
Chapter 3
Converging Shocks

3.1 Introduction

We started this book by giving some examples of shock waves that each one of
us has experienced many times. One example of such events is lightning followed
by a thunder. Extremely hot air produced by lightning functions as a piston as it
rapidly expands into the cool surrounding air and creates an outgoing shock. The
shock strength decreases as the shock expands and is transformed into a sound wave
producing low rumbling that we call thunder. In terms of energy, one can say that a
very high initial energy density produced by a thin streak of lightning is spread over
a large volume of surrounding air with a much lower-energy concentration. But is it
possible to reverse this process? Is it possible to transform thunder into lightning? At
the first glance, this seems to belong more to the realm of science fiction. However,
as we shall see later in this chapter, this is achieved experimentally by “collecting”
energy spread over a large volume into a tiny spot through shock focusing.

Figure 3.1a shows an initial burst of energy produced by a lightning generating
a shock wave. In Fig. 3.1b we can see a 5 mm high and 0.1 mm thick streak of
glowing argon gas obtained as a result of a reverse process when initial energy of
the shock wave generated in a shock tube is focused at the center of the cylindrical
test chamber of the tube. The initial energy produced in the shock tube is here
concentrated in a tiny volume producing temperatures in excess of 6000 K in
compressed argon gas. Later in this chapter, we will describe this experiment along
other shock focusing experiments with a substantially more powerful spherical
shock convergence producing glowing argon plasma with temperatures in excess
of 30,000 K as well as shock focusing in liquids leading to extreme pressures able
to disintegrate metal at the focal region.

In this chapter we will consider complex, highly-nonlinear physical mechanisms
governing convergence and focusing of strong shocks in gases and liquids. Why
shocks? Shocks are closely connected to high-energy density. A shock or a blast
wave is often created by an abrupt release of energy confined in space. Oppositely,
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Fig. 3.1 (a) Common occurrences of shock waves in nature: lightning in the evening sky, from
pixabay.com. (b) Radiation from 5 mm high, 0.1 mm thick streak of glowing argon gas at the
center of a cylindrical test section of a shock tube, (a) As stands. (b) Reproduced from [65], with
the permission of AIP Publishing

an already existing shock, propagating in a medium when confined to a small
volume, has a potential to increase in strength and generate very high-energy
concentration. This is manifested by extreme temperatures and pressures in, e.g.,
gas that are hard or even impossible to achieve by other methods. These extreme
conditions may result in human injuries and substantial material damage when
occurring uncontrolled or may be used with advantage if monitored in a well-defined
environment. If this is so, is this not a perfect way to obtain an ever-increasing
energy density by, for example, focusing a spherical shock at the center of a
sphere? Unfortunately, this is prevented by the instability of the converging shock.
While an expanding shock is stable, the converging shock is not. This means that
even an asymmetric explosion in confined space will eventually result in a smooth
expanding and at the same time weakening shock. On the other hand, an almost
symmetric converging shock will initially increase in strength but eventually lose
its symmetry and thus its ability to concentrate energy as it converges on the focal
region. The questions of shock generation, shock front evolution and symmetry, and
also stability as well as stabilization of the shock front will be discussed in this
section. The physical properties of imploding shocks governing the convergence
process is another subject of interest here. Finally, we will describe the extreme
conditions of matter produced as a result of symmetric implosion in gas or liquid.
Production of an extreme state of matter usually requires extreme levels of stored
energy delivered by, for example, powerful lasers, intense heavy ion beams, etc. One
of the most striking features of shock focusing is that the extreme state of matter in
the focal region is in this case produced by a limited and as a matter of fact quite
modest amount of input energy.

pixabay.com
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3.2 Generation of Converging Shocks: Initial Experiments

In the previous chapter, we touched upon the theory behind shock and blast waves,
their mathematical description, as well as experimental methods used to study their
properties. We are specifically interested in the properties of converging shocks and
blast waves and discussed the famous similarity solution of a converging cylindrical
or spherical shock published by Guderley in 1942 [52]. In the same way as the work
of Guderley played a pivotal role in opening the field of theoretical investigations
of converging shocks, the work of Perry and Kantrowitz [84] produced a road map
of experimental studies in this area. This article, published in 1951, is a perfect
example of a scientific work successfully passing the test by time and inspiring a
large number of experimental as well as theoretical and numerical investigations in
the area of shock wave convergence and focusing.

Not only is this study one of the earliest experimental investigations of con-
verging shocks, but it also contains a discussion of several important physical
phenomena that are directly related to the process of shock focusing and later further
investigated by a large number of researchers. We are therefore starting this section
by giving a short account of this and two other early experimental studies of shock
convergence by Knystautas et al. [70] and Sturtevant and Kulkarny [102] that all
played a leading role in this field of research.

The main purpose of these studies was to show the possibility of experimental
production of converging shocks. How can one create a converging cylindrical
shock in an ordinary shock tube? This is in a way a topological problem of
transforming a plane shock into a ring. Perry and Kantrowitz [84] discuss the first
experimental methods of producing cylindrical segments by converging channels
with walls smoothly bent inward. They argue that the shock redistributes the
curvature smoothly along the shock front transforming an initially plane shock to
a curved cylindrical form. This mechanism of shock shaping leads to an idea of
producing not just a segment but a complete cylindrical shock front by inserting a
central teardrop-formed body along the axis of a shock tube. By leading the annular
shock through the axisymmetric channel between the walls of the central body and
the shock tube, they were able to produce initial cylindrical shock with a high degree
of symmetry. The convergence process was then carefully investigated in the test
section of the shock tube (that was equipped with glass windows to provide an
opportunity to visualize the shocks) by means of schlieren photography (Fig. 3.2).

The authors were able to produce and observe the initial converging cylindrical
shocks as well as outgoing reflected waves in the test section. Shocks with initial
Mach numbers M = 1.1, M = 1.4, and M = 1.8 were generated. Helium was used
as the driver gas and air and argon as driven gases in the test section. Luminosity
was detected with argon as test gas. The question of stability of converging shocks
was for the first time investigated experimentally. The authors observed a departure
from the cylindrical form for strong shocks with initial Mach number of M = 1.8
as compared to cylindrical shocks with initial strength of M = 1.1. The stability
was further investigated by perturbing the shock front by a small object inserted
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Fig. 3.2 Sketch of the cylindrical shock tube used in the first experiments on shock focusing by
Perry and Kantrowitz, reproduced from [84], with the permission of AIP Publishing

along the path of the shock close to the edge of the test chamber. Although the
authors concluded that the only effect of the disturbance was a shift of the center of
convergence toward the disturbed side, traces of the disturbance may be clearly seen
in Fig. 3.3c for the converging shock and even more clearly for the reflected shocks
in Fig. 3.3d–f.

An important observation was the appearance of luminosity spots at the center of
convergence appearing in argon as test gas at initial Mach number M = 1.8 shown
in Fig. 3.4.

To summarize, we may say that the results of this pioneering work have inspired
and guided a large number of researchers by utilizing a simple and yet effective
method of experimental production of cylindrical converging shocks, by investigat-
ing their stability and ability to create high temperatures resulting in luminosity of
the compressed gas at the center of convergence. Another very important feature
of converging shocks raised in this investigation was the tendency to planarity of
the shock front for strong shocks departing from cylindrical symmetry as seen in
Fig. 3.5. We will see further that this feature plays an important role in understanding
and controlling the process of strong shock convergence.

Another early experimental work on cylindrical shock convergence was per-
formed by Knystautas et al. [70] in 1969. These authors used a different technique to
produce cylindrically converging shocks, namely, a cylindrical implosion chamber.
The shocks were generated by electric discharge initiated simultaneously in 30
equally spaced spark gaps at the cylinder boundary as illustrated in Fig. 3.6. By
this method the authors were able to produce detonation waves in the acetylene-
oxygen mixture. The researchers conducted optical and spectroscopic studies on
the shock convergence. Shock fronts were visualized by the schlieren technique,
and the temperature of the plasma at the center of convergence was measured by
spectroscopic studies. A nearly cylindrical shock front may be seen in Fig. 3.7.

Knystautas, Lee, and Lee conclude that a smooth cylindrical shock front may be
achieved by this method. Due to poor magnification of the optical schlieren system,
they were unable to take images closer to the center of the chamber. What can be
seen, however, in Fig. 3.7 is the tendency toward a square form which, as we will



3.2 Generation of Converging Shocks: Initial Experiments 39

Fig. 3.3 Converging cylindrical shocks disturbed by an object, from [84] with the permission
of AIP

see later, will be amplified as the shock converges on the implosion center. The
spectroscopic measurements gave a very high temperature T = 1.89 · 105 of the
plasma at the center of the chamber. These measurements were however found to be
erroneous later.

As the next important step in understanding the behavior of converging shocks in
the focal area, we would like to highlight the experimental study by Sturtevant and
Kulkarny [102]. These researchers conducted studies of an initially plane shocks of
Mach numbers in the range M = 1.005–1.5 reflected from a parabolic reflector. By
varying the strength of the shock from weak to moderately strong, they were able
to observe various types of behavior in the focusing region. The authors investigate
one of the main mechanisms of shock convergence or as they put it “. . . competition
between the convergence of the sides of the focusing front and acceleration of its
central portion.” For weak shocks the first process is dominating, and the “. . . wave
fronts emerge from the focus crossed and folded, in accordance with the predictions
of geometrical acoustics theory. In the latter, the strong shock case, the fronts beyond
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Fig. 3.4 Luminosity spots in argon at the center of shock wave convergence, reproduced from
[84], with the permission of AIP

Fig. 3.5 Departure from
cylindrical symmetry caused
by a disturbance, reproduced
from [84], with the
permission of AIP

the focus are uncrossed, as predicted by the theory of shock dynamics.” These
various types of behaviors of weak and strong shocks are illustrated in Fig. 3.8.
For weak shocks, the shock-shocks cross forming a triangular loop, while for strong
shocks they do not cross but spread apart as can be seen from Fig. 3.8.
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Fig. 3.6 Implosion chamber, reproduced from [70], with the permission of AIP

Fig. 3.7 Nearly cylindrical
shock, reproduced from [70],
with the permission of AIP

In a later article, Cates and Sturtevant [20] apply the theory of geometrical shock
dynamics (GSD) [120] to model the behavior of weak, moderate, and strong shocks
in the focal area observed experimentally. Later in this chapter, we will return to
the role of artificial disturbances and their influence on the shape and stability of
converging shocks. However, a time line of some of the research studies that have
been performed on converging shock waves is summarized in Fig. 3.9.

3.3 Self-Similarity of Converging Shocks

As we have mentioned in the previous chapter and in the beginning of this chapter,
the famous self-similarity solution for strong cylindrical and spherical converging
shocks opened a whole new field of shock wave research. According to this solution,
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Fig. 3.8 Shock focusing for weak and moderately strong shocks, reproduced from [102], with
permission from Cambridge University Press

the radius r of the converging shock is expressed in a self-similar form:

r = r0

(
1 − t

t0

)α

(3.1)

where r0 is the value of the radius at time t = 0 and α is the similarity constant that
defines the strength of the convergence. The value of α depends on the adiabatic
exponent γ of the gas. For air with γ = 1.40, Guderley determined the value of α ≈
0.835 for converging cylindrical shocks and α ≈ 0.717 for converging spherical
shocks.

A large number of analytical and numerical studies have been dedicated to the
question of determining the value of α since; see, e.g., references [18, 48, 54, 81,
85, 99, 108]. Lazarus and Richtmyer [73] considered solutions for a wide range
of values of the adiabatic exponents γ . This was further expanded in a thorough
and detailed investigation by Lazarus [72], including extensive analytical analysis
of the problem. This work presents values of α for a wide range of the adiabatic
constant γ . Ponchaut et al. [85] investigate solution for imploding and reflecting
cylindrical and spherical shocks, initially at rest. By means of dimensional analysis,
they found a general solution of the problem in which Guderley power-law solution
can be interpreted as the leading-order strong shock approximation valid in the
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Fig. 3.9 Chronology of shock focusing research. Blue lines, shock waves with constant properties
behind shock wave; red lines, shock waves generated by explosions; dashed lines, three-
dimensional; solid lines, two-dimensional. Only first author is shown

vicinity of the implosion center. Later, Hornung et al. [58] presented an elegant
approach to this problem by using Whitham’s theory of geometrical shock dynamics
(GSD) [120]. Although this theory gives an approximated description of shock
propagation, neglecting the condition behind the advancing shock, it proved to
be extremely successful in describing accelerating shocks. We will give a short
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Fig. 3.10 Schematic of the cylindrical exploding wire setup, reproduced from [35], with permis-
sion from Springer

account of this theory in the next section. GSD allows for a very simple form of
solution for converging cylindrical and spherical shocks in the form of an integral
of a known function, obtained from a so-called area-Mach number relation given by
GSD. Hornung et al. [58] found that the solution based on GSD gives a very good
approximation, graphically indistinguishable from the general solution of Ponchaut
[85]. The great advantage of this approach is that the value of γ is directly included
in the area-Mach number relation resulting in a simple determination of α = f (γ )

dependence.
Experimental investigations of the power-law behavior of the converging shocks

are more scarce. Dennen and Wilson [35] were among the first researchers to verify
Guderley’s solution experimentally. They generated converging cylindrical shocks
by a neat experimental setup using the exploding wire technique in a cylindrical
geometry, shown in Fig. 3.10.

Schlieren images of the converging shocks were taken not as a sequence but
for separate runs. Despite the irregularities seen on the converging shock fronts
displayed in Fig. 3.11a, and the fact that schlieren images were taken for different
runs, the authors were able to determine the average distance traveled by the shock
from the initial shock position. The obtained experimental data was plotted along
Guderley’s similarity solution for a cylindrical shock with α = 0.834 and is
illustrated in Fig. 3.11b, showing a surprisingly good agreement.

The electric discharge technique was also used in experiments performed by
Baronets [13], where cylindrical shocks in argon and xenon were created by
induction discharges in a cylindrical chamber. Experimental values of α in argon
and xenon (γ = 1.66) as function of the shock front velocity are shown in Fig. 3.12.
For shock speeds less than 2000 m/s, the shock front trajectories are completely
linear with α = 1. In the strong shock limit when the speed of the shock front
increases to about 6000 m/s, the value of α approaches the analytical value of 0.816.

In an experimental study by Matsuo and Nakamura [75, 76], cylindrically
converging shocks, or rather blast waves, were produced by detonation of PENT
(pentaerythritol tetranitrate) loaded over cylindrical surfaces. The PENT power
explosion was initiated by exploding a copper wire attached to the PENT charge.
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Fig. 3.11 (a) Converging shock fronts. (b) Experimental data vs Guderley’s power-law solution,
reproduced from [35], with permission from Springer

Fig. 3.12 Experimental
value of the power-law
constant α for various shock
velocities, reproduced from
[13], with permission from
Springer

Fig. 3.13 Comparison of
experimental data for shock
front position vs time with
Guderley’s power-law
solution, reproduced from
[75], with the permission of
AIP

Converging cylindrical blast wave fronts were traced by sequential framing camera
images taken at 5 μs intervals. The results can be seen in Fig. 3.13 where shock
fronts are plotted using dimensionless time, τ , and space variables, ξ , defined as
τ = a0t/R0 and ξ = (R0 − Rs) /R0, where t, a0, R0, andRs are time, sound speed,
and radius at initial instant (subscript 0) and time τ (subscript s), respectively.
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Fig. 3.14 Annular shock tubes at (a) RWTH Aachen and (b) Tohoku University, reproduced from
[105], with permission from Springer

Fig. 3.15 Similarity
exponents for various Mach
numbers from experiments at
Tohoku University,
reproduced from [105], with
permission from Springer

As one can see, there is an excellent agreement between Guderley’s theory and
experimental data. Unfortunately the authors do not present the value of α calculated
from their experimental data.

Takayama, Kleine, and Grönig conducted an experimental study of converging
cylindrical shock wave in air produced in annular shock tubes at Stoßwellenlabor,
RWTH Aachen, and at Institute of High Speed Mechanics, Tohoku University,
illustrated in Fig. 3.14a and b, respectively. The authors determined the experimental
value of α in air (γ = 1.4) by doing least square fits to the streak camera
recordings with initial Mach numbers varying from M = 1.1 to M = 2.1.
Experiments were conducted both in Aachen and Sendai. Data obtained from
experiments at Tohoku, Sendai, are shown in Fig. 3.15. Least square fit to data for
initial Mach numbers M = 1.1, 1.5, and 2.1 provide values of α = 0.828, 0.829,
and 0.833, respectively. Corresponding experiments in at RWTH, Aachen gave
α = 0.832 (+0.028/ − 0.043) for 1.3 < M < 2.1.

Measurements of the power-law exponent for the case of spherical shock
convergence are even more elaborate than in the case of cylindrical geometry.
The reason is obvious, since it is harder to visualize and access the data for a
converging spherical shock front. Hosseini and Takayama [59] conducted a series
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Fig. 3.16 Experimental setup (a) photograph and (b) schematic diagram, reproduced from [59],
with permission from Cambridge University Press

of experiments in a spherical chamber. Shocks were produced at the center of the
chamber by explosion of silver azide pellets. Shock visualization was possible due to
a transparent aspheric lens-shaped test section producing collimated object beams.
An image and schematic of the spherical test section is shown in Fig. 3.16.

Shock motion of initial outgoing as well as reflected converging shocks in the
chamber was recorded by high-speed shadowgraph visualization giving shock front
position as functions of time. Experimental data for converging shock fronts was
compared to Guderley’s similarity solution for spherical shocks, Fig. 3.17. A fit to
experimental data gave a value of α = 0.738 as compared with the theoretical value
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Fig. 3.17 Fit to experimental
log–log plot of the
converging shock radius
versus the time measured
relative to the arrival time of
the shock at the center
compared to Guderley theory
− · −, reproduced from [59],
with permission from
Cambridge University Press
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Fig. 3.18 Schematic of the shock tube. A, driver; B, inlet pipe; C, transformation section; D,
annular channel; E, test section; W1 andW2, glass windows framing the test section, reproduced
from [67], with the permission of AIP

of α = 0.717 indicating that experimental shock fronts converged slower than the
convergence rate predicted by theory. The authors attribute this to the fact that the
reflected shocks converge in the outgoing flow field produced by the initial diverging
blast wave.

Kjellander, Tillmark, and Apazidis [67] investigated experimentally the value
of the power-law constant α in Guderley’s solution as function of the adiabatic
exponent γ . Three different gases were considered: argon (Ar, γ = 1.66), nitrogen
(N2, γ = 1.40), and propane (C3H8, γ = 1.13). The main idea was to obtain
the value of a power-law exponent for converging cylindrical shocks in various
gases having different values of the adiabatic exponent γ . The goal was to capture
the variation of the power-law exponent α with the adiabatic constant γ in the
same shock tube facility at KTH, Stockholm. The schematic of the shock tube is
illustrated in Fig. 3.18.

Numerical calculations were performed in order to assess the influence of the
sharp 90 degree corner connecting the annular section with the test section of
the shock tube. The purpose was to obtain an understanding of the process of
stabilization of the converging shock to a plane shock front after entering the test
section from the sharp corner. The results are illustrated in Fig. 3.19. As one can
see, the shock front stabilizes to a plane form about one third of the radial distance
from the center. The dashed line in the figure marks the location from where
the measurements were performed. Three different test gases were used: propane
(C3H8, γ = 1.13), nitrogen (N2, γ = 1.40), and argon (Ar, γ = 1.66).
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Fig. 3.19 Numerical
schlieren images of shock
propagation in the test section
after the sharp 90 degree turn
from the annular section,
reproduced from [67], with
the permission of AIP
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Fig. 3.20 Multiple exposure images for converging shocks in argon at two different initial Mach
numbers: (a) M = 1.9 ± 0.01 and (b) M = 2.4 ± 0.01, reproduced from [67], with the permission
of AIP

Multiple exposures of converging shock fronts in argon for two different initial
Mach numbers are illustrated in Fig. 3.20.

The light flash at the center of the test section at the instant of implosion may be
clearly seen in Fig. 3.20b showing a sequence of converging shock fronts in argon.
The successive shock front positions were processed numerically to obtain the value
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Table 3.1 Values of the self-similar exponent α acquired from [67]: comparison with analytical
work and previous experiments

α, Analytical α, Experimental α,

γ other authors other authors Kjellander [67],

1.13 0.8778 from [72] 0.88 ± 0.02

1.40 0.8353 from [72] 0.831 ± 0.002 from [105] 0.84 ± 0.01

1.66 0.8156 from [72] 0.820 to 1.0 from [13] 0.81 ± 0.01

Fig. 3.21 Acquired
experimental values and
standard deviation of α

compared to the analytical
solution (full line; values
from Ref. [72]) and
geometrical shock dynamics
(dashed line), reproduced
from [67], with the
permission of AIP
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of the average radius for each shock front. The values of the power-law exponent
were then determined by curve fitting to self-similar paths, and the results are listed
in Table 3.1 [67].

Based on the experimental values, Fig. 3.21 shows the variation of the power-law
exponent α as function of the adiabatic exponent γ for different gases.

See Table 3.2 for additional self-similarity exponents obtained to date.

3.4 Stability of Converging Shocks

As we mentioned in the previous sections, the pioneering experimental work of
Perry and Kantrowitz [84] and other early researchers produced a road map for
further studies of converging shocks. One of the most important questions raised
by these researchers was the question of stability of the converging shocks. In their
own study, Perry and Kantrowitz introduced an artificial disturbance on the path of
the converging shock. They observed that the influence of the disturbance resulted
in shifting the center of convergence from the center of the test section closer to the
location of the disturbance. But will the shock front remain mainly circular or at
least not break up during the further motion of the converging shock? This question
is pivotal for the ability of the converging shock to produce extreme conditions in the
compressed gas. If the shock front can retain some symmetry and remains bounded
by a smaller and smaller area, then various portions of the shock front will arrive



3.4 Stability of Converging Shocks 51

Ta
bl

e
3.

2
Su

m
m

ar
y

of
se

lf
-s

im
ila

ri
ty

ex
po

ne
nt

s
fo

r
co

nv
er

gi
ng

cy
lin

dr
ic

al
an

d
sp

he
ri

ca
ls

ho
ck

w
av

es
fo

r
tw

o
di

ff
er

en
ta

di
ab

at
ic

ga
s

co
ns

ta
nt

s

C
yl

in
dr

ic
al

C
yl

in
dr

ic
al

Sp
he

ri
ca

l
Sp

he
ri

ca
l

γ
=

7/
5

γ
=

5/
3

γ
=

7/
5

γ
=

5/
3

G
ud

er
le

y
[5

2]
0.

83
4

–
0.

71
7

–

B
ut

le
r

[1
8]

0.
83

52
17

–
0.

71
71

73
0.

68
83

77

St
an

yu
ko

vi
ch

[1
00

]
0.

83
4

–
0.

71
7

–

W
el

sh
[1

16
]

0.
83

53
23

0.
81

56
25

0.
71

71
74

0.
68

83
77

L
az

ar
us

&
R

ic
ht

m
ye

r
[7

3]
0.

83
53

23
20

0.
81

56
24

90
0.

71
71

74
50

0.
68

83
76

82

M
is

hk
in

&
Fu

jim
ot

o
[7

9]
0.

82
8

0.
81

4
–

–

de
N

ee
f

&
H

ec
ht

m
an

a
[3

3]
0.

83
5

±
0.

00
3

–
–

–

V
an

D
yk

e
&

G
ut

tm
an

[1
08

]
0.

83
53

24
–

0.
71

71
74

5
0.

68
83

76
8

N
ak

am
ur

a
[8

1]
0.

83
42

,M
s

=
4.

0
–

0.
71

73
–

0.
83

45
,M

s
=

10
.0

K
le

in
ea

[6
9]

0.
83

2
+

0.
02

8,
−0

.0
43

Ta
ka

ya
m

aa
[1

05
]

0.
83

1
±

0.
00

2
M

s
=

1.
1

−
2.

1

H
af

ne
r

[5
4]

0.
83

53
23

19
19

52
91

1
0.

81
56

24
90

14
31

22
5

0.
71

71
74

50
14

88
99

9
0.

68
83

76
82

29
22

54
3

C
hi

sn
el

l[
27

]
0.

83
53

2
0.

81
56

2
0.

71
71

6
0.

68
83

7

H
os

se
in

i&
Ta

ka
ya

m
aa

[5
9]

–
–

0.
73

8

Po
nc

ha
ut

et
al

.[
85

]
0.

83
53

23
19

19
53

0.
81

56
22

96
91

66
7

0.
71

71
74

50
14

88
0.

68
83

74
08

59
49

6

K
je

lla
nd

er
et

al
.a

[6
7]

0.
84

±
0.

01

R
am

se
y

et
al

.[
88

]
0.

83
53

23
19

2
0.

81
56

24
90

1
0.

71
71

74
50

1
0.

68
83

76
82

3
a R

es
ul

ts
ob

ta
in

ed
by

ex
pe

ri
m

en
ts



52 3 Converging Shocks

almost simultaneously to a small focal region and compress the engulfed gas to
high pressures and temperatures. If, on the other hand, the shock front will undergo
a large distortion or even break up, then this effect of focusing will of course be lost.

The question of shock stability is therefore of pivotal importance for the ability
of the converging shock to generate extreme conditions at the center of convergence,
in the focusing region. This question has over the years been addressed many
times and by a large number of researchers. Many of those used the theory of
geometrical shock dynamics (GSD) also called CCW theory by the names of the
researchers who developed it in the middle of the last century, namely, Chester
[23], Chisnell [25, 26], and Whitham [117]. We have already mentioned the GSD
theory in the previous section where we discussed the self-similarity solution for
converging cylindrical and spherical shocks. A large number of researchers have
been using this approximate theory presenting a more simple alternative to a full
set of Euler equations to describe shock propagation in various geometries. This
theory describes the shock propagation along the rays normal to the shock front and
because of its clear geometrical interpretation of shock motion gives a useful insight
in the physical properties of advancing shocks. Although GSD is an approximate
theory that disregards flow conditions behind the moving shock front, it gives
surprisingly accurate results in a broad range of flow configurations, especially for
accelerating shocks. Let us here get acquainted with some basic ideas of this theory.

The main idea of GSD is to consider flow along the tube with slowly varying
cross-section as illustrated in Fig. 3.22. The tube wall is built by the rays normal to
the surface of the shock. The continuity, momentum, and thermodynamic relation
for isentropic flow averaged over the cross-section area of the tube take the form:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

1

A

dA

dx
= 0, (3.2)

∂u

∂x
+ u

∂u

∂x
+ 1

ρ

∂p

∂x
= 0, (3.3)

dρ

dt
= 1

a2

dp

dx
. (3.4)

Here, ρ, p, u, and a denote density, pressure, velocity, and sound speed, respectively,
averaged over the cross-section A(x) of the tube with x being the direction along the
tube axis. Introducing Eq. (3.4) into (3.2) and multiplying the sum by a/ρ, we get

1

ρa

[
∂p

∂t
+ u

∂p

∂x

]
+ a

∂u

∂x
+ au

A′

A
= 0. (3.5)

A(x)

x

Fig. 3.22 Tube with slowly varying cross-section used in GSD theory
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Upon adding the last equation with (3.3), we obtain

1

ρa

[
∂p

∂t
+ (u + a)

∂p

∂x

]
+

[
∂u

∂t
+ (u + a)

∂u

∂x

]
+ au

A′

A
= 0. (3.6)

The last equation is transformed to an ordinary differential equation along
the path

dx

dt
= u + a, (3.7)

which is the C+ characteristic and the resulting system of quasi one-dimensional
balance equations is combined in a single ordinary differential equation

dp

dx
+ ρa

du

dx
+ ρa2u

u + a

1

A

dA

dx
= 0. (3.8)

This equation together with the jump relations over the shock interface for velocity

u = a0
2

γ + 1

(
M − 1

M

)
, (3.9)

pressure,

p = ρ0a
2
0

(
2

γ + 1
M2 − γ − 1

γ (γ + 1)

)
, (3.10)

and density,

ρ = ρ0
(γ + 1) M2

(γ − 1) M2 + 2
, (3.11)

result in the so-called area-Mach number relation along the tube given by

g(M)
dM

dx
+ 1

A

dA

dx
= 0, (3.12)

with γ denoting the usual adiabatic index, M , Mach number and g(M) being a
known function of the Mach number [120]. Strictly speaking Eq. (3.8) is valid
only on the C+ characteristic given by Eq. (3.7), which may deviate from the rays
perpendicular to the shock front and building the walls of the tube. This deviation is
due to the nonuniform flow behind the shock. This means that the characteristic rule
disregards the conditions behind the shock. Although presenting an approximate
description, this theory gives a simple, elegant, and physically insightful approach to
shock wave propagation. It has also proven to be surprisingly accurate in predicting
propagation of accelerated shocks and thus very useful for treating converging
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shocks. An accelerating shock nearly “escapes” the nonuniform flow conditions
behind the shock front and is therefore less affected by those. This theory, when
applied to a converging cylindrical or spherical shock wave, gives a very simple as
well as accurate description of the convergence process. It gives, for example, an
extremely good approximation of Guderley’s exact solution [52].

In 1957 Whitham [117] described this theory as applied to two-dimensional
shock propagation. He was also the first to apply it to the important question of plane
shock stability. He considered first the propagation of a plane shock moving along a
wall and studied the decay of a small disturbance in the form of a small bump on the
wall. For a shock normal to the wall, the bump will result in a formation of an “N-
wave.” It was also found that the stability decreases with increasing Mach number
[117]. Whitham considers two important wedge-shaped shock configurations. One
generated by a convex forward piston and the other by concave forward piston as
seen from Fig. 3.23. These two configurations are generic for propagating strong
shocks. If the shock has already obtained the form of the piston described here, the
next shock position will be determined by the process illustrated in Fig. 3.23. In
the case of convex forward configuration, the next shock front emanating from the

αα

ββ

M0

M0

M0

M0

M1M1π −δ π +δ

M = M0

M = M0

M = M0

M = M0

θ = 2δ

θ = 2δ

M = M1 < M0

θ = 0θ = 0

θ = −2δ

θ = −2δ

M = M1 > M0

Fig. 3.23 Shock wedge patterns, original figure reproduced from [117], with permission from
Cambridge University Press
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corner will be built by two centered simple waves, while for the concave forward
configuration, the solution from the corner is given by two shock-shocks, building
a Mach stem with a new, higher Mach number. This is the process that governs the
convergence of polygonal shocks described later in this chapter. In the concluding
section of this fundamental work, the author considers the stability of converging
cylindrical shocks. He argues that in this situation, it is sufficient to consider the case
of strong shocks since all converging cylindrical shocks ultimately become strong.
The author uses hodograph transformation to find out whether a small deviation
of the cylindrical shape will increase or decrease during convergence. He deducts
that as the shock contracts, the harmonics will dominate the symmetrical mode and
comes to a conclusion that the shock ultimately becomes unstable.

The geometrical interpretation of GSD formulated mainly by Whitham [117, 118,
120] gives a simple and useful interpretation of shock propagation. This geometrical
picture describing propagation of a shock front along the rays perpendicular to the
surface of the shock by means of locally quasi one-dimensional ordinary differential
equation makes it especially useful for performing shock front stability analysis. A
number of researches have successfully applied this theory to study the stability of
converging shocks both numerically and analytically.

Ahlborn and Fong [1, 47] investigated the stability of converging shocks both
analytically and numerically. Their numerical method was based on the theory
of GSD. They introduce mesh points along the shock front and obtain a system
of ordinary differential equations describing the shock front propagation along
the rays normal to the shock front. The authors introduce various types of initial
perturbations of the cylindrical shock and investigate how these instabilities evolve
in the process of shock convergence. They consider several geometric parameters as
a measure of perturbation magnitude, such as the ratio of local increase of the shock
radius to the average shock radius �r/r , ratio of the corresponding area perturbation
to the average segment area �A/A, as well as the deviation of the local normal angle
from the radial direction δ, which are all shown in Fig. 3.24. The authors define
absolute stability of a shock if all of these parameters go to zero before the collapse
of the shock and as partial stability if their values tend to some small value much
less than 1. They finally map stability regions for various types of perturbations for
various values of the initial Mach number. The findings of these researchers are thus
in some contradiction with the results of Whitham [117], who concluded that all
converging shocks are ultimately unstable. The reason for this contradiction is that
the work of Fong and Ahlborn [47] is restricted by the linear stability analysis.

Gardner, Book, and Bernstein [49] represent another team of researchers who
considered the problem of converging shocks. They used the GSD (or CCW) theory
to develop an analytical and computational model to address the question of stability
of converging cylindrical and spherical shocks. They present their work as an
extension of [47] to smaller radii including the analysis of nonlinear behavior.

Evans [45] is yet another researcher who addressed the stability of converging
spherical shocks on the basis of GSD. He investigates convergence of a nearly
spherical shock in van der Waals gas analytically. His research is motivated by the
implications of stability analysis on the problem of sonoluminescence. The author
conducts a first-order perturbation analysis on the solution of converging spherical
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Fig. 3.24 Geometric
parameters of shock front
perturbation, reproduced from
[47], with the permission of
AIP (Phys. Fluids 22(3),
416–421 (1979)

shock front according to GSD. He obtains an ordinary differential equation for
the radial component of the disturbance μ(r) with a simple exponential solution
μ(r) = rξ where ξ is the function of flow parameters. He was then able to calculate
the size of perturbation divided by the radius, δr/r , and finally find that as the
spherical shock converges, the relative deviation from the spherical form increases
both in amplitude and frequency as can be seen from Fig. 3.25.

The final conclusions of this investigation are that the converging spherical shock
in van der Waals gas is unstable, meaning that a small initial perturbation of the
spherical form will grow and eventually destroy the initial spherical symmetry of the
shock. The instability is, however, weak with slow rate of increase in disturbances
being proportional to the inverse power of the radius. These findings are as we see
in agreement with the conclusions of the initial study by Whitham [117].

In a short but very informative experimental investigation by Wu et al. [122], the
authors study the stability of converging cylindrical shocks. Artificial perturbations
of the flow field were introduced by removing the wedge fairings from the shock
tube support flange webs. The four rectangular webs introduced perturbations of the
flow field transforming an initially cylindrical shock front to a square-like shock as
it approached the center of the test section. The authors also considered perturbation
of the shock front by a single cylindrical rod.

The group of Takayama [105] was the next group of researchers who investigated
the question of stability in a series of experimental studies. These researchers
observed what they called “instability modes” produced in the converging shock
front in their experimental facilities. This study reported the results of a series
of experiments conducted in two experimental facilities: the first one at Stoss-
wellenlabor, RWTH Aachen and the second at Institute of High Speed Mechanics,
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Fig. 3.25 Growth of relative perturbation of the converging spherical shock front, reproduced
from [45], with the permission of AIP

Tohoku University, Sendai. Both shock tube facilities had a central body inserted
in a cylindrical shock tube that transformed the plane shock to an annular ring.
They found that the initially cylindrical shock front was distorted in both facilities.
In the first facility shock fronts with triangular symmetries were formed, while in
the second facility, the initially cylindrical shock was transformed to a front with
quadrangular symmetries. The imaging was done by holographic interferometry and
revealed not a chaotic breakup of a shock front but on the contrary very symmetric
and beautiful structures that the researchers called three- and four-instability modes,
respectively, as seen in Fig. 3.26. There are two other important features that can be
observed in this image. In Fig. 3.26b we can see the transformation of an initially
cylindrical shock to an almost perfect square with a rounded corners and plane sides.
The second feature, also seen in this image, is the “rotation” of a larger square to
a smaller one in the center. This 90 degree “rotation” placing corners of the new
small square opposite to the centers of the plane sides of the larger square is in
reality a periodic transformation that the square form of the shock undergoes during
convergence. This tendency of converging shocks to build polygonal structures with
plane sides and corners brings us to the next question. Can this property be used to
enhance the symmetry of the converging shock? We will address this question later
in this section.

Let us here continue with the overview of other experimental and numerical
studies in this area as the study by Watanabe and Takayama in 1991 [114]. The
experiments were carried out in the annular shock tube facility at Tohoku University.
The co-axial annular shock tube similar to that used by Perry and Kantrowitz was
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Fig. 3.26 Holographic interferograms of converging cylindrical shock waves, reproduced from
[105], with permission from Springer

able to transform an initially plane shock to a converging cylindrical. The visual-
ization of converging shock fronts was conducted by double exposure holographic
interferometry. The inner central body of the transformation section was supported
by four struts. Shock waves with initial Mach numbers in the range M = 1.1–2.0
were investigated. One of the main findings of this study was that although the initial
influence of the disturbances caused by the supporting struts was initially small, it
was amplified as the shock strength increased in the process of convergence and
finally was dominating the shape of the shock transforming it from cylindrical to a
nice symmetric square with rounded corners as can be seen in Fig. 3.27.

This study confirmed once again that even a small initial perturbation in the
flow will be amplified for a converging shock as the shock strength increases and
will become a decisive factor dominating the transformation of the converging
shock front.

In order to eliminate the flow disturbances caused by the supporting struts of
the central body, a series of experiments were conducted by Watanabe, Onodera,
and Takayama in a vertical annular shock tube with no supporting struts [115].
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Fig. 3.27 Transformation of initially cylindrical to a square shock, reproduced from [114], with
permission from Springer

The main findings of these experiments were that for weaker initial shocks with
Mach number in the range M = 1.51, the cylindrical shock preserved its symmetry
through convergence and even after reflection from the center of convergence. When
the strength of the initial shock was increased to M = 2.0, the converging shock
was still symmetric, while irregular vortices were observed for the reflected shock
in the vicinity of the center. It was concluded that for stronger shocks, the initial
disturbances, in this case caused by small changes in the clearance of the co-axial
channel, were amplified making the converging cylindrical shock unstable.

3.5 Polygonal Shocks

3.5.1 Stability of Polygonal Shocks

One of the main results of the experimental study by Takayama and co-workers
[105] was the ability of the square shock once it was formed to retain its square
structure. Although the polygon is seen to rotate, its square form is preserved. In
[105] we see just one “rotation” of the initially generated square to a new, smaller
one which is “rotated” 90 degrees as compared to the initial. Is this transformation
stable, and if so will it continue during a further convergence process?

A theoretical study by Schwendeman and Whitham [94] gives answers to these
questions. The authors use a ray theory of geometrical shock dynamics (GSD) to
investigate the properties of converging polygonal shock structures. As we have
discussed in the previous section, Whitham [117] used this theory to show that the
converging cylindrical shock is unstable to small disturbances. In the quoted article,
the authors show that a regular polygon can be analyzed exactly by means of the
GSD. The results describe a periodic transformation of a regular polygon structure
in which a new polygon with the same number of sides n but rotated by an angle
π/n relative to the older is created at regular intervals. Above that, the Mach number
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Fig. 3.28 Converging
pentagonal shock, reproduced
from [94], with permission
from the Royal Society

of the converging polygonal structure calculated at the end of each interval increases
in exactly same way as for converging cylindrical shock.

Figure 3.28 shows a process of convergence for a polygonal shock with five
sides. Numerical calculations of this shock convergence were done by means of
the numerical scheme based on GSD and developed by Henshaw et al. [56]. The
numerical procedure is based on approximating the shock front by a discrete set of
points rk(t), k = 1, . . . , N and then integrate a system of ordinary differential
equations

d

dt
rk(t) = Mk(t)nk(t), k = 1, . . . , N, (3.13)

where Mk(t) and nk(t) are the local Mach number and normal to the shock front.
This scheme allows for propagation of the shock front along the rays normal to the
shock front. The value of the Mach number at a new shock front position is then
calculated by means of the Area-Mach number relation

Ak(t)

Ak(0)
= f (Mk(t))

f (Mk(0))
, k = 1, . . . , N, (3.14)

supplied by the theory of geometrical shock dynamics.
An example of such calculations is displayed in the abovementioned Fig. 3.28.

One can here see the rotation of the initial pentagon to a new one by an angle of
36◦. This “rotation” is in reality a process of a continuous transformation of the
initial pentagon. This transformation arises as a result of Mach reflection at the
corners of the polygon, where a Mach stem is created opposite to the corner. The
value of the Mach number on the newly created Mach stem is higher than on the
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Fig. 3.29 Converging
symmetrically perturbed
pentagonal shock, reproduced
from [94], with permission
from the Royal Society

adjacent sides of the polygon giving it a higher speed of propagation which leads
to an increase of its length. This process is completed when the newly created
Mach stems completely absorb the older sides of the polygon and meet at a new
corner. At this instant the new polygon with a higher Mach number is formed.
The corner of the new polygon is located right opposite to the midpoint of an
older polygon side and thus the whole structure seems to be “rotated” by π/n.
The value of the Mach number of the new polygon is increased exactly as for
the corresponding converging cylindrical shock. After that, the process is repeated.
To understand the robustness of this transformation process, the authors further
investigate convergence of polygonal shocks with symmetric perturbation of the
form like a perturbed pentagonal structure shown next in Fig. 3.29.

One can here see that the initial and strong—albeit symmetric—perturbation of
the polygonal form is eventually suppressed and flattened out resulting in pentagons
with increasingly flatter sides. Here as the shock strength increases, its tendency to
planarity becomes dominating. In this sense this procedure of converging symmetric
polygonal shocks provides a very attractive alternative to cylindrical convergence.
On the one hand, it is stable and robust, and on the other hand, it gives the same
amplification of the shock strength! Well if symmetric polygonal shocks are so good,
how can one create them in practice? We will address this question in the next
section.

3.5.2 Generation of Polygonal Shocks by Reflection

Apazidis and Lesser [8] investigated theoretically the possibility to generate sym-
metric converging polygonal shocks by reflection from smooth reflectors of appro-
priate shape. Reflector shapes are chosen as a perturbation of a cylindrical shape to



62 3 Converging Shocks

Fig. 3.30 Reflector boundaries and fully reflected shocks for n = 4 and n = 5, reproduced from
[8], with permission from Cambridge University Press

a smooth polygonal shape with, e.g., four, five, six, and eight sides. The reflector
boundary can be described by an equation of the form

r = 1

1 + ε cos (nθ)
, (3.15)

which describes a perturbation of a circular boundary using a cosine function with
a small parameter. Examples of two such reflector boundaries with fully formed
reflected shocks for n = 4 and n = 5 are given in Fig. 3.30.

The numerical procedure used in this investigation is based on the modified
version of the GSD. This modified version takes into account the nonhomogeneous
conditions created by the flow ahead of the advancing shock. The initial outgoing
and expanding from the center of the chamber shock creates a flow field ahead of
the reflected shock converging in the opposite direction toward the center of the
chamber. The main idea is to transform the governing equations to a coordinate
frame (x′, y′) in which the medium ahead of the advancing shock is locally at rest.
This locally Galilean transformation is given by

x = x′ + U(x, t)t, y = y′ + V (x, y)t, t = t ′, (3.16)

where U(x, t) and V (x, t) are the local components of the flow velocity. The usual
form of GSD with quiescent conditions ahead of the shock is then valid in this frame.
Obtaining the relations between the variables in the fixed and moving frames results
in the a transformation of the flow variables with modified expressions for the Mach
number and area in Eqs. (3.18) and (3.14) as well as in the direction of propagation
which is now along the rays not necessarily normal to the shock front. One of the
results of this transformation gives the relation between the cross-section areas and
unit vectors guiding the direction of shock propagation and takes the following form

A = A′(e · n), (3.17)
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where A′ and e are the tube area and unit vector along the ray direction in the moving
frame and A and n corresponding quantities in the fixed frame [8]. Thus, as shown
earlier by Whitham [119], A′ is the area cut out by the ray tube, and A is the normal
cross-section.

The numerical procedure is similar to that used in [94] and is based on
approximating the shock front by a discrete set of points rk(t), k = 1, . . . , N

and then integrating a system of ordinary differential equations

d

dt
rk(t) = Mk(t)ek(t), k = 1, . . . , N (3.18)

with ek being the unit vector along the ray that describes the shock path when it is
moving into a nonuniform region. In order to calculate e as well as the Mach number
M ′ in the moving frame, it is necessary to have the expressions for the oncoming
flow field and suitable gradients of this field. In [8] this is accomplished by using
the blast wave solution for a cylindrically symmetric explosion.

The results of calculations show the formation of polygonal shocks by reflection
from smooth square, pentagon, hexagon, and octagon—like reflector boundaries
given by Eq. (3.15). In these calculations the initial outgoing shock is given by the
cylindrical blast wave from the center of the chamber. Initially smooth shock profiles
resembling the reflector form are seen to gradually form flat sides and sharp corners
transforming into a real polygon; see Fig. 3.31.

The influence of the flow ahead of the converging shock is also investigated.
It is shown that the flow ahead enhances the formation of the polygonal form as
well as the strength of the converging shock. Since the flow ahead is symmetric,
it preserves the symmetry of the converging shock. Figure 3.32 shows the Mach
number along converging shock fronts as well as the tendency to planarity of the
shock front and corresponding Mach number with initially smooth distribution
replaced by a stepwise with increasing shock strength. The lower Mach number
curve corresponds to the reflected shock close to reflector boundary and the upper
curve to the converging shock front approaching the center of reflector.

These ideas were realized in practice experimentally by Johansson, Apazidis,
and Lesser in 1999 [60]. One of the main purposes of this work was to produce
symmetric converging polygonal shocks experimentally. A two-dimensional test
section with a reflector boundary described by Eq. (3.15) with n = 5 and ε = 0.035
was manufactured. The average radius of the boundary was 80 mm and the height
of the test section was 5 mm. The upper and lower test section walls were made
of 15 mm thick glass plates for flow visualization realized by a schlieren system
with a still camera and flash unit connected to a time measuring and controlling
equipment for initiation of single or double flash pulses. The initial outgoing shock
was generated by an electric discharge device with a 0.3 μF capacitor. The exact time
interval between the initial released shock and the time for the flash was provided
by a photodiode connected to an oscilloscope detecting both the light from the
electric discharge and the flash unit. The boundary of the chamber with two initial
cylindrical outgoing shocks just before reflection may be seen in Fig. 3.33.
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Fig. 3.31 Converging polygonal shocks, reproduced from [8], with permission from Cambridge
University Press

Fig. 3.32 Mach number distribution along the converging polygonal shock front, reproduced from
[8], with permission from Cambridge University Press
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Fig. 3.33 Creation of polygonal shocks by reflection, reproduced from [60], with permission from
Elsevier

The Mach number near the reflector boundary was measured to M = 1.1
classifying the shocks as weak and thus having weak shock behavior such as
formation of caustics with shock crossing at the corners of the polygonal structure
as may be seen in Fig. 3.34.

The shock strength was increased in a follow-up study using the same chamber
but with a different method of shock generation, namely, exploding wire technique
[9]. A thin copper wire, connected to the electrodes, was placed at the center of the
chamber. A triac device triggered discharges leading to rapid Joule heating, melting,
and vaporizing the copper wire and thus creating an outgoing cylindrical blast wave
in air. The photograph of the test section with the exploding wire setup and smooth
pentagonal reflector boundary is shown in Fig. 3.35.
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Fig. 3.34 In the case of weak
shocks the traces of
shock-shocks cross and form
a triangular shape in the form
of a caustic as shown here,
reproduced from [60], with
permission from Elsevier

Fig. 3.35 Image of (a) the test section with exploding wire setup at the center and (b) reflector
boundary, reproduced from [9], with permission from Springer

By this method the authors were able to create shock waves in the range of
M ∼ 1.5–2.0. The higher strength of the initial shocks resulted in the nonlinear
behavior of converging shocks after reflection from the boundary. The shock
crossing with caustic formation for weak shocks was now replaced by the formation
of Mach stems at the corners of the polygon, as may be seen from Fig. 3.36a. The
Mach number is higher on the Mach stems as compared to the adjacent sides of
the polygon leading to a transformation of the polygonal structure as described
previously.

Figure 3.36b shows experimental image and comparison with computations
based on the extended theory of GSD, taking into account flow ahead of the
converging shock and created by the initial outgoing blast wave [8]. The GSD theory
is seen to be able to reproduce the converging shock front in good agreement with
the experiment. The flow details behind the converging shock front are however not
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Fig. 3.36 Converging shock close to the center of the chamber. (a) Experimental schlieren image.
(b) Comparison with the GSD computations (white curve), reproduced from [9], with permission
from Springer

captured since GSD is based on the approximation that does not take into account
the conditions behind the accelerating shock front.

Tailoring of the converging shocks by means of the reflector boundary was later
continued in a work by Eliasson et al. [39]. Thin cylindrical test section with glass
windows for visualization and replaceable reflector boundaries was mounted at the
end of the annular shock tube facility at KTH (Royal Institute of Technology),
Stockholm, Sweden, shown in Fig. 3.37.

Shocks with initial Mach numbers in the range M = 2.3–3.6 were produced and
reflected from three different reflector boundaries, circular, octagonal with sharp
edges, as well as smooth pentagonal as shown in Fig. 3.38.

In this work it was shown that it is possible to tailor the form of the converging
shock by means of the reflector boundary. Also, the form of the outgoing shock after
reflection from the center of the chamber was visualized, and the influence of the
flow created by the initial converging shock was clearly seen as, e.g., in Fig. 3.39
where the octagonal structure is seen to be preserved for the outgoing shock.

One of the observations of this study was that despite the form of the reflector
the final form of the converging shock, very close to the center of convergence was
square-like, Fig. 3.40. This was attributed to the flow disturbances created by the
four supports of the central annular body of the shock tube. A feature, previously
detected by Takayama and co-workers [104].

3.5.3 Generation of Polygonal Shocks by Cylindrical Obstacles

The instability modes observed experimentally by Takayama and co-workers that
transformed initially cylindrical converging shocks to polygonal structures stemmed
from the supports holding the inner central body inside the shock tube. These
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Fig. 3.37 (a) Schematic of the annular shock tube: (a) driver, (b) driven section, (c) conical
transformation section, (d) test section, (e) pulsed laser, (f)–(j) schlieren optical setup. (b)
Schematic of the annular part of the shock tube with the conical insert: (1) inner body with a cone,
(2) supports, (3) mirror, (4) lens, (5) glass windows for visualization, (6) convergence chamber
with replaceable reflector plates, and (7) laser light entrance. Both images reproduced from [39],
with permission from Springer

Fig. 3.38 Various reflector boundaries: (a) circular, (b) octagonal, (c) pentagonal, reproduced
from [39], with permission from Springer



3.5 Polygonal Shocks 69

Fig. 3.39 Converging and diverging shocks from an octagonal reflector. (a) �t = 185 μs.
(b) �t = 190 μs. (c) �t = 202 μs. (d) �t = 210 μs. (e) �t = 215 μs. (f) �t = 230 μs.
(g) �t = 250 μs. (h) �t = 265 μs, reproduced from [39], with permission from Springer

Fig. 3.40 Close-up of the region very close to the focal point of converging and outgoing shocks
using circular and octagonal reflectors. (a) Ms = 2.51, circular reflector. (b) Ms = 2.35, octagonal
reflector. (c) Ms = 2.35, circular reflector. (d) Ms = 3.68, octagonal reflector, reproduced from
[39], with permission from Springer

structures introduced perturbations in the flow leading to a transformation of the
shock front. The perturbations were persistent, and their influence increased in the
process of convergence with increasing shock strength. Suppose that one introduces
small objects, obstacles, in the convergence chamber intentionally. Could such
objects, placed in a certain predetermined pattern, serve as a tool for exactly this
purpose—transformation of an initially cylindrical shock front to a desired shape?

This question was studied in detail by Eliasson et al. [40]. A thin shock tube test
section with a circular boundary was mounted at the end of the annular shock tube
facility at KTH, Stockholm. The experimental setup was similar to the one described
above with a difference that the initially cylindrical shock front was disturbed by
small cylindrical objects placed in various configurations inside the shock tube test
section as, for example, the one with 8 × 8 cylinders shown in Fig. 3.41.



70 3 Converging Shocks

Fig. 3.41 Small cylindrical
objects inside the shock tube
test section, reproduced from
[40], with permission from
Springer

Both symmetric and nonsymmetric configurations were investigated. Shock
fronts obtained by disturbing an initially cylindrical shock with one, two, three,
and four cylindrical objects are shown in Fig. 3.42.

A full series of converging and diverging shocks obtained by eight cylindrical
objects placed in a symmetric pattern is shown next in Fig. 3.43.

This work showed that it is possible to tailor the form of a converging shock
to a symmetric as well as asymmetric shock front by placing cylindrical objects in
the convergence chamber. The perturbations generated by the objects showed to be
strong and able to transform an initially circular shock front to various polygonal-
like structures.

Transforming a cylindrical converging shock to a shock with symmetric polygo-
nal shock front is of advantage for the stability and thus high-energy concentrations
at the focal region. As shown by Schwendeman and Whitham [94], a symmetric
polygonal shock undergoes periodic transformations retaining the symmetry. Each
transformation increases the strength of the shock due to Mach reflections at the
corners of the polygon. It was also shown that the ratio of Mach numbers for the
successive regular polygons follow the same formula as for a converging cylindrical
shock. This is true for all regular polygons with the number of sides n > 3, meaning
that this is not true for a shock front in the form of an equilateral triangle. Betelu
and Aronson [14] obtained a self-similar solution for the case of a converging shock
with a regular triangular shock front. By contrast to all other regular polygons, this
solution does not lead to an increase of the converging shock strength because the
reflection taking place at each corner of the triangular shock front is regular and not
Mach reflection as in the case of regular polygons with greater number of sides then
three. The authors conclude that unlike circular and regular polygon convergence,
the case of a regular triangle leads to bounded energy density at the focal region.

This theoretical and computational result was confirmed in the experimental
study by Eliasson, Kjellander, and Apazidis [42]. The annular shock tube facility at



3.5 Polygonal Shocks 71

Fig. 3.42 Schlieren images from multiple sequential experiments displayed in a single figure
showing how varying the number of cylindrical objects disturb the shock front evolution as it
propagates toward the focal point. (a) One obstacle. (b) Two obstacles. (c) Three obstacles. (d)
Four obstacles, reproduced from [40], with permission from Springer

KTH was used to study convergence of triangular and square shock fronts generated
by three, respectively, and four small cylindrical objects placed in symmetric
patterns in the convergence chamber, as shown in Fig. 3.44.

The idea was to compare convergence of a triangular shock with one which has
one more side that is a square, Figs. 3.45 and 3.46. The experimental results showed
that triangular and square-like shocks undergo different type of convergence. A
triangular-shaped shock converged with unchanged form preserving the initial
orientation until the very end of convergence indicating that the shocks at the
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Fig. 3.43 Schlieren images of individual experiments repeated with different time delays for the
camera. Symmetric shock fronts obtained by a combination of eight 15 mm diameter cylinders.
(a) �t = 200 μs. (b) �t = 205 μs. (c) �t = 210 μs. (d) �t = 216.5 μs. (e) �t = 217.5 μs. (f)
�t = 240 μs, reproduced from [40], with permission from Springer
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Fig. 3.44 Three and four cylindrical objects in the shock tube test section, reproduced from [42],
with permission from Springer

Fig. 3.45 Triangular shock convergence using three 15 mm diameter cylinders to shape the shock.
(a) �t = 0 μs. (b) �t = 4 μs. (c) �t = 7 μs. (d) �t = 17 μs. (e) �t = 22 μs. (f) �t = 31 μs. (g)
�t = 32 μs. (h) �t = 43 μs, reproduced from [42], with permission from Springer

vertices of the triangle undergo regular reflection. While in the case of a square-like
shock, the shocks at the vertices suffered Mach reflection reconfiguring the form of
the shock front. After one cycle a new square “rotated” 90◦ relative to the initial was
formed as illustrated in Fig. 3.45.

As we saw, the presented experimental method makes it possible to tailor the
form of converging shock by placing an array of small cylindrical obstacles in
the chamber. The stability and symmetry of the converging shock are essential for
its ability to produce high-energy density in gas at the focal region. The extreme
conditions in gas are manifested by high pressures and temperatures leading to
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Fig. 3.46 Square shock convergence using four 15 mm diameter cylinders to shape the shock.
(a) �t = 0 μs. (b) �t = 10 μs. (c) �t = 18 μs. (d) �t = 20 μs. (e) �t = 22 μs. (f) �t = 28 μs.
(g) �t = 31 μs. (h) �t = 31 μs, reproduced from [42], with permission from Springer

1

2
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54 6

Fig. 3.47 The annular part of the shock tube: 1. inner body with a cone, 2. supports, 3. mirror,
4. beam expander, 5. lens, 6. test section, reproduced from [41], with permission from Springer

luminescence of the heated gas core visible to a naked eye. The main purpose of
the work by Eliasson et al. [41] was to investigate the connection between the
form of the converging shock and light emission levels of the compressed gas
experimentally. The annular shock tube facility at KTH, Stockholm, with a central
body is shown in the sketch in Fig. 3.47. An optical system consists of a mirror with
beam expander and a lens provided for visualization by laser pulses and a schlieren
imaging for capturing the form of converging shock fronts.

These were produced by disturbing the initial cylindrical shock by an array of
three, four, seven, and eight small cylindrical objects placed symmetrically in the
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Fig. 3.48 Shock fronts approaching the center of the shock tube test section obtained by various
combinations of cylindrical objects. (a) Cylindrical, (b) one cylinder, (c) three cylinders, (d) four
cylinders, (e) seven cylinders, and (f) eight cylinders, reproduced from [41], with the permission
of AIP

chamber. In addition the cylindrical shock front was also disturbed by a single
cylindrical object. Converging shock fronts approaching the center of the chamber
and obtained by various combinations of cylindrical objects are shown in Fig. 3.48.

The light emission of converging shocks at the instant of shock implosion was
measured by a photomultiplier (PM) tube connected to the rear part of the shock
tube. The PM tube was mounted inside a light sealed cover to prevent contamination
from other light sources than those originating from the shock implosion. The PM
tube was mounted without disturbing the schlieren optics setup to ensure the use of
both measurements simultaneously. A photograph of the PM tube with a light cover
is shown in Fig. 3.49.

Light intensity was measured both in air and argon. The intensity levels of light
emission in argon were substantially higher than in air. Results of light intensity
curves in argon for various shapes of the converging shock are shown in Fig. 3.50.

Figure 3.50a shows the light emission levels for a cylindrical shock not disturbed
by any obstacles. One can see here a large spread up to a factor 10 in the intensity
levels between the runs indicating the unstable nature of convergence. This may be
compared to Fig. 3.50e showing light emission levels for a symmetric heptagonal
shock formed by seven cylindrical objects. By contrast to a cylindrical shock, this
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Fig. 3.49 The PM tube with
a light cover seal at the rear
part of the shock tube,
reproduced from [41], with
the permission of AIP

case shows very high degree of coherence between different runs indicating a much
higher degree of stability in the focusing process. The duration of a typical light
pulse was also measured with a full width of half maximum being about 200 ns.

Experimental investigation of the connection between the form of the converging
shock front and intensity of light emission was complemented by numerical
calculations to boost the detail analysis of convergence process. The Overture suite
[22], a numerical scheme with adaptive mesh refinement, was incorporated. The gas
was treated as ideal neglecting the real gas effects. Numerical shock profiles of an
initially cylindrical shock disturbed by one, three, and four cylindrical objects are
shown in Fig. 3.51.

A corresponding numerical temperature distribution for the case of a cylindrical
shock, a shock disturbed by one, three, and four obstacles, is shown in the next
Fig. 3.52.

3.5.4 Generation of Polygonal Shocks by Wing-Shaped
Profiles

Desired polygon-like symmetric shape of an initially converging cylindrical shock
may be achieved by placing an array of cylindrical obstacles in the convergence
chamber as it was described in the previous section. Although small, as compared
to chamber dimensions, cylindrical objects introduce substantial amount of drag
and flow disturbances. Would it be possible to transform a cylindrical shock to a
symmetric polygon by more aerodynamically streamlined objects thus reducing the
overall drag and flow disturbances? This question was investigated experimentally
and numerically by Kjellander, Tillmark, and Apazidis [65]. The test section of the
shock tube facility at KTH was equipped with eight wing-shaped profiles placed
radially in a symmetric pattern, as shown in Fig. 3.53.

The main purpose of this investigation was, however, to measure the temperature
of the compressed heated gas at the moment of implosion, Fig. 3.54.
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Fig. 3.50 Light intensity levels for various shapes of converging shocks: (a) circular shock, (b)
one obstacle, (c) three obstacles, (d) four obstacles, (e) heptagon, and in (f) octagon, reproduced
from [41], with the permission of AIP

The temperature measurements were conducted by means of photometric and
spectroscopic equipment. Experiments were conducted with various combinations
of driver and driven gases. The combination that produced maximum luminescence
was helium as driver gas and argon as driven gas. Cylindrical shocks with initial
Mach numbers M = 2.3 and M = 3.8 were transformed to polygonal form by an
array of symmetrically arranged eight thin wing-shaped profiles, Fig. 3.53.
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Fig. 3.51 Schlieren images from simulations in Overture showing shock waves close to the center
of convergence for different shapes (a) one cylinder, (c) three cylinders, and (d) four cylinders. The
diameter, D, of the cylindrical obstacle is indicated in the figures, reproduced from [41], with the
permission of AIP
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Fig. 3.52 Numerical temperature fields of a cylindrical shock as well as shocks disturbed by one,
three, and four cylindrical objects, reproduced from [41], with the permission of AIP
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(a) (b)

Fig. 3.53 Wing-shaped profiles in the convergence chamber, reproduced from [65], with the
permission of AIP

Fig. 3.54 Hot, compressed,
and glowing argon gas core at
the moment of shock
implosion, reproduced from
[65], with the permission of
AIP

Multiple exposure technique made it possible to measure experimentally the
value of the power-law exponent for converging polygonal shocks both in air and
argon. This was compared with the Guderley solution

r

r0
=

(
1 − t

tc

)α

, (3.19)

for cylindrical shocks where r0 is the initial radius and tc the time needed for
the shock front to reach the center. The values of power-law exponents for the
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Fig. 3.55 Experimental schlieren images of converging (a)–(e) and diverging (f) shocks in air.
(a) �t = −17.4 μs. (b) �t = −11.0 μs. (c) �t = −6.6 μs. (d) �t = −3.9 μs. (e) �t = −2.6 μs.
(f) �t = +17.4 μs, reproduced from [65], with the permission of AIP

polygonal case were lower than for the circular case both for air and argon. A
fit of experimental data for converging octagonal shock in air gave the value of
α ≈ 0.875 ± 0.010 and in argon α ≈ 0.862 ± 0.015 as compared to the cylindrical
case in air α ≈ 0.834 as and argon α ≈ 0.816. The lower values of the power-law
exponent in the octagonal case give a slower than cylindrical shock convergence as
may be seen from Fig. 3.56.

Polygonal shock fronts produced by this method showed a very high degree of
symmetry during convergence all the way to the shock implosion and even after
reflection from the center as can be seen in Fig. 3.55. Photographs of the light-
emitting hot gas core at the moment of implosion give additional strong evidence
of the high degree of stability of the convergence process in this case. Figure 3.54
shows light-emitting argon gas core at the moment of implosion. Figure 3.57a shows
the full view of the test chamber, and Fig. 3.57b is a magnification showing a thin
streak of argon plasma spanning the 5 mm space between the lower and upper
plates of the chamber. Figure 3.57b gives a strong evidence of the preserved two-
dimensional symmetry until the final instant of shock implosion.

Spectrometric measurements of light emission during shock implosion in argon
were also conducted. The value of the initial Mach number at the boundary of the
test section was M = 3.8. A spectrometer with a high temporal resolution of 60 ns
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Fig. 3.56 Convergence of octagonal shocks in (+) and argon (o) as compared to cylindrical
Guderley solutions (dashed line), reproduced from [65], with the permission of AIP

was used, and the temperature was deduced by a fit of the filtered continuum spectra
to the black-body function. Figure 3.58 shows two black-body curve fits of a filtered
continuum spectra at t = 310 and t = 3, 230 ns after implosion giving temperatures
of T = 5, 400 and T = 4, 650 K, respectively.

The maximum temperature of T = 5, 800 ± 200 K was measured at 100 ns
after shock implosion. The temperature variation with time after implosion based
on black-body fits is shown in the next Fig. 3.59.

Numerical computations were conducted to further enhance the description of
the shock convergence process. The numerical model based on the artificially
upstream flux vector splitting (AUFS) scheme for two-dimensional Euler equations
introduced by Sun and Takayama [103] was adopted on an unstructured triangular
mesh with automatic mesh refinement boosting the numerical accuracy in com-
plicated geometry. Numerical schlieren shock profiles are shown in Fig. 3.60, and
a comparison between numerical and experimental schlieren is given in the next
Fig. 3.61.

The numerical model in this investigation was based on the solution of two-
dimensional Euler equations with an ideal gas equation of state. The ideal gas
approximation will certainly not hold as the converging shock approaches the focal
region, and real gas effects such as ionization will play a significant role in the shock
thermodynamics of the convergence process. The maximum measured temperatures
in this two-dimensional case were under 6000 K as illustrated in Fig. 3.59. The
ionization levels in argon at such temperatures are negligible, and ideal gas model
may be incorporated. Comparison between numerical and experimental temperature
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Fig. 3.57 Hot light-emitting argon gas core at the instant of implosion: (a) general view and (b)
magnification of the core, reproduced from [65], with the permission of AIP
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Fig. 3.58 Black-body fits of filtered continuum spectra at two instants after implosion, reproduced
from [65], with the permission of AIP

Fig. 3.59 Temperature
variation with time after
implosion, reproduced from
[65], with the permission of
AIP
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values at the moment of shock implosion in argon is shown in Fig. 3.62. Figure 3.62
shows fair agreement of the prediction of the numerical model and experimental
results in the temperature levels as well as the pulse duration.

Numerical temperature fields at various instants in the process of octagonal
convergence are shown in the next Fig. 3.63.

In this respect it is worthwhile to note the similarities in shock formation
mechanisms for converging symmetrical shocks. The symmetric shock structure
shown in Fig. 3.43 was obtained by perturbing an initially cylindrical shock by
eight small cylindrical objects placed symmetrically in the convergence chamber.
The shock evolution and the overall shock dynamical is similar to converging
shock fronts produced by eight thin wing-shaped profiles as shown in Fig. 3.55.
A series of experimental images from I. Glass’s book Shock Waves and Man [50]
shows converging detonation shocks triggered by eight detonators and illustrated
in Fig. 3.64. Also, in this case, the mechanisms of symmetric shock formation
are the same as in the previous two cases as may be seen by, e.g., comparison
with numerical schlieren images, Fig. 3.60 as well as temperature fields shown in
Fig. 3.63.

The individual shock wave profiles generated by eight point source explosions
transform into star-like structures very similar to those obtained by diffracting
an initially cylindrical shock by eight thin wing-shaped profiles. Initial symmetry
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Fig. 3.60 Numerical schlieren images of converging shocks in air with initial Mach number M =
2.7 close to the center of the test section. (a) �t = −17.4 μs. (b) �t = −11.0 μs. (c) �t =
−6.6 μs. (d) �t = −3.9 μs. (e) �t = −2.6 μs. (f) �t = +17.4 μs, reproduced from [65], with the
permission of AIP

Fig. 3.61 Comparison of
numerical and experimental
schlieren images, reproduced
from [65], with the
permission of AIP
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Fig. 3.62 Comparison of numerical and experimental temperature values close to implosion
instant, reproduced from [10], with permission from Springer

imposed on the flow by obstacles or detonations coupled with a tendency to planarity
as the shock strength increases results in polygonal-like structures. Plane shock
portions meeting at the corners of the structure suffer Mach reflection which results
in creation of new plane sides and thus reorientation of the polygon. A 22.5 degree
rotation of the original configuration is distinctly seen in frame 15 of Figs. 3.64 and
3.63d.

The role of real gas effects during cylindrical and spherical shock implosion
in monatomic gas was investigated theoretically and numerically by Kjellander,
Tillmark, and Apazidis in [66]. The real gas effects for monatomic gas, such
as ionization, electronic excitation, and Coulomb interaction, were incorporated
in the jump conditions over the shock interface. These relations together with
theory of geometrical shock dynamics (GSD) were integrated numerically along
the C+ characteristic. The main results of this study indicate that real gas effects
in monatomic gas, especially ionization, have a major limiting effect on the final
temperature of compressed gas, as its kinetic energy is transformed into other energy
modes. An interesting feature of this process is that the compression ratio, e.g.,
density ratio, undergoes a substantial increase (almost 4 times greater) as compared
to the ideal case. The Mach number and temperature for cylindrical and spherical
shocks converging in monatomic gas are shown in Fig. 3.65. Figure 3.65 shows the



86 3 Converging Shocks

Fig. 3.63 Numerical temperatures fields in argon at various time instants (a)–(d). Initial Mach
number M = 3.7, reproduced from [10], with permission from Springer

strong limiting effect of mainly ionization on the Mach number and temperature
for cylindrical (C) and spherical (S) converging shocks. Full lines show relations
including ionization and are compared with dashed line representing the ideal
gas case.

3.5.5 Generation of Polygonal Shocks by Multiple Exploding
Wires

Polygonal shock focusing can also be achieved by using multiple synchronized
shock waves generated by exploding wires. One example of such an experiment
is that by Gross and Eliasson [38]. In this experiment, an exploding wire system
was used to generate multiple shock waves, and the shock waves were visualized by
a z-folded schlieren system. The working principle of an exploding wire used for
shock generation experiments is that by rapidly discharging high-voltage capacitors
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Fig. 3.64 Converging sh ock waves initiated by eight detonators placed symmetrically on the
surface of a disc, reproduced from [50], (US Naval Weapons Laboratory)

though a small-diameter wire, the wire will rapidly be heated up and vaporized due
to the resistance of the wire itself. Following vaporization, the column of hot gas
or plasma made from the wire then expands rapidly, creating an expanding shock
wave. This heating must occur over a sufficiently small time scale to ensure that the
wire vaporizes rather than melts. In this setup, depicted in Fig. 2.9, the capacitors
were charged by a Glassman EH series high-voltage power supply. The capacitors
were five high-voltage capacitors connected in parallel with a total capacitance of
1.3 μF and a charge of 30,000 V. The experiment used a model 131M spark gap
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Fig. 3.65 Mach number and
temperature behind the
converging cylindrical and
spherical shocks, reproduced
from [66], with the
permission of AIP
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switch. Spark gap switches work by using a spark between two terminals to make or
break contact in the circuit on time scales that are much faster than those achievable
with electromechanical relays.

Shock focusing from multiple synchronized shocks was obtained both in
two-dimensional scenarios, by using longer straight copper wires, and in three-
dimensional scenarios, by using short looped copper wires. Experiments were
performed with stored energies of over 400 J that were released within 2 μs. Several
types of experiments were performed to investigate how multiple cylindrical
or spherical shocks interacted. Experimental results showing successful shock
focusing produced by three individual shock waves of equal strength is shown in
Fig. 3.66. For this case, the three wires that were placed concentrically around the
focal point did not generate transition from RR to IR, in agreement with [42].

However, by placing the wires with an angle of 60◦ between them, Fig. 3.67a,
RR transition to IR occurred as expected. Symmetric focusing in two-dimensional
was achieved by using a symmetry plane (a plastic sheet that allowed the shocks to
reflect off its edge) along with the three wires placed the 60◦ angle between the three
wires, shown in Fig. 3.67b. Larger numbers of wires, here up to 12 wires were tested,
still represent a challenge in terms of obtaining equal initiation times and strength,
Fig. 3.67c. This challenge can partially be overcome by using separate spark gaps for
each wire. Figure 3.67d shows a comparison between the experiments (lower half)
compared to numerical simulations obtained using Euler equations (upper half),
similar to those presented in reference [86], resulting in very good agreement.
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Fig. 3.66 Exploding wire results for regular reflection, arrows pointing in the direction of shock
propagation. Three wires were evenly distributed in a circular pattern at equal radial distance
around the focal region. Shocks were visualized using high-speed schlieren imaging. Converging
shocks in (a) and (b) and reflected diverging shocks in (c) and (d). Figures obtained from
V. Eliasson

3.5.6 Polygonal Shocks: Simulations

Qiu and Eliasson [86] studied the interaction of multiple blast waves to direct energy
toward a target area while simultaneously reducing collateral damage away from the
target. Simulations of multiple point source micro-explosives were performed, and
the resulting shock interaction and coalescence behavior were explored. Figure 3.68
shows numerical schlieren visualizations of all cases at an early time instant and a
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Fig. 3.67 Exploding wire results for irregular reflection. (a) To promote RR to IR transition, three
wires were placed with a 60◦ angle between the middle wire and the two wires on each side.
(b) Same setup as in (a) but a symmetry plane was added to generate a polygonal converging
shock wave. (c) Twelve wires were successfully exploded albeit the timing was not synchronized.
(d) Comparison between inviscid Euler simulations (top) and experiments (bottom). Figures from
V. Eliasson

later time instant just before the converging shock fronts reach the focal region. For
each case, probes were placed at the two points of interest, T1 and S1, to collect
pressure data as a function of time.

For cases featuring three, five, and ten micro-explosives placed concentrically
around the focal region, the resulting conditions were compared with those obtained
using a single micro-explosive, summarized in Table 3.3. The energy summed
over all micro-explosives and the radial position were kept constant. Each micro-
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Fig. 3.68 Schlieren visualizations of the cases with (a) one (1C), (b) three (3C), (c) five (5C),
and (d) ten (10C) point explosions in their early stages (top row) and later stages (bottom row),
reproduced from [86], with permission from Springer
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Table 3.3 Comparison of
normalized peak pressure, p,
and impulse, J , at the focal
region (denoted T1 in
Fig. 3.68) as well as a point
(outside region, denoted S1 in
Fig. 3.68) representing
collateral damage for cases
with one, three, five, and ten
micro-explosives

Focal region Outside region

Case p J p J

1 1 1 1 1

3 3.2 3.5 0.42 0.48

5 7.6 5.8 0.31 0.35

10 21.2 10.2 0.28 0.41

The total energy is kept constant for all
cases, and impulse is collected for 20 time
units after the peak pressure occurred,
from [86]

explosive was modeled as a point source explosion using Taylor’s approach [106].
The resulting blast wave propagation and shock front coalescence were solved using
the inviscid Euler equations of gas dynamics on overlapping grids employing a
finite difference Godunov scheme [51] and adaptive mesh refinement. Results show
that multiple micro-explosives are beneficial for creating extreme conditions at the
intended target area; with energy conserved, the use of 10 micro-explosives, each
with initial energy E, increased the peak pressure by a factor of 20 over the use of a
single micro-explosive with initial energy 10E. Moreover, peak pressure at a point
away from the target area is reduced by more than a factor of three. Impulse, which
is a more relevant measure of the destructive force of a shock wave, follows similar
trends as peak pressure.

This study achieved two goals: (1) showed it was possible to increase the extreme
conditions at a designated target area by using multiple munitions and utilize shock
focusing from the combined shock fronts and (2) proved that the reduction of
collateral damage away from the target area was substantial. Furthermore, from
the results with one, three, and five munitions, it was seen that the peak pressure
at target S1 (representing collateral damage) was mainly influenced by the energy
of the nearest blast; however, the peak pressure at target T1 (at the intended focal
region of all coalescent shocks) was influenced by the shock focusing process. In the
case of three munitions (case 3C), the convergent shock front formed a triangular
shape that remained triangular during the focusing process. For the case with five
munitions (case 5C), a pentagon was obtained. It only had time to reconfigure once
from a pentagon (five-sided polygon) to a decagon (ten-sided polygon) during the
focusing process. In the case with ten munitions (case 10C), the coalescent shock
waves first formed a decagon and then changed into an icosagon (20-sided polygon)
and back again to a decagon. Subsequently, this process was repeated multiple times
throughout the focusing process. At each reconfiguration stage, the shock front
Mach number was increased. The authors also investigated scenarios where one
munition has been delayed. It was found that for cases with three, five, and ten
munitions, with one munition delayed by �t , there is not much influence on the
peak pressure at target T1. But as the delay time was increased to 3�t , the pressure
recorded at target T1 was reduced dramatically. This is also related to the position
of the center of energy. With a longer time delay, the center of energy was shifted
further away from target T1.
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Next, to enable optimization of the shock focusing process, Qiu et al. [87] chose
to utilize GSD because for shock dynamics problems, it can be more efficient
than solving the Euler equations (for two-dimensional problems, the complexity
is reduced at least one order of magnitude). Thus, GSD was implemented and par-
allelized for two-dimensional computations using a spatial decomposition method
coupled with a front-tracking algorithm. With the use of symmetric boundary
conditions, the method resulted in a considerable speedup for the shock focusing
case of a 12-sided polygonal shock [87]. This GSD code also provides excellent
agreement with Euler simulations in regard to predicting the location (or time) when
reconfiguration processes occur, i.e., RR to IR transition. As a polygonal converging
shock propagates toward the center, the lines of symmetry of the shock front are
independent from its reconfiguration process. Thus, it is possible to compute only
one section of the shock front instead of the full geometry. This symmetry feature
indicates that the norm vector at each point where the line of symmetry meets with
the shock front is always directed to the center. This is the boundary condition for
each symmetric part of the shock front. For example, since the shock front features
a polygonal shape, geometrical symmetry is used such that only a triangular portion
of the converging shock, from a corner where two shocks meet to the midpoint of
a neighboring planar side, is considered. The shock velocity on either side of this
triangle is always directed along the sides of the triangle, i.e., the symmetrylines.
With this condition, the problem size can be reduced from N down to N/2nl ,
where N denotes the number of discrete points and nl denotes the number of
symmetric lines. A test on 12-sided polygonal (dodecagon) converging shock has
been performed to verify the boundary condition. Three different symmetric parts
(1/2, 1/4, and 1/24) have been computed independently and compared with the full
size; see Fig. 3.69. It can be seen that all of the symmetric parts match the full size
result very well. For performance analysis, the speedup of the symmetric boundary
condition is defined as wall-clock time ratio of the full geometry versus the reduced
geometry using a single core. Results are summarized in Table 3.4, and it is shown
that for the dodecagon shock front, the speedup can be obtained up to 19.26.

3.6 Cylindrical Convergence

Is it possible to produce a converging cylindrical shock by some other method than
the ones we discussed so far? In a short but very interesting paper, Saillard, Barbry,
and Mounier [91] use GSD theory to compute the shape of the shock tube wall that
will change an initially plane shock of uniform strength into a converging cylindrical
sector or spherical cap without Mach reflections. The idea is to obtain a cylindrical
or spherical shock section converging at the apex of a conically shaped tube. This
method offers several advantages as compared to other methods. The converging
shock is obtained directly without any reflections. The converging shock is not
disturbed by the flow from an initial blast wave but propagates into a quiescent,
undisturbed medium ahead. Ideally there are no losses due to transformation from
planar to circular form. On the contrary the shock strength increases due to area
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Fig. 3.69 Dodecagon shock front propagation at successive time instants. Red dashed line
represents the full geometrical simulation and blue solid line represents, from left to right, 1/2,
1/4, and 1/24 of the full-size simulation using symmetric boundary conditions. (a) 1/2. (b) 1/4. (c)
1/24, reproduced from [87], with permission from Elsevier

contraction. We will discuss these as well as other properties of this method here.
Figure 3.70 shows division of the computational region into subregions (I), (II),
(III), and (IV). Subregion (I) is bounded by the final cylindrical shock and curved
portion of the C+ characteristic. Point F here is a singular point. Region (II) is
connected with region (I) by C+ characteristic to F and C− characteristic. Region
(III) is determined by the axis from A to B which is connected to region (II) by the
C+ characteristic. Finally region (IV) is connected by C+ to initial shock and by
C− to region (II) or (III). The solution in the whole computational region is thus
obtained. Of specific interest is the solution for which M0 = MB . In this case points
A and B coincide, and the discontinuity of the wall shape at F vanishes. The authors
call such case for a regular solution.

In a later work, Dumitrescu [37] confirmed once again that it is theoretically
possible to produce a cylindrical shock sector in a two-dimensional channel by
gradually changing wall shape of initially straight channel. An example of such
shape transformation is shown in Fig. 3.71. Figure 3.71 shows a transformation of
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Table 3.4 Computational cost and speedup of 1/2, 1/4, and 1/24 of the full geometrical simulation
using symmetric boundary conditions

Problem size Full size 1/2 size 1/4 size 1/24 size

Computational cost 17.15 8.65 4.44 0.89

Speedup 1.0 1.98 3.86 19.26

All the simulations are terminated after 10,000 iterations, from [87]

Fig. 3.70 Schematic diagram of the solution with subregions of the flow field, according to [91]
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M1I

II
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_
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Fig. 3.71 Wall shape transformation of initially straight two-dimensional channel, according to
[37]

initially plane shock AB into a circular sector CD. The region between AB and
CD is divided into three subregions: in subregion (I) bounded by the initial straight
shock and two straight parts of C+ and C− characteristics where the flow is in
uniform state. Region (II) is a simple wave region adjacent to the uniform region (I).
Region (III), bounded by the curved portions of C+ and C− characteristics and the
cylindrical shock sector, is a region of uniform cylindrical implosion. Dumitrescu
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Fig. 3.72 Sketch of the end section where the straight shock is transformed to a cylindrical sector,
reproduced from [124], with the permission of AIP

argues that gas dynamic problems in all regions with known boundary conditions
along the region boundaries are well-posed and the flow parameters can thus be
determined.

This method of transformation from a plane to a cylindrical shock was realized
experimentally by Zhai et al. [124]. Using the GSD theory in the method described
by Saillard [91], Barbry [12], Dumitrecu [37], the authors obtain an equation for the
coordinates of the points (xi, yi) on the wall boundary in the form

y − yi = (x − xi) tan (ξθi) , (3.20)

where ξ is a parameter that can be varied. Value ξ = 1 is chosen initially. The
experiments were conducted in a shock tube with the end section wall shaped
according to (3.20) as shown in Fig. 3.72.

Figure 3.73 shows experimental schlieren images of converging (a) and (b) and
reflected (c) shocks in the channel. The circular form of the shocks is distinctly seen.

An interesting and different technique leading to similar results of transforming
a planar incident shock into a cylindrical transmitted shock has been proposed
by Dimotakis and Samtaney [36]. The authors proposed to use a suitably shaped
interface between two gases that will refract the initial plane shock into a cylindrical
shape. For a set of parameters defining the density ratio, ratio of specific heats
between the gases and initial Mach number and the angle between the incident shock
and the contact surface, they computed the equation for the interface by using local
shock-polar analysis. Figure 3.74 shows the initial shock tube configuration with the
two gases separated by the interface.

The authors conducted several numerical case studies for various values of the
parameters using inviscid Euler equations as well as compressible Navier-Stokes
code. Figure 3.75 shows the results of numerical computations for the inviscid
(bottom) and viscous (top) case with the final cylindrical form of the converging
shock.

This purely theoretical and numerical investigation was followed up by an
experimental and numerical study of shock focusing in a 25◦ internal wedge
mounted asymmetrically in shock tube [16]. The test gas was CO2 and N2 to
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Fig. 3.73 Experimental schlieren images of converging (a, b) and reflected (c), shocks with initial
Mach number M0 = 1.2 and half-wedge angle θ0 = 15◦. (a) t = 1050 μs. (b) t = 1100 μs. (c)
t = 1500 μs, reproduced from [124], with the permission of AIP

Fig. 3.74 Initial configuration showing the shock tube and the interface between two gases,
reproduced from [36], with the permission of AIP

eliminate the real gas effects. One of the main and interesting results of this study is
the influence of the initial shock configuration on the following shock strengthening
and focusing process. Two initial shock strengths were tested in N2: M = 1.49 and
M = 2.43 as shown in Fig. 3.76.

The increase of the Mach number as the shock approaches the apex of the
wedge was calculated and compared with the results of GSD theory for converging
cylindrical shocks. The results are shown in Fig. 3.77.

As one can see from Fig. 3.77, the initially stronger shock has a typical stepwise
evolution of a polygonal shock when plane portions of the shock propagate with
a constant Mach number until they merge and develop a new Mach stem with a
higher Mach number as, e.g., in [8] Fig. 3.32. On the average the increase in the
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Fig. 3.75 Transformation of the initial plane shock into cylindrical form by a gas lens, reproduced
from [36], with the permission of AIP

Fig. 3.76 Shock convergence in a wedge for two initial Mach numbers (a) M = 1.49 and (b)
M = 2.43, reproduced from [16], with permission from Cambridge University Press

Mach number is the same as for a converging cylindrical shock which can be clearly
seen in Fig. 3.77. This tendency is not so pronounced in Fig. 3.77a depending on a
weaker initial shock.

3.7 Spherical Convergence

Spherical shock convergence is a far more powerful method of shock amplification
than cylindrical case. In terms of experimental realization, it also presents a much
harder challenge. In a pioneering experimental work by Roberts and Glass [89],
the authors studied imploding shock waves in a hemispherical chamber filled with
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Fig. 3.77 The evolution of the calculated shock number for the converging shock in the wedge
(solid lines) compared with a results of GSD (dashed lines) for a cylindrical shock, reproduced
from [16], with permission from Cambridge University Press

hydrogen-oxygen-helium mixture at high pressure (∼10 atm). A detonation wave
initiated at the center of the chamber was reflected from the chamber boundary and
generated a hemispherical shock converging at the center of the chamber as shown
in the sketch in Fig. 3.78.

Spectroscopic measurements of the light radiation from the imploding shock with
a fit to Planck’s curve (3.22) resulted in a black-body temperature of 5,600 K ±
200 K. The authors reported a deviation of the implosion point from the center of
the chamber. To overcome this deviation from the center as well as reproducibility
problems, this initial study was followed up by a more extensive investigation by
Roig and Glass in 1977 [90]. By perfecting the shock initiation techniques, the
authors were able to solve the off-centered implosions problem. Luminescence spots
at various instants during the shock implosion are illustrated in Fig. 3.79.

The duration of the implosion pulse was determined to be 4 − 9μs depending on
initial pressure. A typical temperature variation during implosion is shown in the
next Fig. 3.80.

The ambient temperature TA is 3000–3500 K and is elevated to the peak TP =
4600 K as a result of shock implosion. Temperature histories as function of time at
various initial pressures are shown in Fig. 3.81 in which the ambient temperature
of around 3200 K is seen to rise to around 5000 K at the peak of implosion. The
authors showed that the debris from the exploding wire igniting the initial shock
lowers the duration of the implosion pulse as well as implosion temperature peaks.
A maximum peak pressure was estimated at (12.5 ± 1.0) · 103 atm.

In 1982 Saito and Glass [92] conducted spectroscopic temperature measurements
at the focal point of the explosive-driven implosion chamber used in the previous
two studies. Converging shocks were produced by two methods. In the first one,
labeled as gas runs by the authors, the chamber was filled with pressurized
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Fig. 3.78 Schematic of
implosion chamber shock
wave dynamics, reproduced
from [89], with the
permission of AIP

stoichiometric H2 − O2 gas mixture, and an outgoing detonation wave was initiated
by an exploding wire at the center of the chamber. In the second method, labeled as
explosive runs, an explosive shell of pentaerythritol tetranitrate (PENT: C5H8N4O2)
was placed at the wall of the chamber. An outgoing detonation wave thus ignited an
intense implosion shock by reflection impact. Fits of spectroscopic measurements
to the black-body curve for both methods confirmed that the continuous radiation
spectra were black-body curves with temperatures in the range 10, 000 − 13, 000 K
for gas runs and 15,000−17,000 K for explosive runs.

We have already previously mentioned an extensive experimental study of
spherical shock wave convergence by Hosseini and Takayama in 2005 [59], in
connection with the experimental determination of the power-law exponent for
converging spherical shocks. In this study a complete spherical test chamber was
used. For visualization purposes the spherical test section of 150 mm diameter was
transparent and placed inside a transparent aspheric outer wall with the dimensions
of 270 and 203.3 mm. Figure 3.82 illustrates a photograph and a schematic diagram
of the experimental setup.

The shock waves were generated at the center of the test chamber by silver
azide pellets (AgN3) that were glued to an optical fiber and ignited by irradiation of
Nd:YAG laser beam. Double-exposure holographic interferometry as well as high-
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Fig. 3.79 Luminescence at various instants during shock implosion at the center of the chamber,
reproduced from [90], with the permission of AIP

Fig. 3.80 Typical temperature variation during implosion, reproduced from [90], with the permis-
sion of AIP

speed (1,000,000 frames per second) time-resolved shadowgraph method was used
for flow visualization. Pressure measurements of the incident and reflected shocks
at the boundary of the test section were also conducted. The value of the incident
Mach number, M = 1.105, at the wall of test section could thus be established.
Variation of the diverging shock Mach number from the center of the test section to
the wall for pellets with various masses is shown in the accompanying Fig. 3.83.
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Fig. 3.81 Typical
temperature variations at
various initial pressures,
reproduced from [90], with
the permission of AIP

The strength of the initial spherical wave is rapidly decreased as the shock
diverges from the center of the explosion. The Mach number of the initial diverging
shock as it impinges on the boundary of the spherical test section is close to 1 even
for strong initial shocks generated by 10 mg pellets with Mach initial number above
7. Excellent optical setup enables to trace the shock propagation of diverging as
well as converging shocks. A series of high-speed shadowgraph images illustrate
the propagation of the initial diverging shock in Fig. 3.84.

It is interesting to note here that although the initial shape of the diverging
shock is not spherical, it tends to a spherical form as the shock propagates from
the center of explosion demonstrating the inherent stability of diverging shocks. A
corresponding sequence of converging shocks after reflection from the boundary of
the test section is shown in Fig. 3.85.

The form of the converging shock fronts is close to spherical after the reflection.
The deformation of the converging shock fronts and deviation from the spherical
form increased as the shock approached the center of the test chamber encountering
with detonation products gas cloud. A remarkable and important achievement of this
investigation is the detailed visualization and analysis of the convergence process of
a spherical shock inside a spherical convergence chamber. The value of the power-
law exponent could therefore be extracted from radius versus time plot, Fig. 3.17,
with high degree of accuracy for this case. This was possible due to a sophisticated
optical setup combined with high-speed (1,000,000 fps) camera as well as sequential
infinite fringe interferometry and pressure measurements.
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Fig. 3.82 Experimental
setup (a) photograph and (b)
schematic diagram,
reproduced from [59], with
permission from Cambridge
University Press

As we have seen, spherical converging shocks are mainly generated by reflecting
a blast wave created at the center of a sphere by a semispherical or spherical surface,
thus reversing it to focus at the center of the chamber, as in, e.g. [59]. This method
has several disadvantages: (1) the strength of the initial blast wave created at the
center of the chamber is significantly decreased as it reaches the reflector boundary;
(2) there are further significant losses in the strength of the reflected, converging
shock due to the flow directed outward from the center of convergence created by
the strong initial blast wave; (3) the symmetry of the reflected shock is distorted
as it propagates in the region disturbed by a powerful initial blast wave; (4) the
symmetry of the converging shock is further distorted as it encounters detonation
products gas cloud at the center of the chamber; (5) temperature measurements of
the converging shock are contaminated by the temperature field from the outgoing
blast wave usually initiated by explosion; and (6) it is difficult to access the center
of the sphere for visualization and measurements. To overcome these difficulties,
one could utilize the idea of shaping cylindrical or spherical shock by a gradual
transformation of a channel with initially straight walls put forward by Saillard [91],
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Fig. 3.83 Variation of
diverging shock Mach
number with radius,
reproduced from [59], with
permission from Cambridge
University Press
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Fig. 3.84 High-speed shadowgraph visualization of diverging shocks, reproduced from [59], with
permission from Cambridge University Press
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Fig. 3.85 High-speed shadowgraph visualization of converging spherical shocks, reproduced from
[59], with permission from Cambridge University Press

Barbry [12], Dumitrecu [37], and Zhai [124]. The initial plane shock would then
focus at the apex of the cone directly without struggling against the flow ahead.
There would be no disturbances from the oncoming flow. The region ahead of the
advancing shock would be undisturbed, and the conical geometry would provide
direct access to measurements through a small opening at the tip of the cone. It is
well known, however, that shock convergence in a simple conical geometry creates
a series of Mach reflections leading to shock fronts with plane portions decreasing
the focusing effect.

The idea of shock form tailoring by gradual transformation of channel walls
was further developed in an experimental, theoretical, and numerical investigation
by Kjellander, Tillmark, and Apazidis [68]. In this work the authors studied
convergence of a spherical cap produced in a shock tube with cylindrical cross-
section. The spherical form of the final converging cap is obtained by a smooth
transformation of a plane shock in a specially constructed transformation section.
The shape of the walls of the transformation section were obtained by Whitham’s
theory of GSD along with numerical computations so that an initially plane shock
takes the form of a perfect spherical cap without any Mach reflections. When the
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spherical form is obtained, it is guided to a final small steel conical end section
where it implodes at the tip of the cone. A tiny opening at the tip of the cone
provides free access to hot gas-plasma core produced by intense shock compression.
The opening is sealed by a quartz glass, and measurements of radiation spectra are
performed by leading the light pulse from glowing gas plasma through optical fibers
to photomultipliers and a spectroscope. The shape of the walls of transformation
section in parametric form is given by Eq. (3.21).

{
x = C1 sin θ

y = C2 − C3(1 − cos θ)
(3.21)

The values of coefficients C1, C2, and C3 are chosen to match the dimensions of
the of the shock tube and under the constraint of a set final cone angle defining the
small conical end of the section. Numerical schlieren images showing convergence
in a conventional conical section vs smooth transformation section are illustrated in
Fig. 3.86.

The transformation section was made of a plastic cast held in place by a steel
housing. The end cone was manufactured in steel with the tip cut 0.8 mm from its
apex leaving a circular opening with radius of 0.3 mm. The opening was sealed with
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Fig. 3.86 Numerical schlieren images of convergence in (a) conventional axisymmetric conical
section, from N. Apazidis private communication and (b) smooth transformation section, repro-
duced from [68], with the permission of AIP
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Fig. 3.87 Schematic diagram of the spectrometric setup. The photomultiplier (PM) tube detects
the first light from the shock wave and triggers a delay unit which in turn triggers the spectrometer.
An oscilloscope stores the signals from the PM tube and the shock sensors S1 − S3, reproduced
from [68], with the permission of AIP

a 1.5 mm thick quartz window mounted in a frame of the steel tube and secured by
brass sleeves. The sketch of the experimental setup with time-delay, photometric,
and spectroscopic equipment is displayed in Fig. 3.87.

A series of experiments were conducted with argon as a test gas and helium as
driver. Spectroscopic measurements of the intense light radiation of the compressed
argon plasma at the moment of implosion were performed. The spectra of radiation
at various instants after implosion were obtained and the corresponding temperature
deduced by a curve fit to Planck’s function:

Iλ(λ, T ) = 2hc2

λ5

1

exp (hc/λkT ) − 1
, (3.22)

where Iλ is the intensity per unit wavelength λ, h Planck’s constant, c the speed
of light, and k Boltzmann’s constant. The resulting black-body curves with corre-
sponding temperatures at various instants after implosion are shown in Fig. 3.88
with a maximum temperature of 27,000 K.

Experimental values of the temperature variation with time after implosion are
illustrated in the next Fig. 3.89.

Figure 3.90 shows damage by the focused shock on the 5 mm quartz glass
window insulating the opening at the end of the conical test section after a series
of runs.

This investigation showed the possibility of obtaining extreme conditions in
the argon gas compressed by a converging spherical shock. The features of
the experimental equipment used in this work were such that the spectroscopic
temperature measurements could be initiated only with a 250 ns delay after the
implosion. This means that the question of maximum possible temperatures during
and right after the implosion was still an open one. Experimental, theoretical, and
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Fig. 3.88 Spectra from converging shock in argon. Initial MS = 3.9, p1 = 10.0 kPa. The spectra
are taken during separate runs at different times relative to the shock implosion, ttrig, and with
varying exposure times texp. For (a)–(e), black-body curve fits (dashed, red) are also plotted in the
spectra, reproduced from [68], with the permission of AIP

numerical work by Liverts and Apazidis [74] addressed this question in greater
detail.

Experimental investigations were carried out in the upgraded shock tube facility
at KTH [74]. The shock tube was equipped with a fast-opening valve (FOV) instead
of membranes separating the driver from the driven section. Shock generation was
fully automated substantially reducing the run time as compared to the manual
control. The general view of the shock tube with a FOV and conically shaped test
section is shown in Fig. 3.91. A corresponding sketch of the diagnostic setup is
shown in Fig. 3.92.

The thermodynamics of the final spherical convergence was investigated theoret-
ically and numerically by means of Whitham’s theory of GSD combined with jump
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Fig. 3.89 Temperature variation with time after implosion, data, reproduced from [68], with the
permission of AIP

Fig. 3.90 Viewing quartz
glass damage caused by the
focused shock, reproduced
from [68], with the
permission of AIP

relation over the shock interface that account for real gas effects including multiple-
level ionization, excitation, Coulomb interaction, and radiation. The ionization
products were calculated using the Saha equations:
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Fig. 3.91 (a) General view of the shock tube. (b) Enlarged view of the driver with FOV and
conically shaped test section, from M. Liverts private communication

Fig. 3.92 (a) Schematic diagram of shock tube and diagnostic setup. SG, signal conditioner; OS,
oscilloscope; DG, delay generator; PD, photodiode; PMTs, photomultiplier tubes equipped with
bandpass interference filters (220 and 405 nm CWL); SP, spectrometer; (b), zoomed area of the
conical segment; (c) zoomed area of the conical tip, optical window, and fiber details, reproduced
from [74], with the permission of APS

αi+1αe

αi

=
(

2πmekT

h2

)3/2
mA

ρ

2Qi+1

Qi

exp

(
−I eff

i+1

kT

)
(3.23)

where me is the electron’s mass, k is the Boltzmann’s constant, h is the Planck’s
constant, mA is the mass of argon atom, αe is the electrons concentration per number
of atoms, αi is the ions concentration in ionization stage i per number of atoms, Qi

is the electronic partition function in the ionization stage i, and T is the absolute
equilibrium temperature. The ith effective ionization potential is reduced due to
Coulomb interactions I eff

i = Ii − �Ii , where �Ii = (i + 1)e2/4πε0rD , where e is
the electrons charge, ε0 is the vacuum permittivity, and rD is the Debye screening
radius.

The specific internal energy per unit mass of the monatomic gas accounting for
non-ideal gas effects was used as:

e = 3
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(3.24)
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where R is the specific gas constant, σ = 7.57 ·10−16 J m−3 K−4, and Ui is the total
excitation energy of atom/ion in ionization stage i. The terms represent respectively
translation, ionization, excitation, radiation energies and the last term is due to the
Coulomb interaction.

The following equation of state including the Coulomb correction and the
radiation pressure was used

p = (1 + αe)ρRT − kT

24πr3
D

+ σ

3
ρT 4 (3.25)

The enthalpy of the gas is then given by h = e + p/ρ. Complimented with charge
conservation equations, the resulting nonlinear system was solved using Newton
method iterative approach. Figure 3.93 shows the Mach number amplification in the
transformation section (TS) as the shock travels along 270 mm long transformation
section. At the beginning of this section we have the initial Mach number M0 which
is amplified to MS at the end of this section as the shock enters the final 20 mm long
conical section (CS) where the final convergence is completed.

The converging shock front trajectory including the real gas effects was plotted
and compared with the ideal gas trajectory at the same initial Mach number, M = 8.
The results are shown in Fig. 3.94

As one can see the real gas effects, mainly ionization have a limiting effect
on shock wave speed, increasing the value of power-law exponent in Guderley
solution for argon (γ = 5/3) from 0.688 in ideal gas to 0.752 in real gas. To
obtain the details of the ionization process in argon during and right after implosion
photomultiplier tubes PM equipped with 220 and 450 nm bandpass interference
filters were connected through optical fibers to a small opening at the apex of

TS CS

Fig. 3.93 Mach number amplification in the transformation section, reproduced from [74], with
the permission of APS
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Fig. 3.94 Comparison between the calculated shock front trajectories in non-ideal effects vs
perfect gas, reproduced from [74], with the permission of APS

Fig. 3.95 (a) PM intensity curve and (b) flash light spectra fitted with Plank’s law, reproduced
from [74], with the permission of APS

the end conical section. The PM signals identified three regions of the electron
density variation: (a) ionization τion, (b) local thermal equilibrium τTE, and (c)
recombination τrec. The regions correspond to the increase, plateau, and decrease
regions of the PM signal curve, respectively. The spectroscopic measurements are
then conducted at the local thermal equilibrium window, and the corresponding
temperature is deduced by the fit to the Planck’s black-body curve. The results of
these measurements are shown in Fig. 3.95.

Figure 3.95a shows the three regions for different values of the Mach number
at the beginning of the final conical convergence section, namely, MS = 5.21,
6.25, and 7.57. The time of ionization varies between 250 and 400 ns with shorter
times for stronger shocks. The local thermal equilibrium τTE when the spectroscopic
measurements are conducted lasts for about 100 ns. Black-body temperatures
deduced from Plank’s law for corresponding values of the Mach number are shown
in Fig. 3.95b with highest value of T =31,000 K. Further calculations based on
the presented model show that the real gas temperatures to be expected are more
than an order of magnitude lower than for a corresponding ideal case. For example,
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Fig. 3.96 Comparison of final implosion temperatures for perfect and real gas as function of Mach
number, reproduced from [74], with the permission of APS

extending the calculation toward the shock radius r = 50 μm, the perfect gas
approach predicts temperature of order of 1.5 million K behind the incident shock
front with Mach number M ≈ 125, while in the non-ideal case, it is limited to
55,000 K and M ≈ 62 (Fig. 3.96).

The main results of this investigation show that non-ideal effects become
significant for Mach number M > 10 and dominate for M > 20. Evidently
ionization presents a large energy sink to account for this reduction in temperature.
In practical situation the highest possible temperatures in argon gas obtained by
converging spherical shock are expected be of order of 30,000 K.

3.8 Shock Focusing in Water

“While a large number of investigations have been carried out on the propagation
of shock waves in air, there has been very little reported concerning their formation
and transmission through water, especially when the waves have been produced by
impact.” We can read this quote from a very nice and early investigation by J.H.
McMillen in 1945 [78]. A large number of investigations of shock generation and
propagation in water have been conducted since it would probably be fair to say
that their number is still much less than those of shock propagation in gases. One
can think of several reasons for that, one of which is the existence and availability
of a shock tube—a simple and ingenious device that has been in the service of the
researchers worldwide for a period of last 100 years. The shock tube is however used
to study shocks in gases. How can one create a shock in water? There are several
methods used by the researchers, one of which is illustrated with great elegance
in this early work that we cited in the beginning of this section. The author used
a high-velocity impact of small spherical particle hitting the free water surface. A
spark shadowgraph image of a slightly elliptic shock generated by a high-velocity
impact of a 3.2 mm steel sphere is shown in Fig. 3.97.



114 3 Converging Shocks

Fig. 3.97 Spark
shadowgraph image of a
shock wave after advancing
78 mm into the water by a
3.2 mm steel sphere at an
impact velocity of 1073 m/s,
reproduced from [78], with
the permission of APS

One of the interesting features of this figure beside the sharp and distinct image of
the shock front in water created by the impact is the luminescence around the front
tip of the air-filled cavity created by the high-velocity particle. The author notes that
the luminescent cusp around the tip of the cavity gradually fades as the sphere slows
down.

Physical properties of water differ in many respects important for shock genera-
tion and propagation from those of gases. Water density is about 1000 times greater,
and water is considered to be incompressible in a broad number of scenarios when
pressure variations are moderate. The incompressibility assumption is certainly
not true in the above situation since it would lead to infinite speed of the signal
propagation. As we know the speed of sound in water is about 1500 m/s which is
about 4.4 times greater than in air at normal conditions. In this example the small
metal sphere is traveling at 1073 m/s when it hits the water surface and the shock
wave is thus generated by a subsonic source. The average value of the Mach number
in this case is estimated to M = 1.04. For a gas this would mean a weak, near-sonic
wave, with a pressure ratio of approximately 1.1 over the shock. In the present case,
the pressure ratio over the shock is 462! This enormous difference can be explained
by a different structure of the equation of state (EOS) for water compared to that of
an ideal gas. The Tait equation of state for compressible liquids, see, e.g., [62], has
the following structure:

p (ρ) = (p0 + B)

(
ρ

ρ0

)γ2

− B, (3.26)

with ρ0 and p0 being the reference density and pressure, respectively, and B a
pressure-like constant describing the stiffness of the liquid. The numerical values
of B = 4050 atm and γ2 = 6.68 can be found in, e.g., [30]. One can see that this
equation of state relates small density variations to very large pressure variations.

Another and maybe even more spectacular difference between water and gas
is the ability to sustain large negative pressures due to strong cohesive forces. In
a recent experimental study by El Mekki Azouzi et al. [44], the authors measure
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Fig. 3.98 Green curve showing the negative pressures sustained by water in a quartz inclusion
along isochor at ρ = 922.8 kg m−3, reproduced from [44], with permission from Springer

negative pressures as low as −140 MPa before water breaks by cavitation. Negative
pressures are produced by fluid inclusion of water in quarts. Figure 3.98 illustrates
the negative pressure along the isochor (green curve) obtained in this study. This
study represents a slow, quasi-stationary process. Negative pressures in water are
however a natural part of a dynamic process of wave propagation. Although
the theoretical threshold for cavitation in water is estimated at about −150 MPa
[32, 46, 125], the appearance of cavitation is usually reported at much higher limits
of around −30 MPa. This is often attributed to the existence of so-called nucleation
sites or impurities in the form of minute spherical gas bubbles, gas trapped in
crevices of solid particles or walls of the vessel containing liquid [107]. Negative
pressures and cavitation in water are often connected to shock wave propagation
created by underwater explosions. The strong compression wave is reflected as an
expansion or tension wave at the free surface. Wilson et al. [121] described a method
where the tensile stress of the wave reflected from the free surface was measured by
the initial spray dome velocity V0 by the relation

V0 =
(

2

ρU

) (
p − F

2

)
, (3.27)

where p is the maximum explosion pressure, ρ is the liquid density, U is the wave
speed, and F is the maximum tension of the reflected wave. The value of F for the
cavitation threshold found by this method was 8.0 atm for ordinary water. Trevena
and co-workers [107] also used a bullet-piston method which is also based on the
reflection of the pressure pulse in liquid from a free liquid surface. The pulse is
created by a bullet hitting a piston at a lower end of a vertical cylindrical tube
containing liquid. When the pressure pulse is reflected from the free surface of the
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Fig. 3.99 A series of images of a 55 μm water drop showing generation propagation and reflection
of a shock generated by an X-ray laser pulse, reproduced from [98], with permission from ACS

liquid at the upper end of the tube, it is reflected as a tension wave in liquid. The
pressure pulses of 300 atm with a pulse duration of 500 μs were reported. Many
researchers argued that the low cavitation threshold as compared to the maximum
theoretical value observed in dynamic processes is due to relatively large pulse
duration. Recently a threshold of below −100 MPa was evaluated in experimental
work of Stan et al. [98]. The pressure pulses of nanosecond rise time were created
by X-ray laser pulses at the internal surface of water drops.

Figure 3.99 shows how the initial shock is reflected from the bubble interface as
an expansion wave that is seen to focus at the locations close to the interface where
the spallation and cavitation occurs.

In another recent work, shock propagation within a two-dimensional droplet was
investigated by schlieren imaging [96]. The shock was generated by exploding wire
technique and the droplet, or thin water column was placed in a rectangular test
chamber with transparent upper and lower glass plates allowing for visualization
through schlieren imaging. The general view of the experimental setup is shown in
Fig. 3.100. The length of the test section is 200 mm, and the distance between the
lower and upper plates is 5 mm, creating an essentially two-dimensional channel for
shock propagation, Fig. 3.101.
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Fig. 3.100 General view of the experimental setup, from N. Apazidis private communication

Fig. 3.101 Upper view of the test unit, reproduced from [96], with permission from APS

The blast wave is generated by letting high current pass through a thin copper
wire stretched between the electrodes over the width of exploding chamber. A
22 mm diameter two-dimensional water droplet with straight walls is generated by
hydrophobic coating between the lower and upper glass plates and placed in the test
chamber at a distance of 200 mm from the explosion source, Fig. 3.102.

Figure 3.103 shows a sequence of images of shock propagation within a two-
dimensional water droplet. The strength of the blast wave is M = 2.4 as it
impinges on the droplet. Figure 3.103a and b show the initial shock in air and the
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Fig. 3.102 Two-dimensional water droplet created by hydrophobic coating, reproduced from [96],
with permission from APS

Fig. 3.103 Shock propagation and reflection inside the droplet at various time instants (a)–(f),
reproduced from [96], with permission from APS

transmitted shock in water droplet, propagating with a higher speed. Figure 3.103c
shows appearance of the expansion wave as a result of shock reflection from the
droplet interface. In Fig. 3.103d the expansion wave is seen to focus in the vicinity
of the droplet boundary creating a focused region of negative pressures leading to
cavitation seen in Fig. 3.103e,f.

It is interesting to note at this point that the focusing process leading to extreme
conditions in the focusing region results in the decrease of pressure with large
negative pressures in water in this case of an expansion wave contrary to focusing
of the compression wave which leads to the increase in pressure.
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Negative pressures generated by tensile stresses exist not only as a result of shock
reflection from a liquid-gas interface but also in a trailing tensile wave following the
compression wave. This is an important mechanism of shock propagation in water
that is used in medical applications such as shock wave lithotripsy (SWL). This
method has been successfully used during the past three decades in clinic treatment
of kidney stones. The principle is based on generating a sharp pressure pulse at one
of the foci of a truncated ellipsoidal reflector thus generating an outgoing spherical
blast wave which after reflection converges at the kidney stone placed at the location
of the second focal point of the ellipsoidal reflector.

The pressure pulse is often generated by a spark discharge at the focus of the
ellipsoidal reflector as, e.g., in Dornier HM3, the first commercial lithotripter system
[19, 28], schematically illustrated in Fig. 3.104.

The axial pressure distribution was computed by nonlinear beam propagation
model [29], which was able to reproduce the general waveform, measured by
Coleman and Saunders [31]; see Fig. 3.105. Note the negative pressure produced
by the trailing tensile wave.

Sommerfeld and Müller [97] studied focusing of plane shock waves and spherical
blast waves by parabolic and ellipsoidal reflectors. The authors used a second-
order Godunov-type method to obtain a numerical solution to axisymmetric Euler
equations with the Tait equation of state for water. They considered focusing of

Fig. 3.104 Schematic
drawing of the geometry of
Dornier HM3 lithotripter,
reproduced from [28], with
the permission of AIP
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Fig. 3.105 Measured and
computed waveforms. (a)
Waveform measured by
Coleman and Saunders [31].
(b) Corresponding computed
waveform, reproduced from
[28], with the permission of
AIP

a plane shock by a parabolic reflector. For stronger shocks it was found that the
focal point shifted closer to the reflector surface as compared to geometrical focus.
The geometrical focus is also transformed to a focusing region since the strength of
the converging shock depends on the location of the reflection point and is greater
for outer regions of the reflector. The authors proposed a modified shape of the
reflector to compensate for this effect so that the reflected shock will converge at
the geometrical focus of the parabolic geometry. Experimental shadowgraph and
schlieren images documented the focusing of a blast wave generated by spark
discharge from the ellipsoidal reflector and are illustrated in Fig. 3.106. Figure 3.106
shows successive shock fronts with focusing in the central portions and expansion
in the outer regions due to the reflector edges.

Gustafsson [53] investigated a similar problem in a study initiated by Lesser,
although in plane geometry. He considered a possibility to extract high pressures
at a focal point of an elliptic reflector by imposing impulsive pressure at the other
focus of the reflector. Gustafsson studied the problem in the linear approximation
by geometrical acoustics. Figure 3.107 shows the schematic of the geometry and
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Fig. 3.106 Shadowgraph images of the converging shock wave reflected from an ellipsoidal
reflector, reproduced from [97], with permission from Springer

Fig. 3.107 (a) Schematic of shock propagation in an elliptic reflector. (b) Pressure distribution
around the converging shock for various eccentricities, reproduced from [53], with permission
from Elsevier
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Fig. 3.108 Pressure distribution around successive converging wave fronts for various eccentrici-
ties (a) e = 0.3 and (b) e = 0.5, reproduced from [6], with permission from Springer

Fig. 3.109 Pressure distribution around successive converging wave fronts at various distances.
(a) Two focal distances and (b) four focal distances, reproduced from [6], with permission from
Springer

linear shock propagation in the elliptic chamber as well as pressure distribution
around the converging shock front at some distance from the focal point. One can
note that the maximum and minimum pressures are obtained on the axis of the
reflector with maximum for θ = 0 that is at a point which is closer to the first focus
where the shock is generated. This follows the general trend described in [97] with
a higher strength of the shock emanating from the reflection closer to the point of
shock generation.

Apazidis [6] used similar techniques of geometrical acoustics in axisymmetric
ellipsoidal and paraboloidal reflectors. The pressure distribution around the converg-
ing shock front in an ellipsoidal reflector follows the same trend as in [53] although
with a greater maximum to minimum pressure ratio along the front, as shown
in Fig. 3.108. Corresponding pressure distributions for the case of a paraboloidal
reflector are shown in Fig. 3.109.



3.8 Shock Focusing in Water 123

An ellipsoidal reflector was also considered by Hamilton [55], by geometrical
acoustics and use of Kirchhoff integral to account for the effect of diffraction
of the reflected field. The pressure distribution of the reflected wave is evaluated
along the axis of the reflector for various types of the initial signal. Figure 3.110
shows comparison of the computed pressure pulses along the axis of the ellipsoidal
reflector with measurements.

More recently this technique was revisited by Sankin et al. [93] and applied
to focusing of laser-generated shock waves by a truncated ellipsoidal reflector.
Numerical computations of the reflected pressure pulses at the focal region of the
reflector were compared with measurements. Spherical diverging blast waves with
peak pressures in the range 2.1–5.9 MPa were produced by 5 ns laser pulses at the
focus of the reflector. The reflected pressure pulse had a leading compressive wave
with peak pressure of 26 MPa with 0.1–0.2 μs pulse length, followed by a trailing
tensile wave with a peak pressure of −3.3 MPa with 0.2 μs duration. Figure 3.111
illustrates generation at the first focus F1 the and extraction at the second focus F2 of
the measured pressure profiles generated by laser pulses in the truncated ellipsoidal
reflector [93].

A numerical study of shock induced bubble collapse under a typical lithotripter
pressure pulse was conducted by Johnsen and Colonius [61]. The authors considered
a spherical gas bubble subjected to a plane shock wave with a typical pressure profile
at the converging focal point of the reflector; see Fig. 3.112.

Numerical solution to Euler equations with water phase modeled by the Tait
equation of state revealed some interesting features of bubble dynamics under the
impulsive pressure load from the shock wave. Initially slow bubble motion in the
direction of shock propagation is accelerated as the shock reaches the distal bubble
side inducing bubble contraction and deformation of the interface. A high-velocity
liquid jet hits the distal interface of the bubble dividing it into two separate regions;
see Fig. 3.112 (Fig. 3.113).

It is noteworthy that Johnsen and Colonius [61] attribute the highest impulsive
pressure load on the wall during bubble collapse to the action of the water-hammer
shock at the distal bubble interface as shown in Fig. 3.114. The water-hammer-
induced pressure load is substantially higher than the pressure load due to the initial
shock.

Similar features of bubble dynamics under the action of impulsive pressure from
a passing initially plane blast wave in water are also described in [7]. Figure 3.115
illustrates several stages of shock-bubble interaction. In Fig. 3.115a a transmitted
shock in the bubble is seen to be bent by the interface and lags behind the incident
shock in water. Water-hammer shock, right behind the downstream bubble interface,
is seen in Fig. 3.115b. Note also the expansion wave marked by the yellow circle
as well as two small high-pressure regions at the triple point location close to the
bubble interface. Figure 3.115c show the focusing of the shock reflected from the
downstream bubble interface resulting in the elongated high-pressure region at the
axis stretching from the focal region to the water-hammer shock. Deformation of the
bubble into two separate regions with counter-rotating vortices and creating a high-
speed water jet with maximum velocities of 1100 m/s is illustrated in Fig. 3.115d–f.
Figure 3.115e shows the powerful outgoing spherical blast wave emanating from
the bubble collapse.
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Fig. 3.110 Comparison of pressure pulses with measurements obtained in water by Müller [80],
reproduced from [55], with the permission of AIP
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Fig. 3.111 (a) Initial at F1 and (b) reflected at F2 pressure pulses along the axis of the reflector.
(b) Shows positive and negative peak pressures of the focused shock, reproduced from [93], with
the permission of AIP

Fig. 3.112 (a) Schematic of the problem and (b) pressure pulse form at the focus, reproduced
from [61], with the permission of AIP

In general the extreme conditions such as high pressures, temperatures, and
densities due to focusing in gases become substantially more severe, especially
with respect to pressures in liquids. This is due to a much higher density of,
e.g., water as compared to air and at the same time very low compressibility of
water. Such extreme conditions impose very high demands on the experimental
rigs, vessels, and chambers containing liquid. The inner parts and walls of the
test chambers are easily destroyed by the enormous impulsive pressures produced
in liquid. Impulsive pressures in liquids are usually produced by various types
of explosions or impacts, resulting in a blast wave profile propagating from the
source of explosion. Various types of waves, plane, cylindrical, and spherical can be
generated by so-called exploding wire technique, by a rapid discharge of a high-
voltage capacitor through a thin copper wire. If the wire is confined by a thin
test section, an initially cylindrical blast wave across the channel is transformed
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Fig. 3.113 Numerical schlieren of the bubble dynamics, reproduced from [61], with the permis-
sion of AIP

Fig. 3.114 Impulsive
pressure load on the wall,
reproduced from [61], with
the permission of AIP
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Fig. 3.115 Numerical pressure field, schlieren and velocity vector field under shock induced
bubble collapse. (a) Tube radius in (m). (b) Tube radius in (m). (c) Tube radius in (m). (d)
Tube radius in (m). (e) Tube radius in (m). (f) Tube radius in (m), reproduced from [7], with
the permission of AIP
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to a plane wave. However even a plane blast wave is rapidly attenuated due to
the blast wave profile. The attenuation increases for an outgoing cylindrical blast
and even more so for an outgoing spherical blast wave. While outgoing cylindrical
or spherical blast waves are rapidly attenuated, converging blast waves undergo a
drastic increase in strength as they approach the center of convergence. This feature
gives an excellent opportunity to safely contain the extreme pressures produced by
blast waves in liquid. If a cylindrical or spherical array of wires is placed in a liquid
container at a large enough distance from the container walls, they will be able
to withstand the attenuated outgoing blast wave. At the same time, the converging
blast wave focusing at the center of the wire array will produce extreme pressures
and energy densities inside the liquid. This idea is successfully utilized by a group of
researchers from Technion led by Prof. Krasik. A series of publications of this group
report pressures of order of several TPa, temperatures of ∼17 eV, and compression
ratios of ∼8 in water [4]. The description of the experimental setup consisting of
spherical wire array may be found in Antonov et al. [3, 4]. Such extreme conditions
in water are obtained at the center of converging spherical shock generated by a
spherical wire array, as shown in Fig. 3.116.

A high current pulse of 500 kA with a rise time of 300 ns is applied to a spherical
copper or aluminum wire array generating a converging spherical shock in water.
The authors tested combinations of wire arrays with 20, 30, and 40 mm diameters.
The authors used 1D HD simulations taking into account the self-magnetic field
gradient to obtain an estimate of the final pressure, temperature, and compression as
the spherical shock wave is reflected from the center of implosion. They estimated
that water volume with the diameter of ∼12 μm would be subjected to a 6.6 TPa
pressure with temperature of 17 eV and have a compression ratio of 9. Members of
this research group have also looked into the question of stability of the converging
cylindrical shock [71]. The converging cylindrical shock is generated by cylindrical

Fig. 3.116 (a) Schematic of the experimental setup. (b) External view of a 30 mm diameter
spherical wire array, reproduced from [3], with the permission of AIP
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Fig. 3.117 General view of
the cylindrical wire array of
40 Cu wires, reproduced from
[71], with the permission of
AIP

wire array, as shown in Fig. 3.117. They argued that the converging cylindrical
shock in water is less sensitive to the inherent instability as compared to shock
convergence in gas due to the low compressibility of water. The authors conducted
two-dimensional hydrodynamic simulations to investigate the growth of various
type of perturbations of the shock front and found that the initial small-scale
perturbations of the shock front were weakly unstable. It is interesting to note
that their results correlated well with the results of previous investigations such as
[39, 105], and [40] showing various modes of instabilities as the ones displayed in
Fig. 3.118.

The just mentioned research shows that the extreme conditions that may be
achieved by shock wave focusing are demonstrated to the fullest by spherical shock
wave convergence in water resulting in very high-energy density at the center of
convergence. It is remarkable that this high-energy density is obtained by only a
few kJ of input energy generating the explosion of the spherical wire array. In [5]
the authors conducted experimental diagnostics of the warm dense matter at the
focal region of underwater explosion by analyzing the data of power and spectrum
of the light emission from an optical fiber, data from explosion of a copper tube,
as well as time-dependent resistor placed at the center of convergence. Based on
these measurements and numerical simulations, they estimated the pressure at the
vicinity of implosion origin to reach values of at least 1011 Pa. Figure 3.119 shows
the damaged copper tube with outer radius of r ≈ 0.5 mm and wall thickness
d ≈ 0.1 mm placed at the center of implosion.

Converging shocks in water were also experimentally investigated by Eliasson
et al. [43]. This work studied the effects of the material properties of the material
surrounding the water cavity. Three types of confinement materials were chosen for
the experiments: rubber (Solithane), plastic (polycarbonate), and metal (aluminum).
The three materials were chosen such that the shock speed in the water, us, is lower,
in between, or higher than the wave speeds, cs and cp, in the solids, respectively.
In Case I, with an aluminum core, the shock speed is lower than both the shear
and pressure wave speed: us < cs < cp. The shear (s) and pressure (p) waves
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Fig. 3.118 Shock front isobars for (a) small-scale initial disturbances and (b), (c), and (d) dipole,
quadrupole, and odd-even nonuniformities, reproduced from [71], with the permission of AIP

Fig. 3.119 General view of
the damaged Cu tube placed
at the vicinity of implosion
center, reproduced from [5],
with the permission of AIP

propagate faster than the shock wave in the water. Theoretically, this produces two
oblique shocks in the water, θwp and θws, as depicted in Fig. 3.120. The angles of
the oblique shocks are given by θwp = arcsin(cw/cp), and θws = arcsin(cw/cs),
where cw represents the speed of sound in water. The speed of sound in pure water
depends only on temperature to a good approximation. In the present experiments,
the ambient temperature was 23 ± 1 ◦C, giving a speed of sound of 1491 ± 2.8 m/s
in water.

Case II corresponds to a shock speed in water larger than the s wave and slower
than the p wave in the solid, cs < us < cp. This case was studied with the core
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Fig. 3.120 Case I, the speed
of the shock, us, is faster than
both the s and p wave. The
core material is aluminum,
reproduced from [43], with
permission from Springer

us

cpcs

θws
θwpwater

elastic solid

Fig. 3.121 Case II, the speed
of the shock, us, is faster than
the s wave and slower than
the p wave. The core material
is polycarbonate, reproduced
from [43], with permission
from Springer

us

cpcs

θs

θwpwater

elastic solid

Fig. 3.122 Case III, the
speed of the shock, us, is
faster than both the s and p

wave. The core material is
Solithane, reproduced from
[43], with permission from
Springer

us

cpcs

θs
θp

water

elastic solid

made of polycarbonate. The s wave propagates slower than the shock wave, and p

waves propagate faster. This results in one oblique shock in water and one oblique
shock in the solid. See Fig. 3.121. The angle for the oblique shock for the s wave in
the solid is given by θs = arcsin(cs/us).

The last case, Case III, is when the shock speed in the water is larger than both
the s and p wave speeds; see Fig. 3.122. A core made of Solithane results in this
condition. The oblique shock in the solid corresponding to the p wave is given by
θp = arcsin(cp/us).

A sequence of schlieren images recorded with a high-speed camera for the
aluminum core is shown in Figs. 3.123 and 3.124, from [43]. Weak precursors
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Fig. 3.123 A schlieren sequence for Case I. Exposure time: 200 ns. Impact speed ui = 45.4 m/s.
(a) t = 0 μs. (b) t = 7 μs. (c) t = 14 μs. (d) t = 21 μs, reproduced from [43], with permission
from Springer

Fig. 3.124 A schlieren sequence for Case I. Exposure time: 200 ns. Impact speed ui = 45.4 m/s.
(a) t = 27 μs. (b) t = 34 μs. (c) t = 41 μs. (d) t = 63 μs, reproduced from [43], with permission
from Springer

of the shear wave propagation in the aluminum are seen in the water in both
frames reproduced in Fig. 3.123a and b, marked by black dotted lines in the frame
reproduced in Fig. 3.123a. A bubble, located in the lower left corner in the frame
reproduced in Fig. 3.123a, is oscillating in response to the passage of the shock
wave. The oscillations send out compression waves, one of which is marked with
an arrow in frame Fig. 3.123b. The shear waves in the aluminum core are traveling
with almost twice the velocity of the shock wave in the water. When the shear waves
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Fig. 3.125 Schlieren image recorded for Case II using a Nikon D80 camera and a 20 ns single
spark source. (1) Oblique shear waves, (2) shock wave in water, (3) pressure wave, and (4) shock
waves in air. Impact speed ui = 56.6 m/s, reproduced from [43], with permission from Springer

pass the wedge tip, the wedge tip gets a drag in the direction of the shear waves, and
the resulting force on the wedge puts the water in tension. As a result, cavitation
bubbles are visible in front of the shock wave in the frame reproduced in Fig. 3.123c.
The bubbles collapse violently and disturb the wave propagation in the subsequent
frames, as shown in frames Fig. 3.124a–c by the smudge at the interface between
the water and the solid wedge. The shock wave has focused and is reflecting in
frames Fig. 3.124a–d.

A typical schlieren image for Case II is shown in Fig. 3.125. The projectile,
shown moving from left to right in the image, has already impacted the polycar-
bonate piston. Note that the piston is only partially inserted into the water-filled
cavity as revealed by the portion, which appears black, as opposed to the portion
in air that is glowing red from the scattered laser light. The red vertical streak of
light shown crossing the projectile’s path is the HeNe laser beam used to trigger
the measurement diagnostics. The image shows waves in three separate media
simultaneously: shock waves in air, shock waves in water, and shear and pressure
waves in a solid.
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The impact between the projectile and the piston generates a toroidal shock wave
in the air. The symmetry of the upper and lower parts of the toroidal shock indicates
that the impact was aligned (planar) and well controlled. Once the Mach number
of the toroidal shock wave is established for a certain impact velocity, the toroidal
shock can be used as an internal clock for events following, making it possible to
determine the instant of the impact. The toroidal shock wave in the air (denoted as 4
in Fig. 3.125, left) has traveled a distance of 18.3 ± 0.2 mm during the impact time,
ti. The shock Mach number of M = 1.14 ± 0.01 indicates a relatively weak shock
wave in air.

By analyzing Fig. 3.125, the speed of the shock wave, us, propagating through
the water can be estimated by measuring the Mach angle, θs, of the oblique shock
in the polycarbonate core (denoted 1). The angle measures as 38 ± 1 ◦, giving the
speed of the shock in water us = csolid/ sin θ = (950 ± 50/) sin(38 ± 1)◦ = 1550 ±
88 m/s. The shock wave in water (denoted 2) has traveled 43 mm with shock a Mach
number of Ms = us/cw = (1550 ± 88)/1491 ± 2.8 = 1.04 ± 0.06, which is
consistent with a weak (acoustic) shock in water. Behind the shock in water is an
intricate shock pattern consisting of a large number of circular shocks generated
by collapsing bubbles induced by cavitation. The time of impact can be estimated
by following the path of the shock wave in the water. First, there is a delay set
on the time-delay unit, in this case, td = 94 μs. It takes tp = lp/cp = 0.041 ±
0.001 m/2100 ± 100 m/s= 19 ± 1 μs for the pressure wave to propagate through the
piston, with length lp, until it emerges into the water. Then, it takes tw = lw/us =
42.7 ± 1 mm/1550 ± 90 m/s = 27 ± 1.7 μs for the shock wave to travel the distance
between the end of the piston to the current position, lw. Thus the time of impact, ti,
can be estimated as ti = td−tp−tw = 47±2 μs before the time instant in the present
frame. The pressure wave in the polycarbonate is too weak to generate a detectable
oblique shock in the water; consequently the angle denoted θwp in Fig. 3.121 is not
visible in the schlieren image. The pressure wave (the dark/light band denoted 3)
has almost reached the tip of the wedge. As can be seen in the image data, the
pressure wave has traveled 70 ± 1 mm in 27 ± 1.7 μs, corresponding to a speed of
2540 ± 160 m/s.

These experiments were among the first to show shock waves in air and water
simultaneously as pressure and shear waves in a solid at the same time.

Similar experiments were later performed by Wang et al. [110–113]. In these
experiments, thinner surrounding structures than used in the previously described
experiments by Eliasson et al. [43] were used to further study fluid-structure inter-
actions during underwater shock focusing events. Figure 3.126 shows a schlieren
sequence taken with a 1.3 mm thick 1018 steel specimen shaped according to a
logarithmic spiral.

Precursor waves are seen in Fig. 3.126b, denoted by arrow 1, and Fig. 3.126c,
denoted by arrow 2. The curvature of these waves indicates that the source of the
wave is decelerating. A probable reason for the formation of the curved precursor
waves is the attenuation and deceleration of the traveling flexural waves in the
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Fig. 3.126 Schlieren images for a 1.3 mm thick steel specimen. Projectile impact speed: 56 ±
1 m/s, exposure time: 40 ns. (a) Before test. (b) �t = 0 μs. (c) �t = 7.09 μs. (d) �t = 14.19 μs.
(e) �t = 21.3 μs. (f) �t = 28.4 μs. (g) �t = 35.5 μs. (h) �t = 42.59 μs. (i) �t = 49.69 μs. (j)
�t = 56.8 μs, reproduced from [113], with permission from Elsevier

solid. Figure 3.126g shows the precursor waves broadening, likely caused by the
dispersive characteristic of the flexural waves [83].

Background-oriented schlieren techniques were applied to similar experimental
setups reported in [111]. This allowed the authors to not only obtain qualitative
schlieren images but also to estimate density and pressure in the water-filled region;
see Fig. 3.127.
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Fig. 3.127 (a)–(e) Schlieren images. Time interval between frames is 6.9 μs. (a) t = 39.0 μs, (b)
t = 45.9 μs, (c) t = 52.8 μs, (d) t = 59.7 μs, and (e) t = 66.6 μs. (f)–(j) Density plot along
the center line (indicated in (a)) and shock wave location (dashed line) as a function of time. (f)
t = 38.45 μs, (g) t = 46.14 μs, (h) t = 53.83 μs, (i) t = 61.52 μs, and (j) t = 69.21 μs. The time
difference between the schlieren images and BOS data was due to a change of the camera setup,
reproduced from [111], with permission from Springer
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3.9 Shock Mitigation Using Shock Focusing Techniques

Wan and Eliasson investigated shock mitigation techniques using shock focusing
to delay and disperse a shock wave propagating in a two-dimensional channel
[109]. Shock wave interaction with solid obstacles arranged in various geometrical
patterns can be used for both shock strength amplification or mitigation purposes.
Knowledge of one area can be transferred to the other, since the governing
shock dynamics is essentially the same. The shock dynamics community has been
interested in amplifying the shock strength using converging shock waves since
the 1950s [84]. The main reason for the interest in shock focusing is that it can
be used as an efficient tool to create high temperatures and pressures at the focal
region. A number of experimental efforts have proved that obstacles placed in
the path of the converging shock wave can help to stabilize the shock during
the focusing phase; see, e.g. [11, 40, 67, 104, 105, 115]. On the other hand, the
opposite of shock focusing, namely, shock wave attenuation, is highly relevant
to a number of military and civil applications. If an incident shock wave can be
deflected or diminished in strength, people and structures can be kept safe. For
example, ventilation ducts and tunnels act as wave guides; therefore, it is important
to understand how to attenuate shock waves using obstacle barriers. Simply erecting
a wall to reflect the shock wave back is not necessarily desirable, since the increase
in thermodynamic properties due to the reflection is high. This study, instead of
using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed
along a logarithmic spiral curve, was investigated, motivated by previous work on
shock focusing using logarithmic spirals [110, 111]. Results show that obstacles
placed along a logarithmic spiral could delay both the transmitted and the reflected
shock wave.

Collection of data starts when the shock wave first impacts the leading edge of
the obstacles and the simulation then lasts for about 500 μs. Numerical schlieren
plots for nine different obstacle configurations at time instant t = 500 μs are
shown in Fig. 3.128. The first four cases, from top to bottom, are arranged in non-
staggered columns (NS, NC, NFT, NBT). The fifth and sixth cases (SS and SC)
are arranged in staggered patterns. The obstacles in the seventh, eighth, and ninth
cases are placed along a logarithmic spiral (LSS, SLS, LCS). The reflected and
transmitted shocks and vortices behind the obstacles are clearly visualized in the
schlieren plots. Of the first six cases, the NFT case most efficiently minimizes
the transmitted shock, and NBT most efficiently reduces the reflected shock wave.
The fluid velocities downstream of the obstacle arrays are smaller for staggered
cases than non-staggered cases. For different incident shock Mach numbers, away
from the logarithmic spiral design Mach number, this shape is effective to either
delay the transmitted or the reflected shock wave. Results also confirm that the
degree of attenuation depends on obstacle shape, effective flow area, and obstacle
arrangement, much like other obstacle configurations.
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Fig. 3.128 Top to bottom: NS, NC, NBT, NFT, SS, SC, LSS, SLS, and LCS schlieren contours
taken at t = 500 μs after the shock first impacts onto the obstacle array. The locations of the
incident shock wave and the reflected shock wave are marked with arrows. Note: the first six cases,
from top to bottom, were reproduced from the information given in [21]. From [109]
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