
An Empirical Evaluation of Sequential
Pattern Mining Algorithms

Marjana Prifti Skenduli1(B), Corrado Loglisci2, Michelangelo Ceci2,
Marenglen Biba1, and Donato Malerba2

1 University of New York Tirana, Tirana, Albania
{marjanaprifti,marenglenbiba}@unyt.edu.al

2 Universita’ degli Studi di Bari, Bari, Italy
{corrado.loglisci,michelangelo.ceci,donato.malerba}@uniba.it

Abstract. Sequence mining is one of the most investigated tasks in data
mining and it has been studied under several perspectives. With the rise
of Big Data technologies, the perspective of efficiency becomes prominent
especially when mining massive sequences. In this paper, we perform a
thorough experimental evaluation of several algorithms for sequential
pattern mining and we provide an analysis of the results focusing on
the different algorithmic choices and how these affect the performance
of each algorithm. Experiments performed on real-world and synthetic
datasets highlight relevant differences between existing algorithms and
provide indications for Big Data scenarios.

1 Introduction

Sequences are elements arranged according to a total or partial ordering. They
are very common in many real-world scenarios. For instance, click-streams and
trajectories. Click-streams represent sequences produced by the web browsing
activity of a user, the web pages visited by the user represent the elements of
these sequence, while the order is established by the time-stamp when a web
page is visited. Trajectories are sequences of geo-referenced positions produced
by the movement, while the order is established by the motion of the moving
objects [8]. The order is not necessarily related to time, but also to space. Like-
wise, in textual documents and biological studies, sequences are series of chars
or series of nucleotides whose order is based on the position that they have with
respect to the other elements. In many applications, the elements denote com-
plex entities and often represent sets of single basic elements where no order
relation holds. Market basket analysis is one of these applications, where a set
of items corresponds to a purchase of a customer in a mall, while a sequence
represents the series of purchases made in a week. Analyzing sequences can thus
become profitable and advantageous for many real-life applications and one of
the technologies adopted is represented by Sequential pattern mining (SPM),
which comprises techniques for mining sequential data and discovering interest-
ing sub-sequences in a set of sequences [4].
c© Springer International Publishing AG, part of Springer Nature 2018
L. Barolli et al. (Eds.): EIDWT 2018, LNDECT 17, pp. 615–626, 2018.
https://doi.org/10.1007/978-3-319-75928-9_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75928-9_55&domain=pdf

616 M. P. Skenduli et al.

The blueprint for sequence mining algorithms proposed in the literature is
enumerating all the interesting sub-sequences in the space of all the possible sub-
sequences. Typically the notion of interestingness relies on the relative frequency,
which provides statistical evidence to a sequential pattern and thus provides
arguments about the regularity of a sub-sequence in a database [10]. Therefore,
sub-sequences that have a frequency greater than a user-defined threshold are
those selected as valid sequential patterns. To discover all the frequent sub-
sequences, we should explore the whole search space by means of a generate-
and-test strategy that builds all possible sub-sequences and tests the frequency
against the minimum threshold.

This problem has been often tackled by approaches specifically designed for
selected domains (e.g., [2,9,14,18]), while others have a more general character-
ization (e.g., [5,6,15]. However, regardless of the domain or specific approach,
most of research studies mainly focus on three specific algorithmic features and
on how these can be effectively and efficiently developed: (i) the method to
explore the search space, (ii) the representation of the database of sequences,
and (iii) the generation of the sequential patterns. Although, there are several
theoretical studies and surveys [4,11,12], we ascertain the lack of empirical stud-
ies. An experimental viewpoint that highlights the characteristics of the three
algorithmic features may be helpful when facing the sequence mining problem
in the context of Big Data scenarios, where the necessity for methods able to
analyze time-ordered and unbounded data produced at high rate becomes more
and more pressing.

In this paper, we investigate how those three features have been developed
in representative algorithms and propose a comparative evaluation on real and
synthetic sequence datasets. Our contribution is not a theoretical discussion,
but it should be intended as an empirical study that complements experiments
presented in papers of specific, relevant sequential pattern mining algorithms.

This paper is organized as follows. In the next section, we introduce clas-
sical definitions and necessary notions to understand the problem of SPM and
existing solutions to solve it. In Sect. 3, we discuss the most representative SPM
algorithms by illustrating the core algorithmic decisions behind them. Then, in
Sect. 4, we present the empirical evaluation upon real and synthetic datasets,
further discussing on how the three features aforementioned work. Finally, the
conclusions drawn in Sect. 5 mark the closure of this paper.

2 Background and Basics

SPM has originally been formalized in [15] and the subsequent research has
inherited the same formulation, which revises one of the association rules mining
problem.

Let I : {i1, i2, . . . , im} a set of elements with nominal values, termed items.
An itemset X is a unordered set of items such that X ⊆ I, the cardinality of X,
|X| corresponds to the number of contained items. Without loss of generality,
we assume that items of an itemset are sorted in lexicographic order. An itemset

An Empirical Evaluation of Sequential Pattern Mining Algorithms 617

X of cardinality |X| = k is said to be of length k. For example, given the set of
items I : {a, b, c, d, e, f}, the set {a, b, c} has length 3 and consists of the items
a, b and c.

A sequence is an ordered set of itemsets s = 〈I1, I2, . . . , In〉, such that Ih ⊆ I
(1 ≤ h ≤ n). A sequence s of cardinality |s| = n is said to be of length n. An
example of sequence is s = 〈{a, b}, {c}, {f, g}, {g}, {e}〉, where it is assumed an
order relation which establishes the itemset {a, b} to precede the itemset {c}.
For instance, in the scenario of the click-stream, by assuming the order relation
holding on the hours, the itemset {a, b} indicates a set of two web-pages a and b
visited in the same hour, while the itemset {c} indicates a set consisting of the
sole page c visited in a subsequent hour.

A sequence database is a list of sequences SDB = 〈s1, s2, . . . , sp〉, each
assigned to an identifier. Sequential patterns are mined by searching the occur-
rences of sequences in a database SDB and computing their support. The sup-
port of a sequence sa is the number of sequences of a database SDB that
contain sa. If this value exceeds a user-defined minimum threshold of sup-
port, denoted as minSUP , the sequence sa is considered frequent and iden-
tified as valid sequential pattern. To check if a sequence sb : 〈B1, B2, . . . , Bm〉
contains a sequence sa : 〈A1, A2, . . . , An〉, we search for a series of integers
1 ≤ i1 < i2 < . . . < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin.

The exploration of the search space, common to all the sequential pat-
tern mining algorithms, consists on mining valid sequential patterns based on
the shorter sequential patterns, starting with sequential patterns of length 1.
This is typically done by means of two basic operations which extend the
sequences by inserting either one itemset or one item. These two operations
are termed s-extension and i-extension. A sequence sb : 〈I1, I2, . . . , Im, {x}〉 is
a s-extension of a sequence sa : 〈I1, I2, . . . , Im〉 if sa is a prefix of sb and the
item x appears in an itemset occurring after all the itemsets of sa. A sequence
sa : 〈A1, A2, . . . , An〉 is a prefix of a sequence sb : 〈B1, B2, . . . , Bm〉 if n < m,
A1 = B1, A2 = B2, . . . , An − 1 = Bn − 1 and An is equal to the first |An|
items of Bn according to the lexicographic order on the items. A sequence
sc : 〈I1, I2, . . . , Im ∪ {x}〉 is a i-extension of a sequence sa : 〈I1, I2, . . . , Im〉 if
sa is a prefix of sc, the item x is appended to the last itemset of sa and the
item x is the last one in Im according to the lexicographic order. Next we report
two examples for illustration purposes. The sequences 〈{a}, {a}〉, 〈{a}, {b}〉 and
〈{a}, {c}〉 are s-extensions of the sequence 〈{a}〉. The sequences 〈{a, b}〉 and
〈{a, c}〉 are i-extensions of the sequence 〈{a}〉.

3 Approaches for Sequential Pattern Mining

Before illustrating the comparative analysis, we present and discuss the most
representative solutions for implementing the three features that characterize the
algorithms of SPM. The features are (i) method to explore the search space, (ii)
representation of the database of sequences, and (iii) generation of the sequential
patterns. Although, these are not independent aspects from each other when

618 M. P. Skenduli et al.

designing an algorithm, thereby we try to inspect them separately highlighting
their properties. The detailed description of specific algorithms is not subject of
the current paper, so the interested reader may refer to the relative papers.

Exploration of the search space. The space of all the possible sequences, where
searching the sequential pattern, can be modeled as a lattice, which is a partially-
ordered set, whose elements are the patterns defined on the set of the items (I)
present in the database. The space is organized by levels, the patterns of a
level are prefixes of the patterns of the next level and have the same length.
The patterns of a level are thus obtained as s-extensions or i-extensions of the
patterns of the previous level, so their length is increased by one. The exploration
of the lattice can be done in two different ways, breadth-first search and depth-
first search. The breadth-first search follows a level-wise strategy, in that it
visits a level of the lattice at time and processes all the patterns of a level before
considering the next level. Once a level has been visited, it will not be explored
again. Procedurally, the search first considers all the patterns of length 1, then
it visits the next level to process all the patterns of length 2 and, subsequently,
the level with the patterns of length 3. It follows this strategy until it reaches the
longest patterns. The most representative algorithm implementing the breadth-
first search is GSP [15].

The depth-first search explores the lattice in depth and processes the pat-
terns of a level without necessarily completing that level. When it reaches the
leaves, that is, when there are no patterns, it backtracks to the first level (pat-
terns of length 1) and re-starts visiting the remaining patterns of the levels
which it had previously visited. Procedurally, the search first considers all the
patterns of length 1, then it takes one and processes one pattern of length 2
originated by the pattern of length 1. Subsequently, the pattern of length 2 is
used to process one pattern of length 3 of the next level. This procedure is recur-
sively performed until no pattern can be visited. The most representative algo-
rithms implementing the depth-first search are PrefixSpan [13], SPADE [17] and
SPAM [1].

The exploration of the lattice of the sequential patterns is costly, especially
when the number of items is very large, considering that we should generate a set
of patterns with magnitude order equal to 2i from a database with i elements. To
solve this problem and make the exploration efficient, the algorithms (regardless
of the space search technique) have implemented pruning techniques aiming at
removing sub-spaces that could contain uninteresting patterns. The most used
technique relies on the anti-monotonicity property of the support, according to
which we can avoid to generate the sequence sa if there exists a sequence sb,
which is contained in sa, whose support does not exceed the minimum threshold
minSUP . The sub-space containing sequences longer than sa can therefore be
pruned, since those sequences will not exceed the threshold (intuitively, if a
sequence sa is not frequent, then all the sequences which contain sa will be not
frequent).

Representation of the database. The representation format of the input sequences
becomes relevant when counting the number of the occurrences of a pattern in the

An Empirical Evaluation of Sequential Pattern Mining Algorithms 619

database. There are three main solutions, (i) horizontal databases, (ii) vertical
databases, (iii) projected databases. In the horizontal format, we transform the
original transaction database SDB in a list of sequences ordered by identifier.
For each sequence, the itemsets are sorted by relation order (e.g., time). This
way, in order to count the occurrences of a pattern, we should match the itemsets
of the pattern against those of a sequence of the database SDB. In case of GSP
implementation, this solution requires to access the database a number of times
equal to the number of input sequences, which may significantly raise the time
consumption, especially in massive databases.

In the vertical format, we transform the original transaction database in a
set of lists (IDLists), each associated to one item. A list indicates the itemsets of
the input sequences where the corresponding item occurs. These structures are
built by accessing only once the database, exactly at the beginning of the process
when mining the frequent items. It is not necessary repeating the access oper-
ation because the number of the occurrences of the patterns of length greater
than 1 is determined by joining the IDlists of the frequent items. This solution
is particularly effective in the algorithms that perform depth-first search, for
instance SPAM, but it losses efficiency when the IDlists are very large, as typ-
ically encountered in dense databases and databases with very long sequences.
A popular optimization approach is to encode IDLists as bit vectors [1].

Projected databases are subsets of the database SDB and they provide the
means to reduce the search space. They are built simultaneously with the mining
process and contain the only input sequences in which a pattern, which has been
previously mined, occurs. More precisely, once mined the patterns of length k, for
each pattern sa we scan the database to create a (reduced) database with the only
sequences in which sa is present, while counting the occurrences. Recursively,
new databases are created with the sequences in which the patterns sb, built
from the pattern sa (sa ⊆ sb), are present. This representation allows us to work
on the sequences really appearing in the database, but it has the disadvantage
of repeatedly scanning the databases previously created.

Generation of frequent sequential patterns. The generation of sequential patterns
is a procedure that consists of the operative steps to build the lattice of the
patterns, which we explore through space search methods. The existing works
differ on the use of the generate-and-test strategy, which is defined in terms of
two main steps, (i) generation of candidate patterns and (ii) selection of the
only candidates that appear in the input database and that meet the threshold
minSUP . A candidate pattern of length k is generated by joining two frequent
patterns of length k − 1 that have k − 2 itemsets in common. The other two
items are used to reach the length k. More precisely, we first find all the frequent
patterns of length 1, then we generate those of length 2 by using those of length
1. This step goes on until no longer patterns can be generated. Therefore, the
patterns of the level k of the lattice cannot be built if we have not completed
the level k−1. This explains why the generate-and-test strategy is often coupled
with breadth-first search, as in the GSP algorithm [15]. The generate-and-test
strategy has two main limitations. First, it may generate candidates which do

620 M. P. Skenduli et al.

not appear in the database. In fact, they are derived from the patterns present
in the lattice and not from the sequences contained in the database. This may
clearly affect the efficiency of the mining process. Second, it is necessary to store
all the patterns of a level prior to building the candidates of the next level. In
turn, this may require huge memory.

Alternative solutions have been designed in order to (i) avoid generating can-
didates that do not appear in the database and (ii) work on a smaller search
space. There is a category of algorithms that resorts to the depth-first search in
order to generate a candidate from one frequent pattern, which is taken from
those previously mined [1,17]. More precisely, once mined the frequent items
(length 1), the candidates of length 2 are built by appending an itemset (by
means of the operations s-extension and i-extension) to one frequent item, then
recursively one more itemset is added to the frequent pattern previously mined
until no further itemsets can be appended. The procedure re-starts with another
frequent item, with which patterns of increasing length can be built by appending
one itemset at time. This kind of algorithms holds the advantage of generating
patterns of length k by keeping only one pattern of length k − 1, contrarily to
the generate-and-test strategy. Extensions to this solution have been addressed
to make the candidate generation efficient. In [3], the authors upgrade the algo-
rithms SPADE [17] and SPAM [1] in order to avoid infrequent candidates. More
precisely, they propose a preliminary step in which sequential patterns of length
2 are discovered. These are used later to eliminate the candidates in which the
items of length 2 patterns are not present.

Another category of algorithms combines depth-first search and projected
databases. They extend the frequent patterns, mined in previously created data
bases, by using the items present in the newly created databases as suffixes or
prefixes for longer patterns [7,13]. This way, they avoid building uninteresting
candidates and early prune (sub)spaces of the lattice, achieving a two-fold result
(i) utilizing much less memory and (ii) keeping the mining process focused only
on those subsets of the database which can give frequent patterns.

4 Empirical Evaluation

To empirically evaluate the differences between the three main features described
above, in this section we present experiments conducted on some algorithms that
adopt different solutions to implement the three features. To this end, we consid-
ered GSP, PrefixSpan, SPAM, Spade and CM-Spade. More detailed description
of these algorithms can be found in [11,12]. In order to perform a fair analysis, we
used the SPMF framework [16], which collects many sequential pattern mining
algorithms implemented in Java using the same design pattern. The experiments
aim at evaluating the time consumption (in milliseconds) and memory consump-
tion (in MB).

We used real-word datasets and synthetically generated sequence datasets.
As to the real-world datasets, the experiments were performed by manually tun-
ing the minimum threshold minSUP . Three categories of real-world sequences

An Empirical Evaluation of Sequential Pattern Mining Algorithms 621

Table 1. Characteristics of the real-world datasets used for the experiments.

Dataset No. of sequences No. of distinct items Avg no. of itemsets
per sequence

Density

Sign 730 267 52 0,0037

Bible 36369 13905 21,64 7,19E−05

Kosarak 69999 21144 7,98 4,72E−05

Msnbc 989818 17 4,75 0,058

Fifa 20450 2990 36,24 0,00033

Pumsb 49046 2088 50,48 0,00048

were considered: textual data, click-streams and census data. In the textual data,
sequences correspond to sentences, while items correspond to words. The struc-
ture of the discourse defines the order between the words. Two datasets of textual
data were used. Sign, which contains transcriptions of sign language utterances.
Bible, which contains the transcription of Bible. In the context of click-stream
data, sequences correspond to sessions of browsing on the Web, while the items
correspond to Web pages. The order is defined in terms of the time-stamp when
clicking on the page link. Three datasets were used. Kosarak, which contains
sequences of click-stream data from an hungarian news portal. Msnbc, which
contains click-stream data collected from logs of www.msnbc.com and news-
related portions of www.msn.com for the entire day of September 28, 1999. Fifa,
which contains the data of the requests made to the 1998 World Cup Web site
between April 30, 1998 and July 26, 1998. In the census data, sequences corre-
spond to population and demographic statistics collected across time. We used
the dataset Pumsb that contains federal census data collected for the IPUMS
project from Los Angeles – Long Beach area for the years 1970, 1980, and 1990.
The real-world datasets are available at the link http://www.philippe-fournier-
viger.com/spmf/index.php?link=datasets.php. The experiments were performed
on a machine equipped with Windows 10 operating system, i3 3.3 GHz proces-
sor and 8 GB main memory. Table 1 reports a summary of the characteristics of
these datasets. The density variable is obtained as the average number of items
present in the itemsets divided by the number of distinct items.

As to the synthetically generated sequences, we used the datasets available at
the link http://www.di.uniba.it/∼ceci/micFiles/systems/CloFAST/ (also used
in [5]). The experiments were performed by manually regulating one character-
istic of the data at a time while leaving the others fixed. In particular, three
characteristics were considered: average number of itemsets per sequence, den-
sity and number of sequences (denoted as C, T , D afterwards). The experiments
were executed on a machine equipped with CentOS Linux operating system,
Intel Xeon 2.4 GHz processor and 64 GB main memory.

In Fig. 1, we report the time spent by the algorithms on the real-world
datasets. As expected, the larger the value of minSUP the larger the time con-
sumption (the scales are logarithmic). In particular, the running time of GSP

www.msnbc.com
www.msn.com
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.di.uniba.it/{~}ceci/micFiles/systems/CloFAST/

622 M. P. Skenduli et al.

crosses at least three magnitude orders for all the datasets, while the algorithms
SPAM, PrefixSpan and CM-Spade cross two magnitude orders on Sign, Bible,
Kosarak and three orders on Fifa and Pumsb. The performance related to run-
ning time on Fifa and Pumsb can be attributed to a particular conjunction of
the properties of these datasets, they have simultaneously many items (no. of
distinct items), many itemsets per sequence (no. of distinct items) and large den-
sity, compared to the other datasets. When these characteristics are not present
simultaneously, the running time is smaller, for instance the plots of SPAM
and PrefixSpan algorithms on Kosarak and Sign are basically linear. Indeed,
Kosarak has small sets of itemsets per sequence, while Sign has small sets of
distinct items. A specific consideration can be drawn for SPAM on Kosarak and
Bible. Although their respective running time has not an exponential tendency,
the magnitude orders are greater compared to the other algorithms, including
GSP. This can be explained with the data representation implemented in SPAM,
where a bit vector is associated with each item. Considering that Kosarak and
Bible have the larger sets of distinct items, the running time of SPAM can be
affected by the cost of the operations for building the bit vectors.

The memory consumption (Fig. 2) follows the tendency of the results on the
running time, although it increases quite linearly. The algorithms that take more
memory space are those compliant with the generate-and-test procedure, such
as, GSP and SPAM, because they keep the frequent patterns previously mined.
This is more evident in GSP, where the breadth-first search forces us to keep the
patterns of the levels of the lattice already visited. In particular, GSP needs more
memory (and more running time) on Sign, Fifa and Msnbc for small values of
minSUP because the lattice grows up significantly. On the contrary, the choice
of PrefixSpan to keep smaller search spaces is successful in terms of running
time and memory consumption. In the case of SPAM, it consumes memory on
Kosarak and Bible because it needs a huge number of bit vectors. The output
of CM-Spade deserves a specific consideration. In Bible and Kosarak, we have
no result because CM-Spade stops due to insufficient memory. This is quite
expected because the two datasets have the maximum number of distinct items
(compared to the other datasets) and CM-Spade uses all the memory because
it has to perform a preparatory operation on the itemsets of length 2 (Sect. 3).
On the contrary, it performs faster on the datasets with lower number of items
(Sign, Msnbc and Pumsb), although it uses more memory compared to other
choices, for instance, PrefixSpan.

The experiments on the synthetic datasets have been set on the proper-
ties of the input data sequences, which we can control. Figures 3a and d illus-
trate the running time and memory usage obtained while increasing values of
C (minSUP = 0.4). We note that when C (average number of itemsets per
sequence) increases, the time consumption increases too and for all the algo-
rithms the efficiency drops of four orders of magnitude. The explanation is that
the value of C affects the length of the patterns and consequently the size of
the lattice. Thus, when C increases, we need to perform more s-extension opera-
tions, which lead the width and depth of the lattice to grow. This is particularly

An Empirical Evaluation of Sequential Pattern Mining Algorithms 623

(a) (b) (c)

(d) (e) (f)

Fig. 1. Running time (in milliseconds) obtained on the real-world datasets (a) Sign,
(b) Bible, (c) Pumsb, (d) Fifa, (e) Kosarak, (f) Msnbc.

evident on the algorithms that use the level-wise search, and candidate gener-
ation techniques, for instance, GSP, because they have to evaluate all the can-
didates of a level (which will be larger because there are more itemsets) before
proceeding to the next level. A different behavior can be observed on the mem-
ory consumption, which grows linearly with C. This reveals a choice common
to many algorithms, that is, limiting the use of the main memory at the cost
of the running time. The exception is represented by CM-Spade, which asks for
less time, but uses more memory for keeping the itemsets of length 2, especially
for large values of C.

The performances obtained on T (density) follow those of C. With respect to
running time, all the algorithms cross four orders of magnitude when T increases
(Figs. 3b and e). The reason is that when the sequences are densest, the num-
ber of items present in the itemsets increases and the algorithms need more
i-extension operations. This makes the lattice “more complex” and the pattern
generation procedures costly. As to the memory, it is worth noting that the con-
sumption of Prefix-Span is greater than GSP, especially for large densities. This
is due to the fact that the size of the projected databases is not smaller than the
input database for densest sequences.

The results obtained by varying D (Figs. 3c and f) allow us to evaluate the
scalability properties of the algorithms, whose running time follows an expo-
nential tendency. The algorithm GSP has at least one more magnitude order,
compared to the others, and this is due to the algorithmic choice on the access
and representation of the input sequences. In GSP, the computation of the occur-
rences is performed by scanning the whole database, hence the data represen-
tation relies on traditional transaction-based format, which requires costly I/O
operations. Contrarily, PrefixSpan does not scan the whole database, but only
partitions of the input sequences and this guarantees better efficiency. This gain

624 M. P. Skenduli et al.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Memory consumption (in MB) obtained on the real-world datasets (a) Sign,
(b) Bible, (c) Pumsb, (d) Fifa, (e) Kosarak, (f) Msnbc.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Running time and memory consumption (in MB) obtained on the synthetic
datasets (a), (d) Number of itemsets per sequences, (b), (e) Density and (c), (f) Number
of sequences.

in running time implies a greater usage of the memory, as seen for the results
of C. In the case of PrefixSpan, we need to create a large number of projected
databases containing probably more sequences, while, in the case of SPAM and
CM-Spade, we need very long IDlists. Finally, GSP asks for less because it uses
memory essentially to store the lattice, whose size is related to the size of the
input database.

An Empirical Evaluation of Sequential Pattern Mining Algorithms 625

5 Conclusions

In this work, we have conducted an experimental study to compare most repre-
sentative algorithms designed for sequence mining. The main contribution lies
in the empirical evaluation of the choices done in those algorithms for the (i)
exploration of the lattice of the patterns, (ii) representation of the database of
sequences, and (iii) generation of sequential patterns. This work can be intended
as a preliminary investigation for the future design of a sequence mining approach
on Big Data, considering solutions for data distribution and/or parallelization on
different machines, including streaming approaches. Indeed, our evaluation, per-
formed on real-world and synthetic datasets, has been set to draw indications on
the performance in terms of time and memory consumption. We observed that
the choices done to make the mining process efficient, for instance, in PrefixSpan
and CM-Spade, imply greater memory consumption. Contrarily, solutions which
are time consuming, for instance GSP, may perform relatively well in terms of
main memory requirements. As future work, we plan to (i) investigate advanced
data structures to adapt time-saving algorithms (for instance, PrefixSpan and
CM-Spade) and (ii) consider distributed solutions for the generation of patterns
in order to adapt memory-saving algorithms (for instance, GSP).

References

1. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2002, New York, NY,
USA, pp. 429–435. ACM (2002)

2. Cheng, Y., Lin, Y., Chiang, K., Tseng, V.S.: Mining sequential risk patterns from
large-scale clinical databases for early assessment of chronic diseases: a case study
on chronic obstructive pulmonary disease. IEEE J. Biomed. Health Inform. 21(2),
303–311 (2017)

3. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast vertical mining
of sequential patterns using co-occurrence information. In: Advances in Knowl-
edge Discovery and Data Mining - 18th Pacific-Asia Conference, PAKDD 2014,
Proceedings, Part I, Tainan, Taiwan, 13–16 May 2014, pp. 40–52 (2014)

4. Fournier-Viger, P., Lin, J.C.-W., Kiran, R.U., Koh, Y.S.: A survey of sequential
pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)

5. Fumarola, F., Lanotte, P.F., Ceci, M., Malerba, D.: Clofast: closed sequential pat-
tern mining using sparse and vertical id-lists. Knowl. Inf. Syst. 48(2), 429–463
(2016)

6. Ge, J., Xia, Y., Wang, J., Nadungodage, C.H., Prabhakar, S.: Sequential pattern
mining in databases with temporal uncertainty. Knowl. Inf. Syst. 51(3), 821–850
(2017)

7. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: Freespan: fre-
quent pattern-projected sequential pattern mining. In: Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Boston, MA, USA, 20–23 August 2000, pp. 355–359 (2000)

8. Loglisci, C.: Using interactions and dynamics for mining groups of moving objects
from trajectory data. Int. J. Geograph. Inf. Sci. 1–33 (2017)

626 M. P. Skenduli et al.

9. Loglisci, C., Ceci, M., Impedovo, A., Malerba, D.: Mining spatio-temporal patterns
of periodic changes in climate data. In: New Frontiers in Mining Complex Patterns
- 5th International Workshop, NFMCP 2016, Held in Conjunction with ECML-
PKDD 2016, Riva del Garda, Italy, 19 September 2016, Revised Selected Papers,
pp. 198–212 (2016)

10. Loglisci, C., Ceci, M., Malerba, D.: Relational mining for discovering changes in
evolving networks. Neurocomputing 150, 265–288 (2015)

11. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Comput. Surv. 43(1), 3:1–3:41 (2010)

12. Mooney, C., Roddick, J.F.: Sequential pattern mining - approaches and algorithms.
ACM Comput. Surv. 45(2), 19:1–19:39 (2013)

13. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE
Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

14. Schweizer, D., Zehnder, M., Wache, H., Witschel, H.F., Zanatta, D., Rodriguez,
M.: Using consumer behavior data to reduce energy consumption in smart homes:
applying machine learning to save energy without lowering comfort of inhabitants.
In: 14th IEEE International Conference on Machine Learning and Applications,
ICMLA 2015, Miami, FL, USA, 9–11 December 2015, pp. 1123–1129 (2015)

15. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
Advances in Database Technology - EDBT 1996, 5th International Conference on
Extending Database Technology, Proceedings, Avignon, France, 25–29 March 1996,
vol. 1057. Lecture Notes in Computer Science, pp. 3–17. Springer (1996)

16. Viger, P.F., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF:
a java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389–3393
(2014)

17. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Mach.
Learn. 42(1/2), 31–60 (2001)

18. Ziebarth, S., Chounta, I., Hoppe, H.U.: Resource access patterns in exam prepara-
tion activities. In: Design for Teaching and Learning in a Networked World - 10th
European Conference on Technology Enhanced Learning, EC-TEL 2015, Proceed-
ings, Toledo, Spain, 15–18 September 2015, pp. 497–502 (2015)

	An Empirical Evaluation of Sequential Pattern Mining Algorithms
	1 Introduction
	2 Background and Basics
	3 Approaches for Sequential Pattern Mining
	4 Empirical Evaluation
	5 Conclusions
	References

