
Improved Energy-Efficient Quorum
Selection Algorithm by Omitting

Meaningless Methods

Tomoya Enokido1(B), Dilawaer Duolikun2, and Makoto Takizawa2

1 Faculty of Business Administration, Rissho University, Tokyo, Japan
eno@ris.ac.jp

2 Department of Advanced Sciences, Faculty of Science and Engineering,
Hosei University, Tokyo, Japan

dilewerdolkun@gmail.com, makoto.takizawa@computer.org

Abstract. Distributed applications are composed of multiple objects
and each object is replicated in order to increase reliability, availabil-
ity, and performance. On the other hand, the larger amount of electric
energy is consumed in a system since multiple replicas of each object
are manipulated on multiple servers. In our previous studies, the energy
efficient quorum selection (EEQS) algorithm is proposed to construct a
quorum for each method in the quorum based locking protocol so that
the total electric energy of servers to perform methods can be reduced.
In this paper, the improved energy efficient quorum selection (IEEQS)
algorithm is proposed to furthermore reduce the total electric energy of
servers by omitting meaningless methods. Evaluation results show the
total electric energy of servers, the average execution time of each trans-
action, and the number of aborted transactions can be reduced in the
IEEQS algorithm than the EEQS algorithm.

Keywords: Energy-aware information systems
Quorum-based locking protocol · Object-based systems
IEEQS algorithm · Data management

1 Introduction

In object-based systems [1,6], each object is a unit of computation resource like
a file and is an encapsulation of data and methods to manipulate the data in
the object. In order to provide reliable application services [2,3], each object is
replicated on multiple servers. A transaction is an atomic sequence of methods
[4] to manipulate objects. Conflicting methods issued by multiple transactions
have to be serialized [5] to keep the replicas of each object mutually consistent.
In the two-phase locking (2PL) protocol [4], one of the replicas of an object
for a read method and all the replicas for a write method are locked before
manipulating the object to keep the replicas mutually consistent. Since all the
replicas have to be locked for every write method, the 2PL protocol is not efficient
c© Springer International Publishing AG, part of Springer Nature 2018
L. Barolli et al. (Eds.): EIDWT 2018, LNDECT 17, pp. 171–182, 2018.
https://doi.org/10.1007/978-3-319-75928-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75928-9_15&domain=pdf

172 T. Enokido et al.

in write-dominated application. In the quorum-based protocol [6,7], subsets of
replicas locked for read and write methods are referred to as read and write
quorums, respectively. The quorum numbers nQr and nQw for read and write
methods have to be “nQr + nQw > N” where N is the total number of replicas.
In the quorum-based protocol, the more number of write methods are issued,
the fewer number of write quorums can be taken. As a result, the overhead to
perform write methods can be reduced. However, the total amount of electric
energy consumed in a system is larger than non-replication systems since each
method issued to an object is performed on multiple replicas. In our previous
studies, the energy efficient quorum selection (EEQS) algorithm [9] is proposed
to construct a quorum for each method issued by a transaction so that the total
electric energy of servers to perform the method is the minimum. Here, the total
electric energy of a server cluster can be reduced in the EEQS algorithm than
the traditional quorum-based locking protocol.

In this paper, we first define meaningless methods which are not required
to be performed on each replica of an object based on the precedent relation
and semantics of methods. Next, the improved energy efficient quorum selection
(IEEQS) algorithm is proposed to furthermore reduce the total electric energy
of a server cluster to perform methods by omitting meaningless methods on each
replica. We evaluate the IEEQS algorithm compared with the EEQS algorithm.
The evaluation results show the total electric energy of a server cluster, the aver-
age execution time of each transaction, and the number of aborted transactions
in the IEEQS algorithm can be more reduced than the EEQS algorithm.

In Sect. 2, we discuss the data access model and power consumption model
of a server. In Sect. 3, we discuss the IEEQS algorithm. In Sect. 4, we evaluate
the IEEQS algorithm compared with the EEQS algorithm.

2 System Model

2.1 Objects and Transactions

A system is composed of multiple servers s1, ..., sn (n ≥ 1) interconnected in
reliable networks. Let S be a cluster of servers s1, ..., sn (n ≥ 1). Let O be a
set of objects o1, ..., om (m ≥ 1) [1]. Each object oh is a unit of computation
resource like a file and is an encapsulation of data and methods to manipulate
the data in the object oh. In this paper, methods are classified into read (r)
and write (w) methods. Write methods are furthermore classified into full write
(wf) and partial write (wp) methods, i.e. w ∈ {wf , wp}. In a full write method,
a whole data in an object is fully written. In a partial write method, a part of
data in an object is written. Suppose a file object F supports modify, insert,
delete, and read methods. Here, a modify method is a full write method. Insert
and delete methods are partial write methods. Let op(oh) be a state obtained
by performing a method op (∈ {r, w}) on an object oh. A pair of methods op1
and op2 on an object oh are compatible if and only if (iff) op1 ◦ op2(oh) = op2
◦ op1(oh). Otherwise, a method op1 conflicts with another method op2. In this
paper, conflicting relations among methods are as shown in Table 1.

Energy-Efficient Quorum Selection Algorithm 173

Each object oh is replicated on multiple servers to make the system more
reliable and available. Let R(oh) be a set of replicas o1h, ..., ol

h (1 ≤ l ≤ n) [2]
of an object oh. Let nR(oh) be the total number of replicas of an object oh, i.e.
nR(oh) = |R(oh)|. Replicas of each object oh are distributed on multiple servers
in a server cluster S. Let Sh be a subset of servers which hold a replica of an
object oh in a server cluster S (Sh ⊆ S).

Table 1. Conflicting relation among methods.

read (r) write (w)

full (wf) partial (wp)

read (r) Compatible Conflict Conflict

write (w) full (wf) Conflict Conflict Conflict

partial (wp) Conflict Conflict Conflict

2.2 Quorum-Based Locking Protocol

A transaction is an atomic sequence of methods [4]. A transaction Ti issues r and
w methods to manipulate replicas of objects. Multiple conflicting transactions
are required to be serializable [4,5] to keep replicas of each object mutually
consistent. Let T be a set of {T1, ..., Tk} (k ≥ 1) of transactions. Let H be a
schedule of the transactions in T. A transaction Ti precedes another transaction
Tj (Ti →H Tj) in a schedule H iff (if and only if) a method opi from the
transaction Ti is performed before a method opj from the transaction Tj and opi

conflicts with opj . A schedule H is serializable iff the precedent relation →H is
acyclic [4].

In this paper, multiple conflicting transactions are serialized based on the
quorum-based locking protocol [6,7]. Let μ(op) be a lock mode of a method op
(∈ {r, w}). In this paper, a lock mode μ(w) is adapted to a full and partial write
methods. A lock mode μ(r) is adapted to a read method. If op1 is compatible with
op2 on an object oh, the lock mode μ(op1) is compatible with μ(op2). Otherwise,
a lock mode μ(op1) conflicts with another lock mode μ(op2). Let Qop

h (op ∈ {r,
w}) be a subset of replicas of an object oh to be locked by a method op, named
a quorum of the method op (Qop

h ⊆ R(oh)). Let nQop
h be the quorum number

of a method op on a object oh, i.e. nQop
h = |Qop

h |. The quorums have to satisfy
the following constraints: (1) Qr

h ⊆ R(oh), Qw
h ⊆ R(oh), and Qr

h ∪ Qw
h = R(oh).

(2) nQr
h + nQw

h > nR(oh), i.e. Qr
h ∩ Qw

h
= φ. (3) nQw
h > nR(oh)/2.

In the quorum-based locking protocol, a transaction Ti locks replicas of an
object oh by the following procedure [6]:

1. A quorum Qop
h for a method op is constructed by selecting nQop

h replicas in
a set R(oh) of replicas.

2. If every replica in a quorum Qop
h can be locked by a lock mode μ(op), the

replicas in the quorum Qop
h are manipulated by the method op.

174 T. Enokido et al.

3. When the transaction Ti commits or aborts, the locks on the replicas in the
quorum Qop

h are released.

Each replica oq
h has a version number vq

h. Suppose a transaction Ti reads
an object oh. The transaction Ti selects nQr

h replicas in the set R(oh), i.e. read
(r) quorum Qr

h. If every replica in the r-quorum Qr
h can be locked by a lock

mode μ(r), the transaction Ti reads data in a replica oq
h whose version number

vq
h is the maximum in the r-quorum Qr

h. Every r-quorum surely includes at least
one newest replica since nQr

h + nQw
h > nR(oh). Next, suppose a transaction Ti

writes data in an object oh. The transaction Ti selects nQw
h replicas in the set

R(oh), i.e. write (w) quorum Qw
h . If every replica in the w-quorum Qw

h can be
locked by a lock mode μ(w), the transaction Ti writes data in a replica oq

h whose
version number vq

h is maximum in the w-quorum Qw
h and the version number vq

h

of the replica oq
h is incremented by one. The updated data and version number

vq
h of the replica oq

h are sent to every other replica in the w-quorum Qw
h . Then,

data and version number of each replica in the w-quorum Qw
h are replaced with

the newest values.

2.3 Data Access Model

Methods which are being performed and already terminate are current and
previous at time τ , respectively. Let RPt(τ) and WPt(τ) be sets of current read
(r) and write (w) methods on a server st at time τ , respectively. Let Pt(τ)
be a set of current r and w methods on a server st at time τ , i.e. Pt(τ) =
RPt(τ) ∪ WPt(τ). Let rti(o

q
h) and wti(o

q
h) be methods issued by a transaction

Ti to read and write data in a replica oq
h on a server st, respectively. By each

method rti(o
q
h) in a set RPt(τ), data is read in a replica oq

h at rate RRti(τ)
[B/sec] at time τ . By each method wti(o

q
h) in a set WPt(τ), data is written

in a replica oq
h at rate WRti(τ) [B/sec] at time τ . Let maxRRt and maxWRt

be the maximum read and write rates [B/sec] of r and w methods on a server
st, respectively. The read rate RRti(τ) (≤ maxRRt) and write rate WRti(τ)
(≤ maxWRt) are frt(τ) · maxRRt and fwt(τ) · maxWRt, respectively. Here,
frt(τ) and fwt(τ) are degradation ratios. 0 ≤ frt(τ) ≤ 1 and 0 ≤ fwt(τ) ≤ 1.
The degradation ratios frt(τ) and fwt(τ) are 1/(|RPt(τ)|+ rwt · |WPt(τ)|) and
1/(wrt · |RPt(τ)| + |WPt(τ)|), respectively. 0 ≤ rwt ≤ 1 and 0 ≤ wrt ≤ 1.

The read laxity lrti(τ) [B] and write laxity lwti(τ) [B] of methods rti(o
q
h)

and wti(o
q
h) show how much amount of data are read and written in a replica

oq
h by the methods rti(o

q
h) and wti(o

q
h) at time τ , respectively. Suppose that

methods rti(o
q
h) and wti(o

q
h) start on a server st at time stti, respectively. At

time stti, the read laxity lrti(τ) = rbq
h [B] where rbq

h is the size of data in a
replica oq

h. The write laxity lwti(τ) = wbq
h [B] where wbq

h is the size of data to be
written in a replica oq

h. The read laxity lrti(τ) and write laxity lwti(τ) at time
τ are rbq

h - Στ
τ=sttiRRti(τ) and wbq

h - Στ
τ=sttiWRti(τ), respectively.

Energy-Efficient Quorum Selection Algorithm 175

2.4 Power Consumption Model of a Server

Let Et(τ) be the electric power [W] of a server st at time τ . maxEt and minEt

show the maximum and minimum electric power [W] of the server st, respec-
tively. The power consumption model for a storage server (PCS model) [8]
to perform storage and computation processes are proposed. In this paper, we
assume only r and w methods are performed on a server st. According to the
PCS model, the electric power Et(τ) [W] of a server st to perform multiple r
and w methods at time τ is given as follows:

Et(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WEt if |WPt(τ)| ≥ 1 and |RPt(τ)| = 0.

WREt(α) if |WPt(τ)| ≥ 1 and |RPt(τ)| ≥ 1.

REt if |WPt(τ)| = 0 and |RPt(τ)| ≥ 1.

minEt if |WPt(τ)| = |RPt(τ)| = 0.

(1)

A server st consumes the minimum electric power minEt [W] if no method is
performed on the server st, i.e. the electric power in the idle state of the server
st. The server st consumes the electric power REt [W] if at least one r method is
performed on the server st. The server st consumes the electric power WEt [W]
if at least one w method is performed on the server st. The server st consumes
the electric power WREt(α) [W] = α · REt + (1 − α) · WEt [W] where α =
|RPt(τ)|/(|RPt(τ)| + |WPt(τ)|) if both at least one r method and at least one w
method are concurrently performed. Here, minEt ≤ REt ≤ WREt(α) ≤ WEt

≤ maxEt.
The total electric energy TEt(τ1, τ2) [J] of a server st from time τ1 to τ2 is

Στ2
τ=τ1 Et(τ). The processing power PEt(τ) [W] of a server st at time τ is Et(τ)

− minEt. The total processing electric energy TPEt(τ1, τ2) of a server st from
time τ1 to τ2 is given as TPEt(τ1, τ2) = Στ2

τ=τ1PEt(τ). The total processing
electric energy laxity tpeclt(τ) shows how much electric energy a server st has to
consume to perform every current r and w methods on the server st at time τ .
The total processing energy consumption laxity tpeclt(τ) of a server st at time
τ is obtained by the following TPECLt procedure:

TPECLt(τ) {
if RPt(τ) = φ and WPt(τ) = φ, return(0);
laxity = Et(τ) − minEt; /* PEt(τ) of a server st at time τ */

for each r-method rti(o
q
h) in RPt(τ), {

lrti(τ + 1) = lrti(τ) − RRti;
if lrti(τ + 1) = 0, RPt(τ + 1) = RPt(τ) − {rti(o

q
h)};

} /* for end */

for each w-method wti(o
q
h) in WPt(τ), {

lwti(τ + 1) = lwti(τ) − WRti;
if lwti(τ + 1) = 0, WPt(τ + 1) = WPt(τ) − {wit(o

q
h)};

} /* for end */

return(laxity + TPECLt(τ + 1));
}

176 T. Enokido et al.

In the TPECLt procedure, each time τ data is read in a replica oq
h by

a method rti(o
q
h), the read laxity lrti(τ) of the method rti(o

q
h) is decremented

by read rate RRti. Similarly, the write laxity lwti(τ) of a method wti(o
q
h) is

decremented by write rate WRti each time τ data is written in a replica oq
h by

the method wti(o
q
h). If the read laxity lrti(τ + 1) and write laxity lwti(τ + 1)

get 0, every data is read and written in the replica oq
h by the methods rti(o

q
h)

and wti(o
q
h), respectively, and the methods terminate at time τ .

3 Improved EEQS (IEEQS) Algorithm

3.1 Quorum Selection

In the improved energy-efficient quorum selection (IEEQS) algorithm, replicas
to be members of a quorum of each method are selected so that the total electric
energy of a server cluster S to perform the method is the minimum. Suppose a
transaction Ti issues a method op (op = {r, w}) to manipulate an object oh at
time τ . Each transaction Ti selects a subset Sop

h (⊆ Sh) of nQop
h servers whose

total processing electric energy laxity is the minimum for each method op by
following quorum selection (QS) procedure [9]:

QS(op, oh, τ) { /* op ∈ {r, w} */

Sop
h = φ;

while (nQop
h > 0) {

for each server st in Sh, {
if op = r, RPt(τ) = RPt(τ) ∪ {op};
else WPt(τ) = WPt(τ) ∪ {op}; /* op = w */

TPEt(τ) = TPECLt(τ);
} /* for end */

server = a server st where TPEt(τ) is the minimum;
Sop

h = Sop
h ∪ {server}; Sh = Sh − {server}; nQop

h = nQop
h − 1;

} /* while end */

return(Sop
h);

}

3.2 Meaningless Methods

A method op1 precedes op2 in a schedule H (op1 →H op2) iff (1) the methods
op1 and op2 are issued by the same transaction Ti and op1 is issued before op2,
(2) the method op1 issued by a transaction Ti conflicts with the method op2
issued by a transaction Tj and Ti →H Tj , or (3) op1 →H op3 →H op2 for some
method op3. Let Hh be a local schedule of methods which are performed on an
object oh in a schedule H.
[Definition]. A method op1 locally precedes another method op2 in a local sched-
ule Hh (op1 →Hh

op2) iff op1 →H op2.
A partial write method op1 locally precedes another full write method op2

in a local schedule Hh (op1 →Hh
op2) on the object oh. Here, the partial write

Energy-Efficient Quorum Selection Algorithm 177

method op1 is not required to be performed on the object oh if the full write
method op2 is surely performed on the object oh just after the method op1, i.e.
the method op2 can absorb the method op1.
[Definition]. A full write method op1 absorbs another partial or full write
method op2 in a local subschedule Hh on an object oh if op2 →Hh

op1, and
there is no read method op′ such that op2 →Hh

op′ →Hh
op1, or op1 absorbs op′′

and op′′ absorbs op2 for some method op′′.
[Definition]. A method op is meaningless iff the method op is absorbed by
another method op′ in the local subschedule Hh of an object oh.

3.3 Omitting Meaningless Methods

Suppose three replicas o11, o21, and o31 of an object o1 are stored in three servers
s1, s2, and s3, respectively, i.e. S1 = {s1, s2, s3}. The version numbers v1

1 , v2
1 ,

and v3
1 of replicas o11, o21, and o31 are 2, 1, and 2, respectively, as shown in Fig. 1.

The quorum numbers nQw
1 and nQr

1 for the object o1 are two, respectively. Let
Ti.Q

op
h be a quorum to perform a method op issued by a transaction Ti. Let

Ti.S
op
h be a subset of servers which hold replicas in a quorum Ti.Q

op
h .

Suppose a pair of replicas o11 and o21 are locked by a transaction T1 with
lock mode μ(w) and a partial write methods wp

1(o1) is issued to a w-quorum
T1.Q

wp
1 (o1)

1 = {o11, o21} as shown in Fig. 1. The partial write method wp
11(o

1
1) is

performed on the replica o11 since the version number v1
1 of the replica o11 is

the maximum in the w-quorum T1.Q
wp

1 (o1)
1 , i.e. v1

1 (= 2) > v2
1 (= 1). Then, the

version number v1
1 is incremented by one, i.e. v1

1 = 3. The updated data and
version number v1

1 (= 3) are sent to the replica o21. In the traditional quorum-
based locking protocol, data and version number of the replica o21 are replaced
with the newest values as soon as the replica o21 receives the updated data and
version number, i.e. the partial write method wp

21(o
2
1) is performed on the replica

o21. In the IEEQS algorithm, the version number of the replica o21 is replaced with
the newest value but data of the replica o21 is not replaced with the newest values
until the next method is performed on the replica o21. This means that the partial
write method wp

21(o
2
1) to replace data of a replica o21 is delayed until the next

method is performed on the replica o21. Suppose a pair of replicas o21 and o31 are
locked by a transaction T2 with lock mode μ(w) and a full write methods wf

2 (o1)
is issued to a w-quorum T2.Q

wp
2 (o1)

1 = {o21, o31} after the transaction T1 commits.
The full write method wf

22(o
2
1) issued by the transaction T2 is performed on

the replica o21 since the version number v2
1 is the maximum in the w-quorum

T2.Q
wp

2 (o1)
1 , i.e. v2

1 (= 3) > v3
1 (= 2). Here, the partial write method wp

21(o
2
1)

issued by the transaction T1 is meaningless since the full write method wf
22(o

2
1)

issued by the transaction T2 absorbs the partial write method wp
21(o

2
1) on the

replica o21. Hence, the full write method wf
22(o

2
1) is performed on the replica o21

without performing the partial write method wp
21(o

2
1) and the version number

of the replica o21 is incremented by one, i.e. v2
1 = 4. That is, the meaningless

method wp
21(o

2
1) is omitted on the replica o21.

178 T. Enokido et al.

Fig. 1. Example of meaningless methods Fig. 2. Execution of read methods.

Suppose a pair of replicas o21 and o31 are locked by a transaction T2 with
lock mode μ(r) and a read method r1(o1) is issued to a r-quorum T2.Q

r1(o1)
1 =

{o21, o31} after the transaction T1 commits as shown in Fig. 2. The transaction T2

reads data in the replica o21 since the version number v2
1 is the maximum in the

r-quorum T2.Q
r1(o1)
1 , i.e. v2

1 (= 3) > v3
1 (= 2). Here, the partial write method

wp
21(o

2
1) issued by a transaction T1 has to be performed before the read method

r22(o21) is performed since the read method r22(o21) has to read data written by
the partial write method wp

21(o
2
1).

Let oq
h.DW be a write method wti(o

q
h) issued by a transaction Ti to replace

data of a replica oq
h in a server st with the updated data dh, which is waiting for

the next method op to be performed on the replica oq
h. Suppose a transaction Ti

issues a method op to a quorum Qop
h for manipulating an object oh. The method

op(oh) is performed on a replica oq
h whose version number is the maximum in

the quorum Qop
h . In the IEEQS algorithm, the method op is performed on the

replica oq
h whose version number is the maximum in the quorum Qop

h by the
following IEEQS Perform procedure:

IEEQS Perform(op(oq
h)) {

if op(oq
h) = r, {

if oq
h.DW = φ, perform(op(oq

h));
else { /* oqh.DW �= φ */

perform(oq
h.DW); perform(op(oq

h)); oq
h.DW = φ;

}
}
else { /* op = w */

vq
h = vq

h + 1;
if oq

h.DW
= φ and oq
h.DW is not meaningless, {

perform(oq
h.DW); perform(op(oq

h)); oq
h.DW = φ;

}
else perform(op(oq

h)); /* oqh.DW = φ or oqh.DW method is omitted */

vq
h and updated data dh are sent to every replica oq′

h in a quorum Qop
h ;

}
}

Energy-Efficient Quorum Selection Algorithm 179

Each time a replica oq′
h in a write quorum Qw

h receives the newest version
number vq

h and updated data dh from another replica oq
h as a result obtained

by performing a write method wti(o
q
h), the replica oq′

h manipulate the version
number vq

h and updated data dh by the following IEEQS Replace procedure:

IEEQS Replace(vq
h, dh, wti(o

q
h)) {

vq′
h = vq

h;
if oq′

h .DW = φ, oq′
h .DW = wti(o

q
h);

else { /* oq
′

h .DW �= φ */

if wti(o
q
h) absorbs oq′

h .DW , oq′
h .DW = wti(o

q
h);

else {
perform(oq′

h .DW); oq′
h .DW = wti(o

q
h);

}
}

}

4 Evaluation

4.1 Environment

We evaluate the IEEQS algorithm in terms of the average execution time of each
transaction, the average number of aborted transactions, and the total electric
energy of a server cluster S compared with the EEQS algorithm. A homogeneous
server cluster S which is composed of ten homogeneous servers s1, . . . , s10 (n =
10) is considered. In the server cluster S, every server st (t = 1, . . . , 10) follows
the same data access model and power consumption model as shown in Table 2.
Parameters of each server st are given based on the experimentations [8]. There
are fifty objects o1, . . . , o50 in a system. The size of data in each object oh is
randomly selected between 50 and 100 [MB]. Each object oh supports read (r),
full write (wf), and partial write (wp) methods. The total number of replicas
for every object is five, i.e. nR(oh) = 5. Replicas of each object are randomly
distributed on five servers in the server cluster S. The quorum numbers nQw

h

and nQr
h on every object oh are three, respectively, i.e. nQw

h = nQr
h = 3.

Table 2. Homogeneous cluster S

Server st maxRRt maxWRt rwt wrt minEt WEt REt

st 80 [MB/sec] 45 [MB/sec] 0.5 0.5 39 [W] 53 [W] 43 [W]

The number m of transactions are issues to manipulate objects. Each trans-
action issues three methods randomly selected from one-hundred fifty methods
on the fifty objects. The total amount of data of an object oh is fully written by

180 T. Enokido et al.

each full write (wf) method. On the other hand, a half size of data of an object
oh is written and read by each partial write (wp) and read (r) methods. The
starting time of each transaction Ti is randomly selected in a unit of one second
between 1 and 360 [sec].

4.2 Average Execution Time of Each Transaction

Let ETi be the execution time [sec] of a transaction Ti where the transaction Ti

commits. Suppose a transaction Ti starts at time sti and commits at time eti.
The execution time ETi of the transaction Ti is eti − sti [sec]. The execution
time ETi for each transaction Ti is measured ten times for each total number m
of transactions (0 ≤ m ≤ 1,000). Let ET tm

i be the execution time ETi obtained
in tm-th simulation. The average execution time AET [sec] of each transaction
for each total number m of transactions is

∑10
tm=1

∑m
i=1 ET tm

i /(m · 10).
Figure 3 shows the average execution time AET [sec] of the m transactions

in the IEEQS and EEQS algorithms. In the IEEQS and EEQS algorithms, the
average execution time AET increases as the total number m of transactions
increases since more number of transactions are concurrently performed. For 0
< m ≤ 1,000, the average execution time AET can be more reduced in the IEEQS
algorithm than the EEQS algorithm. In the IEEQS algorithm, each transaction
can commit without waiting for performing meaningless methods. Hence, the
average execution time of each transaction can be more reduced in the IEEQS
algorithm than the EEQS algorithm.

Fig. 3. Average execution time AET
[sec] of each transaction.

Fig. 4. Average number of aborts for
each transaction

4.3 Average Number of Aborted Transaction Instances

If a transaction Ti could not lock every replica in an r-quorum Qr
h or w-quorum

Qw
h , the transaction Ti aborts. Then, the transaction Ti is restarted after

δ time units. The time units δ [sec] is randomly selected between twenty and
thirty seconds in this evaluation. Every transaction Ti is restarted until the trans-
action Ti commits. Each execution of a transaction is referred to as transaction

Energy-Efficient Quorum Selection Algorithm 181

instance. We measure how many number of transaction instances are aborted
until each transaction commits. Let ATi be the number of aborted instances of
a transaction Ti. The number ATi of aborted instances for each transaction Ti

is measured ten times for each total number m of transactions (0 ≤ m ≤ 1,000).
Let AT tm

i be the number ATi of aborted transaction instances obtained in tmth
simulation. The average number AAT of aborted instances of each transaction
for each total number m of transactions is

∑10
tm=1

∑m
i=1 AT tm

i /(m · 10).
Figure 4 shows the average number AAT of aborted transaction instances to

perform the total number m of transactions in the IEEQS and EEQS algorithms.
The more number of transactions are concurrently performed, the more number
of transactions cannot lock replicas. Hence, the number of aborted transactions
instance increases in the IEEQS and EEQS algorithms as the total number m of
transactions increases. For 0 < m ≤ 1,000, the average number AAT of aborted
instances of each transaction can be more reduced in the IEEQS algorithm than
the random algorithm. The average execution time of each transaction can be
reduced in the IEEQS algorithm than the EEQS algorithm. As a result, the
number of aborted transactions can be more reduced in the IEEQS algorithm
than the EEQS algorithm since the number of transaction to be concurrently
performed can be reduced.

4.4 Average Total Energy Consumption of a Server Cluster

Let TECtm be the total electric energy [J] to perform the number m of transac-
tions (0 ≤ m ≤ 1,000) in the server cluster S obtained in the tm-th simulation.
The total electric energy TECtm is measured ten times for each number m of
transactions. Then, the average total electric energy ATEC [J] of the server
cluster S is calculated as

∑10
tm=1 TECtm/10 for each number m of transactions.

Fig. 5. Average total energy consumption (ATEC) [KJ].

Figure 5 shows the average total electric energy ATEC of the server cluster
S to perform the number m of transactions in the IEEQS and EEQS algorithms.
For 0 ≤ m ≤ 1,000, the average total electric energy ATEC of the server cluster
S can be more reduced in the IEEQS algorithm than the EEQS algorithm.

182 T. Enokido et al.

In the IEEQS algorithm, meaningless methods are omitted on each replica. In
addition, the average execution time and the number of aborted instances of
each transaction can be more reduced in the IEEQS algorithm than the EEQS
algorithm. As a result, the average total electric energy ATEC of the server
cluster S can be more reduced in the IEEQS algorithm than the EEQS algorithm.

Following the evaluation, the total electric energy of a server cluster, the aver-
age execution time of each transaction, and the number of aborted transactions
in the IEEQS algorithm can be reduced than the EEQS algorithm, respectively.
Hence, the IEEQS algorithm is more useful than the EEQS algorithm.

5 Concluding Remarks

In this paper, we newly proposed the Improved EEQS (IEEQS) algorithm to
reduce the total electric energy of a server cluster in the quorum-based locking
protocol by omitting meaningless methods. We evaluated the IEEQS algorithm
compared with the EEQS algorithm. The evaluation results show the total elec-
tric energy of a server cluster, the average execution time of each transaction,
and the number of aborted transactions can be more reduced in the IEEQS algo-
rithm than the EEQS algorithm. Following the evaluation, the IEEQS algorithm
is more useful than the EEQS algorithm.

References

1. Object Management Group Inc.: Common object request broker architecture
(CORBA) specification, version 3.3, part 1 - interfaces (2012). http://www.omg.
org/spec/CORBA/3.3/Interfaces/PDF

2. Schneider, F.B.: Replication management using the state-machine approach. In:
Distributed Systems, 2nd edn. ACM Press (1993)

3. Sawamura, S., Barolli, A., Aikebaier, A., Enokido, T., Takizawa, M.: Design and
evaluation of algorithms for obtaining objective trustworthiness on acquaintances
in P2P overlay networks. Int. J. Grid Utility Comput. (IJGUC) 2(3), 196–203 (2011)

4. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading (1987)

5. Gray, J.N.: Notes on database operating systems. In: Operating Systems, vol. 60,
pp. 393–481 (1978)

6. Tanaka, K., Hasegawa, K., Takizawa, M.: Quorum-based replication in object-based
systems. J. Inf. Sci. Eng. 16(3), 317–331 (2000)

7. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. J.
ACM 32(4), 814–860 (1985)

8. Sawada, A., Kataoka, H., Duolikun, D., Enokido, T., Takizawa, M.: Energy-aware
clusters of servers for storage and computation applications. In: Proceedings of
the 30th IEEE International Conference on Advanced Information Networking and
Applications (AINA-2016), pp. 400–407 (2016)

9. Enokido, T., Duolikun, D., Takizawa, M.: Energy-efficient Quorum selection algo-
rithm for distributed object-based systems. In: Proceedings of the 11th International
Conference on Conference on Complex, Intelligent, and Software Intensive Systems,
(CISIS-2017), pp. 32–42 (2017)

http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF

	Improved Energy-Efficient Quorum Selection Algorithm by Omitting Meaningless Methods
	1 Introduction
	2 System Model
	2.1 Objects and Transactions
	2.2 Quorum-Based Locking Protocol
	2.3 Data Access Model
	2.4 Power Consumption Model of a Server

	3 Improved EEQS (IEEQS) Algorithm
	3.1 Quorum Selection
	3.2 Meaningless Methods
	3.3 Omitting Meaningless Methods

	4 Evaluation
	4.1 Environment
	4.2 Average Execution Time of Each Transaction
	4.3 Average Number of Aborted Transaction Instances
	4.4 Average Total Energy Consumption of a Server Cluster

	5 Concluding Remarks
	References

