deduce that

‖(ρε, ρε
Γ )‖H 1(0,T ;H)∩L∞(0,T ;V) + ‖F(ρε)‖L∞(0,T ;L1(Ω))

+ ‖FΓ (ρε
Γ )‖L∞(0,T ;L1(Γ )) ≤ cT . (3.6)
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Third a Priori Estimate By starting from (2.17)–(2.18) and accounting for (3.1)
and (3.5)–(3.6), we successively deduce a number of estimates with the help of the
inequalities (2.24)–(2.29), written with v = ρε(t) and vΓ = ρε

Γ (t) and then squared
and integrated over (0, T ). We have

‖Δρε‖L2(0,T ;H) ≤ cT from (2.17),

‖∂νρε‖L2(0,T ;H−1/2(Γ )) ≤ cT from (2.24),

‖ΔΓ ρε
Γ ‖L2(0,T ;H−1/2(Γ )) ≤ cT from (2.18),

‖ρε
Γ ‖L2(0,T ;H 3/2(Γ )) ≤ cT from (2.29),

‖ρε‖L2(0,T ;H 2(Ω)) ≤ cT from (2.26),

‖∂νρε‖L2(0,T ;HΓ ) ≤ cT from (2.25),

‖ΔΓ ρε
Γ ‖L2(0,T ;HΓ ) ≤ cT from (2.18),

‖ρε
Γ ‖L2(0,T ;H 2(Γ )) ≤ cT from (2.28).

In conclusion, we have proved that

‖ρε‖L2(0,T ;H 2(Ω)) + ‖ρε
Γ ‖L2(0,T ;H 2(Γ )) ≤ cT . (3.7)

Fourth a Priori Estimate We (formally) differentiate (2.15) with respect to time
and set ζ := ∂tρ

ε and ζΓ := ∂tρ
ε
Γ , for brevity. Then we write the variational

equation we obtain at the time s and test it by (ζ, ζΓ )(s). Finally, we integrate over
(0, t) and add C

∫
Qt
|ζ |2 + C

∫
Σt
|ζΓ |2 to both sides, where C is the constant that

appears in (2.7). We obtain the identity

1

2

∫
Ω

|ζ(t)|2 + 1

2

∫
Γ

|ζΓ (t)|2 +
∫
Qt

|∇ζ |2 +
∫
Σt

|∇Γ ζΓ |2

+
∫
Qt

(
F ′′(ρε)+ C

)|ζ |2 +
∫
Qt

(
F ′′Γ (ρε

Γ )+ C
)|ζΓ |2

= 1

2

∫
Ω

|ζ(0)|2 + 1

2

∫
Γ

|ζΓ (0)|2 +
∫
Qt

∂tμ
ε g′(ρε)ζ +

∫
Qt

μεg′′(ρε)|ζ |2

+ C

∫
Qt

|ζ |2 + C

∫
Σt

|ζΓ |2 . (3.8)

All of the terms on the left-hand side are nonnegative, while the second volume
integral over Qt on the right-hand side is nonpositive since με ≥ 0 and g′′ ≤ 0. It
remains to find bounds for the first volume integral over Qt on the right-hand side
and for the sum of the terms that involve the initial values. We handle the latter first.
To this end, we write (2.15) at the time t = 0 and test it by (v, vΓ ) = (ζ, ζΓ )(0).
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We obtain
∫
Ω

|ζ(0)|2 +
∫
Γ

|ζΓ (0)|2 = −
∫
Ω

∇ρ0 · ∇ζ(0)−
∫
Γ

∇Γ ρ0|Γ · ∇Γ ζΓ (0)

−
∫
Ω

F ′(ρ0)ζ(0)−
∫
Γ

F ′Γ (ρ0|Γ )ζΓ (0)+
∫
Ω

μ0g
′(ρ0)ζ(0) . (3.9)

On account of (2.10), we have, using Young’s inequality and (2.25),

−
∫
Ω

∇ρ0 · ∇ζ(0)−
∫
Γ

∇Γ ρ0|Γ · ∇Γ ζΓ (0)

=
∫
Ω

Δρ0 ζ(0)−
∫
Γ

(
∂νρ0 −ΔΓ ρ0|Γ

)
ζΓ (0)

≤ 1

4

∫
Ω

|ζ(0)|2 + 1

4

∫
Γ

|ζΓ (0)|2 + c ‖ρ0‖2
H 2(Ω)

+ c ‖ρ0|Γ ‖2
H 2(Γ )

.

Moreover, it follows from (2.9), (2.10), (3.1), and Young’s inequality that the
expression in the second line of (3.9) is bounded by

1

4

∫
Ω

|ζ(0)|2 + 1

4

∫
Γ

|ζΓ (0)|2 + c .

We thus have shown that
∫
Ω

|ζ(0)|2 +
∫
Γ

|ζΓ (0)|2 ≤ c . (3.10)

It remains to bound the first volume integral over Qt in (3.8), which we denote by
I . This estimate requires more effort. At first, observe that (2.14) implies that

∂tμ
ε = 1

ε + 2g(ρε)
Δμε − g′(ρε)

ε + 2g(ρε)
ζ με , (3.11)

where, thanks to (3.1), 1/(ε + 2g(ρε)) ≤ 1/(2g∗) for all ε > 0. Now, using (3.11),
we find that

I =
∫
Qt

g′(ρε) ζ

ε + 2g(ρε)
Δμε −

∫
Qt

με (g′(ρε))2

ε + 2g(ρε)
ζ 2 =: I1 + I2 , (3.12)
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with obvious notation. The second integral is easy to handle. In fact, thanks
to (3.1), (2.23), and Hölder’s and Young’s inequalities, we infer that

I2 ≤ c

∫ t

0
‖με(s)‖4 ‖ζ(s)‖2 ‖ζ(s)‖4 ds

≤ 1

6

∫
Qt

|∇ζ |2 + c

∫ t

0

(
1+ ‖με(s)‖2

V

)
‖ζ(s)‖2

H ds , (3.13)

where we know from (3.5) that
∫ T

0 ‖με(s)‖2
V ds ≤ cT . For the first integral,

integration by parts and (3.1) yield that

I1 = −
∫
Qt

∇με · ∇
( g′(ρε) ζ

ε + 2g(ρε)

)

≤ C1

∫
Qt

|∇με| |∇ζ | + C1

∫
Qt

|∇με| |∇ρε| |ζ | =: C1(I11 + I12), (3.14)

with obvious notation. Clearly, owing to (3.5) and Young’s inequality, we find that

C1 I11 ≤ 1

6

∫
Qt

|∇ζ |2 + c . (3.15)

Moreover, invoking Hölder’s and Young’s inequalities, the compactness inequal-
ity (2.23), as well as the continuity of the embedding H 2(Ω) ⊂ W 1,4(Ω), we infer
that

C1 I12 ≤ C1

∫ t

0
‖∇με(s)‖2 ‖∇ρε(s)‖4 ‖ζ(s)‖4 ds

≤ 1

6

∫
Qt

|∇ζ |2 + c

∫
Qt

|ζ |2 + c

∫ t

0
‖∇με(s)‖2

2 ‖ρε(s)‖2
H 2(Ω)

ds .

(3.16)

Notice that
∫ T

0 ‖∇με(s)‖2
2 ds ≤ c for every T > 0, by virtue of (3.5). We now

aim to estimate ‖ρε(s)‖H 2(Ω) in terms of ζ and ζΓ . To this end, we derive a chain
of estimates which are each valid for almost every s ∈ (0, T ). To begin with, we
deduce from (3.5) and (3.6) that

‖Δρε(s)‖2 = ‖ζ(s)+F ′(ρε(s))−με(s) g′(ρε(s))‖2 ≤ c + ‖ζ(s)‖2 . (3.17)

Consequently, by (2.24) we have that

‖∂νρε(s)‖H−1/2(Γ ) ≤ CΩ

(‖ρε(s)‖V + ‖Δρε(s)‖2
) ≤ cT (1+ ‖ζ(s)‖2) ,

(3.18)
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and (2.18), (3.1) and (3.6) imply that

‖ΔΓ ρε
Γ (s)‖H−1/2(Γ ) ≤ ‖∂νρε(s)+ F ′Γ (ρε

Γ (s))+ ζΓ (s)‖H−1/2(Γ )

≤ cT (1+ ‖ζ(s)‖2 + ‖ζΓ (s)‖HΓ ) . (3.19)

But then, thanks to (2.29) and (3.6), it is clear that

‖ρε
Γ (s)‖H 3/2(Γ ) ≤ CΩ

(‖ρε
Γ (s)‖H 1(Γ ) + ‖ΔΓ ρε

Γ (s)‖H−1/2(Γ )

)

≤ cT (1+ ‖ζ(s)‖2 + ‖ζΓ (s)‖HΓ ) , (3.20)

whence, owing to (2.26), we finally arrive at the estimate

‖ρε(s)‖H 2(Ω) ≤ cT
(
1+ ‖ζ(s)‖H + ‖ζΓ (s)‖HΓ

)
. (3.21)

We thus obtain from (3.16) that

C1 I12 ≤ 1

6

∫
Qt

|∇ζ |2 + c

∫
Qt

|ζ |2 + cT

+ cT

∫ t

0
‖∇με(s)‖2

2

(
‖ζ(s)‖2

H + ‖ζΓ (s)‖2
HΓ

)
ds . (3.22)

Therefore, recalling (3.8) and invoking the estimates (3.10), (3.13)–(3.16), we can
apply Gronwall’s lemma and conclude that

‖(∂tρε, ∂tρ
ε
Γ )‖L∞(0,T ;H)∩L2(0,T ;V) ≤ cT . (3.23)

Fifth a Priori Estimate We now notice that (3.21) and (3.23) imply that

‖ρε‖L∞(0,T ;H 2(Ω)) ≤ cT . (3.24)

Then we may infer from (2.25), (2.18), (2.28), in this order, the estimates

‖∂νρε‖L∞(0,T ;HΓ ) ≤ cT ,

‖ΔΓ ρε
Γ ‖L∞(0,T ;HΓ ) ≤ cT , ‖ρε

Γ ‖L∞(0,T ;H 2(Γ )) ≤ cT ,

so that

‖(ρε, ρε
Γ )‖L∞(0,T ;H 2(Ω)×H 2(Γ )) ≤ cT . (3.25)
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Sixth a Priori Estimate At this point, we can multiply (2.14) by ∂tμ
ε and

integrate over Qt . Then, we add
∫
Qt

με∂tμ
ε to both sides. By owing to the Hölder,

Sobolev and Young inequalities, we obtain

∫
Qt

(
ε + 2g(ρε)

)|∂tμε|2 + 1

2
‖με(t)‖2

V

= 1

2
‖μ0‖2

V +
∫
Qt

με∂tμ
ε −

∫
Qt

μεg′(ρε)∂tρ
ε∂tμ

ε

≤ c +
∫ t

0
‖με(s)‖2‖∂tμε(s)‖2 ds + c

∫ t

0
‖με(s)‖4‖∂tρε(s)‖4‖∂tμε(s)‖2 ds

≤ c + g∗
∫
Qt

|∂tμε|2 + c ‖με‖2
L2(0,t;H)

+ c

∫ t

0
‖∂tρε(s)‖2

V ‖με(s)‖2
V ds ,

where g∗ is the constant introduced in (3.1). As 2g(ρε) ≥ 2g∗, we may
use (3.5), (3.23) and Gronwall’s lemma to conclude that

‖με‖H 1(0,T ;H)∩L∞(0,T ;V ) ≤ cT . (3.26)

By comparison in (2.14), we estimate Δμε. Hence, by applying (2.27), we
derive that

‖με‖L2(0,T ;W) ≤ cT . (3.27)

Conclusion If we collect all the previous estimates and use standard compact-
ness results, then we have (in principle for a subsequence) that

με → μ in H 1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W) ,

(ρε, ρε
Γ )→ (ρ, ρΓ )

in W 1,∞(0, T ;H) ∩H 1(0, T ;V) ∩ L∞(0, T ;H 2(Ω)×H 2(Γ )) ,

as ε ↘ 0, the convergence being understood in the sense of the corresponding
weak star topologies. Notice that the limiting triplet fulfills the regularity require-
ments (2.11)–(2.13). Next, by the compact embeddings V ⊂ L5(Ω), H 2(Ω) ⊂
C0(Ω), and H 2(Γ ) ⊂ C0(Γ ), and using well-known strong compactness results
(see, e.g., [51, Sect. 8, Cor. 4]), we deduce the useful strong convergence

με → μ in C0([0, T ];L5(Ω)), (ρε, ρε
Γ )→ (ρ, ρΓ ) in C0(Q)× C0(Σ).

(3.28)
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This allows us to deal with nonlinearities and to take the limits of the products
that appear in the equations. Hence, we easily conclude that the triplet (μ, ρ, ρΓ )

solves (2.14) and the time-integrated version of (2.15) on (0, T ) (which is equivalent
to (2.15) itself) with ε = 0. Moreover, the initial conditions (2.16) easily pass to the
limit in view of (3.28). This concludes the existence proof. By uniqueness, the whole
family {(με, ρε, ρε

Γ )} converges to (μ, ρ, ρΓ ) in the above topology as ε ↘ 0. �

4 Long-Time Behavior

This section is devoted to the proof of Theorem 3. In the sequel, it is understood
that ε ∈ [0, 1] is fixed and that (μ, ρ, ρΓ ) is the unique solution to problem (2.14)–
(2.16) given by Theorems 1 and 2 in the two cases ε > 0 and ε = 0, respectively.
First of all, we have to show that the ω-limit (2.20) is nonempty. This necessitates
proper a priori estimates on the whole half-line {t ≥ 0}.
First Global Estimate From (3.5), we immediately deduce that

‖μ‖L∞(0,+∞;H) ≤ c and
∫
Q∞
|∇μ|2 ≤ c . (4.1)

Second Global Estimate We start by rearranging (2.14) as follows:

μg′(ρ)∂tρ = ∂t
(
(ε + 2g(ρ))μ

)−Δμ . (4.2)

Now, we test (2.15), written at the time s, by ∂t (ρ, ρΓ )(s), integrate over (0, t) and
replace the right-hand side with the help of (4.2). We obtain the identity

∫
Qt

|∂tρ|2 +
∫
Σt

|∂tρΓ |2 + 1

2

∫
Ω

|∇ρ(t)|2 + 1

2

∫
Γ

|∇Γ ρΓ (t)|2

+
∫
Ω

F(ρ(t))+
∫
Γ

FΓ (ρΓ (t))

= 1

2

∫
Ω

|∇ρ0|2 + 1

2

∫
Γ

|∇Γ ρ0|Γ |2 +
∫
Ω

F(ρ0)+
∫
Γ

FΓ (ρ0|Γ )+
∫
Qt

μg′(ρ)∂tρ

= c +
∫
Ω

(
ε + 2g(ρ(t))

)
μ(t)−

∫
Ω

(
ε + 2g(ρ0)

)
μ0 −

∫
Qt

Δμ .

The last integral vanishes since ∂νμ = 0. By recalling that F and FΓ are bounded
from below and that |ρ| ≤ 1, and using (4.1), we deduce that

‖(ρ, ρΓ )‖L∞(0,+∞;V) ≤ c ,

∫
Q∞
|∂tρ|2 ≤ c and

∫
Σ∞
|∂tρΓ |2 ≤ c . (4.3)
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First Conclusion The first inequalities of (4.1) and (4.3), along with the
continuity of (μ, ρ, ρΓ ) from [0,+∞) to H × V, ensure that the ω-limit (2.20)
is nonempty. Namely, every divergent sequence of times contains a subsequence
tn ↗ +∞ such that (μ, ρ, ρΓ )(tn) converges weakly in H × V.

After establishing the first part of Theorem 3, we prove the second one. Thus, we
pick any element (μω, ρω, ρωΓ ) of the ω-limit (2.20) and show that it is a stationary
solution of our problem, i.e., that μω is a constant μs and that the pair (ρω, ρωΓ )

coincides with a solution (ρs, ρsΓ ) to problem (2.21). To this end, we fix a sequence
tn ↗ +∞ such that

(μ, ρ, ρΓ )(tn)→ (μω, ρω, ρωΓ ) weakly in H × V (4.4)

and study the behavior of the solution on the time interval [tn, tn + T ] with a fixed
T > 0. For convenience, we shift everything to [0, T ] by introducing (μn, ρn, ρn

Γ ) :
[0, T ] → H × V as follows

μn(t) := μ(tn + t), ρn(t) := ρ(tn + t)

and ρn
Γ (t) := ρΓ (tn + t) for t ∈ [0, T ] . (4.5)

As T is fixed once and for all, we do not care on the dependence of the constants
on T even in the notation, and write Q and Σ for QT and ΣT , respectively. The
inequalities (4.1) and (4.3) imply that

‖(μn, ρn, ρn
Γ )‖L∞(0,T ;H×V) ≤ c , (4.6)

lim
n→∞

( ∫
Q

|∇μn|2 +
∫
Q

|∂tρn|2 +
∫
Σ

|∂tρn
Γ |2
)
= 0 . (4.7)

The bound (4.6) yields a convergent subsequence in the weak star topology. If we
still label it by the index n to simplify the notation, we have

(μn, ρn, ρn
Γ )→ (μ∞, ρ∞, ρ∞Γ ) weakly star in L∞(0, T ;H × V). (4.8)

Now, we aim to improve the quality of the convergence. Thus, we derive further
estimates.

First Auxiliary Estimate A partial use of (4.7) provides a bound, namely

‖μn‖L2(0,T ;V ) + ‖(∂tρn, ∂tρ
n
Γ )‖L2(0,T ;H) ≤ c . (4.9)

Second Auxiliary Estimate We can repeat the argument that led to (3.7) and
arrive at

‖(ρn, ρn
Γ )‖L2(0,T ;H 2(Ω)×H 2(Γ )) ≤ c . (4.10)



Limiting Problems for a Nonstandard Viscous Cahn–Hilliard System. . . 237

Third Auxiliary Estimate We recall that μn and the space derivatives Diρ
n and

Dig(ρ
n) = g′(ρn)Diρ

n are bounded in

L∞(0, T ;H) ∩ L2(0, T ;L6(Ω)),

by (4.6), (4.9), (4.10), and the continuous embedding V ⊂ L6(Ω). On the other
hand, the continuous embedding

L∞(0, T ;H) ∩ L2(0, T ;L6(Ω)) ⊂ L4(0, T ;L3(Ω)) ∩ L6(0, T ;L18/7(Ω))

holds true, by virtue of the interpolation inequalities. Therefore, we conclude that

‖μn‖L4(0,T ;L3(Ω)) + ‖∇ρn‖L4(0,T ;L3(Ω)) + ‖∇g(ρn)‖L6(0,T ;L18/7(Ω)) ≤ c .

(4.11)

Fourth Auxiliary Estimate We want to improve the convergence of μn. How-
ever, we cannot multiply (2.14) by ∂tμ since we do not have any information
on ∇μ(tn). Therefore, we derive an estimate for ∂tμn in a dual space. By recalling
that g(ρ) ≥ g∗ (see (3.1)), we divide both sides of (2.14) by ε + 2g(ρ). Then, we
take an arbitrary test function v ∈ L4(0, T ;V ), multiply the equality we obtain
by v, integrate over Ω × (tn, tn + T ) and rearrange. We get

∫
Q

∂tμ
n v = −

∫
Q

μng′(ρn)∂tρ
nv

ε + 2g(ρn)
+
∫
Q

Δμn v

ε + 2g(ρn)
,

and we now treat the terms on the right-hand side separately. The first one is handled
using Hölder’s inequality, namely,

−
∫
Q

μng′(ρn)∂tρ
nv

ε + 2g(ρn)
≤ c‖μn‖L4(0,T ;L3(Ω))‖∂tρn‖L2(0,T ;L2(Ω))‖v‖L4(0,T ;L6(Ω)) .

We integrate the other term by parts and use the Hölder, Sobolev and Young
inequalities as follows:

∫
Q

Δμn v

ε + 2g(ρn)
= −

∫
Q

∇μn · (ε + 2g(ρn))∇v − 2vg′(ρn)∇ρn

(ε + 2g(ρn))2

≤ c‖∇μn‖L2(0,T ;H)‖v‖L2(0,T ;V ) + c

∫ T

0
‖∇μn(s)‖2‖v(s)‖6‖∇ρn(s)‖3 ds

≤ c‖∇μn‖L2(0,T ;H)

(‖v‖L2(0,T ;V ) + ‖∇ρn‖L4(0,T ;L3(Ω))‖v‖L4(0,T ;L6(Ω))

)
.
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Therefore, we have for every v ∈ L4(0, T ;V )

∫
Q

∂tμ
n v ≤ c‖μn‖L4(0,T ;L3(Ω))‖∂tρn‖L2(0,T ;H)‖v‖L4(0,T ;V )

+ c‖∇μn‖L2(0,T ;H)

(
1+ ‖∇ρn‖L4(0,T ;L3(Ω))

)‖v‖L4(0,T ;V ) .

Hence, on account of (4.1), (4.3) and (4.11), we conclude that

‖∂tμn‖L4/3(0,T ;V ∗) ≤ c . (4.12)

Conclusion By recalling the estimates (4.9)–(4.10) and (4.12), we see that the
convergence (4.8) can be improved as follows:

μn → μ∞ in W 1,4/3(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) ,

(ρn, ρn
Γ )→ (ρ∞, ρ∞Γ )

in H 1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ;H 2(Ω)×H 2(Γ )) ,

all in the sense of the corresponding weak star topologies. Now, we prove that
the limiting triple (μ∞, ρ∞, ρ∞Γ ) solves problem (2.14)–(2.15), the first equation
being understood in a generalized sense. By [51, Sect. 8, Cor. 4] and the compact
embeddings H 2(Ω) ⊂ V ⊂ H ⊂ V ∗ and H 2(Γ ) ⊂ VΓ ⊂ HΓ , we also have (for a
not relabeled subsequence)

μn → μ∞ strongly in C0([0, T ];V ∗) ∩ L2(0, T ;H) and a.e. in Q, (4.13)

(ρn, ρn
Γ )→ (ρ∞, ρ∞Γ )

strongly in C0([0, T ];H) ∩ L2(0, T ;V) and a.e. on Q×Σ, (4.14)

∇g(ρn) = g′(ρn)∇ρn → g′(ρ∞)∇ρ∞ = ∇g(ρ∞) a.e. in Q. (4.15)

It follows that (F ′(ρn), F ′Γ (ρn
Γ )) strongly converges to (F ′(ρ∞), F ′Γ (ρ∞Γ )) in

L∞(0, T ;H), just by Lipschitz continuity. This allows us to conclude that
(ρ∞, ρ∞Γ ) solves the time-integrated version of (2.15), thus equation (2.15) itself.
As for (2.14), we recall (4.11) and notice that 4 < 6 and 2 < 18/7. Then, with the
help of (4.15) and the Egorov theorem, we deduce that

∇g(ρn)→ ∇g(ρ∞) strongly in (L4(0, T ;L2(Ω)))3, whence

g(ρn)→ g(ρ∞) strongly in L4(0, T ;V ).
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Therefore, if we assume that v ∈ L∞(0, T ;W 1,∞(Ω)), we have that

g(ρn)v → g(ρ∞)v strongly in L4(0, T ;V ), whence∫
Q

(
ε + 2g(ρn)

)
∂tμ

n v → L4/3(0,T ;V ∗)〈∂tμ∞,
(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V ) .

On the other hand, from the convergence almost everywhere, we also have

g′(ρn)→ g′(ρ∞) strongly in L4(0, T ;L6(Ω)),

since g′(ρn) is bounded in L∞(Q). Moreover, (4.11) implies that μn converges
to μ∞ weakly in L4(0, T ;L3(Ω)). On the other hand, (4.7) yields the strong
convergence of ∂tρn to 0 in L2(0, T ;H) (by the way, 0 must coincide with ∂tρ

∞).
We deduce that

μng′(ρn)∂tρ
n → μ∞g′(ρ∞)∂tρ

∞ weakly in L1(Q) .

Therefore, we conclude that

L4/3(0,T ;V ∗)〈∂tμ∞,
(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V )

+
∫
Q

μ∞g′(ρ∞)∂tρ
∞ v +

∫
Q

∇μ∞ · ∇v = 0 (4.16)

for every v ∈ L∞(0, T ;W 1,∞(Ω)). On the other hand, we know that μ∞ ∈
L4(0, T ;L3(Ω)) by (4.11) and that ∂tρ∞ ∈ L2(0, T ;H). Since g′ is bounded and
the continuous embedding V ⊂ L6(Ω) implies L6/5(Ω) ⊂ V ∗, we also have that

μ∞g′(ρ∞)∂tρ
∞ ∈ L4/3(0, T ;L6/5(Ω)) ⊂ L4/3(0, T ;V ∗) .

Hence, by a simple density argument, we see that the variational equation (4.16) also
holds true for every v ∈ L4(0, T ;V ). At this point, we observe that (4.7) implies
that

∇μ∞ = 0 , ∂tρ
∞ = 0 and ∂tρ

∞
Γ = 0 . (4.17)

In particular, (4.16) reduces to

L4/3(0,T ;V ∗)〈∂tμ∞,
(
ε + 2g(ρ∞)

)
v〉L4(0,T ;V ) = 0 for every v ∈ L4(0, T ;V )

and we easily infer that ∂tμ∞ = 0. Indeed, the inequality g(ρn) ≥ g∗ for every n

implies g(ρ∞) ≥ g∗. Thus, every ϕ ∈ C∞c (Q) can be written as ϕ = (ε+2g(ρ∞))v

for some v ∈ L4(0, T ;V ) since ∇ρ∞ ∈ (L4(0, T ;H))3 by (4.11). Therefore,
∂tμ

∞ actually vanishes and we conclude that μ∞ takes a constant value μs .
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From (4.17) we also deduce that (ρ∞, ρ∞Γ ) is a time-independent pair (ρs, ρsΓ ), so
that (2.15) reduces to (2.21). Finally, we show that (μs, ρs, ρsΓ ) = (μω, ρω, ρωΓ ).
Indeed, (4.13) and (4.14) imply that

(μn, (ρn, ρn
Γ ))→ (μ∞, (ρ∞, ρ∞Γ )) strongly in C0([0, T ];V ∗)×C0([0, T ];H) ,

and we infer that

(μ, (ρ, ρΓ ))(tn) = (μn, (ρn, ρn
Γ ))(0)→ (μ∞, (ρ∞, ρ∞Γ ))(0) = (μs, (ρs, ρsΓ ))

weakly in V ∗ ×H.

By comparing with (4.4), we conclude that (μs, ρs, ρsΓ ) = (μω, ρω, ρωΓ ), and the
proof is complete. �
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On a Cahn–Hilliard–Darcy System for
Tumour Growth with Solution Dependent
Source Terms

Harald Garcke and Kei Fong Lam

Abstract We study the existence of weak solutions to a mixture model for tumour
growth that consists of a Cahn–Hilliard–Darcy system coupled with an elliptic
reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for
the pressure that is coupled to the convective Cahn–Hilliard equation through
convective and source terms. Both Dirichlet and Robin boundary conditions are
considered for the pressure variable, which allow for the source terms to be
dependent on the solution variables.

1 Introduction

At the fundamental level, cancer involves the unregulated growth of tissue inside
the human body, which are caused by many biological and chemical mechanisms
that take place at multiple spatial and temporal scales. In order to understand
how these multiscale mechanisms are driving the progression of the cancer cells,
whose dynamics may be too complex to be approached by experimental techniques,
mathematical modelling can be used to provide a tractable description of the
dynamics that isolate the key mechanisms and guide specific experiments.

We focus on the subclass of models for tumour growth known as diffuse interface
models. These are continuum models that capture the macroscopic dynamics of the
morphological changes of the tumour. For the simplest situation where there are
only tumour cells and host cells in the presence of a nutrient, the model equations
consists of a Cahn–Hilliard equation coupled to a reaction-diffusion equation for the
nutrient. By treating the tumour and host cells as inertia-less fluids, a Darcy system
can be appended to the Cahn–Hilliard equation, leading to a Cahn–Hilliard–Darcy
system. For details regarding the diffuse interface models for tumour growth we
refer the reader to [3, 6, 7, 16, 18, 21] and the references therein.
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Our interest lies in providing analytical results for these models, namely in
establishing the existence of weak solutions to the model equations. Below, we
introduce the Cahn–Hilliard–Darcy model to be studied: Let Ω ⊂ R

d , d = 2, 3,
be a bounded domain with boundary Γ , and denote, for T > 0, Q := Ω × (0, T )

and Σ := Γ × (0, T ). We study the following elliptic-parabolic system:

div v = Γv(ϕ, σ ) in Q, (1a)

∂tϕ + div (ϕv) = div (m(ϕ)∇μ)+ Γϕ(ϕ, σ ) in Q, (1b)

μ = AΨ ′(ϕ)− BΔϕ − χσ in Q, (1c)

0 = Δσ − h(ϕ)σ in Q, (1d)

∂nϕ = 0, σ = 1 on Σ, (1e)

ϕ(0) = ϕ0 in Ω, (1f)

where ∂nf := ∇f · n is the normal derivative of f on the boundary Γ , with unit
normal n, and in this work, we focus on the following variants of Darcy’s law and
the boundary conditions

v = −K(∇q + ϕ∇(μ+ χσ)) in Q, q = 0, m(ϕ)∂nμ = ϕv · n on Σ,

(2a)

v = −K(∇p − (μ+ χσ)∇ϕ) in Q, μ = 0, K∂np = a(g − p) on Σ,

(2b)

v = −K(∇p − (μ+ χσ)∇ϕ) in Q, ∂nμ = 0, K∂np = a(g − p) on Σ,

(2c)

for some positive constant a and prescribed function g. In (1), v denotes the volume-
averaged velocity of the cell mixture, σ denotes the concentration of the nutrient, ϕ
denotes the difference in volume fractions, with {ϕ = 1} representing unmixed
tumour tissue, and {ϕ = −1} representing the host tissue, and μ denotes the
chemical potential for ϕ.

The positive constant K is the permeability of the mixture, m(ϕ) is a positive
mobility for ϕ. The constant parameter χ ≥ 0 regulates the chemotaxis effect (see
[16] for more details), Ψ ′(·) is the derivative of a potential functionΨ (·) that has two
equal minima at ±1, A and B denote two positive constants related to the thickness
of the diffuse interface and the surface tension, h(ϕ) is an interpolation function that
satisfies h(−1) = 0 and h(1) = 1.

In (2), both p and q denote the pressure. The Darcy law in (2a) with pressure
q can be obtained from the Darcy law in (2b) and (2c) with pressure p by setting
q = p− (μ+χσ)ϕ. The source terms Γv and Γϕ model, for instance, the growth of
the tumour and its effect on the velocity field. We refer to [16, §2.5] for a discussion
regarding the choices for the source terms Γϕ, Γv.

We now compare the model (1) with other models studied in the literature.
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1. In the absence of velocity, i.e., setting v = 0 in (1b) and neglecting (1a), we
obtain a elliptic-parabolic system that couples a Cahn–Hilliard equation with
source term and an elliptic equation for the nutrient. A similar system has been
studied by the authors in [12] with Dirichlet boundary conditions for ϕ,μ, σ .
For systems where (1d) has an additional ∂tσ on the left-hand side, the well-
posedness of solutions have been studied in [5, 11, 14, 15] for particular choices
of the source term Γϕ . We also mention the work of [8] for the analysis of a
system of equations similar to (1) with χ = 0.

2. In the case σ = 0, (1) with the Darcy law (2b) reduces to a Cahn–Hilliard–
Darcy system, and well-posedness results have been established in [20] for Γv =
Γϕ = 0 and ∂np = ∂nμ = 0 on Σ , and in [19] for prescribed source terms
Γv = Γϕ �= 0 and ∂np = ∂nμ = 0 on Σ . In [2] a related system, known as the
Cahn–Hilliard–Brinkman system, is studied, which features an additional term
−νΔv on the left-hand side of the Darcy law (2b), but with Γv = Γϕ = 0.
Analogously, (1) without σ and the Darcy law (2a) with boundary conditions
∂np = ∂nμ = ∂nϕ = 0 on Σ has been studied in [10]. For strong solutions to
the Cahn–Hilliard–Darcy system on the d-dimensional torus, d = 2, 3, we refer
the reader to [23, 24].

3. In [13], the authors established the global existence of weak solutions to (1)
with the Darcy law (2b) that features the following convection-reaction-diffusion
equation for σ :

∂tσ + div (σv) = Δσ − χΔϕ − S,

with a prescribed source term Γv and source terms Γϕ, S that depend on ϕ, σ and
μ with at most linear growth, along with the boundary conditions ∂nμ = ∂nϕ =
∂np = 0 and a Robin boundary condition for σ .

For the analyses performed on Cahn–Hilliard–Darcy systems in the literature,
many have considered Neumann boundary conditions. However, a feature of the
Neumann conditions for p and ϕ is that

∫
Ω

Γv dx =
∫
Ω

div v dx =
∫
Γ

v · n dΓ =
∫
Γ

−K∂np +K(μ+ χσ)∂nϕ dΓ = 0,

that is, the source term Γv necessarily has zero mean. For source terms Γv that
depend on ϕ and σ , this property may not be satisfied in general. To allow for source
terms that need not have zero mean, one method is to prescribe alternate boundary
conditions for the pressure, see for example [4, §2.2.9] and [16, §2.4.4].

In this work, we consider analysing the model with a Dirichlet boundary
condition and also a Robin boundary condition for the pressure. Then, the source
term Γv does not need to fulfil the zero mean condition. However, it turns out that
in the derivation of a priori estimates for the model, we encounter the following:

• For the natural boundary condition ∂nμ = 0 and the Robin boundary condition
K∂np = a(g − p) on Σ , we have to restrict our analysis to potentials Ψ that
have quadratic growth (Theorem 2.3).
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• To consider potentials with polynomial growth of order larger than two, we need
to prescribe the boundary conditions (2a) and (2b) for the chemical potential μ
(Theorems 2.1 and 2.2).

Let us briefly motivate the choices in (2a) and (2b). Due to the quasi-static nature
of the nutrient equation (1d), we do not obtain a natural energy identity for the
system (1) in contrast to the models studied in [13, 14, 16]. For simplicity, let
m(ϕ) = 1, K = 1 and consider testing (1b) with μ+ χσ , (1c) with ∂tϕ, the Darcy
law (2b) with v. Integrating by parts and upon adding leads to

d

dt

∫
Ω

AΨ(ϕ)+ B

2
|∇ϕ|2 dx+

∫
Ω

|∇μ|2 + |v|2 dx

=
∫
Ω

−χ∇μ · ∇σ + Γv(p − ϕ(μ+ χσ))+ Γϕ(μ+ χσ) dx

+
∫
Γ

∂nμ(μ+ χσ)− pv · n dΓ.

(3)

If we prescribe the boundary conditions ∂nμ = 0 and −v · n = ∂np = a(g −
p), i.e., the boundary conditions in (2c), then the boundary term in (3) poses no
difficulties. The main difficulty in obtaining a priori estimates from (3) is to control
the source terms Γvμϕ and Γϕμ with the left-hand side of (3). In the absence of any
previous a priori estimates, to control terms involving μ by the term ‖∇μ‖2

L2(Ω)
on

the left-hand side via the Poincaré inequality, an estimate of the square of the mean
of μ is needed. As observed in [14], this leads to a restriction to quadratic growth
assumptions for the potential Ψ .

Furthermore, new difficulties arises in estimating the source term Γvp if we do
not prescribe a Neumann boundary condition for p. The methodology used in [13,
19] to obtain an estimate for ‖p‖L2(Ω) relies on the assumption that Γv is prescribed
and has zero mean, and ∂np = 0 on Σ . The arguments in [13, 19] seem not to be
applicable for our present setting (see Remark 1 below), where Γv is dependent on
ϕ and σ , and a Robin boundary condition is prescribed for p. This motivates the
choice of a Dirichlet condition for μ to handle the source term Γvϕμ and Γϕμ, and
as we will see later in Sect. 4 (specifically (32)), the Dirichlet boundary condition
for μ is needed to obtain an L2-estimate for p.

Alternatively, we may consider the discussion in [13, §8] regarding reformula-
tions of the Darcy law. Choosing q = p−ϕ(μ+χσ) leads to the Darcy law variant
in (2a). A similar testing procedure leads to

d

dt

∫
Ω

AΨ (ϕ)+ B

2
|∇ϕ|2 dx+

∫
Ω

|∇μ|2 + |v|2 dx

=
∫
Ω

−χ∇μ · ∇σ + Γvq + Γϕ(μ+ χσ) dx

+
∫
Γ

(∂nμ− ϕv · n)(μ+ χσ)− qv · n dΓ.

(4)
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Here we observed that the source term involving Γv simplifies to just Γvq , and in
exchange, we see the appearance of (q+ϕμ+χϕσ)v ·n appearing in the boundary
term. Comparing to the previous set-up with (2b), we have shifted the problematic
terms to the boundary integral. Choosing v · n = 0 on Σ is not desirable, as
equation (1a) would the imply that Γv(ϕ, σ ) must have zero mean. We may instead
consider the boundary conditions

∂nμ = 0, v · n = −∂nq − χϕ∂nσ = a(q + ϕ(μ+ χσ)) on Σ,

then the boundary term in (4) poses no additional difficulties in obtaining a priori
estimate. In exchange, obtaining an estimate for ‖q‖L2(Ω) to deal with the source
term Γvq becomes more involved, as the variational formulation for the pressure
system now reads as

∫
Ω

∇q · ∇ζ dx+
∫
Γ

aqζ dΓ =
∫
Ω

Γvζ − ϕ∇(μ+ χσ) · ∇ζ dx−
∫
Γ

aϕ(μ+ χσ)ζ dΓ

for a test function ζ . Estimates for q will now involve an estimate for ‖ϕμ‖L2(Γ ),
and this is more difficult to control than ‖ϕμ‖L2(Ω). This motivates the choice of a
Dirichlet condition for q and the boundary condition ∂nμ = ϕv · n to eliminate the
boundary term in (4).

This paper is organized as follows. In Sect. 2 we state the main assumptions
and the main results. In Sect. 3 we outline the existence proof by first studying a
parabolic-regularized variant of (1)–(2a) where we add θ∂tσ to the left-hand side
of (1d) for θ ∈ (0, 1] and replace σ with T (σ ) in Γv and Γϕ , where T is a cut-
off operator. The a priori estimates necessary for a Galerkin approximation to the
parabolic-regularized problem is then derived, with which the weak existence for
the original problem can be attained by passing to the limit θ → 0. The analogous
a priori estimates for the Robin boundary conditions (2b) and (2c) are specified in
Sects. 4 and 5, respectively.

Notation For convenience, we will often use the notation Lp := Lp(Ω) and
Wk,p := Wk,p(Ω) for any p ∈ [1,∞], k > 0 to denote the standard Lebesgue
spaces and Sobolev spaces equipped with the norms ‖ · ‖Lp and ‖ · ‖Wk,p . In the
case p = 2 we use Hk := Wk,2 and the norm ‖ · ‖Hk . Due to the Dirichlet
boundary condition for σ and μ, we denote the space H 1

0 as the completion of
C∞c (Ω) with respect to the H 1 norm. We will use the isometric isomorphism
Lp(Q) ∼= Lp(0, T ;Lp) and Lp(Σ) ∼= Lp(0, T ;Lp(Γ )) for any p ∈ [1,∞).
Moreover, the dual space of a Banach space X will be denoted by X∗, and the
duality pairing between X and X∗ is denoted by 〈·, ·〉X . We denote the dual space
to H 1

0 as H−1. For d = 2 or 3, let dΓ denote integration with respect to the
(d − 1) dimensional Hausdorff measure on Γ , and we denote R

d -valued functions
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in boldface. For convenience, we will often use the notation

∫
Q

f :=
∫ T

0

∫
Ω

f dx dt,
∫
Ωt

f :=
∫ t

0

∫
Ω

f dx ds,
∫
Γt

f :=
∫ t

0

∫
Γ

f dΓ ds

for any f ∈ L1(Q) and for any t ∈ (0, T ].
Useful Preliminaries For convenience, we recall the Poincaré inequality: There
exist a positive constant Cp depending only on Ω such that

∥∥f − f
∥∥
Lr ≤ Cp‖∇f ‖Lr for all f ∈ W 1,r , 1 ≤ r ≤ ∞, (5)

where f := 1
|Ω|
∫
Ω
f dx denotes the mean of f . Furthermore, we have

‖f ‖L2 ≤ Cp

(‖∇f ‖L2 + ‖f ‖L2(Γ )

)
for f ∈ H 1, (6)

‖f ‖L2 ≤ Cp‖∇f ‖L2 for f ∈ H 1
0 . (7)

The Gagliardo–Nirenberg interpolation inequality in dimension d (see [9, The-
orem 2.1] and [1, Theorem 5.8]): Let Ω be a bounded domain with Lipschitz
boundary, and f ∈ Wm,r ∩ Lq , 1 ≤ q, r ≤ ∞. For any integer j , 0 ≤ j < m,
suppose there is α ∈ R such that

1

p
= j

d
+
(

1

r
− m

d

)
α + 1− α

q
,

j

m
≤ α ≤ 1.

If r ∈ (1,∞) and m−j− d
r

is a non-negative integer, we in addition assume α �= 1.
Under these assumptions, there exists a positive constant C depending only on Ω ,
m, j , q , r , and α such that

‖Djf ‖Lp ≤ C‖f ‖αWm,r ‖f ‖1−α
Lq . (8)

For f ∈ L2, g ∈ L2(Γ ), and β > 0, let u ∈ H 1, w ∈ H 1
0 be the unique solutions to

the elliptic problems

−Δw = f in Ω, w = 0 on Γ,

−Δu = f in Ω, ∂nu+ βu = g on Γ.

We use the notation u = (−ΔR)
−1(f, β, g) and w = (−ΔD)−1(f ). Furthermore,

if in addition g ∈ H
1
2 (Γ ) and Γ is a C2-boundary, then by elliptic regularity theory

[17, Thm. 2.4.2.6] and [17, Thm. 2.4.2.5], it holds that w ∈ H 2 ∩ H 1
0 and u ∈ H 2

with

‖w‖H 2 ≤ C‖f ‖L2, ‖u‖H 2 ≤ C

(
‖f ‖L2 + ‖g‖

H
1
2 (Γ )

)
.
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2 Assumptions and Main Results

Assumption 2.1

(A1) Ω ⊂ R
d , d = 2, 3, is a bounded domain with C3-boundary Γ . The positive

constants a, T ,A,B, χ,K are fixed. The function g ∈ L2(Σ) and the initial
condition ϕ0 ∈ H 1 are prescribed.

(A2) The mobility m ∈ C0(R) satisfies 0 < m0 ≤ m(s) ≤ m1 for all s ∈ R. The
function h ∈ C0(R) is non-negative and is bounded above by 1.

(A3) The potential Ψ ∈ C2(R) is non-negative and, for r ∈ [0, 2] and for all s ∈ R,
there exist positive constants C1, C2, C3 and C4 such that

Ψ (s) ≥ C1 |s|2 − C2,
∣∣Ψ ′′(s)∣∣ ≤ C3

(
1+ |s|r) , ∣∣Ψ ′(s)∣∣ ≤ C4 (1+ Ψ (s)) .

(A4) The source terms Γv and Γϕ are of the form

Γv(ϕ, σ ) = bv(ϕ)σ + fv(ϕ), Γϕ(ϕ, σ ) = bϕ(ϕ)σ + fϕ(ϕ),

where bv, bϕ, fv, fϕ are bounded and continuous functions.

We first give the results to the problem (1), (2a).

Definition 2.1 We call a quintuple (ϕ, μ, σ, v, q) a weak solution to (1), (2a) if

ϕ ∈ L∞(0, T ;H 1) ∩ L2(0, T ;H 3) ∩W 1, 8
5 (0, T ; (H 1)∗), v ∈ L2(Q),

σ ∈ (1+ L2(0, T ;H 1
0 )), μ ∈ L2(0, T ;H 1), q ∈ L

8
5 (0, T ;H 1

0 ),

and satisfies ϕ(0) = ϕ0, 0 ≤ σ ≤ 1 a.e. in Q, and

0 = 〈∂tϕ, ζ 〉H 1 +
∫
Ω

m(ϕ)∇μ · ∇ζ − ϕv · ∇ζ − Γϕ(ϕ, σ )ζ dx, (9a)

0 =
∫
Ω

(μ+ χσ)ζ − AΨ ′(ϕ)ζ − B∇ϕ · ∇ζ dx, (9b)

0 =
∫
Ω

∇σ · ∇ξ + h(ϕ)σξ dx, (9c)

0 =
∫
Ω

K∇q · ∇ξ − Γv(ϕ, σ )ξ +Kϕ∇(μ+ χσ) · ∇ξ dx, (9d)

0 =
∫
Ω

v · y+K∇q · y+Kϕ∇(μ+ χσ) · y dx, (9e)

for a.e. t ∈ (0, T ) and all ζ ∈ H 1, ξ ∈ H 1
0 , y ∈ L2.
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Theorem 2.1 Under Assumption 2.1, there exists a weak solution to (1), (2a) in the
sense of Definition 2.1.

For the problem (1), (2b) we have the following.

Definition 2.2 We call a quintuple (ϕ, μ, σ, v, p) a weak solution to (1), (2b) if

ϕ ∈ L∞(0, T ;H 1) ∩ L2(0, T ;H 3) ∩W 1, 8
5 (0, T ;H−1), v ∈ L2(Q),

σ ∈ (1+ L2(0, T ;H 1
0 )), μ ∈ L2(0, T ;H 1

0 ), p ∈ L
8
5 (0, T ;H 1), p|Σ ∈ L2(Σ),

and satisfies ϕ(0) = ϕ0, 0 ≤ σ ≤ 1 a.e. in Q, (9b), (9c), and

0 = 〈∂tϕ, ξ〉H 1
0
+
∫
Ω

m(ϕ)∇μ · ∇ξ − ϕv · ∇ξ − Γv(ϕ, σ )ξ dx, (10a)

0 =
∫
Ω

K∇p · ∇ζ − Γv(ϕ, σ )ζ −K(μ+ χσ)∇ϕ · ∇ζ dx+
∫
Γ

a(p − g)ζ dΓ,

(10b)

0 =
∫
Ω

v · y+K∇p · y−K(μ+ χσ)∇ϕ · y dx, (10c)

for a.e. t ∈ (0, T ) and all ζ ∈ H 1, ξ ∈ H 1
0 , y ∈ L2.

Theorem 2.2 Under Assumption 2.1, there exists a weak solution to (1), (2b) in the
sense of Definition 2.2.

Analogously for the problem (1), (2c) we have the following.

Definition 2.3 We call a quintuple (ϕ, μ, σ, v, p) a weak solution to (1), (2c) if

ϕ ∈ L∞(0, T ;H 1) ∩ L2(0, T ;H 3) ∩W 1, 8
5 (0, T ; (H 1)∗), v ∈ L2(Q),

σ ∈ (1+ L2(0, T ;H 1
0 )), μ ∈ L2(0, T ;H 1), p ∈ L

8
5 (0, T ;H 1), p|Σ ∈ L2(Σ),

and satisfies ϕ(0) = ϕ0, 0 ≤ σ ≤ 1 a.e. in Q, (9b), (9c), (10b) and (10c) and

0 = 〈∂tϕ, ζ 〉H 1 +
∫
Ω

m(ϕ)∇μ · ∇ζ +∇ϕ · vζ + Γv(ϕ, σ )ϕζ − Γϕ(ϕ, σ )ζ dx,

(11)

for a.e. t ∈ (0, T ) and all ζ ∈ H 1, ξ ∈ H 1
0 , y ∈ L2.

Theorem 2.3 Under Assumption 2.1, with (A3) replaced by

Ψ (s) ≥ C1 |s|2 − C2,
∣∣Ψ ′′(s)∣∣ ≤ C3 ∀s ∈ R, (12)
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for some positive constants C1, C2, C3 , there exists a weak solution to (1), (2c) in
the sense of Definition 2.3.

We use the fact that H 1 ⊂⊂ L2 ⊂ (H 1)∗, H 1 ⊂⊂ L2 ⊂ H−1, and [22, §8,
Cor. 4] to deduce that ϕ ∈ C0([0, T ];L2) in all cases, and thus ϕ(0) makes sense as
a function in L2. This implies that the initial condition ϕ0 is attained in all cases.

3 Dirichlet Boundary Conditions for the Pressure

We show the existence of weak solutions to (1), (2a) by means of a Galerkin
approximation, and first consider a regularisation of (1), (2a), where (1d) is replaced
with

θ∂tσ −Δσ + h(ϕ)σ = 0 in Q, σ = 1 on Σ, σ(0) = σ0 in Ω (13)

for some θ ∈ (0, 1], and σ0 ∈ L2(Ω). Furthermore, we introduce a cut-off operator
T (s) := max(0,min(1, s)) and replace the source terms with

Γv(ϕ, σ ) = bv(ϕ)T (σ )+ fv(ϕ), Γϕ(ϕ, σ ) = bϕ(ϕ)T (σ )+ fϕ(ϕ).

The procedure is to first use a Galerkin approximation to deduce the existence
of a weak solution quintuple (ϕθ , μθ , σ θ , vθ , qθ ) to the regularized problem, and
subsequently employ a weak comparison principle at the continuous level to show
0 ≤ σθ ≤ 1 a.e. in Q, so that the cut-off operator T can then be neglected. Then,
we pass to the limit θ → 0 to obtain the existence of a weak solution to (1), (2a).

Below we will derive the necessary a priori estimates to prove existence of weak
solutions to the regularized problem

div v = bv(ϕ)T (σ )+ fv(ϕ) in Q, (14a)

v = −K(∇q + ϕ∇(μ+ χσ)) in Q, (14b)

∂tϕ + div (ϕv) = div (m(ϕ)∇μ)+ bϕ(ϕ)T (σ )+ fϕ(ϕ) in Q, (14c)

μ = AΨ ′(ϕ)− BΔϕ − χσ in Q, (14d)

θ∂tσ = Δσ − h(ϕ)σ in Q, (14e)

∂nϕ = 0, m(ϕ)∂nμ = ϕv · n, q = 0, σ = 1 on Σ, (14f)

ϕ(0) = ϕ0, σ (0) = σ0 in Ω, (14g)

with an initial condition 0 ≤ σ0 ≤ 1 a.e. in Ω .

Lemma 1 Under Assumption 2.1 and 0 ≤ σ0 ≤ 1 a.e. in Ω , for any θ ∈
(0, 1], there exists a weak solution quintuple (ϕθ , μθ , σ θ , vθ , qθ ) in the sense of
Definition 2.1 with additionally σθ ∈ H 1(0, T ;H−1), σθ (0) = σ0 a.e. in Ω ,
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and (9c) is replaced by

0 = 〈θ∂tσ θ , ξ〉H 1
0
+
∫
Ω

∇σθ · ∇ξ + h(ϕθ )σ θξ dx ∀ξ ∈ H 1
0 . (15)

Furthermore, there exists a positive constant C not depending on θ, ϕθ , μθ , σ θ ,

vθ , qθ such that

‖Ψ (ϕθ )‖L∞(0,T ;L1) + ‖Ψ ′(ϕθ )‖L2(0,T ;H 1) + ‖ϕθ‖L∞(0,T ;H 1)∩L2(0,T ;H 3)

+ ‖μθ‖L2(0,T ;H 1) + ‖vθ‖L2(Q) + ‖qθ‖
L

8
5 (0,T ;H 1

0 )
+ ‖∂tϕθ‖

L
8
5 (0,T ;(H 1)∗)

+ ‖σθ‖L2(0,T ;H 1) + ‖θ∂tσ θ‖L2(0,T ;H−1) ≤ C.

(16)

Proof The details regarding the existence of Galerkin solutions via the theory of
ODEs can be found in [13, 19], and so we will omit the details and focus only on
the a priori estimates. In the following, C denotes a positive constant not depending
on (ϕ, μ, σ, v, q) and θ , and may vary from line to line.

At the Galerkin level, we may replace duality pairings in (9a) and (15) with
L2-inner products. For convenience let us reuse the variables ϕ,μ, σ, v, q as the
Galerkin solutions. Let Z > 0 be a constant yet to be specified, then substituting
ξ = Z(σ − 1) in (15), ζ = ∂tϕ in (9b), ζ = μ+ χσ in (9a), y = K−1v in (9e) and
summing leads to

d

dt

∫
Ω

AΨ (ϕ)+ B

2
|∇ϕ|2 + Z

2
θ |σ − 1|2 dx

+
∫
Ω

m(ϕ) |∇μ|2 + 1

K
|v|2 + Z |∇σ |2 + Zh(ϕ) |σ |2 dx

=
∫
Ω

−m(ϕ)χ∇μ · ∇σ + Γϕ(μ+ χσ)+ Γvq + Zh(ϕ)σ dx.

(17)

Similarly to [12] we estimate terms on the right-hand side involving σ by
C1‖∇σ‖2

L2 + C2Z through the use of the Poincaré inequality, where C1, C2 are
positive constants such that C1 is independent of Z. Thanks to the cutoff operator
and the boundedness of fv and fϕ , we see that

∣∣∣∣
∫
Ω

Γϕ(μ+ χσ)+ Γvq dx

∣∣∣∣
≤ C

(
1+ ‖μ− μ‖L1 + |μ|L1 + ‖q‖L2 + ‖σ − 1‖L2

)

≤ C(1+ |μ| + ‖q‖L2)+ m0

4
‖∇μ‖2

L2 + ‖∇σ‖2
L2 ,

(18)
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where we have used the Poincaré inequality (5) with r = 1 and Young’s inequality.
From substituting ζ = 1 in (9b) and using (A3), we find that

|μ| ≤ C(1+ ‖σ − 1‖L2 + ‖Ψ ′(ϕ)‖L1) ≤ C
(
1+ ‖Ψ (ϕ)‖L1 + ‖∇σ‖L2

)
. (19)

To obtain an estimate of ‖q‖L2 , we look at the pressure system, whose weak
formulation is given by (9d). Let f := (−ΔD)−1(q/K), so that

∫
Ω

K∇f · ∇φ dx =
∫
Ω

qφ dx for all φ ∈ H 1
0 .

Substituting ξ = f in (9d) and φ = q in the above leads to

‖q‖2
L2 =

∫
Ω

K∇q · ∇f dx =
∫
Ω

Γvf −Kϕ∇(μ+ χσ) · ∇f dx

≤ ‖Γv‖L2‖f ‖L2 +K‖ϕ∇(μ+ χσ)‖
L

6
5
‖∇f ‖L6

≤ C
(
1+ ‖ϕ‖L3‖∇(μ+ χσ)‖L2

) ‖f ‖H 2 .

Using the elliptic regularity estimate ‖f ‖H 2 ≤ C‖q‖L2 , we find that

‖q‖L2 ≤ C
(
1+ ‖ϕ‖H 1‖∇(μ+ χσ)‖L2

)

≤ m0

4
‖∇μ‖2

L2 + ‖∇σ‖2
L2 + C

(
1+ ‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2

L2

)
,

(20)

where we have used the Sobolev embedding H 1 ⊂ L3 and (A3). Then, substituting
the estimates (19), (20) into (18), we find that the right-hand side of (17) can be
estimated as

|RHS| ≤ m0

4
‖∇μ‖2

L2 + χ2m2
1

m0
‖∇σ‖2

L2 + Z‖σ − 1‖L1 + Z

+ C
(
1+ ‖σ − 1‖L2 + ‖μ− μ‖L1 + |μ| + ‖q‖L2

)

≤ 3m0

4
‖∇μ‖2

L2 +
(
χ2m2

1

m0
+ 4

)
‖∇σ‖2

L2

+ C
(

1+ Z2 + ‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2
L2

)
.

Neglecting the non-negative term Zh(ϕ) |σ |2 on the left-hand side of (17) and

choosing Z >
χ2m2

1
m0

+ 4 yields the differential inequality

d

dt

(
‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2

L2 + θ‖σ − 1‖2
L2

)
− C

(
‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2

L2

)

+ ‖∇μ‖2
L2 + ‖v‖2

L2 + ‖∇σ‖2
L2 ≤ C.
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By (A1), (A3) and the Sobolev embedding H 1 ⊂ L6, it holds that Ψ (ϕ0) ∈ L1.
Hence, by an application of Gronwall’s inequality we obtain

sup
t∈(0,T ]

(
‖Ψ (ϕ(t))‖L1 + ‖∇ϕ(t)‖2

L2 + θ‖σ(t)− 1‖2
L2

)

+ ‖∇μ‖2
L2(Q)

+ ‖v‖2
L2(Q)

+ ‖∇σ‖2
L2(Q)

≤ C,

where we have also used that θ‖σ0 − 1‖2
L2 ≤ ‖σ0 − 1‖2

L2 as θ ∈ (0, 1]. Then,
using (19) and (A3) and the Poincaré inequality for ϕ and μ yields

sup
t∈(0,T ]

(
‖Ψ (ϕ(t))‖L1 + ‖ϕ(t)‖2

H 1 + θ‖σ‖2
L2

)

+ ‖μ‖2
L2(0,T ;H 1)

+ ‖v‖2
L2(Q)

+ ‖σ‖2
L2(0,T ;H 1)

≤ C.

(21)

Next, looking at (9b) as an elliptic equation for ϕ, and using that the potential Ψ has
polynomial growth of order less than 6, we employ the bootstrapping argument in
[12, §3.3] and in [13, §4.2] to deduce that

‖Ψ ′(ϕ)‖L2(0,T ;H 1) + ‖ϕ‖L2(0,T ;H 3) ≤ C. (22)

Then, substituting ξ = q in (9d) and the Poincaré inequality (7) gives

K‖∇q‖2
L2 ≤ ‖Γv‖L2‖q‖L2 +K‖ϕ∇(μ+ χσ)‖L2‖∇q‖L2

≤ C + K

2
‖∇q‖2

L2 + C‖ϕ‖2
L∞‖∇(μ+ χσ)‖2

L2

≤ C + K

2
‖∇q‖2

L2 + C‖ϕ‖
3
2
L∞(0,T ;L6)

‖ϕ‖
1
2
H 3‖∇(μ+ χσ)‖2

L2,

where we have also used the Gagliardo–Nirenburg inequality (8) in three dimen-
sions. Thus we obtain

∫ T

0
‖q‖

8
5
H 1 dt ≤ C

(
1+ ‖ϕ‖

6
5
L∞(0,T ;H 1)

∫ T

0
‖ϕ‖

2
5
H 3‖∇(μ+ χσ)‖

8
5
L2 dt

)

≤ C

(
1+ ‖ϕ‖

2
5
L2(0,T ;H 3)

‖∇(μ+ χσ)‖
8
5
L2(Q)

)
≤ C.

(23)

Lastly, we see that for any ζ ∈ L
8
3 (0, T ;H 1),

∣∣∣∣
∫
Q

ϕv · ∇ζ
∣∣∣∣ ≤

∫ T

0
‖ϕ‖L∞‖v‖L2‖∇ζ‖L2 dt

≤ C‖ϕ‖
3
4
L∞(0,T ;H 1)

‖v‖L2(Q)‖ϕ‖
1
4
L2(0,T ;H 3)

‖ζ‖
L

8
3 (0,T ;H 1)

≤ C‖ζ‖
L

8
3 (0,T ;H 1)

,

(24)
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and so from (9a), we obtain

‖∂tϕ‖
L

8
5 (0,T ;(H 1)∗)

≤ C

(
1+ ‖∇μ‖L2(Q) + ‖ div (ϕv)‖

L
8
5 (0,T ;(H 1)∗)

)
≤ C.

(25)

Similarly, from (15) we see that

‖θ∂tσ‖L2(0,T ;H−1) ≤ ‖σ‖L2(0,T ;H 1) ≤ C. (26)

The a priori estimates (21), (22), (23), (25) and (26) are sufficient to deduce
the existence of a weak solution quadruple (ϕθ , μθ , σ θ , vθ , qθ ) to (14) with the
regularities stated in Lemma 1 which satisfies (9a), (9b), (9d), (9e), and (15) for
a.e. t ∈ (0, T ) and all ζ ∈ H 1, y ∈ L2, ξ ∈ H 1

0 . We refer the reader to
[13] for the details in passing to the limit. Let us just mention that thanks to
boundedness in L2(0, T ;H 1

0 ) ∩ H 1(0, T ;H−1) and [22, §8, Cor. 4] the Galerkin
approximations for σ converges strongly in L2(Q) and hence also a.e. in Q.
Furthermore, the estimate (16) is obtained by passing to the limit in the a priori
estimates (21), (22), (23), (25) and (26) for the Galerkin approximation and using
weak/weak* lower semi-continuity of the norms.

To complete the proof, it remains to show that 0 ≤ σθ ≤ 1 a.e. in Q by means of a
weak comparison principle. For this we substitute ξ = (σ θ−1)+ := max(σ θ−1, 0)
and ξ = (σ θ )− := max(−σθ , 0) in (15), and note that due to the boundary condition
σθ = 1 on Σ , necessarily (σ θ − 1)+, (σ θ )− ∈ H 1

0 . The former yields

θ

2

d

dt
‖(σ θ − 1)+‖2

L2

= −‖∇(σ θ − 1)+‖2
L2 −

∫
Ω

h(ϕ)
∣∣(σ θ − 1)+

∣∣2 + h(ϕ)(σ θ − 1)+ dx ≤ 0,

and the latter yields

θ

2

d

dt
‖(σ θ )−‖2

L2 = −‖∇(σ θ )−‖2
L2 −

∫
Ω

h(ϕ)
∣∣(σ θ )−

∣∣2 dx ≤ 0.

From both inequalities we infer that for any t ∈ (0, T ),

‖(σ θ (t)− 1)+‖2
L2 ≤ ‖(σ0 − 1)+‖2

L2 = 0, ‖(σ θ (t))−‖2
L2 ≤ ‖(σ0)−‖2

L2 = 0,

as 0 ≤ σ0 ≤ 1 a.e. in Ω . This yields that 0 ≤ σθ ≤ 1 a.e. in Q.
��

At this point, we can neglect the cut-off operator T in (14) and now pass to
the limit θ → 0. By virtue of (16) we have boundedness of (ϕθ , μθ , σ θ , vθ , qθ )

in the Bochner spaces stated in Definition 2.1. Denoting the limit functions as
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(ϕ, μ, σ, v, q), it is a standard argument to show that the above quintuple is a weak
solution of (1)–(2a) in the sense of Definition 2.1, and thus we omit the details.

4 Robin Boundary Conditions for the Pressure

To prove Theorem 2.2 for the system (1)–(2b), it suffices to prove the existence
of a weak solution (ϕθ , μθ , σ θ , vθ , pθ ) to the regularized problem consisting
of (14a), (14c), (14d), (14e) and

v = −K (∇p − (μ+ χσ)∇ϕ) in Q, (27)

along with the initial-boundary conditions

∂nϕ = 0, μ = 0, K∂np = a(g − p), σ = 1 on Σ,

ϕ(0) = ϕ0, σ (0) = σ0 in Ω,

and then pass to the limit θ → 0. We focus on obtaining a priori estimates
for the regularized problem and omit the argument for θ → 0 as it follows
straightforwardly from the a priori estimates.

Lemma 2 Under Assumption 2.1 and 0 ≤ σ0 ≤ 1 a.e. in Ω , for any θ ∈
(0, 1], there exists a weak solution quintuple (ϕθ , μθ , σ θ , vθ , pθ ) in the sense of
Definition 2.2 with additionally σθ ∈ H 1(0, T ;H−1), σθ (0) = σ0 a.e. in Ω ,
and (9c) is replaced by (15). Furthermore, there exists a positive constant C not
depending on θ, ϕθ , μθ , σ θ , vθ , pθ such that

‖Ψ (ϕθ )‖L∞(0,T ;L1) + ‖Ψ ′(ϕθ )‖L2(0,T ;H 1) + ‖ϕθ‖L∞(0,T ;H 1)∩L2(0,T ;H 3)

+ ‖μθ‖L2(0,T ;H 1) + ‖vθ‖L2(Q) + ‖pθ‖
L

8
5 (0,T ;H 1)

+ ‖∂tϕθ‖
L

8
5 (0,T ;H−1)

+ ‖σθ‖L2(0,T ;H 1) + ‖θ∂tσ θ‖L2(0,T ;H−1) + ‖pθ‖L2(Σ) ≤ C.

(28)

Proof Once again we will only derive the a priori estimates. Substituting ξ = Z(σ−
1) in (15) for some constant Z > 0 yet to be determined, ζ = ∂tϕ in (9b), ξ =
μ+ χ(σ − 1) in (10a), y = K−1v in (10c), and summing leads to

d

dt

∫
Ω

AΨ (ϕ)+ B

2
|∇ϕ|2 − χϕ + Z

2
θ |σ − 1|2 dx

+
∫
Ω

m(ϕ) |∇μ|2 + 1

K
|v|2 + Z |∇σ |2 + Zh(ϕ) |σ |2 dx+ a‖p‖2

L2(Γ )
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=
∫
Ω

−χm(ϕ)∇μ · ∇σ + Γϕ(μ+ χ(σ − 1))+ Zh(ϕ)σ dx

+
∫
Ω

pΓv + ϕv · ∇(μ+ χ(σ − 1))+ (μ+ χσ)∇ϕ · v dx+
∫
Γ

agp dΓ. (29)

Using that (μ+ χ(σ − 1)) = 0 on Γ and the product rule, we have
∫
Ω

ϕv · ∇(μ+ χ(σ − 1))+ (μ+ χσ)∇ϕ · v dx

=
∫
Ω

χv · ∇ϕ − Γvϕ(μ+ χ(σ − 1)) dx.

Thus, we obtain the following identity from integrating (29) in time

∫
Ω

(
AΨ(ϕ)+ B

2
|∇ϕ|2 − χϕ + Z

2
θ |σ − 1|2

)
(t) dx

+
∫
Ωt

(
m(ϕ) |∇μ|2 + 1

K
|v|2 + Z |∇σ |2 + Zh(ϕ) |σ |2

)
+
∫
Γt

a |p|2

=
∫
Ωt

(−χm(ϕ)∇μ · ∇σ + χ∇ϕ · v+ Zh(ϕ)σ)+
∫
Γt

agp

+
∫
Ωt

(
Γv(p − ϕ(μ+ χ(σ − 1)))+ Γϕ(μ+ χ(σ − 1))

)

+
∫
Ω

(
AΨ(ϕ0)+ B

2
|∇ϕ0|2 − χϕ0 + Z

2
θ |σ0 − 1|2

)
dx =: I1 + I2 + I3.

(30)

Note that by (A3) and the fact that θ ∈ (0, 1], the third term I3 on the right-hand
side of (30) is bounded, and by Young’s inequality

∣∣∣∣
∫
Ω

χϕ dx

∣∣∣∣ ≤ χ |Ω | 1
2 ‖ϕ‖L2 ≤ A

2C1
‖ϕ‖2

L2 + C ≤ A

2
‖Ψ (ϕ)‖L1 + C,

which implies that
∫
Ω

(AΨ (ϕ)− χϕ) (t) dx ≥ A

2
‖Ψ (ϕ(t))‖L1 − C.

Next, for I1, using the Poincaré inequality in L1 on (σ −1), Hölder’s inequality and
Young’s inequality, we have

|I1| ≤ m0

4
‖∇μ‖2

L2(Q)
+
(
χ2m2

1

m0
+ 1

)
‖∇σ‖2

L2(Q)
+ 1

2K
‖v‖2

L2(Q)
+ a

2
‖p‖2

L2(Σ)

+ C
(

1+ Z2 + ‖∇ϕ‖2
L2(Q)

+ ‖g‖2
L2(Σ)

)
.
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It remains to estimate I2, and we first obtain an estimate on ‖p‖L2 by looking
at the pressure system, whose weak formulation is given by (10b). Let f :=
(−ΔR)

−1(p/K, a/K, 0), so that

∫
Ω

K∇f · ∇φ dx+
∫
Γ

afφ dΓ =
∫
Ω

pφ dx for all φ ∈ H 1.

Substituting ζ = f in (10b) and φ = p in the above leads to

‖p‖2
L2 =

∫
Ω

Γvf +K(μ+ χσ)∇ϕ · ∇f dx+
∫
Γ

agf dΓ

≤ ‖Γv‖L2‖f ‖L2 +K‖(μ+ χσ)∇ϕ‖
L

6
5
‖∇f ‖L6 + a‖g‖L2(Γ )‖f ‖L2(Γ )

≤ C
(

1+ ‖g‖L2(Γ ) + ‖(μ+ χσ)∇ϕ‖
L

6
5

)
‖f ‖H 2 .

(31)

Using the elliptic regularity estimate ‖f ‖H 2 ≤ C‖p‖L2 , we obtain, analogous
to (20),

‖p‖L2 ≤ C
(

1+ ‖g‖L2(Γ ) + ‖(μ+ χσ)∇ϕ‖
L

6
5

)

≤ C
(

1+ ‖g‖L2(Γ ) + ‖μ+ χσ‖L6‖∇ϕ‖
L

3
2

)

≤ C
(

1+ ‖g‖L2(Γ ) +
(
1+ ‖∇μ‖L2 + ‖∇σ‖L2

) ‖∇ϕ‖
L

3
2

)
,

(32)

where we have applied the Poincaré inequality (7) to μ and σ − 1, and the Sobolev
embedding H 1 ⊂ L6. Using the boundedness of Γv and Γϕ , (A3) and ‖p‖L1(Q) ≤
C‖p‖L1(0,T ;L2), we see that

|I2| ≤ C
(
1+ ‖p‖L1(Q) +

(
1+ ‖ϕ‖L2(Q)

) (‖μ‖L2(Q) + ‖σ − 1‖L2(Q)

))

≤ C
(

1+ ‖g‖L2(Σ) + ‖∇ϕ‖2
L2(Q)

+ ‖ϕ‖2
L2(Q)

)
+ m0

4
‖∇μ‖2

L2(Q)
+ ‖∇σ‖2

L2(Q)

≤ C
(

1+ ‖Ψ (ϕ)‖L1(Q) + ‖∇ϕ‖2
L2(Q)

+ ‖g‖2
L2(Σ)

)
+ m0

4
‖∇μ‖2

L2(Q)
+ ‖∇σ‖2

L2(Q)
.

Thus, choosing Z >
χ2m2

1
m2

0
+ 2, we obtain from (30) the inequality

(
‖Ψ (ϕ(t))‖L1 + ‖∇ϕ(t)‖2

L2 + θ‖σ(t) − 1‖2
L2

)

+ ‖∇μ‖2
L2(Q)

+ ‖v‖2
L2(Q)

+ ‖∇σ‖2
L2(Q)

+ ‖p‖2
L2(Σ)

≤ C
(

1+ ‖g‖2
L2(Σ)

+ ‖Ψ (ϕ)‖L1(Q) + ‖∇ϕ‖2
L2(Q)

)
,
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for all t ∈ (0, T ]. Applying the integral version of Gronwall’s inequality [14,
Lem. 3.1], we obtain

sup
t∈(0,T ]

(
‖Ψ (ϕ(t))‖L1 + ‖∇ϕ(t)‖2

L2 + θ‖σ(t)− 1‖2
L2

)

+ ‖∇μ‖2
L2(Q)

+ ‖∇σ‖2
L2(Q)

+ ‖v‖2
L2(Q)

+ ‖p‖2
L2(Σ)

≤ C.

(33)

Then, using (A3) and the Poincaré inequality for μ and σ , this yields

sup
t∈(0,T ]

(
‖Ψ (ϕ(t))‖L1 + ‖ϕ(t)‖2

H 1 + θ‖σ(t)− 1‖2
L2

)

+ ‖μ‖2
L2(0,T ;H 1)

+ ‖σ‖2
L2(0,T ;H 1)

+ ‖v‖2
L2(Q)

+ ‖p‖2
L2(Σ)

≤ C.

(34)

Analogous to the Dirichlet case, a bootstrapping argument akin to [12, §3.3] and
[13, §4.2] leads to the estimate

‖Ψ ′(ϕ)‖L2(0,T ;H 1) + ‖ϕ‖L2(0,T ;H 3) ≤ C. (35)

Then, from (10b) and the Poincaré inequality (6), it holds that

K‖∇p‖2
L2 + a

2
‖p‖2

L2(Γ )
≤ ‖Γv‖L2‖p‖L2 +K‖(μ+ χσ)∇ϕ‖L2‖∇p‖L2 + a

2
‖g‖2

L2(Γ )

≤ C
(

1+ ‖g‖2
L2(Γ )

)
+ K

2
‖∇p‖2

L2 + a

4
‖p‖2

L2(Γ )
+K‖(μ + χσ)∇ϕ‖2

L2,

which implies that

‖p‖H 1 ≤ C
(
1+ ‖g‖L2(Γ ) + ‖(μ+ χσ)∇ϕ‖L2

)
. (36)

By the Gagliardo–Nirenburg inequality (8) for d = 3, we see that

‖∇ϕ‖L3 ≤ C‖ϕ‖
1
4
H 3‖ϕ‖

3
4
L6 , (37)

and thus (μ+ χσ)∇ϕ ∈ L
8
5 (0, T ;L2). From (36) this implies that

‖p‖
L

8
5 (0,T ;H 1)

≤ C. (38)

Analogous to (24), for ξ ∈ L
8
3 (0, T ;H 1

0 ), using that ϕ ∈ L∞(0, T ;H 1) ∩
L2(0, T ;H 3) and v ∈ L2(Q) leads to

∣∣∣∣
∫
Q

ϕv · ∇ξ
∣∣∣∣ ≤ C‖ξ‖

L
8
3 (0,T ;H 1

0 )
,
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which in turn gives

‖∂tϕ‖
L

8
5 (0,T ;H−1)

≤ C (39)

by the inspection of (10a). Similarly, by inspection of (15), the a priori estimate (26)
is also valid.

The a priori estimates (26), (34), (35), (38) and (39), together with a Galerkin
approximation are sufficient to deduce the existence of a weak solution quintuple
(ϕθ , μθ , σ θ , vθ , pθ ) satisfying the assertions of Lemma 2. Once again, (28) follows
from weak/weak* lower semi-continuity of the norms, and the assertion 0 ≤ σθ ≤ 1
a.e. in Q follows from a weak comparison principle as in the proof of Lemma 1.

��
Remark 1 The necessity of a Dirichlet condition for μ is due to the fact that we
cannot control ‖μ∇ϕ‖

L
6
5

in (32) simply with the left-hand side of (30) if we assume

∂nμ = 0 on Σ . One could consider the splitting

‖μ∇ϕ‖
L

6
5
≤ ‖(μ− μ)∇ϕ‖

L
6
5
+ |μ| ‖∇ϕ‖

L
6
5
≤ ‖μ− μ‖L6‖∇ϕ‖

L
3
2
+ |μ| ‖∇ϕ‖

L
6
5

≤ C‖∇μ‖L2‖∇ϕ‖
L

3
2
+ C

(
1+ ‖σ − 1‖L2 + ‖Ψ ′(ϕ)‖L1

) ‖∇ϕ‖
L

6
5
,

and in order to control the second term, it is desirable to have an estimate of the
form

‖Ψ ′(ϕ)‖2
L1 ≤ C

(
1+ ‖Ψ (ϕ)‖L1

)
.

This leads to the situation encountered in [14] and restricts Ψ to have quadratic
growth. Furthermore, the ansatz in [13, 19] is to consider the splitting

∣∣∣∣
∫
Ω

Γv(p − μϕ) dx

∣∣∣∣ =
∣∣∣∣
∫
Ω

Γv(p − μϕ)+ Γv(μ− μ)ϕ dx

∣∣∣∣
≤
∣∣∣∣
∫
Ω

Γv(p − μϕ) dx

∣∣∣∣+ C‖∇μ‖L2‖ϕ‖L2 .

If p satisfies the Darcy law (2b) with the boundary condition ∂np = 0 on Σ , and if
Γv has zero mean, then we can write

p = (−ΔN)−1 (Γv/K − div ((μ− μ+ χσ)∇ϕ)− μ div (∇(ϕ − ϕ))) ,

where for f ∈ L2 with f = 1
|Ω|
∫
Ω f dx = 0, we denote u := (−ΔN)−1(f ) ∈ H 1

as the unique weak solution to

−Δu = f in Ω, ∂nu = 0 on Γ with u = 0.
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A short calculation shows that

−(−ΔN)−1( div (μ∇(ϕ − ϕ))) = μ(ϕ − ϕ),

and so
∫
Ω

Γv(p − μϕ) dx =
∫
Ω

Γv

(
(−ΔN)−1 (Γv/K − div ((μ− μ+ χσ)∇ϕ))

)
− Γvμϕ dx.

In [13, 19], Γv has zero mean, and so the last term on the right-hand side vanishes,
but this is not the case in our present setting, and thus the approach of [13, 19] seems
not to give any advantage in deriving a priori estimates.

5 Neumann Boundary Conditions for the Chemical Potential

In this section, let us state an analogous result to Lemma 2 for the regularized
problem consisting of (14a), (14c), (14d), (14e) and (27), but now we consider the
boundary conditions

∂nϕ = ∂nμ = 0, K∂np = a(g − p) on Σ, (40)

and (12) instead of (A3). The assertion is formulated as follows.

Lemma 3 Under Assumption 2.1 (with (12) instead of (A3)) and 0 ≤ σ0 ≤ 1 a.e.
in Ω , for any θ ∈ (0, 1], there exists a weak solution quintuple (ϕθ , μθ , σ θ , vθ , pθ )

in the sense of Definition 2.3 with additionally σθ ∈ H 1(0, T ;H−1), σθ (0) = σ0
a.e. in Ω , and (9c) is replaced by (15). Furthermore, there exists a positive constant
C not depending on θ, ϕθ , μθ , σ θ , vθ , pθ such that

‖Ψ (ϕθ )‖L∞(0,T ;L1) + ‖Ψ ′(ϕθ )‖L2(0,T ;H 1) + ‖ϕθ‖L∞(0,T ;H 1)∩L2(0,T ;H 3)

+ ‖μθ‖L2(0,T ;H 1) + ‖vθ‖L2(Q) + ‖pθ‖
L

8
5 (0,T ;H 1)

+ ‖∂tϕθ‖
L

8
5 (0,T ;(H 1)∗)

+ ‖σθ‖L2(0,T ;H 1) + ‖θ∂tσ θ‖L2(0,T ;H−1) + ‖pθ‖L2(Σ) ≤ C.

(41)

Proof Once again we will only derive the a priori estimates and omit the details of
the Galerkin approximation. Substituting ζ = μ + χσ into (11), and upon adding
with the equalities obtained from substituting ξ = Z(σ −1) in (15), ζ = ∂tϕ in (9b)
and y = K−1v in (10c) we have

d

dt

∫
Ω

AΨ (ϕ)+ B

2
|∇ϕ|2 + Z

2
θ |σ − 1|2 dx

+
∫
Ω

m(ϕ) |∇μ|2 + 1

K
|v|2 + Z |∇σ |2 + Zh(ϕ) |σ |2 dx+

∫
Γ

a |p|2 dΓ
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=
∫
Ω

−χm(ϕ)∇μ · ∇σ + Γϕ(μ+ χσ)+ Γv(p − ϕ(μ+ χσ)) dx

+
∫
Ω

Zh(ϕ)σ dx+
∫
Γ

agp dΓ. (42)

For the terms −χm(ϕ)∇μ · ∇σ and Zh(ϕ)σ , as well as the boundary term agp on
the right-hand side we use Hölder’s inequality, Young’s inequality and the Poincaré
inequality applied to (σ − 1) to obtain

∣∣∣∣
∫
Ω

−χm(ϕ)∇μ · ∇σ + Zh(ϕ)(σ − 1+ 1) dx +
∫
Γ

agp dΓ

∣∣∣∣

≤ m0

4
‖∇μ‖2

L2 +
(
χ2m2

1

m2
0

+ 1

)
‖∇σ‖2

L2 + a

2
‖p‖2

L2(Σ)
+ a

2
‖g‖2

L2(Σ)
+ C(1 + Z2).

Since the pressure p satisfies the same Poisson equation, by following the compu-
tations in Sect. 4 and the discussion in Remark 1, we obtain

‖p‖L2 ≤ C
(

1+ ‖g‖L2(Γ ) + ‖(μ+ χ(σ − 1+ 1))∇ϕ‖
L

6
5

)

≤ C
(

1+ ‖g‖L2(Γ ) +
(‖∇μ‖L2 + ‖∇σ‖L2

) ‖∇ϕ‖
L

3
2
+ (1+ |μ|)‖∇ϕ‖

L
6
5

)
.

Substituting ζ = 1 in (9b), we can estimate the mean of μ by

|μ| ≤ C
(‖σ‖L2 + ‖Ψ ′(ϕ)‖L1

)
, (43)

and so by Young’s inequality and the boundedness of Γv, we see that

|X| :=
∣∣∣∣
∫
Ω

Γv(p − ϕ(μ − μ)− ϕ(μ+ χσ)) dx

∣∣∣∣
≤ C

(‖p‖L2 + ‖ϕ‖L2‖∇μ‖L2 + (‖σ‖L2 + ‖Ψ ′(ϕ)‖L1

) ‖ϕ‖L2

)
≤ C

(
1+ ‖g‖L2(Γ ) +

(
1+ ‖∇μ‖L2 + ‖∇σ‖L2 + ‖Ψ ′(ϕ)‖L1

) ‖ϕ‖H 1
)

≤ m0

4
‖∇μ‖2

L2 + ‖∇σ‖2
L2 + C

(
1+ ‖g‖L2(Γ ) + ‖Ψ ′(ϕ)‖2

L1 + ‖ϕ‖2
L2 + ‖∇ϕ‖2

L2

)
.

Using that Ψ has quadratic growth, we can find positive constants C4, C5 such that

∣∣Ψ ′(s)∣∣ ≤ C4 |s| + C5 ∀s ∈ R,
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and so by (12)

‖Ψ ′(ϕ)‖2
L1 ≤ C

(
1+ ‖ϕ‖2

L2

)
≤ C

(
1+ ‖Ψ (ϕ)‖L1

)
. (44)

This implies that

|X| ≤ m0

4
‖∇μ‖2

L2 + ‖∇σ‖2
L2 + C

(
1+ ‖g‖2

L2(Γ )
+ ‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2

L2

)
.

In a similar fashion, the second term on the right-hand side of (42) can be estimated
as
∣∣∣∣
∫
Ω

Γϕ(μ− μ+ μ+ χ(σ − 1+ 1)) dx

∣∣∣∣ ≤ C
(
1+ |μ| + ‖∇μ‖L2 + ‖∇σ‖L2

)

≤ m0

4
‖∇μ‖2

L2 + ‖∇σ‖2
L2 + C

(
1+ ‖Ψ (ϕ)‖L1

)
,

and we obtain from (42)

d

dt

∫
Ω

AΨ (ϕ)+ B

2
|∇ϕ|2 + Z

2
θ |σ − 1|2 dx

+ m0

4
‖∇μ‖2

L2 + 1

K
‖v‖2

L2 +
(
Z − χ2m2

1

m2
0

− 3

)
‖∇σ‖2

L2 + a

2
‖p‖2

L2(Γ )

≤ C
(

1+ Z2 + ‖g‖2
L2(Γ )

+ ‖Ψ (ϕ)‖L1 + ‖∇ϕ‖2
L2

)
.

Applying Gronwall’s inequality leads to (33), and the a priori estimate (34) follows
by applying (43), (44) and the Poincaré inequality (5) for μ and σ − 1. The other
a priori estimates (35), (38) follow from a similar argument. For the time derivative

∂tϕ, we note that ∇ϕ · v ∈ L
8
5 (0, T ; (H 1)∗) by (37), and so from (11) it holds that

‖∂tϕ‖
L

8
5 (0,T ;(H 1)∗)

≤ C. (45)

Together with (26), the a priori estimates (34), (35), (38) and (45), and a Galerkin
approximation are sufficient to deduce the existence of a weak solution quintu-
ple (ϕθ , μθ , σ θ , vθ , pθ ) satisfying the assertions of Lemma 3. Furthermore, by
weak/weak* lower semi-continuity of the norms we obtain the estimate (41), and
by a weak comparison principle, it also holds that 0 ≤ σθ ≤ 1 a.e. in Q.

��
For the proof of Theorem 2.3 we pass to the limit θ → 0, using the estimate (41).
We omit the details as it is a standard argument.
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Molecular Extended Thermodynamics
of a Rarefied Polyatomic Gas

Tommaso Ruggeri

Abstract Extended Thermodynamics can be considered as a theory of continuum
with structure because there are new field variables with respect to the classical
approach and they are dictated at mesoscopic level by the kinetic theory. In
this survey I present some recent results on the so called Molecular Extended
Thermodynamics (MET) in which the macroscopic fields are related to the moments
of a distribution function that for polyatomic gas contains an extra variable taking
into account the internal degrees of freedom of a molecule. The closure is obtained
via the variational procedure of the Maximum Entropy Principle (MEP). Particular
attention will be paid on the simple model of MET with six independent fields, i.e.,
the mass density, the velocity, the temperature and the dynamic pressure, without
adopting near-equilibrium approximation. The model obtained is the simplest
example of non-linear dissipative fluid after the ideal case of Euler. The system
is symmetric hyperbolic with the convex entropy density and the K-condition is
satisfied. Therefore, in contrast to the Euler case, there exist global smooth solutions
provided that the initial data are sufficiently smooth.

1 Continuum and Kinetic Approaches of a Non-Equilibrium
Gas

The study of nonequilibrium phenomena in gases is particularly important from
a theoretical point of view and also from a viewpoint of many possible practical
applications. We have two complementary approaches to study rarefied gases,
namely the continuum approach and the kinetic approach.

The continuum model consists in the description of the system by means of
macroscopic equations (e.g., fluid-dynamic equations) obtained on the basis of
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conservation laws and appropriate constitutive equations. A typical example is the
thermodynamics of irreversible processes (TIP). The applicability of this classical
macroscopic theory is, however, inherently restricted to a nonequilibrium state
characterized by a small Knudsen number Kn, which is a measure to what extent
the gas is rarefied:

Kn = mean free path of molecule

macroscopic characteristic length
.

The approach based on the kinetic theory postulates that the state of a gas can
be described by the velocity distribution function. The evolution of the distribution
function is governed by the Boltzmann equation. The kinetic theory is applicable
to a nonequilibrium state characterized by a large Kn, and the transport coefficients
naturally emerge from the theory itself. Therefore the range of the applicability of
the Boltzmann equation is limited to rarefied gases.

The Rational Extended Thermodynamics theory (RET) [1], which is a general-
ization of the TIP theory, also belongs to the continuum approach but is applicable
to a nonequilibrium state with larger Kn. In a sense, RET is a sort of bridge between
TIP and the kinetic theory. An interesting point to be noticed is that, in the case of
rarefied gases, there exists a common applicability range of the RET theory and the
kinetic theory. Therefore, in such a range, the results from the two theories should be
consistent with each other. Because of this, we can expect that the kinetic-theoretical
considerations can motivate us at mesoscopic level to establish the mathematical
structure of the RET theory.

2 Extended Thermodynamics of Rarefied Monatomic Gases

The kinetic theory describes a state of a rarefied gas by using the phase density
(velocity distribution function) f (x, t, c), where f (x, t, c)dc is the number density
of (monatomic) molecules at the point x and time t that have velocities between
c and c + dc. Time-evolution of the phase density is governed by the Boltzmann
equation:

∂tf + ci ∂if = Q, (1)

where the right-hand side, the collision term, describes the effect of collisions
between molecules. Here

∂t ≡ ∂

∂t
and ∂i ≡ ∂

∂xi
,
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and as usual we omit the symbol of sum over repeated italic indexes between 1 to 3.
Most macroscopic thermodynamic quantities are identified as the moments of the
phase density

F =
∫
R3

f dc, Fk1k2···kj =
∫
R3

f ck1ck2 · · · ckj dc, (j = 1, . . . ) (2)

and due to the Boltzmann equation (1), the moments satisfy an infinite hierarchy of
balance laws in which the flux in one equation becomes the density in the next one:

∂tF + ∂iFi = 0

↙
∂tFk1 + ∂iFik1 = 0

↙
∂tFk1k2 + ∂iFik1k2 = P<k1k2>

↙
∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3

...

∂tFk1k2...kN + ∂iFik1k2...kN = Pk1k2...kN

...

(3)

where

Pk1k2···kj =
∫
R3

Qck1ck2 · · · ckj dc.

As Pkk = 0, we notice that the first five equations are exactly the conservation laws,
and correspond to the conservation laws of mass, momentum and energy (except for
the factor 2) of continuum thermomechanics. For this reason we have the expression,
in particular, for the flux of (3)2:

Fik = ρvivk − tik, (4)

where ρ is the mass density, vi the velocity, and tij denotes the stress tensor:

tik = −pδik + σik, σik = −Πδik + σ<ik>

with p,Π , and σ<ik> being, respectively, the equilibrium pressure, the dynamical
(non-equilibrium) pressure, and the shear viscous deviatoric tensor σ<ik>. While
the trace of the density in (3)3 denotes, except for the factor 2, the total energy:

Fll = 2ρε + ρv2, (5)



268 T. Ruggeri

where ε is the specific internal energy. As a consequence from the trace of (4)
and (5), we have the relationship 3(p + Π) = 2ρε. As Π is a nonequilibrium
quantity that vanishes in equilibrium, we obtain

p = 2

3
ρε and Π ≡ 0. (6)

Then the gas under consideration is indeed monatomic, and the dynamic pressure
vanishes identically. This is a strong limitation on the kinetic theory. It is valid only
for rarefied monatomic gases with viscous stress tensor σij that must be deviatoric,
i.e., traceless: Π ≡ 0.

When we cut the hierarchy at the density with tensor of rank N , we have the
problem of closure because the last flux and the production terms are not in the list
of the densities. The first idea of RET [1] was to view the truncated system as a
phenomenological system of continuum mechanics and then we consider the new
quantities as local constitutive functions of the densities:

Fk1k2...kN kN+1 ≡ Fk1k2...kN kN+1

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kN

)
,

P<k1k2> ≡ P<k1k2>

(
F,Fk1 , Fk1k2 , . . . Fk1k2...kN

)
,

Pk1k2...kj ≡ Pk1k2...kj

(
F,Fk1 , Fk1k2, . . . Fk1k2...kN

)
, 3 ≤ j ≤ N.

(7)

According with the continuum theory, the restrictions on the constitutive equations
come only from universal principles, i.e.: Entropy principle, Objectivity Principle
and Causality and Stability (convexity of the entropy).

The most interesting physical cases was the 13 fields theory in classical
framework [2] and the 14 fields in the context of relativistic fluids [3]. In both cases
the previous universal principles are enough to determine completely the form of
the constitutive equations (7) at least in a theory not so far from a equilibrium state
(linear with respect the non-equilibrium variables).

3 Closure via the Maximum Entropy Principle
and Molecular Extended Thermodynamics of Monatomic
Gases

If the number of moments increases, it becomes to be too difficult to adopt the
pure continuum approach for a system with such a large number of field variables.
Therefore it is necessary to recall that the field variables are the moments of a
distribution function. To obtain the closure of the balance equations of the moments
truncated at some tensorial order N , we adopt the maximum entropy principle
(MEP). This is the procedure of the so-called molecular extended thermodynamics
(molecular RET) [4].
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The principle of maximum entropy has its root in statistical mechanics. It is
developed by Jaynes [5] in the context of the theory of information basing on
the Shannon entropy. Nowadays the importance of MEP is recognized fully due
to the numerous applications in many fields [6], for example, in the field of
computer graphics. MEP states that the probability distribution that represents the
current state of knowledge in the best way is the one with the largest entropy.
Another way of stating this is as follows: take precisely stated prior data or testable
information about a probability distribution function. Then consider the set of all
trial probability distributions that would encode the prior data. Of those, one with
maximal information entropy is the proper distribution, according to this principle.

Concerning the applicability of MEP in nonequilibrium thermodynamics, this
was originally by the observation made by Kogan [7] that Grad’s distribution [8]
function maximizes the entropy. The MEP was proposed in RET for the first time
by Dreyer [9]. In this way the 13-moment theory closure can be obtained in three
different ways: phenomenological RET, Grad kinetic method, and MEP. A remark-
able point is that all closures are equivalent to each other! The MEP procedure was
then generalized by Müller and Ruggeri to the case of any number of moments in
the first edition of their book proving that the closed system is symmetric hyperbolic
[4]. In MET the complete equivalence between the closures via the entropy principle
and via the MEP was finally proved by Boillat and Ruggeri in [10].

In the case of monatomic gases, we can define the moments (2) using a
multi-index:

FA =
{
F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,

and in this way the truncated system (3) at the tensorial order N can be rewritten in
a simple form:

∂tFA + ∂iFiA = PA, A = 0, . . . N (8)

with

FA = m

∫
R3

cA f dc, FiA = m

∫
R3

cicA f dc, PA = m

∫
R3

cA Qdc (9)

and

cA =
{

1 for A = 0

ck1ck2 · · · ckA for 1 ≤ A ≤ N.

The variational problem, from which the distribution function f render the entropy

h = −kB

∫
R3

f log f dc
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(kB is the Boltzmann constant) maximum for the prescribed moments, is obtained
through the functional (we omit the symbol of sum from 0 to N in the repeated
capital indexes A,B, . . . ):

LN (f ) = −kB

∫
R3

f log f dc+ u′A
(
FA −m

∫
R3

cA f dc
)
,

where u′A are the Lagrange multipliers:

u′A =
{
u′ for A = 0

u′k1k2···kA for 1 ≤ A ≤ N.

The distribution function fN which maximizes the functional LN is given by [1, 4,
11, 12]:

fN = exp
(
−1− m

k
χN

)
, χN = u′AcA. (10)

In an equilibrium state, (10) reduces to the Maxwellian distribution function f (M).
Then, the system may be rewritten as follows:

JAB∂tu
′
B + JiAB∂iu

′
B = PA(u

′
C), A = 0, . . . , N (11)

where

JAB

(
u′C
) = −m2

kB

∫
R3

fN cAcB dc, JiAB

(
u′C
) = −m2

kB

∫
R3

fN cicAcB dc.

Because of the fact that the matrices JAB, JiAB are symmetric with respect to
the multi-index A,B and JAB is definite negative, the system (11) is symmetric
hyperbolic [1, 4, 11] and the Lagrange multipliers coincide with the main field
according with the general theory of systems of balance laws with a convex entropy
density [13–17]. We observe that fN is not a solution of the Boltzmann equation.
But we have the conjecture (open problem) that, for N →∞, fN tends to a solution
of the Boltzmann equation.

4 Convergence Problem and Approximation Near
an Equilibrium State

All results explained above are valid also for a case far from equilibrium provided
that the integrals in (9) are convergent. The problem of the convergence of the
moments is one of the main questions in a far-from-equilibrium case. In particular
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the index of truncation N must be even [11, 18]. This implies, in particular, that
a theory with 13 moments is not allowed when far from equilibrium! Moreover,
if the conjecture that the distribution function fN , when N → ∞, tends to the
distribution function f that satisfies the Boltzmann equation is true, we need another
convergence requirement for χ given in (11). These problems were studied by
Boillat and Ruggeri [11].

To bypass the question of convergence of integrals, the distribution function
obtained as the solution of the variational problem is considered only in the
neighborhood of a local equilibrium state, and we formally expand the distribution
function (10) as the perturbation of the Maxwellian distribution f (M):

fN ≈ f (M)

(
1− m

kB
ũ′AcA

)
, ũ′A = u′A − u′EA , (12)

where u′EA are the main field components evaluated in the local equilibrium state.
More high expansion was considered in the paper [19].

This is a big limitation of the theory because the theory is valid only near
equilibrium and hyperbolicity exists only in some small domain of the configuration
space near equilibrium. Notice that fN given by (12) is not always positive!

5 ET Beyond the Monatomic Gas: Polyatomic Gas

The previous ET theory, being strictly connected with the kinetic theory, suffers
from nearly the same limitations as the Boltzmann equation.

In the case of polyatomic gases, on the other hand, the rotational and vibrational
degrees of freedom of a molecule, which are not present in monatomic gases, come
into play [20], and in the case of dense gases, as the average distance between
the constituent molecules is finite, the interaction between the molecules cannot
be neglected. From a mathematical standpoint, these effects are responsible for
intrinsic changes in the structure of the system of field equations. Single hierarchy
of field equations as in the case of monatomic gases is no longer valid. In particular,
the internal specific energy is no longer related to the pressure in a simple way.

After several tentative theories, a satisfactory 14-field ET theory for dense gases
and for rarefied polyatomic ones, was recently developed by Arima, Taniguchi,
Ruggeri and Sugiyama [21]. This theory adopts two parallel hierarchies (binary
hierarchy) for the independent fields: the mass density, the velocity, the internal
energy, the shear stress, the dynamic pressure and the heat flux. One hierarchy
consists of balance equations for the mass density, the momentum density and the



272 T. Ruggeri

momentum flux (momentum-like hierarchy), and the other one consists of balance
equations for the energy density and the energy flux (energy-like hierarchy):

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = Pk1k2 , ∂tGkk + ∂iGikk = 0,

∂tGkkk1 + ∂iGkkik1 = Qkkk1 .

(13)

These hierarchies cannot merge with each other in contrast to the case of rarefied
monatomic gases because the specific internal energy (the intrinsic part of the
energy density) is no longer related to the pressure (one of the intrinsic parts of
the momentum flux).

By means of the closure procedure of the ET theory, the constitutive equations
are determined explicitly by the thermal and caloric equations of state. For example,
let us consider the particular case of rarefied polyatomic gases with the thermal and
caloric equations of state given by (polytropic gas)

p = kB

m
ρT and ε = D

2

kB

m
T, (D = 3+ f i) (14)

where m is the atomic mass, T the absolute temperature, and the constant D is
related to the degrees of freedom of a molecule given by the sum of the space
dimension 3 for the translational motion and the contribution from the internal
degrees of freedom f i(≥ 0). For monatomic gases, D = 3 (see (6)1).

Concerning the kinetic counterpart, a crucial step towards the development of
the theory of rarefied polyatomic gases was made by Borgnakke and Larsen [22].
The distribution function is assumed to depend on an additional continuous variable
representing the energy of the internal modes of a molecule in order to take into
account the exchange of energy (other than translational one) in binary collisions.
This model was initially used for Monte Carlo simulations of polyatomic gases,
and later it was applied to the derivation of the generalized Boltzmann equation by
Bourgat, Desvillettes, Le Tallec and Perthame [23].

As a consequence of the introduction of one additional parameter I , the velocity
distribution function f (t, x, c, I ) is defined on the extended domain [0,∞)×R3×
R3 × [0,∞). Its rate of change is determined by the Boltzmann equation which
has the same form as the one of monatomic gases (1) but the collision integral
Q(f ) takes into account the influence of the internal degrees of freedom through
the collisional cross section.

Pavić, Ruggeri and Simić proved [24] 1 that, by means of the MEP, the kinetic
model for rarefied polyatomic gases presented in [22] and [23] yields appropriate
macroscopic balance laws. This is a natural generalization of the classical procedure

1There are some typos in the paper [24] that were corrected in the Chapter 12 of the book [12].
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of MEP from monatomic gases to polyatomic gases. They considered the case of 14
moments, and showed the complete agreement with the binary hierarchy (21). The
moments are defined by

⎛
⎝ F

Fi1

Fi1i2

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ 1

ci1
ci1ci2

⎞
⎠ f (t, x, c, I ) ϕ(I) dI dc,

(
Gpp

Gppk1

)
=
∫
R3

∫ ∞

0
m

(
c2 + 2 I

m(
c2 + 2 I

m

)
ck1

)
f (t, x, c, I ) ϕ(I) dI dc,

(
Pk1k2

Qkkkj

)
=
∫
R3

∫ ∞

0
m

(
ck1ck2(

c2 + 2 I
m

)
ck1

)
Qϕ(I) dI dc.

The weighting function ϕ(I) is determined in such a way that it recovers the
caloric equation of state in equilibrium for polyatomic gases. It can be shown
that ϕ(I) = Iα leads to an appropriate caloric equation for polytropic gas (14)
provided that

α = D − 5

2
. (15)

Therefore, also for rarefied polyatomic gases, the three closure procedures (ET,
MEP and Grad) give the same result as in the monatomic case!

5.1 ET of Polyatomic Rarefied Gases with Many Moments

In the case of many moments, by using similar notations as in (8)

FA =
{
F for A = 0

Fk1k2···kA for 1 ≤ A ≤ N,
GllA′ =

{
Gll for A′ = 0

Gllk1k2···kA′ for 1 ≤ A′ ≤ M,

PA =
{

0 for A = 0, 1

Pk1k2···kA for 2 ≤ A ≤ N,
QllA′ =

{
0 for A′ = 0

Qllk1k2···kA′ for 1 ≤ A′ ≤ M,

the system of moments can be rewritten in the form of a binary hierarchy:

∂tFA + ∂iFiA = PA, (A = 0, . . . , N),

∂tGllA′ + ∂iGillA′ = QllA′, (A′ = 0, . . . ,M),
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with

FA = m

∫
R3

∫ ∞

0
cA f ϕ(I) dI dc, FiA = m

∫
R3

∫ ∞

0
cicA f ϕ(I) dI dc,

PA = m

∫
R3

∫ ∞

0
cA Qϕ(I) dI dc,

GllA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ f ϕ(I)dIdc,

GlliA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cicA′ f ϕ(I)dIdc,

QllA′ = m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ Qϕ(I)dIdc,

cA =
{

1 for A = 0

ck1ck2 · · · ckA for 1 ≤ A ≤ N,
cA′ =

{
1 for A′ = 0

ck1ck2 · · · ckA′ for 1 ≤ A′ ≤ M.

The variational problem, from which the distribution function f(N,M) maximizes
the entropy

h = −kB

∫
R3

∫ ∞

0
f log f ϕ(I) dI dc, (16)

is connected to the functional:

L(N,M) (f ) =− kB

∫
R3

∫ ∞

0
f log f ϕ(I) dI dc

+ u′A
(
FA −m

∫
R3

∫ ∞

0
cA f ϕ(I) dI dc

)
+

+ v′A′
(
GllA′ −m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′ f ϕ(I)dIdc

)
,

where u′A and v′
A′ are the Lagrange multipliers:

u′A =
{
u′ for A = 0

u′k1k2···kA for 1 ≤ A ≤ N,
, v′A′ =

{
v′ for A′ = 0

v′k1k2···kA′ for 1 ≤ A′ ≤M.

The distribution function f(N,M) which maximizes the functional L(N,M) is
given by

f(N,M) = exp
(
−1− m

k
χ(N,M)

)
, χ(N,M) = u′AcA +

(
c2 + 2I

m

)
v′A′cA′ .
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Then, the system may be rewritten as follows:
(

J 0
AB J 1

AB ′

J 1
A′B J 2

A′B ′

)
∂t

(
u′B
v′
B ′

)
+
(

J 0
iAB J 1

iAB ′

J 1
iA′B J 2

iA′B ′

)
∂i

(
u′B
v′
B ′

)
=
(

PA

QllA′

)
, (17)

where

J 0
AB = −

m2

k

∫
R3

∫ ∞

0
f cAcBϕ(I) dIdc,

J 0
iAB = −

m2

k

∫
R3

∫ ∞

0
f cicAcBϕ(I) dIdc,

J 1
AB ′ = −

m2

k

∫
R3

∫ ∞

0
f cAcB ′

(
c2 + 2I

m

)
ϕ(I) dIdc,

J 1
iAB ′ = −

m2

k

∫
R3

∫ ∞

0
f cicAcB ′

(
c2 + 2I

m

)
ϕ(I) dIdc,

J 2
iA′B ′ = −

m2

k

∫
R3

∫ ∞

0
f cicA′cB ′

(
c2 + 2I

m

)2

ϕ(I) dIdc.

Also in this case the closed system is symmetric hyperbolic [12, 25], and the theory
of monatomic gases is a singular limit of the theory of polyatomic gases [26].

In the present case we have in principle two index of truncation M and N . In the
paper [25], the following two theorems are proved:

Theorem 1 The differential system is Galilean invariant if and only if M ≤ N − 1.

Theorem 2 If M < N − 1, all characteristic velocities are independent of the
internal degrees of freedom D and coincide with the ones of F -hierarchy of
monatomic gases with the truncation order N .

The requirement that the system is Galilean invariant and the characteristic veloci-
ties are functions of D leads to the relationship M = N − 1. According with this
result, the most interesting cases are the Euler system N = 1,M = 0 and the system
with 14 fields that describes the ET of dissipative fluids in the presence of viscosity
and heat conduction N = 2,M = 1.

Also in the case of polyatomic gases, we have the same problematic concerning
the convergence of the integrals. In particular, not only the Grad theory of
monatomic gases but also the theory with 14 moments are invalid in the case far
from equilibrium!

Therefore as in the monatomic gas case, the distribution function obtained as
a solution of the variational problem is expanded in the neighborhood of a local
equilibrium state:

f ≈ f (E)

[
1− m

k

(
ũ′AcA +

(
c2 + 2I

m

)
ṽ′A′cA′

)]
, ũ′A = u′A − u′EA , ṽ′A′ = v′A′ − v′EA′ ,
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where u′EA and v′E
A′ are the main field components evaluated in the local equilibrium

state. The equilibrium distribution function is given by [12, 24]

f (E) = ρ

mA(T )

(
m

2πkBT

)3/2

exp

{
− 1

kBT

(
1

2
mC2 + I

)}
, (18)

where

A(T ) =
∫ ∞

0
exp

(
− I

kBT

)
ϕ(I)dI. (19)

This generalizes the Maxwellian distribution function in the case of polyatomic
gases, which was obtained first with different arguments in [23]. In the polytropic
case, (19) becomes

A(T ) = (kBT )1+αΓ (1+ α),

with α related with D through (15), and Γ denotes the Gamma function.
As an example we write down the differential closed system of 14 fields [12, 21]:

ρ̇ + ρ
∂vk

∂xk
= 0,

ρv̇i + ∂p

∂xi
+ ∂Π

∂xi
− ∂σ〈ij〉

∂xj
= 0,

Ṫ + 2

D
kB
m ρ

(p +Π)
∂vk

∂xk
− 2

D
kB
m ρ

∂vi

∂xk
σ〈ik〉 + 2

D
kB
m ρ

∂qk

∂xk
= 0,

σ̇〈ij〉 + σ〈ij〉
∂vk

∂xk
− 2Π

∂v〈i
∂xj〉

+ 2
∂v〈i
∂xk

σ〈j〉k〉 − 4

D + 2

∂q〈i
∂xj〉

− 2p
∂v〈i
∂xj〉

= − 1

τσ
σ〈ij〉,

Π̇ + 5D − 6

3D
Π

∂vk

∂xk
− 2(D − 3)

3D

∂v〈i
∂xk〉

σ〈ik〉 + 4(D − 3)

3D(D + 2)

∂qk

∂xk
+ 2(D − 3)

3D
p
∂vk

∂xk
= − 1

τΠ
Π,

q̇i + D + 4

D + 2
qi

∂vk

∂xk
+ 2

D + 2
qk

∂vk

∂xi
+ D + 4

D + 2
qk

∂vi

∂xk

+ kB

m
T
∂Π

∂xi
− kB

m
T
∂σ〈ik〉
∂xk

+Π

[
−

kB
m T

ρ

∂ρ

∂xi
+ D + 2

2

kB

m

∂T

∂xi
− 1

ρ

∂Π

∂xi
+ 1

ρ

∂σ〈ik〉
∂xk

]

−σ〈ik〉
[
−

kB
m T

ρ

∂ρ

∂xk
+ D + 2

2

kB

m

∂T

∂xk
− 1

ρ

∂Π

∂xk
+ 1

ρ

∂σ〈pk〉
∂xp

]
+ D + 2

2

(
kB

m

)2
ρT

∂T

∂xi

= − 1

τq
qi ,

(20)
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where τσ , τΠ and τq are relaxation times. In the present case the thermal and caloric
equations of state are given by (14) and the dot indicate the material derivative:

˙ = ∂

∂t
+ vi

∂

∂xi
.

If we apply the so-called Maxwellian iteration [27] (a sort of Chapman-Enskog
formal expansion with respect the relaxation times) then (20)3,4 converges to the
Navier-Stokes constitutive equations, while (20)5 reduces to the Fourier law [12].
For this reason the relaxations times τσ , τΠ , and τq are connected, respectively,
with the shear viscosity, bulk viscosity, and heat conductivity. We conclude that the
Navier-Stokes-Fourier parabolic system of TIP is an approximation of the previous
hyperbolic system when the relaxation times are small. The reader who is interested
in how the usual constitutive equations (Navier-Stokes’, Fourier’s, Fick’s, Darcy’s)
are approximated from the hyperbolic balance laws when some relaxation times are
negligible can read the paper [28].

A relativistic theory with 14 fields was recently given by Pennisi and Ruggeri
[29].

6 The 6-Moment Case and Non-Linear Closure

The 14-field theory gives us a complete phenomenological model but its differential
system is rather complex and the closure is in any way limited within near
equilibrium. Let us consider now a simplified theory (ET6) with 6 independent
field-variables (ρ, vi , T ,Π). This simplified theory preserves the main physical
properties of the more complex theory of 14 variables, in particular, when the
bulk viscosity plays more important role than the shear viscosity and the heat
conductivity. ET6 has another advantage to offer us a more affordable hyperbolic
partial differential system. In fact, it is the simplest system that takes into account a
dissipation mechanism after the Euler system of perfect fluids. In the present case
we have

∂F

∂t
+ ∂Fi

∂xi
= 0,

∂Fj

∂t
+ ∂Fji

∂xi
= 0, (21)

∂Fll

∂t
+ ∂Flli

∂xi
= Pll,

∂Gll

∂t
+ ∂Glli

∂xi
= 0,

where (21)1,2,4 represent the conservation laws of mass, momentum and energy
provided that F = ρ, Fi = ρvi, Fij = ρvivj + (p +Π)δij , Gll = ρvlvl + 2ρε,
and Glli = (ρvlvl + 2ρε + 2p + 2Π)vi with p and ε being, respectively, the



278 T. Ruggeri

pressure and the specific internal energy. The phenomenological ET6 was studied in
the papers [12, 30, 31].

In the molecular approach we have

⎛
⎝ F

Fi

Fll

⎞
⎠ =

⎛
⎝ ρ

ρvi

ρv2 + 3(p +Π)

⎞
⎠ =

∫
R3

∫ ∞

0
m

⎛
⎝ 1

ci

c2

⎞
⎠ f ϕ(I) dI dc (22)

and

Gll = ρv2 + 2ρε =
∫
R3

∫ ∞

0
m(c2 + 2I/m)f ϕ(I) dI dc, (23)

while the production term is given by

Pll = m

∫
R3

∫ ∞

0
c2Q ϕ(I) dI dc. (24)

Note that the internal energy density can be divided into the translational part εK
and the part of the internal degrees of freedom εI :

ρεK =
∫
R3

∫ ∞

0

1

2
mC2f (t, x,C, I )ϕ(I) dI dC,

ρεI =
∫
R3

∫ ∞

0
If (t, x,C, I )ϕ(I) dI dC, (25)

where we have introduced the peculiar velocity:

C ≡ (Ci), Ci = ci − vi . (26)

6.1 Molecular ET6 for a Polytropic Gas

The MEP in the nonlinear polytropic ET6 gives the following distribution function
f that maximizes the entropy (16) under the constraints (22), (23)

fPoly = ρ

m (kBT )1+αΓ (1+ α)

(
m

2πkBT

1

1+ Π
p

)3/2 (
1

1− 3
2(1+α)

Π
p

)1+α

× exp

{
− 1

kBT

(
1

2
mC2

(
1

1+ Π
p

)
+ I

(
1

1− 3
2(1+α)

Π
p

))}
.
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The proof was given in the paper [32]. It is important to remark that the distribution
function is non-linear in the dynamical pressure in contrast to the usual closure
of moment theory in which the non-equilibrium distribution function is a linear
perturbation of the equilibrium one. The closed system and the non-equilibrium
entropy thus obtained [32] are exactly the same as the ones obtained by the
phenomenological approach [12, 31].

6.2 Molecular ET6 for a Non-Polytropic Gas

In the case of ideal non-polytropic gases the specific heat cv = dε(T )/dT is,
in general, a nonlinear function of the temperature and the caloric and thermal
equations of state read:

ε ≡ ε(T ), p = kB

m
ρT . (27)

As cv can be measured by experiments as a function of the temperature T we can
obtain the specific internal energy ε as

ε(T ) = kB

m

∫ T

T0

ĉv(T
′) dT ′, (28)

where ĉv = (m/kB)cv is the dimensionless specific heat and T0 is an inessential
reference temperature.

From (25), inserting the equilibrium distribution (18) and taking into
account (19), we obtain the internal energy at equilibrium due to the internal motion:

εI (T ) = kB

m
T 2 d logA(T )

dT
, εI = ε − εK, (29)

with εK given by

εK = 3

2

kB

m
T .

Therefore if we know the caloric equation of state (28) we know from (29)2 εI
and therefore from (29)1 we can obtain A(T ):

A(T ) = A0 exp

(
m

kB

∫ T

T0

εI (T
′)

T ′2
dT ′

)
, (30)
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where A0 and T0 are inessential constants. As was observed in [33], the function A

is, according to (19), the Laplace transform of ϕ:

A(T ) = Lu [ϕ(I)] (s), s = 1

kBT
,

and then we can obtain the weighting function ϕ as the inverse Laplace transform
of A:

ϕ(I) = L−1
u [A(T )] (I), T = 1

kBs
.

Bisi, Ruggeri and Spiga [34] proved the following theorem about the nonequilib-
rium distribution function:

Theorem 3 The distribution function that maximizes the entropy (16) under the
constraints (22) and (23) has the form:

fNon-Poly = ρ

mA(Θ)

(
m

2πkBT

1

1+ Π
p

)3/2

exp

{
− 1

kBT

(
1

2
mC2

(
1

1+ Π
p

)
+ I

T

Θ

)}
,

(31)

where the nonequilibrium temperature Θ is related to the dynamical pressure Π

and the temperature T through the relation:

εI (T )− εI (Θ)

εK(T )
= Π

p
,

and A(Θ) is the function (30) evaluated at the temperature Θ:

A(Θ) = A0 exp

(
m

kB

∫ Θ

T0

εI (T
′)

T ′2
dT ′

)
.

All the moments are convergent and the bounded solutions satisfy the inequalities:

− 1 <
Π

p
<

εI (T )

εK(T )
. (32)

The distribution function is non-linear in the dynamical pressure and is positive.

The proof of this theorem is given in [34]. In the polytropic case the non-equilibrium
distribution function (31) reduces to the expression (26).



Molecular Extended Thermodynamics for a Rarefied Polyatomic Gas 281

6.3 Closure and Field Equations

Substituting (31) into the fluxes we obtain the closed system of ET6:

∂ρ

∂t
+ ∂

∂xi
(ρvi) = 0,

∂(ρvj )

∂t
+ ∂

∂xi

[
(p +Π)δij + ρvivj

] = 0,

∂

∂t
(2ρε + ρv2)+ ∂

∂xi

{[
2(p +Π)+ 2ρε + ρv2

]
vi

}
= 0,

∂

∂t
[3(p +Π)− 2ρε]+ ∂

∂xi
{[3(p +Π)− 2ρε] vi} = Pll .

(33)

Concerning the production term Pll , the main problem is that, in order to have
explicit expression of the production (see (24)), we need a model for the collision
term, which is, in general, not easy to obtain in the case of polyatomic gases. In the
case of a BGK model we have:

Pll = −3
Π

τ
.

The system (33) with the thermal and caloric equations of state (27) is a closed
system for the 6 unknowns (ρ, vi , T ,Π), provided that we know the collision
term in (33)4. These results are in perfect agreement with the results derived
from the phenomenological theory [31]. The differential system is symmetric
hyperbolic for any possible field and the bounded solutions satisfy automatically
the inequalities (32).

6.4 Entropy Density and Main Field

Concerning the entropy density (16) it is possible to obtain the following explicit
expression [34]:

k = h− heq

ρ
=
∫ Θ

T

εI (T
′)

T ′2
dT ′ + 3

2

kB

m
log(1+ Z)+ εI (Θ)

Θ
− εI (T )

T

Z = Π

p
= εI (T )− εI (Θ)

εK(T )
,

(34)

where heq is the equilibrium entropy solution of the equilibrium Gibbs equation:

T d

(
heq

ρ

)
= dε − p

ρ2
dρ.
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The function k is a convex function and have a global maximum at the equilibrium
state. It is also interesting to see that expressions (34) coincide with those obtained
by the phenomenological ET approach [31].

By using the results given in [34] with some algebra, it is possible to prove that
the Lagrange multipliers have the following expressions:

λ = − g

T
+
∫ Θ

T

εI (u)

u2 du− 3

2

kB

m
ln(1+ Z)+ v2

2T

1

1+ Z
,

λi = −vi

T

1

1+ Z
,

μll = 1

2Θ
,

λll = − 1

2T

(
1

1+ Z
− T

Θ

)
.

(35)

According with the general theory, the Lagrange multipliers (35) coincide with the
components of the main field for which the system (33) becomes to be symmetric
hyperbolic in the form (17) [11, 12]. Notice that, in equilibrium where Π = 0 we
have Z = 0 and Θ = T (see (34)2), then the first five components of the main
field (36) coincide with those obtained by Godunov for the Euler fluid [13]:

λ|E = − 1

T

(
g − v2

2

)
, λi |E = −vi

T
, μll |E = 1

2T
,

while λll |E = 0 according to the fact that the Euler fluid is a principal subsystem of
the 6-moment system. In the polytropic case,

εI (u) = D − 3

2

kB

m
u

and the expression (34) become the ones obtained in [32]:

k = kBρ

2m
ln

(
(1+ Z)3

(
1− 3

D − 3
Z

)D−3
)
, Z = Π

p
,

and the main field reduces to

λ = − g

T
+ k + v2

2T

1

1+ Z
, λi = −vi

T

1

1+ Z
, μll = 1

2T

(
1− 3

D − 3
Z

)−1

,

λll = − 1

2T

D

D − 3
Z (1+ Z)−1

(
1− 3

D − 3
Z

)−1

.

(36)
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7 Comparison Between the ET6 Theory and Meixner’s
Theory

The field equations (33) with the linear production can be rewritten by using the
material derivative in the following simple form [12]:

ρ̇ + ρ div v = 0,

ρv̇i + ∂

∂xi
(p +Π) = 0,

ρε̇ + (p +Π)div v = 0,

τ Π̇ +
(
ν + τ

5D − 6

3D
Π

)
div v = −Π,

(37)

where the bulk viscosity ν ∝ D − 3. When D → 3 (monatomic gas) the previous
system has the same solution as that of the Euler fluid provided Π(x, 0) = 0 [12].
In [12, 30, 31] it was proved that the system (37) coincides with the well-known
Meixner theory with one internal variable [35, 36] and the hidden variable is strictly
related to the dynamical pressure Π .

Finally we note that, in the parabolic limit case where τ → 0, the system (37)
reduces to a simplified version of Navier-Stokes system for compressible fluids:

ρ̇ + ρ div v = 0,

ρv̇i + ∂

∂xi
(p +Π) = 0,

ρε̇ + (p +Π)div v = 0,

ν div v = −Π,

and the qualitative analysis of this parabolic system was studied in same papers, e.g.
in [37, 38].

8 Qualitative Analysis

In the general theory of hyperbolic conservation laws and hyperbolic-parabolic
conservation laws, the existence of a strictly convex entropy function, which is a
generalization of the physical entropy, is a basic condition for the well-posedness.
However, in the general case, and even for arbitrarily small and smooth initial
data, there is no global continuation for these smooth solutions, which may develop
singularities, shocks, or blow up in finite time, see for instance [39].
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On the other hand, in many physical examples, thanks to the interplay between
the dissipation due to the source term and the hyperbolicity there exist global smooth
solutions for a suitable set of initial data.

In physical dissipative case, the hyperbolic systems are of mixed type, some
equations are conservation laws and other ones are real balance laws, i.e., we are
in the case in which

ut + ∂iFi (u) = F(u)

with

F(u) ≡
(

0
g(u)

)
; g ∈ R

N−M.

In this case the coupling condition, which is discovered for the first time by
Kawashima and Shizuta (K-condition) [40] such that the dissipation in the second
block has an effect also on the first block of equation, plays a very important role in
this case for the global existence of smooth solutions.

In fact, if the system of balance law is endowed with a convex entropy law,
and it is dissipative, then the K-condition becomes a sufficient condition for the
existence of global smooth solutions provided that the initial data are sufficiently
smooth (Hanouzet and Natalini [41], Wen-An Yong [42], Bianchini, Hanouzet and
Natalini [43]):

Theorem 4 (Global Existence) Assume that the system of balance laws is strictly
dissipative and the K-condition is satisfied. Then there exists δ > 0, such that, if
‖u(x, 0)‖2 ≤ δ, there is a unique global smooth solution, which verifies

u ∈ C0
(
[0,∞); H 2(R) ∩ C1

(
[0,∞);H 1(R)

)
.

Moreover Ruggeri and Serre [44] proved in the one-dimensional case that the
constant states are stable:

Theorem 5 (Stability of Constant State) Under natural hypotheses of strongly
convex entropy, strict dissipativeness, genuine coupling and “zero mass” initial for
the perturbation of the equilibrium variables, the constant solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
.

Lou and Ruggeri [45] observed that the weaker K-condition in which we require
the K-condition only for the right eigenvectors corresponding to genuine nonlinear
is a necessary (but not sufficient) condition for the global existence of smooth
solutions. In [12, 32, 46] it was proved that ET theories satisfy the hypothesis of the
previous theorems and therefore there exist global solutions provided initial data are
sufficiently smooth.
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9 Shock Wave Structure in a Rarefied Polyatomic Gas

As an application of the previous thermodynamic models, let us consider a shock
wave propagating in a polyatomic gas. The shock wave structure in a rarefied
polyatomic gas is, under some conditions, quite different from the shock wave
structure in a rarefied monatomic gas due to the presence of the microscopic internal
modes in a polyatomic molecule such as the rotational and vibrational modes. For
examples: (1) The shock wave thickness in a rarefied monatomic gas is of the order
of the mean free path. On the other hand, owing to the slow relaxation process
involving the internal modes, the thickness of a shock wave in a rarefied polyatomic
gas is several orders larger than the mean free path. (2) As the Mach number
increases from unity, the profile of the shock wave structure in a polyatomic rarefied
gas changes from the nearly symmetric profile (Type A) to the asymmetric profile
(Type B), and then changes further to the profile composed of thin and thick layers
(Type C)

Schematic profiles of the mass density are shown in Fig. 1. Such change of the
shock wave profile with the Mach number cannot be observed in a monatomic gas.
In order to explain the shock wave structure in a rarefied polyatomic gas, there have
been two well-known approaches. One was proposed by Bethe and Teller and the
other is proposed by Gilbarg and Paolucci. Although the Bethe-Teller theory can
describe qualitatively the shock wave structure of Type C, its theoretical basis is
not clear enough. The Gilbarg-Paolucci theory, on the other hand, cannot explain
asymmetric shock wave structure (Type B) nor thin layer (Type C).

Recently it was shown that the ET14 [47] and also ET6 [48] theories can describe
the shock wave structure of all Types A to C in a rarefied polyatomic gas. This new
result indicates clearly the usefulness of the ET theory for the analysis of shock
wave phenomena.

Other interesting and successful applications of RET in polyatomic gas show
good agreement with experiments concerning the dispersion relation in the high
frequency limit, and in the light scattering problem (see [12] and reference therein).

x

ρ Type A

x

ρ Type B

x

ρ Type C

Δ

Ψ

Fig. 1 Schematic representation of three types of the shock wave structure in a rarefied polyatomic
gas, where ρ and x are the mass density and the position, respectively. As the Mach number
increases from unity, the profile of the shock wave structure changes from Type A to Type B,
and then to Type C that consists of the thin layer Φ and the thick layer Ψ
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A Comparison of Two Settings for
Stochastic Integration with Respect to
Lévy Processes in Infinite Dimensions

Justin Cyr, Sisi Tang, and Roger Temam

Abstract We review two settings for stochastic integration with respect to infinite
dimensional Lévy processes. We relate notions of stochastic integration with respect
to square-integrable Lévy martingales, compound Poisson processes, Poisson ran-
dom measures and compensated Poisson random measures. We use the Lévy-
Khinchin decomposition to decompose stochastic integrals with respect to general,
non-square-integrable Lévy processes into a Riemann integral and stochastic inte-
grals with respect to a Wiener process, Poisson random measure and compensated
Poisson random measure. Besides its intrinsic interest this review article is also
meant as a step toward new studies in stochastic partial differential equations with
Lévy noise.

1 Introduction

In this article we present in a synthetic form results on stochastic integration with
respect to Lévy processes that are available in scattered form in the literature. In
particular this article makes a synthesis between the presentation in the book [15]
by Peszat and Zabczyk and the presentation in the book [10] by Ikeda and Watanabe.
The presentation in the book by Peszat and Zabczyk is more intuitive, but the
presentation in the book Ikeda and Watanabe is better technically suited for treating
stochastic partial differential equations (SPDEs). More precisely, we would say that
our article could help one who is familiar with SPDEs with Wiener noise transition
to the Lévy noise case. The framework presented by Peszat and Zabczyk should
be more intuitive than the Ikeda and Watanabe framework to one who is already
acquainted with stochastic integration with respect to a Wiener process. In the Ikeda
and Watanabe setting, the compensated Poisson random measures would probably
seem abstract to someone who is only familiar with Wiener processes. It is also hard

J. Cyr · S. Tang · R. Temam (�)
Department of Mathematics, Indiana University, Bloomington, IN, USA
e-mail: jrcyr@indiana.edu; sisitang@indiana.edu; temam@indiana.edu

© Springer International Publishing AG, part of Springer Nature 2018
E. Rocca et al. (eds.), Trends in Applications of Mathematics to Mechanics,
Springer INdAM Series 27, https://doi.org/10.1007/978-3-319-75940-1_14

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75940-1_14&domain=pdf
mailto:jrcyr@indiana.edu
mailto:sisitang@indiana.edu
mailto:temam@indiana.edu
https://doi.org/10.1007/978-3-319-75940-1_14


290 J. Cyr et al.

to see in Ikeda and Watanabe’s book how the compensated Poisson random measure
is actually related to integration with respect to a Lévy process. Our article makes
the argument that the Ikeda and Watanabe setting is better suited for the common
SPDE tools, e.g. the Itô formula and Burkholder-Davis-Gundy (BDG) inequality,
than is the Peszat and Zabczyk setting. Our article should help to bridge the gap
from the intuitive setting of Peszat and Zabczyk, which provides many important
results, to the setting of Ikeda and Watanabe, which is better technically suited for
treating SPDEs.

Stochastic partial differential equations with Wiener noise have been studied
extensively during the last four decades. In these models of PDEs with random
forcing a stochastic term influences the system continuously in time. One may
also wish to study stochastic partial differential equations in which stochastic
terms also influence the system impulsively at random discrete times. Instead
of Wiener noise, one should use noise arising from a stochastic process that
has jump discontinuities. In this article we consider stochastic integration using
Lévy processes as a source of noise with jump discontinuities. A Hilbert space-
valued stochastic process (L(t))t≥0 is called a Lévy process if L has independent,
stationary increments, t �→ L(t) is continuous in probability and L(0) = 0
almost surely (see Definition 2.1). For comparison, a Hilbert space-valued stochastic
process (W(t))t≥0 is a Wiener process if and only if W is a Lévy process with the
additional property that the map t �→ W(t) is continuous almost surely. We will
review definitions and basic properties of Lévy processes and Wiener processes in
Sect. 2. A Lévy process L need not be continuous a.s. in general, however every
Lévy process admits a càdlàg version, i.e., a right-continuous version with left-
hand limits (see Theorem 2.2). The main qualitative difference between a Wiener
process and a general Lévy process is the possibility of jump discontinuities in
a Lévy process. Almost surely, on every compact interval, a Lévy process may
have finitely many jump discontinuities of size larger than any fixed positive
number. The distinction between Wiener processes and general Lévy processes is
expressed quantitatively by the Lévy-Khinchin decomposition. The decomposition
(see Theorems 2.15 and 5.1 below) asserts that every Lévy process L can be
decomposed in the form

L(t) = at +W(t)+ P0(t)+
∞∑
n=1

P̂n(t), (1)

where a is a deterministic vector, W,P0, P1, P2, . . . are independent Lévy pro-
cesses, W is a Wiener process, for n ≥ 0 each Pn is a type of pure jump
Lévy process known as a compound Poisson process (see Definition 2.9) and
P̂n(t) := Pn(t) − t · E[Pn(1)] is the associated compensated compound Poisson
processes for n ≥ 1 (see Definition 2.12).

In order to incorporate noise from a Lévy process into a stochastic partial
differential equation one must employ some notion of stochastic integration with
respect to a Lévy process. The main references are the books [10] and [15], which
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present different notions of stochastic integration with respect to Lévy processes
based on the decomposition (1). In the book [15], Peszat and Zabczyk present a
notion of stochastic integration with respect to square-integrable Lévy processes that
are also martingales. This setting includes Wiener processes and the construction of
the stochastic integral with respect to a general square-integrable Lévy martingale
is much the same as it is for Wiener processes. We will review stochastic integration
with respect to square-integrable Lévy martingales in Sect. 3. If a = 0 and
P0 = 0 in the Lévy-Khinchin decomposition (1), then L is a square-integrable
Lévy martingale (see Proposition 2.11, Lemma 2.14 and Theorem 2.15). So one
is left to define integration with respect to the remaining terms at and P0 in (1).
Stochastic integration with respect to the drift term at in (1) can be defined as a
Bochner integral, almost surely. The compound Poisson process P0 in (1) is not a
square-integrable Lévy martingale, in general. Peszat and Zabczyk present a notion
for stochastic integration with respect to a compound Poisson process P0 using a
localization argument wherein stochastic integration is performed up to stopping
times before which P0 agrees with a square-integrable compound Poisson process.
We review Peszat and Zabczyk’s presentation of stochastic integration with respect
to compound Poisson processes in Sect. 6. In the book [10], Ikeda and Watanabe
represent noise from the Wiener process W in (1) in exactly the same way as Peszat
and Zabczyk. In contrast with Peszat and Zabczyk, Ikeda and Watanabe represent
noise from the compound Poisson process P0 in (1) using stochastic integration
with respect to its associated Poisson random measure (see Definition 4.3). Ikeda
and Watanabe represent noise from the process

∑∞
n=1 P̂n in (1) using stochastic

integration with respect to the compensated Poisson random measure associated to
the process

∑∞
n=1 P̂n (see Definition 4.8). In Sect. 2.1 we review the manner in

which a Lévy process naturally gives rise to a Poisson random measure (also known
as its jump measure, see Definition 2.16). In Sect. 4 we will review definitions
and basic properties of Poisson random measures as well as Ikeda and Watanabe’s
presentation of stochastic integration with respect to Poisson random measures and
compensated Poisson random measures (see Theorem 4.7).

Both of the settings for representing Lévy noise found in the books of Peszat and
Zabczyk as well as Ikeda and Watanabe have been employed in models of stochastic
partial differential equations with Lévy noise. For instance, see [7] and [15] itself
for examples of stochastic partial differential equations that represent Lévy noise
using the setting presented by Peszat and Zabczyk. See [1, 4, 14] for examples
that represent Lévy noise using the setting presented by Ikeda and Watanabe. In
order to compare the articles listed above, it is desirable to understand how the
setting presented by Peszat and Zabczyk is related to the setting presented by Ikeda
and Watanabe. This is one of our main motivations here. We show here that the
setting for representing the Lévy noise presented by Peszat and Zabczyk can be
converted to a special case of the setting presented by Ikeda and Watanabe (see
equation (130)). Our more specific motivations are to apply two common tools
in SPDEs, the Itô formula and Burkholder-Davis-Gundy inequality, to solutions of
SDEs with Lévy noise in the setting presented by Peszat and Zabczyk. To illustrate
the application of these tools we consider a simple SDE with Lévy noise in the
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Peszat and Zabczyk framework:

{
dX = F dt + Ψ dM

X(0) = X0.
(2)

On the right-hand side of equation (2), M is a martingale as well as a square-
integrable Lévy process and Ψ belongs to the space of integrands for stochastic
integration with respect to M . The space of integrands and the stochastic integral
with respect to M will be defined in Sect. 3. Real-valued smooth functions of the
solution X to (2) can be analyzed using the Itô formula, which is stated below. There
are several equivalent ways to state the Itô formula. The most convenient for us is
Theorem D.2 in [15].

Theorem 1.1 Let Y = N + A be an H -valued semimartingale, where N is an H -
valued L2-martingale and A has paths of finite variation. Let ψ : H → R be a C2

function such that ψ , Dψ and D2ψ are uniformly continuous on bounded subsets
of H . Then for each t ≥ 0 we have

ψ(Y (t)) =ψ(Y (0))+
∫ t

0
(Dψ(Y (s−)), dY (s))H +

1

2

∫ t

0
D2ψ(Y (s−)) d[[N,N]]cs

+
∑

s∈(0,t ]

(
Δ(ψ(Y (s))− (Dψ(Y (s−)

)
,ΔY (s)

)
H

)
(3)

P-a.s.

On the right-hand side of (3), ΔY(s) := Y (s) − Y (s−) denotes the jump of Y at
time s and [[N,N]]c denotes the continuous part of the so-called tensor quadratic
variation of N , which will be defined in Sect. 2.2. The solution X to (2) is of the
form X = N + A as in Theorem 1.1 with N(t) = ∫ t

0 Ψ (s) dM(s) and A(t) =
X0+

∫ t

0 F(s) ds. When applying the Itô formula to X we would like to simplify the
right-hand side of (3) as explicitly as possible in terms of the coefficients F and Ψ

in the original equation (2). This requires computing the jumps of X and raises the
natural question

Question 1.2 What are the jumps of the stochastic integral
( ∫ t

0 Ψ (s) dM(s)
)
t≥0?

Applying the Itô formula to X also requires expressing [[N,N]]c explicitly in
terms of Ψ ; what this entails will become more clear as we introduce additional
background information in Sect. 2.2.

When making a priori estimates for SPDEs one is often tasked with estimating
quantities of the form

E
(

sup
t∈[0,T ]

∣∣∣
∫ t

0
Ψ (s) dM(s)

∣∣∣p
H

)
,
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where M and Ψ are still as in equation (2) and 1 ≤ p < ∞. The Burkholder-
Davis-Gundy inequality asserts that this expectation is bounded by a constant times
E
[ ∫ ·

0 Ψ (s) dM(s)
]p/2
T

, where
[ ∫ ·

0 Ψ (s) dM(s)
]

denotes the quadratic variation of

the stochastic integral
( ∫ t

0 Ψ (s) dM(s)
)
t≥0 (see Sect. 2.2).

Question 1.3 What is the quadratic variation of
( ∫ t

0 Ψ (s) dM(s)
)
t≥0?

The answers to Questions 1.2 and 1.3 are not explicit in the setting presented by
Peszat and Zabczyk. However, the setting presented by Ikeda and Watanabe does
provide an answer to these questions. We will address Questions 1.2 and 1.3 in
Sect. 5.3.

This article is organized as follows. In Sect. 2 we recall probabilistic preliminar-
ies. Fundamental properties and examples of Lévy processes are given in Sect. 2.1.
In Sect. 2.2 we recall additional concepts from probability, such as martingales
and their quadratic variation and angle bracket processes. In Sect. 3 we review
Peszat and Zabczyk’s presentation of stochastic integration with respect to a square-
integrable Lévy martingale. In Sect. 3.1 we recall further properties of square-
integrable Lévy martingales and introduce technical measurability assumptions.
In Sect. 3.2 we review the construction of the stochastic integral with respect to
a square-integrable Lévy martingale. In Sect. 4 we review Ikeda and Watanabe’s
presentation of stochastic integration with respect to Poisson random measures
and compensated Poisson random measures. Background information on Poisson
random measures is given in Sect. 4.1 and stochastic integration is treated in
Sect. 4.2. Sections 2, 3 and 4 serve only to gather the definitions, notation and basic
properties of stochastic integration presented by Peszat and Zabczyk as well as Ikeda
and Watanabe that are required to compare the two settings in subsequent sections.
In Sect. 5 we consider square-integrable Lévy martingales, i.e. L as in (1) with
a = 0 and P0 = 0, and compare Peszat and Zabczyk’s presentation of stochastic
integration to Ikeda and Watanabe’s in this case. We begin in Sect. 5.1 by applying
the Lévy-Khinchin decomposition to a square-integrable Lévy martingale. The heart
of the comparison between the notions of stochastic integration presented by Peszat
and Zabczyk versus Ikeda and Watanabe lies in Sect. 5.2. In that subsection we show
that stochastic integration with respect to the process

∑∞
n=1 P̂n in (1) as presented

by Peszat and Zabczyk is a special case of stochastic integration with respect
to the compensated Poisson random measure of

∑∞
n=1 P̂n as presented by Ikeda

and Watanabe (see Proposition 5.14). In Sect. 5.3 we summarize the relationship
between the notions of stochastic integration presented by Peszat and Zabczyk
versus Ikeda and Watanabe for square-integrable Lévy martingales. We also show
that stochastic integration with respect to a square-integrable Lévy martingale,
as presented by Peszat and Zabczyk, can be realized in the setting of stochastic
integration with respect to Lévy noise presented in [10] (see Theorem 5.18). We
consider the case of square-integrable Lévy martingales first in order to devote
separate attention to reviewing Peszat and Zabczyk’s presentation of stochastic
integration with respect to a compound Poisson process P0 in Sect. 6. We begin
in Sect. 6.1 with the preliminary step of defining stochastic integration with
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respect to square-integrable compound Poisson processes (see Definition 6.7). In
Sect. 6.2 we review the construction by localization of the stochastic integral with
respect to a compound Poisson process P0 as presented by Peszat and Zabczyk
(see Definition 6.20). We adopt a more abstract framework for the construction
of the stochastic integral with respect to P0 by localization than do Peszat and
Zabczyk. We need to use this abstract setting in order to address questions related
to stochastic integration with respect to compound Poisson processes that are not
treated by Peszat and Zabczyk. We will address such questions in Sect. 6 as they
arise. In Sect. 6.3 we will compare the two notions of stochastic integration with
respect to a square-integrable compound Poisson process given in Definitions 6.7
and 6.20 (see Proposition 6.30). Finally, in Sect. 6.4 we summarize the relationship
between Peszat and Zabczyk’s presentation and Ikeda and Watanabe’s presentation
of stochastic integration with Lévy noise. In equation (130) we show how to convert
stochastic integrals with general, non-square-integrable, Lévy noise in the setting of
Peszat and Zabczyk to the setting of Ikeda and Watanabe.

The framework presented by Ikeda and Watanabe that we further develop here
is particularly suitable to study SPDEs with Lévy noise. Some applications will
be given in [5] and in future works. Also in future works we will investigate
the properties of SPDEs with Lévy noise as presented in this article as Markov
processes, as well as the associated transition semigroups and generators. Some
related remarks are made in Sect. 5.3, see [15].

2 Probabilistic Preliminaries

We now recall concepts from probability theory that will play major roles in the rest
of the article. We begin by defining Lévy processes and introducing fundamental
examples of Lévy processes. We then discuss Hilbert space-valued martingales and
the notion of quadratic variation for such processes.

2.1 Lévy Processes

In this section (Ω,F ,P) is a probability space with expectation denoted by E and
U is a real, separable Hilbert space with Borel σ -field denoted by B(U).

Definition 2.1 A U -valued Lévy process is a stochastic process L = (L(t))t≥0
taking values in U that satisfies the following properties:

• (stationary increments) If 0 ≤ s < t , 0 ≤ s′ < t ′ and t − s = t ′ − s′, then

L(t) − L(s)
D= L(t ′) − L(s′). Here “

D=” denotes equality in law and means that
P[L(t)− L(s) ∈ Γ ] = P[L(t ′)− L(s′) ∈ Γ ] for every Γ ∈ B(U).
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• (independent increments) For every sequence of points 0 ≤ t0 < t1 < · · · <
tn, the random variables L(t1) − L(t0), L(t2) − L(t1), . . . , L(tn) − L(tn−1) are
independent; i.e., for all Γ1, . . . , Γn ∈ B(U) we have

P
[ n⋂
i=1

{L(ti)− L(ti−1) ∈ Γi}
]
=

n∏
i=1

P[L(ti)− L(ti−1) ∈ Γi ].

• (stochastic continuity) For every t0 ≥ 0 one has L(t)→ L(t0) in probability (as
U -valued random variables) as t → t0, t > 0; i.e., for every ε > 0 one has

lim
t→t0
t>0

P[|L(t)− L(t0)|U > ε] = 0.

• The process starts at 0 ∈ U ; i.e., P[L(0) = 0] = 1.

A fundamental property of Lévy processes is that they admit càdlàg modifica-
tions. See Theorem 4.3 in [15] for a proof.

Theorem 2.2 Every Lévy process L has a modification with càdlàg sample paths,
i.e., there exists a Lévy process L̃ such that P[L(t) = L̃(t)] = 1 for every t ≥ 0 and
for P-a.e. ω ∈ Ω the function t �→ L̃(ω, t) is càdlàg from [0,∞) → U , i.e., this
function is right continuous:

lim
t→t+0

L̃(ω, t) = L̃(ω, t0) for every t0 ≥ 0

and has left-hand limits: lim
t→t−0

L̃(ω, t) exists for every t0 > 0.

Below we recall the foundational examples of Lévy processes: the Wiener
process, Poisson process, compound Poisson process, and compensated compound
Poisson process.

Definition 2.3 An integrable U -valued mean-zero Lévy process W whose sample
paths are continuous a.s. is called a Wiener process.

Although integrability and path continuity are the only extra conditions that
distinguish Wiener processes from other Lévy processes a priori, there is much
more that can be said about Wiener processes. Well-known basic properties of
Wiener processes are summarized below; see Theorem 4.20 in [15]. This theorem
guarantees that Definition 2.3 coincides with another commonly used definition
of Wiener process, c.f. Definition 2.1.9 in [16], in which the stochastic continuity
condition is replaced by a Gaussian condition on the distribution of increments.
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Theorem 2.4 Let W be a U -valued Wiener process. Then

i) (square integrable) E|W(t)|2U <∞ for all t ≥ 0.
ii) (Gaussian) For all t1, . . . , tn ≥ 0 and x1, . . . , xn ∈ U the random vector

((W(t1), x1)U , . . . , (W(tn), xn)U)

has a mean-zero multivariate normal distribution on R
n.

Remark 2.5 There is a bijective correspondence between the space L+1 (U) of
bounded, symmetric, nonnegative, trace class (also called nuclear) linear operators
on U and the laws of U -valued Wiener processes. Let Q ∈ L+1 (U). Then Q is
a positive, compact operator. By the spectral theorem there exists an orthonormal
basis (ONB) (un)

∞
n=1 of U consisting of eigenvectors of Q with corresponding

(nonnegative) eigenvalues (γn)
∞
n=1. Let (βn)

∞
n=1 be a sequence of independent

identically distributed (i.i.d.) standard real-valued Brownian motions and define

W(t) :=
∞∑
n=1

√
γ nβn(t)un. (4)

This series converges in L2(Ω,F ,P;U) (because
∑∞

n=1 γn = Tr(Q) < ∞), and
it converges a.s. in the space C([0, T ];U) (see Theorem 4.3 in [6] for a proof).

On the other hand, every Wiener process has this form—in the sense that given
a Wiener process W , there exists a Q ∈ L+1 (U) such that (4) holds with βn(t) :=
γ
−1/2
n (W(t), un)U , which are i.i.d. standard Brownian motions. Furthermore, for

t1, . . . , tn ≥ 0 the mean-zero normally distributed random vector

((W(t1), x1)U , . . . , (W(tn), xn)U )

has covariance matrix Σ = [ti ∧ tj
(
Qxi, xj

)
U
]ni,j=1.

We now give prototypical examples of Lévy processes possessing jump discon-
tinuities.

Definition 2.6 A Poisson process with intensity (or rate) λ > 0, is a real-valued
Lévy process Π = (Π(t), t ≥ 0) such that Π(t) has a Poisson distribution with
mean λt for every t ≥ 0; i.e.,

P[Π(t) = k] = e−λt (λt)
k

k! for each k ∈ N := {0, 1, 2, . . .}.

Proposition 2.8 below describes the structure of Poisson processes. In order to
state this result we recall the exponential distribution.
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Definition 2.7 For each λ > 0 the exponential distribution with rate λ, λ > 0,
is the probability measure λe−λxχ(0,∞)(x) dx on R. We denote the exponential
distribution with rate λ by Exp(λ).

Proposition 2.8 i) Let (Xn)
∞
n=1 be a sequence of i.i.d. Exp(λ) random variables

and define

Π(t) := max
{
k ∈ N :

k∑
j=1

Xj ≤ t
}
. (5)

Then Π(t) is finite a.s. and defines a Poisson process with rate λ.
ii) Conversely, if Π is a Poisson process, then there exist i.i.d. Exp(λ) random

variables (Xn)
∞
n=1 such that (5) holds. Furthermore, Π only has jumps of size

1, i.e.,

P(Π(t)−Π(t−) ∈ {0, 1}) = 1, for all t ≥ 0.

For a proof see Proposition 4.9 in [15]. We can think of a Poisson process as
follows: imagine that a sequence of events is occurring (for instance, customers
arriving at a queue) and that the times between consecutive events are i.i.d. Exp(λ)
random variables. In this context, X1 is the time of the first event, X2 is the time
between the first and second events, X3 is the time between the second and third
event, etc. The random variable Π(t) counts the number of events that occur during
the time interval (0, t]. The increment Π(t) − Π(s) counts the number of events
that occur in (s, t].

We introduce the Hilbert space-valued generalization of the Poisson process next.

Definition 2.9 Let μ be a finite Borel measure on a Hilbert space U with μ({0}) =
0. A compound Poisson process (abbreviated CPP) with Lévy measure (or jump
intensity measure) μ is a Lévy process P with càdlàg sample paths such that

P[P(t) ∈ Γ ] = e−μ(U)t
∞∑
j=0

tj

j !μ
∗j (Γ ), for all t ≥ 0, Γ ∈ B(U).

In the definition above μ∗j denotes the convolution μ∗j := μ ∗ μ ∗ · · · ∗ μ, j
times, for j ≥ 1 and μ∗0 := δ0. Here we use δu to denote the probability measure
concentrated at the point u ∈ U . Observe that a Poisson process with intensity λ > 0
is a compound Poisson process with Lévy measure μ := λδ1 on U := R. Indeed,
λδ1(U) = λ and (λδ1)

∗k = λkδk .
The next theorem says that a compound Poisson process is a sum of a random

number of i.i.d. random variables with law 1
μ(U)

μ and the number of random
variables in the sum is determined by a Poisson process. See Theorem 4.15 in [15]
for a proof.
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Theorem 2.10 In the setting of Definition 2.9 let λ := μ(U). Then the following
statements hold.

i) Let (Zn)
∞
n=1 be i.i.d. U -valued random variables with law λ−1μ and let Π be a

Poisson process with intensity λ that is independent of (Zn)
∞
n=1. Then

P(t) :=
Π(t)∑
j=1

Zj (6)

is a compound Poisson process with Lévy measure μ.
ii) Conversely, if P is a compound Poisson process with Lévy measure μ, then

there exist i.i.d. U -valued random variables (Zn)
∞
n=1 with law λ−1μ and an

independent Poisson process Π such that (6) holds.

Integrability properties of compound Poisson processes are given below. See
Proposition 4.18 in [15] for a proof.

Notation Let (X(t))t≥0 be a stochastic process taking values in a Hilbert space U .
If E|X(t)|U < ∞ for every t ≥ 0, then we say that X is integrable. Similarly, if
E|X(t)|2U <∞ for every t ≥ 0, then we say that X is square-integrable.

Proposition 2.11 Let P be a compound Poisson process with Lévy measure μ.
Then

i) P is integrable if and only if
∫
U
|y|U dμ(y) <∞. In this case

EP(t) = t

∫
U

y dμ(y).

ii) P is square-integrable if and only if

∫
U

|y|2 dμ(y) <∞. (7)

Definition 2.12 If P is an integrable CPP with Lévy measure μ, then we can
define P̂ (t) := P(t) − EP(t) = P(t) − t

∫
U
y dμ(y). The process P̂ is

called a compensated compound Poisson process (abbreviated CCPP) and satisfies
E[P̂ (t)] = 0 for every t ≥ 0. Since each CCPP P̂ is not constant between its jump
times (except in the trivial case where μ = 0 and there are no jumps), P̂ is not itself
a CPP. Instead, a CCPP is a different type of Lévy process with jump discontinuities
that changes linearly as a function of time between its jumps. Note that P̂ is square-
integrable if and only if (7) holds.

In Theorem 2.15 below we recall the Lévy-Khinchin decomposition, which
says that every Lévy process is a sum of a deterministic linear growth term, a
Wiener process, a compound Poisson process and compensated compound Poisson
processes. In order to state this result we must first describe how a Lévy process



Stochastic Integration with Respect to Lévy Processes 299

gives rise to the Lévy measures of its compound Poisson process parts. Let L be a
U -valued Lévy process. In what follows we use χA to denote the indicator function
of a set A, i.e., χA(x) = 1 if x ∈ A and χA(x) = 0 if x �∈ A. Let A be a Borel subset
of U that is separated from 0, i.e., 0 �∈ A. Define the N-valued stochastic process

πA(t) :=
∑

s∈(0,t ]
χA(ΔL(s)) = #{s ∈ (0, t] : ΔL(s) ∈ A}, for t > 0, (8)

where ΔL(s) := L(s)−L(s−) is the jump process of L. The fact that A is separated
from 0 and L is càdlàg implies that πA(t) < ∞ a.s. for each t . Here is a sketch of
the idea (cf. Lemma 2.3.4 in [2]): if πA(t

′) = ∞, then by compactness of [0, t ′] we
can find t ≤ t ′ and a sequence tn → t such that ΔL(tn) ∈ A. Let B(0, 2ε0) ⊆ Ac,
then we can find sn < tn with (tn − sn)→ 0 such that |L(tn)− L(sn)|U > ε0. This
means that L has a discontinuity of the second kind at t (either left or right hand
limit does not exist, depending on whether tn ↓ t or tn ↑ t , along a subsequence.
Since L has càdlàg paths a.s. we conclude that P[πA(t

′) = ∞] = 0. It turns out that
(πA(t))t≥0 is a Poisson process (see Proposition 4.9 (iv) in [15]). Let us denote its
intensity by ν(A), i.e.,

ν(A) := E[πA(1)] = E[#{s ∈ (0, 1] : ΔL(s) ∈ A}] (9)

= 1
t
E[πA(t)] = 1

t
E[#{s ∈ (0, t] : ΔL(s) ∈ A}] for all t > 0.

The formula ν(A) = EπA(1) still makes sense even if A is not separated from 0
but is still Borel measurable and does not contain 0. Using Tonelli’s theorem we see
that ν is countably additive, so ν is a Borel measure on U \ {0}.
Definition 2.13 The Borel measure ν on U \ {0} constructed above is known as the
Lévy measure of the Lévy process L.

The following additional properties of the Lévy measure are proved in [15] prior
to Theorem 4.23.

Lemma 2.14 Let L be a U -valued Lévy process with Lévy measure ν. Then ν

satisfies

∫
U

(|y|2U ∧ 1) dν(y) <∞. (10)

Let A ∈ B(U) be separated from 0, then

LA(t) :=
∑

s∈(0,t ]
χA(ΔL(s))ΔL(s)

is a compound Poisson process with Lévy measure ν|A.
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In Lemma 2.14 and throughout this article we use ν|A to denote the measure ν

restricted to the σ -algebra of Borel subsets of A.
We are now able to state the Lévy-Khinchin decomposition. See Theorem 4.23

in [15] for a proof.

Theorem 2.15 Let L be a U -valued Lévy process with Lévy measure ν. Given a
sequence (rn)

∞
n=0 with rn ↓ 0 define A0 := {y ∈ U : |y|U ≥ r0} and An := {y ∈

U : rn+1 ≤ |y|U < rn}. Then the following statements hold.

i) The compound Poisson processes
(
LAn

)∞
n=0 are independent.

ii) There exists a vector a ∈ U and a Wiener process W that is independent of(
LAn

)∞
n=0 such that

L(t) = at +W(t) + LA0(t)+
∞∑
n=1

L̂An(t) (11)

and, with probability 1, the series on the right-hand side of (11) converges
uniformly on compact subsets of [0,∞).

The processes (πA(t))t>0 defined in (8) are also of great importance. It is clear
that for 0 < t < t ′ we have

πA(t
′)− πA(t) = #{s ∈ (t, t ′] : ΔL(s) ∈ A}.

There exists a unique random measure π on (0,∞) × (U \ {0}) with the property
that

π((t, t ′] × A) = πA(t
′)− πA(t) (12)

for all 0 < t < t ′ and every set A ∈ B(U \ {0}) that is separated from zero, namely
the random counting measure

π :=
∑
s>0

ΔL(s) �=0

δ(s,ΔL(s)). (13)

See [11] for a proof.

Definition 2.16 The random measure π on (0,∞) × (U \ {0}) defined in (13) is
called the jump measure of L.

The jump measure π plays an important role in the setting of Ikeda and Watanabe
by representing the jump part of a Lévy process L in the theory of stochastic
integration. We will give a general account of Ikeda and Watanabe’s presentation
of stochastic integration with Lévy noise in Sect. 4.
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2.2 Martingales and Quadratic Variation

In this subsection we recall Hilbert space-valued martingales and the associated
notion of quadratic variation. These notions appear in the Burkholder-Davis-
Gundy inequality, which is frequently used to study SPDEs. In this work we are
interested in stochastic processes formed by stochastic integration with respect to
Lévy processes. In particular, in Sect. 5 we treat stochastic integration with respect
to square-integrable Lévy martingales. The stochastic integral takes values in a real,
separable Hilbert space H which may be different from the space U where the
Lévy noise takes its values. As we will see in Theorem 3.12 and Theorem 4.7,
these stochastic integrals are also square-integrable martingales. For this reason
we restrict our treatment of quadratic variation to square-integrable Hilbert space-
valued martingales. However, the notion of quadratic variation can be defined for
more general processes known as semimartingales. We follow [13] as our main
reference in this subsection. We begin by recalling the definitions of martingales
and stopping times.

Fix a separable, real Hilbert space H and a filtered probability space (Ω,F ,

(Ft )t≥0,P). That is, (Ft )t≥0 is an increasing family of σ -fields on Ω that are all
contained in F .

Definition 2.17 An H -valued stochastic process (M(t))t≥0 is adapted to the
filtration (Ft )t≥0 if for every t ≥ 0, M(t) is a measurable function from (Ω,Ft )→
(H,B(H)). The process (M(t))t≥0 is called an Ft -martingale (or just martingale
when the filtration is clear) if it is adapted, integrable and satisfies the martingale
property:

E[M(t) |Fs ] = M(s) P-a.s. for all t ≥ s ≥ 0. (14)

By the defining property of conditional expectation, the martingale property (14) is
equivalent to the condition that for every Γ ∈ Fs we have

∫
Γ

M(t) dP =
∫
Γ

M(s) dP (15)

as H -valued Bochner integrals. If M is a real-valued, adapted, integrable process
and if instead of equality in (14) and (15) we have the inequality≥, then M is called
a submartingale.

Remark 2.18 Let 1 ≤ p < ∞ and suppose that M is an H -valued Ft -martingale
such that E|M(t)|pH < ∞ for every t ≥ 0, then the real-valued process |M(t)|pH
is an Ft -submartingale. This follows from Jensen’s inequality for conditional
expectation; see Theorem 3.35 in [15] for a proof.

As mentioned above, the stochastic integrals that we construct in Theorem 3.12
and Theorem 4.7 satisfy the integrability property in Remark 2.18 with p = 2, so
this case will be our focus.
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Definition 2.19 The space of right-continuous, H -valued Ft -martingales M with
the property that E|M(t)|2H < ∞ for every t ≥ 0 is denoted by M 2(H); it
is a Fréchet space under the seminorms M �→ (E|M(t)|2H)1/2 for t ≥ 0. For
each fixed T ≥ 0 we denote by M 2

T (H) the space of restrictions of elements of
M 2(H) to the interval [0, T ]. For each M ∈ M 2(H) and t ≥ s ≥ 0 we have
E|M(s)|2H ≤ E|M(t)|2H by Remark 2.18. From this and the martingale property (14)
it follows that M 2

T (H) is a Hilbert space which is isometrically isomorphic to
L2(Ω,FT ,P;H).

The notion of stopping time, defined below, will be used frequently.

Definition 2.20 A nonnegative random variable τ is said to be an Ft -stopping time
if {τ ≤ t} ∈ Ft for every t ≥ 0. The prefix Ft is often omitted when there is no
confusion.

The result below is the basis for the definition of quadratic variation. See
Theorem 2.5 in [13] for a proof.

Theorem 2.21 Let M,N ∈M 2(H). For every t ≥ 0 and every sequence (Πn)∞n=1
of increasing sequences Πn := {0 = tn1 < tn2 < tn3 · · · } in [0,∞) such that

i) lim
k→∞ tnk = ∞, for every n and

ii) lim
n→∞ sup

k

(tnk+1 − tnk ) = 0,

the random variables

Sn(t,M,N) :=
∞∑
k=1

(
M(t ∧ tnk+1)−M(t ∧ tnk ),N(t ∧ tnk+1)−N(t ∧ tnk )

)
H

(16)
converge in L1(Ω,Ft ,P) as n → ∞. Moreover, the limit does not depend on
the sequence (Πn)∞n=1 and, as a process, the limit is Ft -adapted and a.s. has
right-continuous paths of finite variation (i.e., bounded variation on each compact
interval).

Definition 2.22 Let M,N ∈ M 2(H). For each t ≥ 0 we denote by [M,N]t the
limit in L1(Ω,Ft ,P) of the random variables (Sn(t,M,N))∞n=1 from (16). The
process [M,N] is called the mutual quadratic variation of M and N . When M = N

we simply write [M] := [M,M] and call this process the quadratic variation of M .

Our interest in the notion of quadratic variation comes from the Burkholder-
Davis-Gundy (BDG) inequality which is stated next for elements of M 2(H).

Theorem 2.23 For every 1 ≤ p <∞ there exists a constant Cp > 0 such that for
every càdlàg M ∈ M 2(H) with M(0) = 0 and for every Ft -stopping time τ one
has

C−1
p E[M]p/2

τ ≤ E sup
t∈[0,τ ]

|M(t)|pH ≤ CpE[M]p/2
τ , (17)
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with the understanding that each term appearing in the inequality is finite if and
only if the others are finite.

For a proof see, e.g., [12]. The fact that the constant Cp does not depend on
the martingale M or the stopping time τ is a key part of the conclusion. The upper
bound in the right-hand inequality in (17) is used very frequently in the treatment
of stochastic partial differential equations. Since the constant Cp does not depend
on M or τ , one can employ the BDG inequality when making a priori estimates for
stochastic partial differential equations.

It is often difficult to determine the quadratic variation of a martingale M ∈
M 2(H) by computing the limit in L1 of the sequence (Sn(t,M,M))∞n=1 in (16).
Below we recall a direct sum decomposition of the space M 2

T (H) and the notion
of angle bracket process which will aid in the computation of [M] in the special
cases that we are interested in, namely, where M is a process formed by stochastic
integration. We state the decomposition theorem first; for a proof see Theorems 17.7
and 20.2 in [13].

Theorem 2.24 For each T ≥ 0 let M 2,c
T (H) denote the subspace of continuous

martingales in M 2
T (H). Then M 2,c

T (H) is closed in M 2
T (H) and its orthogonal

complement is the closure of the space of martingales in M 2
T (H) that start at 0 and

have bounded variation on [0, T ] a.s.

Definition 2.25 We denote by M 2,d
T (H) the closure of the space of bounded

variation martingales in M 2
T (H) that start at 0. Theorem 2.24 asserts that every

M ∈M 2
T (H) can be written uniquely as

M = Mc +Md, (18)

where Mc ∈M 2,c
T (H) and Md ∈M 2,d

T (H). We call Mc the continuous part of M
and we call Md the purely discontinuous part of M .

Before defining the angle bracket process of an H -valued L2-martingale we
recall the notion of predictability, which will be used extensively to define the
stochastic integrals in Sects. 3 and 4.

Definition 2.26 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space and let T >

0. The σ -field on Ω × [0, T ] generated by sets of the form

A× (s, t], A ∈ Fs , 0 ≤ s < t ≤ T ,

is called the predictable σ -field and is denoted by P[0,T ]. Functions on Ω × [0, T ]
that are P[0,T ]-measurable are called predictable.

As we will see in Sect. 3, the predictability assumption is crucial for developing
the entire theory of stochastic integration. At the moment we require predictability
simply in order to define the angle bracket process of a martingale. The existence
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of the angle bracket process is obtained through the following result, which is an
application of the Doob-Meyer decomposition theorem (see [13]).

Theorem 2.27 Let M,N ∈M 2(H). Then there exists a unique real-valued, finite
variation, predictable process V with V (0) = 0 such that (M,N)H − V is a
martingale.

Definition 2.28 For M,N ∈M 2(H) we denote by 〈M,N〉 the unique real-valued,
finite variation, predictable process V starting from 0 produced by Theorem 2.27.
When M = N we simply write 〈M〉 := 〈M,M〉 and call this process the angle
bracket of M . The names Meyer process, predictable-variation process and first
increasing process are also used to refer to 〈M〉.

The next result gives a relationship between the mutual quadratic variation
[M,N] and the angle bracket 〈M,N〉 between two processes M,N ∈M 2(H).

Theorem 2.29 Let T > 0 and let M,N ∈M 2
T (H). For every t ∈ [0, T ] we have

[M,N]t = 〈Mc,Nc〉t +
∑

s∈(0,t ]
(ΔM(s),ΔN(s))H a.s. (19)

and the series on the right-hand side is summable a.s. In particular, for every M ∈
M 2

T (H) and t ∈ [0, T ] we have

[M]t = [Mc]t + [Md ]t . (20)

Proof See Theorem 20.5 and Corollary 18.9 in [13] for a proof of (19). Equa-
tion (20) follows from the bilinearity of mutual quadratic variation and formula (19)
because the continuous part of M has no jumps and (Md)c = 0. ��

We now recall the notion of tensor quadratic variation, which was required earlier
in the statement of the Itô formula (Theorem 1.1). Before doing so we recall some
definitions related to Hilbert-Schmidt operators.

Notation Let U and H be real, separable Hilbert spaces. We denote by L2(U,H)

the space of Hilbert-Schmidt operators from U to H , i.e., the space of bounded
linear operators Φ : U → H with the property that

∑∞
k=1 |Φuk|2H < ∞ for some

ONB (uk)
∞
k=1 of U . When equipped with the inner product

(Φ,Ψ )L2(U,H) :=
∞∑
k=1

(Φuk, Ψ uk)H ,

the space L2(U,H) becomes a Hilbert space. Furthermore, the inner product
defined above does not depend on the choice of the orthonormal basis of U . For
vectors u ∈ U and h ∈ H we denote by h⊗ u the linear map from U → H defined
by (h⊗ u)(v) := (v, u)U h. It is easy to see that h⊗ u ∈ L2(U,H).
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Definition 2.30 Let M ∈ M 2(H) and let (ek)∞k=1 be an orthonormal basis of H .
For each positive integer k the process Mk(t) := (ek,M(t))H belongs to M 2(R).
The tensor quadratic variation of M is the L2(H,H)-valued process

[[M,M]]t :=
∞∑

k,j=1

[Mk,Mj ]t (ek ⊗ ej ).

This sum converges in the space L2(H,H) for each t ≥ 0 a.s. and does not depend
on the choice of the orthonormal basis (ek)

∞
k=1 (see Theorem 26.11 in [13]). The

continuous part of [[M,M]] is defined to be the L2(H,H)-valued process

[[M,M]]ct :=
∞∑

k,j=1

[(Mk)c, (Mj )c]t (ek ⊗ ej ).

3 Stochastic Integration with Respect to Square-Integrable
Lévy Martingales

In this section we review Peszat and Zabczyk’s presentation of stochastic integration
with respect to square-integrable Lévy processes that are also martingales. We begin
by collecting additional properties of square-integrable Lévy martingales. The main
reference for this section is Chapter 8 of the book [15] by Peszat and Zabczyk.

3.1 Square-Integrable Lévy Martingales

The following measurability property plays a crucial role in the construction of the
stochastic integral in this section.

Definition 3.1 Let L be a stochastic process on a filtered probability space (Ω,F ,

(Ft )t≥0,P) taking values in a real, separable Hilbert space U . We say that L is an
Ft -Lévy process if L is a Lévy process, L is adapted to (Ft )t≥0 and

L(t)− L(s) is independent of Fs for all t ≥ s ≥ 0. (21)

We will say that W is an Ft -Wiener process if W is both a Wiener process and
an Ft -Lévy process. We will use the terms Ft -Poisson process and Ft -compound
Poisson process in the same manner.

Remark 3.2 Let L be an integrable, mean-zero U -valued Lévy process on a
probability space (Ω,F ,P). It is easy to see that L is a martingale with respect
to its natural filtration F̃t := σ(L(s) : s ≤ t) because L has independent
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increments. In the theory of stochastic integration one typically works with a
filtration that is complete, i.e., F0 contains the P-null sets, and right-continuous,
i.e., Ft = ⋂

s>t Fs for all t ≥ 0. The natural filtration of L may not be complete
or right-continuous, however it can always be enlarged to a filtration (Ft )t≥0 that
is complete and right-continuous and in such a way that L is an Ft -Lévy process.
This is proved in Proposition 2.1.13 of [16] when L is a Wiener process but their
argument applies whenever L is right-continuous and has independent increments.

In the remainder of Sect. 3 we work with a process M on (Ω,F , (Ft )t≥0,P)
taking values in a real, separable Hilbert space U that satisfies the following
assumption.

Assumption 3.3 The U -valued stochastic process M is a square-integrable, mean-
zero Ft -Lévy process.

The independence condition (21) implies that M is an Ft -martingale. Assump-
tion 3.3 is stronger than assuming that M is both a square-integrable Lévy process
and an Ft -martingale. We have been using the term “square-integrable Lévy mar-
tingale” up until now just to delay stating the more technical condition (21) that is a
part of Assumption 3.3. In the context of stochastic integration we will only consider
square-integrable Lévy martingales and filtrations that also satisfy Assumption 3.3.
Difficulties that are treated in Chapter 8 of [15] for general martingales do not arise
for Lévy processes. So this section is a shorter and simpler version of Chapter 8 of
[15] where the results are more involved in their statement and in their proof.

Theorem 3.4 Let M satisfy Assumption 3.3. Then the following statements hold:

i) There exists a bounded, linear, symmetric, positive operator Q : U → U such
that

E
(
(M(t), x)U (M(s), y)U

)=(t ∧ s) (Qx, y)U for all t, s ≥ 0, for all x, y ∈ U.

(22)
ii) Furthermore, Q is of trace class and

E (M(t), SM(t))U = tTr(SQ), for all S ∈ L(U,U),

and in particular E|M(t)|2U = tTrQ.

In the statement of Theorem 3.4 and in what follows we denote the space of
bounded linear operators from a Hilbert space U to a Hilbert space H by L(U,H).
See Theorem 4.44 in [15] for a proof of Theorem 3.4, which is valid even when M

is just a square-integrable Lévy martingale.

Definition 3.5 Let M satisfy Assumption 3.3. The positive, trace class operator Q
defined by (22) is called the covariance operator of M . Recall that we write L+1 (U)

for the space of all positive, trace class operators on U . So, Theorem 3.4 says that
Q ∈ L+1 (U).
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3.2 Integration with Respect to Square-Integrable
Lévy Martingales

We are now ready to define stochastic integration with respect to a square-integrable
Lévy martingale M that satisfies Assumption 3.3. Fix another real separable Hilbert
space H . The processes that we will integrate with respect to M will be L(U,H)-
valued. We begin by defining the stochastic integral of certain step functions called
simple processes.

Definition 3.6 We denote by S (U,H) the space of all L(U,H)-valued stochastic
processes Ψ of the form

Ψ (ω, s) =
m−1∑
j=0

χAj (ω)χ(tj ,tj+1](s)Φj , (23)

where 0 = t0 < t1 < · · · < tm, Aj ∈ Ftj , and Φj ∈ L(U,H). The elements of
S (U,H) are called simple processes.

Remark 3.7 We emphasize that the space S (U,H) of simple processes depends
on the filtration (Ft )t≥0 through the assumption that Aj ∈ Ftj . This condition
means that each simple process Ψ ∈ S (U,H) is predictable in the sense of
Definition 2.26. Predictability of simple processes is crucial in the proof of the
isometric formula in Proposition 3.9 below, which is what allows the notion of
stochastic integration to be extended beyond simple processes.

Definition 3.8 For a simple process Ψ ∈ S (U,H), we define the stochastic
integral of Ψ with respect to M by

∫ t

0
Ψ (s) dM(s):=IMt (Ψ ):=

m−1∑
j=0

χAjΦj (M(tj+1∧ t)−M(tj ∧ t)) for all t ≥ 0.

Thus, the stochastic integral IMt (Ψ ) is an H -valued stochastic process.

The basic isometric formula, also called the Itô isometry, is stated below. Recall
that L2(U,H) denotes the space of Hilbert-Schmidt operators from U to H .

Proposition 3.9 For every Ψ ∈ S (U,H) and t ≥ 0 we have

E|IMt (Ψ )|2H = E
∫ t

0

∣∣∣∣Ψ (s)Q1/2
∣∣∣∣2
L2(U,H)

ds, (24)

where Q is the covariance operator of M .

Note that the right-hand side of (24) is finite because
∣∣∣∣ΦQ1/2

∣∣∣∣2
L2(U,H)

≤
||Φ||L(U,H) ·Tr(Q) <∞ for every Φ ∈ L(U,H). The independence condition (21)
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in Definition 3.1 plays a crucial role in the proof of Proposition 3.9. See Proposi-
tion 8.6 in [15] for a proof of Proposition 3.9.

Next we would like to extend the stochastic integration map IMT to a larger space
of integrands that contains the simple processes. Before that we must construct the
completion (or closure) of S (U,H).

Definition 3.10 Let Q ∈ L+1 (U). We define an inner product on the space U0 :=
Q1/2(U) by

(x, y)U0
:= (Q−1/2x,Q−1/2y

)
U

for all x, y ∈ Q1/2(U), (25)

where Q−1/2 : Q1/2(U) → N (Q1/2)⊥ is the pseudoinverse of Q1/2. The restric-
tion Q1/2|N (Q1/2)⊥ is a bijection onto its image U0 and Q−1/2 is defined to be the
inverse of this mapping. Although the subspace Q1/2(U) is typically not closed in
U , the map Q1/2|N (Q1/2)⊥ : N (Q1/2)⊥ → U0 is an isometric isomorphism under
the inner product in (25), so U0 is complete. We will occasionally write Q1/2(U)

instead of U0 for the range of Q1/2 endowed with the inner product defined in (25)
in order to make the dependence on the operator Q explicit in the notation.

If Q ∈ L+1 (U), then Q is a symmetric compact operator, so there exists an
orthonormal basis (un)

∞
n=1 of U consisting of eigenvectors of Q. It is easy to see

that the nonzero terms in
(
Q1/2un

)∞
n=1 form an orthonormal basis of U0. Therefore,

the Itô isometry in (24) can be restated in the equivalent form

E|IMt (Ψ )|2H = E
∫ t

0

∣∣∣∣Ψ (s)
∣∣∣∣2
L2(U0,H)

ds, for all Ψ ∈ S (U,H), t ≥ 0.

(26)
When t = T , the right-hand side of (26) is the norm squared in the space

XT := L2(Ω × [0, T ],F ⊗B([0, T ]), dP⊗ dt;L2(U0,H)
)
.

We observed above that every Ψ ∈ S (U,H) belongs to the space XT . We will
continue to use S (U,H) to denote the space of equivalence classes of simple
processes in the space XT . Note that if Ψ,Φ ∈ S (U,H) and Ψ = Φ in the
space XT , it does not necessarily follow that Ψ and Φ are equal in L(U,H),
dP dt-a.e. Instead, Ψ = Φ in XT means only that ΨQ1/2 = ΦQ1/2, dP dt-
a.e. That is, Ψ and Φ do not necessarily agree on all of U , but they do agree on
the range of Q1/2, dP dt-a.e. Equation (26) shows that IMt is well-defined on the
space S (U,H) viewed as equivalence classes in XT , i.e., if Ψ,Φ ∈ S (U,H)

and ΨQ1/2 = ΦQ1/2, dP dt-a.e., then IMt (Ψ ) = IMt (Φ) in L2(Ω;H). We can
now extend IMT : S (U,H) → L2(Ω;H) uniquely to an isometry on the closure
of S (U,H) in the space XT . The resulting isometry is the stochastic integral with
respect to M . Before stating the general properties of the stochastic integral with
respect to M we pause to identify the closure of S (U,H) in the space XT ; see
Lemma 8.13 in [15] for a proof.
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Lemma 3.11 The closure of S (U,H) in the space XT is the subspace of
predictable processes in XT . In other words, S (U,H) is dense in the space

L2
U0,T

(H) := L2(Ω × [0, T ],P[0,T ], dP⊗ dt;L2(U0,H)), (27)

where P[0,T ] is the σ -field of predictable sets (see Definition 2.26).

While M does not appear explicitly in the notation L2
U0,T

(H), note that the space

L2
U0,T

(H) depends on the law of M through U0. Note that the space L2
U0,T

(H)

of integrands for stochastic integration with respect to M depends on the filtration
(Ft )t≥0 through the requirement of predictability. We gather the main facts about
the stochastic integral with respect to M below.

Theorem 3.12 Let M be a square-integrable, mean-zero, U -valued Ft -Lévy pro-
cess. Then the following statements hold.

i) For every t ∈ [0, T ], IMt : L2
U0,t

(H )→ L2(Ω;H) is an isometry, i.e.,

E
(
IMt (Ψ ), IMt (Φ)

)
H
= E

∫ t

0
(Ψ (s),Φ(s))L2(U0,H) ds,

and E|IMt (Ψ )|2H = E
∫ t

0 ||Ψ (s)||2L2(U0,H) ds for all Ψ,Φ ∈ L2
U0,t

(H ).

ii) For every Ψ ∈ L2
U0,T

(H) the process
(
IMt (Ψ )

)
t∈[0,T ] is a square-integrable

H -valued martingale that begins at 0.
iii) For every Ψ ∈ L2

U0,T
(H) the angle bracket of

(
IMt (Ψ )

)
t∈[0,T ] is given by the

formula

〈
IM(Ψ )

〉
t
=
∫ t

0
||Ψ (s)||2L2(U0,H) ds. (28)

iv) Let A ∈ L(H,V ) where V is a real, separable Hilbert space. For every
Ψ ∈ L2

U0,T
(H) we have AΨ ∈ L2

U0,T
(V ) and AIMt (Ψ ) = IMt (AΨ ). That

is, bounded operators can be passed inside the stochastic integral.

Proof Statement i) follows from the construction of IMt via Proposition 3.9. The
remaining statements hold for simple processes and extend to the case of Ψ ∈
L2
U0,T

(H) because S (U,H) is dense in L2
U0,T

(H). ��
As a first example we consider stochastic integration with respect to a Wiener

process.

Example 3.13 Let M = W be a U -valued Wiener process. Theorem 2.4 shows that
W is square-integrable, so it has a covariance operator Q ∈ L+1 (U). In addition,
since W is an Ft -Wiener process with respect to its natural filtration, we see that
W satisfies Assumption 3.3. We denote the space of integrands for stochastic inte-
gration with respect to W by L2

U0,T
(H). Since W is continuous a.s.,

∫ t

0 Ψ (s) dW(s)

is continuous a.s. when Ψ ∈ S (U,H). In fact, the square-integrable H -valued
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martingale
(
IWt (Ψ )

)
t∈[0,T ] is continuous a.s. for every integrand Ψ ∈ L2

U0,T
(H);

see [16]. In particular, Theorem 2.29 implies that the quadratic variation of IW (Ψ )

is equal to its angle bracket. So (28) gives

[IW (Ψ )]t =
∫ t

0
||Ψ (s)||2L2(U0,H) ds. (29)

The upper bound in the BDG inequality (Theorem 2.23) for stochastic integrals with
respect to W takes the following form: for every 1 ≤ p <∞ there exists a constant
Cp ∈ (0,∞) such that for every Ft -stopping time τ and every Ψ ∈ L2

U0,T
(H) we

have

E sup
t∈[0,τ ]

∣∣∣
∫ t

0
Ψ (s) dW(s)

∣∣∣p
H
≤ CpE

( ∫ τ

0
||Ψ (s)||2L2(U0,H) ds

)p/2
. (30)

Example 3.14 Let P be a square-integrable U -valued compound Poisson process.
Since P is integrable we can define the compensated compound Poisson process
P̂ (t) := P(t) − E[P(t)]. It is clear that P̂ is a mean-zero Lévy process, so P̂ is
an Ft -compound Poisson process with respect to its natural filtration. Therefore,
P̂ satisfies Assumption 3.3 and the stochastic integral I P̂ can be defined in the
sense above. We will take a closer look at stochastic integration with respect to P̂ in
Sect. 5.2.

The result below will be used to define stochastic integration with respect to non-
square-integrable compound Poisson processes by localization in Sect. 6.2.

Lemma 3.15 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space, let M be a U -
valued Lévy process satisfying Assumption 3.3 and let Q be the covariance operator
of M . Let τ be an Ft -stopping time such that P[τ ≤ T ] = 1. Then

i) Ψ �→ χ[0,τ ]Ψ is a continuous linear map sending L2
Q1/2(U),T

(H) →
L2
Q1/2(U),T

(H).
ii) If τ takes finitely many values P-a.s., then for every Ψ ∈ S (U,H) the

processes χ[0,τ ]Ψ and χ(τ,T ]Ψ also belong to S (U,H).
iii) If (τn)∞n=1 is a sequence of stopping times such that τn ≤ T and τn ↓ τ , then

for every Ψ ∈ L2
Q1/2(U),T

(H) we have χ[0,τn]Ψ → χ[0,τ ]Ψ in L2
Q1/2(U),T

(H).
iv) For every Ψ ∈ S (U,H) and all t ∈ [0, T ] we have

∫ t

0
χ[0,τ ](s)Ψ (s) dM(s) =

∫ t∧τ

0
Ψ (s)M(s). (31)

Proof i) Since τ is a stopping time the set A := {(ω, s) ∈ Ω×[0, T ] : s ≤ τ (ω)}
is predictable. Indeed, we have

Ac =
⋃

q∈Q∩(0,T )

({τ ≤ q} × (q, T ]) ∈P[0,T ].
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So χ[0,τ (ω)](s)Ψ (ω, s) = χA(ω, s)Ψ (ω, s) is predictable for every process Ψ

in the space L2
Q1/2(U),T

(H). It is clear that multiplication by χ[0,τ ] is linear and

bounded on L2
Q1/2(U),T

(H) with norm less than or equal to 1.
ii) (cf. Lemma 2.3.9 in [16]) Let Ψ ∈ S (U,H) and write Ψ as in (23). Since

τ takes finitely many values a.s. we can write τ (ω) = ∑N
n=0 anχ{τ=an}(ω) for

some constants 0 < a0 < a1 < · · · < aN ≤ T . Since τ is a stopping time we
have {τ = an} ∈ Fan for each n. The process χ(τ,T ]Ψ belongs to S (U,H)

because

χ(τ,T ](s)Ψ (ω, s) =
m−1∑
j=0

N∑
n=0

χAj (ω)χ(tj ,tj+1](s)χ{τ=an}(ω)χ(an,T ](s)Φj

=
m−1∑
j=0

N∑
n=0

χAj∩{τ=an}(ω)χ(tj∨an,tj+1∨an](s)Φj . (32)

We obtain the second line above using the fact that

(tj , tj+1] ∩ (an, T ] =

⎧⎪⎪⎨
⎪⎪⎩
∅ if tj+1 ≤ an

(an, tj+1] if tj ≤ an ≤ tj+1

(tj , tj+1] if an ≤ tj

.

Since Aj ∩ {τ = an} ∈ Ftj∨an we see that χ(τ,T ]Ψ ∈ S (U,H). Next, we see
that χ[0,τ ]Ψ is the difference between two simple processes, namely χ[0,τ ]Ψ =
Ψ − χ(τ,T ]Ψ , so χ[0,τ ]Ψ ∈ S (U,H) as well.

iii) Let (τn)
∞
n=1 be stopping times such that τn ≤ T and τn ↓ τ a.s. For Ψ ∈

L2
Q1/2(U),T

(H) we have

E
∫ T

0

∣∣∣∣χ[0,τn](s)Ψ (s)− χ[0,τ ](s)Ψ (s)
∣∣∣∣2
L2(Q1/2(U),H)

ds

= E
∫ τn

τ

||Ψ (s)||2
L2(Q1/2(U),H)

ds,

and the right-hand side of the equation above tends to 0 by the dominated
convergence theorem.

iv) Let Ψ ∈ S (U,H) and write Ψ as in (23). First, assume that τ takes finitely
many values P-a.s. and write τ =∑N

n=0 anχ{τ=an} for constants 0 < a0 < a1 <

· · · < aN ≤ T . Since χ[0,τ ]Ψ = Ψ − χ(τ,T ]Ψ we can compute IMt (χ[0,τ ]Ψ )
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using linearity of the stochastic integral. Using (32) we obtain

IMt (χ[0,τ ]Ψ ) = IMt (Ψ )− IMt (χ(τ,T ]Ψ )

=
m−1∑
j=0

χAjΦj

(
M(tj+1 ∧ t)−M(tj ∧ t)

)

−
m−1∑
j=0

N∑
n=0

χAj∩{τ=an}Φj

(
M((tj+1 ∨ an) ∧ t)−M((tj ∨ an) ∧ t)

)

=
m−1∑
j=0

χAjΦj

(
M(tj+1 ∧ t)−M(tj ∧ t)

)

−
m−1∑
j=0

χAjΦj

(
M((tj+1 ∨ τ ) ∧ t)−M((tj ∨ τ ) ∧ t)

)
.

In each case τ ≤ tj , and tj < τ ≤ tj+1, and tj+1 < τ , there is cancellation in
the last line above and the expression simplifies to

IMt (χ[0,τ ]Ψ ) =
m−1∑
j=0

χAjΦj

(
M(tj+1 ∧ τ ∧ t)−M(tj ∧ τ ∧ t)

)
,

which is the same as IMt∧τ (Ψ ). Now we use a limiting argument to extend to
the case where τ may take infinitely many values with positive probability but
is still bounded by T a.s. There exist stopping times (τn)

∞
n=1 that take finitely

many values, are bounded by T and decrease to τ a.s., for instance,

τn :=
{
T k+1

2n if T k
2n < τ ≤ T k+1

2n for some 0 ≤ k ≤ 2n − 1

0 otherwise.

Since the Lévy process M has right continuous sample paths and Ψ is a simple
process it is easy to see that

IMt∧τn (Ψ )→ IMt∧τ (Ψ ) in H a.s. (33)

At the same time we have χ[0,τn]Ψ → χ[0,τ ]Ψ in the space L2
Q1/2(U),T

(H) by

part iii), so IMt (χ[0,τn]Ψ ) → IMt (χ[0,τ ]Ψ ) in L2(Ω;H) by Theorem 3.12. By
passing to a subsequence that converges in H a.s. and using (33) we find that
IMt∧τ (Ψ ) = IMt (χ[0,τ ]Ψ ) in H a.s. ��
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4 Stochastic Integration with Respect to Poisson Random
Measures

In this section we introduce the notion of stationary Poisson point process and
the theory of stochastic integration with respect to the induced Poisson random
measure and compensated Poisson random measure. This is a part of the setting
of stochastic integration with Lévy noise as presented by Ikeda and Watanabe. The
main references for this section are [10] and [4]. We also mention the article [17],
which gives a comprehensive treatment of stochastic integration of Banach space-
valued functions with respect to compensated Poisson random measures, and the
book [3], which presents the related notion of stochastic integration with respect
to martingale measures. We will restrict our attention to the case of stochastic
integration of functions taking values in a real, separable Hilbert space. We will not
discuss martingale measures but will only discuss how the corresponding theory of
stochastic integration is related to stochastic integration with respect to compensated
Poisson random measures (see Remark 4.9). We begin by introducing the notion of
Poisson point process, then we introduce stochastic integration.

4.1 Poisson Point Processes

We begin with some preliminary notions leading to the definition of Poisson point
processes. Below we use the notation N := {0, 1, 2, . . .} and N := N ∪ {∞}. We
continue to work on a fixed probability space (Ω,F ,P).

Definition 4.1 Let (Z,Z ) be a measurable space. A point function on Z is a partial
function α : (0,∞) ⇀ Z whose domain D(α) ⊂ (0,∞) is at most countable. A
point function α naturally induces an N-valued measure Nα on (0,∞)× Z via

Nα(Γ ) := #{t ∈ D(α) : (t, α(t)) ∈ Γ } for all Γ ∈ B(0,∞)⊗Z .

Let ΠZ be the set of all point functions on Z. Let Q be the σ -field on ΠZ generated
by sets of the form S(Γ, k) := {α ∈ ΠZ : Nα(Γ ) = k} over all Γ ∈ B(0,∞) ⊗
Z and all k ∈ N. A Z-valued point process on (Ω,F ,P) is simply a function
Ξ : Ω → ΠZ that is measurable from (Ω,F ) to (ΠZ,Q).

Lemma 4.2 A function Ξ : Ω → ΠZ is a Z-valued point process if and only if
for every Γ ∈ B(0,∞) ⊗ Z the function NΞ(Γ ) : Ω → N is an F -measurable
random variable.

Proof A standard argument shows that Ξ is measurable from (Ω,F ) to (ΠZ,Q)

if and only if Ξ−1(S(Γ, k)) ∈ F for every Γ ∈ B(0,∞)⊗Z and k ∈ N. For such
Γ and k note that

Ξ−1(S(Γ, k)) = {ω ∈ Ω : NΞ(ω)(Γ ) = k} = {NΞ(Γ ) = k}.
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Also, since {NΞ(Γ ) = ∞} = Ω \⋃k∈N{NΞ(Γ ) = k} we see that NΞ(Γ ) is F -
measurable if and only if {NΞ(Γ ) = k} ∈ F for each k ∈ N. Therefore, Ξ is a
Z-valued point process if and only if Ξ−1(S(Γ, k)) ∈ F for every k ∈ N and every
Borel set Γ ⊆ (0,∞)×Z. This occurs if and only if NΞ(Γ ) is F -measurable. ��
Definition 4.3 Let (E,E , λ) be a σ -finite measure space, that is, there exists
(En)

∞
n=1 ⊂ E such E = ⋃∞

n=1 En and λ(En) < ∞ for each n. A function π from
Ω to the set of N-valued measures on (E,E ) is called a Poisson random measure
with intensity measure λ if for every Γ ∈ E the N-valued random variable π(Γ )

has a Poisson distribution with mean λ(Γ ) (possibly∞) and if for every collection
of pairwise disjoint sets Γ1, . . . , Γm ∈ E the random variables π(Γ1), . . . , π(Γm)

are independent.

Definition 4.4 A Z-valued point process Ξ is called a stationary Poisson point
process if there exists a σ -finite measure ν on (Z,Z ) such that NΞ is a Poisson
random measure on (0,∞) × Z with intensity measure dt ⊗ dν (that is to say,
if and only if NΞ is a stationary Poisson random measure on (0,∞) × Z). Let
(Ft )t≥0 be a filtration contained in F . We say that Ξ is a stationary Ft -Poisson
point process if Ξ is a stationary Poisson point process with the additional property
that for every A ∈ Z with ν(A) <∞ the N-valued process (NΞ ((0, t] × A))t≥0 is
an Ft -Poisson process.

Remark 4.5 Suppose that Ξ : Ω → ΠZ is a function (with no measurability
assumptions a priori) such that NΞ is a stationary Poisson random measure on
(0,∞) × Z. The definition of Poisson random measure says that for each Γ ∈
B(0,∞) ⊗ Z , NΞ(Γ ) is a Poisson random variable. By Lemma 4.2 it follows
that Ξ is measurable from (Ω,F ) to (ΠZ,Q), so Ξ is a stationary Poisson point
process on Z. Therefore, to show that Ξ : Ω → ΠZ is a stationary Poisson point
process it is sufficient to show that NΞ is a stationary Poisson random measure.

Example 4.6 Let L be a U -valued Lévy process and let π be the jump measure
of L as in Definition 2.16. We will show that π is a Poisson random measure on
(0,∞)× (U \ {0}). Since L has independent increments it follows that the random
variablesπ(Γ1), . . . , π(Γm) are independent when Γ1, . . . , Γm ∈ B(0,∞)⊗B(U\
{0}) are pairwise disjoint. Recall that for each A ∈ B(U \ {0}) that is separated
from zero the process (πA(t))t≥0 defined in (8) is a Poisson process with rate ν(A),
where ν is the Lévy measure of L. Therefore, by (12) it follows that the random
variable π((t, t ′] × A) has a Poisson distribution with mean (t ′ − t)ν(A) for all
t ′ > t > 0. A routine σ -field argument, using the fact that a sum of independent
Poisson random variables with means λ1, λ2, . . . has a Poisson distribution with
mean

∑∞
j=1 λj , shows that π(Γ ) has a Poisson distribution with mean

∫
Γ dt ⊗ dν

for every Γ ∈ B(0,∞) ⊗ B(U \ {0}). This shows that π is a Poisson random
measure on (0,∞)× (U \ {0}) with intensity measure dt ⊗ dν.

The stochastic integrals that Rüdiger considers in [17] are more general than the
stochastic integrals with respect to compensated Poisson random measures that we
consider here for two reasons. First, as we have already mentioned, he considers
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integrands taking values in separable Banach spaces while we consider integrands
taking values in separable Hilbert spaces. Second, each Poisson random measure
that he considers arises as in Example 4.6 from the jumps of a càdlàg process X

having all of the properties of anFt -Lévy process except, possibly, for the stationary
increments property (see Definition 2.1). Since our goal is to study stochastic
integration with respect to Lévy processes we will instead consider Poisson random
measures arising as in Example 4.6 from the jumps of a càdlàg Ft -Lévy process.

4.2 Integration with Respect to Poisson Random Measures

Let Ξ be a stationary Poisson point process on Z with intensity measure ν and let
H be a separable, real Hilbert space. We consider the following spaces of functions
for integration with respect to the Poisson random measure NΞ induced by Ξ . For
q ∈ [1,∞] we introduce the notation

Fq
ν,T (H) := Lq(Ω × [0, T ] × Z,P[0,T ] ⊗Z , dP⊗ dt ⊗ dν;H). (34)

For the purpose of stochastic integration we will only be interested in the spaces
F1
ν,T (H) and F2

ν,T (H). Below we gather the basic facts in [10] (see also [4]) about
integration of functions in these spaces with respect to NΞ .

Theorem 4.7 Let Ξ be a stationary Ft -Poisson point process on a measurable
space (Z,Z ) with intensity measure ν. Then the following statements hold.

i) (Integrands in F1
ν,T (H)) Let f ∈ F1

ν,T (H). Then the following statements
hold.

a) E
∫
(0,t ]

∫
Z
|f (s, z)|H dNΞ = E

∫ t

0

∫
Z
|f (s, z)|H dν ds < ∞ for every t ∈

[0, T ].
b) For each t ∈ [0, T ] the H -valued integral

∫
(0,t ]

∫
Z
f (s, z) dNΞ exists

a.s. and is equal to the absolutely convergent sum
∑

s∈(0,t ] f (s,Ξ(s)).

c) For each t ∈ [0, T ] we have E
∫
(0,t ]

∫
Z
f (s, z) dNΞ = E

∫ t

0

∫
Z
f (s, z) ds dν.

ii) (Integrands in F2
ν,T (H))

a) For f ∈ F1
ν,T (H) ∩ F2

ν,T (H) define

∫
(0,t ]

∫
Z

f (s, z) dN̂Ξ :=
∫
(0,t ]

∫
Z

f (s, z) dNΞ −
∫ t

0

∫
Z

f (s, z) dν ds.

(35)
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Then the process
( ∫

(0,t ]
∫
Z
f (s, z) dN̂Ξ

)
t∈[0,T ] belongs to the space M 2

T (H)

of square-integrable H -valued martingales on [0, T ] and

E
∣∣∣
∫
(0,t ]

∫
Z

f (s, z) dN̂Ξ

∣∣∣2
H
= E

∫ t

0

∫
Z

|f (s, z)|2H dν ds. (36)

b) F1
ν,T (H) ∩ F2

ν,T (H) is dense in F2
ν,T (H).

c) Given f ∈ F2
ν,T (H) let (fn)∞n=1 be a sequence in F1

ν,T (H) ∩ F2
ν,T (H) that

converges to f in F2
ν,T (H). By iia) the sequence

( ∫
(0,t ]

∫
Z fn(s, z) dN̂Ξ

)∞
n=1

is Cauchy in the space M 2
T (H). Furthermore, the limit does not depend

on the particular sequence (fn)
∞
n=1. Therefore, we can define the H -

valued process
( ∫

(0,t ]
∫
Z f (s, z) dN̂Ξ

)
t∈[0,T ] to be the limit of any such

sequence. By construction, this is a square-integrable H -valued martingale
and equation (36) continues to hold.

Definition 4.8 We refer to N̂Ξ as the compensated Poisson random measure. For

T > 0 we define a map I
N̂Ξ

T : F2
ν,T (H)→ L2(Ω;H) by

I
N̂Ξ

T (f ) :=
∫
(0,T ]

∫
Z

f (s, z) dN̂Ξ for all f ∈ F2
ν,T (H). (37)

Equation (36) says that I N̂Ξ

T is an isometry between these spaces.

Remark 4.9 We mention that because functions in F2
ν,T (H) are assumed to be

P[0,T ] ⊗ Z -measurable, the stochastic integration map I
N̂Ξ

T defined above is an
example of what Rüdiger calls the simple-2 integral in [17]. By generalizing the
notion of stochastic integration with respect to martingale measures as presented in

[3], it is possible to extend I
N̂Ξ

T to the larger class of functions

{f ∈ L2(Ω × [0, T ] × Z,FT ⊗B([0, T ] × Z), dP⊗ dt ⊗ dν;H)

: f (·, t, z) is Ft -measurable ∀(t, z) ∈ [0, T ] × Z}.
This is what Rüdiger refers to as the strong-2 integral in [17].

Remark 4.10 We emphasize here that stochastic integration with respect to the
Poisson random measure NΞ is only defined for integrands in F1

ν,T (H), while

stochastic integration with respect the compensated Poisson random measure N̂Ξ

is only defined for integrands in F2
ν,T (H). The formula

∫
(0,t ]

∫
Z

f (s, z) dN̂Ξ =
∫
(0,t ]

∫
Z

f (s, z) dNΞ −
∫ t

0

∫
Z

f (s, z) dν ds (38)

=
∑

s∈(0,t ]
f (s,Ξ(s)) −

∫ t

0

∫
Z

f (s, z) dν ds
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is only valid for integrands f ∈ F1
ν,T (H) ∩ F2

ν,T (H). Indeed, the left-hand side

of (38) is only defined when f ∈ F2
ν,T (H) while the right-hand side of (38) is

only defined when f ∈ F1
ν,T (H). For an arbitrary f ∈ F2

ν,T (H), the process( ∫
(0,t ]

∫
Z
f (s, z) dN̂Ξ

)
t∈[0,T ] is defined as a limit, so (38) may not hold.

Remark 4.10 Because of (38) it is tempting to believe that N̂Ξ is a random signed
measure given by N̂Ξ = NΞ − dt ⊗ dν. This is incorrect because the set function
NΞ − dt ⊗ dν is undefined on sets Γ ∈ B(0,∞) ⊗ Z with the property that∫
Γ

dt dν = ∞. Since the Lebesgue measure on (0,∞) is not finite such sets Γ

always exist, even when ν is a finite measure.

Corollary 4.12 Let Ξ be a stationary Ft -Poisson point process on a measurable
space (Z,Z ) with intensity measure ν. If ν(Z) < ∞, then F2

ν,T (H) ⊆ F1
ν,T (H)

and the inclusion is continuous. In particular, (38) holds for all f ∈ F2
ν,T (H).

Proof Since ν(Z) <∞ this follows from the Cauchy-Schwarz inequality. ��
Remark 4.13 For every f ∈ F2

ν,T (H), the stochastic integral
(
I
N̂Ξ
t (f )

)
t∈[0,T ] =( ∫

(0,t ]
∫
Z f (s, z) dN̂Ξ

)
t∈[0,T ] is purely discontinuous and starts from 0, i.e.,

I N̂Ξ (f ) ∈ M 2,d
T (H) (see Definition 2.25). To show this, suppose first that

f ∈ F1
ν,T (H) ∩ F2

ν,T (H). In this case I N̂Ξ (f ) is given by formula (38), so it
clearly starts from 0 and its jumps are summable by Theorem 4.7. This means that
I N̂Ξ (f ) has bounded variation on [0, T ]. Since M 2,d

T (H) is the closure of the space
of bounded variation martingales in M 2

T (H) that start at 0, the general case where

f ∈ F2
ν,T (H) follows from the construction of I N̂Ξ (f ) in Theorem 4.7.

The next result gives the quadratic variation of an H -valued stochastic integral
with respect to the compensated Poisson random measure N̂Ξ .

Theorem 4.14 Let Ξ be a stationary Ft -Poisson point process on a measurable
space (Z,Z ) with intensity measure ν and let NΞ denote the associated Poisson
random measure. For every f ∈ F2

ν,T (H) the quadratic variation of the H -valued

martingale
(
I
N̂Ξ
t (f )

)
t∈[0,T ] is given by

[I N̂Ξ (f )]t =
∫
(0,t ]

∫
Z

|f (s, z)|2H dNΞ(s, z). (39)

See Theorem 8.23 in [15] for a proof. While the proof of Theorem 8.23 in [15]
is written for real-valued integrands instead of H -valued integrands it is easy to see
that the proof remains valid for H -valued integrands when products of real numbers
are replaced by inner products in H . With (39) in hand the upper bound in the BDG
inequality from Theorem 2.23 takes the following form for stochastic integrals with
respect to the compensated Poisson random measure N̂Ξ .
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Corollary 4.15 Let Ξ be a stationary Ft -Poisson point process on a measurable
space (Z,Z ) with intensity measure ν and let NΞ denote the associated Poisson
random measure. For every 1 ≤ p < ∞ there exists a constant Cp ∈ (0,∞) such
that for every Ft -stopping time τ and for every f ∈ F2

ν,T (H) we have

E sup
t∈[0,τ ]

∣∣∣
∫
(0,t ]

∫
Z

f (s, z) dN̂Ξ (s, z)

∣∣∣p
H
≤ CpE

( ∫
(0,τ ]

∫
Z

|f (s, z)|2H dNΞ(s, z)
)p/2

.

(40)

In the next result we show that the jump measure π of a Lévy process is the
type of Poisson random measure considered in the setting presented by Ikeda and
Watanabe. Specifically, we show that the jumps of a Lévy process form a stationary
Poisson point process and that the induced Poisson random measure coincides with
the jump measure π .

Proposition 4.16 Let L be a U -valued Ft -Lévy process. Then the jumps of L

induce a stationary Ft -Poisson point process Ξ on U . Furthermore, the Poisson
random measure NΞ is the jump measure of L and its intensity measure is dt ⊗ dν,
where ν is the Lévy measure of L.

Proof Let ν be the Lévy measure of L and let
(
Tj
)∞
j=1 be the jump times1 of L. For

each ω ∈ Ω define a U -valued point function Ξω : (0,∞) ⇀ U by

D(Ξω) := {T1(ω), T2(ω), . . .}, Ξω(Tj (ω)) := ΔL(Tj (ω)) for every j ≥ 1.

That is, the domain of Ξ is the set of jump times of L and Ξ sends each jump time Tj
to the value of the jump ΔL(Tj ) occurring at that time. The Poisson random measure
NΞ induced by Ξ is precisely the jump measure π := ∑∞

j=1 δ(Tj ,ΔL(Tj )) of L. We
know from Example 4.6 that π is a Poisson random measure on (0,∞)× (U \ {0})
with intensity measure dt⊗dν, so it follows from Remark 4.5 that Ξ is a stationary
Poisson point process on U . For t ′ ≥ t ≥ 0 and A ∈ B(U \ {0}) it is intuitively
clear that the random variable π((t, t ′]×A) is measurable with respect to the σ -field
Gt,t ′ := σ(L(s) − L(t), s ∈ [t, t ′]) because one can determine how many jumps of
L that occur during the time interval (t, t ′] lie in A based on the increments of L
on (t, t ′]. It is indeed true that π((t, t ′] × A) is Gt,t ′-measurable (see Lemma 13.5
in [11] and the related result Lemma 5.3 below). Since L is an Ft -Lévy process it
follows that Ξ is a stationary Ft -Poisson point process. ��

1Since L is càdlàg it is possible for jump times of L to accumulate, provided that the sizes of
the accumulating jumps tend to zero. Although the jumps of L can be enumerated it may not
be possible to enumerate them in increasing order. Thus, one should not assume that Tj (ω) <

Tj+1(ω).
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5 Comparing Lévy Noise: The Square-Integrable Case

In Sect. 3 we considered stochastic integration with respect to square-integrable
Lévy martingales M in the setting presented by Peszat and Zabczyk. A drawback
to the abstract construction of the stochastic integral with respect to M in The-
orem 3.12 is that it is often difficult to make explicit computations when the need
arises. Specifically, it is not straightforward to find the jumps of a stochastic integral
with respect to M or its quadratic variation and these are required when using the
Itô formula and BDG inequality to treat SPDEs. We have identified these issues in
Sect. 1 where we posed Question 1.2, “What are the jumps of

(
IMt (Ψ )

)
t≥0?” and

Question 1.3, “What is the quadratic variation of
(
IMt (Ψ )

)
t≥0?” In order to answer

these questions we identify the continuous and purely discontinuous parts of M (see
Definition 2.25) in Sect. 5.1 with the help of the Lévy-Khinchin decomposition. As
we will see in Lemma 5.1 below, the continuous part of M is a Wiener process W

and the purely discontinuous part of M , which we will denote by L , has the form
L = ∑∞

n=0 P̂n, where (Pn)
∞
n=0 are independent CPPs as in (1) (see Theorem 2.15

for an explicit construction of these CPPs in terms of M). From the decomposition
M = W +L we show that the stochastic integral with respect to M decomposes
according to the formal rule dM = dW + dL (see Lemma 5.6). In Sect. 5.2 we
show that the stochastic integral with respect to the process L can be expressed
according to the formal rule dL = dπ̂ , where π̂ is the compensated jump measure
of M (see Proposition 5.14). Finally, in Sect. 5.3 we show how the stochastic integral
with respect to a square-integrable Lévy martingale as presented by Peszat and
Zabczyk can be realized in the setting presented by Ikeda and Watanabe and we
answer Questions 1.2 and 1.3.

5.1 The Lévy-Khinchin Decomposition

We begin by restating the Lévy-Khinchin decomposition (Theorem 2.15) in the
special case of a square-integrable, Lévy martingale M and stating additional results
about the structure of the covariance operator of M .

Lemma 5.1 Let M be a square-integrable, Lévy martingale M taking values in a
real, separable Hilbert space U with Lévy measure ν. Then the following statements
hold:

i) There exists a U -valued Wiener process W and a sequence of U -valued square-
integrable compound Poisson processes (Pn)

∞
n=1 such that all of these processes

are independent and

M(t) = W(t) +
∞∑
n=1

P̂n(t) (41)
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in U , where a.s. the series converges uniformly in t on compact subsets of
[0,∞). Conversely, every process M of the form in (41) is a square-integrable
Lévy martingale.

ii) There exist disjoint Borel subsets (An)
∞
n=1 of U , each separated from 0, such

that the Lévy measure of Pn is ν|An and
⋃∞

n=1 An = U \ {0}.
iii) The covariance operator of L := M −W =∑∞

n=1 P̂n is given by

(Q1x, y)U =
∫
U

(u, x)U (u, y)U dν(u) (42)

for all x, y ∈ U .
iv) Let Q0 denote the covariance operator of W . Then the covariance operator of

M is Q0 +Q1.

Proof By Theorem 2.15 there exists a vector a ∈ U , a U -valued Wiener process W
and U -valued compound Poisson processes (Ln)

∞
n=0, all independent, such that

M(t) = at +W(t) + L0(t)+
∞∑
n=1

L̂n(t),

where the series converges uniformly in t on compact subsets of [0,∞). Further-
more, the compound Poisson processes can be chosen as Ln(t) :=∑s∈(0,t ]ΔL(s) ·
χAn(ΔL(s)), where A0 := B(0, 1)c and An := B(0, 1/n) \B(0, 1/(n+ 1)). In this
case, (Ln)

∞
n=0 are indeed independent (see Lemma 4.24 in [15]) CPPs and Ln has

Lévy measure ν|An . Since M , W and (L̂n)
∞
n=1 are mean-zero we have

a = −
∫
A0

u dν(u) = −E[L0(1)].

The first equality comes from Theorem 4.47 of [15] and the second from Propo-
sition 2.11. Next, since M is square-integrable we have

∫
U |u|2U dν(u) < ∞ by

Theorem 4.47 of [15]. Since the Lévy measure of L0 is ν|A0 , Proposition 2.11
implies that L0 is square-integrable. Therefore, the sum L0(t) + at = L̂0(t)

is a square-integrable CCPP. Since W and (L̂n)
∞
n=0 are independent processes

equation (41) follows by setting Pn := Ln−1 for each positive integer n. ��
Remark 5.2 Since the Wiener process W is continuous a.s., M and L have the
same jumps. That is, they jump at the same times and with the same values. This
means that they have the same jump measure, say π , and the same Lévy measure.
Indeed, the Lévy measure is determined uniquely by the jump measure via (9). So
the Lévy measure of L is ν.

As we will show, the Lévy-Khinchin decomposition allows one to decompose
stochastic integrals with respect to M using the formal rule dM = dW + dL .
Suppose that M , W and L each satisfy Assumption 3.3 with respect to the same
filtration (Ft )t≥0. Then the same space S (U,H) of simple processes is used for
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stochastic integration with respect to M , W and L . In this case, it is clear from
Definition 3.8 that

∫ t

0 Ψ (s) dM(s) = ∫ t

0 Ψ (s) dW(s) + ∫ t

0 Ψ (s) dL (s) for every
Ψ ∈ S (U,H) and every t ≥ 0. A rigorous interpretation of the statement dM =
dW + dL on the entire space of admissible integrands with respect to M can be
achieved in two additional steps. The first step is to map the space of admissible
integrands with respect to M continuously into the spaces of admissible integrands
with respect to W and L in a natural way. The second step is an approximation
argument. We do both steps in Lemma 5.6 in a more general context. Before proving
Lemma 5.6 we show that it is possible for all three processes M , W and L to
satisfy Assumption 3.3 with respect to the same filtration. The given process M

satisfies Assumption 3.3 with respect to its natural filtration but also with respect to
a complete and right-continuous filtration (Ft )t≥0 (see Remark 3.2). The purpose
of the next two results is to show that W and L also satisfy Assumption 3.3 with
respect to the same filtration (Ft )t≥0. The first of these is similar to Lemma 13.5
in [11]; note that no integrability assumptions are placed on the Lévy process L in
Lemma 5.3 below.

Lemma 5.3 Let L be a U -valued Lévy process. Let A ∈ B(U) be separated from
0 and define the process

LA(t) :=
∑

s∈(0,t ]
χA(ΔL(s))ΔL(s) (43)

as in Lemma 2.14. Then for all t ′ ≥ t ≥ 0 the random variable LA(t
′) − LA(t) is

measurable with respect to the σ -field Gt,t ′ := σ(L(s)− L(t) : s ∈ [t, t ′]).
Proof Let π denote the jump measure of L (see (13)) and let ν be the Lévy measure
of L. We begin with a representation of LA as a random integral with respect to π .
Fix ρ > 0 and let Bρ denote the closed ball of radius ρ centered at 0 in U . For each
t ′ ≥ 0 the random variable π((0, t ′] × Bc

ρ) has a Poisson distribution with mean
t ′ν(Bc

ρ), which is finite. Therefore,

∫
(0,t ′]

∫
Bc
ρ

|u|U dπ(s, u) =
∑

s∈(0,t ′]
|ΔL(s)|UχBc

ρ
(ΔL(s)) <∞ P-a.s., (44)

because the number of terms in the sum is finite a.s. In particular, for every set
A ∈ B(U) that is separated from 0 the function which is zero outside of A and
agrees with the identity function within A is integrable with respect to the measure
πω for P-a.e. ω ∈ Ω . So, for every t ≥ 0 we have

LA(t) =
∫
(0,t ]

∫
A

u dπ(s, u) P-a.s.,
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and for every t ′ ≥ t ≥ 0 we have

LA(t
′)− LA(t) =

∫
(t,t ′]

∫
A

u dπ(s, u) P-a.s. (45)

We will use an approximation argument to show that the random integral on the
right-hand side of (45) is Gt,t ′-measurable for every A ∈ B(U \ Bρ) for each fixed
ρ > 0.

Let f : U → U be a bounded continuous function that vanishes in a neighbor-
hood of 0. For every sequence of partitions t = t

(n)
0 < t

(n)
1 < · · · < t

(n)
mn
= t ′ with

mesh max1≤k≤mn(t
(n)
k − t

(n)
k−1) tending to 0 as n→∞ we have

mn∑
k=1

f
(
L(t

(n)
k )−L(t

(n)
k−1)

)→ ∑
s∈(t,t ′]

f (ΔL(s)) =
∫
(t,t ′]

∫
U

f (u) dπ(s, u) P-a.s.

(46)
Each term in the sum on the left-hand side of (46) is Gt,t ′-measurable, hence so
is the limit of these sums, which is

∫
(t,t ′]

∫
U f (u) dπ(s, u). Let C be a bounded,

closed subset of U that is disjoint from Bρ . For ε > 0 consider the closed set
Fε := {u ∈ Cc : d(u,C) ≥ ε}. Note that Fε contains a neighborhood of 0 for all
sufficiently small ε. It is clear that the function f (u) := uχC(u) is continuous on the
closed set C ∪Fε . There exists a continuous function f̄ε : U → U such that f̄ε = f

on C ∪ Fε and such that its image f̄ε(U) is contained in the convex hull of f (U).
This is an application of Dugundji’s generalization of the Tietze extension theorem
to Hilbert space-valued functions, see [9]. Since we assume that C is bounded there
exists some R > 0 such that |f̄ε(u)|U ≤ R for every u ∈ U and every ε > 0.
We have f̄ε → f pointwise on U as ε ↓ 0. For each fixed ω ∈ Ω we can apply
the dominated convergence theorem using the finite measure χ(t,t ′](s) dπω(s, u) to
conclude that

∫
(t,t ′]

∫
U

f̄ε(u) dπ(s, u)→
∫
(t,t ′]

∫
C

u dπ(s, u) P-a.s.

This shows that
∫
(t,t ′]

∫
C u dπ(s, u) is Gt,t ′-measurable for every bounded, closed

subset of U contained in U \ Bρ . The final step is to replace C by any Borel subset
of U \ Bρ using a monotone class argument. The class C consisting of bounded,
closed subsets of U that are contained in U \Bρ is closed under finite intersections.
We have just shown that C is contained in the class

M := {A ∈ B(U \ Bρ) :
∫
(t,t ′]

∫
A u dπ(s, u) is Gt,t ′-measurable}.

Note that the random integral
∫
(t,t ′]

∫
A u dπ(s, u) is well-defined for every A ∈

B(U \ Bρ) by (44). We need to show that M is closed under increasing countable
unions. Let An ↑ A with An ∈ M for each n ∈ N. Since uχAn(u) → uχA(u)

pointwise on U we can apply the dominated convergence theorem using the measure
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χ(t,t ′](s) dπω(s, u) and dominating function u �→ |u|UχBc
ρ
(u) to conclude that

∫
(t,t ′]

∫
An

u dπ(s, u)→
∫
(t,t ′]

∫
A

u dπ(s, u) P-a.s.

This shows that A ∈ M, so M is a monotone class. The monotone class lemma
implies that B(U \ Bρ) = σ(C ) is contained in M. Since ρ > 0 is arbitrary, the
proof is complete. ��

An immediate consequence is that if L is an Ft -Lévy process, then so are the
processes W and

(
LAn

)∞
n=0 in any Lévy-Khinchin decomposition of L.

Corollary 5.4 Let L be a U -valued Lévy process on a filtered probability space
(Ω,F , (Ft )t≥0 ,P) and assume that L is an Ft -Lévy process. Then for every set
A ∈ B(U \ {0}) that is separated from 0 the process LA in (43) is an Ft -compound
Poisson process and the Wiener part in the Lévy-Khinchin decomposition of L is an
Ft -Wiener process.

Proof Since G0,t ⊆ Ft for each t ≥ 0 we see that LA is Ft -adapted. It follows from
the independence condition (21) that Gs,t is independent of Fs for all t ≥ s ≥ 0,
so LA satisfies condition (21). This shows that LA is an Ft -Lévy process; the fact
that LA is a CPP is a restatement of Lemma 2.14. Let W be the Wiener part in the
Lévy-Khinchin decomposition of L in equation (11). The difference L − W is an
Ft -Lévy process, so W = L− (L−W) is an Ft -Wiener process. ��

Recall that in this section we are given a square-integrable, U -valued Lévy mar-
tingale M which we have decomposed in Lemma 5.1 as M = W + L , where
W is a Wiener process and L is a square-integrable Lévy process with covariance
operator given by (42). There exists a complete, right-continuous filtration (Ft )t≥0
such that M is an Ft -Lévy process, equivalently, so that M satisfies Assumption 3.3.
Corollary 5.4 says that W is an Ft -Wiener process and L is an Ft -Lévy process.
Since W and L are both square-integrable and mean-zero, both processes satisfy
Assumption 3.3 with respect to the same filtration (Ft )t≥0 as M . Below we show
that the space of integrands corresponding to M is naturally mapped into the spaces
of integrands corresponding to W and L , respectively, and in such a way that the
formal rule dM = dW + dL holds. We make a more general argument below and
show that such a decomposition holds for every sum of independent processes that
satisfy Assumption 3.3. We begin with the result that allows us to define a natural
continuous map from the space of integrands for stochastic integration with respect
to M to the spaces of integrands for W and L .

Lemma 5.5 Let Q1,Q2 ∈ L+1 (U) with Q1 ≤ Q2. Then

i) For every Φ ∈ L(U,H) we have ||Φ||2
L2(Q

1/2
1 (U),H)

= Tr(ΦQ1Φ
∗), and hence

||Φ||
L2(Q

1/2
1 (U),H)

≤ ||Φ||
L2(Q

1/2
2 (U),H)

.
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ii) For every Ψ ∈ S (U,H) we have

E
∫ t

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds ≤ E
∫ t

0
||Ψ (s)||2

L2(Q
1/2
2 (U),H)

ds,

for every t ∈ [0, T ]. Thus, the identity map from S (U,H) endowed with
the L2

Q
1/2
2 (U),T

(H)-norm to S (U,H) endowed with the L2
Q

1/2
1 (U),T

(H)-

norm extends uniquely by continuity to a linear map Ψ �→ ι(Ψ ) from
L2
Q

1/2
2 (U),T

(H)→ L2
Q

1/2
1 (U),T

(H) with norm at most 1.

Proof i) Recall from Definition 3.10 that if (un)
∞
n=1 is an ONB for U , then the

nonzero elements of {Q1/2
1 un : n ≥ 1} form an ONB for the space Q

1/2
1 (U).

Therefore, for every Φ ∈ L(U,H) we have

||Φ||2
L2(Q

1/2
1 (U),H)

= Tr(Q1/2
1 Φ∗ΦQ

1/2
1 ) = Tr(ΦQ1Φ

∗) ≤ Tr(ΦQ2Φ
∗)

and the right-hand side of the inequality above is equal to ||Φ||2
L2(Q

1/2
2 (U),H)

.

ii) The statements in part ii) follow immediately from part i). ��
Lemma 5.6 Let M1,M2 be independent Lévy processes on a probability space
(Ω,F ,P) satisfying Assumption 3.3 with respect to the same filtration (Ft )t≥0. Let
Qj be the covariance operator of Mj for j = 1, 2. Then the following statements
hold:

i) The covariance operator of M :=M1 +M2 is Q := Q1 +Q2.
ii) For j = 1, 2 let ιj : L2

Q1/2(U),T
(H) → L2

Q
1/2
j (U),T

(H) denote the continuous

extension of the identity map on S (U,H) from Lemma 5.5. Then for all t ∈
[0, T ] and all Ψ ∈ L2

Q1/2(U),T
(H) we have

∫ t

0
Ψ (s) dM(s) =

∫ t

0
ι1(Ψ )(s) dM1(s)+

∫ t

0
ι2(Ψ )(s) dM2(s) (47)

a.s. in H .

Proof i) For all x, y ∈ U we have

(Qx, y)U = E[(M(1), x)U (M(1), y)U ]
= E[(M1(1), x)U (M1(1), y)U ] + E[(M2(1), x)U (M2(1), y)U ]
+ E[(M1(1), x)U (M2(1), y)U ] + E[(M2(1), x)U (M1(1), y)U ].
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The top line of the last expression on the right-hand side is ((Q1 +Q2)x, y)U
and the bottom line is zero because M1(1) and M2(1) are independent and have
zero mean.

ii) For j = 1, 2 we have Qj ≤ Q, so the map ιj exists by Lemma 5.5. Fix t ∈
[0, T ]. It is obvious that (47) holds when Ψ ∈ S (U,H). For j = 1, 2 the map
Ψ �→ ∫ t

0 ιj (Ψ )(s) dMj(s) is a continuous linear mapping of L2
Q1/2(U),T

(H)→
L2(Ω;H). Indeed, it is simply the composition I

Mj

t ◦ ιj . Since S (U,H) is
dense in L2

Q1/2(U),T
(H) it follows that (47) holds for all Ψ ∈ L2

Q1/2(U),T
(H).

��
Let M = W + L be as in the Lévy-Khinchin decomposition in Lemma 5.1.

Lemma 5.6 shows that for every Ψ ∈ L2
Q1/2(U),T

(H) and t ≥ 0 we have

∫ t

0
Ψ (s) dM(s) =

∫ t

0
ι0(Ψ )(s) dW(s)+

∫ t

0
ι1(Ψ )(s) dL (s), (48)

where ι0 and ι1 denote the respective continuous extensions of the identity map on
S (U,H) defined in Lemma 5.5. In order to find the jumps and quadratic variation
of the stochastic integral

(
IMt (Ψ )

)
t≥0 we would like to show that the Wiener integral

on the right-hand side of (48) is the continuous part of
(
IMt (Ψ )

)
t≥0 and that the

stochastic integral with respect to L on the right-hand side of (48) is the purely
discontinuous part of

(
IMt (Ψ )

)
t≥0. To do this it is sufficient to show that the process(

ILt (Ψ )
)
t∈[0,T ] is purely discontinuous, i.e., that it is a limit in M 2

T (H) of finite

variation processes that start at 0. We do this by relating the stochastic integration
map ILt to the stochastic integral I π̂t from Definition 4.8, where π is the jump
measure of L . Since L is a sum of independent CCPPs, it is natural to study
stochastic integration with respect to CCPPs first and to then extend the results
to L using an approximation argument. Before turning our attention to CCPPs in
Sect. 5.2, we record some properties of processes of the form L that will be used
later on.

Proposition 5.7 Let L be a Lévy process on a filtered probability space (Ω ,
F ,(Ft )t≥0,P) satisfying Assumption 3.3. Let ν be the Lévy measure of L (it is
possible that ν(U \ {0}) = ∞). Suppose that the covariance operator Q1 of L is
given by

(Q1x, y)U =
∫
U

(u, x)U (u, y)U dν(u) for all x, y ∈ U. (49)

Then the following statements hold.

i) For every Φ ∈ L(U,H) we have

||Φ||2
L2(Q

1/2
1 (U),H)

=
∫
U

|Φu|2H dν(u). (50)
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ii) For every Ψ ∈ S (U,H) the function fL
Ψ (s, u) := Ψ (s)u belongs to

F2
ν,T (H) and the linear map fL on S (U,H) extends to an isometry

fL : L2
Q

1/2
1 (U),T

(H) → F2
ν,T (H). Furthermore, for every Ψ ∈ L2

Q
1/2
1 (U),T

(H)

one has

E
∫ t

0

∫
U

|fL
Ψ (s, u)|2H dν(u) ds = E

∫ t

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds, (51)

for every t ∈ [0, T ].
Proof i) Let Φ ∈ L(U,H) and let (ek)

∞
k=1 be an ONB for H . By Tonelli’s

Theorem we have

∫
U

|Φu|2H dν(u) =
∞∑
k=1

∫
U

(ek,Φu)2
H dν(u) =

∞∑
k=1

∫
U

(
Φ∗ek, u

)2
U

dν(u)

=
∞∑
k=1

(
Q1Φ

∗ek,Φ∗ek
) = Tr(ΦQ1Φ

∗) = ||Φ||2
L2(Q

1/2
1 (U),H)

.

ii) Let Ψ ∈ S (U,H) be of the form (23). Define fL
Ψ : Ω × [0,∞)×U → H by

fL
Ψ (ω, s, u) := Ψ (ω, s)u =

m−1∑
j=1

χAj (ω)χ(tj ,tj+1](s)Φju.

Each summand on the right-hand side is P[0,T ]⊗B(U)-measurable. Using part
i) we see that

E
∫ t

0

∫
U

|fL
Ψ (s, u)|2H dν(u) ds =

m−1∑
j=1

P(Aj )(t ∧ tj+1 − t ∧ tj )

∫
U

|Φju|2H dν(u)

=
m−1∑
j=1

P(Aj )(t ∧ tj+1 − t ∧ tj )
∣∣∣∣Φj

∣∣∣∣2
L2(Q

1/2
1 (U),H)

= E
∫ t

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds.

This shows that fL
Ψ ∈ F2

ν,T (H) and establishes (51) when Ψ is a simple process.

As a result, the map Ψ �→ fL
Ψ on S (U,H) extends uniquely by continuity to

a map from L2
Q

1/2
1 (U),T

(H)→ F2
ν,T (H). The extension continues to satisfy (51)

for all Ψ ∈ L2
Q

1/2
1 (U),T

(H) and all t ∈ [0, T ]. ��
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Remark 5.8 Condition (49) is satisfied when L is a compensated compound
Poisson process (Proposition 4.18 in [15]), in which case ν(U \ {0}) < ∞.
Condition (49) is also satisfied when L is as in Lemma 5.1, however, it is possible
that ν(U \ {0}) = ∞.

Example 5.9 Let L be a U -valued Lévy process satisfying Assumption 3.3.
Denote its Lévy measure by ν and assume that its covariance operator Q1
satisfies (49). We will compute fL

Ψ for a process Ψ ∈ L2(Ω×[0, T ],P[0,T ], dP⊗
dt;L(U,H)) whose values are bounded operators. Note that equation (50) implies
that the space L(U,H) of bounded operators is continuously included in the space
L2(Q

1/2
1 (U),H). Therefore, the space L2(Ω × [0, T ],P[0,T ], dP⊗ dt;L(U,H))

is contained in the space of integrands L2
Q

1/2
1 (U),T

(H) for stochastic integration

with respect to L . Let Ψ ∈ L2(Ω × [0, T ],P[0,T ], dP ⊗ dt;L(U,H)) and let
(Φn)

∞
n=1 ⊂ S (U,H) with Φn → Ψ in the space L2

Q
1/2
1 (U),T

(H). Using (50) we

see that

E
∫ T

0

∫
U

|Ψ (s)u−Φn(s)u|2H dν(u) ds = E
∫ T

0
||Ψ (s)− Φn(s)||2

L2(Q
1/2
1 (U),H)

ds.

The right-hand side tends to 0 as n→∞, so it follows that
(
fL
Φn

)∞
n=1 converges in

the space F2
ν,T (H) to the function (ω, s, u) �→ Ψ (ω, s)u. Since fL is continuous

we conclude that

fL
Ψ (ω, s, u) = Ψ (ω, s)u, for all (ω, s, u) ∈ Ω × [0, T ] × U.

The result below will be used frequently in Sect. 6.

Lemma 5.10 Fix a filtered probability space (Ω,F , (Ft )t≥0,P). Let ν be a Borel
measure on U (possibly with ν(U) = ∞), let E1 ⊆ E2 ∈ B(U) and set νj := ν|Ej .
For j = 1, 2 define operators Q1,Q2 ∈ L+1 (U) by

(
Qjx, y

)
U
:=
∫
Ej

(x, u)U (y, u)U dν(u), for all x, y ∈ U.

Let ι : L2
Q

1/2
2 (U),T

(H) → L2
Q

1/2
1 (U),T

(H) be the continuous extension of the

inclusion map on simple processes (see Lemma 5.5). For j = 1, 2 let
f (j) : L2

Q
1/2
j (U),T

(H) → F2
νj ,T

be the map defined in Proposition 5.7. Then for

every Ψ ∈ L2
Q

1/2
2 (U),T

(H) we have

f
(2)
Ψ |Ω×[0,T ]×E1 = f

(1)
ι(Ψ ) (52)

in the space F2
ν1,T

.
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Proof Suppose that Ψ ∈ S (U,H). Then both sides of equation (52) are equal to
the function (ω, s, u) �→ Ψ (ω, s)u on Ω × [0, T ] ×E1. It is clear that both sides of
equation (52) are continuous maps of L2

Q
1/2
2 (U),T

(H)→ F2
ν1,T

, so (52) holds for all

Ψ ∈ L2
Q

1/2
2 (U),T

(H). ��

5.2 Integration with Respect to Compensated Compound
Poisson Processes

Let L be as in Lemma 5.1. Our goal in this subsection is to show that dL = dπ̂ ,
formally, where π is the jump measure of L . We do this first in the case where
L = P̂ is a CCPP, then we use a limiting argument to generalize to U -valued
Lévy processes satisfying Assumption 3.3 with covariance operator of the form (49),
such as the process L from Lemma 5.1.

Remark 5.11 In this section we work on a filtered probability space (Ω ,F ,
(Ft )t≥0,P) and first consider a square-integrable Ft -compound Poisson process
P taking values in a real, separable Hilbert space U . The Lévy measure of P is
denoted ν and the jump measure of P is denoted π . We recall several properties of
square-integrable compound Poisson processes that will be used in this section.

i) According to Definition 2.9 we have ν(U \ {0}) <∞.
ii) F2

ν,T (H) ⊆ F1
ν,T (H) by Corollary 4.12.

iii) Since P is integrable, the CCPP P̂ (t) := P(t) − EP(t) can be defined. Since
P is square integrable, so is P̂ and P̂ satisfies Assumption 3.3 with respect to
the filtration (Ft )t≥0.

iv) The square-integrable, Lévy martingale P̂ has a covariance operator, say Q1 ∈
L+1 (U), by Theorem 3.4. The covariance operator Q1 satisfies condition (49)
by Proposition 4.18 in [15].

As we have seen so far, there are two notions of stochastic integration that
come with a square-integrable compound Poisson process P . First, we can integrate
processes Ψ ∈ L2

Q
1/2
1 (U),T

(H) using the map I P̂T : L2
Q

1/2
1 (U),T

(H) → L2(Ω;H)

defined in Theorem 3.12. Second, by Proposition 4.16 the jump measure π has
the form π = NΞ , where Ξ is the stationary Poisson process induced by the
jumps of P . So, we can integrate functions f ∈ F2

ν,T (H) using the isometry

I π̂T : F2
ν,T (H) → L2(Ω;H) from Definition 4.8. In the next result we show that

these two notions of stochastic integration coincide via I P̂T = I π̂T ◦ f P̂ , where f P̂ is
the isometry defined in Proposition 5.7.

Proposition 5.12 Let P be a square-integrable Ft -compound Poisson process on
U with Lévy measure ν, covariance operator Q1 and jump measure π . The the
following statements hold.
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i) For every Ψ ∈ S (U,H) we have f P̂
Ψ ∈ F1

ν,T (H) ∩ F2
ν,T (H). Furthermore, for

every t ∈ [0, T ] we have

∫ t

0
Ψ (s)(EP(1)) ds =

∫ t

0

∫
U

Ψ (s)u dν(u) ds, (53)

∫ t

0
Ψ (s) dP̂ (s) =

∫ t

0

∫
U

f P̂
Ψ (s, u) dπ̂ (s, u) (54)

=
∑

s∈(0,t ]
Ψ (s)ΔP(s)−

∫ t

0

∫
U

Ψ (s)u dν(u) ds, (55)

and there are finitely many terms in the sum a.s.
ii) For every Ψ ∈ L2

Q
1/2
1 (U),T

(H) we have f P̂
Ψ ∈ F1

ν,T (H)∩F2
ν,T (H). Furthermore

for every t ∈ [0, T ] we have

∫ t

0
Ψ (s) dP̂ (s) =

∫ t

0

∫
U

f P̂
Ψ (s, u) dπ̂ (s, u) (56)

=
∑

s∈(0,t ]
f P̂
Ψ (s,ΔP(s)) −

∫ t

0

∫
U

f P̂
Ψ (s, u) dν(u) ds, (57)

and there are finitely many terms in the sum a.s.

Proof i) Since ν(U \ {0}) < ∞ we have F2
ν,T (H) ⊆ F1

ν,T (H) by Corollary 4.12,

so f P̂
Ψ ∈ F1

ν,T (H) ∩ F2
ν,T (H) for every Ψ ∈ L2

Q
1/2
1 (U),T

(H). To prove (53)

note that ΦE(P (1)) = Φ
∫
U
u dν(u) = ∫

U
Φu dν(u) for all Φ ∈ L(U,H) by

Proposition 2.11. Therefore, if Ψ ∈ S (U,H) is of the form (23), then we have

∫ t

0
Ψ (s)(EP(1)) ds =

m−1∑
j=1

P(Aj)(t ∧ tj+1 − t ∧ tj )

∫
U

Φju dν(u)

and the right-hand side of the equation above is equal to
∫ t

0

∫
U Ψ (s)u dν(u) ds.

To prove (54) and (55) write P(t) = ∑Π(t)
k=1 Zk , as in Theorem 2.10, where

(Zk)
∞
k=1 are i.i.d. U -valued random variables with law 1

ν(U)
ν and Π is a Poisson
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process with rate ν(U) that is independent of (Zk)
∞
k=1. We have

∫ t

0
Ψ (s) dP̂ (s) =

m−1∑
j=1

χAjΦj (P̂ (t ∧ tj+1)− P̂ (t ∧ tj ))

=
m−1∑
j=1

χAjΦj (P (t ∧ tj+1)− P(t ∧ tj ))

−
m∑

j=1

χAj (t ∧ tj+1 − t ∧ tj )Φj (EP(1))

=
m−1∑
j=1

Π(t∧tj+1)∑
k=Π(t∧tj )+1

χAjΦjZk −
∫ t

0
Ψ (s)(EP(1)) ds

=
∑

s∈(0,t ]
Ψ (s)ΔP(s)−

∫ t

0
Ψ (s)(EP(1)) ds,

which is (55) because of (53). Since ν is a finite measure, P has finitely many
jumps in (0, t] a.s., so there are finitely many terms in the sum in (55). Since
f P̂
Ψ ∈ F1

ν,T (H) ∩ F2
ν,T (H) we obtain (54) from (55) and (38).

ii) Equation (54) says that I P̂t = I π̂t ◦ f P̂ on the dense subspace S (U,H) of

L2
Q

1/2
1 (U),T

(H), so (56) follows by continuity. We have observed that f P̂
Ψ ∈

F1
ν,T (H) ∩ F2

ν,T (H) for all Ψ ∈ L2
Q

1/2
1 (U),T

(H), so (57) follows from (38).

There are finitely many terms in the sum because P has finitely many jumps in
(0, t] a.s. ��
The jumps of a stochastic integral with respect to P̂ can be identified immediately

from equation (57).

Corollary 5.13 Let P be a square-integrable Ft -compound Poisson process on
U with covariance operator Q1. Then for every Ψ ∈ L2

Q1/2(U),T
(H) and every

t ∈ [0, T ] we have

Δ

∫ t

0
Ψ (s) dP̂ (s) =

{
f P̂
Ψ (t,ΔP(t)) if ΔP(t) �= 0

0 if ΔP(t) = 0.

The final step is to use a limiting argument to extend formula (56) to integra-
tion with respect to square-integrable Lévy martingales with covariance operator
satisfying (49). In the remainder of Sect. 5.2 we assume that L is a square-
integrable U -valued Lévy martingale with Lévy measure ν and covariance operator
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satisfying (49). If the filtration is larger than the natural filtration generated by L ,
then we also assume that L satisfies the independence condition (21).

Proposition 5.14 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space and sup-
pose that L is a U -valued Lévy martingale satisfying Assumption 3.3 with
Lévy measure ν and covariance operator Q1 satisfying (49). Then for every Ψ ∈
L2
Q

1/2
1 (U),T

(H) and every t ∈ [0, T ] we have

∫ t

0
Ψ (s) dL (s) =

∫ t

0

∫
U

fL
Ψ (s, u) dπ̂(s, u), (58)

where π is the jump measure of L and fL is the map defined in Proposition 5.7.

Proof In preparation for an approximation argument we begin by applying the
Lévy-Khinchin decomposition to L . By Lemma 5.1 there exists a U -valued
Wiener process and square-integrable compound Poisson processes (Pn)

∞
n=1, all

independent, such that L (t) = W(t) + ∑∞
n=1 P̂n(t) in U a.s. for all t ≥ 0.

Furthermore, the series converges in U uniformly in time on compact subsets of
[0,∞) and there exist disjoint Borel sets (An)

∞
n=1, each separated from 0, such

that Pn has Lévy measure ν|An and
⋃∞

n=1 An = U \ {0} =: E. Finally, by (42) it
follows that L has the same covariance operator as the sum

∑∞
n=1 P̂n. Therefore,

the covariance operator of the Wiener part, W , of L is zero by Lemma 5.6. That is,
W ≡ 0 and therefore L =∑∞

n=1 P̂n.
Since L is square-integrable with covariance operator satisfying (49) the

hypotheses of Proposition 5.7 apply to L , so the map fL is defined. For each
fixed t ∈ [0, T ], both sides of (58) are continuous functions of Ψ sending
L2
Q

1/2
1 (U),T

(H) → L2(Ω;H). Therefore, it is sufficient to establish (58) for Ψ ∈
S (U,H).

Fix Ψ ∈ S (U,H). For each positive integer N consider the sum LN :=∑N
n=1 P̂n of independent compensated compound Poisson processes. By (56) we

have

∫ t

0
Ψ (s) dLN(s) =

N∑
n=1

∫ t

0
Ψ (s) dP̂n(s) =

N∑
n=1

∫ t

0

∫
U

Ψ (s)u dπ̂n(s, u) (59)

where πn is the jump measure of Pn. We claim that πn is just π restricted to the set
(0,∞)×An. Because the convergence LN → L is a.s. uniform one can see that

ΔL (t) =
{
ΔPn(t) if ΔPn(t) �= 0 for some n

0 otherwise,
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for t > 0. Since the jumps of Pn belong to An with probability one, we see that
ΔL (t) = ΔPn(t) if and only if ΔL (t) ∈ An. Therefore,

πn =
∑
s>0

ΔPn(s) �=0

δ(s,ΔPn(s))=
∑
s>0

ΔL (s) �=0

χAn(ΔL (s))δ(s,ΔL (s)) = π(·∩((0,∞)×An)).

This shows that πn is the restriction of π to (0,∞)× An. On the right-hand side of
equation (59) the integrand in each term in the sum belongs to F1

νn,T
(H)∩F2

νn,T
(H),

where νn := ν|An , because νn is a finite measure. With EN :=⋃N
n=1 An we obtain

∫ t

0
Ψ (s) dLN(s) =

N∑
n=1

[ ∫ t

0

∫
U

Ψ (s)u dπn(s, u)−
∫ t

0

∫
U

Ψ (s)u dνn(u) ds
]

=
N∑

n=1

[ ∫ t

0

∫
An

Ψ (s)u dπ(s, u)−
∫ t

0

∫
An

Ψ (s)u dν(u) ds
]

=
∫ t

0

∫
EN

Ψ (s)u dπ(s, u)−
∫ t

0

∫
EN

Ψ (s)u dν(u) ds

=
∫ t

0

∫
U

χEN (u)Ψ (s)u dπ̂(s, u).

Using the isometric formula (36) it is easy to see that the right-hand side of the
equation above converges to

∫ t

0

∫
U Ψ (s)u dπ̂(s, u) in L2(Ω;H) as N → ∞. On

the other hand, we have

∫ t

0
Ψ (s) dL (s)−

∫ t

0
Ψ (s) dLN(s) =

∫ t

0
Ψ (s) d(L −LN)(s),

because Ψ ∈ S (U,H) (note that L − LN satisfies Assumption 3.3 by Corol-
lary 5.4). By writing L = (L − LN) + LN and noting that the summands are
independent we find that the covariance operator of L −LN is Q1 −QLN

by part
i) of Lemma 5.6, where QLN

is the covariance operator of LN . The same result
also implies that

(
QLN

x, y
)
U
=
∫
EN

(x, u)U (y, u)U dν(u) for all x, y ∈ U. (60)

Therefore, the covariance operator of L − LN satisfies condition (49) with the
measure ν|E\EN . Using the isometric formula (36) and Proposition 5.7 we see that

E
∣∣∣
∫ t

0
Ψ (s) d(L −LN)(s)

∣∣∣2
H
= E

∫ t

0

∫
E\EN

|Ψ (s)u|2H dν(u) ds,



Stochastic Integration with Respect to Lévy Processes 333

and the right-hand side tends to 0 as N → ∞ by the dominated convergence
theorem. This establishes (58) for simple processes and the general case follows
by continuity. ��
Remark 5.15 Equation (58) generalizes the special case in (56) of a single square-
integrable compensated compound Poisson process to the type of process L that
appears as the square-integrable jump part of a Lévy process in the Lévy-Khinchin
decomposition (Lemma 5.1). However, one should not expect that (57) holds for L ,
because the Lévy measure of L may not be finite.

Now we can identify the jumps of a stochastic integral with respect to L
(cf. Corollary 5.13).

Corollary 5.16 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space and suppose
that L is a U -valued Lévy process satisfying Assumption 3.3 with Lévy measure ν

and covariance operator Q1 satisfying (49). Then for every t ∈ [0, T ] and every
Ψ ∈ L2

Q1/2(U),T
(H) we have

Δ

∫ t

0
Ψ (s) dL (s) =

{
fL
Ψ (t,ΔL (t)) if ΔL (t) �= 0

0 if ΔL (t) = 0.

Proof As in the proof of Proposition 5.14 we use the Lévy-Khinchin decomposition
to write L = ∑∞

n=1 P̂n. Recall that (Pn)
∞
n=1 are independent square-integrable

compound Poisson processes and that the series converges uniformly in time on
compact subsets of [0,∞) a.s. For each positive integer n, the Lévy measure of
Pn is νn := ν|An , where (An)

∞
n=1 are disjoint Borel sets, each separated from

0, such that
⋃∞

n=1 An = U \ {0}. As before we define LN := ∑N
n=1 P̂n and

EN := ⋃N
n=1 An. Since LN is a finite sum of independent compound Poisson

processes, LN is also a compound Poisson process by Proposition 2.11 and its
Lévy measure is ν|EN . Corollary 5.13 tells us the jumps of a stochastic integral with
respect to LN . We denote by QN the covariance operator of LN . Recall from the
proof of Proposition 5.14 that QN is given by (60) for each N , whence QN ≤ Q.
Let ιN : L2

Q1/2(U),T
(U) → L2

Q
1/2
N (U),T

(U) be the unique continuous extension of

the identity map on S (U,H) (see Lemma 5.5). We show below that for every
Ψ ∈ L2

Q1/2(U),T
(U) one has

lim
N→∞E

(
sup

t∈[0,T ]

∣∣∣
∫ t

0
ιN (Ψ )(s) dLN(s)−

∫ t

0
Ψ (s) dL (s)

∣∣∣2
H

)
= 0. (61)

Condition (61) is a stronger form of convergence than what we established in the
proof of Proposition 5.14. In that proof we showed that

∫ t

0 ιN (Ψ )(s) dLN(s) →∫ t

0 Ψ (s) dL (s) in the space L2(Ω;H) for each fixed t ∈ [0, T ] and Ψ ∈ S (U,H).
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By Propositions 5.12 and 5.14, (61) is equivalent to

lim
N→∞E

(
sup

t∈[0,T ]

∣∣∣
∫ t

0

∫
U

f
LN

ιN (Ψ )(s, u) dπ̂N(s, u)−
∫ t

0

∫
U

fL
Ψ (s, u) dπ̂(s, u)

∣∣∣2
H

)
=0,

(62)

where π is the jump measure of L and πN is the jump measure of LN . Recall from
the proof of Proposition 5.14 that πN = π |(0,∞)×EN

; thus

∫ t

0

∫
U

f
LN

ιN (Ψ )(s, u) dπ̂N (s, u) =
∫ t

0

∫
U

f
LN

ιN (Ψ )(s, u)χEN (u) dπ̂(s, u),

for each positive integer N and t ∈ [0, T ]. By the BDG inequality (cf. (40)) and
Theorem 4.7 we have

E
(

sup
t∈[0,T ]

∣∣∣
∫ t

0

∫
U

(
f
LN

ιN (Ψ )
(s, u)χEN

(u)− fL
Ψ (s, u)

)
dπ̂ (s, u)

∣∣∣2
H

)

� E
∫ t

0

∫
U

∣∣fLN

ιN (Ψ )
(s, u)χEN

(u)− fL
Ψ (s, u)

∣∣2
H

dπ(s, u)

= E
∫ t

0

∫
U

∣∣fLN

ιN (Ψ )
(s, u)χEN

(u)− fL
Ψ (s, u)

∣∣2
H

dν(u) ds.

Here and below we use � to denote the inequality≤ up to a universal multiplicative
constant; in this case, up to a constant that is independent of N . Lemma 5.10 says
that fLN

ιN (Ψ ) = fL
Ψ on Ω × [0, T ] × EN , so the right-hand side of the inequality

above is equal to the square-norm of fL
Ψ (s, u)χU\EN in the space F2

ν,T (H), which
tends to 0 as N → ∞ by the dominated convergence theorem. This proves (62)
and the equivalent statement (61). As a result, we see that

∫ t

0 ιN (Ψ )(s) dLN(s) →∫ t

0 Ψ (s) dL (s) in H , uniformly in t ∈ [0, T ], along a subsequence a.s. Since the
convergence is uniform and since

(( ∫ t

0 ιN (Ψ )(s) dLN(s)
)
t∈[0,T ]

)∞
N=1 are purely

discontinuous processes whose sets of jumps increase with N it follows that( ∫ t

0 Ψ (s) dL (s)
)
t∈[0,T ] has a jump at time t ∈ [0, T ] if and only if some process( ∫ t

0 ιN (Ψ )(s) dLN(s)
)
t∈[0,T ] has a jump at time t . Furthermore, when this occurs

we have

Δ

∫ t

0
Ψ (s) dL (s) = Δ

∫ t

0
ιN (Ψ )(s) dLN(s),

for every positive integer N such that
( ∫ t

0 ιN (Ψ )(s) dLN(s)
)
t∈[0,T ] has a jump

at time t . We have used the same reasoning in the proof of Proposition 5.14 to
show that ΔL (t) = ΔLN(t) for any N such that ΔLN(t) �= 0 and ΔL (t) = 0
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otherwise. By Corollary 5.13 we have

Δ

∫ t

0
ιN (Ψ )(s) dLN(s) =

{
f
LN

ιN (Ψ )(t,ΔLN(t)) if ΔLN(t) �= 0

0 if ΔLN(t) = 0

for each positive integer N . Since ΔLN(t) ∈ EN , Lemma 5.10 implies that

Δ

∫ t

0
Ψ (s) dL (s) =

{
f
LN

ιN (Ψ )(t,ΔLN(t)) if ΔLN(t) �= 0 for some N

0 if ΔL (t) = 0.

From this we find that

Δ

∫ t

0
Ψ (s) dL (s) =

{
fL
Ψ (t,ΔL (t)) if ΔL (t) �= 0

0 if ΔL (t) = 0.

��
We can find the quadratic variation of a stochastic integral with respect to L by

combining Proposition 5.14 with Theorem 4.14.

Corollary 5.7 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space and suppose
that L is a U -valued Lévy process satisfying Assumption 3.3 with Lévy measure ν

and covariance operator Q1 satisfying (49). Then for every t ∈ [0, T ] and every
Ψ ∈ L2

Q
1/2
1 (U),T

(H) we have

[∫ ·
0 Ψ (s) dL (s)

]
t
=
∫ t

0

∫
U

|fL
Ψ (s, u)|2H dπ(s, u), (63)

where π is the jump measure of L and fL is the map defined in Proposition 5.7.

5.3 Summary of the Square-Integrable Case

Now we return to the setting where M is a square-integrable Lévy martingale
satisfying Assumption 3.3, W is its Wiener part and π is its jump measure. We
combine the results in this section to give a rigorous interpretation and proof of the
informal statement dM = dW + dπ̂ . This will show the precise way in which
the stochastic integral IM as presented by Peszat and Zabczyk is a special case of
the stochastic integrals IW + I π̂ that appears in the setting presented by Ikeda and
Watanabe. We recall the setting.

• We are given a square-integrable, U -valued Lévy martingale M with covariance
operator Q.
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• A filtration (Ft )t≥0 is chosen such that M is an Ft -Lévy process, so M

satisfies Assumption 3.3. We may assume that the filtration is complete and right-
continuous.

• The process M can be decomposed as M = W + L as in Lemma 5.1, where
W is an Ft -Wiener process on U and L is an Ft -Lévy process and a sum of
independent CCPPs on U .

• Let Q0 be the covariance operator of W and let Q1 be the covariance operator of
L .

• For j = 0, 1 let ιj : L2
Q1/2(U),T

(H) → L2
Q

1/2
j (U),T

(H) denote the continuous

extension of the identity map on S (U,H) from Lemma 5.5.
• Let ν be the Lévy measure of M and let π be the jump measure of M .
• Let fL : L2

Q
1/2
1 (U),T

(H)→ F2
ν,T (H) be the map defined in Proposition 5.7.

By combining Lemma 5.6 and Proposition 5.14 we obtain the following.

Theorem 5.18 In the setup above, for every Ψ ∈ L2
Q1/2(U),T

(H) and for every
t ∈ [0, T ] we have
∫ t

0
Ψ (s) dM(s) =

∫ t

0
ι0(Ψ )(s) dW(s)+

∫ t

0

∫
U

fL
ι1(Ψ )(s, u) dπ̂(s, u), (64)

i.e., IMt (Ψ ) = IWt (ι0(Ψ ))+ I π̂t (fL
ι1(Ψ )).

Question 1.2 from Sect. 1 can now be answered for the stochastic integral with
respect to M using Corollary 5.16. For Ψ ∈ L2

Q1/2(U),T
(H) the jumps of IM(Ψ ) are

ΔIMt (Ψ ) =
{
fL
ι1(Ψ )(t,ΔM(t)) if ΔM(t) �= 0

0 otherwise.
(65)

Question 1.3 from Sect. 1 can be answered as well. We can compute the quadratic
variation of the process IM(Ψ ), where Ψ ∈ L2

Q1/2(U),T
(H), using Theorem 2.29

by decomposing the H -valued L2-martingale IM(Ψ ) into its continuous and
purely discontinuous parts. We have seen in Example 3.13 that IW (ι0(Ψ )) is
continuous and in Remark 4.13 that I π̂ (fL

ι1(Ψ )) is purely discontinuous. From
this, Theorem 2.29, (29) and (39) we obtain an answer to Question 1.3 using
Corollary 5.7.

Theorem 5.19 In the setup above, for every Ψ ∈ L2
Q1/2(U),T

(H), the continuous

part of the stochastic integral IM(Ψ ) is IW (ι0(Ψ )) and the purely discontinuous
part of IM(Ψ ) is I π̂ (fL

ι1(Ψ )). Therefore, the quadratic variation of IM(Ψ ) is
given by

[
IM(Ψ )

]
t
=
∫ t

0
||ι0(Ψ )(s)||2

L2(Q
1/2
0 ,H)

ds +
∫ t

0

∫
U

|fL
ι1(Ψ )|2H(s, u) dπ(s, u).

(66)
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We can now state the upper bound in the BDG inequality (Theorem 2.23) applied
to the stochastic integral IM(Ψ ).

Corollary 5.20 For every 1 ≤ p < ∞ there exists a constant Cp > 0 with the
property that for every square-integrable, mean-zero Lévy process M as in the setup
above, for every Ft -stopping time τ and for every Ψ ∈ L2

Q1/2(U),T
(H) one has

E
(

sup
t∈[0,τ ]

|IMt (Ψ )|pH
)
≤ CpE

[( ∫ τ

0
||ι0(Ψ )(s)||2

L2(Q
1/2
0 (U),H)

ds

+
∫
(0,τ ]

∫
U

|fL
ι1(Ψ )(s, u)|2H dπ(s, u)

)p/2]
.

(67)

In particular,

E
(

sup
t∈[0,τ ]

|IMt (Ψ )|2H
)
≤ C2E

∫ τ

0
||Ψ (s)||2

L2(Q1/2(U),H)
ds. (68)

Proof Inequality (67) is a direct application of the BDG inequality (Theorem 2.23)
using formula (66) for the quadratic variation of IM(Ψ ). When p = 2 inequal-
ity (67) becomes

E
(

sup
t∈[0,τ ]

|IMt (Ψ )|2H
)
≤ C2E

[ ∫ τ

0
||ι0(Ψ )(s)||2

L2(Q
1/2
0 (U),H)

ds

+
∫
(0,τ ]

∫
U

|fL
ι1(Ψ )(s, u)|2H dν(u) ds

]
, (69)

by Theorem 4.7. We obtain (68) from (69) using the fact that ι0, ι1 and fL all have
norm at most 1 on their respective domains. Due to the presence of the stopping
time τ in (69), there is also a limiting argument required to deduce (68), wherein Ψ

is approximated by simple processes. Alternatively, inequality (68) can be deduced
from (69) using the more general observations in Lemma 6.15, Lemma 6.16 and
Remark 6.17. ��

We turn our attention next to applying the Itô formula to the solution of an SDE
with noise from a square-integrable Lévy martingale M . Let M be as above and let
Ψ ∈ L2

Q1/2(U),T
(H). Let A be an H -valued process with paths of finite variation

and define

X(t) := X0 + A(t)+
∫ t

0
Ψ (s) dM(s), (70)

where X0 ∈ L2(Ω,F0,P;H). Solutions to SDEs will have the form of the process
X when, for instance, the process A is of the form A(t) = ∫ t

0 F(s) ds for some
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F : Ω × [0, T ] → H such that F ∈ L1([0, T ];H) a.s. By (65) the jumps of X are
given by

ΔX(t) = ΔIMt (Ψ ) =
{
fL
ι1(Ψ )

(t,ΔM(t)) if ΔM(t) �= 0

0 otherwise.
(71)

In order to apply Theorem 1.1 to X we also need to compute the continuous part of
the tensor quadratic variation of IM(Ψ ). According to Definition 2.30, this is given
by

[[IM(Ψ ), IM(Ψ )]]ct =
∞∑

j,k=1

[
(
ek, I

M(Ψ )
)c
H
,
(
ej , I

M(Ψ )
)c
H
]t (ek ⊗ ej ) (72)

for any orthonormal basis (ek)∞k=1 of H . By Theorem 3.12 we have
(
ek, I

M(Ψ )
)
H
=

IM((ek, Ψ )H ) and by Theorem 5.19 its continuous part is IW (ι0,R((ek, Ψ )H )),
where ι0,R : L2

Q1/2(U),T
(R) → L2

Q
1/2
0 (U),T

(R) denotes the continuous extension of

the identity map on S (U,R). When Ψ is a simple process we clearly have

ι0,R((ek, Ψ )H ) = (ek, ι0(Ψ ))H . (73)

It follows by continuity that (73) holds for all Ψ ∈ L2
Q1/2(U),T

(H). This shows that(
ek, I

M(Ψ )
)c
H
= IW ((ek, ι0(Ψ ))H ). We use Theorem 3.12 again to conclude that(

ek, I
M(Ψ )

)c
H
= (ek, IW (ι0(Ψ ))

)
H

. Returning to (72) we see that

[[IM(Ψ ), IM(Ψ )]]ct = [[IW (ι0(Ψ )), IW (ι0(Ψ ))]]t . (74)

Applying Theorem 1.1 to the solution X to (70) yields the following. Let ψ : H →
R be a C2 function with the property that ψ , Dψ and D2ψ are uniformly continuous
on bounded subsets of H . Then for each t ≥ 0 we have

ψ(X(t)) = ψ(X0)+
∫ t

0
(Dψ(X(s−)), dX(s))H

+ 1

2

∫ t

0
D2ψ(X(s−)) d[[IW (ι0(Ψ )), IW (ι0(Ψ ))]]s

+
∑

s∈(0,t ]

(
Δ(ψ(X(s))− (Dψ(X(s−)),ΔX(s))H

)
P-a.s.
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Using (71) and (74) we can write the equation above explicitly in terms of the
coefficients F and Ψ that appear in (70):

ψ(X(t)) =ψ(X0)+
∫ t

0
(Dψ(X(s−)), F (s))H ds+

∫ t

0
(Dψ(X(s−)), Ψ (s) dM(s))H

+ 1

2

∫ t

0
Tr[D2ψ(X(s−))ι0(Ψ )(s)

(
ι0(Ψ )(s)

)∗] ds

+
∫ t

0

∫
U

[
ψ(X(s−)+ fL

ι1(Ψ )(s, u)) − ψ(X(s−))

− (Dψ(X(s−)), fL
ι1(Ψ )(s, u)

)
H

]
dπ(s, u) P-a.s. (75)

5.4 An Application to Markov Properties

We consider an SDE with Lévy noise as in the setting of Peszat and Zabczyk and
show how Theorem 5.18 and the Itô formula (75) can be used to analyze the solution
as a Markov process. With M as above we consider equation (70) in the following
special form:

{
dX(t) = F(X(t−)) dt +G(X(t−)) dM(t),

X(0) = x,
(76)

where F : H → H , G : H → L2(Q
1/2(U),H) and x ∈ H . We assume that F and

G are Lipschitz with linear growth. Under these conditions equation (76) possesses
a unique solution X belonging to the space L2(Ω;L∞([0, T ],H)), see e.g. [5] or
[15]. Furthermore, X is predictable, X has a càdlàg version and X is a Markov
process, see e.g. Theorem 9.30 in [15]. As an application of the Itô formula (75) we
will determine the transition semigroup associated to X on certain test functions
ψ : H → R for which (75) holds. Recall that the transition semigroup (Tt )t≥0
associated to X is defined on bounded measurable functions ψ : H → R by

(Ttψ)(x) := Ex [ψ(X(t))], for all x ∈ H. (77)

A continuous, bounded function ψ : H → R is said to belong to the domain of the
weak generator of (Tt )t≥0 if the limit

lim
t↓0

(Ttψ)(x)− ψ(x)

t
=: (A ψ)(x)
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exists for every x ∈ H , the function A ψ is continuous and bounded, and

(Ttψ)(x)− ψ(x) =
∫ t

0
(Ts(A ψ))(x) ds, for all x ∈ H. (78)

We will also determine the weak generator A of (Tt )t≥0 on certain test functions.
Before doing so, we will examine the terms ι0(G(X))(s) and fL

ιi (G(X))(s, u) that
appear when (75) is applied to the solution X of (76). Specifically, we will show
that ι0(G(X))(s) and fL

ιi (G(X))(s, u) can be expressed as deterministic mappings of
H to H evaluated at the point X(s−).

Let Q1,Q2 ∈ L+1 (U) with Q1 ≤ Q2. By part i) of Lemma 5.5 it
follows that the identity operator on L(U,H) extends to a continuous linear
mapping γ : L2(Q

1/2
2 (U),H) → L2(Q

1/2
1 (U),H) with norm at most 1. Let

ι : L2
Q

1/2
2 (U),T

(H) → L2
Q

1/2
1 (U),T

(H) be the unique continuous extension of the

identity operator on the simple processes S (U,H), as defined in Lemma 5.5.
It is clear that for every Ψ ∈ S (U,H) we have ι(Ψ ) = Ψ = γ ◦ Ψ . Since
γ is continuous it follows that Ψ �→ γ ◦ Ψ is a continuous linear mapping of
L2
Q

1/2
2 (U),T

(H) into L2
Q

1/2
1 (U),T

(H). Since ι is unique we conclude that ι(Ψ ) = γ ◦Ψ
in the space L2

Q
1/2
1 (U),T

(H) for every Ψ ∈ L2
Q

1/2
2 (U),T

(H). Equivalently, for every

Ψ ∈ L2
Q

1/2
2 (U),T

(H) we have

ι(Ψ )(s) = γ (Ψ (s)), in L2(Q
1/2
1 (U),H), dP⊗ dt-a.e. (79)

Now we explain how (79) will be used when applying the Itô formula (75) to the
solution X of equation (76). Recall that the square-integrable Lévy martingale M

has been decomposed as M = W +L , where W is a U -valued Ft -Wiener process
and where L is an Ft -Lévy process that is a sum of independent CCPPs on U .
The covariance operator of M is Q = Q0 + Q1, where Q0 is the covariance
operator of W and Q1 is the covariance operator of L . For j = 0, 1 we
denote by ιj : L2

Q1/2(U),T
(H) → L2

Q
1/2
j (U),T

(H) the continuous linear extension

of the identity map on S (U,H), as in Lemma 5.5. We will also denote by
γj : L2(Q

1/2(U),H) → L2(Q
1/2
j (U),H) the continuous extension of the identity

operator on L(U,H) that was defined at the beginning of this paragraph. We
apply (79) to the process Ψ ∈ L2

Q1/2(U),T
(H) defined by Ψ (s) := G(X(s−)) and

find that

ιj (G(X))(s) = γj (G(X(s−))), in L2(Q
1/2
j (U),H), dP⊗ dt-a.e., (80)

for j = 0, 1. This shows that the process ιj (G(X)) is nothing but the con-

tinuous function γj ◦ G : H → L2(Q
1/2
j (U),H) evaluated along the paths

of X (after modifying them to be left-continuous). Our next task is to show
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that fL
ιi (G(X))(s, ·) can also be written as a deterministic continuous function

evaluated at X(s−). Note that equation (50) says that the map Φ �→ Φu is
an isometry from the space L(U,H) endowed with the L2(Q

1/2
1 (U),H)-norm

to the space L2(U,B(U), ν;H). Therefore, this map extends uniquely to an
isometry φ : L2(Q

1/2
1 (U),H) → L2(U,B(U), ν;H). Note that for each Ψ ∈

L2
Q

1/2
1 (U),T

(H) the composition φ ◦ Ψ belongs to the space

L2(Ω × [0, T ],P[0,T ], dP⊗ dt;L2(U,B(U), ν;H)),

which can be naturally identified with F2
ν,T (H). Furthermore, we have

E
∫ T

0

∫
U

|φ(Ψ (s))(u)|2H dν(u) ds = E
∫ T

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds,

because φ is an isometry from L2(Q
1/2
1 (U),H) to L2(U,B(U), ν;H). Since we

have φ(Ψ (s))(u) = Ψ (s)u for every Ψ ∈ S (U,H) and every s ∈ [0, T ] and
u ∈ U , it follows that

fL
Ψ = φ ◦ Ψ in the space F2

ν,T (H), for every Ψ ∈ L2
Q

1/2
1 (U),T

(H). (81)

For the process Ψ ∈ L2
Q

1/2
1 (U),T

(H) defined by Ψ (s) := ι1(G(X))(s) equations (81)

and (80) show that

fL
ι1(G(X))(s, ·) = φ(ι1(G(X))(s)) = φ(γ1(G(X(s−)))), dP⊗dt-a.e., (82)

in the space L2(U,B(U), ν;H).
We can now compute the transition semigroup of the solution X to equation (76).

Let ψ : H → R be of class C2 such that ψ , Dψ and D2ψ are uniformly continuous
on bounded subsets of H . By applying the Itô formula (75) to equation (76) and
taking expectations we obtain

E[ψ(X(t))] = ψ(x)+
∫ t

0
E[(Dψ(X(s−)), F (X(s−)))H ] ds

+ 1

2

∫ t

0
E
[
Tr[D2ψ(X(s−))ι0(G(X))(s)

(
ι0(G(X))(s)

)∗]] ds

+ E
∫ t

0

∫
U

[
ψ(X(s−)+ fL

ι1(G(X))(s, u))− ψ(X(s−))

− (Dψ(X(s−)), fL
ι1(G(X))(s, u))H

]
dν(u) ds.
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Using equations (81) and (80) we find that

(Ttψ)(x) = ψ(x)+
∫ t

0
E[(Dψ(X(s−)), F (X(s−)))H ] ds

+ 1

2

∫ t

0
E
[
Tr[D2ψ(X(s−))γ0(G(X(s−)))

(
γ0(G(X(s−)))

)∗]] ds

(83)

+
∫ t

0
E
∫
U

[
ψ(X(s−)+ φ(γ1(G(X(s−))))(u))− ψ(X(s−))

− (Dψ(X(s−)), φ(γ1(G(X(s−))))(u))H

]
dν(u) ds.

If we define A ψ : H → R by

(A ψ)(x) := (Dψ(x), F (x))H +
1

2
Tr[D2ψ(x)γ0(G(x))

(
γ0(G(x))

)∗]

+
∫
U

[
ψ(x + φ(γ1(G(x)))(u))− ψ(x)

− (Dψ(x), φ(γ1(G(x)))(u))H
]

dν(u), (84)

then (83) can be expressed succinctly as

(Ttψ)(x)− ψ(x) =
∫ t

0
(Ts(A φ))(X(s)) ds. (85)

Using the fundamental theorem of calculus we find that

lim
t↓0

E[ψ(X(t))] − ψ(x)

t
= (A ψ)(x), for all x ∈ H. (86)

In the language of Markov processes (see e.g. [15]), we have shown that the
transition semigroup of X is given by (83) for test functions ψ that are C2 with
ψ , Dψ and D2ψ uniformly continuous on bounded subsets of H . Equations (85)
and (86) show that such functionsψ for which A ψ is bounded belong to the domain
of the weak generator A of (Tt )t≥0.

6 Comparing Lévy Noise: The Non-Square-Integrable Case

In order to define stochastic integration with noise from a general Lévy process
in the setting presented by Peszat and Zabczyk, one must consider stochastic
integration with respect to a compound Poisson process P (see Definition 2.9) along
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with stochastic integration with respect to a square-integrable Lévy martingale M

(cf. Theorem 2.15). A compound Poisson process P is not a martingale and is not
necessarily square-integrable, so the results of Sect. 5 do not apply to P directly.
If P is integrable but not square-integrable, then the results of Sect. 5 do not apply
to the compensated compound Poisson process P̂ either. In fact, P̂ does not have a
trace-class covariance operator, so one cannot even define the space of integrands
L2
Q

1/2
1 (U),T

(H) in the same way as before. For these reasons, stochastic integration

with respect to a compound Poisson process P must be defined in a different way
from Sect. 5. In this section we summarize Peszat and Zabczyk’s presentation of the
construction of stochastic integration with respect to a compound Poisson process
by localization. However, we adopt the abstract framework of projective limits of
Hilbert spaces as the setting for the localization procedure. We choose to use this
abstract setting in order to explain subtle points that are not mentioned by Peszat
and Zabczyk. Specifically, in Peszat and Zabczyk’s book [15]

• it is not clear on page 123 which processes satisfy hypothesis (H3) and make up
the space of integrands for stochastic integration with respect to P ,

• it is not immediately clear how to interpret Ψu when Ψ ∈ L2(U0,H) and u ∈ U ,
which is required to define the term χ[0,τm](s)Ψ2(s)um on page 125 and

• it is not clear how to define the integral
∫ t

0 χ[0,τm](s)Ψ2(s)um ds.

Our abstract setting is also used to address the additional questions below that are
not treated by Peszat and Zabczyk.

Question 6.1 What is the appropriate space of integrands for stochastic integration
with respect to P ?

Question 6.2 Are simple processes dense in the space of integrands?

In order to state the remaining questions, suppose that Ψ belongs to the space of
integrands for stochastic integration with respect to P .

Question 6.3 Can the stochastic integral of Ψ with respect to P be expressed as a
stochastic integral with respect to the jump measure of P ?

Question 6.4 Is the stochastic integral of Ψ with respect to P a random sum of
finitely many vectors in H ?

Question 6.5 What are the jumps of the stochastic integral of Ψ with respect to P ?

Question 6.6 If Ψ takes values in the space L(U,H) of bounded linear operators,
then does the stochastic integral of Ψ with respect to P agree with the pathwise
Riemann-Stieltjes integral

∑
s∈(0,t ]

Ψ (s)ΔP(s)?

In preparation for constructing the stochastic integral with respect to a compound
Poisson process P we begin by considering the case where P is square-integrable in
Sect. 6.1. In Sect. 6.2 we construct the stochastic integral with respect to a general,
not necessarily integrable, compound Poisson process P . We define the space of
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integrands for stochastic integration with respect to a CPP in (105), answering
Question 6.1. We answer Question 6.2 in Proposition 6.14. The stochastic integral
with respect to P is defined in Definition 6.20. We answer Questions 6.3 and 6.4 in
Proposition 6.24 and use this to answer Question 6.5 in Corollary 6.26. We answer
Question 6.6 in Proposition 6.27. In Sect. 6.3 we compare two notions of stochastic
integration with respect to a square-integrable compound Poisson process, the first
being Definition 6.7 in Sect. 6.1, the second being Definition 6.20 in Sect. 6.2.
In Sect. 6.4 we show how the notion of stochastic integration with respect to a
general, non-square-integrable Lévy process presented by Peszat and Zabczyk can
be converted into the setting of stochastic integration with respect to a Lévy process
presented by Ikeda and Watanabe.

6.1 Integration with Respect to a Square-Integrable
Compound Poisson Process

In this section we define stochastic integration with respect to a square-integrable
compound Poisson process P . We work on a filtered probability space (Ω,F ,

(Ft )t≥0,P) such that P is an Ft -compound Poisson process. Since we assume
that P is square-integrable, the compensated compound Poisson process P̂ satisfies
Assumption 3.3. Several times below we will use the fact that the Lévy measure of
a compound Poisson process is a finite measure (see Definition 2.9). We will also
refer to the covariance operator of P , by which we mean the covariance operator of
P̂ (see Definition 3.5).

Definition 6.7 Let P be a square-integrable compound Poisson process on U with
covariance operator Q1 and jump measure π . For every Ψ ∈ L2

Q
1/2
1 (U),T

(H) and

every t ∈ [0, T ] we define the H -valued process

∫ t

0
Ψ (s) dP(s) :=

∫ t

0

∫
U

f P̂
Ψ (s, u) dπ(s, u) =

∑
s∈(0,t ]

f P̂
Ψ (s,ΔP(s)), (87)

where f P̂ : L2
Q

1/2
1 (U),T

(H)→ F2
ν,T (H) is the map defined in Proposition 5.7. Note

that the right-hand side of (87) is well-defined for everyΨ ∈ L2
Q

1/2
1 (U),T

(H) because

ν(U) <∞ implies that f P̂
Ψ ∈ F2

ν,T (H) ⊆ F1
ν,T (H).

Proposition 6.8 Let P be a square-integrable compound Poisson process on
U with covariance operator Q1 and Lévy measure ν. Then for every Ψ ∈
L2
Q

1/2
1 (U),T

(H) we have

∫ t

0
Ψ (s) dP(s) =

∫ t

0
Ψ (s) dP̂ (s)+

∫ t

0

∫
U

f P̂
Ψ (s, u) dν(u) ds (88)
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for all t ∈ [0, T ] and

E
∣∣∣
∫ t

0
Ψ (s) dP(s)

∣∣∣2
H
≤ 2(1+ tν(U)) · E

∫ t

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds. (89)

Thus, for every t ∈ [0, T ], the map Ψ �→ ∫ t

0 Ψ (s) dP(s) is linear and continuous
from L2

Q
1/2
1 (U),T

(H)→ L2(Ω;H).

Proof Equation (88) follows by combining the definition (87) with (57). To obtain
the estimate (89) we use equation (88), the triangle inequality and the Cauchy-
Schwarz inequality to obtain

E
∣∣∣
∫ t

0
Ψ (s) dP (s)

∣∣∣2
H
≤ 2E

(∣∣∣
∫ t

0
Ψ (s) dP̂ (s)

∣∣∣2
H
+
∣∣∣
∫ t

0

∫
U

f P̂
Ψ (s, u) dν(u) ds

∣∣∣2
H

)

≤ 2E
∣∣∣
∫ t

0
Ψ (s) dP̂ (s)

∣∣∣2
H
+ 2tν(U)E

∫ t

0

∫
U

|f P̂
Ψ (s, u)|2H dν(u) ds.

Using the Itô isometry (see Theorem 3.12) and the isometric property (51) of the
map f P̂ we obtain inequality (89). Since P is a compound Poisson process we have
ν(U) < ∞, so (88) and (89) show that the map Ψ �→ ∫ t

0 Ψ (s) dP(s) is linear and
continuous from L2

Q
1/2
1 (U),T

(H)→ L2(Ω;H). ��

Remark 6.9 Recall from Proposition 5.7 that f P̂ sends a simple process Ψ ∈
S (U,H) to the function f P̂

Ψ (s, u) := Ψ (s)u in F2
ν,T (H). Therefore, when the

integrand Ψ is a simple process Definition 6.7 says that

∫ t

0
Ψ (s) dP(s) =

∑
s∈(0,t ]

Ψ (s)ΔP(s).

So (87) is a natural definition because it agrees, a.s., with the Riemann-Stieltjes
integral of Ψ ∈ S (U,H) with respect to the process P .

Our Definition 6.7 is an alternative to the definition that is used by Peszat and
Zabczyk on page 125 of [15]. In a similar way to (88), they define

∫ t

0
Ψ (s) dP(s) :=

∫ t

0
Ψ (s) dP̂ (s)+

∫ t

0
Ψ (s)(EP(1)) ds, (90)

when P is a square-integrable compound Poisson process and Ψ ∈ L2
Q

1/2
1 (U),T

(H).

However, since Ψ (s) ∈ L2(U0,H) may be an unbounded operator on U , it is not
immediately clear how the term Ψ (s)(EP(1)) on the right-hand side of (90) should
be interpreted and it is even less clear that this can be done in such a way so that the
H -valued process Ψ (s)(EP(1)) is integrable on [0, T ], P-a.s. Our aim below is to
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show that the natural interpretation is

Ψ (s)(EP(1)) :=
∫
U

f P̂
Ψ (s, u) dν(u), (91)

making our definition of
∫ t

0 Ψ (s) dP(s) in (87) coincide, via (88), with Peszat and

Zabczyk’s definition (90). If Ψ ∈ L2
Q

1/2
1 (U),T

(H), then f P̂
Ψ ∈ F2

ν,T (H) ⊆ F1
ν,T (H).

Therefore, the right-hand side of (91) is well-defined and belongs to L1([0, T ];H),
P-a.s., for every Ψ ∈ L2

Q
1/2
1 (U),T

(H). The purpose of the results below is to show

that (91) is a natural interpretation of Ψ (s)(EP(1)), in the sense that equality holds
in (91) when the left-hand side of (91) is well-defined in H , e.g., when Ψ (s) ∈
L(U,H), P-a.s.

Lemma 6.10 Let Q ∈ L+1 (U) and let U0 := Q1/2(U). Then the subspace {Φ|U0 :
Φ ∈ L(U,H)} is dense in L2(U0,H).

Proof Let (uk)∞k=1 be an ONB of N (Q)⊥ consisting of eigenvectors of Q with

corresponding eigenvaluesλ1 ≥ λ2 ≥ · · · > 0. Then
(
Q1/2uk

)∞
k=1 = (λ

1/2
k uk)

∞
k=1 is

an orthonormal basis for U0. For each positive integer n let Pn denote the orthogonal
projection onto the linear span of {u1, . . . , un} in U . Since each uk is an eigenvector
for Q1/2 we see that the range of Pn is contained in the range of Q1/2. Thus, for
any Φ ∈ L2(U0,H) the composition ΦPn is a well-defined linear mapping from
U → H . The proof will be complete if we show that ΦPn ∈ L(U,H) and that
ΦPn|U0 → Φ in L2(U0,H).

For boundedness we begin with the inequality

|ΦPnu|H ≤ ||Φ||L2(U0,H) |Pnu|U0,

which holds for all u ∈ U . This follows because the Hilbert-Schmidt norm
dominates the operator norm (extend a unit vector in U0 to an ONB). Next, we
have

|Pnu|2U0
= (Q−1/2Pnu,Q

1/2Pnu)U = |v|2U ,

where v is the unique vector in N (Q1/2)⊥ such that Q1/2v = Pnu (recall the
definition of (·, ·)U0

in (25)). Since

Pnu =
n∑

k=1

(u, uk)U uk = Q1/2
( n∑

k=1

(u, uk)U λ
−1/2
k uk

)
,

and since span{u1, . . . , un} ⊆ N (Q1/2)⊥ = span{u1, u2, . . .}, we see that

v =
n∑

k=1

(u, uk)U λ
−1/2
k uk.
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This means that

|Pnu|2U0
=
∣∣∣

n∑
k=1

(u, uk)U λ
−1/2
k uk

∣∣∣2
U
=

n∑
k=1

(u, uk)
2
U λ−1

k ≤ λ−1
n |u|2U .

This shows that ΦPn ∈ L(U,H) with norm at most ||Φ||L2(U,H) λ
−1/2
n .

For convergence we begin by finding ΦPn|U0 . Observe that for each h ∈ U0 we

have h = ∑∞
k=1(h, λ

1/2
k uk)U0λ

1/2
k uk and the series converges not only in U0 but

also in U . Indeed, since Q−1/2h ⊥ N (Q) we have

Q1/2(Q−1/2h) = Q1/2
∞∑
k=1

(Q−1/2h, uk)Uuk =
∞∑
k=1

(Q−1/2h, uk)Uλ
1/2
k uk,

where we use the fact that Q1/2 is bounded to conclude in the last step that
the sum converges in U . The right-hand side of the equation above is equal to∑∞

k=1(h, λ
1/2
k uk)U0λ

1/2
k uk . Since this sum converges in U we have

ΦPnh = Φ
( n∑

k=1

(h, λ
1/2
k uk)U0λ

1/2
k uk

)
= ΦP̃nh,

where P̃n is the orthogonal projection onto span{u1, · · · , un} in U0. Write P̃⊥n :=
I − P̃n. We need to show that ΦP̃⊥n → 0 in L2(U0,H). We have

||ΦP̃⊥n ||2L2(U0,H) =
∞∑
k=1

|ΦP̃⊥n (Q1/2uk)|2H =
∞∑

k=n+1

|Φ(Q1/2uk)|2H . (92)

On the right-hand side of (92) we have tail sums of the series
∑∞

k=1 |Φ(Q1/2uk)|2H
and this series converges to the finite number ||Φ||2L2(U0,H). So the right-hand side
of (92) tends to 0 as n→∞. ��
Proposition 6.11 Let P be a square-integrable Ft -compound Poisson process on
U with covariance operatorQ1 and Lévy measure ν. Define a map hP : L(U,H)→
H by

hP (Φ) := Φ(EP(1)) =
∫
U

Φu dν(u). (93)

Then the following statements hold.

i) hP is continuous in the L2(Q
1/2
1 (U),H)-norm and therefore has a unique

continuous, linear extension to a map hP : L2(Q
1/2
1 (U),H)→ H .



348 J. Cyr et al.

ii) For every simple process Ψ ∈ S (U,H) we have

hP (Ψ (s)) = Ψ (s)(EP(1)) =
∫
U

Ψ (s)u dν(u), (94)

in H , P-a.s., for every s ∈ [0, T ].
iii) For every Ψ ∈ L2

Q
1/2
1 (U),T

(H) we have hP ◦ Ψ ∈ L2(Ω × [0, T ];H) and

hP (Ψ (s)) =
∫
U

f P̂
Ψ (s, u) dν(u), (95)

in H , dP⊗ ds-a.e.
iv) For every Ψ ∈ L2

Q
1/2
1 (U),T

(H) and every sequence (Ψn)
∞
n=1 ⊂ S (U,H) such

that Ψn → Ψ in the space L2
Q

1/2
1 (U),T

(H) we have

∫
U

f P̂
Ψ (s, u) dν(u) = lim

n→∞

∫
U

Ψn(s)u dν(u) = lim
n→∞Ψn(s)(EP(1)), (96)

in the space L2(Ω × [0, T ];H) and, for every t ∈ [0, T ], we have

∫ t

0

∫
U

f P̂
Ψ (s, u) dν(u) ds= lim

n→∞

∫ t

0

∫
U

Ψn(s)u dν(u) ds = lim
n→∞

∫ t

0
Ψn(s)(EP(1)) ds,

(97)

in the space L2(Ω;H). Furthermore, if we also have Ψn → Ψ in
L2(Q

1/2
1 (U),H), dP⊗dt-a.e., then the convergence (96) holds in H , dP⊗dt-

a.e.

Proof i) Let Φ ∈ L(U,H). Note that the equality on the right of (93) follows
from Proposition 2.11. By the Cauchy-Schwarz inequality and part i) of
Proposition 5.7 we have

|hP (Φ)|2H ≤ ν(U)

∫
U

|Φu|2H dν(u) = ν(U) ||Φ||2
L2(Q

1/2
1 (U),H)

. (98)

This shows that hP is continuous in the L2(Q
1/2
1 (U),H)-norm. In Lemma 6.10

we showed that {Φ|
Q

1/2
1 (U)

: Φ ∈ L(U,H)} is dense in L2(Q
1/2
1 (U),H), so

hP extends uniquely by continuity to a linear map hP : L2(Q
1/2
1 (U),H)→ H

for which inequality (98) continues to hold for all Φ ∈ L2(Q
1/2
1 (U),H).

ii) Since simple processes take values in L(U,H), P-a.s. for all s ∈ [0, T ],
equation (94) follows from the definition of hP in (93).

iii) According to the definition of f P̂ in Proposition 5.7, equation (94) says
that (95) holds whenever Ψ ∈ S (U,H) is a simple process. Therefore, in
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order to establish (95) for a general integrand Ψ ∈ L2
Q

1/2
1 (U),T

(H), it suffices

to show that both sides of (95) are continuous linear functions of Ψ from
L2
Q

1/2
1 (U),T

(H) → L2(Ω × [0, T ];H). This is clearly true of the right-hand

side of (95) because

E
∫ T

0

∣∣∣
∫
U

f P̂
Ψ (s, u) dν(u)

∣∣∣2
H

ds ≤ ν(U)E
∫ T

0

∫
U

|f P̂
Ψ (s, u)|2H dν(u) ds

= ν(U)E
∫ T

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

ds,

by the Cauchy-Schwarz inequality and (51). For the left-hand side of (95), let
Ψ ∈ L2

Q
1/2
1 (U),T

(H) and use (98) to obtain

E
∫ T

0
|hP (Ψ (s))|2H ds ≤ ν(U)E

∫ T

0
||Ψ (s)||2

L2(Q
1/2
1 (U),H)

.

This shows that both sides of (95) are continuous mappings of Ψ from the space
L2
Q

1/2
1 (U),T

(H) to the space L2(Ω × [0, T ];H), so (95) follows from (94) by

continuity.
iv) We have observed in the proof of part iii) that the left-hand side of (96) is a

continuous linear map of Ψ from L2
Q

1/2
1 (U),T

(H)→ L2(Ω×[0, T ];H). Equa-

tion (96) is just a restatement of this fact combined with (94). We have already
observed in the proof of Proposition 6.8 that Ψ �→ ∫ t

0

∫
U
f P̂
Ψ (s, u) dν(u) ds

is a continuous linear map from L2
Q

1/2
1 (U),T

(H) to L2(Ω;H). Equation (97)

is just a restatement of this fact combined with (94). Finally, if Ψn → Ψ in
L2(Q

1/2
1 (U),H), dP⊗ dt-a.e., then we have

hP (Ψ (s)) = lim
n→∞ hP (Ψn(s)),

in H , dP ⊗ dt-a.e., because hP is continuous. Because of (94) and (95), the
equation above says exactly that the convergence (96) holds in H , dP⊗ dt-a.e.

��
According to (94) and (95), it is natural to interpret Ψ (s)(EP(1)), which appears

on the right-hand side of (90), as

Ψ (s)(EP(1)) := hP (Ψ (s)) =
∫
U

f P̂
Ψ (s, u) dν(u), (99)
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for each s ∈ [0, T ] and Ψ ∈ L2
Q

1/2
1 (U),T

(H). Since hP ◦ Ψ ∈ L2(Ω × [0, T ];H)

for Ψ ∈ L2
Q

1/2
1 (U),T

(H) by part iii) of Proposition 6.11, we see that hP ◦ Ψ ∈
L1([0, T ];H), P-a.s. Therefore, the natural interpretation (99) of the expression
Ψ (s)(EP(1)) also gives a well-defined meaning to the integral

∫ t

0 Ψ (s)(EP(1)) ds
as

∫ t

0
Ψ (s)(EP(1)) ds :=

∫ t

0
hP (Ψ (s)) ds =

∫ t

0

∫
U

f P̂
Ψ (s, u) dν(u) ds.

When we adopt (99) to interpret the right-hand side of (90), we see that the
definition (90) agrees with our definition (87) because of (88).

6.2 Integration with Respect to a Compound Poisson Process

In this section we develop a notion of stochastic integration with respect to a
general (not necessarily square-integrable) compound Poisson process P . When P

is not square-integrable, new difficulties arise when attempting to define stochastic
integration with respect to P , which we alluded to above. First, because the
compensated compound Poisson process P̂ cannot be defined, neither can the space
L2
Q

1/2
1 (U),T

(H) nor the map f P̂ . Thus, stochastic integration with respect to a non-

square-integrable compound Poisson process P cannot be defined in such a simple
way as (87) or using the related formulas (88) or (90). Second, since the space
L2
Q

1/2
1 (U),T

(H) cannot be defined, one must look elsewhere for a natural space

of integrands for stochastic integration with respect to P . Peszat and Zabczyk
handle these difficulties using localization. We sketch the argument next, then give
a detailed and rigorous treatment in the remainder of this section.

Up until the time that the jumps of P leave the ball B(0,m) ⊂ U , denoted
τm, P agrees with the square-integrable compound Poisson process Pm formed
by taking from P only the jumps that lie in B(0,m). For this reason it makes
sense to use the stochastic integral

∫ t

0 Ψ (s) dPm(s), as defined in (87), as the
definition of

∫ t

0 Ψ (s) dP(s) on the event {t < τm}. The expression
∫ t

0 Ψ (s) dPm(s)

makes sense when Ψ ∈ L2
Um

0 ,T
(H), where Um

0 := Q
1/2
m (U) and Qm denotes the

covariance operator of Pm. So, given a function Ψ from Ω × [0, T ] to the space of
(possibly unbounded) linear operators from U to H , we have a way to define the
stochastic integral

∫ t

0 Ψ (s) dP(s) on the event {t < τm} for every m such that Ψ
can be viewed as an element of L2

Um
0 ,T

(H). This is the condition that Peszat and

Zabczyk use on page 125 in hypothesis (H3) to describe integrands for stochastic
integration with respect to a compound Poisson process. While Peszat and Zabczyk
stop the discussion of integrands here, we would like to capture this description
of integrands in the definition of a topological vector space that will play the role
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of the space of integrands for stochastic integration with respect to P . Our aim in
this section is to expound on the notion of stochastic integration with respect to
P by localization as presented by Peszat and Zabczyk and to answer Questions 6.1
and 6.2. We define an explicit Fréchet space of integrands in which simple processes
are naturally represented as a dense subspace, define the stochastic integral with
respect to P and show that our notion agrees with the stochastic integral constructed
by localization by Peszat and Zabczyk. We go on to answer Question 6.5 and the
additional Questions 6.6, 6.4 and 6.3.

We begin by laying out the notation in the localization argument explicitly. Let U
be a real, separable Hilbert space, let μ be a finite Borel measure on U with μ({0}) =
0 and suppose that P is a U -valued compound Poisson process with Lévy measure
μ (see Definition 2.9) defined on a filtered probability space (Ω,F , (Ft )t≥0,P).
In the remainder of this section we assume that the filtration is complete and right-
continuous and that P is an Ft -compound Poisson process. It is always possible
to construct such a filtration (see Remark 3.2). We do not necessarily assume that∫
U
|y|2U dμ(y) < ∞ or that

∫
U
|y|U dμ(y) < ∞, so that P may not be square-

integrable or even integrable. By Theorem 2.10 there exists a Poisson process Π

with rate μ(U) (see Definition 2.6) and i.i.d. U -valued random variables
(
Zj

)∞
j=1

with law 1
μ(U)

μ, which are independent of Π , such that

P(t) =
Π(t)∑
j=1

Zj . (100)

For each positive integer m define the random variable

τm := inf{t > 0 : |ΔP(t)|U ≥ m} ∧ T , (101)

and the U -valued process

Pm(t) :=
Π(t)∑
j=1

ZjχBm(Zj), (102)

where Bm := B(0,m) denotes the open ball of radius m centered at 0 in U . We
gather facts about τm and Pm below. Part ii) of the following Lemma 6.12 is stated
as Lemma 8.18 in [15] but the proof there does not seem best, so we include here
an alternative one.

Lemma 6.12 Suppose that P is a U -valuedFt -compound Poisson process. Then

i) each τm is an Ft -stopping time,
ii) P-a.s., there exists an M = M(ω) ∈ N such that τm = T for all m ≥ M .

iii) Pm is an Ft -compound Poisson process on U with Lévy measure μ|Bm . In
particular, Pm is square-integrable and its covariance operator, denoted Qm,
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is given by

(Qmx, y)u =
∫
Bm

(u, x)U (u, y)U dμ(u). (103)

Proof i) Since {τm ≤ t} = ⋂ s>t
s∈Q{τm < s} and the filtration is right-continuous it

suffices to show that {τm < s} ∈ Fs for every s > 0. For s ≤ T we have

{τm < s} = { inf{s′ > 0 : |ΔP(s′)|U ≥ m} < s
}

=
⋂
ε>0
ε∈Q

⋃
0≤q1<q2<s
q2−q1<ε
q1,q2∈Q

{|P(q2)− P(q1)|U ≥ m− ε}. (104)

The union in (104) belongs to Fs for each ε > 0, so the intersection belongs to
Fs . This shows that τm is an Ft -stopping time.

ii) Let
(
Tj
)∞
j=1 be the jump times of P . Since μ is a finite measure, P has

finitely many jumps in each compact interval, P-a.s. Therefore, we may assume
that Tj < Tj+1 for all j and we have Tj ↑ ∞, P-a.s. It is clear that the
Poisson process Π and jumps

(
Zj

)∞
j=1 satisfy Π(t) = ∑∞

j=1 χ[0,t ](Tj ) and

Zj = ΔP(Tj ) (the value of the j th jump of P ). Since τm ≤ τm+1 a.s. it suffices
to show that

P
( ∞⋂
k=1

∞⋃
m=1

{τm ≥ Tk ∧ T }
)
= 1.

That is, we must show that P
(⋃∞

m=1{τm ≥ Tk∧T }) = 1 for each fixed positive
integer k. Since τm ≤ τm+1 we have

P
( ∞⋃
m=1

{τm ≥ Tk ∧ T }
)
= lim

m→∞P[τm ≥ Tk ∧ T ]

by continuity from below. To compute the limit observe that

P[Z1 ∈ Bm, · · · , Zk ∈ Bm] ≤ P[τm ≥ Tk] ≤ P[τm ≥ Tk ∧ T ].

Since
(
Zj

)∞
j=1 are i.i.d. with law 1

μ(U)
μ we get

(μ(Bm)

μ(U)

)k ≤ P[τm ≥ Tk ∧ T ].

The left-hand side of the equation above tends to 1 as m→∞ because Bm ↑ U .
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iii) We cannot apply Theorem 2.10 directly to the sum Pm(t) =∑Π(t)
j=1 ZjχBm(Zj )

because although the random variables
(
ZjχBm(Zj)

)∞
j=1 are i.i.d., they are 0

with probability μ(Bc
m)/μ(U) > 0. In Theorem 2.10 the summands must

be nonzero a.s. For this reason we consider a related process with the same
distribution as Pm(t). We have

Pm(t)
D=

Πm(t)∑
j=1

Ym
j ,

where the
(
Ym
j

)∞
j=1 are independent, Ym

j has the distribution of Zj conditioned
on Zj ∈ Bm, Πm is a Poisson process with intensity μ(Bm) and is independent
of
(
Ym
j

)∞
j=1. This is intuitively clear because the nonzero terms in Pm(t) occur

at the arrival times of Π for which ΔP ∈ Bm. These arrival times occur
with probability P[Z1 ∈ Bm] = μ(Bm)/μ(U). Hence, selecting these arrival
times forms a Poisson process with intensity μ(Bm). In addition, at these
times, the jumps of P have the distribution of Zj conditioned on Zj ∈ Bm.
A rigorous argument can be made by conditioning Pm(t) on the number of
nonzero terms in the sum on the right-hand side of (102). It is clear that the
law of Ym

j is 1
μ(Bm)

μ|Bm . By Theorem 2.10,
∑Πm(t)

j=1 Ym
j is a compound Poisson

process with Lévy measure μ|Bm , so the same is true for Pm. The fact that Pm

is square-integrable follows from Proposition 2.11 because
∫
Bm
|u|2 dμ(u) ≤

m2μ(Bm) < ∞. The fact that the covariance operator of Pm is given by (103)
follows from Proposition 4.18 of [15], as mentioned in Proposition 5.12.
Finally, the fact that Pm is an Ft -Lévy process follows from Corollary 5.4,
which says that the difference P −Pm is an Ft -compound Poisson process. ��

Below we list general notations that will be used to define the space of integrands
for stochastic integration with respect to a compound Poisson process P . Note that
for each positive integer m the compensated compound Poisson process P̂m satisfies
Assumption 3.3 with respect to the same filtration (Ft )t≥0.

Notation For each positive integer m let Um
0 := Q

1/2
m (U), so that the space of

integrands for stochastic integration with respect to the square-integrable compen-
sated compound Poisson process P̂m is L2

Um
0 ,T

(H). We will use the same filtration

(Ft )t≥0 to define the space of integrands L2
Um

0 ,T
(H) for stochastic integration with

respect to P̂m for each m. Recall the notation I
P̂m
t : L2

Um
0 ,T

(H)→ L2(Ω;H) for the

stochastic integration map. From equation (103) we see that

((Qm+1 −Qm)x, x)U =
∫
Bm+1\Bm

| (u, x)U |2 dμ(u) ≥ 0,
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for all x ∈ U , and hence Qm ≤ Qm+1. We denote by ιm : L2
Um+1

0 ,T
(H) →

L2
Um

0 ,T
(H) the unique continuous, linear extension of the identity map on S (U,H)

that exists by Lemma 5.5.

As mentioned above, we would like to define the space of integrands for
stochastic integration with respect to P to capture the property that an integrand
Ψ can be viewed as an element of L2

Um
0 ,T

(H) for every m. In view of the structure

L2
U1

0 ,T
(H)

ι1←− L2
U2

0 ,T
(H)

ι2←− L2
U3

0 ,T
(H)

ι3←− · · · ,

it is natural to define the space of integrands for stochastic integration with respect
P as a certain projective limit of the Hilbert spaces L2

Um
0 ,T

(H). We recall the notion

of projective limit below and give basic properties.

Definition 6.13 Let (Xm)
∞
m=1 be a sequence of real Banach spaces equipped with

continuous linear maps φm : Xm+1 → Xm. The projective limit (or inverse limit) of
the sequence (Xm, φm)

∞
m=1 is the subspace

lim←− φmXm :=
{
x = (xm)

∞
m=1 ∈

∞∏
m=1

Xm : xm = φm(xm+1) for all m
}

of the Cartesian product
∏∞

m=1 Xm (see, e.g., [8] or [18]). The projective limit
lim←− φmXm is a Fréchet space under the product topology, which is clearly generated

by the seminorms pm(x) := ||xm||Xm
.

With this notion in hand we are prepared to answer Question 6.1. We define the
space of integrands for stochastic integration with respect to a compound Poisson
process P as

LP,T (H) :=
{
Ψ= (Ψm)

∞
m=1 ∈

∞∏
m=1

L2
Um

0 ,T (H) : Ψm = χ[0,τm]ιm(Ψm+1) for all m
}
,

(105)

i.e., LP,T (H) is the projective limit of the sequence
(
L2
Um

0 ,T
(H), φm

)∞
m=1, where

φm : L2
Um+1

0 ,T
(H)→ L2

Um
0 ,T

(H) is defined by

φm(Φ) := χ[0,τm]ιm(Φ), for all Φ ∈ L2
Um+1

0 ,T
(H). (106)

Lemmas 3.15 and 5.5 show that each φm is a continuous linear map with norm less
than or equal to 1. In Proposition 6.14 below we answer Question 6.2 affirmatively
by representing simple processes as a dense subspace of LP,T (H). After that we
define the stochastic integral as a continuous linear map on LP,T (H).
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Proposition 6.14 Define a map ϑ : S (U,H)→ ∏∞
m=1 L2

Um
0 ,T

(H) by

ϑ(Φ) := (χ[0,τm]Φ)∞m=1 . (107)

Then

i) ϑ is linear and one-to-one,
ii) the range of ϑ is a dense subspace of LP,T (H).

Proof i) It is clear that ϑ is linear. Suppose that ϑ(Φ) = 0 for some Φ ∈
S (U,H), i.e., that χ[0,τm]Φ = 0 in L2

Um
0 ,T

(H) for every positive integer m.

By Lemma 6.12 this means that, a.s., Φ = 0 for all time. So ϑ is injective when
we identify elements of S (U,H) that agree dP⊗ dt-a.e.

ii) First, we must show that ϑ(Φ) ∈ LP,T (H) for every Φ ∈ S (U,H). For every
positive integer m we have

χ[0,τm]ιm(ϑ(Φ)m+1) = χ[0,τm]ιm(χ[0,τm+1]Φ) = χ[0,τm] ·χ[0,τm+1]ιm(Φ) = χ[0,τm]Φ.

The second equality above is obtained using the fact that ιm commutes with
multiplication by χ[0,τm+1]. This is an application of Lemma 6.15 below. Next,
we must show that the range of ϑ is dense in the space LP,T (H). Since the map
φk in (106) has norm at most 1 we see that for every Ψ ∈ LP,T (H) one has

||Ψk||L2
Uk

0 ,T
(H) = ||φk(Ψk+1)||L2

Uk
0 ,T

(H) ≤ ||Ψk+1||L2
U
k+1
0 ,T

(H) . (108)

By induction we have

||Ψk||L2
Uk

0 ,T
(H) ≤ ||Ψm||L2

Um
0 ,T

(H) ,

for all k ≤ m. Now let Ψ ∈ LP,T (H) and Φ ∈ S (U,H) and apply this
inequality to the difference ϑ(Φ)− Ψ to see that

∣∣∣∣χ[0,τk]Φ − Ψk

∣∣∣∣
L2
Uk

0 ,T
(H)

≤ ∣∣∣∣χ[0,τm]Φ − Ψm

∣∣∣∣
L2
Um

0 ,T
(H)

, (109)

for all k ≤ m. Fix Ψ ∈ LP,T (H). For each positive integer m we can use
Lemma 3.11 to select a simple process Φm ∈ S (U,H) with the property that

||Φm − ιm(Ψm+1)||2L2
Um

0 ,T
(H)

<
1

m

Since Ψm = χ[0,τm]ιm(Ψm+1) we see that

∣∣∣∣χ[0,τm]Φm − Ψm

∣∣∣∣2
L2
Um

0 ,T
(H)

≤ ||Φm − ιm(Ψm+1)||2L2
Um

0 ,T
(H)

<
1

m
. (110)
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We claim that (ϑ(Φm))
∞
m=1 converges to Ψ in the space LP,T (H). This is

equivalent to showing that for each fixed positive integer k we have ϑ(Φm)k →
Ψk in L2

Uk
0 ,T

(H) as m→∞. By (109) and (110) we have

||ϑ(Φm)k − Ψk||L2
Uk

0 ,T
(H) =

∣∣∣∣χ[0,τk]Φm − Ψk

∣∣∣∣
L2
Uk

0 ,T
(H)

≤ ∣∣∣∣χ[0,τm]Φm − Ψm

∣∣∣∣
L2
Um

0 ,T
(H)

<
1

m

for all m ≥ k, so ϑ(Φm)k → Ψk in L2
Uk

0 ,T
(H). ��

Lemma 6.15 Let (Ω,F , (Ft )t≥0,P) be a filtered probability space, let U and
H be separable Hilbert spaces, let Q1,Q2 ∈ L+1 (U) with Q1 ≤ Q2 and, as
in Lemma 5.5, let ι : L2

Q
1/2
2 (U),T

(H) → L2
Q

1/2
1 (U),T

(H) denote the continuous

extension of the identity map on S (U,H). Suppose that τ is an Ft -stopping time
with P[τ ≤ T ] = 1. Then for every Ψ ∈ L2

Q
1/2
2 (U),T

(H) we have

ι(χ[0,τ ]Ψ ) = χ[0,τ ]ι(Ψ ) (111)

in the space L2
Q

1/2
1 (U),T

(H).

Proof Since both sides of (111) are continuous functions of Ψ on L2
Q

1/2
2 (U),T

(H)

it suffices to assume that Ψ ∈ S (U,H). First, assume that τ takes finitely many
values a.s. In this case, we have χ[0,τ ]Ψ ∈ S (U,H) by Lemma 3.15, so (111) holds
because ι is the identity operator on S (U,H). Now we allow the possibility that τ
takes infinitely many values with positive probability. As in the proof of Lemma 3.15
there exists a sequence of stopping times (τn)∞n=1 such that τn ≤ T a.s., τn ↓ τ , and
each τn has finitely many values a.s. By Lemma 3.15 we have

χ[0,τn]Ψ → χ[0,τ ]Ψ in the space L2
Q

1/2
2 (U),T

(H)

and

χ[0,τn]ι(Ψ )→ χ[0,τ ]ι(Ψ ) in the space L2
Q

1/2
1 (U),T

(H).

Since ι is continuous we find that

ι(χ[0,τ ]Ψ ) = lim
n→∞ ι(χ[0,τn]Ψ ) = lim

n→∞χ[0,τn]ι(Ψ ) = χ[0,τ ]ι(Ψ )

where each limit is taken in the space L2
Q

1/2
1 (U),T

(H). ��
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We introduce and recall more notations in preparation for defining stochas-
tic integration on the space LP,T (H). We will denote the Lévy measure of
Pm by μm := μ|Bm . Recall from Proposition 5.7 that we have the isometry

f P̂m : L2
Um

0 ,T
(H)→ F2

μm,T (H). For fixed t ∈ [0, T ) define the space

Y (t) := {ψ ∈
∞∏

m=1

L2(Ω,Ft ,P;H) : ψm = χ{t<τm} · ψm+1},

i.e., Y (t) is the projective limit of
(
L2(Ω,Ft ,P;H), η

(t)
m

)∞
m=1, where for each

positive integer m, η(t)m : L2(Ω,Ft ,P;H) → L2(Ω,Ft ,P;H) is the continuous
linear map defined by

η(t)m (ψ) := χ{t<τm} · ψ, for all ψ ∈ L2(Ω,Ft ,P;H).

Define a map IPt : LP,T (H) → ∏∞
m=1 L

2(Ω,Ft ,P;H) by sending each Ψ ∈
LP,T (H) to the sequence

IPt (Ψ ) :=
(
χ{t<τm}

∫ t

0
Ψm(s) dPm(s)

)∞
m=1

,

where in each coordinate
∫ t

0 Ψm(s) dPm(s) is the stochastic integral of the process
Ψm ∈ L2

Um
0 ,T

(H) with respect to the square-integrable compound Poisson process

Pm as defined in (87) and given by the equivalent expression (88). We will establish
some lemmas in preparation for showing that IPt maps into the subspace Y (t).

Lemma 6.16 Let P be a square-integrable Ft -compound Poisson process on U

with Lévy measure ν, covariance operator Q1 and jump measure π . Let τ be an
Ft -stopping time such that P[τ ≤ T ] = 1. Then for every Ψ ∈ L2

Q
1/2
1 (U),T

(H) we

have

i)

f P̂
χ[0,τ ]Ψ = χ[0,τ ]f P̂

Ψ (112)

in the space F2
ν,T (H) and

ii) for all t ∈ [0, T ] we have

∑
s∈(0,t ]

f P̂
χ[0,τ ]Ψ (s,ΔP(s)) =

∑
s∈(0,t∧τ ]

f P̂
Ψ (s,ΔP(s)), (113)

∫ t

0
χ[0,τ ]Ψ (s) dP(s) =

∫ t∧τ

0
Ψ (s) dP(s). (114)
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Proof The proof requires some care due to the fact that χ[0,τ ]Ψ is not necessarily
a simple process for every Ψ ∈ S (U,H). As usual, this difficulty is handled by
approximating τ with stopping times that take finitely many values a.s.

i) First, assume that τ has finitely many values a.s. In this case, for every Ψ ∈
S (U,H) the process χ(τ,T ]Ψ is also simple by part ii) of Lemma 3.15 and it is
clear that

f P̂
χ(τ,T ]Ψ (s, u) = χ(τ,T ](s)Ψ (s)u = f P̂

Ψ (s, u)− χ[0,τ ]f P̂
Ψ (s, u).

Rearranging this equality gives i) for simple processes. Next, we allow τ

to attain infinitely many values with positive probability. As in the proof of
Lemma 3.15, there exists a sequence of stopping times (τn)∞n=1 such that τn ≤ T

a.s., τn ↓ τ , and each τn has finitely many values a.s. By Lemma 3.15 we have
χ[0,τn]Ψ → χ[0,τ ]Ψ in the space L2

Q
1/2
1 (U),T

(H). This means that

f P̂
χ[0,τn]Ψ → f P̂

χ[0,τ ]Ψ

in F2
ν,T (H) because f P̂ is continuous. On the other hand, since f P̂

Ψ ∈ F2
ν,T (H)

the dominated convergence theorem implies that χ[0,τn]f P̂
Ψ → χ[0,τ ]f P̂

Ψ in
F2
ν,T (H). We conclude that i) holds for all Ψ ∈ S (U,H). Finally, both sides

of equation i) are continuous functions of Ψ from L2
Q

1/2
1 (U),T

(H)→ F2
ν,T (H),

so i) holds for all Ψ ∈ L2
Q

1/2
1 (U),T

(H).

ii) Fix Ψ ∈ L2
Q

1/2
1 (U),T

(H) and t ∈ [0, T ]. Since F2
ν,T (H) ⊆ F1

ν,T (H) (on account

of ν(U) < ∞), equation (112) continues to hold in the space F1
ν,T (H). As a

result,

∑
s∈(0,t ]

f P̂
χ[0,τ ]Ψ (s,ΔP(s)) =

∫
(0,t ]

∫
U

f P̂
χ[0,τ ]Ψ (s, u) dπ(s, u)

=
∫
(0,t ]

∫
U

χ[0,τ ](s)f P̂
Ψ (s, u) dπ(s, u)

=
∫
(0,t∧τ ]

∫
U

f P̂
Ψ (s, u) dπ(s, u)

=
∑

s∈(0,t∧τ ]
f P̂
Ψ (s,ΔP(s)),

which is (113). By definition (87), equation (114) is equivalent to (113). ��
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Remark 6.17 We did not use the fact that compound Poisson processes have finite
Lévy measures in the proof of part i) in Lemma 6.16. The same argument shows that
equation (112) remains true when the square-integrable compensated compound
Poisson process P̂ is replaced by a square-integrable Ft -Lévy process L whose
covariance operator satisfies condition (49). That is, equation (112) holds whenever
the map fL can be defined.

We are now ready to show that the range of IPt is contained in the subspace Y (t)

(cf. Lemma 8.19 in [15]).

Proposition 6.18 Let P be a U -valued Ft -compound Poisson process (not neces-
sarily square-integrable). For each t ∈ [0, T ), IPt is linear, continuous and its range
is contained in Y (t), i.e., for every Ψ ∈ LP,T (H) and all positive integers m ≤ n

we have

∫ t

0
Ψm(s) dPm(s) =

∫ t

0
Ψn(s) dPn(s), (115)

in H , P-a.s. on the event {t < τm}.
Proof Linearity and continuity of IPt are clear because each coordinate function
of IPt is linear and continuous from LP,T (H) → L2(Ω,Ft ,P;H). Fix Ψ =
(Ψm)

∞
m=1 ∈ LP,T (H). In order to show that IPt (Ψ ) ∈ Y (t), it is necessary and

sufficient to show that

χ{t<τm}
∫ t

0
Ψm(s) dPm(s) = χ{t<τm}

(
χ{t<τm+1}

∫ t

0
Ψm+1(s) dPm+1(s)

)
, (116)

in the space L2(Ω;H) for every positive integer m. It is easy to see that this is
equivalent to (115). In order to compute the left-hand side (116) we recall that

∫ t

0
Ψm(s) dPm(s) =

∑
s∈(0,t ]

f
P̂m

Ψm
(s,ΔPm(s)),

from (87) and Ψm = χ[0,τm]ιm(Ψm+1) because Ψ ∈ LP,T (H). Using Lemmas 5.10
and 6.16 we see that

∫ t

0
Ψm(s) dPm(s) =

∑
s∈(0,t∧τm]

f
P̂m

ιm(Ψm+1)
(s,ΔPm(s))

=
∑

s∈(0,t∧τm]
f
P̂m+1
Ψm+1

(s,ΔPm(s))

in H , P-a.s. It is clear that P[Pm(s) = Pm+1(s) for all s ∈ [0, t] | t < τm] = 1, in
particular, when t < τm, all of the jumps of Pm+1 that occur in (0, t] lie in the ball
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Bm. Therefore,

∫ t

0
Ψm(s) dPm(s) =

∑
s∈(0,t ]

f
P̂m+1
Ψm+1

(s,ΔPm+1(s)) =
∫ t

0
Ψm+1(s) dPm+1(s)

on the event {t < τm}. This proves (116) and (115) follows by induction. ��
Corollary 6.19 Let P be a U -valued Ft -compound Poisson process (not neces-
sarily square-integrable). Then for every Ψ ∈ LP,T (H) and every t ∈ [0, T ), the
sequence IPt (Ψ ) ∈ Y (t) converges P-a.s. to an Ft -measurable, H -valued random
variable.

Proof Fix t ∈ [0, T ) and Ψ ∈ LP,T (H). With probability one, there exists a
positive integer m such that t < τm by Lemma 6.12. By Proposition 6.18 we
have (IPt (Ψ ))n =

∫ t

0 Ψm(s) dPm(s), P-a.s., for all n ≥ m. So lim
m→∞(IPt (Ψ ))m

exists in H , P-a.s., and the limit is Ft -measurable because each (IPt (Ψ ))m is Ft -
measurable. ��

We can now use the map IPt : LP,T (H) → Y (t) and Corollary 6.19 to define
the stochastic integral of each Ψ ∈ LP,T (H) with respect to a compound Poisson
process P as an adapted H -valued stochastic process.

Definition 6.20 Let P be a U -valued Ft -compound Poisson process (not necessar-
ily square-integrable) and let Ψ ∈ LP,T (H). We define the stochastic integral of Ψ
with respect to P as

∫ t

0
Ψ (s) dP(s) := lim

m→∞(IPt (Ψ ))m = lim
m→∞

∫ t

0
Ψm(s) dPm(s). (117)

By Corollary 6.19, the limit exists and is Ft -measurable. Furthermore, the limit
stabilizes, P-a.s., at the value

∫ t

0 Ψm(s) dPm(s) for any m such that t < τm.
Thus,

∫ t

0 Ψ (s) dP(s) is a sum of finitely many vectors in H P-a.s., which answers
Question 6.4 affirmatively, and

∫ t

0 Ψ (s) dP(s) is a càdlàg pure-jump process as a
function of t .

Remark 6.21 Our definition of stochastic integration with respect to a compound
Poisson process P in (117) agrees with the process constructed by localization
by Peszat and Zabczyk for stochastic integration with respect to P . Indeed, the
processes considered by Peszat and Zabczyk that satisfy hypothesis (H3) on page
125 of [15] belong to the space LP,T (H). The stochastic integral presented by
Peszat and Zabczyk that is constructed by localization is defined, as is ours, to agree
with

∫ t

0 Ψm(s) dPm(s) for every m such that t < τm.

The next result is a partial affirmative answer to Question 6.6. We show that
the stochastic integral of (the natural image of) a simple process Ψ with respect
to a compound Poisson process P in the sense of Definition 6.20 agrees with the
pathwise Riemann-Stieltjes integral of Ψ with respect to P .
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Lemma 6.22 Let P be a U -valued Ft -compound Poisson process (not necessarily
square-integrable). For every Ψ ∈ S (U,H) and t ∈ [0, T ), we have

∫ t

0
ϑ(Ψ )(s) dP(s) =

∑
s∈(0,t ]

Ψ (s)ΔP(s) P-a.s. (118)

Furthermore, the right-hand side of (118) is a sum of finitely many vectors in H a.s.

Proof Let Ψ ∈ S (U,H) and let t ∈ [0, T ). For each positive integer m we have

∫ t

0
χ[0,τm](s)Ψ (s) dPm(s) =

∫ t∧τm

0
Ψ (s) dPm(s)

by (88) and part iv) of Lemma 3.15. On the event {t < τm} we have P(s) = Pm(s)

for all s ∈ [0, t], so

∫ t

0
χ[0,τm](s)Ψ (s) dPm(s) =

∫ t

0
Ψ (s) dPm(s) =

∑
s∈(0,t ]

Ψ (s)ΔPm(s) =
∑

s∈(0,t ]
Ψ (s)ΔP(s),

by (87). This shows that the limit in (117) stabilizes at
∑

s∈(0,t ]Ψ (s)ΔP(s),
so (118) holds. Since P has finitely many jumps in [0, t], P-a.s., the right-hand
side of (118) is a sum of finitely many vectors in H a.s. ��
Corollary 6.23 Let P be a U -valued Ft -compound Poisson process (not necessar-
ily square-integrable). For every Ψ ∈ S (U,H) and t ∈ [0, T ), we have

∫ t

0
ϑ(Ψ )(s) dP(s) =

∫
s∈(0,t ]

∫
U

Ψ (s)u dπ(u, s), (119)

where π is the jump measure of P .

Proof Combine Lemma 6.22 with the definition of the jump measure π :=∑
s∈(0,t ]

ΔP(s) �=0

δ(s,ΔP(s)). ��

The use of projective limits to define the space of integrands LP,T (H) and the
space Y (t) where the stochastic integration map IPt takes values is merely a way
to organize the localization construction of the stochastic integral with respect to
P presented by Peszat and Zabczyk. We feel that the localization construction fits
naturally into the setting of projective limits. The use of projective limits provides
the additional desirable features of an explicit space of integrands, LP,T (H), that
naturally includes S (U,H) as the dense subspace ϑ(S (U,H)) and an explicit
continuous linear operator IPt that serves as stochastic integration with respect to P .

Our next goal in this section addresses Question 6.3 by relating the notion of
stochastic integration with respect to P as defined in Definition 6.20 with the notion
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of stochastic integration with respect to the jump measure π of P . We will show
that for every Ψ ∈ LP,T (H) there exists a P[0,T ] ⊗ B(U)-measurable function
f P
Ψ : Ω × [0, T ] × U → H such that

∫ t

0
Ψ (s) dP(s) =

∫ t

0

∫
U

f P
Ψ (s, u) dπ(s, u) =

∑
s∈(0,t ]

f P
Ψ (s,ΔP(s)), (120)

P-a.s., for each t ∈ [0, T ] (note that the right-hand side of (120) is a sum of
finitely many vectors in H a.s.). This endeavor is motivated by related results
in the case where P is square-integrable, namely (56) in Proposition 5.12, (58)
in Proposition 5.14 and the initial definition (87) of stochastic integration with
respect to a square-integrable compound Poisson process. Note that (120) has
already been established for simple processes in (118) of Lemma 6.22 and (119)
in Corollary 6.23. In this case the integrand on the left-hand side of (120) has the
form Ψ = ϑ(Φ) for some Φ ∈ S (U,H) and the function f P

Ψ on the right-hand
side of (120) is given by f P

Ψ (s, u) = Φ(s)u. This is extended in the next result,
which gives a complete and affirmative answer to Question 6.3.

Proposition 6.24 Let P be a U -valued Ft -compound Poisson process (not neces-
sarily square-integrable). Assume P has Lévy measure ν and jump measure π . Then

for every Ψ = (Ψm)
∞
m=1 ∈ LP,T (H) the sequence

(
f
P̂m

Ψm

)∞
m=1 converges pointwise

in H , dP⊗ dt ⊗ dν-a.e. on Ω × [0, T ] ×U . Denote the limit by f P
Ψ := lim

m→∞ f
P̂m

Ψm
.

For every t ∈ [0, T ) we have

∫ t

0
Ψ (s) dP(s) =

∫ t

0

∫
U

f P
Ψ (s, u) dπ(s, u) =

∑
s∈(0,t ]

f P
Ψ (s,ΔP(s)) (121)

and the right-hand side of (121) is a sum of finitely many vectors in H a.s.

Proof Let Ψ = (Ψm)
∞
m=1 ∈ LP,T (H). By Lemmas 6.16 and 5.10 we see that

f
P̂m

Ψm
= χ[0,τm]f

P̂m

ιm(Ψm+1)
= χ[0,τm]f

P̂m+1
Ψm+1

,

dP⊗dt⊗dν-a.e. on Ω×[0, T ]×Bm. Since τm ↑ T a.s. by Lemma 6.12 it follows

that the limit f P
Ψ := lim

m→∞ f
P̂m

Ψm
exists in H , dP ⊗ dt ⊗ dν-a.e. Furthermore, for

dt ⊗ dν-a.e. (s, u) ∈ [0, T ) × U , the limit stabilizes a.s. for all m large enough so
that s < τm and u ∈ Bm. Using (117) in Definition 6.20 and (87) in Definition 6.7
we see that

∫ t

0
Ψ (s) dP(s) = lim

m→∞

∫ t

0
Ψm(s) dPm(s) = lim

m→∞
∑

s∈(0,t ]
f
P̂m

Ψm
(s,ΔPm(s)).
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Since Pm(s) = P(s) and ΔP(s) ∈ Bm a.s. for all s ∈ [0, t] on the event {t < τm}
we find that

∫ t

0
Ψ (s) dP(s) = lim

m→∞
∑

s∈(0,t ]
f
P̂m

Ψm
(s,ΔP(s)) =

∑
s∈(0,t ]

f P
Ψ (s,ΔP(s)).

We can pass to the limit inside the sum in the last step because P has finitely many
jumps in [0, T ] a.s. ��
Remark 6.25 Proposition 6.24 shows that the construction of the stochastic integral
with respect to an Ft -compound Poisson process P by localization as presented
by Peszat and Zabczyk is a special case of stochastic integration with respect to the
Poisson random measure of a stationary Ft -Poisson point process, namely the jump
measure π of P . As seen in Remark 6.21, the left-hand side of (121) agrees with
Peszat and Zabczyk’s construction of integration with respect to P by localization
and the right-hand side of (121) is an integral with respect to the jump measure of
P .

Using Proposition 6.24 we can immediately identify the jumps of a stochastic
integral with respect to a compound Poisson process P (cf. Corollaries 5.13
and 5.16). This answers Question 6.5.

Corollary 6.26 Let P be a U -valued Ft -compound Poisson process (not necessar-
ily square-integrable). For every t ∈ [0, T ] and Ψ ∈ LP,T (H) we have

Δ

∫ t

0
Ψ (s) dP(s) =

{
f P
Ψ (t,ΔP(t)) if ΔP(t) �= 0

0 if ΔP(t) = 0.

Below we show that predictable processes with values in L(U,H) belong to
LP,T (H) and that the stochastic integral of such a process with respect to P agrees
with the pathwise Riemann-Stieltjes integral. This answers Question 6.6 completely
and affirmatively (cf. Proposition 6.14 and Corollary 6.23 for simple processes).

Proposition 6.27 Let P be a U -valued Ft -compound Poisson process (not nec-
essarily square-integrable). Let P have Lévy measure ν, jump measure π and
covariance operator Q. For every process Ψ ∈ L2(Ω × [0, T ],P[0,T ], dP ⊗
dt;L(U,H)) the sequence α(Ψ ) := (χ[0,τm]Ψ )∞m=1 belongs to LP,T (H) and

∫ t

0
α(Ψ ) dP =

∑
s∈(0,t ]

Ψ (s)ΔP(s) =
∫
(0,t ]

∫
U

Ψ (s)u dπ(s, u), (122)

a.s. in H for every t ∈ [0, T ).

Proof Let Ψ ∈ L2(Ω × [0, T ],P[0,T ], dP ⊗ dt;L(U,H)). Recall from
Example 5.9 that Ψ ∈ L2

Um
0 ,T

(H) for every positive integer m, so α(Ψ ) ∈
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∏∞
m=1 L2

Um
0 ,T

(H). Next, since the map ιm has norm less than or equal to 1 we

see that every sequence in S (U,H) that converges to Ψ in the space L2
Um+1

0 ,T
(H)

also converges to Ψ in the space L2
Um

0 ,T
(H). This means that ιm(Ψ ) = Ψ for every

positive integer m. It is now easy to see that α(Ψ ) ∈ LP,T (H). To compute the

stochastic integral
∫ t

0 α(Ψ ) dP we recall from Example 5.9 that f P̂m

Ψ (s, u) = Ψ (s)u

for every positive integer m. Using this and Lemma 6.16 we see that

∫ t

0
α(Ψ ) dP = lim

m→∞

∫ t

0
χ[0,τm](s)Ψ (s) dPm(s)

= lim
m→∞

∫ t

0

∫
U

f
P̂m

χ[0,τm]Ψ (s, u)χBm(u) dπ(s, u)

= lim
m→∞

∫ t∧τm

0

∫
Bm

Ψ (s)u dπ(s, u)

=
∑

s∈(0,t ]
Ψ (s)ΔP(s),

a.s. in H for every t ∈ [0, T ). This proves the first equality in (122) and the second
equality follows from the definition of the jump measure π . ��

6.3 Comparing Two Integrals with Respect to a Compound
Poisson Process

We now have two notions of stochastic integration with respect to square-integrable
compound Poisson processes, namely (87) from Definition 6.7 and (117) from
Definition 6.20. We show below that the new definition in (117) extends the
old definition in (87), so there is no ambiguity about the meaning of stochastic
integration with respect to a square-integrable compound Poisson process. We
introduce some notation to make the statement of this result precise. Let P be
a square-integrable U -valued Ft -compound Poisson with Lévy measure ν. We
continue to assume that the filtration (Ft )t≥0 is complete and right-continuous.
Recall that the covariance operator, say Q, of P is given by equation (49). For
each positive integer m we continue to denote by Bm the open unit ball of radius m
in U , by Pm the compound Poisson process Pm(t) :=∑s∈(0,t ] χBm(ΔP(s))ΔP(s),
by νm := ν|Bm its Lévy measure, by Qm its covariance operator (given by (103))

and Um
0 := Q

1/2
m (U). We will also set U0 := Q1/2(U). For the notion of stochastic

integration in Definition 6.20 we use integrands in the space LP,T (H), while for the
notion in Definition 6.7 use integrands in the space L2

U0,T
(H). In order to show that
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the former extends the latter we must show that L2
U0,T

(H) can be viewed naturally
as a subspace of LP,T (H). We begin by defining the inclusion. For each positive
integer m we have Qm ≤ Q, so by Lemma 5.5 the identity map on S (U,H)

extends uniquely to a continuous linear map βm : L2
U0,T

(H) → L2
Um

0 ,T
(H) with

norm less than or equal to 1. Now we define a map

β : L2
U0,T

(H)→
∞∏

m=1

L2
Um

0 ,T (H) by

β(Ψ ) = (χ[0,τm]βm(Ψ )
)∞
m=1 , for all Ψ ∈ L2

U0,T
(H). (123)

Basic properties of the map β are given below.

Lemma 6.28 In the setup above, the range of β is contained in the subspace
LP,T (H) and β is the unique continuous extension of the map ϑ : S (U,H) →
LP,T (H) defined in Proposition 6.14, where S (U,H) is endowed with the norm it
inherits as a subspace of L2

U0,T
(H).

Proof Fix Ψ ∈ L2
U0,T

(H) and let m be a positive integer. Using Lemma 6.15 we
see that

χ[0,τm]ιm((β(Ψ ))m+1) = χ[0,τm]ιm(χ[0,τm+1]βm+1(Ψ )) = χ[0,τm]ιm(βm+1(Ψ )).

Now observe that the composition ιm ◦ βm+1 : L2
U0,T

(H) → L2
Um

0 ,T
(H) is a

continuous linear extension of the identity map on S (U,H), whence ιm ◦ βm+1 =
βm by uniqueness. This shows that

χ[0,τm]ιm((β(Ψ ))m+1) = χ[0,τm]βm(Ψ ) = (β(Ψ ))m,

for every positive integer m, which is to say that β(Ψ ) ∈ LP,T (H). Continuity of β
is clear because Ψ �→ (β(Ψ ))m is a continuous map from L2

U0,T
(H)→ L2

Um
0 ,T

(H)

for each positive integer m. To show that β extends ϑ we just need to observe that

β(Ψ ) = (χ[0,τm]Ψ )∞m=1 = ϑ(Ψ ) for every Ψ ∈ S (U,H).

Since S (U,H) is dense in L2
U0,T

(H) it follows that β is the unique continuous
extension of ϑ . ��

We are now ready to show that stochastic integration with respect to a square-
integrable Ft -compound Poisson process P , as originally defined in (87) from
Definition 6.7, coincides with the notion of stochastic integration in (117) from
Definition 6.20 on the image of the map β. This is the precise sense in which (117)
extends (87) when P is square-integrable. To avoid confusion we will use the
notation

∫ t

0 β(Ψ ) dP , for Ψ ∈ L2
U0,T

(H), to denote the notion of stochastic
integration from (117) in Definition 6.20 on the image of β. We will denote by



366 J. Cyr et al.

∫ t

0

∫
U
f P̂
Ψ (s, u) dπ(s, u), for Ψ ∈ L2

U0,T
(H), the notion of stochastic integration

from (87) in Definition 6.7.

Proposition 6.29 Let P be a square-integrable U -valued Ft -compound Poisson
process with Lévy measure ν, covariance operator Q and U0 := Q1/2(U). For
every t ∈ [0, T ] and Ψ ∈ L2

U0,T
(H) we have

∫ t

0 β(Ψ ) dP ∈ L2(Ω;H) and

∫ t

0
β(Ψ ) dP =

∫ t

0

∫
U

f P̂
Ψ (s, u) dπ(s, u). (124)

Proof Fix t ∈ [0, T ] and Ψ ∈ L2
U0,T

(H). We begin by showing that
∫ t

0 β(Ψ ) dP ∈
L2(Ω;H). By Fatou’s lemma and inequality (89) we have

E
∣∣∣
∫ t

0
β(Ψ ) dP

∣∣∣2
H
≤ lim inf

m→∞ E
∣∣∣
∫ t

0
χ[0,τm]βm(Ψ )(s) dPm(s)

∣∣∣2
H

≤ 2 lim inf
m→∞ (1+ tνm(U))E

∫ t∧τm

0
||βm(Ψ )(s)||2L2(U

m
0 ,H) ds

≤ 2(1+ tν(U)) lim inf
m→∞ E

∫ T

0
||βm(Ψ )(s)||2L2(U

m
0 ,H) ds

≤ 2(1+ tν(U))E
∫ T

0
||Ψ (s)||2L2(U0,H) ds.

The last line follows because βm : L2
U0,T

(H) → L2
Um

0 ,T
(H) has norm at most 1.

Since P is a compound Poisson process we have ν(U) < ∞, so the estimate
above shows that

∫ t

0 β(Ψ ) dP ∈ L2(Ω;H) and that the map Ψ �→ ∫ t

0 β(Ψ ) dP
is linear and continuous from L2

U0,T
(H) → L2(Ω;H). Since the right-hand side

of (124) is continuous from L2
U0,T

(H)→ L2(Ω;H) (which was shown in the proof
of inequality (89)) it suffices to establish (124) for simple processes. But this has
already been done in Lemma 6.22. Indeed, since β extends ϑ and f P̂

Ψ (s, u) = Ψ (s)u

for Ψ ∈ S (U,H) we have

∫ t

0
β(Ψ ) dP =

∫ t

0
ϑ(Ψ ) dP =

∑
s∈(0,t ]

Ψ (s)ΔP(s) =
∫ t

0

∫
U

f P̂
Ψ (s, u) dπ(s, u),

by (118). It follows by continuity that (124) holds for all Ψ ∈ L2
U0,T

(H). ��
Given a square-integrable compound Poisson process P , it is natural to ask

whether the space of integrands LP,T (H) for the notion of stochastic integration
in Definition 6.20 is strictly larger than the space of integrands L2

Q1/2(U),T
(H) for

the notion of stochastic integration in Definition 6.7. More precisely, it is natural to
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ask when β maps L2
Q1/2(U),T

(H) onto LP,T (H). The more interesting case is, of
course, when β is not surjective. In that case, LP,T (H) is strictly larger than the
space of integrands L2

Q1/2(U),T
(H) and Definition 6.20 strictly extends the notion

of stochastic integration in Definition 6.7. To avoid trivialities in this discussion we
assume that H �= {0}.
Proposition 6.30 Assume that H �= {0}. Suppose that P is a square-integrableFt -
compound Poisson process on U with Lévy measure ν and covariance operator Q.
Set U0 := Q1/2(U) and let β : L2

U0,T
(H)→ LP,T (H) be the map defined in (123).

Then the following statements are equivalent:

i) β maps L2
Q1/2(U),T

(H) onto LP,T (H),

ii) sup
m≥1

||Ψm||L2
Um

0 ,T
(H) <∞ for every Ψ = (Ψm)

∞
m=1 ∈ LP,T (H),

iii) ν is supported on a bounded subset of U .

Proof i)  ⇒ ii) Suppose that β is onto and let Ψ = (Ψm)
∞
m=1 ∈ LP,T (H).

By hypothesis there exists some Φ ∈ L2
U0,T

(H) such that β(Φ) = Ψ . Using the
definition of β in (123) we see that

sup
m≥1

||Ψm||L2
Um

0 ,T
(H) = sup

m≥1

∣∣∣∣χ[0,τm]βm(Φ)
∣∣∣∣

L2
Um

0 ,T
(H)

.

The right-hand side above is less than or equal to ||Φ||L2
U0,T

(H) because βm has norm

at most 1. This shows that ii) holds.
not iii)  ⇒ not ii) Assume that the support of ν is unbounded. We will

construct a process Ψ = (Ψm)
∞
m=1 in the space LP,T (H) with the property that

||Ψm||L2
Um

0 ,T
(H) ↑ ∞ as m→∞. For each positive integer m we take Ψm ∈ L2(Ω×

[0, T ],P[0,T ], dP⊗ dt;L(U,H)) to be of the form

Ψm(s) :=
( m∑

k=1

gkχ(τk−1,τk ](s)
)
S,

where S ∈ L(U,H) is nonzero on the range of Q1/2, (gk)∞k=1 is a sequence of
positive numbers to be chosen later and where we set τ0 := 0. Recall from the proof
of Lemma 3.15 that the set {(ω, s) ∈ Ω×[0, T ] : s ≤ τ (ω)} is predictable for every
Ft -stopping time τ . Therefore, the process

χ(τk−1,τk](t) = (1− χ{t≤τk−1}) · χ{τk≤t},

is predictable for each k ∈ {1, . . . ,m}, so Ψm is predictable. It follows from
Example 5.9 that the sequence Ψ := (Ψm)

∞
m=1 belongs to the Cartesian product∏∞

m=1 L2
Um

0 ,T
(H). We have Ψ ∈ LP,T (H) because

χ[0,τm]ιm(Ψm+1) = χ[0,τm]Ψm+1 = Ψm,
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for every positive integer m. Above we used the fact that ιm(Φ) = Φ for every
Φ ∈ L2(Ω × [0, T ],P[0,T ], dP ⊗ dt;L(U,H)), which was observed during the
proof of Proposition 6.27. We point out that the assumption that ν has unbounded
support has not been used yet. We will use it to choose a sequence (gk)

∞
k=1 so that

ii) is violated. For each positive integer m we use (50) to compute

||Ψm||2L2
Um

0 ,T
(H)

= E
∫ t

0
||Ψm(s)||2L2(U

m
0 ,H) ds

=
m∑

k=1

g2
k E

∫ τk

τk−1

||S||2L2(U
m
0 ,H) ds

=
( m∑

k=1

g2
k E[τk − τk−1]

) ∫
Bm

|Su|2H dν(u).

Since S does not vanish on the range of Q1/2 we have ||S||L2(U0,H) > 0. By the
monotone convergence theorem we have

∫
Bm
|Su|2H dν(u) ↑ ||S||2L2(U0,H). This

means that
∫
Bm
|Su|2H dν(u) > 1

2 ||S||2L2(U0,H) > 0 for all sufficiently large m. Next,
we claim that E[τk − τk−1] > 0 for all k. This is clearly true for k = 1. We have
τk > τk−1 a.s. on the event {τk−1 < T } and

P[τk−1 < T ] ≥ P[Π(T ) = 1, Z1 �∈ Bk−1] = e−ν(U)T · ν(Bc
k−1),

where we write P(t) = ∑Π(t)
j=1 Zj as in Theorem 2.10. Since the support of ν is

unbounded we have ν(Bc
k−1) > 0 for every k ≥ 2. Now set gk := (E[τk−τk−1])−1/2

so that

||Ψm||2L2
Um

0 ,T
(H)

= m

∫
Bm

|Su|2H dν(u) ≥ m

2
||S||2L2(U0,H) ,

for all sufficiently large m. This shows that Ψ is an element of LP,T (H) for which
ii) does not hold.

iii)  ⇒ i) Assume that ν has bounded support, then ν(Bc
m0

) = 0 for some
positive integer m0. As a result, the following statements hold whenever m ≥ m0:

• τm = T a.s.,
• Qm = Q,
• Um

0 = U0,
• ιm is the identity map on L2

U0,T
(H).

For every Ψ ∈ LP,T (H) we have Ψm+1 = Ψm in the space L2
U0,T

(H) for every
m ≥ m0 and therefore Ψm = Ψm0 for every m ≥ m0. We claim that Ψ = β(Ψm0)

in the space LP,T (H). We need to show that Ψm = χ[0,τm]βm(Ψm0) in the space
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L2
Um

0 ,T
(H) for every positive integerm. We have already observed that this is true for

all m ≥ m0. For m ≤ m0 we use induction on the ordered set (m0,m0−1, . . . , 2, 1).
Suppose that Ψm+1 = χ[0,τm+1]βm+1(Ψm0) for some m ∈ {1, . . . ,m0 − 1}. Using
Lemma 6.15 we see that

Ψm = χ[0,τm]ιm(Ψm+1) = χ[0,τm]ιm(χ[0,τm+1]βm+1(Ψm0)) = χ[0,τm]ιm(βm+1(Ψm0)).

We have seen in the proof of Lemma 6.28 that ιm ◦ βm+1 = βm for every positive
integer m, so Ψm = χ[0,τm]βm(Ψm0). This shows that Ψ = β(Ψm0) in the space
LP,T (H), so β is surjective. ��
Remark 6.31 The assumption in Proposition 6.30 that P be a square-integrable
compound Poisson process is only required to define the map β from (123). We
show here that ii) and iii) fail when P is a non-square-integrable Ft -compound
Poisson process. Since the Lévy measure of a compound Poisson process is finite
it is clear that the Lévy measure of a non-square-integrable compound Poisson
process cannot be supported on a bounded set. To show that ii) fails we can use
a similar construction as in the proof of not iii)  ⇒ not ii) in Proposition 6.30.
In that construction we chose S ∈ L(U,H) so that the quantity

∫
U
|Su|2H dν(u) =

||S||2
L2(Q1/2(U),H)

was strictly positive. The operator Q is no longer available when
P is not square-integrable but it will still be possible to choose S ∈ L(U,H)

such that
∫
U
|Su|2H dν(u) > 0, which is sufficient to repeat the reasoning in the

construction used to prove not iii)  ⇒ not ii). Let V be the closed subspace of
U generated by the support of ν and let {vn}n be an orthonormal basis for V (which
could be finite dimensional). Let h be a unit vector in H and define S ∈ L(U,H)

by Su := (u, v1)U h. We claim that
∫
U
|Su|2H dν(u) > 0, or equivalently, that

ν({S �= 0}) > 0. Since V is the minimal closed subspace containing the support of ν
there exists a vector u in the support of ν such that (u, v1)U �= 0. Since u belongs to
the support of ν we have ν(u+Br(0)) > 0 for every r > 0. For r ∈ (0, | (u, v1)U |)
we have u + Br(0) ⊆ {S �= 0}, so ν({S �= 0}) > 0. With this operator S we can
use the same construction as in the proof of not iii)  ⇒ not ii) to construct a
sequence (Ψm)

∞
m=1 ∈ LP,T (H) that violates ii).

Corollary 6.32 Assume that H �= {0}. Let P be an Ft -compound Poisson process
on U with Lévy measure ν and covariance operator Q and set U0 := Q1/2(U). If
ν is supported on a bounded subset of U , then LP,T (H) is a Banach space. Under
the norm

∣∣∣∣(Ψm)
∞
m=1

∣∣∣∣
LP,T (H)

:= sup
m
||Ψm||L2

Um
0 ,T

(H) = lim
m→∞ ||Ψm||L2

Um
0 ,T

(H) , (125)

the map β : L2
U0,T

(H)→ LP,T (H) defined in (123) is an isometric isomorphism.

Proof Since the support of ν is bounded we have supm ||Ψm||L2
Um

0 ,T
(H) < ∞ for

every Ψ = (Ψm)
∞
m=1 ∈ LP,T (H) by Proposition 6.30. The fact that the limit equals
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the supremum follows from the estimate (108)2. Equation (125) obviously defines a
norm on LP,T (H) that induces the product topology. Since LP,T (H) is complete it
follows that LP,T (H) is a Banach space. We know from Proposition 6.30 that β is
onto. We have also seen during the proof of that proposition that β is isometric.
Indeed, there exists a positive integer m0 such that ν(Bc

m0
) = 0 and for every

Φ ∈ L2
U0,T

(H) we have β(Φ)m = Φ for all m ≥ m0, so ||β(Φ)||LP,T (H) =
||Φ||L2

U0 ,T
(H). ��

We have shown that the two notions of stochastic integration with respect to
a square-integrable U -valued Ft -compound Poisson process P in Definition 6.7
and Definition 6.20 coincide when the Lévy measure of P is supported on a
bounded subset of U . Corollary 6.32 shows that the spaces of integrands used
in Definition 6.7 and Definition 6.20 are isometrically isomorphic via the map
β defined in (123). Proposition 6.29 shows that the two notions of stochastic
integration coincide. On the other hand, Proposition 6.30 shows that the space
LP,T (H) is strictly larger than the range of β when P is square-integrable but has
a Lévy measure with unbounded support. We still know from Proposition 6.29 that
the notion of stochastic integration in Definition 6.20 coincides with the notion in
Definition 6.7 after composing with β, but we see from Proposition 6.30 that the
notion in Definition 6.20 strictly extends the notion in Definition 6.7.

6.4 Summary of the Non-Square-Integrable Case

For every Ft -compound Poisson process P , we have rigorously constructed a space
of integrands LP,T (H) for stochastic integration with respect to P as a projective
limit of Hilbert spaces. We have constructed the stochastic integral with respect to
P on LP,T (H) in two steps, by applying the continuous map IPt : LP,T (H)→ Y (t)

to Ψ ∈ LP,T (H) and then taking the limit of the resulting sequence, which
stabilizes as a sum of finitely many vectors in H , P-a.s. We have shown that
this notion of stochastic integration with respect to P agrees with the stochastic
integral constructed by localization as presented by Peszat and Zabczyk. We believe
that the use of projective limits helps to organize the localization procedure and
offers additional benefits. First, we can define the space of integrands explicitly
as the Fréchet space LP,T (H). Second, LP,T (H) contains the natural image of
the simple processes S (U,H) as a dense subspace by Proposition 6.14. Third,
stochastic integration with respect to P is defined via a continuous map on the
space of integrands, namely IPt . Fourth, when P is square-integrable, we are able
to show in Proposition 6.30 that the new notion of stochastic integration defined
using projective limits in Definition 6.20 is exactly the same as the original notion

2This is true in general, even if P is not square-integrable, but the supremum can be ∞ for some
Ψ ∈ LP,T (H) when the support of ν is unbounded.
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defined in Definition 6.7 when the Lévy measure of P has bounded support and
that the new notion is a strict extension of the old notion when the Lévy measure
of P has unbounded support. We have also shown in Proposition 6.24 precisely
how the stochastic integral

∫ t

0 Ψ (s) dP(s), for Ψ ∈ LP,T (H), can be written in
the form

∫ t

0

∫
U
f P
Ψ (s, u) dπ(u, s), where f P

Ψ : Ω × [0, T ] × U → H and π is the
jump measure of P . We have used this in Corollary 6.26 to identify the jumps of
the stochastic integral with respect to P . We have also shown in Proposition 6.27
that the stochastic integral of a predicable process Ψ with values in L(U,H) with
respect to a compound Poisson process P agrees a.s. with the Riemann-Stieltjes
integral of Ψ with respect to P .

We close this section by showing how to write a stochastic integral with respect
to a Lévy process in the framework presented by Peszat and Zabczyk in the form
used by Ikeda and Watanabe. To be slightly more precise, let L be a U -valued
Lévy process with Wiener part W and jump measure π ; we show how to rigorously
interpret the formal decomposition dL = a dt + dW + dπ̂ + dπ suggested by
the Lévy-Khinchin decomposition in (11). Let L be a U -valued Ft -Lévy process
with Lévy measure ν and jump measure π . We assume that the filtration (Ft )t≥0 is
complete and right-continuous. By Theorem 2.15 there exists a vector a ∈ U , a U -
valued Wiener process W and independent compound Poisson processes (Pn)

∞
n=0

on U (also independent of W ) such that

L(t) = at +W(t)+ P0(t)+
∞∑
n=1

P̂n(t), (126)

and, with probability 1, the series converges uniformly in U on compact subsets
of [0,∞). Furthermore, the compound Poisson processes can be chosen so that P0
has Lévy measure ν|Bc

1
and Pn has Lévy measure ν|B1/n\B1/(n+1) for every n ≥ 1.

In particular, Pn is square-integrable for n ≥ 1 but P0 is not necessarily square-
integrable. Corollary 5.4 shows that W is an Ft -Wiener process and Pn is an Ft -
compound Poisson process for each nonnegative integer n. Therefore, the processes
W and L :=∑∞

n=1 P̂n satisfy Assumption 3.3 with respect to the filtration (Ft )t≥0.
Let Q0 ∈ L+1 (U) be the covariance operator of W and let Q1 ∈ L+1 (U) be the
covariance operator of L . We have separate notions of stochastic integration with
respect to each term on the right-hand side of (126). If we want to integrate a single
process Ψ with respect to L, then Ψ should belong to, or at least have a natural
image in, the spaces of integrands for stochastic integration with respect to each term
on the right-hand side of (126). If Ψ ∈ L2(Ω × [0, T ],P[0,T ], dP⊗ dt;L(U,H)),
then we have Ψ ∈ L2

Q
1/2
0 (U),T

(H), Ψ ∈ L2
Q

1/2
1 (U),T

(H), α(Ψ ) ∈ LP0,T (H) and the

integral
∫ t

0 Ψ (s)a ds is well-defined pathwise as a Riemann integral. Therefore, it
makes sense to define the stochastic integral of Ψ ∈ L2(Ω × [0, T ],P[0,T ], dP⊗
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dt;L(U,H)) with respect to L by

∫ t

0
Ψ (s) dL(s) :=

∫ t

0
Ψ (s)a ds +

∫ t

0
Ψ (s) dW(s)

+
∫ t

0
Ψ (s) dL (s)+

∫ t

0
α(Ψ )(s) dP0(s). (127)

Using Proposition 5.14, Example 5.9 and Proposition 6.27 we see that

∫ t

0
Ψ (s) dL(s) =

∫ t

0
Ψ (s)a ds +

∫ t

0
Ψ (s) dW(s)

+
∫ t

0

∫
B1

fL
Ψ (s, u) dπ̂(s, u)+

∫ t

0

∫
Bc

1

f
P0
α(Ψ )(s, u) dπ(s, u)

=
∫ t

0
Ψ (s)a ds +

∫ t

0
Ψ (s) dW(s)

+
∫ t

0

∫
B1

Ψ (s)u dπ̂(s, u)+
∑

s∈(0,t ]
Ψ (s)ΔP0(s). (128)

Next, we discuss more general integrands. For this, let Q := Q0 + Q1 and
M := W + L . Recall from Lemma 5.6 that Q is the covariance operator of
the sum M . Given processes Ψ1 ∈ L2(Ω × [0, T ],P[0,T ], dP ⊗ dt;L(U,H)),
Ψ2 ∈ L2

Q1/2(U),T
(H), and Ψ3 ∈ LP0,T (H) it is reasonable to define the stochastic

integral of the tuple Ψ := (Ψ1, Ψ2, Ψ3) with respect to L as the sum

∫ t

0
Ψ (s) dL(s) :=

∫ t

0
Ψ1(s)a ds+

∫ t

0
Ψ2(s) dM(s)+

∫ t

0
Ψ3(s) dP0(s), (129)

as done by Peszat and Zabczyk. As we have seen, the two stochastic integral terms
on the right-hand side of (129) can be expressed as a sum of stochastic integrals
with respect to W , π̂ and π . Specifically, using Theorem 5.18 and Proposition 6.24
we see that (129) can be stated equivalently as

∫ t

0
Ψ (s) dL(s) =

∫ t

0
Ψ1(s)a ds +

∫ t

0
ι0(Ψ2)(s) dW(s)

+
∫ t

0

∫
B1

fL
ι1(Ψ2)

(s, u) dπ̂(s, u)+
∫ t

0

∫
Bc

1

f
P0
Ψ3

(s, u) dπ(s, u).

(130)

Equation (130) gives a rigorous interpretation to the heuristic dL = a dt + dW +
dπ̂+ dπ suggested by the Lévy-Khinchin decomposition and shows how to express
stochastic integration with respect to a general Lévy process as defined in the setting
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of Peszat and Zabczyk in the framework presented by Ikeda and Watanabe. In this
way stochastic integration with respect to a general Lévy process as defined in the
setting of Peszat and Zabczyk can be viewed as a special case of the theory of
stochastic integration presented by Ikeda and Watanabe.
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