
Chapter 2
Shock Waves and Blast Waves

2.1 Introduction

Before introducing methods to study shock focusing, the properties behind the
actual shock front should be addressed. Typically, there are two scenarios that occur
depending on the method used to generate the shocks: (1) a shock front followed by
constant properties lasting for some time (often referred to as a “shock wave”) and
(2) a shock front followed by an exponential decay in properties (often referred to
as a “blast wave”); see examples in Fig. 2.1. This notation is common but erroneous
since the definition of a blast wave is that of a shock wave followed by exponentially
decaying properties. Thus, one has to be careful how to address what kind of shock
wave scenario one is referring to. For example, the flow properties behind a shock
wave produced in a constant cross-section area shock tube remain constant for an
extended time period. This is not true for the flow properties behind a shock wave
produced by a blast wave. The former one is a step function shown as a dashed line
in Fig. 2.1. At time t0, the pressure jumps from ambient pressure p0 to the maximum
pressure pmax and then remains constant. However, the pressure profile behind a
shock wave created by an explosive blast wave first jumps to a peak value pmax and
then decreases to pmin, which is smaller than the ambient pressure. Depending on
the initial charge and the distance to the explosion center, pmin will return to ambient
pressure either gradually which is shown in Fig. 2.1 or by a secondary shock. The
time duration when the pressure behind the blast remains above ambient pressure is
called the positive phase (from t0 to t+), while the negative phase lasts from t+ and
until ambient pressure is reached. A shock wave with constant properties behind
it can easily be generated using a shock tube with constant cross-section area (see
more about shock tubes in Sect. 2.6.1). A shock wave with exponentially decaying
properties behind it can be, for example, generated by a point source explosion in
an open environment or by an open-ended shock tube where the shock wave is free
to exit into an expanding volume.
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Fig. 2.1 Examples of
pressure profiles behind
shock waves. For
constant-area shock tubes, the
pressure behind the shock
remains constant for some
time (dashed line). For
point-source explosions, the
pressure profile behind the
shock front decays
exponentially before
returning to ambient
conditions (solid line)
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2.2 Mathematical Description of Shock Waves

The analysis of compressible flow is based on three fundamental equations, as
discussed in detail in many different textbooks in the field of fluid mechanics in
general and compressible flows in particular (e.g., see Anderson (1990) [4]). The
most common approach is to neglect viscosity, and then the three fundamental
equations are referred to as the Euler equations of gas dynamics. They consist
of conservation equations of mass, momentum, and energy presented below in
differential form,

∂ρ

∂t
+ ∇ · (ρV) = 0, (2.1)

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇p + ρF, (2.2)

∂

∂t

[
ρ

(
e + V 2

2

)]
+ ∇ ·

[
ρ

(
e + V 2

2

)
V

]
= −∇ · (pV) + ρq̇ + ρ(F · V),

(2.3)

Here, ρ is density, t is time, V = (u, v,w) is the velocity vector in three dimensions,
p is pressure, F represents body forces, e is the internal energy, and q̇ is the heat rate
added per unit mass. This system of equations is closed with an equation of state.
One of the simplest equations of state one can use is the ideal gas law, which is valid
for moderate temperatures and low pressures. The ideal gas law is given by

p = ρRT, (2.4)

where R is the specific gas constant and T is the temperature. There exist a number
of more intricate equations of state that model more complex situations, such as
low-temperature or high-pressure flows, where the intramolecular forces become
important and cannot be neglected.
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Fig. 2.2 Time-distance
diagram for a
one-dimensional insulated
tube in which a piston is
suddenly accelerated to the
right with speed up . Two
regions with uniform speed
develop: one region fully
affected by the piston motion
and one region not at all
affected by the piston motion
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To illustrate the process of deriving the shock jump relations, consider an
adiabatic rigid tube filled with stationary homogeneous gas with density ρ0, pressure
p0, temperature T0, and energy e0. An adiabatic rigid piston is suddenly set in
motion at a constant speed, up, that is lower than the speed of sound of the gas
in the tube, a. The piston in this example is moving from the left to the right, as
shown in the insert in the upper left corner in Fig. 2.2. By only considering two sets
of discrete waves, one can see there will be two states with uniform speed: (1) one
region of the tube is completely affected by the piston motion, and (2) one region
of the tube is not at all affected by the piston motion, as illustrated in Fig. 2.2. Now,
consider conservation of mass applied to a tube of length L and for a finite time
interval �t = t2 − t1, also illustrated in Fig. 2.3. Then one can write conservation
of mass as follows:

ρ(L − up�t) = ρ(L − a�t) + ρ0a�t, (2.5)

where ρ is the density in the region bounded by the sound wave and the piston
surface. Expanding Eq. (2.5) gives

ρL − ρup�t = ρL − ρa�t + ρ0a�t, (2.6)

and divide by �t to get

ρ(a − up) = ρ0a, or a(ρ − ρ0) = ρup. (2.7)

Finally, the result from conservation of mass can be rewritten as

−�v

v0
= up

a
. (2.8)
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Fig. 2.3 One-dimensional
insulated tubes at two
separate time instants t1 and
t2. A piston moves with
constant speed up from left to
right, and only two discrete
regions are considered: one
which is fully influenced by
the piston motion and one
region that is not at all
influenced by the piston
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Next, apply conservation of momentum to the same system,

(p − p0)�t = ρ(L − up�t)up − ρ0(L − a�t)up, (2.9)

and simplify this to get

p − p0 = ρ(a − up)up. (2.10)

Using the result obtained in Eq. (2.7), then Eq. (2.10) can be rewritten as

p − p0 = ρaup. (2.11)

One can also show, using results obtained from conservation of mass and momen-
tum, that the mass flux, m = ρ0a, relative to the wave is given by

�p

�v
= −ρ2

0a2 = −m2. (2.12)

Continuing on with conservation of energy applied to the same case as previous, we
can write,

ρ(L − up�t)
(
e + u2

p

2

) − [
ρ(L − a�t)

(
e + u2

p

2

) + ρ0e0a�t
] = pup�t,

(2.13)

which, after simplification and using results obtained from conservation of mass,
gives the following relationship:
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�e

�v
= −p̄. (2.14)

Here, p̄ is the average pressure (p + p0)/2 from the regions ahead and behind the
propagating shock. This result is referred to as the Hugoniot equation, and it relates
only thermodynamical properties across the shock wave. It is also worth noting
that this relation is very general because few assumptions were made during the
derivation of this mathematical expression. Therefore, it is applicable to real gases,
chemically reacting gases, perfect gases, etc.

Lastly, specific enthalpy can be written as

�h = h − h0 = e − e0 + pv − p0v0, (2.15)

and by introducing average specific volume as (v + v0)/2, Eq. (2.15) can be
rearranged as

�h = v̄�p. (2.16)

The shock jump conditions are given by Eqs. (2.8), (2.12), and (2.16). The jump
conditions can be applied to a perfect gas with the ratio of specific heats denoted by
γ , and the following mathematical expressions are obtained:

ρ

ρ0
= v0

v
= (γ + 1)M2

s

2 + (γ − 1)M2
s

, (2.17)

p

p0
= 1 + 2γ

γ + 1
(M2

s − 1), (2.18)

T

T0
= h

h0
= p

p0

ρ0

ρ
=

(
1 + 2γ

γ + 1
(M2

s − 1)

)(
2 + (γ − 1)M2

s

(γ + 1)M2
s

)
. (2.19)

In these expressions, Ms represents the shock Mach number, and it is defined as the
ratio of the speed of the shock to the speed of sound ahead of the shock (Ms =
us/a). Note that Eqs. (2.17)–(2.19) are valid for a stationary normal shock in which
Ms in that case is replaced by the Mach number of the incident flow upstream of the
shock wave.

2.3 Mathematical Description of Blast Waves

A spherical blast wave can be generated by a point release of a large amount of
energy. Because multiple expanding blast waves can be used to create shock wave
focusing by letting the individual blast waves coalesce upon each other, it is useful
to understand how these waves are different than those described in the previous
chapter. It is also helpful to understand how the exponentially decaying properties
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behind the shock front can be described. One of the simplest mathematical
descriptions of a blast wave is the so-called Friedlander wave form, given by

p(t) = pmaxe
−t/ts (1 − t/ts) (2.20)

where pmax is the peak pressure and ts is the time at which the pressure first becomes
negative. The Friedlander wave form is also illustrated in Fig. 2.1.

Another straightforward way to mathematically describe blast waves is through
the use of self-similar solutions, in which we are looking for a solution on the form
r ∼ tλ where λ has to be determined. This can be done in different ways, including
rough estimates or dimensional analysis. Assume that a sudden release of energy
E = Ethermal + Ekinetic is applied to a domain with density ρ0. The radius of the
expanding shock wave as a function of time is given by r(t). The mass as a function
of time, m(t), that is being swept up by the expanding shock wave is given by the
product of density, ρ0, and volume, V ,

m(t) = ρ04πr3(t)

3
.

The kinetic and thermal energy can then be estimated as follows:

Ethermal ∼ 3

2
pV,

Ekinetic ∼ 1

2
m(t)v2.

Let us further assume that the shock is strong, i.e. the shock Mach number is much
larger than the speed of sound, and the pressure behind the shock wave is much
larger than the pressure ahead of the shock. In this case, using the shock jump
pressure condition given by Eq. (2.18), along with the definition of shock Mach
number Ms = v0/a0 together with a0 = √

γp0/ρ0, the following mathematical
expressions are obtained:

Ethermal ∼ 3

2

(
2ρ0v

2
0

γ + 1

)
4πr3(t)

3
∝ ρ0

r5(t)

t2 ,

Ekinetic ∼ 1

2
ρ0

4πr3(t)

3

r2(t)

t2 ∝ ρ0
r5(t)

t2 .

Thus, we see that both expressions are of the same type, and one can conclude that

r ∝ t
2
5 .

This similarity solution is often referred to as the Sedov-Taylor solution [51, 52,
56–58], and it is valid when the shock front remains strong with the assumption
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that the energy is released instantaneously in an infinitely small region (i.e., a
point source) obeying perfect gas conditions at early times during the blast wave
development. Another strong shock similarity solution was introduced by von
Neumann [62] among a collection of other notable manuscripts on the topic of blast
waves by Bethe and colleagues [9].

Solutions to moderate strength shocks [32] produced by point sources have been
provided by theoretical means by Sakurai [48, 49] and by quasi-similarity methods
by Oshima [44]. An exact solution was presented via numerical simulations by
Goldstine and von Neumann [23] and analytically derived by Bach and Lee [6].
The interested reader is encouraged to further pursue these references to learn more
about these other types of solutions.

2.3.1 Initial Conditions for Blast Waves

Assume now that we wish to prepare ourselves to study a shock focusing process for
the specific case in which there are multiple blast waves that interact in such a way
that a convergent shock front is created and shock focusing occurs. Furthermore,
if we are interested in using numerical simulations in three dimensions to study
such a scenario, then one way to initialize this simulation is to neglect the physical
beginning of the blast initiation and instead start the simulation using Taylor’s
similarity law for point sources [57], described in brief earlier. Two advantages of
computing initial conditions compared to simulating a condensed energy source
directly are the following: (1) first, it eliminates the need to generate an extremely
fine mesh for the blast source, and (2) in addition, sharp discontinuities at the wave
front can be avoided [87]. At first, it might be easiest to start with a two-dimensional
case. We can do so by using two-dimensional initial conditions that actually were
modified from three dimensions by Lin [38]. In this case, Taylor’s similarity law for
pressure, p, density, ρ, and radial velocity, u, can be summarized as

p

p0
= R0

−3F(η), (2.21)

ρ

ρ0
= ψ(η), (2.22)

u = R0
−3
2 Φ(η). (2.23)

Here, p0 and ρ0 represent the ambient pressure and density ahead of the blast
wave and R0 is the chosen radius of the blast wave front at time zero, η = r

R0
with r representing the radial coordinate measured from the blast wave center. The
remaining variables F , ψ , and Φ are functions of η. Applying the similarity law to
the equations of motion, continuity, and equation of state for a perfect gas leads to
the following three differential equations in nondimensional form,
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φ̇(η − ψ) = 1

γ

ḟ

ψ
− 3

2
φ, (2.24)

ψ̇

ψ
= ψ̇ + ( 2φ

η

)
η − φ

, (2.25)

3f + ηḟ + γ ψ̇

ψ
f (φ − η) − φḟ = 0, (2.26)

where f = Fa0
3

A2 and Φ = Aφ. The speed of sound, a0, is the value in ambient air,
and A is a coefficient that can be determined from the total energy and the shock
front radius. The total energy, E, is separated into two parts, namely, kinetic energy
and thermal energy, and can be written as follows:

Kinetic energy = 4π

∫ R0

0

1

2
ρu2r2 dr, (2.27)

Heat energy = 4π

∫ R0

0

pr2

γ − 1
dr. (2.28)

Expressing Eqs. (2.27) and (2.28) in terms of the variables f , φ, ψ , and η, the total
energy E can be expressed as

E = 4πA2
(

ρ0

2

∫ 1

0
ψφ2η2 dη + p0

a0
2(γ − 1)

∫ 1

0
f η2 dη

)
. (2.29)

In the early stages of the explosion, the blast wave is strong, and therefore one
can assume that the pressure behind the shock front is much larger than the pressure
in front of the shock, i.e., p >> p0. Consequently, the boundary conditions at η = 1
can be obtained from the Rankine-Hugoniot relations

ρ

ρ0

∼= γ + 1

γ − 1
, (2.30)

Us
2

a0
2

∼= (γ + 1)

2γ

p

p0
, (2.31)

us

Us

∼= 2

γ + 1
, (2.32)

where the subscript s represents the state behind the blast and Us is the blast
wave speed. Given the total initial energy and blast radius, the three differential
Eqs. (2.24)–(2.26) can then be solved numerically to obtain the needed initial
conditions. These initial conditions result in a sphere of a given diameter R0
with a moderate shock jump suitable for implementation in numerical simulations.
Figure 2.4 shows line plots of nondimensional initial conditions for pressure,
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Fig. 2.4 Normalized initial
conditions based on Taylor’s
similarity law [57],
reproduced from [46], with
permission from Springer
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density, and radial velocity. The values are made nondimensional by scaling with
the peak values at the blast wave front.

With these aforementioned equations, we can now model, in a simplified manner,
the initialization of a blast wave—the first steps toward investigating shock wave
focusing when utilizing blast waves. Next, we will cover the historical background
and mathematical necessities to help us understand shock wave reflections.

2.4 Shock Wave Reflections

Converging shocks appear in a variety of geometrical configurations. For example,
a converging shock wave may be smooth as that produced by spherical converging
shocks, or it might consist of multiple planar sides and corners forming a polygonal
shape. Because a converging spherical or cylindrical shock wave is unstable by
nature (more on this topic in the next chapter), the converging shock wave tends
to form a polygon at some instant during the shock focusing process. To better
understand the shock focusing behavior, it greatly helps to be familiar with the
concept of shock wave reflections, introduced next.

2.4.1 Discovery

Shock wave reflection phenomena were first reported by Ernst Mach in the
1870s [10]. Today, close to 140 years after Mach’s discovery, shock wave reflection
phenomena remain an active field of research that still contain many challenges left
to be fully understood. During the experimental work that lead to the discovery of
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Exploding wire
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Exploding wire
center
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Reflected shock

Expanding shock
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Fig. 2.5 Cartoon illustrating the resulting shock interaction that took place during Mach’s
experiments in the 1870s [39, 40]. Two expanding cylindrical shocks of equal strength interact
and meet at the center line (thick solid line). Initially, the shocks reflect in a regular reflection
pattern, but as the shocks propagate outward, the reflection pattern transition into an irregular type
also referred to as a Mach reflection. Modified from [35]

what is today named the Mach wave reflection, Mach used an experimental setup
consisting of two exploding wires that each produced a simultaneous expanding
shock wave. As the expanding shocks collided with each other, the shock interaction
began as a regular reflection but transitioned into an irregular reflection as illustrated
in Fig. 2.5. Mach was able to visualize traces of the resulting shock wave interaction
from the two exploding wires using a glass plate upon which a thin layer of soot
had been deposited on. As commented on in the paper by Krehl and van der Geest
[35], it is noteworthy to realize that Mach only saw the left behind soot trace from
the path of the triple point trajectory and from there was able to piece together how
the shock waves coalesced and interacted.

In an 1875 manuscript coauthored by Mach’s student Wosyka [40], the irregular
reflection was shown to occur in liquids. Later, Mach continued the study of
two- and three-dimensional shock waves and shock wave reflection patterns [39].
Through these types of experiments, Mach visualized—for the first time—both
regular and irregular reflection patterns. Fifty years later, the irregular reflection
was named Mach reflection.
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Fig. 2.6 Schematic illustration of different types of shock wave reflection configurations: (a) and
(c) regular shock wave reflection configurations (RR); (b) and (d) irregular shock wave reflection
configuration (IR). The top row illustrates shock reflection off an inclined wedge, and the bottom
row illustrates shock reflection between two separate shock waves. Modified from [30]. (a) RR off
a solid wedge. (b) IR off a solid wedge. (c) RR reflection between two shocks. (d) IR reflection
between two shocks

In the early 1940s, von Neumann [61] studied shock wave reflection of a wedge.
He speculated that reflected shocks could be classified into two groups based on
their structure, as illustrated in Fig. 2.6a and b. The first group, regular reflection
(or RR), features an incident and a reflected shock that meet at the surface of the
reflecting body, shown in Fig. 2.6a. The second group, known as irregular reflection
(or IR), features an incident shock and a reflected shock as well as a third shock,
the Mach stem. The three shocks—and a slip line [11]—meet at a triple point
located above the reflecting surface, shown in Fig. 2.6b. In the same publication,
von Neumann also speculated that the Mach reflection first observed by Ernst
Mach was a possible irregular reflection configuration. These two types of reflection
occurrences are often referred to as two- and three-shock theory. As shown by Ernst
Mach, shock reflection also occur between two separate shocks, further illustrated
by the examples in Fig. 2.6c and d. To simplify, the symmetry line can be thought of
as a wall assuming viscous effects of the fluid are ignored. There are many different
types of irregular reflections, and the reader can refer to, for example, the very
comprehensive book written by Gabi Ben-Dor [7] and subsequently updated papers
by the same author [8] for a thorough description of this subject.
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2.4.2 Transition from Regular to Irregular Reflection

A theoretical limit, which determines whether the reflection is regular or irregular,
was derived by von Neumann [61] and is known as the detachment criterion.
In pseudo-steady flow, such as the cases shown in Fig. 2.6, the shock wave
configuration grows with time such that the length of the Mach stem grows
gradually while following the reflecting surface. Hence, what may look like an RR
configuration initially often transforms into IR configuration as the shock wave
transverses the wedge. Therefore, in pseudo-steady flow, the transition angle is
defined as the angle for which the reflection configuration remains RR without
transforming into IR.

The transition angle, θtr , is a function of the incident shock wave Mach number,
Ms , the heat capacity ratio, γ , and the deflection angle, θw. In short, irregular
reflections are classified either as von Neumann reflection or a Mach reflection, of
which many different types exist. Figure 2.7, from Ben-Dor [8], shows an example
of transition boundaries and domains in air for several different types of reflections.

Fig. 2.7 Boundaries and domains representing the domains of single Mach reflection (SMR),
pseudo-transitional Mach reflection (PTMR), transitional Mach reflection (TMR), and double
Mach reflection (DMR) in the (Ms , θw)-plane for air. The SMR-domain is marked by A. The
PTMR-domain is marked by B, the TMR-domain is marked by C, and the DMR-domain is marked
by D, reproduced from [8], with permission from Springer
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The theory developed in this manuscript was compared to a number of experimental
results, also illustrated to some degree in Fig. 2.7. For other types of gases, see, for
example, the manuscript by Semenov et al. [53] that shows transition curves for a
perfect CO2 gas with γ = 1.29.

2.5 Mathematical Description of Converging Shocks:
Self-Similarity

Guderley was the first to study converging shocks, and he derived a self-similar
solution for cylindrical and spherical shock waves [24]. The solution relates the
radius of the converging shock as a function of time and is written as

r

r0
=

(
1 − t

tc

)α

(2.33)

where r is the radius of converging shock, t is the time, r0 is the initial radius at time
t = 0, and tc is the time when the converging shock reaches the center of conver-
gence. The self-similar power exponent, α, describes the strength of the convergence
process. The exponent depends on the medium through and the geometry in which
the shock wave is propagating. Guderley determined α ≈ 0.835 for cylindrical
shock waves in air and α ≈ 0.717 for spherical shock waves in air. This self-similar
constant has also been studied and recalculated by several authors using numerical
simulations, analytical results, and various types of experiments, resulting in an
increasing number of significant digits of the self-similar exponent. Lazarus and
Richtmyer [37] provided solutions to a wide range of adiabatic exponents, which
later was further expanded [36]. More recently, a comparison of the solutions of
self-similar theory, geometric shock dynamics, as well that of a numerical inviscid
Euler solver was presented by Hornung et al. [28, 45], showing good agreement.

We will return to this important question in the next chapter where it will be
discussed in greater detail.

2.6 Experimental Methods to Study Shock Wave Focusing

Experimental techniques to study shock wave focusing include annular shock tubes,
exploding wires, explosives, and lasers. In the next subsections, we will give a brief
review of some of the most common techniques to study shock wave focusing.
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Fig. 2.8 Schematic illustration of an annular shock tube used previously in shock focusing
research [13–18]. A conical insert transforms a cylindrical shock to an annular shock that is forced
to converge as it enters the test section

2.6.1 Shock Tube

Shock tubes are perhaps one of the most common devices to study shock wave
focusing. A shock tube is a tube divided into two parts, the driver and the driven
sections, separated by a membrane or a fast-opening mechanical valve. Figure 2.8
shows an illustration of a typical shock tube along with the flow conditions before
and after the membrane has broken. The driver and the driven sections may contain
different types of gases at different temperatures. By rupturing the membrane at a
desired pressure ratio, a shock wave is formed a few tube diameters downstream of
the original membrane location. As the shock wave starts to propagate downstream
in the shock tube, an expansion wave is propagating upstream toward the end of
the driver section. The physical properties in the different regions in a shock tube
are often referred to by subscript numbers; see Fig. 2.8. Very commonly, subscript
1 refers to the undisturbed region ahead of the shock wave, region 2 is the region
between the shock wave and the contact surface, region 3 is the region between
the contact surface (this is the boundary between the gas that was in the driver
and the gas that was in the driven section of the shock tube) and the expansion
fan, and region 4 represents the high-pressure region initially in the driver section.
Of particular interest to any shock tube experiment is the pressure ratio across the
membrane p4/p1, given by
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p4

p1
= p2

p1

(
1 − (γ4 − 1)(a1/a4)(p2/p1 − 1)√

2γ1
√

2γ1 + (γ1 + 1)(p2/p1 − 1)

)−2γ4
γ4−1

(2.34)

in which the ratio p2/p1 is the shock strength. Once the shock strength is known,
it is a straightforward procedure to calculate the other thermodynamic properties
across the shock using shock jump conditions introduced earlier in this chapter. It
should also be noted that the pressure and velocity have to be the same on both sides
of the contact surface, i.e.,

u2 = u3 and p2 = p3.

Directly behind the expansion wave, properties in region 3 can be found through the
isentropic relations

p3

p4
=

(
ρ3

ρ4

)γ

=
(

T3

T4

) γ
γ−1

.

As for accessing the local properties inside the expansion fan, the method of
characteristics can be used, and details of such steps are outlined in many textbooks;
see, for example, the book by Anderson [4].

In general, shock tubes can be horizontal, vertical, or tilted at different angles.
They can be large or very small. For example, the T5 shock tunnel at Graduate
Aerospace Laboratories at California Institute of Technology used to study high
enthalpy flows is over 50 m long, and part of the shock tunnel consists of a 12 m
long shock tube with an inner diameter 90 mm [27]. On the other hand, shock tubes
used to study turbulent mixing can be as small as just a few millimeters long [67].

To create shock focusing using a conventional shock tube, an annular insert
(often designed to maintain a constant cross-section area for the fluid flow) can
be inserted at the end of the driven section. This method was first employed in the
groundbreaking work of Perry and Kantrowitz and has later been used in many
other setups; an example is illustrated in Fig. 2.8. This annulus helps to break up an
initially circular shock front into an annular shape that can be forced to focus onto
itself by geometrical means.

2.6.2 Exploding Wire

Another experimental approach to study shock wave focusing is to use an exploding
wire. Exploding wires have been used for a variety of research studies dating
back all the way to 1773 [41, 43]. As described earlier in this chapter, during the
experimental work that lead to the discovery of the Mach wave reflection, Ernst
Mach used an experimental setup consisting of two exploding wires. During the
early twentieth century, exploding wires were also used for research pertaining
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to thin metal films [59] and spectral studies [1–3]. In 1959, the first schlieren
visualizations of shock waves generated by exploding wires were presented [50],
but the use of exploding wires for the study of shock wave dynamics was largely
unexplored until the early 1990s [26].

Examples where shock wave focusing has been performed using exploding wires
include two-dimensional cavities in which the exploding wire is located at the center
of the cavity by, for example, the research group of Apazidis [5]. As the wire
explodes, an expanding shock wave is created. The shock wave propagates outward
and reflects off the boundary of the cavity. As the shock is reflected, it will approach
the center of the cavity due to shock focusing motion. A possible drawback of this
approach is that the disturbance that is created by the discharge of the exploding
wire occurs at the focal point. Thus, the visibility at the focal point is decreased and
one cannot properly follow the later stages of the converging shock as it propagates
towards the focal point. Therefore, it is nearly impossible to study the shock wave
behavior close to the focal point.

Shock focusing created by multiple exploding wires has been performed in liquid
environments mainly with the purpose of studying high-energy density physics
phenomena [20]. In these studies, underwater shock focusing was successfully
generated by an array of exploding wires and resulted in pressures on the order
of hundreds of gigapascal at the implosion center [12, 21, 33, 34, 60]. The drawback
from this setup is its very limited physical size, with an initial converging shock
radius of about 10 mm—leading to extreme demands on both spatial and temporal
resolution on any imaging devices needed to study the focusing phase and the
intricate dynamics of the shock wave.

Exploding wires have also been used to create multiple synchronized shock
waves in air [19]. This particular setup, illustrated in Fig. 2.9, was used to study
shock focusing from multiple synchronized shocks both in two dimensions by
using longer straight copper wires to create cylindrical expanding shocks and in
three dimensions by using shorter, looped, copper wires to create spherical shocks.
The setup featured five high-voltage capacitors connected in parallel with a total
capacitance of 1.3 μF and a maximum charge of 30,000 V. Experiments were
performed with stored energies of over 400 J that were released within 2 μs. This
type of research then utilizes shock focusing created by the interaction of multiple
shock waves and provides an easy method to probe different types of shock focusing
events in two or three dimensions.

Another method, used in the same manner as the single exploding wire technique,
to generate shock focusing is by the use of electric spark discharge. However, this
technique often results in similar limitations as the single exploding wire technique
[5, 70] in which the light emission from the electric spark discharge prohibits
visualization of the converging shock wave as it approaches the focal region.
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Fig. 2.9 Example of an
exploding wire setup used by
Eliasson and Gross [19]: (1)
location of Cu-wire(s), (2)
spark gap, (3) five
Maxwell-type capacitors in
parallel with a capacitance of
1.3 μF, (4) safety controls, (5)
low-voltage controls and
valves, and (6) pneumatic
safety controls

2.6.3 Micro Explosives

Hosseini and Takayama [29] used a three-dimensional chamber to study shock
focusing. Positioned in the middle of the chamber was a silver azide pellet (AgN3,
99.9% purity; 3.77 g/cm3, Chugoku Kayaku Co. Japan), and depending on the type
of experiment, the silver pellet mass was varied from 1.0 to 10.0 mg to create shocks
of varying strengths. The 10 mg charges had a cylindrical shape of 1.5 mm diameter
and were 1.5 mm long. The silver pellet was glued to the polished end of a 0.6 mm
core diameter optical fiber. To initiate the explosion, the silver charges were ignited
by irradiation of a pulsed Nd:YAG laser beam (1064 nm wavelength, 7 ns pulse
duration, 3.2 mm diameter beam, and total energy 25 mJ per pulse). The initial
shape of the expanding shock wave was not spherical, but due to the stability of
expanding spherical shocks (to be discussed in more detail in the next chapter), the
irregular geometry soon took on a spherical shape. It should also be noted that small
fragments from the pellet explosion overtook the expanding shock wave, Fig. 2.10.

2.7 Visualization Techniques

The most common visualization techniques to study shock wave dynamics in
general, and shock focusing in particular, are various types of schlieren techniques
and interferometry techniques. Some of these are described next.
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Fig. 2.10 Example of the initial (50 μs) and later stages (100 μs) of a diverging shock wave (DSW)
created by a micro-explosive setup. The photos show infinite fringe interferograms produced by
the explosion of a 10.0 mg cylindrical silver azide charge at an ambient pressure of 100.2 kPa.
Abbreviations: HSP high-speed particles, OF optical fiber, PG product gases, SSW secondary
shock wave, RSW reflected shock wave, reproduced from [29], with permission from Cambridge
University Press

2.7.1 Schlieren Technique

Schlieren techniques are often used when visualizing shock waves in different media
and for a wide range of scenarios. Although, most schlieren methods are rarely
used for quantitative measurements of density gradients but are very useful for the
qualitative understanding of the overall flow dynamics [13].

Optical methods for inhomogeneous media have been used since the 1600s. In
the early 1670s, Robert Hooke (1635–1703) demonstrated a simple version of what
is known today as the shadowgraph method to observe the convective plume of
a candle for several members of the Royal Society. Christiaan Huygens (1629–
1695) invented a version of the schlieren technique to look for striae in glass
blanks prior to making lenses from them. Jean Paul Marat (1743–1793) published
the first shadowgram of thermal plumes from hot objects. Marat did not connect
the thermal plumes with density gradients of a fluid; instead he interpreted it as
a proof of an “igneous fluid.” The invention of the schlieren imaging technique is
usually attributed to August Toepler (1836–1912), who named the technique after
the German word for optical inhomogeneities in glass: “Schlieren”. He used a light
source, a knife edge, and a telescope, not too different from today’s most common
schlieren setups. Ernst Mach (1838–1916) confirmed in 1877, by using schlieren
optics, that nonlinear waves of finite strength could travel faster than the speed
of sound, as earlier predicted by Riemann (1860). Since then, many gas dynamics
phenomena have been visualized by the schlieren image technique. For a historical
outlook and a detailed description of the schlieren optics method and its variations,
see the excellent compilation by Gary Settles [54].
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(A)
Light source

Flat mirror

Flat mirror
Flat mirror

Driver section

Membrane

Driven section

(B) Test section

High-speed camera

Knife edge

Lenses

(C) Spherical (C) Spherical
mirror mirror

Fig. 2.11 Example of a Z-folded schlieren setup used to record high-speed photographs of shock
wave dynamics in air and water in [31, 64, 65]

So, how does the schlieren system work? In short, one can describe the general
idea of the schlieren system as follows: first, produce a parallel light that goes
through an area of interest in which, e.g., a shock wave will occur. Then, by physics
laws, we know that both the speed of light, c, and the refractive index, n, will vary
with the density, ρ, of the medium in which the light is passing through. Thus, light
that is passing through a region of compressible flow will be diffracted due to the
density changes in the medium. The final schlieren image is obtained by cutting
off part of the diffracted light before the light reaches the registry device (e.g., the
camera) and thus produce darker (or brighter) regions on the photograph. If the
density change takes place over a distance which is less than the wavelength of the
light, then the optical method is sufficiently accurate.

One example of a schematic diagram of the so-called Z-folded schlieren method
is shown in Fig. 2.11. A light source is placed at (A), which is located at a distance
away corresponding to the focal length from the first concave mirror. Then, the
parallel light exiting the concave mirror is reflected off two planar mirrors to enter
through the test section, labeled (B), in which the event of interest will take place.
After the second concave mirror, labeled (C), the light will focus, and that is the
location on which a schlieren edge will be placed to cut off parts of the light.
Depending on how the light is intercepted, and by how much, it will appear darker or
brighter at the image plane of the test section. The most commonly used schlieren
edge is a straight edge, which shows the density gradient in the flow normal to
the edge. Usually, a knife edge is placed normal or parallel to the flow direction.
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It is possible to change the schlieren edge into other shapes to enhance various
properties. For example, a dark-field edge produces bright higher-order features
against a dark background. The dark-field filter can be set up by a spherical schlieren
edge, e.g., a pinhead. After the schlieren edge, different types of optics may be used
to obtain an optimal image for the recording device.

The quality and the properties of the light source are of high importance for
the quality of the final schlieren photograph. Usually, incandescent lamps, flash
lamps, or lasers are used as light sources; see e.g., [54]. Lasers, even though usually
quite expensive, are and not necessarily better for schlieren imaging. The typical
schlieren concept deals with a light source composed of individual rays that do
not interact with any other rays. This is not true for a laser because it produces a
parallel, monochromatic, and coherent light. A common problem is that schlieren
systems with coherent laser light sources become schlieren interferometers. There
are workarounds to make schlieren systems work well with laser light, and some
of the solutions incorporate the use of a spatial filter (i.e., pinhole) to remove
interference patterns in the laser beam.

There exists several different types of “flavors” of schlieren techniques, which
are often used to obtain higher levels of quantitative data. One example is the
background oriented schlieren (BOS) technique, which will be introduced next.

2.7.2 Background Oriented Schlieren

Readers familiar with particle image velocimetry (PIV) will recognize parts of
this chapter. The main difference is that the particles that are monitored to find
displacements are stationary in the case of BOS, while in PIV applications most
often the fluid flow is seeded with moving particles.

The principle of BOS is illustrated in Fig. 2.12. The camera is focused onto the
background plane which has certain prescribed patterns [25]. The sample placed in
between the background plane and the imaging device serves as a transfer channel
function [42]. The variation of the sample’s index of refraction causes a deflection
angle of the originally parallel light, which leads to the displacement of the original
background on the image plane of the camera; see the enlarged view in Fig. 2.12.
By comparing the images obtained with and without the sample, the information
about the transfer channel function or the change of index of refraction in the
sample can be extracted. The deflection angle α is a key quantity, which connects
the measurable displacement y′ and the unknown index of refraction, n. Here, for
simplicity, only the displacement in the y-direction is considered. Two relationships
can be obtained for the deflection angle α. First, by assuming that the angle α is
small, α can be expressed by y′ and additional experimental parameters as

α = y′

Za + Zb/2
. (2.35)
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α

α

Background plane Sample Lens

Higher density

Zb/2

Lower density
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Principal optical axis

Za Zb

y

y

Fig. 2.12 Demonstration of the BOS principle and the key quantities. The distance between the
background and sample is denoted Za . The thickness of the sample is Zb. The displacement of the
background observed at the image plane is given by y, and y′ is the projected displacement at the
background plane, reproduced from [63], with permission from Springer

In Eq. (2.35), Za is the distance between the background plane and the sample, and
Zb is the thickness of the sample. By increasing Za , the error in determining the
angle α can be reduced. Second, based on Snell’s law, α and the index of refraction
n have the following relationship:

α = 1

n0

∫ Za+Zb

Za

∂n

∂y
dz. (2.36)

By combining Eqs. (2.35) and (2.36) and assuming the width of the sample Zb is
much smaller than Za , Zb � Za , the following can be obtained:

∂n

∂y
= n0y

′

Zb(Za + Zb/2)
. (2.37)

The assumptions made above transform the problem into two dimensions, which
means that the density is only a function of the x and y coordinates but remains
constant along the z direction. The medium can be anything as long as it is possible
to find a relation between density and index of refraction. For example, if the
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medium is water, one example of a direct relationship between the density and index
of refraction is given by Yadav et al. [66],

n = n0 + κ(ρ − 0.99824), (2.38)

in which n0 equals to 1.332 and κ equals to 0.322. Equation (2.38) is also referred as
Gladstone-Dale relation [22]. Equation (2.38) can then be substituted into Eq. (2.37)
to yield a relationship between ρ and y′ given by

∂ρ

∂y
= n0y

′

κZb(Za + Zb/2)
. (2.39)

Since y′ is directly measurable, it is evaluated through the displacement of the
background on the image plane y. The magnification factor M is defined as

M = y/y′. (2.40)

Equation (2.39) can be rewritten using M and y as

∂ρ

∂y
= n0y

MκZb(Za + Zb/2)
. (2.41)

As seen in Eq. (2.41), the unknown ρ is directly related to y, which can be readily
obtained through the analysis of experimental image data. To solve the complete
two-dimensional problem instead of the simplified one-dimensional version, a
Poisson equation of the density distribution can be formulated as

∂2ρ(x, y)

∂2x
+ ∂2ρ(x, y)

∂2y
= k

(
∂u(x, y)

∂x
+ ∂v(x, y)

∂y

)
, (2.42)

k = n0

MκZb(Za + Zb/2)
. (2.43)

In Eq. (2.42), u(x, y) and v(x, y) are the displacements of the background in x and
y directions at location (x, y) on the image. Finally, since the displacements are
found, any other quantity of interest can be worked out.

2.7.3 Double Exposure Holographic Interferometry

Double exposure holographic interferometry is an optical technique that allows
for visualization of density changes. It has been used frequently by the research
groups at, among others, RWTH Achen in Germany and the Institute of High Speed
Mechanics at Tohoku University in Japan. An example of the experimental setup
from each place is shown in Fig. 2.13, from [55]. As explained in [55], one clear



2.7 Visualization Techniques 31

Fig. 2.13 Example of a double exposure holographic interferometry setup at (a) Stoßwellenlabor
at RWTH Achen, Germany, and (b) Institute of High Speed Mechanics at Tohoku University in
Japan, reproduced from [55], with permission from Springer
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advantage of this method is that larger diameter visualization areas can be obtained
because the restrictions on the quality of the optical elements are less stringent than
for many other techniques.
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