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12.1 Introduction

Plant growth in its entire lifetime is challenged by many biotic and abiotic stresses.
The abiotic stresses may be extremes of temperature, salt, high light, flooding,
drought, presence of toxic metals and organic contaminants, radiation, and
wounding, and the biotic stresses may include insect predation and attack by various
pathogens like viruses, bacteria, and fungi (Abeles et al. 1992). Most of the adverse
effects of stress on plant metabolism occurs in the form of osmotic stress or salt
toxicity, ROS production, ethylene production, and nutrient imbalance, which
overall affect the plant physiology and inhibit seedling growth, vigor, flowering,
and fruit setting (Sairam and Tyagi 2004).

Soil which adheres the plant and provides water and nutrients is rich in microbial
diversity. The soil microbial diversity includes the bacteria, actinomycetes, fungi,
algae, and protozoa. A fertile soil per gram contains 9 � 107 bacteria, 4 � 106

actinomycetes, 2 � 105 fungi, 3 � 104 algae, 5 � 103 protozoa, and 3 � 101

nematodes (Alexander 1991). The rhizospheric bacterial count is 10–1000 times
higher than the count in bulk soil as the root exudates contain carbohydrates (sugars
and oligosaccharides), organic acids, vitamins, nucleotides, flavonoids, enzymes,
hormones, and volatile compounds that diffuse into the rhizosphere and support
microbial growth and activity. Plant growth-promoting rhizobacteria (PGPR) are a
group of free-living saprophytic bacteria living in plant rhizosphere that aggressively
colonize the root system and promote plant growth and act as biocontrol agents
against plant diseases (Kloepper and Beauchamp 1992). Plant growth-promoting
bacteria promote plant growth and development through many direct and indirect
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mechanisms. The indirect mechanisms include their ability to act as biocontrol agent
on phytopathogens, and the direct include fixation of nitrogen, enhanced nutrient
uptake through iron sequestration and phosphate solubilization, and production of
hormones like indole-3-acetic acid (IAA) and cytokinin (Glick et al. 1999). Plant
growth-promoting rhizobacteria elicit the so-called induced systemic tolerance (IST)
in plants under different abiotic stresses by altering the plant metabolism. Production
of IAA is a common growth-promoting trait observed in up to 80% of the soil
bacteria and bacterial endophytes (Patten and Glick 1996). Besides the above
benefits, PGPR also benefit the plants by lowering plant ethylene levels through
the activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme pre-
sent in them (Glick et al. 1998). The ethylene level gets elevated during stresses
which may be abiotic like temperature, salt, high light, flooding, drought, toxic
metals, organic contaminants, and radiation or biotic like attack of viruses, bacteria,
and fungi (Abeles et al. 1992). Ethylene was originally regarded as a “stress
hormone” due to its accelerated synthesis by plant in response to stress signals
(Kende 1993; Johnson and Ecker 1998). Ethylene hormone induces physiological
changes in plant growth like overcoming dormancy, differentiation, formation of
adventitious roots, abscission of leaf and fruit, induction of flowering and femaleness
in dioecious plants, senescence, and fruit ripening (Arshad and Frankenberger 2002;
Owino et al. 2006). However, high level of ethylene leads to senescence and
abnormal root growth. As ethylene production in plant roots gets accelerated
under biotic and abiotic stress factors which have an inhibitory effect on root growth
which in turn leads to abnormal plant growth, it becomes vital to regulate the
ethylene production in the rhizosphere of plant to achieve normal growth and
development. Bacterial strains with ACC deaminase activity are capable of over-
coming the ethylene-induced negative responses in plants to a great extent. Bacterial
ACC deaminase activity is a widespread character of the rhizospheric bacteria most
commonly observed in bacteria residing in stressful conditions (Timmusk et al.
2011). ACC deaminase activity of bacteria endows plants with the capability to
withstand the stress better and therefore survive in harsh environmental conditions.
Inoculation with PGPR containing ACC deaminase activity has come up as an
alternative sustainable approach in improving plant growth and development under
stress conditions by reducing stress-induced ethylene production.

12.2 Mechanism of Action

Ethylene is an endogenously produced gaseous plant growth hormone by plants.
Plants undergoing any stressed situation show an increased production of ethylene,
and for this reason it is also known as a stress hormone. On the onset of stress, an
initial small peak of ethylene of low magnitude for a few hours is observed, and then
a second much larger peak of high magnitude for 1–3 days is observed (Stearns and
Glick 2003; Pierik et al. 2006; Van Loon et al. 2006). The second peak initiates
protective response in plants, like transcription of pathogenesis-related genes and
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acquired resistance (Ciardi et al. 2000; Van Loon and Glick 2004). The second
ethylene peak is so large that processes such as senescence, chlorosis, and abscission
are initiated, the overall effect of which is generally inhibitory to plant survival. Plant
can be released from the inhibitory levels of ethylene by degrading its precursor like
S-adenosylmethionine (derived from L-methionine) or ACC, which effectively
reduces the ethylene levels. Among these, the enzymes ACC deaminase, S-
adenosylmethionine (SAM) hydrolase, and SAM decarboxylase are much being
worked on.

Normally the root exudates are estimated to contain 5–30% of the photosynthet-
ically fixed carbon. The plant root exudates contain tryptophan which is taken by the
rhizospheric bacteria and used as a precursor in the synthesis of indole-3-acetic acid
(IAA), some of which is taken up by the plant. This bacterial IAA together with
endogenously synthesized plant IAA stimulates cell proliferation and cell elonga-
tion. It also induces the transcription of ACC synthase which leads to the formation
of 1-aminocyclopropane-1-carboxylic acid (ACC) which is the intermediate precur-
sor of ethylene in higher plants (Yang and Hoffman 1984). Small amount of this
ACC is exuded from the seeds or roots (Penrose et al. 2001; Grichko and Glick
2001a) which may be taken up by the rhizospheric bacteria. The enzyme present in
rhizobacteria ACC deaminase hydrolyzes the ethylene precursor ACC into ammonia
and α-ketobutyrate (Glick et al. 1994, 1998; Mayak et al. 1999; Shaharoona et al.
2006). This activity of the rhizobacteria decreases the amount of ACC, and in turn
the ethylene level, in the spermosphere and rhizoplane and thereby eliminates its
potential inhibitory effects on plants (Glick et al. 1998). Thus the rhizobacterium acts
as a sink for the plant-synthesized ACC (Fig. 12.1). Plants inoculated with PGPR
possessing ACC deaminase activity are relatively more tolerant to environmental
stress (Naveed et al. 2014). When plants get exposed to stress conditions, the
gaseous hormone ethylene endogenously regulates plant homeostasis, resulting in
reduced root and shoot growth.

The increased ethylene levels in plant cause a feedback inhibition of the IAA
signal transduction pathway and thereby limit the ACC synthase transcription (Burg
and Burg 1966; Glick et al. 2007) by IAA. Bacteria capable of synthesizing IAA and
possessing ACC deaminase activity are more beneficial in plant growth promotion
as they do not allow the elevated levels of ethylene being formed in the plants. This
prevents feedback inhibition of IAA signal transduction by ethylene, and the plant
growth continues in response to the auxin.

12.3 Biochemistry of ACC Deaminase

ACC deaminase belongs to the tryptophan synthase beta superfamily of pyridoxal
phosphate-binding proteins (Glick et al. 2007). ACC deaminase is a multimeric
enzyme that is cytoplasmically localized. ACC deaminase subunit mass is approx-
imately 35–42 kD, while its native size is estimated to be approximately 100–112 kD
(Sheehy et al. 1991; Jacobson et al. 1994; Hontzeas et al. 2004a). The affinity of this
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enzyme for the substrate is not particularly high (Km¼ 1.5–6.0 mM). The coenzyme
pyridoxal phosphate is a cofactor of ACC deaminase (Honma 1985), and even ACC
synthase, the enzyme that catalyzes the formation of ACC, requires pyridoxal
phosphate for its enzyme activity. ACC deaminase enzyme is present in bacteria at
a very low amount, and at the same time, ACC oxidase has a much higher affinity for
ACC compared to ACC deaminase (Glick et al. 1998). The ethylene levels in
bacteria depend upon the ratio of the two, i.e., ACC oxidase and ACC deaminase
(Glick et al. 1998). However, ACC deaminase synthesis is induced by ACC, at levels
as low as 100 nM (Jacobson et al. 1994), with full induction requiring up to 10 h. The

Fig 12.1 A schematic model of interactions between plant gene expression and ACC deaminase-
producing bacteria during stress
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amino acids L-Ala, DL-Ala, and DL-Val can also induce enzyme activity to a small
extent, and g-aminoisobutyric acid can induce activity to almost the same level as
ACC (Honma 1983). Maximal enzyme activity typically occurs at 30 �C and pH 8.5.
The affinity for the substrate ACC and the competitive inhibitors L-Ala and L-Ser is
also highest at pH 8.5 (Hontzeas et al. 2006). acdS genes that have been traced in
some stramenopiles, bacteria, and various fungi (Ascomycota and Basidiomycota)
are believed to have a common ancestor (Nascimento et al. 2014). The genes are
commonly transmitted vertically in various microorganisms, and occasional hori-
zontal gene transfer is also observed including inter-kingdom transfer events. ACC
deaminase genes (including both the structural gene acdS and the regulatory gene
acdR) have been found in many different rhizobacteria (rhizospheric, endophytic,
and rhizobia), including Azospirillum spp., Rhizobium spp., Agrobacterium spp.,
Achromobacter spp., Burkholderia spp., Ralstonia spp., Pseudomonas spp., and
Enterobacter spp. (Blaha et al. 2006). More importantly, even if some strains of a
particular genus and species have an acdS gene, not all strains do.

12.4 Role of ACC Deaminase Bacteria in Ameliorating
Various Stress Responses in Plants

A common invariable observation in plants exposed to stress is an increased ethylene
level, which leads to damage. Ethylene production upregulates in response to the
presence of metals, organics, salt, temperature extremes, drought, ultraviolet light,
damage by insects, nematode, and phytopathogens (Abeles et al. 1992). The second
ethylene peak observed in plants exposed to stress is more detrimental to plant
growth as this initiates processes such as senescence, chlorosis, and leaf abscission.
Any treatment whether it is chemical or biological that lowers the magnitude of the
second peak of ethylene reduces the damage caused to the plant as a stress conse-
quence. Microorganisms exhibit wide range (>100-fold) in ACC deaminase activ-
ity, and it has been observed that organisms that express high ACC deaminase are
beneficial as they are nonspecific toward their host (Glick 2005). This group
encompasses most of the rhizospheric and phyllospheric microbes along with the
endophytes. Such microbes reduce the ethylene by acting as a sink for ACC
produced as a consequence of stress. Addition of an ACC deaminase producing
PGPR and its negative mutant strain in canola roots (Hontzeas et al. 2004b) showed
down regulation of genes involved in ethylene induced plant stress responses and
up-regulation of genes involved in plant growth. The results supported that plant
growth-promoting bacteria expressing ACC deaminase are able to overcome the
stress response in plants. Different ACC deaminase-producing bacteria have been
demonstrated for their efficacy in protecting plants against yield loss induced by
various abiotic stresses as listed in Table 12.1.
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Table 12.1 Reports on PGPR showing alleviation of abiotic stress impacts on plants mediated by
ACC deaminase activity

S. no. ACC deaminase-producing bacteria
Abiotic
stress Host plant References

1 Achromobacter piechaudii ARV8 Drought,
salt

Lycopersicon
esculentum

Mayak et al.
(2004a, b)

2 Achromobacter xylosoxidans (SF2),
Bacillus pumilus (SF3 and SF4)

Drought Helianthus
annuus

Castillo et al.
(2013)

3 Azospirillum brasilense Drought Phaseolus
vulgaris

German et al.
(2000)

4 Azospirillum brasilense Sp245 Drought Triticum
aestivum

Creus et al.
(2004)

5 Azospirillum lipoferum AZ1,
A. lipoferum AZ9, A. lipoferum AZ45

Drought Triticum
aestivum

Arzanesh et al.
(2011)

6 Bacillus cereus strain AR156,
B. subtilis strain SM21, Serratia
sp. Strain XY21

Drought Cucumis
sativus

Wang et al.
(2012)

7 Bacillus subtilis Drought Trigonella
foenum-
graecum

Barnawal et al.
(2013)

8 Bacillus subtilis B26 Drought Phleum
pratense

Bourque et al.
(2016)

9 Bacillus licheniformis K11 Drought Capsicum
annuum

Lim and Kim
(2013)

10 Burkholderia phytofirmans PsJN,
Enterobacter sp. FD17

Drought Zea mays Naveed et al.
(2014)

11 Paenibacillus polymyxa Drought Arabidopsis Timmusk and
Wagner (1999)

12 Proteus penneri strain (Pp1), Pseu-
domonas aeruginosa strain (Pa2),
Alcaligenes faecalis strain (AF3)

Drought Zea mays Naseem and
Bano (2014)

13 Pseudomonas aeruginosa GGRJ21 Drought Vigna radiata Sarma and
Saikia (2014)

14 P. fluorescens ACC-5 Drought Pisum
sativum

Zahir et al.
(2008)

15 Pseudomonas sp. Drought Pisum
sativum

Arshad et al.
(2008)

16 Pseudomonas syringae, Pseudomo-
nas fluorescens

Drought Zea mays Zafar-ul-Hye
et al. (2014)

17 Variovorax paradoxus 5C-2 Drought Pisum
sativum

Jiang et al.
(2012)

18 Arthrobacter protophormiae Salt Pisum
sativum

Barnawal et al.
(2014)

19 Brachybacterium
paraconglomeratum SMR20

Salt Chlorophytum Barnawal et al.
(2016)

20 Enterobacter hormaechei Salt Lycopersicon
esculentum

Egamberdieva
et al. (2014)

21 P. fluorescens YsS6 Salt Lycopersicon
esculentum

Ali et al. (2014)

(continued)
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Table 12.1 (continued)

S. no. ACC deaminase-producing bacteria
Abiotic
stress Host plant References

22 Pseudomonas putida Salt Vigna radiata Mayak et al.
(1999)

23 Pseudomonas sp. ST3 Salt Vigna
unguiculata

Trung et al.
(2016)

24 P. putida UW4 Salt Lycopersicon
esculentum

Yan et al.
(2014)

25 Pseudomonas putida UW4 Salt Brassica
napus

Cheng et al.
(2007)

26 Pseudomonas fluorescens Salt Arachis
hypogea

Saravanakumar
and
Samiyappan
(2007)

27 Bacillus licheniformis HSW-16 Salt Triticum
aestivum

Singh and Jha
(2016)

28 Pseudomonas putida UW4 Flood Lycopersicon
esculentum

Grichko and
Glick (2001a)

29 P. fluorescens REN1 Flood Oryza sativa Etesami et al.
(2014)

30 Alcaligenes sp., Bacillus pumilus Heavy
metals

Brassica
napus

Belimov et al.
(2001)

31 E. cloacae CAL2 Arsenate Brassica
napus

Nie et al. (2002)

32 Enterobacter intermedius MH8b Zn toxicity Sinapis alba Płociniczak
et al. (2013)

33 Kluyvera ascorbata SUD165 Nickel Brassica
napus

Burd et al.
(1998)

34 P. putida UW4, P. putida HS-2 Nickel Brassica
napus

Farwell et al.
(2007)

35 K. ascorbata SUD165/26 Lead Lycopersicon
esculentum

Burd et al.
(2000)

36 Sinorhizobium sp. Pb002 Lead Brassica
juncea

Di Gregorio
et al. (2006)

37 Burkholderia sp. J62 Lead Lycopersicon
esculentum

Jiang et al.
(2008)

38 Pseudomonas koreensis AGB-1 Cd, AS,
Cu, Pb and
Zn toxicity

Miscanthus
sinensis

Babu et al.
(2015)

39 Variovorax paradoxus Cadmium Brassica
juncea

Belimov et al.
(2005)

40 Burkholderia phytofirmans PsJN Low
temperature

Vitis vinifera Ait Bakra et al.
(2006)

41 P. putida Low
temperature

Lycopersicon
esculentum

Cheng et al.
(2007)

42 Enterobacter aerogenes NBRIK24 Fly-ash soil Brassica
juncea

Kumar et al.
(2008)
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12.4.1 Salt Stress

Salinity, which was a natural feature of ecosystems in arid and semiarid regions, has
now become a major constrain due to the anthropogenic activities, primarily due to
irrigation of agricultural fields (Abrol et al. 1988). Of the total global cultivable area,
20% is under salinity stress, and this is continuously increasing as a direct conse-
quence of irrigation (Flowers 2004). Around 800 million hectares of land is esti-
mated to be affected by salinity throughout the world (FAO 2008). Salinity stress
creates an oxidative burst in cells resulting in an increased accumulation of reactive
oxygen species (ROS) which affects the plasma membrane, cell metabolism, and
homeostasis. Salt stress imbalances the ethylene production and causes its
overproduction which accelerates leaf and petal abscission and organ senescence,
leading to premature death (Cheng et al. 2007; Mayak et al. 2004a, b; Zahir et al.
2009).

Reducing the ethylene level, one can alleviate some of the effects of stresses on
plants (Glick 2004). Plant losses approximately 40% of photosynthates, through root
exudates (Lynch and Whipps 1991), and it has been estimated that during stress
much of the released carbon is in the form of ACC, which is a precursor of ethylene,
and is exuded from plant roots (Bayliss et al. 1997). Thus, PGPR, with ACC
deaminase activity, can be used to convert ACC to ammonia and α-ketobutyrate
that are used up by the plant as a nitrogen source simultaneously reducing the
negative effects of salinity stress (Cheng et al. 2007; Mayak et al. 2004a, b; Zahir
et al. 2009). However, the efficiency of PGPR depends on environmental factors
such as the climate, weather conditions, soil characteristics, and interaction with
other indigenous microbial flora in the soil (Giongo et al. 2008; Sinha and
Raghuwanshi 2015). Salt-tolerant ACC deaminase-producing bacteria can survive
well in a saline environment, and their beneficial properties help plants to overcome
stress effects (Mayak et al. 2004a, b). Halotolerant bacteria are a group of microor-
ganisms able to grow in media containing a wide range of NaCl up to 1–33% or in
the absence of NaCl (Larsen 1986). A significant decrease in the level of ethylene
was observed in tomato plants exposed to high salt concentration on inoculation with
Achromobacter piechaudii ARV8, an isolate obtained from the rhizosphere of
Lycium shawii plant wildly growing in the Arava region of Israel (Mayak et al.
2004b). The inoculated tomato seedlings showed an increased fresh and dry weight,
but this however did not reduce the content of sodium in the plant. Plants inoculated
with Achromobacter piechaudii ARV8 had four times higher biomass compared to
controls, as there was a significant reduction of the ethylene level (Mayak et al.
2004b). Similar effect of the bacterial strain, i.e., lowering the ethylene level, was
observed in peppers and tomatoes growing under drought stress (Mayak et al.
2004a). Studies done on maize plant growing in saline–sodic soil when treated
with fertilizer along with ACC deaminase-producing Pseudomonas strains showed
198% augmented plant dry weight (Zafar-ul-Hye et al. 2014). Studies done on wild-
type bacterial endophytes showed protection against salt stress in plants by limiting
the buildup of salt and thereby improving plant survival. Inoculating ACC
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deaminase bacteria do not alter the sodium level in plants, but the uptake of
phosphorous and potassium gets slightly increased, which supports plant growth
under salt stress. Similar reports by Saravanakumar and Samiyappan (2007) revealed
Pseudomonas fluorescens strain TDK1 possessing ACC deaminase activity not only
enhanced the resistance toward salinity in groundnut plants but also increased yield.
Compared to mutant-inoculated or non-inoculated plants, the plants inoculated with
ACC deaminase-producing strain show augmented level of chlorophyll content.
High chlorophyll content has been linked with stress tolerance in many plants
(Vurukonda et al. 2016). Encouraging results were also obtained by the tripartite
interaction of Arthrobacter protophormiae, Rhizobium leguminosarum, and Glomus
mosseae which increased plant weight by 53%, reduced proline content and lipid
peroxidation, and increased pigment content under 200 mM salt condition
(Barnawal et al. 2013). Inoculating plants with wild-type ACC deaminase-producing
strain tend to prevent salt buildup in plant tissues; however, few contradictory results
have also been observed where more salt was deposited per gram of dry biomass in
the plants inoculated with the ACC deaminase-producing strains. Study done to
evaluate the growth of canola in the presence of wild-type ACC deaminase-
containing plant growth-promoting rhizospheric bacterium P. putida UW4 showed
the accumulation of much higher concentrations of sodium in the shoots compared to
the plants treated with ACC deaminase mutants (Cheng et al. 2007).

Pea crop has been reported to suffer approximately 50% yield loss at 100 mM
NaCl (Subbarao and Johansen 1994). Ethylene formed in response to salt stress
inhibits the development of rhizobial infection threads in Pisum sativum cv. Sparkle
(Lee and LaRue 1992). Plants undergoing symbiotic association with microbes, like
Rhizobium, and mycorrhizal fungi also show a slight increase in ethylene levels
during the establishment period. As the nitrogen fixation is a high energy-demanding
process, there are fair chances of ethylene production by the plant, which may lead to
nodule senescence (Murset et al. 2012). During this period the ACC deaminase-
producing bacteria residing in the rhizosphere help in establishment of symbiosis by
locally lowering the ethylene levels.

Thus effects of soil salinity on crop productivity can be alleviated by bacterial
inoculations having ACC deaminase activity. Microbe-assisted plant stress manage-
ment has emerged as an important strategy, and their role in improving growth and
productivity has been well established (Venkateswarlu et al. 2008; Yang et al. 2009).

12.4.2 Waterlogging Stress

Soil flooding or waterlogging causes major changes in the normal functioning of
plant roots (Jackson and Drew 1984) as the gas diffusion rates get reduced in flooded
soil (Jackson 1985), and at the same time, respiration by microorganisms and plant
roots leads to a rapid buildup anaerobic conditions in the soil. Anaerobic conditions
of the soil lead to toxicity primarily due to Fe2+, Mn+ and sulfide and due to
accumulated gases like carbon dioxide, methane, ethane, and ammonia (Ernst
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1990). This also affects some of the vital processes like ion uptake in root (Jackson
and Drew 1984). These stressful conditions trigger the synthesis of enzyme ACC
synthase as well as other stress proteins in the plant which elevate the level of ACC
in its roots (Li et al. 2012). This newly synthesized ACC cannot be converted to
ethylene in the roots, as ethylene synthesis requires oxygen, so the ACC is
transported to the shoots where under aerobic environment the ACC gets converted
into ethylene (Bradford and Yang 1980; Else and Jackson 1988) causing epinasty
(wilting), leaf chlorosis, necrosis, and stunted growth. Accumulation of ethylene in
plants may also lead to adoptive response like shoot elongation (Voesenek and Blom
1989) and formation of aerenchyma (Armstrong et al. 1994), and a few studies also
report the formation of adventitious roots (Drew 1992). Waterlogging induces
several physiological alterations like reduced photosynthetic rate, stomatal closure,
plant growth inhibition, and low yield. A sustainable solution to this problem comes
from the ACC deaminase-producing plant growth-promoting bacteria (Barnawal
et al. 2012; Grichko and Glick 2001a; Li et al. 2013) which mitigate the stress by
lowering the ethylene level in plants and making them more capable to withstand
flood (Saleem et al. 2007). Studies have shown that flooded plants inhabiting ACC
deaminase-producing microbes are able to overcome the flood response partially.
Even plants are genetically engineered to express this enzyme in root-specific
manner resulting in less accumulation of ethylene in the roots and thereby minimiz-
ing the adverse effects of flooding (Grichko and Glick 2001a, b).

12.4.3 Metal and Organic Pollutants

Industrial revolution has accelerated the toxic metal accumulation rate in the bio-
sphere and has come up as a serious current environmental problem. Metal in soil
beyond a limit becomes toxic to plant growth as they interfere with normal growth
and development. Soils dumped with heavy metals also cause a severe stress
induction in plants that leads to the synthesis of stress ethylene up to an inhibitory
level. Plants interact with these heavy metals present in the environment through
phytostabilization, phytoextraction, and phytovolatilization (Pilon-Smits 2005). The
easy and preferred way to get rid of the metals is phytoextraction. Cleaning heavy
metal pollutants through plants, i.e., phytoremediation (Salt et al. 1995), is an
eco-friendly and cost-effective approach compared to the traditional soil remediation
approaches of metal removal through chemical and physical extraction. However,
the limitation lies that not all plants are capable to naturally tolerate and accumulate
heavy metals. Many plants effective in phytoremediation are small sized and slow in
growth, which limit their practical use (Khan et al. 2000). An effective plant to
remediate the soil must be tolerant to one or more pollutants, highly competitive, and
fast growing and produce a high biomass. Healthy and robust plants are preferred as
they have better ability to phytoremediate metal contaminants. The commonly used
plants in heavy metal accumulation belong to the Brassicaceae family (Kumar et al.
1995). The literature is well documented with the role of metal-resistant ACC

312 R. Raghuwanshi and J. K. Prasad



deaminase-producing bacteria in improving plant growth by decreasing the stress
effects due to ethylene. The first report on role of ACC deaminase-containing
bacterium in phytoremediation of nickel-contaminated soil indicated that toxicity
of nickel toward canola plants was reduced in the presence of the bacteria (Burd et al.
1998). Bacteria increased the uptake of Cd in Brassica napus (Sheng and Xia 2006)
and Ni in Alyssum murale (Abou-Shanab et al. 2006). Rhizobial microfloras are
known to affect heavy metals mobility and availability to the plant through release of
chelating agents, acidification, and redox changes (Abou-Shanab et al. 2003; Smith
and Read 1997). The root-associated ACC deaminase-producing bacteria not only
reduce the ethylene levels but also provide multifaceted benefits to the plant (Glick
1995; Glick et al. 1999). Bacteria produce indole-3-acetic acid, siderophores, and
solubilize phosphate, which stimulate plant growth (Glick 1995; Chabot et al. 1996a,
b; Rajkumar et al. 2006). Heavy metal-contaminated soil often become iron
depleted, and this effect of heavy metals can be overcome by inoculating ACC
deaminase and siderophore-producing bacteria (Burd et al. 1998, 2000; Reed and
Glick 2005). Thus, besides reducing the ethylene level in plants, microbes also
enhance the mobility and availability of minerals to the plants (Abou-Shanab et al.
2003; Idris et al. 2004) which improve plant growth.

Treatment of plants with ACC deaminase-producing plant growth-promoting
bacteria not only relieves the plant with the growth inhibition effects of ethylene
but also allows the plant to grow normal and restore the nutrient cycling (Huang et al.
2004, 2005; Reed and Glick 2005; Greenberg et al. 2006). Therefore, bacterial
strains utilized in plant growth promotion under metal stress should be screened
for their abilities to resist the targeted toxic metal, synthesize IAA to promote root
growth (Patten and Glick 2002), secrete siderophore (Burd et al. 2000) that helps
plants to acquire iron from the metal-contaminated soil, and possess ACC deaminase
activity which can prevent the building up of inhibitory levels of ethylene in the
plants (Glick et al. 1998).

Organic pollutants in the soil, if present above a permissible limit, inhibit plant
growth and drag the plant toward senescence by accelerated ethylene production
(Abeles et al. 1992). Phytoremediation has come up as a technology to clean soil
contaminated with organic oil spills, polycyclic aromatic hydrocarbons (PAHs), and
polycyclic biphenyls (PCB), and is being practiced at commercial scale. PGPR
possessing ACC deaminase activity has multifold benefits in phytoremediation of
organic-, metal-, and salt-contaminated soils. Reduction in stress ethylene partially
alleviates the damage caused by the target contaminant (Mayak et al. 2004a, b).
Therefore the growth of plants exposed to organic contaminants in the soil should be
facilitated by the presence of ACC deaminase-containing plant growth-promoting
bacteria. In fact, this strategy of bacterially assisted phytoremediation appears to be
particularly effective for removal and/or degradation of organic contaminants from
impacted soils. Helianthus annuus L. seedlings inoculated with Achromobacter
xylosoxidans (SF2) and Bacillus pumilus (SF3 and SF4) bacterial strains increased
the production of auxins, salicylic acid, abscisic acid, jasmonic acid, as well as the
plant dry matter. High salicylic acid concentration in stressed seedlings played key
role in abiotic stress tolerance (Castillo et al. 2013). Plant growth-promoting bacteria
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improve plant competitiveness and responses in a stressed ecosystem
(Egamberdiyeva and Hoflich 2004).

12.4.4 Drought

Drought stress can adversely affect plant growth and yield and is one of the most
fatal reasons for economic losses in agriculture and forestry. Its affects plant water
relations at the cellular and whole plant levels, altering the plant physiology and
leading to specific and nonspecific phenotype (Pereyra et al. 2009; Arzanesh et al.
2011). In order to combat drought, plants adopt altered gaseous exchange and water
relation strategies (Sinha and Raghuwanshi 2016). Bacteria adhering to plant roots
containing ACC deaminase enzyme hydrolyze ACC and use it as the source of
carbon and nitrogen (Glick 2014), and the process continues until a dynamic
equilibrium between the roots and rhizosphere bacteria is maintained and the
modulated root system starts normal functioning under low water condition. It has
been well documented that inoculation of plants with certain PGPR at seedling stage
improves biomass production through their effects on root system, which enhance
plant growth and yield (Prasad et al. 2017).

Different ACC deaminase-producing bacteria have been demonstrated for their
efficacy in protecting plants against yield loss induced by drought stress
(Table 12.1). Studies done by Mayak et al. (2004a, b) on ACC deaminase PGPR
Achromobacter piechaudii ARV8 showed that during water stress although the
bacterium did not influence the water content of plants, it improved the recovery
of plants when watered. Exposure of Bacillus subtilis-inoculated plants to 8 weeks
drought stress led to significant increase in shoot and root biomass by 26.6 and
63.8%, and the photosynthesis and stomatal conductance too got enhanced by 55.2%
and 214.9%, respectively (Bourque et al. 2016). Azospirillum brasilense sp. 245
uninoculated seeds of Triticum aestivum when sown under drought conditions had a
yield loss of 26.5% and got reduced to 14.1% on inoculation with Azospirillum
brasilense sp. 245. Grain Mg and K diminished in nonirrigated, non-inoculated
plots. Grains harvested from Azospirillum-inoculated plants had significantly higher
Mg, K, and Ca than non-inoculated plants (Creus et al. 2004). Cucumber plants
treated with a consortium of three plant growth-promoting rhizobacterial strains
(Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21) induced
tolerance to drought stress. The treatment decreased the leaf monodehydroascorbate
(MDA) content and increased the leaf proline content and the root recovery intension
by 3.45-fold and 50%, respectively. It also maintained the leaf chlorophyll content in
cucumber plants under drought stress (Wang et al. 2012). Azospirillum lipoferum
strain B3 having phosphate-solubilizing and ACC deaminase activities, when inoc-
ulated in wheat under drought, produced the highest amounts of N and auxin and
increased wheat yield up to 109% (Arzanesh et al. 2011). Many studies have proven
the positive effects of ACC deaminase bacterial activity on plant biomass, leaf area,
and transpiration ratio of plants under drought (Saleem et al. 2007). Inoculation with
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ACC deaminase bacterial activity has restored nodulation in pea plants under
drought which is comparable with the well-irrigated plants (Arshad et al. 2008).

12.5 Conclusion and Future Prospects

It is well proven that bacteria with ACC deaminase activity are potent in improving
plant growth and productivity under varied abiotic stress. Knowing the potentially
serious environmental health damage caused by the excessive use of chemicals and
pesticides in the agricultural sector, we need a major paradigm shift in agricultural
practices. As the cost of engineering and developing transgenic plants that are able to
defend well the variety of pathogens and other abiotic stresses, it is rather econom-
ical to isolate and screen an efficient plant growth-promoting bacterium able to
combat the adverse conditions. The major challenge in the large-scale application
of these bacteria is their survival under varied geographical and harsh environmental
conditions, but a potential solution to the problem can be the exploitation of a potent
endophytic plant growth-promoting bacteria. Unrevealing the fundamental mecha-
nism of action of these bacteria will facilitate the wider application of this technology
and overcome the bottleneck.
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