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Preface

Historically transportation studies have primarily relied on survey-based approaches
for understanding travel behavior and urban dynamics. The last few years has seen
an explosion of “big data” techniques due to the rapid proliferation of various
passive and mobile sensors in urban areas providing high resolution and large
dimensional data in urban transportation systems. The book will focus on recent
advances in the area of big data analytics and their applicability to solve various
issues in transportation systems planning and operations. The core algorithmic
approaches for big data techniques are based on machine learning (ML) methods.
These have primarily been developed in computer science and engineering and have
widely been in various engineering applications in the last few years [1–4]. These
methods are relatively new in the transportation systems area and we estimate there
are approximately around 55 scholars around the globe actively working in research,
demonstrations, and applications pertaining to the various aspects of big data urban
mobility modeling.

This book documents selected papers from the workshop on Big Data Analytics
for Transportation Modeling, which was organized on July 16–17, 2016, at Tongji
University by Professors Satish V. Ukkusuri and Chao Yang. This workshop brought
together various international experts from academia, agencies, and industry to
discuss emerging topics of interest in big data modeling. Various topics related to
big data methods, data collection and curation, and applications for planning and
operations in transportation systems were presented at the workshop. The organizers
invited a selected set of participants to contribute chapters to this edited book.
Finally, we selected about nine chapters for this book with authors from various
universities in the world. Each book chapter was peer reviewed by at least two
reviewers and was edited to fit with the main focus of the book. The book is divided
into nine chapters.

Chapter 1 is based on utilizing tweet data for transportation planning appli-
cations. Particularly, the authors focused on estimating the localization of non-
geotagged tweets using point of interest data and other spatial variables. This
method provides rich information of both the geo-located tweets and estimates of
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aggregated location from non-geotagged tweets and demonstrated the usefulness for
various transportation applications such as incident detection.

Chapter 2 explores the use of social media data from Twitter to complement other
data sources to understand three transportation applications—traffic event detection,
human mobility exploration, and trip purpose and demand forecasting. The chapter
discusses how to leverage geolocation tweets to extract displacement of people and
automatically extract topics of relevance for predicting event shifts.

Chapter 3 is written by some of the original collectors of taxi data in New York
City from the Taxi and Limousine Commission (TLC). On the one hand, the chapter
provides a historical perspective of the data collection initiative starting in 2004.
On the other hand, transportation network providers have fought hard to prevent
their data from being released to transportation regulators, frustrating their mission
to implement policy, make and enforce regulations. The chapter highlights issues
related to data accuracy, security, privacy, transparency, and compliance and the
need for third-party independent institutions to audit and maintain this data.

Chapter 4 discusses a big data collection method using inertial measurement
units (IMUs) to estimate vehicle path, detect traffic stops, and classify traffic-
related events. The chapter discusses methods to estimate the vehicle trajectory
from IMU and Bluetooth data and the mathematical problems that arise for an
accurate estimation of such network-wide problems. The chapter discusses how
to use this type of data to estimate traffic network states and at the same time
maintaining the privacy of the data.

Chapter 5 discusses the data, methods, and applications of traffic source predic-
tion, which may provide a new way to better understand the traffic congestion. The
chapter discusses the “static driver source” that can be applied to urban planning
and “dynamic driver source” that can support traffic management and control. The
chapter also discusses “passenger source” in public transit system.

Chapter 6 discusses a sequential K-means clustering algorithm that utilizes
smart card data to categorize Beijing subway stations, which are clustered into
ten groups that are classified under three categories, i.e., employment-oriented,
dual-peak, and residence-oriented stations. The chapter employs a geographically
weighted regression model to determine the correlation effect between peak-hour
passenger flow and land-use density. The findings of this chapter provide insightful
information and theoretical foundations for rail transportation network design and
operations management.

Chapter 7 discusses the rising concern for location privacy with the emergence of
GPS capable mobile devices and the increasing demand of contextual services such
as location-based services. The chapter discusses the method of geospatial analyses
as an evaluation tool of the impact of noise-based algorithms on location data. The
chapter identifies a threshold of noise settings so that privacy can be provided while
geo-statistic inferences are not affected greatly.

Chapter 8 discusses PErsonal TRansport Advisor (PETRA) EU FP7 project,
which is to develop an integrated platform to supply urban travelers with smart
journey and activity advices, on a multi-modal network. The chapter discusses the
architecture of PETRA platform and presents results obtained by applying PETRA
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to two different use cases, namely journey planning under uncertainty and smart
tourism advisor with crowd balancing. The results of applying PETRA in two cities,
Rome and Venice, are also presented.

Chapter 9 is on mobility pattern identification using mobile phone call record
data (CRD) of 60 days obtained from Shenzhen, China. The chapter discusses
representative features that were captured from each pattern in both weekday
and weekend. The mobility pattern discussed in this chapter provides a new way
to understand travel behavior, which plays a crucial role in urban planning and
epidemic control.

In summary, the chapters in the book provide a rigorous understanding of
big data methods, analytics, and applications to various transportation planning,
operations, and control problems. Furthermore, some of the chapters discuss novel
data collection methods and data privacy issues, which are important as we innovate
in this area in the future.

Finally, we would like to acknowledge various people who have contributed
to the completion of this book. We thank all authors who submitted their work
for consideration. In addition, we thank the dozens of referees for their important
work in reviewing the papers. We would also like to acknowledge the financial
support provided for the workshop by Fundamental Research Funds of the Central
Universities. We also thank Dr. Xiangdong Xu for support during the workshop
preparation. Several students Xianyuan Zhan, Xinwu Qian, Fenfan Yan, and Yulaing
Zhang also helped with the workshop organization.

West Lafayette, IN, USA Satish V. Ukkusuri
Shanghai, China Chao Yang
December 2017
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Chapter 1
Beyond Geotagged Tweets: Exploring
the Geolocalisation of Tweets for
Transportation Applications

Jorge David Gonzalez Paule, Yeran Sun, and Piyushimita (Vonu) Thakuriah

1.1 Introduction

There are currently several examples of the use of Twitter data in transportation
analysis. These examples are in the areas of transportation operations [7, 9, 18, 28,
33, 44, 47] as well as planning [2, 20–22, 25, 52]. As knowledge of location is
critical for many aspects of transportation research, virtually all such analyses utilise
geotagged Twitter data, where precise location data is automatically generated once
the user enables this feature. However, the number of tweets that are explicitly
geotagged by users tends to be sparse (just 1–2% of the entire Twitter), so that
the sample sizes are quite limited for real-time incident detection or event detection,
particularly given the degree of noise and latency associated with tweets. Moreover,
the spatial distribution of geotagged tweets is known to be non-representative
of population patterns and Twitter users who publish geographical information
have been found to be not representative of the wider Twitter population, causing
problems with the use of geotagged Tweets for transportation planning and travel
behaviour analysis.

This paper explores the extent to which the usefulness of Twitter data for
transportation operations and planning can be improved by enhancing the geo-
graphic details of non-geotagged data. We call the process of estimating the
locations of posts that are not associated with explicit coordinates “geolocalisation”.
Geolocalisation is an active research area in Twitter data analysis. We focus
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2 J. D. G. Paule et al.

on one specific approach to enhancing the geographic details of non-geotagged
tweets and consider two cases—first, automated incident detection and, second,
the characteristics of location of people’s activities—to empirically examine the
extent to which geolocalisation improves transportation planning and operations,
compared to what would be supported by geotagged data alone.

The paper is organised as follows: in Sect. 1.2, we discuss the main issues
motivating our research approach, while in Sects. 1.3 and 1.4, we describe the data
used and the geolocalisation methods adopted, respectively. Section 1.4.2 and its
subsections present the approach undertaken for the comparative work on traffic
incident detection using geotagged versus geolocalised Tweets whereas Sect. 1.4.3
looks at the spatial patterns of geotagged and geolocalised Tweets. Results are
discussed in Sect. 1.5 and conclusions and recommendations for future research are
drawn in Sect. 1.6.

1.2 Background

The range of data sources for transportation planning and operations in cities
have grown rapidly, and the “methods to manage and analyse such data have led
to novel mobility services which may have the potential to lead to sustainable
and socially interesting travel” [48]. Particularly with the fast-growing utilisation
of user-generated content (UGC) and crowd-sourced information for scientific
research, several new approaches have emerged to study transportation patterns and
travel behaviour. Popular social media such as Twitter, Instagram, Facebook and
other sources can reveal not only historical travel patterns but also real-time traffic
incidents and events. Yet the unstructured nature of the data and the level of noise
involved in inferring knowledge can pose significant challenges to their routine use
in transportation planning and operations.

One major area of interest in the transportation community is automated incident
detection on roadways. This task depends on a wide variety of fixed sensors (induc-
tive loop detection systems, CCTV) and moving-object sensors (probe vehicles,
transit vehicles, cellphone users) and primarily covers the detection of events that
disrupt efficient traffic operations. Typically in urban areas, roadways in higher
functional classification tend to be instrumented by fixed sensors, while lower
level arterial and side streets which are not as well equipped with monitoring
with infrastructure-based sensors are monitored by moving objects and other ad-
hoc sources. Separate (administrative data sources) provide information on crime
and other incidents aboard public transportation vehicles and facilities. Safety
researchers working with transportation data, on the other hand, work with data that
are primarily collected by law enforcement officials at the site of transportation-
related fatalities and serious injuries. Such sources of data together provide a
comprehensive picture of the safe and efficient functioning of a city’s transportation
system; yet, these data sources are in disparate locations, available after different
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lengths of time and in heterogeneous formats, making it difficult to obtain a clear and
complete perspective of the hazards and incidents in a city’s transportation system
in a timely manner.

Detecting small-scale road incidents using Twitter data has now been studied by
many researchers but problems of detection rates, latency of detection, and other
concerns are pertinent research issues. In the early days of using georeferenced
tweets in detection of traffic events, only geotagged tweets are used due to high
spatial granularity. Nevertheless, only about 1% of tweets are geotagged, and
geotagged tweets are much more heterogeneously distributed than the overall pop-
ulation [17]. This means that an extremely limited number of georeferenced tweets
are potentially useful in detection of traffic events with fine-grained occurrence
locations.

1.2.1 Detection of Traffic Events

To detect traffic events by exploiting social media, some studies use both geotagged
tweets and geolocalised tweets and find more tweets than using geotagged tweets
alone [7, 9, 18, 28, 33, 44, 47]. Most of earlier studies on geolocalisation of tweets
have limitations in either the precision of the spatial resolution recovered or the
number of non-geotagged tweets for which location is estimated. Some studies
geolocalise tweets at the nation or city level [13, 19, 27, 43] while others have
retrieved a relatively small amount of fine-grained geolocalised tweets [14, 24,
31, 37, 38]. In this paper we try to retrieve a relatively large amount of street-
level geolocalised tweets by using a new geolocalised approach. Then we use both
these geolocalised tweets and the geotagged tweets to assess their comparative
performance in the detection of traffic incidents in a metropolitan area.

1.2.2 Socio-Economic Characteristics of the Locations
of GeoTagged Tweets

Regarding travel behaviour analysis for transportation planning studies, one impor-
tant requirement is to understand the characteristics of the locations between
which people travel (travel origins and destinations). The major sources of data to
analyse these patterns are typically travel diaries from household travel surveys, and
journey-to-work data that are collected by census organisations in many countries.
Several studies have now reported the use of Twitter data to understand OD flow
patterns. For example, Gao et al. [15], on the basis of 6.8 million geotagged
tweets collected over a month from 110,868 users in the Greater Los Angeles
area, evaluated the credibility of Twitter to estimate temporal mobility flows in
comparison with the American Community Survey data. They concluded that
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their approach could be used to estimate aggregated mobility flows on weekdays.
Kurcku et al. [29] found in the case of the New York metropolitan area that
while flows between certain areas as detected from Twitter are a good match to
ground truth data from the New York Metropolitan Transportation Council Regional
Household Travel Survey, there were varying degrees of match to flows between
other areas. Using Twitter to understand comprehensively understand OD flows
is also challenging. Lee et al. [30] collected geotagged Twitter data over 2 days
and identified 67,266 trips covering the entire Greater Los Angeles area; they
commented on the large number of OD pairs with zero Twitter flows at the level
of TAZs, requiring upward aggregation to the PUMA level to compare OD flows
with the regional travel model.

1.2.3 Socio-Demographically Representativeness
of GeoTagged Tweets

An assessment of the overall level of bias and variability in Twitter data is necessary
to infer typical flow patterns in urban areas, as certain populations and their mobility
patterns may be systematically under- or over-presented in Twitter data. These
considerations have become tremendously important in the transportation planning
literature and practice, in ascertaining, for example, access to jobs, health-care and
other amenities for which there are social justice dimensions due to poverty and
race, as well as age and gender. Concerns with travel quality of “Environmental
Justice” (EJ) areas—areas with high low-income and minority populations—in
particular have been important planning consideration. Geotagged tweets have been
noted to be a non-representative sample of population patterns in general. Mislove
et al. [36], for example, found that there is over-representation in geotagged tweets
of populous counties and cities with large white populations in the USA, but
underrepresentation of Hispanic populations in the Midwest and the southwest and
of black populations in the south and the Midwest. Longley et al.[32] found in the
UK (London) an over-representation of young males and white British users and
an underrepresentation of middle-aged/older females, and of South Asian, West
Indian and Chinese users. Hecht and Stephens [23] found, based on comparisons
with census data, that urban areas have 2.7–3.5 times more geotagged tweet users
than would be expected. Moreover, other authors have also compared geotagged
Twitter activity against overall (including non-geotagged) Twitter activity, and
have found (e.g., Sloan et al. [46]) that Twitter users who publish geographical
information are socio-demographically not representative of the wider Twitter
population (geotaggers being more likely to be male, slightly older, and to be small
employers and in lower supervisory and technical occupations compared to non-
geotaggers).

One approach to addressing the above problems is to increase the sample size
of tweets with precisely known geographical location. Having a larger georef-
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erenced sample would help in exploring issues of the overall representativeness,
event coverage, latency and other concerns associated with geotagged data. Many
approaches have been used to increase the range of tweets retrieved that enable
the detection of incidents from tweets [7, 9, 18, 28]. A far from complete list of
examples include querying through semantic enrichment of Twitter content [7, 28],
increasing the sample of tweets through geolocalisation [18], and other approaches
by means of which events and incidents can be detected. Regarding problems of
inference, there is increased need (Thakuriah et al. [50]) as well as an interest
in approaches to reducing sampling biases in online social networks and social
media data [8, 10, 16, 40, 51]. While geolocalisation of non-geotagged tweets is an
active area of research associated with the geospatial semantic Web and Geographic
Information Retrieval, much of the work has focused on geolocalisation of users, or
on geolocalisation of tweeting activity to fairly coarse geographical levels, whereas
our work relates to street-level or even building-level geolocalisation. We will
consider two different approaches to geolocalisation, as described in Sect. 1.4.

1.3 Data

In this work, we studied the Chicago metropolitan region. The area is defined by
a bounding box with the following coordinates: −86.8112, 42.4625, −88.4359,
41.2845. To conduct our experiments, we collected Twitter data, traffic incident data
and census data for a period of study of a month (July 2016).

1.3.1 Twitter Data

The Twitter dataset was collected from the Twitter Public Streaming API.1 Spatial
filtering can be applied in order to obtain georeferenced data. Geographical infor-
mation is attached to tweets in two ways: (1) exact longitude and latitude if the GPS
location reporting of the user device is activated (geotagged); and (2) as a suggested
area (bounding box) from a list that can be extrapolated to a polygon, when sending
a tweet (geobounded). In this work, we utilised geotagged and geobounded data for
our experiments (see Table 1.1). The geobounded data provides a general location
but not the spatial precision needed for the types of applications considered in
this paper. Thus, we performed the geolocalisation on geobounded tweets. Since
this work does not tackle geolocalisation per se but explores a practical way to go
beyond geotagged data, we are using geobounded tweets for exemplification of the
limitations of using geotagged tweets alone.

1https://dev.twitter.com/streaming/overview.

https://dev.twitter.com/streaming/overview
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Table 1.1 Number of
geotagged tweets and
geobounded tweets collected
(July 2016)

Total tweets

Geotagged tweets 283,948

Geobounded tweets 2,357,360

1.3.2 Traffic Incidents

We gathered traffic incident data from the Bing Maps Traffic API.2 The Bing
Maps API provides real-time information about traffic disruptions happening in
expressways and arterial roads. The data includes the start–end location as well as
start–end time of the incident. In total, we collected 3182 traffic incidents in Chicago
during the period of study (July 2016). The data also include several categories of
incidents, however, in this study we focused on accidents. As a result, the final
dataset is 1087 traffic accidents. Bing data incidents are primarily detected using
inductive loops and CCTV, which are on the major roads and expressways. Other
areas with minor roads are not reported, however Twitter data can provide coverage
of such areas. The ultimate goal is to put together multiple data sources to obtain a
more comprehensive picture.

1.3.3 Chicago Area SocioEconomic Data

Several data sources were used to understand the socioeconomic patterns in the
Chicago metro area. One major source of data is the Chicago area Spatial Decision
Support System constructed by the last author’s research group [6, 49] that gives
estimates of social, locational and behavioural factors at the level of census tract.
Additionally, the Longitudinal Employer Household Dynamics (LEHD) synthetic
data on Origin-Destination Employment Statistics (LODES) datasets3 are used as
well, which offer spatial distributions of jobs at the census block level, which we
used aggregated to the census tract level.

1.4 Methodology

In this section, we first present the geolocalisation methods used in the paper. We
then describe the process used to detect traffic incidents from both geotagged tweets
and geolocalised tweets. This is followed by the approach used for an exploration
of the spatial patterns of geotagged tweets and geolocalised tweets for the purposes
of transportation planning applications by identifying spatial clusters of tweets and
correlating tweets with population, job and other characteristics.

2https://msdn.microsoft.com/en-us/library/hh441725.aspx.
3https://lehd.ces.census.gov.

https://msdn.microsoft.com/en-us/library/hh441725.aspx
https://lehd.ces.census.gov
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1.4.1 Geolocalisation of Tweets

Recently, geolocalisation of Twitter data has become an important yet challenging
task. First efforts in the literature on geolocalising Twitter data addressed the
localisation of Twitter users rather than individual tweets [3–5, 13, 19, 20, 26, 35].
However, despite these works can infer home and work locations of a Twitter user,
they are unable to provide the current location of individual tweets.

Several works have proposed different approaches to address the problem of
geolocalising individual tweets [11, 27, 37, 39, 43]. However, these studies achieved
a coarse-level of granularity (i.e. country or city level) which remains insufficient
for certain applications (e.g. traffic incident detection) that require more fine-grained
geolocated data. Thus, geolocalising individual tweets at a fine-grained level has
arisen as a new and challenging task that has been tackled recently [37, 38].

In this work we aim to obtain fine-grained geolocalised tweets in order to perform
our analysis. We compared two different approaches to geolocalise tweets based
on its content which utilise either external sources or twitter data in order to infer
the locations of tweets based on their text. The first approach, called “POI”, aims
to match the presence of place names in the text with a Point Of Interest (POI)
database. The second approach, called “Text-Based Similarity”, retrieves the most
likely location based on the similarity of the text of a non-geotagged tweet and the
text of individual geotagged data. Both approaches predict the location of the tweet
as a point with explicit longitude and latitude coordinates.

1.4.1.1 Geolocalisation Method 1: Point of Interest Matching

The first method exploits external sources to geolocalise tweets. Inspired by Schulz
et al. [45], we implemented a method that matches the text of tweets with geospatial
databases containing locally specific information. Some Twitter users explicitly
mention the name of their location in their messages. Thus, by matching with a POI
database, such names can be resolved to a point in space. POI databases consist of a
list of place names, such as monuments, buildings or restaurants, that are associated
with longitude and latitude coordinates.

We collected POI data from geospatial data sources that contain a higher number
of place names that are unique for specific cities, and developed a method to perform
a tweet-POI matching. The collected geospatial data sources are: Mapquest,4 Bing5

and Foursquare.6 The POI matching extracts all possible n-grams from the text and
match every n-gram with the POI database. An n-gram is a set of co-occurring
words within a text in a given window (n). For example in the sentence “I am in

4https://developer.mapquest.com/.
5https://msdn.microsoft.com/en-us/library/hh478192.aspx.
6https://developer.foursquare.com/.

https://developer.mapquest.com/
https://msdn.microsoft.com/en-us/library/hh478192.aspx
https://developer.foursquare.com/
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Chicago”, the set of possible 3-grams is: {“I am in”, “am in Chicago”}. As a
result, the method will output the POI that matches with the longest n-gram (up to
3-grams7) extracted from the text.

1.4.1.2 Geolocalisation Method 2: Text-Based Similarity Approach

Inspired by Gonzalez Paule et al. [38], we used information retrieval techniques to
obtain the most similar geotagged tweet to a non-geotagged tweet based on the text.
Information retrieval techniques in Twitter data have been exhaustively evaluated
in the literature [42]. Given a set of documents, the classic information retrieval
task aims to find the most relevant text documents to a given query based on the
statistical similarity between the text of the documents and the text of the query.
Therefore, given a set of geotagged tweets and a non-geotagged tweet for which we
want to predict its location, we treat the text of the non-geotagged tweet as a query
to search for the most similar documents within a collection of geotagged tweets.
The intuition is, as users use Twitter to describe real-world events happening around
them by means of their posts [1], then the similarity of the text also determines the
proximity in geographical distance.

More specifically, the Vector Space Model (VSM) is applied using IDF (Inverse
Document Frequency) statistic [34]. This model provides the best performance in
tweet retrieval [42]. In VSM, each document and the query are represented as a
single weighted vector in a multi-dimensional space. Each dimension in the space
represents a word, and the weights are given by the IDF statistic. The IDF value for
a word w in a collection with N documents is computed as follows:

idfw = log
N

dfw

(1.1)

where dfw is the document frequency for word w, defined as the number of
documents in the collection that contain the word. Therefore, for geolocalisation
of tweets, we compute the IDF for each word in the collection of geotagged tweets.
Next, each geotagged tweet and the non-geotagged tweet are represented as a vector
containing the IDF values for each word in their text. Finally, the similarity between
two documents is given by the distance between the vectors that represent them in
the VSM. Thus, to retrieve the most similar geotagged tweet to the non-geotagged
tweet, the cosine similarity between the vector of the geotagged tweet q and the
vector of the non-geotagged tweet d is given by:

cosine_similarity(q, d) = V(q) · V(d)

|V(q)| · |V(d)| (1.2)

73-grams is the best value to reduce matching ambiguity according to our experiments.



1 Beyond Geotagged Tweets: Exploring the Geolocalisation of Tweets for. . . 9

Table 1.2 Average error
distance and recall for
geolocation methods

AVG error distance (km) Recall (%)

POI 11.10 60.39

Text-based similarity 4.348 99.96

The IDF statistic ensures that rare words obtain high values whereas frequent
words will obtain low values. This way, the most discriminative words within a
spatial region are given a higher weight as they uniquely describe the area. The
output of this process is a list of geotagged tweets ranked by the similarity score.
Once the retrieval task is completed, the coordinates of the most similar geotagged
tweet (top-1 in the list) are returned as the predicted location for the non-geotagged
tweet.

1.4.1.3 Performance of Methods

Each of the two approaches described above has different levels of performance. We
experimented over separate ground truth of 131,273 geotagged tweets from Chicago
collected during March 2016 in order to evaluate the effectiveness of each approach.
The geotagged tweets are utilised to perform predictions and then to compare the
predicted location with the real location of the geotagged tweet. We utilised the first
3 weeks of our ground truth as a training set, and the last week as a testing set.

The following metrics are reported; Average Error distance (km), which is the
distance on Earth (Haversine formula [41]) between the predicted location and the
real coordinates of the tweet in our ground truth, and Recall: considered as the
fraction of tweets in the test set we can geolocalise regardless of the distance error.
Table 1.2 shows our experimental results. The “Text-Based Similarity” approach
clearly outperforms the “POI” in error distance (11.10–4.348 km) and recall, finding
a prediction for 99.96% of the evaluated tweets.

Additionally, we studied the distribution of the error produced by each of the
geolocalisation methods. Figure 1.1 presents the Error Distance percentiles. As can
be observed, the Text-Based Similarity approach (“Text-Based”) performs better
than the POI matching (“POI”) for 75% of the data, improving by 7.306 km
(11.378–4.072 km) the error with 50% of the geolocated tweets.

After evaluating both approaches in this way, we decided to utilise the Text-
Based Similarity approach to perform the geolocalisation of non-geotagged tweets
for the remainder of the analysis.

1.4.2 Application 1: Detection of Traffic Incidents

In this section we introduce our approach to identifying traffic-related tweets and
link them with the incidents available from the Bing data in space and time. Firstly,
we trained a text classifier using Naive Bayes algorithm to determine whether the
content of the tweets is traffic related or not. Then we link the incidents with traffic-
related tweets by its distance in space and time.
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Fig. 1.1 Error Distance percentiles for geolocalisation methods. The x-axis shows the percentile.
The y-axis shows the error distance

1.4.2.1 Finding Traffic-Related Tweets

As introduced before, the first task to tackle is to classify the tweets by its content,
obtaining those that contain traffic-related information. To this end, we trained a
Naive Bayes classifier, inspired by D’Andrea et al. [9], to determine whether the
content of the tweets is traffic related or not, i.e., whether it contains traffic-specific
words—such as car, crash, road, accident, etc. To this end, we collected a sample of
881 geotagged data from Chicago (March 2016) previously filtered by traffic-related
keywords, and manually annotated them to train our classifier. The traffic-related
keywords were selected manually following previous works and contain terms such
as “accident”, “car”, “crash”, etc. The annotation process resulted in 326 traffic-
related tweets and 524 non-traffic-related tweets. The final evaluation showed that
our model was able to correctly classify 81.45% of the tweets. The accuracy is
similar with that in earlier studies [18]. For instance, [18] successfully identifies
82% of the tweets and [18] achieved 90.5% of accuracy.

1.4.2.2 Linking with Incidents

In the linkage phase, traffic-related tweets are linked to traffic incidents that were
detected in the same period of time. Our linkage strategy is based on a spatio-
temporal matching criteria between tweets and incidents.
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• Space Matching: We created a bounding box around the starting and ending
locations of every incident. We considered 1–5 km range as our maximum
threshold distance for every bounding box.

• Time Matching: Every traffic-related tweet posted between the starting time and
the end time of the incident is considered.

1.4.3 Application 2: Exploring Spatial Patterns of Geotagged
Tweets and Geolocalised Tweets for Transportation
Planning Applications

We explore spatial patterns of geotagged tweets and geolocalised tweets, respec-
tively, by (1) correlating tweets with population and other characteristics and (2)
identifying spatial clusters of tweets. To properly associate tweets with population,
employment and other socioeconomic factors, we first select tweets posted on
workdays from both geotagged tweets and geolocalised tweets, and by removing
tweets of users who made less than 30 tweets during the month to ensure the
vast majority of tweets are likely to be made by local residents rather tourists. We
conduct exploratory analysis of how tweets georeferenced by the two approaches
differ according to locational and sociodemographic characteristics. By considering
background population we also use the ratio of tweets to residents to identify clus-
ters of high density tweets. Specifically, an improved AMOEBA (A Multidirectional
Optimum Ecotope-Based) algorithm developed by Duque et al. [12] is used to
identify clusters of high ratio of tweets to residents. Then we associate clusters
with local built-up characteristics such as land use type and main non-residential
buildings. As the residents and jobs data is available at the census tract level, we
correlate tweets with population at the census tract level, and calculate ratio of
tweets to residents at the census tract level.

1.4.3.1 Cluster Identification

As a spatially constrained clustering method, AMOEBA algorithm is applicable of
classifying a large number of areas and identification of irregularly shaped clusters.
Essentially, a region or ecotope is a spatially linked group of areas. A region can
thus be defined as a spatially contiguous set of areas. The value of the Gi statistic is
used to measure the level of clustering of an attribute x around an area. Suppose we
run AMOEBA on a study region with N areas and an attribute x with elements xi ,
indicating the value of x at area i. Let us denote this set of areas as M , and x and S

as the mean and the standard deviation of the attribute x and let R be a subregion of
M with n areas. Duque et al. [12] rewrite the formulation of GR as follows:
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GR =
∑

i∈R xi − nx

S

√
Nn−n2

N−1

(1.3)

Accordingly, a positive (negative) and statistically significant value of Gi

statistic indicates the presence of a cluster of high (low) values of attribute x

around area i. Thus, AMOEBA identifies high-valued, or low-valued, ecotopes
(regions) by looking for subsets of spatially connected areas with a high absolute
value of the Gi statistic. There is only one parameter, i.e., the significance level
threshold, that is required to run the AMOEBA algorithm. The significance level
threshold was set to 0.01, meaning only clusters with a p-value less than 0.01
are considered. AMOEBA is implemented using the ClusterPy Python library of
spatially constrained clustering algorithms.8

1.5 Results

In this paper, the study region is the Chicago Metropolitan region, including City
of Chicago, with some areas in Illinois and a few others in Indiana. We first
show the geolocalisation results (see Sect. 1.4.1). Then we present the experimental
results of traffic incident detection by using geotagged tweets and geolocated tweets
(Sect. 1.4.2). The results of the spatial patterns of geotagged tweets and geolocated
tweets are then given in Sect. 1.4.3.

1.5.1 Geotagged Tweets and Geolocalised Tweets

We first collected 283,948 geotagged tweets within the study region for July
2016. By using the Text-Based Similarity geolocalised method aforementioned,
we retrieved 1,747,938 geolocated tweets within the study region for July 2016.
Furthermore, the Text Naive Bayes classifier method identified 2865 and 31,938
traffic-related tweets from the geotagged tweets and geolocated tweets, respectively.
In total, there are 2,031,886 georeferenced tweets (geotagged + geolocalised). Of
them 34,803 are traffic-related. Geolocalisation greatly increases the number of
georeferenced tweets and also fine-grained traffic-related tweets (Table 1.3).

We also observed the spatial distribution of geotagged and geolocated tweets. As
can be seen in Fig. 1.2, geolocated tweets are more heterogeneously distributed over
the region than the geotagged tweets, which are more concentrated in CBD area of
the City of Chicago and to the Near North part of the city. There are some other
areas such as in the northern suburbs where also we see groupings of geotagged

8www.rise-group.org/risem/clusterpy.

www.rise-group.org/risem/clusterpy
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Table 1.3 Statistics on
georeferenced tweets and
traffic-related tweets

Total tweets Traffic related

Geotagged tweets 283,948 2865

Geolocated tweets 1,747,938 31,938

Total georeferenced tweets 2,031,886 34,803

Fig. 1.2 Heatmaps of all geotagged tweets and all geolocalised tweets (Heatmaps are created by
using Kernel Density Function)

tweets. The geolocalised tweets, on the other hand, can also be prominently seen in
many areas in the western and southern parts of the metropolitan area where there
is little geotagged activity, giving strong evidence that twitter activity in these areas
is not non-existent—they may simply not be geotagged.

1.5.2 Application 1: Detection of Traffic Incidents

Figure 1.3 shows the incident detection rate for geotagged, geolocated and the
combination of geotagged and geolocated Twitter data. We compared the percentage
of incidents covered by when utilising different spatial ranges. As it can be seen, the
number of detected incidents is significantly increased when utilising geolocalising
methods. The percentage of incidents detected when adding extra geolocated tweets
to the geotagged data also improves: increase of 7.72% within 1 km distance
(6.53–14.25%) to 33.85% of increase within 5 km of distance (17.93–51.79%). As
expected, the detection rate increases rapidly along with the spatial radius. This is
due not only to the larger area covered but also by the number of tweets geolocated
at a fine-grained level and nearby to its real location. The geolocation methods
evaluation showed that the mean distance error for the Text-Based Similarity
approach is 4.346 km.
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Fig. 1.3 Incident detection rate at different distances for Geotagged data, Geolocated data and
aggregated (Geotagged + Geolocated). The y-axis shows the incident rate (%) while the x-axis
shows the distance threshold in kilometres between the tweet and the incident

Additionally, we also discovered tweets that are potentially reporting traffic
incidents in areas that are not reported by other data sources such as Bing. Heatmaps
of geotagged traffic-related tweets and geolocalised traffic-related tweets that could
not be linked to Bing traffic incidents are presented in Fig. 1.4, from where the
location of these unlinked incidents not covered by our incident dataset can be
seen. One simple explanation is that these are locations of where people tweeted
about the incident from, not the actual location of the incident—and hence further
investigation is merited—although the level of clustering of these unlinked incidents
points to this spatio-temporal asymmetry being only part of the explanation. A
second possible explanation is that the Bing traffic incident dataset only contains
motorised traffic incidents that occur in expressways and the major arterial roads,
whereas Twitter conversation in the unlinked tweets is about more minor incidents in
more local roads. It is also well known the incidents and crashes in many deprived
Environmental Justice areas in particular are significantly underreported [6], and
the heatmaps of geolocalised unlinked tweets in Fig. 1.4 certainly indicate activity
in such EJ areas in the City of Chicago. While further analysis is merited, it is
possible to hypothesise at this stage that traffic-related content in Twitter data covers
a larger area and, therefore, incidents that are not covered by traditional detection
infrastructure.



1 Beyond Geotagged Tweets: Exploring the Geolocalisation of Tweets for. . . 15

Fig. 1.4 Heatmaps of geotagged traffic-related tweets and geolocated traffic-related tweets not
linked to Bing traffic incidents (Heatmaps are created by using Kernel Density Function)

Table 1.4 Correlations of tweets and residents or jobs

Correlations

Variable #Geotagged tweets #Geolocated tweets

Number of residents 0.11 0.09

Number of jobs 0.91 0.35

1.5.3 Application 2: Spatial Patterns of Geotagged Tweets
and Geolocalised Tweets

We use Pearson’s correlation coefficient to measure the correlations of numbers
of residents and jobs with numbers of geotagged and geolocalised tweets, shown
in Table 1.4. The number of geotagged tweets is more strongly correlated to
the number of jobs than the number of geolocalised tweets. This indicates that
geotagged tweets are spatially associated with workplaces where there may be better
access to the Internet and where working populations spend most of the time during
the day, and are more easily to post tweets.

t-Tests given in Table 1.5 further confirm that census tracts with higher numbers
of jobs have a statistically higher number of geotagged tweets compared to
tracts with lower number of jobs. The same trend can generally be seen for the
geolocalised tweets. In contrast, whereas tracts with lower levels of residential
population density have a statistically higher average number of geotagged tweets,
compared to areas with higher levels of population density, this is not the case for
geolocalised tweets. This implies that geolocalised tweets are more likely to be
evenly spread across high and low levels of population density levels giving a more
even representation of underlying activity patterns.
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Fig. 1.5 Clusters of high ratio of tweets to residents for geotagged data and geolocated data
respectively

The smoothing of the density of tweets by geolocalisation across the metropolitan
area can be visualised by considering clustering of geotagged versus geolocalised
tweets. The AMOEBA algorithm identifies statistically significant clusters of high
value and clusters of low value. Figure 1.5 shows the maps of the cluster of
high ratio of tweets to residents (RTR). In these maps, clusters of high value and
low value represent cluster of high RTR and low RTR, respectively. We further
associate clusters of high RTR with local built-up characteristics such as main non-
residential buildings by overlapping the clusters and basemap such as GoogleMap
and OpenStreetMap. Accordingly, clusters of high RTR for geotagged tweets mainly
surround airports, shopping malls and institutions including universities, colleges
and schools; whilst clusters of high RTR for geolocated tweets mainly surround
not only major transportation hubs and institutions but also stadiums and sporting
venues, as well as purely residential areas scattered throughout the metro area. This
implies that compared to geotagged tweets, geolocated tweets have a larger portion
that is related to all types of activities, not only to social and work activity locations
as in the case of geotagged tweets.
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Table 1.5 t-Statistics on geotagged and geolocalised tweets by socioeconomic factors

Means

Factor Geotagged t Geolocalised t

Jobs = Low 12.86 4.78∗ 181.1 4.70∗

Jobs = High 69.92 659.3

Pop. Sq. Mile = Low 48.23 −1.98∗∗ 416 0.13

Pop. Sq. Mile = High 27.58 429.4

EJ = No 56.86 5.20∗ 481.1 0.82

EJ = Yes 16.09 376.6

Young = Low 43.61 −0.75 428.4 −0.24

Young = High 36.67 403
∗Significant at 0.01
∗∗Significant at 0.05

The lowered levels of representativeness of the geotagged tweets compared to
the geolocalised tweets can be seen further when we consider EJ areas, which
as discussed previously represent areas with high presence of low-income and
minority populations. We followed the definition of EJ areas given in Cottrill and
Thakuriah [6]. Due to issues of digital divide, it may be expected that the level
of social media activity is potentially lower in EJ areas. Table 1.5 also shows that
the number of both geotagged and geolocalised tweets is not significantly different
in areas with a high levels of young people (less than 30 years of age). However,
these differences are reduced with the geolocalisation, as the numbers of tweets
geolocated in EJ areas increase in relation to the numbers for non-EJ areas. This is
a useful development towards using Twitter data in transportation planning because
geolocalisation enhances access to social media activity in these deprived areas,
which would otherwise be quite masked if using geotagged data only.

Finally, Table 1.5 also shows that the number of both geotagged and geolocalised
tweets is not significantly different in areas with a high levels of young people (less
than 30 years of age). In the case of both types of Twitter localisation, areas with
lower numbers of young people as resident populations have higher levels of Twitter
activity. This is in the direction of the findings by Sloan et al. [46]) mentioned in
Sect. 1.2.

1.6 Conclusions

The major motivation of this paper was to evaluate benefits of enhanced geolocal-
isation of Twitter data. We demonstrated that combining geolocalised tweets and
geotagged tweets enables a higher degree of performance in detection of traffic
incidents than using geotagged tweets alone. Geolocalisation of tweets enables
detection of more traffic incidents although the occurrence locations might be not
as accurate as using geotagged tweets alone. Although further analysis is warranted,
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we found geolocalised incidents not available in the incident records, particularly in
areas where there has been historically underreporting of road crashes and incidents.
We also found that using geolocalised tweets allows discovery of social media
activity throughout the metropolitan area, including deprived EJ areas. Enhanced
geolocalisation therefore makes Twitter data better suited to transportation planning
applications due to a higher degree of representativeness of a larger set of activity
and area characteristics, in contrast to what is available from the publicly available
geotagged data.

The approach used in the paper has several limitations that merit future con-
sideration. First, we only use tweets for 1 month as experimental data. There are
potential biases and issues of seasonality and sparsity. Second, we take account
of only one traffic event: traffic incidents. Other types of traffic events including
road congestion and transit delay are also of concern in transportation planning and
operations. Third, the approach used for the detection of traffic incidents in this
study is simple and subject to historical ground-truth data. In the detection method,
spatio-temporal ranges used to detect traffic incidents centre known traffic incidents,
although as shown, georeferenced tweets might indicate some traffic events that
not covered by the ground-truth data used. Fourth, the mean distance error for the
geolocalisation method is 4–5 km, street-level usage of geolocated tweets is at high
risk of placement error. More caution is required when using geolocated tweets in
large-scale applications. Aggregate geolocated tweets into geographic areas such as
census tracts would increase influence of tweets’ locational errors on transportation
planning applications. Finally, the comparison with socioeconomic patterns utilises
spatially aggregated census and other data at the level census tracts, due to which a
true comparison of the validity of the precise geolocalisation was not possible.

Future research will involve collecting a larger set of tweets for a longer time
periods such as a few months to repeat the experiments in this study to evaluate
sensitivity of the approach. Second, this study is an exploratory analysis dedicated
to evaluating the benefit of enhanced geolocalisation in the detection of traffic events
and socioeconomic patterns. Future work will also involve comparing detection of
different types of traffic events to understand spatial, temporal and content coverage
of geolocated tweets for different types of traffic-related information. For example,
there is a need for modelling approaches to detect events independent of spatio-
temporal ranges of known traffic incidents. This might be useful in detection of
very small-scale historical or real-time traffic incidents from tweets. Finally, much
analysis is needed to evaluate the benefit of using different types of geolocalised
data in inferring changing socioeconomic patterns in various parts of the city with
difference characteristics.
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Chapter 2
Social Media in Transportation Research
and Promising Applications

Zhenhua Zhang and Qing He

2.1 Social Media Explosion

Recent years have witnessed the newly emerging techs of social media in shaping
our lives. The evolution of Information and Communication Technology (ICT)
comes with the increasing coverage of smartphone and other mobile devices. Such
ICT-based technologies allow individuals, companies, NGOs, governments, and
other organizations to view, create, and share information, ideas, and career interests
[1]. Social media exists in different forms including the traditional news, media, or
websites and has evolved with the transformation of communication technologies.
Social media, a kind of “We Media,” converts the traditional one-directional
news feed from large media organizations to the individuals, into bidirectional
information sharing where everyone becomes a news center. Researchers can thus
acquire the wide-range information from the massive majority of people. The
well-known social media websites include Facebook, WeChat, Tumblr, Instagram,
Twitter, Baidu Tieba, Pinterest, LinkedIn, Google+, YouTube, Viber, and Snapchat.
These social media tools and websites bring promising applications using social
media to solve transportation problems.

The explosion and popularity of social media can be manifested by the monthly
active users acquired from DMR websites [2] and Statista.com (Table 2.1).

Social media technologies take many different forms including blogs, business
networks, enterprise social networks, forums, microblogs, photo sharing, prod-
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Table 2.1 Basic statistics of
some well-known social
media

Social media name Monthly active users (M) Release date

Facebook 1650 (3/31/2016) 2004
WeChat 700 (4/31/2016) 2011
Tumblr 555 (9/1/2016) 2007
Instagram 500 (6/21/2016) 2010
Twitter 310 (5/1/2016) 2006
Baidu Tieba 657 (2/5/2016) 2003
Pinterest 100 (9/18/2015)a 2010
LinkedIn 106 (4/28/2016) 2002
Google+ 540 (2/1/2016) 2011
YouTube 1000 (4/21/2014) 2005

aThis is the total number of Pinterest users

ucts/services review, social bookmarking, social gaming, social networks, video
sharing, and virtual worlds [3]. Each has its own specialized focus. For instance,
Twitter and Sina Weibo focus on sharing short message streams; LinkedIn is
mainly for business networks and career purposes; Square shares the dining and
recreational places; Baidu Tieba is built on the forum website and focuses on various
social topics; Wikipedia is a knowledge-sharing website; Facebook builds a general
platform for social networks and a wide range of online applications. Table 2.2
summarizes the focuses of social media and the representative social media websites
and tools in North America. The focuses are subject to change and involve with
times passing by, and new forms of social media are coming forth continuously [4].

Despite the different types of social media, social media has common features
which make them useful for transportation applications. The first one is a social
reflection in which social media reflects the social events such as traffic accident
studies, traffic jam, etc. The second feature is that data collection from social media
is usually cheaper than traditional data acquisition, and some of the companies
provide open API for the purpose. The third feature is that social media usually
have multi-topics and this will potentially broaden the horizon of the transportation-
related studies. Table 2.3 listed parts of the applications on social media, and more
related studies are still undergoing.

Information from Twitter may be biased, and the representativeness of the Twitter
users can reveal some important details of certain groups of people. Although we
cannot directly interview the Twitter users in our collected datasets, there is still
some open survey or investigation estimating their demographics. Table 2.4 lists
education, age, gender, and income distributions of Twitter users from comScore
[36], Pew Research Center [37], and statista.com [38, 39].

This chapter will exemplify the promising transportation-related applications of
social media in two categories. The first category of studies is built on the location
and time data from social media and explores features of human mobility, travel
behavior, etc., under certain circumstances; the second category mainly focuses
on the text interpretation and employs the state-of-the-art language modeling
techniques to extract useful transportation-related information.

http://statista.com
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Table 2.2 Focuses of social media and their representatives

Focus Social media website and tool

Live casting Actors Access, Backstage, Actors Equity Casting
Call, Playbill, SAG Indie, Now Casting, Casting
Networks, NYCastings.com, Mandy.com,
Craigslist

Virtual world ourWorld, Wizard 101, Woozworld, Virtual
Families, Second Life, IMVU, Habbo Hotel,
Smeet, Meez, SmallWorlds

Wiki Wikipedia, Wikitravel, wikiHow, Wikibooks,
CookBookWik, WikiSummaries, wikimapia,
Wiktionary, Uncyclopedia, ProductWiki,
LyricWiki, Wikicars

Music Pandora, Yahoo! Music, Google Play,
SoundCloud, Spotify, MySpace, TuneIn, Last.fm,
iHeart, AllMusic, Jango, Radio, Songza, Live365,
Slacker

Event sharing Beadwork, Folio, Forbes, HOW, Dwell, Farm
Progress, WineMaker, Entrepreneur, Wired

Document sharing ISSUE, SlideShare, Scribd, Box.net, DocStock,
Calameo, Zoho, Keep and Share, Free eBooks,
4shared, Author Stream, Wattpad, YUDU, Wuala,
Div Share, ADrive

CRM (customer relationship management) Salesforce, Microsoft Dynamics CRM, Oracle
Sales Cloud, SugarCRM, Workbooks CRM,
Insightly, Nimble, Zoho CRM, NetSuite CRM,
Veeva CRM

Video YouTube, Vimeo, Yahoo! Screen, Dailymotion,
Hulu, Vube, Twitch, LiveLeak, Vine, Ustream,
Break, TV.com, Metacafe

Reviews and ratings Amazon Customer Reviews, Angie’s List,
Choice, Trustpilot, TestFreaks, Which?,
ConsumerReports, TripAdvisor, Yelp, Google My
Business, Yahoo! Local Listings, G2 Crowd,
TrustRadius, Salesforce AppExchange, Better
Business Bureau, Glassdoor

Business relationships AngelList, Beyond, Black Business Women
Online, Data.com Connect, E.Factor, Gadball,
Gust, LinkedIn, Meetup, Networking for
Professionals, Opportunity, PartnerUp,
PerfectBusiness, Plaxo, Quibb, Ryze,
StartupNation, Upspring, Viadeo

Dashboards toutapp, Lancaster Bingo Company, A flat design
dashboard, Yet more flat design, fitbit, Patient
records, Sprout Social, Nektar Dashboard, Wufoo,
Dashboard Analytics, Cranium Dashboard, Start
Admin, Fox Metrics

(continued)
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Table 2.2 (continued)

Focus Social media website and tool

General networking Facebook, Hi5, myspace.com, renren, Bebo, PerfSpot
Discussion boards and forums phpBB, Simple Machines Forum, ZetaBoards, bbPress,

Vanilla Forums, PunBB, fluxBB, PlushForums, Phorum,
MyBB, miniBB

DIY and custom Ana-White.com, Shanty-2-Chic, Jay’s Custom Creations,
ArtofManliness.com, Instructables

Blogs Blog.com, Blogger.com, Medium.com, Penzu.com,
Squarespace.com, Svbtle.com, Tumblr.com, Webs.com,
Weebly.com, Wix.com, WordPress.com

Microblog Twitter, Friend Feed, Tumblr, Plurk, Pinterest, Flattr, Dipity,
Yammer, MeetMe, Plerb

(Q&A) Questions and answers Quora, Mind the Book, Amazon’s askville, Yahoo! Answers,
Stack Overflow, Super User, LinkedIn Answers,
Answers.com, Hacker News’ Ask Section, LawPivot

Social commerce Pinterest, Shopee, Lyst, Soldsie, Kickstarter
Pictures Instagram, Imgur, Flickr, Photobucket, DeviantArt,

Shutterfly, TinyPic, WeHeartIt, ImageShack, ImageVenue,
SmugMug

2.2 Applications Based on Social Media

2.2.1 Traffic Event Detection

As tweets are able to describe what is happening on the scene site and the tweeting
locations may be quite near the scene site, the tweet content analysis is usually the
priority in most of the studies. Over the past decades, the online texts posted by
social media have been validated useful to broadcast major events such as natural
disasters [14, 40], bird flu [41], politic events [42], etc. The traffic event detection
also arouses increasing attentions: Mai et al. [43] compared incident records with
Twitter messages and proved the potentials of Twitter as a supplemental traffic
measurement. Schulz et al. [16] used microblogs to detect the small-scale incidents.
Gal-Tzur et al. [44] conducted a corridor study on the correlation between a tweet
and traffic jam. Gu et al. [45] combined the data sources from Twitter, incident
records, HERE, etc., and employed the Naïve-Bayes classification to detect five
major incident types. D’Andrea et al. [46] compared accuracies and precisions
of different regression models including Naïve-Bayes, Support Vector Machine,
Artificial Neural Network, Decision Tree in detecting traffic incidents from Twitter
stream. Our preliminary examinations also demonstrate the potential of Twitter in
delivering the accident-related information (Table 2.5).

To automatically detect events from social media, there are several challenges to
be addressed. Taking traffic accident detection as an example: First, as compared
to events that arouse enormous public attentions such as sporting games, extreme
weathers, or traditional festivals, the influence of traffic accidents is comparable

http://myspace.com
http://ana-white.com
http://artofmanliness.com
http://blog.com
http://blogger.com
http://medium.com
http://penzu.com
http://squarespace.com
http://svbtle.com
http://tumblr.com
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http://weebly.com
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http://wordpress.com
http://answers.com
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Table 2.3 Part of recent transportation applications on social media

Application Author and year Social media

Travel information
retrieval

Xiang and Gretzel [5] Google search, Twitter
Ueno et al. [6] Twitter
Evans-Cowley and Griffin [7] Twitter
Lee et al. [8] Twitter
Lin et al. [9] Twitter
Sadri et al. [10] Twitter
Chen [11–13] Brightkite

Social event detection,
Traffic incident
detection

Sakaki et al. [14] Twitter
Krstajic et al. [15] Twitter
Schulz et al. [16] Twitter
Zhang et al. [17] Twitter
Sadri et al. [18] Twitter

Disaster relief Gao et al. [19] Ushahidi
Ukkusuri et al. [20] Twitter
Sadri et al. [21] Twitter
Kryvasheyeu et al. [22, 23] Twitter
Sadri et al. [24, 25] Twitter

Traveler behavior,
travel pattern

Hasan et al. [26] Twitter, Foursquare
Hasan et al. [27, 28] Twitter
Wall et al. [29] Facebook

Transportation planning
Transportation
policy-making,
commercial service,
transit management

Camay et al. [30] Facebook, Twitter, Flickr, etc.
Stambaugh [31] Facebook, Twitter, YouTube, etc.
Gelernter et al. [32] Twitter
Pender et al. [33] Facebook, Twitter
Chan and Schofer [34] Twitter
Gelernter et al. [32] Twitter
Ni et al. [35] Twitter

to a “midget” [9, 47]. From our observations, accident-related tweets are in small
quantity. What’s more, most of them are confined to a small area and limited to
a relatively short time interval, and some researchers call them small-scale events
[16]. Second, the texts online are inherently complex and unstructured. The common
methods for detecting the traffic-related events include Support Vector Machine [16,
46], natural language processing [48, 49], etc., which explore the semantic features
in key words. However, as the context of a tweet is limited to 140 words and the
tweet contents try to be concise, key word detection is sometimes not sufficient for
accurate automatic language processing.

The common techniques to overcome these challenges are to disintegrate the
tweet sentences into a bag of words first, then select the proper features to construct
a structured database, and finally employs a classification model to properly identify
the tweets.
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Table 2.4 Demographics of Twitter users

Attribute Source

Education

Pew
Research
Center

Less than
high
school High school

Trade or
some
college

Bachelor’s
degree Graduate school

6% 16% 39% 21% 18%
Age Statista.com 18–24 25–34 35–44 45–54 55+

18.20% 22.20% 20% 16.70% 22.90%
Gender Statista.com Male Female

48% 52%
Income United

States
Census
Bureau &
Pew
Research
Center

0–30 K 30–50 K 50–75 k 75 K+

23.15% 8.35% 13.51% 54.98%

Table 2.5 Tweet samples describing the general traffic information, general traffic incident, and
road accident, respectively

General information “I am waiting at the silver line, exciting”
“Always hate the signals ahead of the hip-hop, making me sick”

General incident “standstill for 1 hour, there must be accidents in front”
“this is typical NOVA traffic, what a bad day”

Traffic accident “major accident next to the sunoco near the parkway a car got
flipped over”
“the worst car accident possible just happened in front of me”

2.2.1.1 Step 1 Database Construction

The raw tweet data need to be preprocessed to constitute a database that can be used
for further analysis. Usually, the accident-related tweets should contain one or more
key words such as “accident” or “crash.” However, there has been no consensus
on such a vocabulary of the accident-related words. Thus, we turn to the traditional
news media and collect about 100 articles of news that discuss the traffic accident. In
all these articles, we select the words that appear the most frequently. The frequency
of a word is the times that a specific word appears in these articles. These accident-
related words include “police, accident, traffic, crash, road, car, vehicle, highway,
driver, county, injured, pm, state, injuries, scene, hospital, according, people, died,
near, patrol, morning, happened, dead, taken, just, driving, department, involved,
vehicles, south, passenger, hit, truck, north, monday, left, lanes, lane, killed, struck,
southbound, area, closed, investigation.”. By applying a filter based on these key
words, we can obtain a large quantity of potential tweets. On these tweets, we looped
the following procedures to filter out the non-accident-related tweets and obtain the
related words:

http://statista.com
http://statista.com
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Stemmed tokens:
see traffic accid route ……  

saw see accident accidents 

traffic  route ……

Tweet database:
1: I saw a traffic accident in front.

2: Car damage on Route 1.

……

Tokens:
i saw a traffic in accident front

car damage on route 1

……

Tokenization

Stop-word 
filtering

Tokens:
I  saw   a   traffic  in  accident  front

car  damage  on  route 1……  

Stemming

Fig. 2.1 Steps of token filtering and stemming

• Randomly select tweets from the filtered tweets.
• Manually label them whether they are accident-related.
• Extract the most frequent words in accident-related tweets.
• Filter the tweets based on the frequent words.

We finally extracted more than 900 labeled tweets from the New York Metropoli-
tan Area and North Virginia and also paired over 1800 non-accident-related tweets
with the accident-related ones to constitute a database. Each tweet post needs to be
preprocessed following the procedure in Fig. 2.1. The stop-word list we used refers
to Ranks-NL [50]. After the procedure, the tweets are disintegrated into more than
20,000 tokens.

2.2.1.2 Step 2 Feature Selection

The phi coefficient [51] can be employed to calculate the correlation between the
tokens and the manual label shown in Eq. (2.1). Those tokens whose �φ� is higher
than 0.1 are selected and part of them are shown in Fig. 2.2.

φ = n11n00 − n10n01√
n1∗n0∗n∗0n∗1

(2.1)

where all notations are defined in the following table, x and y denote the manual
label and label feature, respectively.

y = 1 y = 0 Total

x = 1 n11 n10 n1∗
x = 0 n01 n00 n0∗
Total n∗1 n∗0 n
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Fig. 2.2 Correlations between the manual label and the individual stemmed tokens. To make it
easy to read, we write the basic form of the word instead of the stemmed token

Following this rule, 27 tokens are selected. Some of the tokens may be accounted
by the geographic uniqueness such as “66,” “95,” and “495,” indicating the route
number where traffic accidents occur. Some may be directly topic-related words
including “traffic,” “car,” “accident,” etc. Other words such as “damage” and
“tailgate” are too general in our daily life and thus provide negative indicators in
describing the traffic accident.

Features from individual tokens are sometimes not sufficient because these
emphasize solely the correlations between the label and tokens and may overlook the
associations within the tokens. One can further extract paired token features using
the Apriori algorithm [52, 53] which finds the regularities in large-scale binary data
by two major probabilities: support and confidence.

supp
(
tj
) = size of

({
Ti, tj⊆Ti

})

size of ({Ti}) (2.2)

supp
(
tj1 ∩ tj2 ∩ . . . · · · ∩ tjm

) = size of
({

Ti, tj1 ∩ tj2 ∩ . . . · · · ∩ tjm⊆Ti

})

size of ({Ti}) (2.3)

When support is equal to 0.01 and confidence is equal to 0.1, we can find 36
token pairs listed in Table 2.6.

2.2.1.3 Step 3 Classification Model

An effective language modeling method is necessary to extract the useful accident-
related information from tweets. In this example, we employ Deep Neural Network
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Table 2.6 Paired tokens selected by the Apriori algorithm

accident block car get i crash car
damage brain i get just car get
car with accident get just accident get
tailgate game tailgate i i car get
car saw damage just accident car get
accident lane car just i accident get
accident traffic i just i just car
damage do accident just just accident car
i do damage i i just accident
i roll car i i accident car
car crash accident car
i crash accident i
just get accident lane

(DNN), one of the simplest forms of Deep Learning, in training and classifying the
accident-related tweets. DBN consists of densely connected layers, and each layer
has a few neurons that represent the activation function. There exist links between
neurons from different levels of layers while there is no link between neurons in the
same level of layers. Connections between neurons in the same layer may not be
practical and have scalability issues. Thus, the DBN in this chapter is also known
as Restricted Boltzmann Machine (RBM). The neural functions and basic structure
are shown in Fig. 2.3. In a 2-layer neural network, the input is the token features
while the output is the manual label. The 2-layer neural network resembles the
Artificial Neural Network, similar to that of the Support Vector Machine or logistic
regression in which the output value is the direct computation of the input features.
In a multilayer neural network, however, the input features are first converted into
hidden features as shown in Fig. 2.3b and then the hidden layers finally calculate
the corresponding output.

In Fig. 2.3a, the number of categories that a neuron can output is equal to the
number of neurons in the upper level. The relationship between the input and the
output can be written as Eq. (2.4):

bi = g
(
fj,i

(
Wj,i, aj

)) = g

⎛

⎝
∑

j

Wj,iaj

⎞

⎠ (2.4)

where aj is a vector for the jth input token feature; bi is the output; Wj, i is the
conversion parameter matrix to be estimated; g() is the activation function and can
be changed in different levels of neurons. Here we employ the softmax function
shown in Eq. (2.5):

g
(
fj,i

) = efj,i

∑
i efj,i

(2.5)
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Input function:

……

Output: 

……

Activation function: 

(a) 
(b) 

Output layer

Hidden layer

Input layer

Fig. 2.3 (a) Example of a single neuron. Wj, i denotes the transition matrix. (b) Structures of 4-
layer neural networks

For the output layer, with an initial estimate of Wj, i, one can calculate the square
error between the true label and the estimated label as shown in Eq. (2.6). Thus, the
regression problem can be converted into an optimization problem in which one can
find the best Wj, i to minimize the square error δ2, or diminish the changes of δ2 until
∇(δ2) smaller than a threshold value by a gradient method or the Newton–Raphson
method [54].

δ2 = 1

2

∑

i

(yi − bi)
2 (2.6)

The gradient method is an iterative approach that each cycle finds a descent
direction and update the Wj, i by a step size. The descent direction can be
calculated as

∂
(
δ2
)

∂Wj,i

=
∑

i

⎛

⎝yi − gi

⎛

⎝
∑

j

Wj,iaj

⎞

⎠

⎞

⎠ • ∂

∂Wj,i

⎛

⎝yi − gi

⎛

⎝
∑

j

Wj,iaj

⎞

⎠

⎞

⎠ =
∑

i

−eig
′
iaj

)

(2.7)

where ei = yi −g
(∑

j Wj,iaj

)
is the difference between the predicted label and

true label; the Wj, i can be updated according to the perceptron learning rule [55]:
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Wj,i
t+1 = Wj,i

t + α
∂
(
δ2
)

∂Wj,i

= Wj,i
t + α

∑

i

eig
′
iaj (2.8)

where α is a scale parameter to be decided and t indicates the iteration cycle. W
between other layers can be updated in the same way. For the hidden layer, we
can update the corresponding Wl, k or Wk, j by the error from the output layer. The
algorithm employed is called back-propagation. The process of back-propagation
can be generalized as follows: When the features are placed in the input layer, the
effects of the input features are propagated forward through the layer structure, layer
by layer until reaching the output layer. By comparing with the true label, using the
error function in Eq. (2.6), the error values are then propagated backward, updating
the conversion matrix as shown in Eq. (2.9).

∂
(
δ2
)

∂Wk,j

=
∑

i

−
⎛

⎝yi − gi

⎛

⎝
∑

j

Wj,iaj

⎞

⎠

⎞

⎠ • ∂

∂Wk,j

⎛

⎝gi

⎛

⎝
∑

j

Wj,iaj

⎞

⎠

⎞

⎠

=
∑

i

−eig
′
iWj,ig

′
j ak (2.9)

2.3 Result

By setting the confidence to be 0.8 for feature selection of paired tokens, there will
be 17 paired token features and totally 16 individual tokens in the paired token
features. We can finally obtain good regression results combining these paired token
features and the individual token features. From Fig. 2.4, when we set the φ to be
0.2, there are only 4 qualified individual token features and the accuracy can be
around 0.8. Higher φ may result into a simpler model but relatively less accuracy,
while lower φ improves the performance but may cause overfitting. Thus, one may
seek a balanced model in the future applications. It is worth mentioning that the
number of neurons in the second and third layers is 10 and 5, respectively. Our
examinations show that by changing the number of neurons in two layers, the
computing time may be influenced but the accuracy is almost unchanged.

Using Deep Learning methods, one can automatically classify the tweets to
acquire a very high accuracy. The accident detection based on social media, espe-
cially tweets, is meaningful to the traffic management and potentially complements
the current accident detection. The comparisons between the accident-related tweets
with both the traffic accident log and loop-detector data indicate some merits of
tweets: From this example, it is found that nearly 30% of the accident-related tweets
can be located by the accident log and more than 80% of them can be related to
abnormal traffic data [56].
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Fig. 2.4 Regression results of DBN with selected individual and paired tokens under different
thresholds of correlation coefficient φ

Fig. 2.5 Coverage of tweets in North Virginia and the State of California in 2014. Each point
represents a 100 m2 area

2.3.1 Human Mobility Exploration

Some of the famous social media tools or websites are so popular that they have
high coverage over the geographic span. Figure 2.5 shows the coverage of Twitter
in North Virginia and the State of California in the whole year of 2014. Thousands,
even millions, of tweets assemble in almost all densely populated areas.

For human mobility studies based on Twitter, the displacements generated by
Twitter have several advantages: First, in recent years, more and more users prefer
to tweet on mobile devices instead of on PCs [57]. The geo-location and time
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information of Twitter and its popularity among people make possible the retrieval
of wide-range displacement information from the broad masses of people in a timely
manner. Second, the resolution of the traditional data is not as high as that of Twitter.
For instance, the banknotes [58] are usually used to trace the interstate or intercity
travel and the corresponding time gaps are usually more than days. Popular data
sources from cell phones [59] which can access a more frequent mobility data but
the geo-precision is in kilometers because the average service area of each mobile
tower is approximately 3 km2 [60].

One can take each Twitter user u as a reliable data source and his tweets as a
spatial-temporal text database: U = [U1, U2, . . . , Ui, . . . ]. Ui represents ith text
entry in the database: Ui = [Di, Li, Ti] where Di is the tweet content; Li is the
location information of latitude and longitude, together with the label the Census
Designated Place (CDP); Ti is the time. The displacement between two time-
sequential locations can be calculated as |Li, Lj|, where | | calculates the map
distance. Given an Ui, its corresponding sequential displacements over a certain
time period can be calculated as shown in Eq. (2.10):

SW
i =

[∣
∣Li,Lj

∣
∣ : WE ≥ T j − Ti ≥ WS

]
(2.10)

where WE and WS are the ending and starting time of the time window W. Lj and Tj

refer to all the locations and timestamps of the Twitter user. Thus, SW
i can be taken

as the domain of all displacements which start from Li and end after a certain time
interval between WE and WS; and all the tweet contents that are posted during these
displacements can be notated in Eq. (2.11):

DW
i =

[
Dj : WE ≥ T j − Ti ≥ WS

]
(2.11)

For each Ui, its longest displacement during W can be notated as the featured
displacement of Ui: SW

i = max
(
SW

i

)
and the domain of SW

i is notated as
SW = dom

(
SW

i

)
which is the collection of all featured displacements of the

Twitter user. The corresponding Ui of a featured displacement can be notated as
UW

i = [
DW

i , LW
i , T W

i

]
where LW

i and T W
i are the featured (longest) Li and Ti

within time window W; and the domain of UW
i is noted as UW = dom

(
UW

i

)
. Here

we define the mobility patterns of a Twitter user as MW = domain
(
MW

i

)
where

MW
i =

[
SW

i , Li, L
W
i , Ti, T

W
i

]
(2.12)

From Eq. (2.12), the mobility pattern of each user can be characterized by trip
displacements, times, and locations. According to our methods, there may exist
more than one Ui corresponding to the same UC

i as the Twitter users may tweet
more than one time during a time window W. Thus, for a set of [MW

i ] that has the
same LW

i , we only keep one MW
i whose T W

i −Ti is the largest. This filtering process
can reserve all destinations of the trip displacements instead of all origins for further
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Fig. 2.6 (a) Histogram of the displacements over 1-h time window of all Twitter users in this
study; the time distribution of the displacements (b) lower than 100 m and (c) higher than 10,000 m;
the day-of-week distribution of the displacements (d) lower than 100 m and (e) higher than
10,000 m

study. After this process, there will not be any two mobility patterns:
[
MW

i ,MW
j

]

in which Ti ≥ Tj and T W
i ≤ T W

j . The mobility patterns can cover all the possible
destinations of the Twitter users together with its corresponding displacement over
a certain time window.

Our empirical examinations even find the consecutive hourly displacements for
more than 400 Twitter users. The distribution of displacements of all Twitter users
in our study may capture not only uniformed decay characteristics of displacement
frequency but also a population-based heterogeneity as shown in Fig. 2.6.

We can see that an ever-dominant portion of displacements lower than 100 m
which accounts for about 74% of all displacement records. Besides, unlike the
cell phones or bank notes, Twitter is sometimes an entertainment tool more than
a necessary communication media, and the Twitter records with no arrangements
may be much more common. Consequently, Twitter can capture an extremely larger
portion of small displacements as compared to other data sources. One can see that
nearly half of them are made after midnight, and a very small portion be done in
the morning. This observation indicates that people are less likely to make a trip
after midnight or in the morning. As compared, for the long displacements shown
in Fig. 2.6c, the portions for both morning and midnight shrink to 23%. It is worth
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Fig. 2.7 Comparisons of the hourly median of Twitter displacement/trip length higher than (a)
1 mile, (b) 4 miles, and (c) 7 mile. The scaleplate of the radiation plot is (0, 10, and 20 miles) [61]

mentioning that displacements over 2- and 3-h time windows also have the same
features as shown in Fig. 2.6. Also, there is almost no day of week features in Twitter
displacements.

Figure 2.7 compares the time-of-day displacement features between Twitter and
travel survey. The extracted displacements follow additional strict rules introduced
in [61] for comparison:

• We only keep Twitter displacements higher than 1/9 mile as the smallest trip
length recorded by the survey is 1/9 mile (178 m).

• We only focus on the travel within a metropolitan area and do not include the
intercity or interstate trips.

As Twitter may represent a certain group of people with designated distributions
of age, gender, education, and household income, we collect user demographics
from the open data sources from comScore [36], from Pew Research Center [37],
as well as population demographics of Fairfax County in Northern Virginia [62].
We conduct a stratified sampling on the records in household travel survey. Both
the original survey and stratified survey are put into comparison in Fig. 2.7. The
features of extracted Twitter displacements resemble that of the household travel
survey to some extent. One can see that Twitter displacements that contain lots of
small displacements underestimate the actual trip length in general. If we only focus
on the displacements longer than 4 and 7 miles, one can see a great resemblance
between the stratified survey and Twitter.

Due to the large number of Twitter users, the short-distance displacements
capture unprecedented details of human travel even though each of them is
short and without detailed trajectory information. If we aggregate all these short
displacements, they will unveil ever-elaborate depictions of the Northern Virginia
networks as shown in Fig. 2.8a. By comparing with the authentic road information,
we can prove the validity of these short-distance travels as shown in Fig. 2.8b, c.
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Fig. 2.8 (a) Geographic distribution of short-distance displacements in Northern Virginia (the
square noted area is Dale City); (b) Short-distance displacements in Dale City area; (c) road
networks in Dale City area
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2.3.2 Trip Purpose and Travel Demand Forecasting

Inferring individuals’ activity and trip purposes is critical for transportation planning
and travel behavior analysis. With the thriving growth of geo-coded land use
data and increasing popularity of mobile devices using satellite-based positioning
system, a shift happens in the related studies from an active individual or household
travel survey to a more passive integral approach. For instance, the mobile phone
records obtained from the mobile towers can reveal the human mobility pattern
and trajectory features [60], interurban trip patterns [63], etc. Besides, the Global
Positioning System (GPS) is also a well-accepted data source in extracting the
information of trips or even tours: Wendy et al. [64] combined the GIS data, GPS
logs, and the individual characteristics to interpret and validate the travel patterns;
Anastasia et al. [65] designed TraceAnnotator system that processes multiday GPS
traces semiautomatically to impute transportation modes, activity episodes, and
other facets of activity; an experiment in [66] using the trajectories data recorded
by a passive GPS summarizes trip activities as “home,” “work,” “education,”
“shopping,” and “other.”

The tweets posted by the GPS-based smartphone can passively collect location-
time data. This data collection is not based on an experimental design and is a better
solution than the external GPS devices in the travel-survey studies [67]. Thus, the
GPS information and corresponding text information collected by tweets can be
possibly used to infer the trip purposes. Figure 2.9 gives an example of a Twitter
user’s locations from 18:00 p.m. to 19:00 p.m. across the year of 2014. We selected
three displacements, and one can see that the corresponding tweets clearly unveil
the trip purposes.

The trip purpose information found by social media can be very useful to the
researchers. Because traditional land use category is too general to provide detailed
useful trip information. Figure 2.10 shows a map including a trip end, the parcel of
land use, and all commercial places within it. The category of the land use is “Non-
Residential Mixed Use.” In comparison, the places within it give more detailed
information.

One can see that the tweets can be taken as representatives of social awareness
toward the public activities and social communications. One can assume that the
frequencies of tweet locations may, to some degree, represent the people’s location
preferences. The location preferences toward a specific event can, in turn, enable us
to forecast the travel demand within a local road network. Our exemplary social
events are the newly built 11-mile extension of Sliver Line, a subway line of
Washington Metro starting service on July 26, 2014. We extract the tweets from
July 26 to July 28, which mentioned the names of the metro line and 5 new
stations: “Silverline,” “Spring Hill,” “Greensboro,” “Tysons Corner,” “McLean,”
and “Wiehle-Reston East.” Except “Silverline,” the rest of the topic words are
proprietary not only to the metro stations but also to the commercial facilities around
the Silver Line. By using the human mobility extraction method in Sect. 2.2.1, one
can easily obtain the corresponding Twitter displacements related to the key words
and track the origins of these displacements.
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Fig. 2.10 The comparison between land use and tweets in inferring the trip purposes
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Fig. 2.11 The ratios of CDPs where the “Silver Line” displacements start (origin) from July 26 to
July 28

Figure 2.11 shows the census-designated places (CDPs) of the starting locations
and traffic is induced from these places by the social event. A ratio is calculated to
compare the different responses of CDPs toward the opening of Silver Line. The
figure gives a clear picture of geographic distributions of induced transportation
demands. In this example, the time window is set to be 1 h, and most of the CDPs
are consequently within 10 miles of the metro stations. One can even employ longer
time windows and larger geographic scales in future studies.

One can see that the mobility patterns extracted from Twitter enlighten OD
estimations for transportation demand analysis. The results come from the social
reflections of Twitter instead of the costly, large-scale travel survey. It will be
of greater practical significance in future studies with the penetration of Twitter
together with other social media tools.

2.4 Discussions on Future Improvements and Applications

This chapter starts with the discussion of social media exploration and uses statistics
to introduce its data features and recent studies. In the following section, we employ
several examples to detail how the social media can contribute to the current
transportation applications and studies in mainly three topics: human mobility, event
detection, as well as the trip purpose and travel demand forecasting. The examples
prove the promises of Twitter for transportation researchers mainly because it
has two categories of information: (1) Twitter provides a vast amount of location
and time information which is both of high resolution and high accuracy. (2)
Twitter contributes large-quantity text information which is a reflection of the social
awareness from massive crowds; as a consequence, monitoring the social media data
may deliver useful traffic event information.
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There are also limitations on the studies. For instance, when used for demand
estimation purposes, social media data should be adjusted for overrepresentation of
such system users [68]. Future transportation studies on social media shall gradually
narrow the research scope into several important respects such as the automatic
place detection, commuting behaviors in urban road networks. In sum, social media
study opens a window to solve the transportation problems. Further studies can be
more accurate with the increasing coverage of tweets as a social communication
tool. Relatively, researchers can also increase the geographic span to study the
intercity, or even interstate, travels, as well as the trip purposes behind them. In
addition, in future attempts, we can even combine the traffic data and social media
data to see the impact of long-distance displacements on the travel time, traffic flow
throughput, etc.
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Chapter 3
Ground Transportation Big Data
Analytics and Third Party Validation:
Solutions for a New Era of Regulation
and Private Sector Innovation

Matthew W. Daus

3.1 Part I: History of Taxi Data

3.1.1 Overview of the New York City T-PEP Program

In March 2004, the New York City Taxi and Limousine Commission (“TLC”)
mandated that specific technology-based improvements known as the Taxicab
Passenger Enhancement Program (“T-PEP”) be implemented in all medallion
taxicabs.1 The costs of the T-PEP system were essentially offset by a 26% fare
increase, the largest increase in the history of the TLC.2
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1See http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh_archive.shtml.
2See Taxi & Limousine Commission 2004 Annual Report to the City of New York, http://www.
nyc.gov/html/tlc/downloads/pdf/2004_annual_report.pdf.
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The yellow medallion3 taxicabs are the only for-hire vehicles allowed by law
to pick up passengers by street hail in New York City.4 Since 2008, the TLC has
required all yellow taxicabs to be equipped with T-PEP. Medallion owners and
drivers are strictly prohibited from tampering with or removing the T-PEP system.
Anyone found guilty of tampering with the permanent modifications or shutting
off the system during business will be subject to fines and suspension. Drivers are
permitted to work with a broken system for up to 48 h as long as they have reported
the problem and are awaiting repair. The TLC has set forth the requirement that at
least 90% of all system repairs must be completed within 6 h.5

Despite mandating the use of T-PEP, the TLC is not responsible for the
installation, operation, and maintenance of the system. Instead, these functions
are outsourced to external vendors who meet requirements set forth by the TLC.
Since 2004, several vendors were authorized, but as of now only Creative Mobile
Technologies and Verifone remain as technological providers of T-PEP. In 2013, the
TLC passed new rules with updated requirements for T-PEP providers. Flywheel
Software6 is the latest addition to the list of authorized providers and has been live
since September 2016.7

T-PEP is essentially comprised of four components: (1) Driver Information
Monitor (“DIM”); (2) Passenger Information Monitor (“PIM”); (3) Credit/Debit
Card Payment System; and (4) Trip Sheet Automation.8 In addition, a wheelchair
accessible taxi must be equipped with a system for accepting dispatches through
TLC’s Accessible Dispatch program. The hardware of these components are
typically disparate and hard-mounted onto the vehicles with extensive wiring. In
the near future, however, these components might be integrated, with less physical
devices, into what is known as the Alternative Technology Solution (“ATS”).9

The DIM is used to relay messages to drivers only when the vehicle is moving
very slowly or has stopped, to prevent them from being distracted. The TLC sends
short alphanumeric messages to drivers who can then respond by pushing single-
button pre-programmed responses. This is particularly useful in the event of a

3A medallion refers to a small metal plate attached to the hood of a taxi that confers the driver the
right to pick up any passengers within New York City.
4NYC Admin. Code §19-504; New York State adopted the HAIL Act which allowed certain livery
vehicles to do street hails outside of the Manhattan business district and airports (Chapter 602 of
the Laws of 2011, as amended by Chapter 9 of the Laws of 2012 (“HAIL Act”)).
5See http://www.nyc.gov/html/tlc/html/passenger/passenger_creditcard.shtml.
6In early April 2017, Flywheel was acquired by its competitor Cabconnect through an undisclosed
deal. See Ken Yeung, Cabconnect acquires Flywheel in bid to create on-demand taxi platform,
VentureBeat, Apr. 7, 2017, https://venturebeat.com/2017/04/07/cabconnect-acquires-flywheel-in-
bid-to-create-on-demand-taxi-platform/.
7Erica Jackson, Flywheel App Comes to New York City, NYC Biz News, Oct. 11, 2016, http://
nycbiznews.journalism.cuny.edu/2016/10/flywheel-app-comes-to-new-york-city/.
8See http://www.nyc.gov/html/tlc/html/passenger/taxicab_serv_enh.shtml.
9The ATS will quite likely exclude the PIM in light of constant complaints from drivers and
passengers regarding its lack of responsiveness and redundancy.
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citywide emergency, traffic congestion, or road closures. It may also be utilized
to direct drivers to return lost property or to locations with fare opportunities.10

The PIM, also known as Taxi TV, is a flat screen monitor installed in the
back seat of the cab that displays a map of the vehicle’s current location in
addition to advertisements, news, weather forecast, and the TLC’s Public Service
Announcements (“PSAs”). The map on the screen only shows the route traveled
and not the projected path, nor does it provide any information regarding traffic
conditions. Passengers who dislike the repetitive content or noise can turn off the
system, but it will be reactivated at the end of the ride to assist in payment.11

The card payment system, also located in the rear of the cab, provides passengers
with a high level of security as far as the transaction is concerned. Once a card is
swiped, it takes about 5 s for the payment to be processed. There is no minimum
fee imposed, but customers are required to sign the receipt when the fare is $25
and above. Tips can be entered on the touch screen. All card payment systems are
certified by the Payment Card Industry (“PCI”).12

The trip sheet automation, which is the focus of the next section, allows the
collection and submission of trip data using an Automatic Vehicle Locator (“AVL”).
It could rightly be identified as the transportation technology that ushered the
taxicabs of New York City into the age of big data. Back in the old days, taxicab
drivers were required to record trip-logs of every fare manually (i.e., pen and paper).
They were also required by the TLC to maintain these trip sheets for at least
three years. Not only was this tedious work, the data recorded were also prone to
human error. With AVL, however, data is captured automatically as soon as the
driver turns on the taximeter. The electronic data collected includes date, time, trip
distance, itemized fares,13 and pick-up and drop-off locations.14 Only the number
of passengers and payment type are entered manually. Once the driver turns off the
taximeter at the end of the trip, the data is transmitted to the TLC’s data servers.

3.1.2 T-PEP Data Collection and Output

The TLC updates the trip data on their Research & Statistics webpage every six
months with two months’ lag. For example, trip data from January to June 2017
would only be available publicly by August 2017. Figure 3.1 shows a snapshot

10See http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh_archive.shtml.
11Id.
12The PCI is an information security standard that protects cardholder data and maintains a secure
network for organizations that handle branded credit cards.
13This can be broken down into time-and-distance fare, MTA tax, tips, tolls, extras and surcharges.
It does not include any cash tips.
14Since July 2016, the TLC only provides taxi zones instead of precise latitude/longitude
coordinates for pick-ups and drop-offs. The taxi zones include 265 unique neighborhood areas.

http://www.nyc.gov/html/tlc/html/industry/taxicab_serv_enh_archive.shtml
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Metric Description
Trips per Day Average number of trips recorded each day
Farebox per Day Total amount, across all vehicles, collected from all fares,

surcharges, taxes, and tolls. Note: this amount does not
include amounts from credit card tips

Unique Drivers The total unique number of hack drivers who recorded a trip
each month

Unique Medallions The total unique number of medallion taxis and standby
vehicles* who recorded at least one trip in the month

Medallions Per Day The average unique number of medallion taxis and standby
vehicles* who recorded at least one trip in a day

Avg Days Medallions on Road The average number of days each vehicle spent on the road
per month

Avg Hours Per Day Per Medallion The average number of hours in which a vehicle recorded a
trip

Avg Days Drivers on Road The average number of days each driver recorded a trip
Avg Hours Per Day Per Driver The average number of hours each
Avg Minutes Per Trip Average trip time from meter-on to meter-off
Percent Trips Paid with Credit Card Number of trips where passenger paid by credit card out of

the total number of trips
*Stand-by vehicles are back-up vehicles permitted for use by fleets when medallion taxis are out of service.

Fig. 3.1 Snapshot of trip sheet data. Source: http://www.nyc.gov/html/tlc/html/about/trip_record_
data.shtml

of yellow taxicab trips in December 2016. Since the dataset contains details of
over ten million trips within that month, the trip sheet can only be viewed in its
entirety through an open source database and not a typical spreadsheet. There are
roughly 1.3 billion trip records in the current database.15 The TLC also publishes
spreadsheets containing “metrics[,] including average daily trips and fares collected,
active vehicles and drivers, and credit card usage in yellow taxis tabulated from
yellow taxi trip data collected through the Taxi Passenger Enhancement Program
(TPEP).”16

In addition to the trip records mentioned above, the TLC also provides monthly
indicators such as number of trips, fares collected, active vehicles and drivers, and
credit card usage on their website. In contrast to the trip sheet data, this is easily
viewable using any spreadsheet program such as Excel, since there are limited
numbers of rows.17 Based on this dataset, trend charts of key variables that are
indicative of the medallion market can be plotted (see Figs. 3.2 and 3.3). Last but
not least, the TLC has thus far published two “Factbooks,” one in 2014 and another
in 2016, which provide readers with infographics of trends of trips and fare.

15See Chicago Taxi Data, https://github.com/toddwschneider/chicago-taxi-data.
16These are available at http://home2.nyc.gov/html/tlc/html/about/statistics.shtml.
17See Id.
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Fig. 3.2 Number of trips from January 2010 to January 2018. Source: Author, based on data from
TLC

Thanks to the successful implementation of the T-PEP in medallion taxicabs, the
TLC has expanded the data collection requirements to include Street Hail Liveries
(“SHL”), resulting in the Livery Passenger Enhancement Program (“L-PEP”), and
For-Hire Vehicles (“FHVs”). For the former, trip records and monthly indicators
are available since 2013. The metrics captured are more or less similar to those
of T-PEP. For the latter, trip data is available since 2015, with significantly less
metrics—only dispatching base number, date, time, and location of pick-ups are
captured. Nonetheless, as a late adopter of the program, FHVs have been able to
take advantage of newer technologies and leapfrog to the ATS, requiring fewer
modifications and hardware—in other words, less costs.

3.1.3 T-PEP and Privacy Protection

On December 13, 2012, the New York City Taxi and Limousine Commission
(“TLC”) promulgated rules for the Authorization of T-PEP Providers.18 Chapter
76 of the TLC Rules and Regulations sets forth information security standards that

18See http://rules.cityofnewyork.us/tags/tpep.

http://rules.cityofnewyork.us/tags/tpep
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Fig. 3.3 Monthly farebox revenue from January 2010 to January 2018. Source: Author, based on
data from TLC. Note: Revenue includes all fares, surcharges, taxes and tolls; but not credit card
and cash tips

T-PEP systems had to meet in order to be approved by the TLC for sale, lease, or use
in taxicabs. Under these regulations, T-PEP Providers were required (1) to establish
policies for information security, authentication, remote access, anti-virus security,
application development security, digital media re-use and disposal, encryption,
passwords, user responsibilities, and vulnerability management; (2) to comply with
copyrights and develop appropriate controls and procedures to protect the Database
Management Systems19; (3) to limit access to T-PEP Data, by providing safeguards
such as firewalls and fraud prevention; (4) to maintain the confidentiality of personal
information; and (5) to develop controls for network management and procedures
for security incident management.20

The TLC repealed Chapter 76 in 2016 when it promulgated new rules requiring
all TLC licensees and authorized service or equipment providers that collect a
passenger’s personal information or geolocation information—including T-PEP

19A Database Management System was defined under the rules as “a software package with
computer programs that control the creation, maintenance and use of a database.” See Chapter
76 of the TLC Rules and Regulations, Sec. 76-02 (repealed).
20Chapter 76 of the TLC Rules and Regulations, “Information Security Rules for Taxicab
Technology Service Providers,” repealed in 2016.
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Providers—to comply and file with the TLC an Information Security and Use of
Personal Information Policy.21 The new rules require such policies to include, at a
minimum, the following information:22

– A statement of internal access policies relating to passengers’ and drivers’
personal information23 for employees, contractors, and third party access, if
applicable;

– A statement that, except to the extent necessary to provide credit, debit, and
prepaid card services and services for any application that provides for electronic
payment, personal information will only be collected and used with such
passenger’s affirmative express consent and that such personal information will
not be used, shared, or disclosed, except for lawful purposes;

– Procedures for notifying the TLC and affected parties of any breach of the
security of the system, pursuant to New York law;24

– A statement that any credit, debit, or prepaid card information collected by the
T-PEP Provider or a credit, debit, or prepaid card services provider is processed
by the T-PEP Provider or such provider in compliance with applicable payment
card industry standards; and

– A statement of the T-PEP Provider’s policies regarding the use of passenger
geolocation information, which must include, at a minimum, a prohibition on the
use, monitoring, or disclosure of trip information, including the date, time, pick-
up location, drop-off location, and real-time vehicle location and any retained
vehicle location records, without such passenger’s affirmative express consent.

In addition, the collection, transmission, and maintenance of data by T-PEP
Providers must comply with applicable PCI Standards25, as well as New York City
Department of Information Technology and Telecommunications Citywide Infor-
mation Security Policy for Service Providers and Encryption Standards (“DOITT
Standards”).26

21See http://www.nyc.gov/html/tlc/downloads/pdf/proposed_rules_fhv_bills_package.pdf; See
also R.C.N.Y. Title 35, Chapter 75, Sec. 75-23, Business Requirements—Use of Personal
Information and Certain Location-Based Data (effective 08/06/2016).
22R.C.N.Y. Title 35, Chapter 75, Sec. 75-05 (b)(2)(i).
23See R.C.N.Y. Title 35, Chapter 75, Sec. 75-03 (ee). (Any information that can specifically
identify an individual, such as name, address, social security number, unmasked or non-truncated
credit, debit, or prepaid card numbers, together with any other information that relates to an
individual who has been so identified, and any other information that is otherwise subject to privacy
or confidentiality laws and associated rules and regulations. The display or disclosure of only the
last four digits of a credit, debit, or prepaid card number is not Personal Information. The name of
a Taxicab Driver and the Driver’s Commission license number is not Personal Information.)
24See New York General Business Law, Section 899-aa.
25The Payment Card Industry Data Security Standards issued by the Payment Card Industry
Security Standards Council may change from time to time. See www.pcisecuritystandards.org.
26See R.C.N.Y. Title 35, Chapter 75, Sec. 75-25(f).

http://www.nyc.gov/html/tlc/downloads/pdf/proposed_rules_fhv_bills_package.pdf
http://www.pcisecuritystandards.org
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The TLC is entitled to only a limited amount of data which includes taxicab pick-
up and drop-off data, as well as certain GPS location information. The TLC does not
typically obtain, and is generally prevented from reviewing, breadcrumb data, or the
GPS pings of the taxicab and its location throughout the route in between pick-up
and passenger drop-off. This is precisely the type of information, the tracking of a
passenger trip, that Uber was alleged to have been monitoring as part of its “God
View” tool.

The TLC typically obtains very important T-PEP data on the number of rides, the
taxi fare information, and other general information that include “blips or dots on a
screen.” They have no particular identity of passengers or individual taxicab drivers
or medallions, unless requested for a specific legitimate regulatory purpose as part
of a TLC or government investigation. Off-duty locations of taxicabs are completely
off limits to the TLC as a privacy safeguard. The TLC agreed with the NYCLU that
this safeguard was embodied in the T-PEP vendor agreements and the TLC rules.

The TLC collects general ridership data to achieve various objectives, such as
to verify that taxicabs are servicing all neighborhoods in the city. Also, the data
determines the actual earnings of taxicab drivers and medallion owners, which
is used to make sound fact-based decisions in determining fare increases. This
eliminates the prior guesswork involved in manual trip sheet surveys and other
primitive regulatory methods. The GPS systems have been instrumental in the return
of lost passenger property, alerting drivers without fares to business opportunities in
underserved areas, and using “breadcrumb” data to ping taxis throughout on-duty
trips to estimate vehicle speed and assess the viability of traffic policies, such as
NYC’s pedestrian plaza initiatives.27 The TLC will only receive further breadcrumb
data from the T-PEP system if it is specifically requested for a targeted and disclosed
purpose (i.e., lost property; stolen cab, etc.). Further, the TLC will only release more
detailed data to law enforcement if served with a subpoena.

Despite the use of such information for these and many other legitimate
government objectives, drivers, industry, and civil liberties groups have raised
objections and commenced lawsuits. In 2007, as the TLC just started to install T-
PEP units in NYC taxicabs, taxi driver groups, and other union leaders standing
in solidarity, called for a taxi strike alleging the GPS aspect invaded their privacy
rights. All of those efforts have failed, however, and the law recognizes that privacy
rights in public taxicabs are minimal. When the drivers were unsuccessful in pulling
off a strike, they then turned to the courts to sue the TLC, claiming privacy rights
violations of the fourth Amendment of the U.S. Constitution, and lost decisively in
Alexandre v. NYC TLC.28

27Michael M. Grynbaum, New York Traffic Experiment Gets Permanent Run, The New York Times,
Feb. 11, 2010, http://www.nytimes.com/2010/02/12/nyregion/12broadway.html.
28Alexandre v. NYC TLC, No. 07 Civ. 8175 (RMB), 2007 U.S. Dist. LEXIS 73642 (S.D.N.Y. Sept.
28, 2007).

http://www.nytimes.com/2010/02/12/nyregion/12broadway.html
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In Alexandre v. NYC TLC, the Court examined whether the fourth and fifth
Amendments of the U.S. Constitution prohibiting government from conducting
unlawful searches and takings of private property forbids the TLC from mandating
the installation of T-PEP. The roots of the case law stretch back to a decision
involving police officers attaching a tracking beeper to a chloroform container
following an automobile’s movement across state lines in U.S. v. Knotts.29 In
this 1983 criminal case, the U.S. Supreme Court held there was “no reasonable
expectation of privacy in [an] automobile on public thoroughfares.”30 In Alexandre
v. NYC TLC, the Court found the TLC’s contracts with its vendors limited the release
of information about the location of a taxicab while it is off-duty.31 Applying the
fourth Amendment case law, the Court held there was “no legitimate expectation of
privacy” when information was readily available for public scrutiny.32 The Court
reasoned, based on Knotts, that there is no reasonable expectation of privacy in a
motor vehicle traveling on a public roadway, and applied an “intermediate level of
scrutiny.33 The Court concluded that TLC’s substantial interest in requiring GPS
outweighed privacy rights in that the government was promoting taxi customer
service, taxicab ridership, and passenger and driver safety.34

The 5th Amendment’s “takings’ clause” provides that private property shall not
be taken for public use without “just compensation.”35 There are two categories
of regulatory actions that generally will be deemed per se takings for fifth
Amendment purposes: (1) a physical taking where the government requires an
owner to suffer a permanent physical invasion of his/her property; (2) regulations
that completely deprive an owner of “all economically beneficial us[e]” of his/her
property.36 Outside these two relatively narrow categories of per se takings,
regulatory takings challenges are governed by the standards set forth in Penn
Central Transp. Co. v. New York City.37 The Court in Penn Central identified
“several factors that have particular significance” in evaluating regulatory takings
claims.38 Primary among those factors are “[t]he economic impact of the regulation
on the claimant and, particularly, the extent to which the regulation has interfered
with distinct investment-backed expectations.”39 In addition, the “character of the
governmental action”—for instance whether it amounts to a physical invasion or
instead merely affects property interests—may be relevant in discerning whether

29460 U.S. 276 (1983).
30Id. at 281.
31Alexandre, 2007 U.S. Dist. LEXIS 73642 at 32.
32Id.
33Id. at 33-34.
34Alexandre, 2007 U.S. Dist. LEXIS 73642 at 34.
35U.S. Const. Amend. V.
36Lingle v. Chevron U.S.A, Inc., 544 U.S. 528, 538 (2005).
37Lingle, at 538-539, citing Penn Central Transp. Co. v. New York City, 438 U. S. 104 (1978).
38Ibid.
39Ibid.
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a taking has occurred.40 The Penn Central factors have served as the principal
guidelines for resolving regulatory takings claims that do not fall within the first
two categories.

In response to the Plaintiffs’ fifth Amendment argument, the court in Alexandre
ruled that medallion owners who choose to engage in a “publicly regulated business”
surrender their rights to unfettered discretion as to how to conduct same.41 The
Court cited a federal lawsuit commenced in the Eastern District of Pennsylvania,
MCQ’s Enterprises v. PPA, where Plaintiff Yellow Cab argued that being required
to install the City’s coordinated dispatch system in its cabs without compensation
“for the economic injury and loss that will result from the taking of Yellow Cab’s
customers and intellectual property” constituted an unconstitutional taking.42 The
Pennsylvania Federal Court denied a preliminary injunction as PPA rules were
promulgated “for the public good . . . to promote hospitality and tourism . . . .”43

Similarly, the Court in Alexandre ruled that the NYC TLC rules in issue were
enacted to “protect the public interest.”44

The state of the law on privacy rights is settled in some ways, but untested
on other issues. Clearly, regulatory bodies stand on firm legal privacy grounds
as compared to criminal law enforcement and employee monitoring. Government
regulators need to clearly define the use of any data derived from GPS tracking
systems or electronic trip sheets by both specifying the public purposes and interests
protected, and restricting the use of such data to those purposes—via agency
regulations, contracts, and/or some other tangible way. While the existing case law
generally supports the rights of regulators to use electronic trip sheet data, the courts
have not yet specifically tested other scenarios, including the use of data obtained
while taxicabs are “off duty” and the use of such data for criminal law enforcement
investigations.

3.2 Part II: The Advent of the TNC Movement and TNC
Data

3.2.1 Overview of Transportation Network Companies

As mobile technology continues to improve, more and more ride-hailing apps are
available via smartphones. Five of the most prominent app-based car services in
New York City are Uber, Lyft, Gett, Juno,45 and Via. The rise of these apps is due

40Ibid.
41Alexandre, 2007 U.S. Dist. LEXIS 73642 at 27.
42McQ’s Enters. v. Phila. Parking Auth., 2007 U.S. Dist. LEXIS 2130, at 12.
43Id.
44Alexandre, 2007 U.S. Dist. LEXIS 73642, at 29.
45At the end of April 2017, Juno was acquired by Gett for $200 million. See Brian
Solomon, Gett Buys Juno For $200 Million, Uniting Would-Be Uber Competitors, Forbes,
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in part to the ease and conveniences of prompt service, and the ever-increasing use
of smartphones for transactions of all types. With 40 million monthly active riders46

and current worth of $69 billion, Uber is undoubtedly the most aggressive and fastest
growing TNC of them all.47 Lyft comes in second, with a current valuation of $7.5
billion after a recent funding round of $600 million.48

Compared to reserving or prearranging car services or taxicabs, the e-hailing
process is convenient, and a user only needs to download an app, run it, set a pick-up
location, make a booking and proceed with payment. Things are, however, slightly
more complicated behind the scenes. In Uber’s case, after a user opens the app and
authenticates their identity, the app sends a ping with the user’s geolocation to their
server every 5 s. The server then responds with a list of all the available car types at
the user’s location. For each car type, the nearest eight cars, expected waiting time,
and surge multiplier are provided.49

Within 5 years, these Transportation Network Companies (“TNCs”) have
devoured a big piece of the car service pie, resulting in a slump in the medallion
market. Since 2014, the prices of medallions in NYC have fallen significantly and
a growing number of medallions have been foreclosed by lenders. Many drivers
have complained that there are too many car service providers and not enough
passengers for them to make a living. Some have stressed the need for more
enforcement because of illegal street hails by TNCs. Others have called for the
TLC to impose a cap on TNCs. There is a general consensus that the TLC should
hold all sectors to the same standards regarding accessibility, licensing, and vehicle
requirements, etc.50

There is no question that the competition and disruption created by TNCs,
whether legal, ethical or policy-challenged, has set the stage for a paradigm shift for
transportation policy planners on a much broader basis. Decades of transportation
planning and policy, which sought to minimize and deter personal motor vehicle
(“PMV”) usage, is now facing a collision course with hundreds of thousands of
additional vehicles that continue to be added to congested roads51—many operated

Apr. 26, 2017, https://www.forbes.com/sites/briansolomon/2017/04/26/gett-buys-juno-for-200-
million-uniting-would-be-uber-competitors/#764d63f96089.
46Matthew Lynley, Travis Kalanick says Uber has 40 million monthly active riders,
TechCrunch, Oct. 19, 2016, https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-
million-monthly-active-riders/.
47Brad Stone, The $99 Billion Idea: How Uber and Airbnb Won, Bloomberg Businessweek, Jan.
26, 2017, https://www.bloomberg.com/features/2017-uber-airbnb-99-billion-idea/.
48Heather Somerville, Lyft lands $600 million in fresh funding; company valued at $7.5 billion,
Reuters, Apr. 11, 2017, http://www.reuters.com/article/us-lyft-funding-idUSKBN17D2I8.
49See https://www.ftc.gov/system/files/documents/public_comments/2015/09/00011-97592.pdf.
50See Transcript of April 6, 2017 Taxi & Limousine Commission Board Meeting, http://www.nyc.
gov/html/tlc/downloads/pdf/transcript_04_06_2017.pdf.
51For the first time since 1990–2014, ridership growth in taxi/FHV has outpaced those of public
transit, particularly in 2016. Between 2013 and 2016, TNCs added 600 million vehicle miles
traveled, exacerbating congestion in NYC. See Bruce Schaller, Unsustainable? The Growth of

https://www.forbes.com/sites/briansolomon/2017/04/26/gett-buys-juno-for-200-million-uniting-would-be-uber-competitors/#764d63f96089
https://www.forbes.com/sites/briansolomon/2017/04/26/gett-buys-juno-for-200-million-uniting-would-be-uber-competitors/#764d63f96089
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://techcrunch.com/2016/10/19/travis-kalanick-says-uber-has-40-million-monthly-active-riders/
https://www.bloomberg.com/features/2017-uber-airbnb-99-billion-idea/
http://www.reuters.com/article/us-lyft-funding-idUSKBN17D2I8
https://www.ftc.gov/system/files/documents/public_comments/2015/09/00011-97592.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/transcript_04_06_2017.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/transcript_04_06_2017.pdf
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by less experienced and part-time TNC drivers who do not need to go through
rigorous biometric criminal background checks. TNC drivers may be encouraged
to work longer hours to achieve the same prior economic benefits, possibly
contributing to greater driver fatigue and unsafe working conditions. Also, TNC
vehicles are encouraged by so-called “surge pricing” to work during peak demand
times—or rush hour—when traffic and environmental conditions may be at their
worst.52

Surge pricing refers to TNCs increasing their prices in certain areas, or at specific
times, in response to local demand. Surge pricing has resulted in nightmares for
many consumers who unknowingly agree to pay exorbitant prices for relatively
short rides, and then only notice the steep charges until after the ride is complete.
This occurs during peak demand times, with the greatest surges often following
large events and holiday celebrations. For example, every year on New Year’s
Day a host of disgruntled consumers share their stories of excessive surge price
charges from the night before. Customer receipts show numerous examples in which
the “surge” increased the rate to 9.9 times the normal fare, and what would have
normally cost a rider $20.71, resulted in a $205.03 charge for the roughly 20 min
trip.53

In theory, surge pricing takes place when demand for service exceeds the number
of available vehicles. TNCs argue that the higher fares incentivize drivers to provide
trips when there are more ride requests than drivers looking for fares by encouraging
drivers to be available in areas where they typically would not have been otherwise.
Predictably, fares that surge to multiple times the average price can have the effect
of pricing out certain population segments, resulting in drivers choosing not to
operate in certain areas altogether, a practice known as redlining.54 In other words,
drivers may refuse to operate in communities where there is less of an opportunity
to earn large fares, thus discouraging drivers from providing services in what have
traditionally been underserved areas. Because TNCs strictly control their data—and
much of the data they release to the public portrays them in a positive light—it
is difficult to definitively determine the net effects of surge pricing on the wider
transportation industry, its consumers and stakeholders.

Another area of concern is the lack of oversight regulation as to the calculation
of distance and time by TNCs. A smartphone app may not meet the requirements of
a taximeter, which is required for taxicabs to calculate fares based on the distance
travelled and the time elapsed. For instance, apps are not “wired” into the vehicle

App-Based Ride Services and Traffic, Travel and the Future of New York City, Feb. 27, 2017,
http://schallerconsult.com/rideservices/unsustainable.pdf.
52Dan Kedmey, This Is How Uber’s ‘Surge Pricing’ Works, Time, Dec. 15, 2014, http://time.com/
3633469/uber-surge-pricing/.
53Stephanie McNeal, People Woke Up and Realized They Spent Hundreds of Dollars On Uber
For New Year’s Eve, BuzzFeed, Jan. 1, 2016, https://www.buzzfeed.com/stephaniemcneal/uber-
hangover?utm_term=.ehx3W62jqM#.woOg8a4yKN.
54“Redlining” refers to the formal or informal practice of establishing geographical borders where
service will not be offered.

http://schallerconsult.com/rideservices/unsustainable.pdf
http://time.com/3633469/uber-surge-pricing/
http://time.com/3633469/uber-surge-pricing/
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transmission but, instead, rely on the GPS to calculate the fare. The most significant
problem with the use of GPS is accuracy, which is needed to calculate the fare.
Additionally, taximeters are calibrated, tested, and sealed by a regulatory authority
and require periodic inspections. However, there is no such regulation of GPS in
this environment and the method by which a smartphone calculates fares. Because
of the lack of weights and measures conformity, consumer protection concerns are
raised that TNCs may be charging consumer fares in excess of applicable regulatory
limits. Further, some apps dispatch for-hire vehicles. In most jurisdictions, for-hire
vehicles must charge fares based on a prearranged basis or in accordance with a
filed fare schedule; however, some apps charge passengers like a taxicab, based on
distance and mileage (and demand).

The essence of TNC laws revolves around a “we can do it faster and better
than government” attitude, which, in terms of efficiency, may be correct given their
resources. However, there is an ulterior motive, as no app-based dispatch model
ever works without having an adequate supply of drivers. It is simply too costly
and difficult to entice and subsidize the transfer of professionally licensed black car
and taxicab drivers to TNCs (although this was done successfully at a very high
cost by Uber in New York City). TNCs claim that college students and part-time
workers would be discouraged by the process of purchasing insurance, completing
physical paperwork, leaving their homes or computers and undertaking a simple
5 min fingerprint check. While there is some truth to the convenience factor, the
motive of TNCs is to attract more drivers by expanding the pie, making it easier to
recruit drivers while managing and assuming the risks of some potentially unsafe
or inexperienced drivers who slip through the cracks and cause harm to others.
The self-regulation model allows the TNCs to control the information pertaining
to public incidents such as sexual assaults and crashes, and discourages further
media coverage as such information—which is of public interest—has been labeled
as “proprietary,” and neither within the government’s control nor subject to public
disclosure laws that keep such stories and criticism alive. The self-regulation model
is an effort to control information, make licensing shortcuts, and to facilitate a
market takeover.

It may be possible to engage in modified self-regulation of transportation
companies, as is done with trucking and limousine companies engaged in interstate
commerce by the U.S. Department of Transportation’s Federal Motor Carrier Safety
Administration (“FMCSA”). The FMCSA requires that interstate truckers and
drivers obtain medical exams,55 and not work more than a certain number of hours
during a time period for public safety reasons.56 FMCSA-licensed carriers must
collect information ensured by Federal auditor compliance.57 As such, the key
ingredients for the success of a self-regulation system are auditing resources, and

55See https://www.fmcsa.dot.gov/faq/Medical-Requirements.
56See https://www.fmcsa.dot.gov/regulations/hours-of-service.
57See https://www.fmcsa.dot.gov/international-programs/certification-safety-auditors-safety-
investigators-and-drivervehicle.

https://www.fmcsa.dot.gov/faq/Medical-Requirements
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significant penalties and fines to serve as an appropriate and effective deterrent.
Without unbridled access to TNC data to audit real-time performance and compli-
ance at all levels, including the ability to impose significant fines, this model is
doomed to fail. In general, governments, and not private parties, should be the ones
who regulate; but if TNCs are allowed to engage in self-regulation due to the lack of
government resources, they should be required to pay for the enforcement resources
and turn over their data to facilitate auditing and compliance.

3.2.2 A Data-Driven Business Model

In order to operate, TNCs collect, retain, and process massive amounts of data
with respect to their users, including detailed information on passengers.58 This
information often includes a passenger’s name, contact information, payment
information, device location, device manufacturer and model, mobile operating
system, pick-up location, destination, trip history, contact information for those with
whom customers wish to share information, and information about how customers
interact with the TNC’s interfaces (e.g., browser types and IP addresses).59

This data may be more valuable than the transportation services and supports
a large portion of the alleged multi-billion dollar valuation of companies such
as Uber and Lyft. Of all the issues to surface during the TNC debate so far,
whether criminal background checks, insurance, accessibility, unfair competition,
etc., nothing could be quite as damning or damaging economically to the new breed
of data hungry TNCs than government passing regulations limiting the collection
or use of such data. TNCs fundamentally rely on big data for intelligent decision
making, from geolocation to fare estimation to surge pricing.60 Due to the increasing
amounts of data collected, and the varied, still forming legal protections of consumer
information in the new sharing economy, the purposes for which TNCs collect,
store, use, and share consumer data are a matter of public interest.

3.2.3 TNCs’ Reluctance to Disclose Data

TNCs have repeatedly refused to hand over their data to regulators, claiming that
their business model and technology are proprietary.

58Hogan Lovells: Review and Assessment of Uber’s Privacy Program, p. 3, accessible at https://
newsroom.uber.com/wp-content/uploads/2015/01/Full-Report-Review-and-Assessment-of-
Ubers-Privacy-Program-01.30.15.pdf.
59Id.
60How Uber uses data science to reinvent transportation?, DeZyre, Aug. 4, 2016, https://www.
dezyre.com/article/how-uber-uses-data-science-to-reinvent-transportation/290.

https://newsroom.uber.com/wp-content/uploads/2015/01/Full-Report-Review-and-Assessment-of-Ubers-Privacy-Program-01.30.15.pdf
https://newsroom.uber.com/wp-content/uploads/2015/01/Full-Report-Review-and-Assessment-of-Ubers-Privacy-Program-01.30.15.pdf
https://newsroom.uber.com/wp-content/uploads/2015/01/Full-Report-Review-and-Assessment-of-Ubers-Privacy-Program-01.30.15.pdf
https://www.dezyre.com/article/how-uber-uses-data-science-to-reinvent-transportation/290
https://www.dezyre.com/article/how-uber-uses-data-science-to-reinvent-transportation/290


3 Ground Transportation Big Data Analytics and Third Party Validation. . . 61

In November 2014, the TLC passed rules requiring, among other things, that for-
hire vehicle (“FHV”) bases submit trip records to the TLC, similar to data requested
of medallion taxicabs. At the public hearing on the rules, representatives from both
Uber and Lyft testified in opposition to the proposed rules. Uber testified that the
collection of data created privacy concerns. Although Uber claimed that these new
rules would jeopardize trade secrets and that they were “unconstitutional,”61 Uber’s
own privacy policy62 allows for the sharing of user information, including location
data, in response to legal demands. As a result of Uber’s refusal to produce the
mandated information, the TLC briefly suspended five of Uber’s six bases in New
York City.63

A couple of years later, TNCs again objected to the sharing of data in the context
of the adoption of new rules by the TLC designed to reduce the risks of fatigued
driving among drivers of for-hire vehicles (“driver fatigue rules”).64 TNCs objected
to the data disclosure requirements provided under the new regulations, arguing that
these violate passengers’ privacy.65

The TLC published the final version of these rules on February 13, 2017. The new
rules—which went into effect 30 days after this publication—set daily and weekly
driving limits that will be calculated based on a method that incorporated feedback
from the for-hire vehicle (“FHV”) industry. The rules prohibit a taxi or FHV driver
from transporting passengers for more than 10 h in any 24-h period. This clock is
reset, and the 10 h period begins again, if a driver goes at least 8 consecutive hours
without transporting passengers. Drivers cannot transport passengers for more than
60 h in a single calendar week (Sunday to Saturday). Not only are drivers liable
for violations when they exceed these limits, but FHV bases are prohibited from
dispatching drivers who have exceeded either the daily or weekly limit. If a driver
is dispatched from multiple bases or operates as both a taxi driver and an FHV
driver, the total number of hours the driver operates either a taxi or FHV (from all
bases) will be combined to calculate the daily and weekly hours. However, if a driver
exceeds the daily or weekly limit only by combined hours driving for different FHV
bases, then only the driver is potentially liable for violations—not the FHV base.

In order to enforce these driver fatigue rules, the TLC requires FHV bases to
submit drop-off times and locations in order to track drivers hours (in addition
to pick-up times and location FHV bases were previously required to submit).

61Catherine Yang, For Now, Business as Usual for Uber in NYC Despite 5 Base Suspensions, The
Epoch Times, Jan. 7, 2015, http://m.theepochtimes.com/n3/1183267-for-now-business-as-usual-
for-uber-in-nyc-despite-five-base-suspensions/.
62See https://www.uber.com/legal/usa/privacy.
63Rebecca Harshbarger, Uber bases suspended after refusing to hand over trip records,
Jan. 7, 2015, http://nypost.com/2015/01/07/uber-bases-suspended-after-refusing-to-hand-over-
trip-records/.
64See http://www.nyc.gov/html/dcas/downloads/pdf/cityrecord/cityrecord-02-13-17.pdf.
65Brad Gerstman, Uber’s objections to city’s driver-fatigue rules ring hollow, Crain’s New
York, Jan. 26, 2017, http://www.crainsnewyork.com/article/20170126/OPINION/170129966/
ubers-objections-to-citys-driver-fatigue-rules-ring-hollow.
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Unlike the privacy concerns that stem from FHV apps that track the whereabouts
of customers after they have finished their rides, the TLC data to be collected will
simply be neighborhoods where riders are picked up and dropped off. To protect
trip details from the public, the TLC will also obscure license plates and medallions.
Consequently, one would never be able to ascertain the destination address or other
personal information about the passengers in the vehicle. The Commission already
has this information for yellow and green taxi fleets, but lacked drop-off data from
the black cars and other FHVs like Uber and Lyft.

In January 2015, Uber announced that it would share anonymized trip data with
the city of Boston, including the general area in which trips began and ended
(based on the city’s zip codes), distance traveled, trip duration, and time stamps.66

The city discovered issues with the data, including locational data that was too
broad for any meaningful analysis,67 and the data was shared in infrequent bulk
downloads, which was not helpful for city planners who were trying to analyze
traffic patterns on a daily or weekly basis. The city also criticized the agreement
between Uber and the city which restricted the number of agencies that could access
the data.68

In January 2017, Uber released a new online platform known as “Movement”
which provides detailed traffic patterns and travel times. This tool is currently only
available for city planners and local governments, but will be made available to
the public in the upcoming months.69 It will be useful for data analysts who seek
to learn more about traffic patterns and transportation networks in different cities.
Nonetheless, given Uber’s shaky track record privacy with user privacy, skeptics
are concerned that the anonymized and aggregated individual user data could be
reversed-engineered for malevolent purposes such as stalking, identity theft, and
financial fraud. Ultimately, it is argued that data anonymization should not be left
entirely to Uber but to independent, third-party organizations that represent the
privacy interests of users.70

66Adam Vaccaro, Uber to Hand Over Trip Data to Boston, Boston.com, Jan. 13, 2015, https://
www.boston.com/news/technology/2015/01/13/uber-to-hand-over-trip-data-to-boston.
67Adam Vaccaro, Boston wants better data from Uber, and is taking a roundabout route to try and
get it, Boston.com, June 28, 2016, https://www.boston.com/news/business/2016/06/28/uber-data-
boston-wants.
68Adam Vaccaro, Highly touted Boston-Uber partnership has not lived up to hype so far,
Boston.com, June 16, 2016, https://www.boston.com/news/business/2016/06/16/bostons-uber-
partnership-has-not-lived-up-to-promise.
69Alex Davies, Uber’s Mildly Helpful Data Tool Could Help Cities Fix Streets, Wired, Jan. 8, 2017,
https://www.wired.com/2017/01/uber-movement-traffic-data-tool/.
70Julia Franz, Uber is making ride-booking data publicly available. Is this a privacy Pandora’s
box?, Public Radio International, Feb. 4, 2017, https://www.pri.org/stories/2017-01-21/uber-
making-ride-booking-data-publicly-available-privacy-pandora-s-box.
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3.2.4 TNC’s Privacy and Security Issues

3.2.4.1 TNCs’ Failure to Protect Consumer Data

In spring 2014, Uber suffered a significant data breach that potentially exposed
drivers’ names, license numbers, Social Security Numbers as well as bank account
and routing numbers.71 Uber did not discover the breach until September 2014, and
only notified the drivers in February 2015.72 In March 2015, it was reported that
thousands of Uber customer logins were available for purchase for as little as $1
each on the anonymous “dark web.”73 Uber users have since allegedly been charged
for various fraudulent rides.74 Uber, however, rejected that these were the source of
the stolen logins.75

In January 2016, the New York State Attorney General announced a settlement
with Uber requiring the car service app to protect riders’ personal information.76

The settlement required Uber to encrypt rider geolocation information and adopt
other data security practices (among other things). Uber’s privacy and security
issues, however, remain unresolved. In October 2016, following a pattern of
complaints from Uber customers who have purportedly been charged for trips that
they did not take, security professionals called on the ride-sharing company to
conduct an investigation to determine if its database had been breached.77

The TNC business model also allows for drivers to provide transportation
services for multiple companies at the same time. A driver can accept a ride from a

71Uber Statement Update, posted by Katherine Tassi on June 17, 2016, available at: https://
newsroom.uber.com/statement-update/. In March 2015, a former Uber driver based in Portland,
Oregon filed a lawsuit against Uber alleging that the company failed to secure and safeguard its
drivers’ personally identifiable information, including names, drivers licenses numbers and other
personal information, and failed to provide timely and adequate notice to Plaintiff and other class
members that their private information had been stolen, in violation of California state law (Antman
v. Uber, Case No. 3:15-cv-01175-JCS (N.D. Ca)). Uber subsequently filed a John Doe lawsuit in
an attempt to identify the perpetrator of the breach (Uber Technologies, Inc. v. John Doe I, No. C
15-00908 LB (N.D. Cal. March 16, 2015)).
72Federal Trade Commission, In re: Uber and Consumer Privacy, EPIC Complaint, June 22, 2015,
p. 12.
73Joseph Cox, Stolen Uber Customer Accounts Are for Sale on the Dark Web for $1, Motherboard,
March 27, 2015, http://motherboard.vice.com/read/stolen-uber-customer-accounts-are-for-sale-
on-the-dark-web-for-1.
74Ramzy Alwakeel, Londoner hit with £3000 cab bill after ‘hackers’ rack up 142 Uber journeys,
The Evening Standard, March 30, 2015, http://www.standard.co.uk/news/london/londoner-hit-
with-3000-taxi-bill-after-hackers-rack-up-142-uber-journeys-10144655.html.
75Robert Hackett, Stolen Uber user logins are for sale on the dark web: only $1 each, Fortune,
March 30, 2015, http://fortune.com/2015/03/30/uber-stolen-account-credentials-alphabay/.
76Uber agrees to enhance user privacy in NY AG settlement, Jan. 7, 2016, http://pix11.com/2016/
01/07/uber-agrees-to-enhance-user-privacy-in-ny-ag-settlement/.
77Shanifa Nasser, Privacy experts call on Uber to investigate after man gets nearly $1000 bogus
bill, CBC News, Oct. 25, 2016, http://www.cbc.ca/news/canada/toronto/privacy-experts-call-on-
uber-to-investigate-after-man-gets-nearly-1000-bogus-bill-1.3819640.
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passenger through the Uber app for one trip, and then accept a ride through the Lyft
app for the next trip, using the same device for both. This adds a new element of
concern with regard to data security and who is able to access consumer data.

3.2.4.2 TNCs’ Misuse of Customer Data

In 2011, it was reported that Uber was tracking the whereabouts and movements
of customers and projecting such information on screens for entertainment at the
company’s launch parties.78 A year later, an Uber official revealed in a blogpost how
he would supposedly analyze anonymous ridership data in several cities across the
U.S. in order to predict customers’ overnight sexual liaisons—which Uber referred
to as “Rides of Glory.”79

In November 2014, reports surfaced that an Uber senior executive had allegedly
suggested that his company could spend $1 million on “digging up dirt” about unfa-
vorable reporters,80 and that an Uber official had tracked a reporter’s movements
without her permission.81 Similarly, another journalist claimed that she was warned
by sources at Uber that executives could be spying on her via her Uber usage.82

These various news reports drew attention to Uber’s “God View” tool that allowed
Uber employees to obtain the real-time and historic location data for a ride. In the
wake of these privacy scandals, Uber issued a statement insisting that it had a strict
policy prohibiting all employees at every level from accessing a rider’s or driver’s
data, with the exception of a “limited set of legitimate business purposes.”83

Uber can now potentially track the location of all its users, even when they
are not using the Uber app. Following an update launched in November 2016,
the company is asking customers permission to collect location data from the
moment they request a ride until 5 min after their trip ends, including when

78Kashmir Hill, ‘God View’: Uber Allegedly Stalked Users For Party-Goers’ Viewing Pleasure
(Updated), Forbes, Oct. 3, 2014, http://www.forbes.com/sites/kashmirhill/2014/10/03/god-view-
uber-allegedly-stalked-users-for-party-goers-viewing-pleasure/#9f7f2d23f84e.
79Craig Timberg, Nancy Scola, and Andrea Peterson, Uber Executive Stirs Up Privacy
Controversy, The Washington Post, Nov. 18, 2014, https://www.washingtonpost.com/business/
technology/uber-executive-stirs-up-privacy-controversy/2014/11/18/d0607836-6f61-11e4-ad12-
3734c461eab6_story.html?utm_term=.b239144d86de.
80Ben Smith, Uber Executive Suggests Digging Up Dirt On Journalists, BuzzFeed,
Nov. 17, 2014, https://www.buzzfeed.com/bensmith/uber-executive-suggests-digging-up-dirt-on-
journalists?utm_term=.tf3eA9nYa#.cuBZoLOlx.
81Johana Bhuiyan and Charlie Warzel, “God View”: Uber Investigates Its Top New York Executive
For Privacy Violations, BuzzFeed, Nov. 18, 2014, https://www.buzzfeed.com/johanabhuiyan/uber-
is-investigating-its-top-new-york-executive-for-privacy?utm_term=.yla05NMnx#.syoVgKDQZ.
82Ellen Cushing, Uber Employees Warned a San Francisco Magazine Writer That Executives
Might Snoop on Her, San Francisco Magazine, Nov. 19, 2014, http://www.modernluxury.com/
san-francisco/story/uber-employees-warned-san-francisco-magazine-writer-executives-might-
snoop-her.
83https://newsroom.uber.com/ubers-data-privacy-policy/.
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the app is running in the background of the customer’s phone.84 Uber laid the
groundwork for this app update in 2015 when it updated its privacy policy to allow
for collection of background location data, which sparked criticism from privacy
advocates and led the Electronic Privacy Information Center (“EPIC”) to file a
complaint with the FTC.85 Geolocation data, when linked together with the vast
array of personal data already collected by TNCs, offers an invaluable insight into an
individual’s life. In an effort to increase transparency about how it handles location
information, Uber announced in April 2017 the implementation of a new privacy
settings menu in its app which, among other things, would help users review their
location settings, and will make it easier for users to delete their accounts. Uber
also vowed to permanently delete users’ data 30 days after they have deleted their
account.86

Uber has repeatedly pointed out that it has clear privacy and security policies
against the access to, and use of, personal data outside of legitimate business
purposes. These purportedly include: facilitating payment transactions for drivers,
monitoring driver and rider accounts for fraudulent activities, and reviewing
specific rider or driver accounts in order to troubleshoot bugs. The data-handling
practices highlighted above appear inconsistent with Uber’s policies. It remains
unclear whether Uber has set up reliable data security protections. At the end of
November 2014, Uber hired a law firm to conduct an internal data-privacy review,
in a move intended to address the public backlash sparked by reports of Uber’s
controversial use of customer data.87 The privacy report was released in January
2015. Overall, the review of Uber’s privacy practices was positive, and the privacy
assessment called for additional actions, including increased employee privacy
training, improved transparency regarding the use of customer data and enhanced
access controls.88 Uber stated in early 2015 that it would implement all of these
recommendations. It should be noted that this report only focused on the review of

84Andrew J. Hawkins, Uber wants to track your location even when you’re not using the app,
The Verge, Nov. 30, 2016, http://www.theverge.com/2016/11/30/13763714/uber-location-data-
tracking-app-privacy-ios-android.
85In the Matter of Uber Technologies, Inc., Federal Trade Commission 152 3054, Complaint,
Request for Investigation, Injunction, and Other Relief Submitted by The Electronic Privacy
Information Center, https://epic.org/privacy/internet/ftc/uber/Complaint.pdf.
86See Uber Newsroom, Your Privacy Settings: All in One Place and Easier to Use (Apr. 28,
2017), https://newsroom.uber.com/your-privacy-settings-all-in-one-place-and-easier-to-use/; See
also Kate Conger, Uber adds privacy info and easy account deletion, TechCrunch (Apr. 28, 2017),
https://techcrunch.com/2017/04/28/uber-adds-privacy-info-and-easy-account-deletion/.
87Ellen Rosen, Uber Hires Hogan Lovells for Review: Business of Law, Bloomberg,
Nov. 21, 2014, https://www.bloomberg.com/news/articles/2014-11-21/uber-hires-hogan-lovells-
for-review-business-of-law.
88Jedidiah Bracy, Uber To Implement Privacy Program Recommendations, International Associ-
ation of Privacy Professionals, Feb. 2, 2015, https://iapp.org/news/a/uber-to-implement-privacy-
program-recommendations/.
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the company’s written privacy policies, rather than on their actual implementation
and enforceability. Some critics have questioned the credibility of this report.89

Uber’s illegal and predatory behavior is no accident.90 When some jurisdictions
sought to enforce the existing for-hire vehicle regulations against Uber, Uber
retaliated by developing a software program specifically designed to circumvent
law enforcement operations.91 As law enforcement officials issued cease and desist
letters, impounded vehicles, and issued penalties, Uber developed and employed
software and surveillance equipment to identify law enforcement officials to impede
their investigations.92

Uber is not the only ride-hailing company that has raised concerns about its
mishandling of customers’ information. In November 2014, a reporter claimed that
a Lyft executive had allegedly accessed her trip log information.93 Following this
report, Lyft announced a change in its internal privacy policies to limit employee
access to user data by instituting “tiered access controls” that would limit access to
user data to a subset of employees and contractors, with access to ride location data
restricted to an even smaller subset of people.94

3.2.4.3 Customer Data Communication to Third Parties

In February 2014, Miguel Garcia, a ride-hailing app user, brought a putative
class action against Lyft and Enterprise Holdings Inc., the former and present
owner of the ridesharing application “Zimride.”95 Garcia alleged that each time
he used the app, it automatically disclosed his personal information such as his
gender, age, zip code, travel plans, link to his Facebook profile and other data
to a third party analytics company called Mixpanel. Garcia further contended
that Mixpanel would typically use consumers’ personal information to compile

89Evan Schuman, Uber shows how not to do a privacy report, Computerworld, Feb. 5, 2015, http://
www.computerworld.com/article/2880596/uber-shows-how-not-to-do-a-privacy-report.html.
90Michael Horn, Uber, Disruptive Innovation And Regulated Markets, Forbes, June
20, 2016, https://www.forbes.com/sites/michaelhorn/2016/06/20/uber-disruptive-innovation-and-
regulated-markets/#140ed07237fb.
91Mike Isaac, How Uber Deceives the Authorities Worldwide, The New York Times,
March 3, 2017, https://www.nytimes.com/2017/03/03/technology/uber-greyball-program-evade-
authorities.html.
92Id.; Lori Aratani, Virginia officials order Uber, Lyft to stop operating in the state, The Washington
Post, June 5, 2014, https://www.washingtonpost.com/news/dr-gridlock/wp/2014/06/05/virginia-
officials-order-uber-lyft-to-stop-operating-in-the-state/?utm_term=.64e77d1054e8.
93Liz Gannes, It’s Not Just Uber: Tech Companies Snooping on Users Is All Too Common, Recode,
Nov. 20, 2014, http://www.recode.net/2014/11/20/11633100/tech-companies-snooping-on-users-
creepy-and-common.
94Liz Gannes, Lyft Limits Employee Access to Data After Re/code Report, Recode,
Nov. 21, 2014, http://www.recode.net/2014/11/21/11633164/lyft-limits-employee-access-to-data-
after-recode-report.
95Garcia v. Enter. Holdings, Inc., 78F. Supp. 3d 1125 (N.D. Cal., January 23, 2015).
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comprehensive profiles of consumers’ entire digital lives, which could be then sold
as a commodity.96 Garcia relied upon a specific provision of the California Invasion
of Privacy Act, which prohibits any person who, in the course of business, acquires
or has access to personal information concerning an individual, “for the purpose
of assisting private entities in the establishment or implementation of carpooling
or ridesharing programs” from disclosing that information to any other person or
using that information for any other purpose without the prior written consent of the
individual.

The Court found, however, that this provision did not apply to the case in issue
since Enterprise and Lyft were not “assisting private entities” under the law, but
the actual creators of the app.97 The Court also pointed out that Garcia had failed to
allege that Lyft, Enterprise or Zimride disclosed his information to Mixpanel for any
purpose other than establishing or implementing a rideshare or carpooling program.

Accordingly, the Court granted Lyft and Enterprise’s motion to dismiss, and
dismissed Garcia’s complaint (with permission granted to file an amended com-
plaint). Although Lyft and Enterprise were not found to have violated any privacy
law in this case, the latter illustrates how ride-hailing companies may transfer their
users’ personal data to third party companies, which raises questions as to the
security safeguards implemented for such transfers and by the TNCs’ contractors
themselves.

Communication of individuals’ personal information by TNCs to third-party
entities may not be limited to the private sector. According to its own transparency
report released in April 2016, Uber allegedly received 33 regulatory requests in the
second half of 2015 involving trip data for more than 12 million Uber users.98 Uber
was allegedly subpoenaed for rider data 312 times, for driver data 138 times, and for
general data 267 times between July 2015 and December 2015.99 Uber supposedly
handed over some data in more than 82% of those instances. The company also
purportedly received 90 search warrants, 30 emergency requests, 28 court orders
and produced information in about 80% of those cases.

3.2.4.4 Recommendations

So far, ride-hailing companies have pushed back against strong security protections
in favor of unbridled growth. However, as TNCs have become data repositories
with insight into individuals’ personal and work lives, how these companies protect

96Id. at 1130.
97Id. at 1134.
98See https://newsroom.uber.com/transparency-report-2015/.
99Duncan Macrae, Uber Driver/Customer Data Sharing Raises Privacy Concerns, TechWeekEu-
rope, April 13, 2016, http://www.techweekeurope.co.uk/e-regulation/legal/uber-drivercustomer-
data-sharing-raises-privacy-concerns-189921#HatvxQXEXXj52KA3.99.
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consumer data is important. TNC’s potential unlawful tracking of passengers and
consumer data collection along with lapses in privacy safeguards are troubling. The
Federal Trade Commission (“FTC”) and other regulators have become increasingly
concerned with the privacy implications of mobile and geolocation data and mobile
app data security.100

Whether changes are on the way on a national legislative level, it is completely
within the power of state and local legislators or government transportation regula-
tors to require, as a condition to the licensure of TNCs, that privacy protections be
put into place. To the extent privacy measures are currently in place for technology
used in taxicabs and/or limousines, TNCs should be held to the same standard. As
jurisdictions enact new TNC legislation, or revisit such legislation, it is incumbent
on our lawmakers to ensure that appropriate and adequate privacy safeguards are
inserted into the law in a manner that protects against the inappropriate use of data,
or to seek to prevent privacy or security breaches from taking place.

For example, new TNC laws, if not invalidated or repealed for other reasons,
should insert new provisions that: (1) impose restrictions on access to data internally
and to private third parties without express permission from passengers as to the
specific entity or purpose for which such data will be used; (2) create security
safeguards imposed and monitored by regulators to ensure that hackers cannot
access such TNC data; and (3) stipulate a requirement, as exists in San Francisco
and New York City as well as in various Australian states and elsewhere, for the
companies doing business with TNCs or TNCs themselves to submit electronic
trip sheet data while on-duty, pick-up, and drop-off, as well as fare box data at a
minimum. By so doing, regulators can ensure compliance with various laws, and
analyze industry economics with a solid factual basis.

100In the FTC’s seminal 2012 report, Protecting Consumer Privacy in an Era of Rapid Change
(“2012 Privacy Report”), the Commission made plain its “particular concerns of location data in
the mobile context” and called on “entities involved in the mobile ecosystem to work together to
establish standards that address data collection, transfer, use, and disposal, particularly for location
data.” (http://www.ftc.gov/sites/default/files/documents/reports/federal-trade-commission-
report-protecting-consumer-privacy-era-rapid-change-recommendations/120326privacyreport.
pdf.) Since then, the FTC has issued further guidelines advising mobility app companies on
best practices with respect to the development of privacy policies and practices (http://www.
business.ftc.gov/documents/bus81-marketing-your-mobile-app; http://www.business.ftc.gov/
documents/bus83-mobile-app-developers-start-security; http://www.ftc.gov/sites/default/files/
documents/reports/mobile-privacy-disclosures-building-trust-through-transparency-federal-
trade-commission-staff-report/130201mobileprivacyreport.pdf).

http://www.ftc.gov/sites/default/files/documents/reports/federal-trade-commission-report-protecting-consumer-privacy-era-rapid-change-recommendations/120326privacyreport.pdf
http://www.ftc.gov/sites/default/files/documents/reports/federal-trade-commission-report-protecting-consumer-privacy-era-rapid-change-recommendations/120326privacyreport.pdf
http://www.ftc.gov/sites/default/files/documents/reports/federal-trade-commission-report-protecting-consumer-privacy-era-rapid-change-recommendations/120326privacyreport.pdf
http://www.business.ftc.gov/documents/bus81-marketing-your-mobile-app
http://www.business.ftc.gov/documents/bus81-marketing-your-mobile-app
http://www.business.ftc.gov/documents/bus83-mobile-app-developers-start-security
http://www.business.ftc.gov/documents/bus83-mobile-app-developers-start-security
http://www.ftc.gov/sites/default/files/documents/reports/mobile-privacy-disclosures-building-trust-through-transparency-federal-trade-commission-staff-report/130201mobileprivacyreport.pdf
http://www.ftc.gov/sites/default/files/documents/reports/mobile-privacy-disclosures-building-trust-through-transparency-federal-trade-commission-staff-report/130201mobileprivacyreport.pdf
http://www.ftc.gov/sites/default/files/documents/reports/mobile-privacy-disclosures-building-trust-through-transparency-federal-trade-commission-staff-report/130201mobileprivacyreport.pdf
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3.3 Part III: Ground Transportation and the Future
of Big Data

3.3.1 The Emergence of TNCs as Big Data Companies

As discussed above, data is one of the most valuable assets of TNCs. Uber, for
instance, knows where the platform’s users live, work, eat, travel, stay, and when
they do all these things.101 This data can be sold to third-party companies, thereby
creating a new source of revenue for e-hailing companies.

In February 2015, Uber announced its partnership with Starwood Hotels &
Resorts.102 The reward program allows Uber riders who are Starwood Preferred
Guest (“SPG”) members to earn “Starpoints” during any Uber ride. To participate,
Uber users who are new or existing SPG members need to link their SPG and Uber
accounts. After completing a qualifying stay at a Starwood hotel, SPG members
can start earning one “Starpoint” for every $1 spent on Uber, and additional
bonus “Starpoints” can be accumulated during Starwood hotel stays. In return,
customers who opt in let Uber share with Starwood Uber ride data, including the
passenger’s name, email, photo, pick-up and drop-off locations and times, fare
amounts, distances traveled, and Uber products used.103

3.3.2 Use of Data by Regulators and Academia

Transportation data has been used by regulators and academia for a variety of
purposes, most notably for planning and regulation as well as studies related to real-
time operation. An example of the former includes a study conducted by the TLC
in 2013 to determine the best location to install electric vehicle charging stations
based on demand and supply factors. On the demand side, the level of taxi pick-ups
and drop-offs pointed to Manhattan and Western Queens as ideal locations (see Fig.
3.4). On the supply side, it was found that NYC’s grid capacity could very well
support 350 quick chargers, but with significant constraints in certain parts such as
West/Central Midtown and Long Island City.104

Using NYC taxi trip data, researchers from Purdue University analyzed spatial
and temporal patterns of taxi demand, potential unbalanced trip pattern, intrinsic
taxi trip classes (using two-step clustering algorithm) and taxi trip mobility (based

101Ron Hirson, Uber: The Big Data Company, Forbes, March 23, 2015, https://www.forbes.com/
sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f.
102See https://newsroom.uber.com/revving-up-rider-rewards-with-starwood-hotels/.
103Ron Hirson, Uber: The Big Data Company, Forbes, March 23, 2015, https://www.forbes.com/
sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f.
104http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf.

https://www.forbes.com/sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f
https://www.forbes.com/sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f
https://newsroom.uber.com/revving-up-rider-rewards-with-starwood-hotels/
https://www.forbes.com/sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f
https://www.forbes.com/sites/ronhirson/2015/03/23/uber-the-big-data-company/#3f3899318c7f
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
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Fig. 3.4 Chargers allocation based on taxi activity. Source: http://www.nyc.gov/html/tlc/
downloads/pdf/electric_taxi_task_force_report_20131231.pdf. (Note: Color key not available
from Source)

on overall travel distance distribution). The study concluded the commonality of
unbalanced taxi trips with urban boundaries being a major impediment factor for
mobility.105 This finding was confirmed by another study using Geographically
Weighted Regression (“GWR”) to model spatial heterogeneity of taxi ridership.
In addition, the study also found that medium income level reduces the number

105Xinwu Qian, Xianyuan Zhan and Satish V. Ukkusuri, Characterizing Urban Dynam-
ics Using Large Scale Taxicab Data, http://www.springer.com/cda/content/document/cda_
downloaddocument/9783319183190-c2.pdf?SGWID=0-0-45-1508574-p177357756.

http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
http://www.springer.com/cda/content/document/cda_downloaddocument/9783319183190-c2.pdf?SGWID=0-0-45-1508574-p177357756
http://www.springer.com/cda/content/document/cda_downloaddocument/9783319183190-c2.pdf?SGWID=0-0-45-1508574-p177357756
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of taxi trips at particular places, and established the positive correlation between
accessibility to subways and taxi ridership.106

Another study examined the labor supply of taxicab drivers using their work
hours and collected fares. Using T-PEP data of every taxi trip in January, April,
July, and October of 2013, the study provided empirical support of the income-
targeting hypothesis and found January as the month when the behavior was
most evident. This observation would not have been possible without big data, as
limited data could significantly bias the analysis. The TLC’s T-PEP data provided
a unique opportunity to conduct empirical analyses of labor supply theories which
contradicted earlier studies.107

On matters related to real-time operations, several numerical experiments con-
ducted using NYC taxi trip data show the effectiveness of time-of-day (“TOD”) pric-
ing in the real world. Specifically, the results suggest that by adopting the approxi-
mate dynamic programming (“ADP”) approach, TOD pricing may increase daily
cab revenue by 10%.108 Another proposed optimization procedure for dynamic
ridesharing systems shows a mean delay per user of about 1 min and reduction
of match refusals up to 13%.

3.3.3 Future Uses of Data

Data analysis is central to the development of practical policy solutions. Examples
include the identification of traffic patterns and road planning; bridge and road
maintenance; and communication of real-time traffic information. Data has been
successfully used to develop and implement new policies designed to improve
transportation services and public safety.

3.3.3.1 Transportation Planning and Improved Taxi Service

The Boro Taxi Program illustrates how data analysis has the potential to be used
to address transportation policy and planning issues, and the need for regulators
to have access to stakeholders’ data. However, although e-hailing companies have
become major players on the transportation scene, they still share little information
with the public.

106Xinwu Qian and Satish V. Ukkusuri, Spatial variation of the urban taxi ridership using GPS
data, https://www.researchgate.net/publication/273792532_Spatial_variation_of_the_urban_taxi_
ridership_using_GPS_data.
107Ender Faruk Morgul and Kaan Ozbay, Ph.D., Revisiting Labor Supply of New York City Taxi
Drivers: Empirical Evidence from Large-scale Taxi Data, http://engineering.nyu.edu/citysmart/
trbpaper/15-3331.pdf.
108Xinwu Qian and Satish V. Ukkusuri, Time-of-Day Pricing in Taxi Markets, https://www.
researchgate.net/publication/308308542_Time-of-Day_Pricing_in_Taxi_Markets.

https://www.researchgate.net/publication/273792532_Spatial_variation_of_the_urban_taxi_ridership_using_GPS_data
https://www.researchgate.net/publication/273792532_Spatial_variation_of_the_urban_taxi_ridership_using_GPS_data
http://engineering.nyu.edu/citysmart/trbpaper/15-3331.pdf
http://engineering.nyu.edu/citysmart/trbpaper/15-3331.pdf
https://www.researchgate.net/publication/308308542_Time-of-Day_Pricing_in_Taxi_Markets
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Originally, only yellow taxicabs were permitted to pick up passengers in response
to a street hail. However, an analysis of trips using GPS by the TLC revealed
that 95% of yellow taxi pick-ups occurred in Manhattan below 96th Street and at
John F. Kennedy International Airport and LaGuardia Airport.109 This resulted in
significantly lower access to legal and safe taxi rides for people in outer boroughs
and upper Manhattan, as they often had to rely on street pick-ups by liveries or
unlicensed vehicles. To fill in the gaps, the Five Borough Taxi Plan was started
with the Street Hail Livery program that allows Boro Taxis to pick up street hail
passengers in the Bronx, Brooklyn, Queens (except the airports), Staten Island, and
northern Manhattan (north of West 110th Street and East 96th Street).

The Boro Taxi program addresses 5 major issues in NYC’s taxi and for-hire
vehicle industries:

• Mobility: Neighborhoods outside Manhattan previously lacked access to legal
point-to-point transportation without calling ahead.

• Car Ownership: Taxis are a form of car sharing and a well-functioning taxi
system helps provide alternatives to car ownership.

• Service Quality: The quality of street-hail service available outside Manhattan
was inconsistent and exposed passengers to fare haggling and other inconve-
niences.

• Passenger Safety: Many passengers have difficulty differentiating legal liveries
from illegal cabs.

• Illegal Activity: Passengers outside Manhattan who wanted on-demand service
by street hailing had no choice but to rely on drivers who were violating the law.

Similarly, having access to TNCs’ data can enable policy-making to be more
effective.

In January 2015, UberX announced that it would start sharing anonymized trip
data with the City of Boston on a quarterly basis as part of the company’s new
national data-sharing policy.110 This information could have potentially been very
helpful in analyzing the net effects of surge pricing in the Boston community.111 The
goal of the agreement was to give Mayor Martin J. Walsh’s administration unique
insight into how people get around the City of Boston, and assist in the development
of the City’s transportation policy and planning goals.112 Unfortunately, Uber’s
failure to provide useful data has made it difficult to conduct any worthwhile
analysis.113 Uber agreed to hand over all trip data on a quarterly basis, but in

109See http://www.nyc.gov/html/tlc/html/passenger/shl_passenger_background.shtml.
110Emily Badger, Uber offers cities an olive branch: your valuable trip data” The Washington Post,
Jan. 13, 2015, https://www.washingtonpost.com/news/wonk/wp/2015/01/13/uber-offers-cities-an-
olive-branch-its-valuable-trip-data/?utm_term=.5e54580cdda2.
111Adam Vaccaro, Highly touted Boston-Uber partnership has not lived up to hype so far,
Boston.com, June 16, 2016, https://www.boston.com/news/business/2016/06/16/bostons-uber-
partnership-has-not-lived-up-to-promise.
112Id.
113Id.

http://www.nyc.gov/html/tlc/html/passenger/shl_passenger_background.shtml
https://www.washingtonpost.com/news/wonk/wp/2015/01/13/uber-offers-cities-an-olive-branch-its-valuable-trip-data/?utm_term=.5e54580cdda2
https://www.washingtonpost.com/news/wonk/wp/2015/01/13/uber-offers-cities-an-olive-branch-its-valuable-trip-data/?utm_term=.5e54580cdda2
https://www.boston.com/news/business/2016/06/16/bostons-uber-partnership-has-not-lived-up-to-promise
https://www.boston.com/news/business/2016/06/16/bostons-uber-partnership-has-not-lived-up-to-promise
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addition to failing to cooperate at times, the data handed over does not show
specifically where riders’ trips began or ended.114 Instead, the pick-up and drop-off
locations only provide the zip codes, not the actual address.115 Because Boston’s
zip code areas are too large, the current data sets do not allow for analysis of
how proximity to public transit affects Uber usage, how a new building affects
transportation patterns, or how service in particular neighborhoods has been affected
by surge pricing.116

The lack of sufficient data on TNCs has made it equally difficult to assess their
impact on the environment, which stands as one of the many repercussions of the
unbridled growth of TNCs. The number of active vehicles on the streets and the
growth of vehicles for the sole purpose of providing for-hire transportation, which
will inherently require longer than average vehicle miles, have been a concern for
policymakers who seek to improve air quality, reduce pollution, and combat global
climate change. Recent epidemiological studies have also shown elevated risks
of non-allergic respiratory morbidity, cardiovascular morbidity, cancer, allergies,
adverse pregnancy and birth outcomes, and diminished male fertility for drivers,
commuters, and individuals living near roadways.117 The lack of sufficient data
to correctly measure the impact of the expansion rate of Uber and other TNCs in
many cities has exacerbated the problem. These companies do not provide data to
substantiate the claims they make about their success in reducing the number of
vehicles on the roads, despite the public representations that their core business is
developed based on TNC claims of being “everyone’s private driver.”118

Similarly, because TNCs strictly control their data—and much of the data they
release to the public portrays them in a positive light—it is difficult to definitively
determine the net effects of surge pricing on the wider transportation industry, its
consumers and stakeholders.

3.3.3.2 Law Enforcement

Data can be used to enforce traffic infractions and regulations as well as deter fraud.
The enforcement of the recently adopted TLC’s Driver Fatigue Rules illustrates
this point. Medallion and Boro Taxis are equipped with trip-recording equipment,
and such records are transmitted to the TLC on a regular basis. FHV bases transmit
records of the for-hire vehicles that they dispatch on a regular basis. TLC will review

114See id. Note: Emails show that the city agreed to the zip code limitations as the agreement was
drafted in early 2015.
115Id.
116Id.
117World Health Organization Europe, Health effect of transport-related air pollution, 2005, http://
www.euro.who.int/__data/assets/pdf_file/0006/74715/E86650.pdf.
118Felix Salmon, The economics of “everyone’s private driver”, Medium, June 1, 2014,
https://medium.com/@felixsalmon/the-economics-of-everyones-private-driver-464bfd730b38#.
orq4df9gv.
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these trip records after submission to calculate the hours in which a driver is picking
up passengers in any 24-h or 7-day period. Trips by a driver who accepts dispatches
from multiple bases, or who operates both taxis and FHVs, will be combined to
determine the total number of hours worked. Bases will only be responsible for
trips that they dispatch, not dispatches that their affiliated drivers accept through
other bases or street hails accepted by Boro Taxis.119

Outside of the driver fatigue context, this new data will also allow the TLC
to better enforce complaints by passengers, pedestrians, and motorists, and will
support enforcement against illegal solicitations by FHV drivers.

3.3.3.3 Public Safety

One of the boldest initiatives to come out of New York City Mayor Bill de
Blasio’s administration is Vision Zero, an ambitious plan to eliminate traffic
fatalities.120 A series of high profile crashes involving the deaths of pedestrians
in the beginning of 2014 prompted Mayor de Blasio to quickly fulfill his campaign
promise by announcing, on January 15, 2014, the creation of the Vision Zero task
force comprised of representatives from the New York City Police Department,
the New York City Department of Transportation (“NYC DOT”), the TLC and
NYC Department of Health and Mental Hygiene. The task force was charged
with developing a comprehensive Vision Zero roadmap to eliminate deadly traffic
crashes, especially those involving pedestrians. In a little over a month, on February
18, 2014, the task force developed an action plan with 63 recommendations to
reduce traffic deaths. The action plan contains proposals for several City agencies,
and includes several state and city legislative initiatives. Working in partnership with
the Mayor, the New York City Council adopted an historic package of 11 bills, and
six resolutions to help implement Vision Zero.121

Many of these initiatives are implemented with new technology that helps correct
human errors and enforce laws. Vision Zero is not a new idea. Sweden first
developed the idea of a Vision Zero Plan in 1995. By 1997, Sweden had adopted
legislation to implement the goals of eliminating traffic fatalities and serious deaths

119See http://rules.cityofnewyork.us/content/driver-fatigue-rules.
120See Vision Zero: A Technology, Legal and Policy Overview (New York City & Beyond); TLC
Magazine; Black Car News, June 2014; available at: http://www.tlc-mag.com/archive_issues/in_
focus_july14.html.
121The bills require the City to, among other things: study left hand turns and how to make arterial
streets safer as part of a study of pedestrian fatalities and serious injuries due every 5 years; create
at least 7 slow zones and 50 slow zones around schools annually, and report on these slow zones
annually; suspend the license of any taxi driver who receives a summons for causing a critical
injury or death, as well as lifting the suspension of a driver if cleared of charges, and to revoke the
driver’s license if found guilty; make failure to yield to a pedestrian or bicyclist a traffic infraction,
as well as make contact with a pedestrian crossing the street a misdemeanor unless the pedestrian
initiated contact; and create enhanced penalties for dangerous taxi and for-hire vehicle drivers.

http://rules.cityofnewyork.us/content/driver-fatigue-rules
http://www.tlc-mag.com/archive_issues/in_focus_july14.html
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by 2020, and implemented several initiatives including annual evaluations of road
data. Vision Zero would not be possible without analysis of data involving traffic
and crashes. With TNCs logging more miles every year, it is important to have their
trip data to support any Vision Zero initiatives.

The TLC adopted the Vehicle Safety Technology Pilot as a Vision Zero initiative
in 2014. This program involves the use of black boxes to reduce dangerous driving
habits such as speeding, distracted, aggressive, or erratic driving that may lead
to collisions.122 Black boxes are different than Event Data Recorders (“EDRs”)
because they record data continuously. EDRs, on the other hand, only collect data
over a brief period of time, specifically during collisions.123 Along with GPS
units, cameras, and accelerometers, black boxes collect telematics such as speed,
G-force, braking and acceleration patterns. The data is used to warn drivers who
have surpassed speed limits and also to disable taxi meters.124 Besides the drivers,
telematics can also be accessed by fleet managers or vehicle owners through online
portals or the cloud. In the aftermath of crashes, black boxes can provide crucial
information on the causes of accidents such as hard braking, hard acceleration, hard
turning, and abrupt lane changes.125 This data is far more accurate than traditional
diagnostics for accidents based on skid marks and steel deformation.126 Importantly,
the data can be used for investigation of insurance claims, identification of driving
patterns or alleged criminal activity, and traffic law enforcement.

3.4 Conclusion and Recommendations: A Need for Third
Party Validation

3.4.1 Deficiencies of the TNCs’ Self-Regulation Model

The essence of Transportation Network Company (“TNC”) laws revolves around
a “we can do it faster and better than government” attitude. TNC laws generally
transfer the responsibility of conducting background checks and vehicle inspections
with less stringent requirements from regulators to the TNC so that they can sign
up as many drivers as possible. However, there is an ulterior motive, as no app-
based dispatch model works without having an adequate supply of drivers. It is too

122See http://www.nyc.gov/html/tlc/html/industry/veh_safety_tech_pilot_program.shtml.
123See http://www.nyc.gov/html/tlc/downloads/pdf/tlc_black_box_rfi_final.pdf.
124Jonathan Lemire, New York City Council passes Vision Zero legislation, The Associated Press,
May 29, 2014, http://abc7ny.com/traffic/nyc-council-passes-vision-zero-traffic-safety-legislation/
83340/.
125See http://www.nyc.gov/html/tlc/downloads/pdf/second_vehicle_safety_technology_report.
pdf.
126Barry Nalebuff and Ian Ayres, Why Not?: How to Use Everyday Ingenuity to Solve Problems
Big and Small, Harvard Business School Press, 2003.
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costly and difficult to entice and subsidize the transfer of professionally licensed
black car and taxicab drivers to TNCs (although this was done at a very high cost by
Uber in New York City). TNCs claim that college students and part-time workers
would be discouraged by the process of purchasing insurance, completing physical
paperwork, leaving their homes or computers and undertaking a simple 5 min
fingerprint check. While there is some truth to the convenience factor, the motive of
TNCs is to attract more drivers by making it easier for drivers to become approved
as TNC drivers while managing and assuming the risks of some potentially unsafe
or inexperienced drivers who slip through the cracks and cause harm to others.
The self-regulation model allows the TNCs to control the information pertaining to
public incidents such as sexual assaults and crashes, and discourages further media
coverage as such information—which is of public interest—has been labeled as
“proprietary” and not subject to public disclosure laws that keep such stories and
criticism alive. The self-regulation model is an effort to control information, make
licensing more efficient and to facilitate a less costly market takeover.

It is possible to engage in modified self-regulation of transportation companies,
as is done with trucking and limousine companies engaged in interstate commerce
by the U.S. Department of Transportation’s Federal Motor Carrier Safety Adminis-
tration (“FMCSA”). The FMCSA requires that interstate truckers and drivers obtain
medical exams127 and not work more than a certain number of hours during a
time period for public safety reasons.128 FMCSA-licensed carriers must collect
information ensured by Federal auditor compliance.129 As such, the key ingredients
for the success of a self-regulation system are auditing resources and significant
penalties and fines to serve as an appropriate and effective deterrent. Without
unbridled access to TNC data to audit real-time performance and compliance at all
levels, including the ability to impose significant fines, this model is doomed to fail.
In general, governments, and not private parties, should be the ones who regulate;
but if TNCs are allowed to engage in self-regulation due to the lack of government
resources, they should be required to pay for enforcement resources and provide
their data for auditing and compliance.

3.4.2 Enforcement of TNC Laws

Since the advent of disruptive for-hire ground transportation app-based TNCs, such
as Uber and Lyft, many laws have been enacted throughout the United States to
permit market entry of TNCs through partial deregulation and self-regulation of
these services, mostly at a State level after facing opposition in many localities

127See https://www.fmcsa.dot.gov/faq/Medical-Requirements.
128See https://www.fmcsa.dot.gov/regulations/hours-of-service.
129See https://www.fmcsa.dot.gov/international-programs/certification-safety-auditors-safety-
investigators-and-drivervehicle.
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(“TNC laws”). TNCs have, for the most part, pushed for statewide regulation
and laws that semi-legitimize their business model, because doing so at the state
level involves conceivably less lobbying, legal, and media-related resources than
engagement in a much larger number of municipalities, counties, and/or villages.
TNCs have recognized that states typically lack the same enforcement capabilities
as localities, and it is no mistake that state regulation has been sought.

As of March 2017, 43 States and the District of Columbia have passed some
sort of TNC legislation.130 These TNC laws define a TNC by describing the same
exact activity or service performed by taxicabs and limousines—transporting a
paying passenger from point A to point B—and specifically exempt incumbent
operators.131 Several of the newly enacted laws are “cookie cutter” versions of one
another, which provide modest standards with which TNCs must comply in the areas
of: licensing; insurance; driver vetting; vehicle standards; and accessibility.

For example, in California, some TNC regulatory requirements include:

• Conducting, or have a third party conduct, a local and national criminal back-
ground check for each participating driver that shall include both a multistate and
multi-jurisdiction criminal records locator or other similar commercial nation-
wide database with validation; and a search of the United States Department of
Justice National Sex Offender Public Web site.132

• Inspecting all vehicles and maintaining the records of such inspections in case of
an audit.133

In Colorado, TNC regulatory requirements include:134

• Obtaining and reviewing a criminal history record check for the individual before
permitting an individual to act as a driver on their digital network;

• Maintaining copies of TNC medical examiner’s certificates for all TNC drivers
that are authorized to access its digital platform;

130See https://tti.tamu.edu/policy/technology/tnc-legislation/.
131For example, although many taxicab and limousine companies utilize a digital platform such
as a website or App allowing passengers to book trips, Tennessee defines a TNC as “a business
entity operating in this state that uses a digital network to connect riders to TNC services by
TNC drivers” and explicitly distinguishes a TNC “from a taxi service, limousine service, shuttle
service, or any other private passenger transportation services that are regulated pursuant to
present law.” See https://trackbill.com/bill/tn-hb992-transportation-dept-of-as-enacted-enacts-
the-transportation-network-company-services-act-amends-tca-title-7-title-54-title-55-title-56-
and-title-65/1135990/.
132See Assembly Bill No. 1289, Chapter 740, approved by the Governor on Septem-
ber 28, 2016, available at: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=
201520160AB1289.
133State of California Public Utilities Commission, Transportation License Section State of
California Public Utilities Commission Basic Information for Transportation Network Com-
panies and Applicants, p. 4, http://www.cpuc.ca.gov/uploadedfiles/cpuc_public_website/content/
licensing/transportation_network_companies/basicinformationfortncs_7615.pdf.
134See Code of Colorado Regulations, Sections 6700, et seq. https://drive.google.com/file/d/
0B8qvU2knU8BkRHhad0EwZVVuVTA/view.

https://tti.tamu.edu/policy/technology/tnc-legislation/
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https://trackbill.com/bill/tn-hb992-transportation-dept-of-as-enacted-enacts-the-transportation-network-company-services-act-amends-tca-title-7-title-54-title-55-title-56-and-title-65/1135990/
https://trackbill.com/bill/tn-hb992-transportation-dept-of-as-enacted-enacts-the-transportation-network-company-services-act-amends-tca-title-7-title-54-title-55-title-56-and-title-65/1135990/
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160AB1289
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160AB1289
http://www.cpuc.ca.gov/uploadedfiles/cpuc_public_website/content/licensing/transportation_network_companies/basicinformationfortncs_7615.pdf
http://www.cpuc.ca.gov/uploadedfiles/cpuc_public_website/content/licensing/transportation_network_companies/basicinformationfortncs_7615.pdf
https://drive.google.com/file/d/0B8qvU2knU8BkRHhad0EwZVVuVTA/view
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• Maintaining the following data for each prearranged ride, as applicable, for a
minimum of 1 year from the date of each such prearranged ride: the personal
vehicle’s license plate number; the identity of the driver; the identity of the
matched individual using the TNC application to request a prearranged ride; the
date and time of the rider’s request for service; the originating address; the date
and time of pick-up; the destination address; and the date and time of drop-off;

• Conducting or having a vehicle inspector conduct an initial safety inspection of
a prospective driver’s vehicle before it is approved for use as a TNC vehicle and
at least annual periodic inspections of TNC vehicles;

• Adopting a policy designed to ensure that, after 16 cumulative hours logged
into the TNC’s digital network in a calendar day, the driver shall log out of the
TNC’s digital network for eight consecutive hours; enforcing this policy through
appropriate monitoring of available data and administration of disciplinary
actions;

• Adopting a policy designed to ensure that no driver is logged in to the TNC’s
digital network for more than 70 h in a consecutive 7-day period; enforcing this
policy through appropriate monitoring of available data and administration of
disciplinary actions.

This self-regulatory TNC framework has been exposed as having many defi-
ciencies. In April 2017, Massachusetts officials disqualified over 8000 Uber, Lyft,
and other app-based vehicle drivers for failing a criminal background check.135

According to the report: “Hundreds were disqualified for having serious crimes
on their record, including violent or sexual offenses, and others for driving-
related offenses, such as drunken driving or reckless driving, according to the state
Department of Public Utilities”.136 Also disqualified were 51 sex offenders and
352 offenders in incidents related to “Sex, Abuse, and Exploitation.”137 Despite
the inferior background checks TNCs conduct, a plethora of convicts of criminal
offenses were also recently discovered in Boston and Houston.138

3.4.3 The Solution of a Third-Party Validator

A third-party validator hired by the government and paid for by the TNCs to collect,
maintain, and analyze data is the solution to the different issues raised in this chapter.

135Adam Vaccaro and Dan Adams, Thousands of current Uber, Lyft drivers fail new background
checks, The Boston Globe, April 5, 2017, http://www.bostonglobe.com/business/2017/04/05/uber-
lyft-ride-hailing-drivers-fail-new-background-checks/aX3pQy6Q0pJvbtKZKw9fON/story.html.
136Id.
137Id.
138Id.; Joel Eisenbaum, Houston mayor: 50 percent of Uber driver applicants have crimi-
nal record, Click2Houston, March 30, 2017, http://www.click2houston.com/news/investigates/
houston-mayor-50-percent-of-uber-driver-applicants-have-criminal-record.

http://www.bostonglobe.com/business/2017/04/05/uber-lyft-ride-hailing-drivers-fail-new-background-checks/aX3pQy6Q0pJvbtKZKw9fON/story.html
http://www.bostonglobe.com/business/2017/04/05/uber-lyft-ride-hailing-drivers-fail-new-background-checks/aX3pQy6Q0pJvbtKZKw9fON/story.html
http://www.click2houston.com/news/investigates/houston-mayor-50-percent-of-uber-driver-applicants-have-criminal-record
http://www.click2houston.com/news/investigates/houston-mayor-50-percent-of-uber-driver-applicants-have-criminal-record
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A third-party validator would collect, monitor, and audit the aforementioned items
including, but not limited to, granular pick-up and drop-off locations and times,
collision or “black box” data, and duration of trips. A third-party validator would be
able to test data accuracy, protect trade secrets, provide transparency, and assist with
law enforcement, and enable regulators to access this information under conditions
acceptable to the TNCs to assess market conditions and make policy decisions.

In general, governments, and not private parties, should be in charge of regulating
the ground transportation industry. However, since TNCs are allowed to self-
regulate in many jurisdictions and due to the lack of government resources, they
should be required to pay for a third-party validator to ensure their data is accurate
and turn over their data to facilitate auditing and compliance. As such, the key
ingredients for the success of a self-regulation system are auditing resources, and
significant penalties and fines to serve as an appropriate and effective deterrent.
Without unbridled access to TNC data to audit real-time performance and compli-
ance at all levels, including the ability to impose significant fines, public safety is
jeopardized and regulators’ responsibilities to make policy decisions hampered.

Due to the lack of either appropriate TNC standards or any commitment to
enforcement at the local level, TNCs should be required to provide data in an
anonymized format or lockbox via an approved third party administrator hired by
the government. The law can create an exemption from Freedom of Information
Laws (“FOIL”)139—which could otherwise be an open platform for public use
of the data—and allow access exclusively to government regulators for specific
investigatory or data collection purposes that are clearly defined (i.e., for fare
increases; traffic or environmental studies; to investigate crimes and complaints;
or to return lost property). There is a precedent where some states have made FOIL
exemptions for information received from financial firms that manage the public
pension funds, finding that such information is proprietary.

It is imperative that third-party validators are competent in big data analytics,
specifically data mining, machine learning, and predictive modeling. Importantly,
these validators should have successful track records in providing third-party
auditing and verification of state transportation agencies and/or private companies
that are involved in data analytics and data management. In the ideal scenario, they
should also have sufficient experience in managing information systems related to
the Internet of Things (“IoT”) and autonomous vehicles (“AV”). The IoT and AV
are some of the emerging technologies within the intelligent transportation systems
(“ITS”), which would bring about an increasing volume, velocity and veracity of
ground transportation data.

139FOIL laws usually have provisions for information determined to be exempt from disclosure for
public policy reasons. For instance, New York State’s FOIL Law contains exemptions for certain
information including information that if disclosed would constitute an unwarranted invasion of
personal privacy. (See NYS Public Officers Law §87(2)). The newly adopted New York State TNC
law exempts from public disclosure the names and identifying information of TNC drivers obtained
for an audit (See New York State Vehicle and Traffic Law §1698 2., effective June 29, 2017).
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We are on a collision course between private monetization and control of ground
transportation data, and the desire for government regulators and agencies to access
such data for compliance and planning purposes. There is a trend in cities to create
open data platforms to not only study smart city data point in the academic research
and government policy arena, but also to provide such data to private individuals
and companies to spur innovation, including the creation of smartphone applications
and new technological products and services. Universities and academic researchers
also crave ground transportation data for the purpose of study and analysis to publish
papers that offer new solutions to longstanding transit problems.

The desire for private companies, as part of their business model, to protect
intellectual property rights and maintain valuations to withhold this information
from their competitors, the government and academics, is a topic for debate which
will continue for some time. Due to Federal and State Sunshine Laws (or Open
Government Laws such as the Freedom of Information Laws enacted following the
Nixon-Watergate scandal of the 1970s), providing such data to the government may
ensure that any member of the public can access this now public data.

The solution to this conflict could very well be laws that exempt such data
from sunshine laws, to preserve personal privacy. Or, more appropriately, to allow
data to be anonymized, collected, and aggregated by a third party private vendor,
with contracts to ensure data security and privacy, and to allow a lockbox or data
commons to be accessed by the public, the government and researchers. This would
sidestep concerns about the disclosure of trade secrets to competitors and would be
a mechanism to outsource auditing functions, oversight and regulation of private
ground transportation carriers.



Chapter 4
A Privacy-Preserving Urban Traffic
Estimation System

Tian Lei, Alexander Minbaev, and Christian G. Claudel

4.1 Introduction

Traffic congestion is an increasing concern in large urban areas of the world,
and is expected to become worse as global traffic demand increases. With ever
increasing societal costs, traffic congestion can be addressed through a variety
of methods, including planning, construction of additional capacity on the trans-
portation network, and traffic control methods. Among all these methods, traffic
control have one of the greatest cost/benefit ratio since they do not require major
construction or relocation, and, unlike planning, have an immediate impact. Several
traffic control techniques have been successfully tested in the past, including ramp
metering [29, 31], adaptive speed limits [21, 26], demand response [3], or boundary
control [18, 23, 24]. However, all these methods require as an input accurate traffic
density, velocity and flow estimates. Uncertain traffic estimates can lead to poor
performance of the closed loop control system, and if the uncertainty is high enough,
the performance of the closed loop system may be worse than when using no control
at all.

Hence, accurately monitoring traffic in the region of interest is of critical impor-
tance. Monitoring traffic requires the fusion of measurement data with sensors,
which can be either fixed or mobile (moving alongside traffic). The first category
is usually expensive to deploy and maintain, and is increasingly replaced by mobile
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traffic sensors, also known as probe vehicles. In the recent years, these vehicles,
containing speed and position sensors, have emerged as a possible solution to the
problem of monitoring traffic flow. Probe sensing has a very low marginal cost,
particularly when sensing relies on existing devices (for instance smartphones),
see, for instance, http://traffic.berkeley.edu/. Nevertheless, all current probe-based
traffic monitoring systems require users to send their location data to a centralized
server, which carries high risks of user privacy intrusion whenever the location
data servers are attacked. Current probe-based traffic sensing systems also rely on
satellite-based positioning (or cellular-based positioning), which is privacy intrusive
by nature, since it reveals the approximate position of users. It should be noted that
even anonymous location tracks can yield substantial information on users [20],
which can be correlated with social network data to identify user identity based on
their tracks. While Basic Safety Messages (BSMs) sent over Dedicated Short Range
Communication (DSRC) will probably be mandated soon [37], these messages will
only be available to users around a specific vehicle, and carry less risks of privacy
intrusion.

In this chapter, our objective is to investigate a new type of traffic monitoring
system built around existing WiFi or Bluetooth readers, and capable of maintaining
the privacy of users, while providing accurate traffic data with low penetration rates.
All techniques that are currently used to enforce user privacy are based on either
a modification of the sampling characteristics [15] (locations of samples, sampling
rate) of the probe sensor or rely on obfuscation of the actual location track of the user
by removing data points or adding fake data points to it. A spatial sampling method
called virtual trip lines (VTLs) is proposed in [17], to prevent users from sending
their data whenever they are close to locations that could help identify them (home,
workplace). However, this method is not applicable for traffic monitoring in urban
environments since most urban areas are either workplaces or accommodations.
Another obfuscation method is shown in [30], but the same chapter shows that
generating fake data to hide real location tracks is challenging, even with aggregated
statistical data. Ultimately, the obfuscation techniques only increase the level of
privacy of a user, but do not guarantee it. In the worst case scenario of a single
user sending data over a given region, it is pretty easy for an attacker to identify the
user path. Privacy enforcing algorithms tend to eliminate altogether these location
tracks, though, from a traffic monitoring point of view, these isolated tracks are also
the most valuable source of data, since they provide data in locations where no other
measurement data is available.

In [8], we investigated a system based on short range communication of probe
data to a wireless sensing infrastructure. In this chapter, we propose a similar
approach, though we rely on IMUs for the probe vehicles, and therefore do not
generate absolute position measurements. The wireless sensing infrastructure does
not only estimate the state of traffic to create traffic maps (as in [8]), but is also
used to determine the trajectory of a user, based on trajectory estimates obtained by
integration of the IMU measurements.

The rest of this chapter is organized as follows. We first present an overview
of the complete system in Sect. 4.2. We then describe the IMU component of the

http://traffic.berkeley.edu/
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system in Sect. 4.4, and describe specific issues associated with the calibration
and trajectory estimation in Sect. 4.5. Finally, we present in Sect. 4.6 a possible
implementation of this system, including a distributed computing approach for
traffic state estimation over a transportation network.

4.2 System Overview

4.2.1 Current Architecture of Probe-Based Traffic Sensing
Systems

Probe-based traffic sensing systems follow typical sensor network architectures, in
which data generated by sensors is sent to a centralized server for processing or
display [36]. Traffic speed and/or density maps are the end product for the user,
and the basis of all other location-based services such as travel time estimation or
optimal routing. One of the major drawbacks of such systems is the fact that the ID
proxy server holds privacy sensitive information regarding the users. The ID proxy
server is a vulnerable target, since it handles personally identifiable information (for
example, cellphone number), and removes it from the data. Nevertheless, the privacy
of users is at risk even when data is anonymized [19], and input databases (which
are used to estimate the state of traffic) can also be a vulnerable target, as vehicles
can be tracked using traffic flow models, as in [6, 7]. The architecture of typical
probe-based traffic monitoring systems is illustrated in Fig. 4.1.

Some systems [36] attempt to solve the privacy problem using data obfuscation
or specific spatial sampling strategies [17]. However, none of these strategies can
guarantee that user privacy is preserved in all situations. In a worst-case situation,
no sampling strategy can prevent someone to re-identify the approximate path of

Fig. 4.1 Architecture of current probe-based traffic monitoring system. The data generated by
probe vehicles is anonymized by an ID proxy, and the corresponding data is sent to an input
database, which also receives data from other (fixed) sensors. The data is the processed by a central
traffic estimation server, and sent to an output database for dissemination
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a single user evolving in a given geographical area, unless no data is transmitted
at all. Another issue is that obfuscation and sampling strategies are degrading the
performance of the system, since they lower the accuracy of the input data. This
issue is further compounded by the fact that not all data is equal. The extent to which
a sample of traffic data reduces the uncertainty of the state of the transportation
network depends on the average density of data points around this particular sample.
Paradoxically, the privacy strategies outlined above degrade the quantity and quality
of input data in areas in which this data would be most valuable, that is areas in
which almost no data exists. Therefore, imposing privacy constraints on a traffic
monitoring system can have a very strong impact on the quality and reliability of
traffic estimates.

Since user location and velocity information are required by the model to build
the traffic maps through estimation, the problem of user privacy can only be solved
through decentralized estimation, in which data is only exchanged locally. Indeed, a
centralized server handing user data can always be a target of attacks. A centralized
traffic monitoring system also requires long range communications, which also
requires some authentication, and thus contains privacy sensitive data. Hence, the
system should not require long range communication, and should distribute the
processing among some computational nodes.

4.2.2 Proposed System Architecture

Since Bluetooth and WiFi readers are commonly used in traffic flow monitor-
ing, the proposed system relies on these devices as endpoints and traffic computing
tools. The readers are scanning all corresponding devices (Bluetooth or WiFi)
located in their radius of detection. The devices have to transmit traffic data to
the readers during this scanning process. Scans do not allow direct connections
between devices, and therefore the only mechanism of data transmission from the
device to the reader is the information transmitted by the device to the reader
during the scan process. In the Bluetooth protocol, this information consists in a
MAC (Medium Access Control) address, and possibly of a device name. The total
amount of information exchanged corresponds to 254 bytes, including 6 bytes for
the MAC address and 248 bytes for the device name. Since the device name field
can transmit a much larger quantity of information, we will transmit information
through a modification of this field.

4.2.2.1 Fixed Reader Nodes

The reader nodes play three roles: communication of the traffic state estimate
maps to a centralized server, computation (vehicle trajectory estimation, traffic sate
estimation) and sensing (through classical Bluetooth or WiFi MAC address
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re-identification, if needed.1) The reader nodes do not have to form a mesh network:
traffic readers are usually connected to a central server through a cellular or wire
connection. In future implementations of this system, DSRC readers can be used in
lieu of Bluetooth or WiFi readers to collect traffic data and perform the required
computations.

4.2.2.2 Probe Sensors

The system we propose is based on measurements generated by an Inertial
Measurement Unit (IMU) located inside a vehicle. IMUs consist in a combination
of accelerometers and gyroscopes, with possibly a magnetometer for heading
estimation. The accelerometers and gyroscopes monitor the accelerations and
rotation rates experienced by the vehicle. These measurements can be used to
estimate the trajectory of the probe vehicle, and to derive features associated with
traffic, for example using machine learning to recognize specific patterns. These
patterns include stop and go waves in congestion, very slow continuous traffic,
regular stops at traffic lights.

4.2.2.3 Principle of Operation

The network of fixed reader nodes is partitioned into clusters, for example based on
Voronoi diagrams. Each cluster consists in a single Bluetooth or WiFi reader.
All clusters need to exchange information with nearby clusters in the form of
boundary condition estimates. These information exchange does not contain any
user data, and is thus not affecting the privacy of users.

Probe vehicles equipped with IMUs continuously estimate their trajectories, as
in Sect. 4.5. These trajectory estimates are encoded as the device name (using a
given encoding format). Additional traffic features are inferred along the path using
a supervised learning approach. These features can include the presence of stop and
go waves, the classification of the type of stops (intersection, traffic, traffic light
or curb stop), and the presence of disruptions on the road network, which can be
sensed through gyroscope measurements when the driver steers their car in opposite
directions to avoid debris or a disabled vehicle.

The trajectory estimates and features are then used to estimate the state of
traffic, in a decentralized way. The traffic state estimation process relies on traffic
measurement data generated alongside the vehicle trajectories, possibly augmented
by fixed sensor data (for example, generated by traffic cameras, radars, loop
detectors) if available. All these measurements are integrated in a network traffic
state estimation problem corresponding to each cluster. Solving each independent

1The use of the readers in their usual configuration (re-identification of MAC addresses) requires
the transmission of MAC addresses within nodes, and has potential for privacy intrusion.
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Fig. 4.2 Proposed system architecture. The data generated by probe vehicles is sent locally to
each reader, which handles a given sub-network. The data generated by these probe vehicles is
integrated with (possibly) fixed sensor data to generate traffic estimates. These estimates are then
regularized between sub-networks through consensus-type filtering, and sent to an output database
by each reader

state estimation problem yields estimated flows at the boundaries of each cluster. An
iterative approach (for example, based on consensus filtering) can be used to make
these estimates match between adjacent clusters. This results in a global traffic map,
which is obtained by combining the local maps generated by each cluster. The traffic
estimation process is summarized in Fig. 4.2.

While no user information is directly shown in this global traffic map, it may
nonetheless reveal user presence in some circumstances, for example if a single user
affects the traffic state estimates in a way that would reveal them. Several methods
such as differential privacy analysis can be used to analyze the global maps and
evaluate the potential for privacy breaches. Note that all map-generating systems
would also face the same problem.
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4.3 User Privacy Analysis

4.3.1 Threat Model

In this chapter, we assume that attackers could compromise any part of the system,
that is, any reader handling a network cluster.

4.3.2 Properties of the System

By construction, no vehicle track information can be obtained beyond the radio
range of the vehicle transceiver. Since the technology chosen for this work is based
on Bluetooth, WiFi or DSRC, the radio range of the system is quite limited. Thus, an
eavesdropper can track the position of a vehicle only if they can listen to all clusters
in the path of the vehicle. While such a distributed attack is theoretically possible,
it is very costly and impractical, requiring to either compromise the radio scanners,
deploy new radio scanner infrastructure, or eavesdrop the radio traffic around the
radio scanner in all clusters.

4.3.2.1 Consequences of a Reader Attack

Compromising the software of a node can usually be detected by monitoring the
input and output data flows, and is thus not particularly stealthy. Similarly, deploying
a radio reader infrastructure in a city would locally create Bluetooth discovery sig-
nals at regular intervals, which could be detected. An eavesdropping infrastructure
is more discrete, but would still require wired or wireless communication. Both
type of communication could be detected, either physically (wires) or through radio
scanners (wireless).

The cost of such an attack is similar to deploying a full radio monitoring
infrastructure, and therefore such attacks are unlikely to be carried out. An attack
over a smaller subset of the network would give partial information over a limited
geographical area, but would remain expensive to carry out.

Attacking a single reader would reveal the trajectory information of users around
this area, provided that the users are in range of the reader. These trajectories can
contain privacy sensitive information. By construction of the system, the average
spatial separation between consecutive readers defines a spatial scale at which
trajectory information is valuable. Thus, the vehicle IMUs do not need to encode
the trajectory information on a distance greater than this scale. This naturally defines
a cutoff distance in the trajectory integration problem. This cutoff distance can be
chosen to be smaller to minimize the risk of privacy intrusion, at the expense of
requiring a larger density of readers.
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One of the greatest benefits of this system is that no user information is
exchanged between readers. Attacking a reader will allow one to obtain boundary
condition estimates from surrounding readers (which are used to estimate the
traffic maps), though these boundary condition estimates represent aggregated flow
estimates, and do not reveal privacy sensitive information.

4.3.2.2 Consequences of a Database Attack

Since the traffic estimation process is distributed over clusters, there is no need for
an input database. The output database contains all information generated by each
cluster, in the form of traffic maps. This information is publicly available, and thus
the attacker would not gain any additional information from attacking this database.

4.3.2.3 Trajectory Inference from Traffic Maps

Since the traffic maps themselves are estimated from traffic measurement data, there
exists a relationship between the inputs x(τ)τ∈[0,t] to the traffic estimation system
(consisting in sensor measurements, probe data, and estimated demand-supply
patterns) and the output y(t) (corresponding to the traffic map at time t). However,
inverting this relationship is difficult in practice, even if an attacker perfectly knows
the inner mechanisms of the traffic state estimation, for the following reasons:

• The relationship between the inputs and outputs is highly nonlinear in general,
resulting from an estimation framework that involves a large number of variables.
For example, estimating the input data associated with a Mixed Integer Linear
Programming (MILP) framework such as the framework investigated in this
chapter is challenging, since these elements appear as constraints to the problem.
Similarly, estimating the input data associated with an Ensemble Kalman Filter
(EnKF) traffic state estimation framework such as in [34, 35] is challenging, since
the attacker does not know the initial conditions associated with the ensemble
choice (which is updated at each step), nor the random noise that is added to the
outputs to perform the update step. These random variables affect the estimated
output in an unpredictable way.

• Some processes that run in each cluster can further add to the complexity of
inverting the relationship between inputs and outputs. For example, the boundary
condition estimates (used to solve the first step of the decentralized optimization
problem) can be learned over time, based on measurement data obtained during
some past time window. The raw measurement data used as part of these
boundary condition estimates cannot be perfectly reconstructed, and therefore
the boundary condition estimates are not available to an attacker.

• Some degree of noise can be added to the traffic maps, as in [12]. Note that even
without noise, some operations such as the quantification of traffic estimates into
discrete traffic states (represented by different colors) causes an inherent loss of
information. The temporal discretization of the map updates is similarly causing
a loss of information.
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4.4 Inertial Measurement Unit Based Traffic Flow
Monitoring

We use a custom-developed GPS/IMU system (Fig. 4.3) based on an Arm Cortex
M4 processor operating at 168 MHz. It contains a 9-DOF IMU (accelerometer,
gyrometer, and magnetometer) and a GPS,2 and is powered through a USB port that
is rigidly attached to the vehicle (through a car charger or a vehicle USB port), albeit
at a random orientation with respect to the coordinates of the vehicle. The device can
send data over a IEEE 802.15.4 XBee module transceiver or a Bluetooth
transceiver (which is used in this study), at a 10 Hz rate.

A smaller version of this system is shown in Fig. 4.4 below. This version omits
the SD card reader and the GPS module, and is more compact (in addition to not
generating traffic measurement data).

Fig. 4.3 Custom-developed IMU board with Bluetooth module. This module consists in a combi-
nation of an IMU (with accelerometer, gyroscope, and magnetometer), a Bluetooth transceiver, a
USB port (for power only), an SD card reader, and a GPS module for validation. All peripherals
are connected to an Arm Cortex M4 microcontroller

2In the present chapter, the GPS data is only used for validation.
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Fig. 4.4 Second generation IMU board. This module (right) consists in a combination of an IMU,
a Bluetooth transceiver, a USB port (for power only). The earlier prototype version is shown
on the left for comparison

4.5 IMU Calibration and Trajectory Estimation

The proposed system is based in IMUs equipped vehicles (with GPS data used only
for validation). Generating traffic measurement data from IMUs is nontrivial, and
requires several processing steps at the vehicular sensor level and in the wireless
sensor network. These processes are highlighted in Fig. 4.5. The first step is to map
the coordinates of the sensor to the coordinates of the vehicle, which will be referred
to as automatic calibration in the remainder of the chapter. The resulting acceleration
and rotation rate measurements from the sensor are mapped into the coordinates of
the vehicle, and are used to determine the orientation of the vehicle with respect
to the Earth. This allows us to compute the coordinate acceleration (in the Earth
frame) by canceling the gravitational component of the acceleration. We then use the
acceleration and rotation rate measurements to both estimate the yaw angle and the
actual vehicle velocity. This combination allows us to generate vehicle trajectories,
which are then encoded and transmitted to the readers during the discovery process.

4.5.1 Automatic IMU Calibration

Unlike GPSs, the orientation of an IMU sensor has an importance. To determine the
trajectory of the vehicle in the Earth frame, it is critical to determine the orientation
of the IMU to measure the acceleration along the longitudinal, lateral, and vertical
axes of the vehicle. This can be achieved by carefully determining the orientation
of the device in the vehicle (assumed to be constant, since the device is rigidly
connected to an USB port), and compute a corresponding rotation matrix mapping
the coordinates of the device to the coordinates of the vehicle.
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Fig. 4.5 Trajectory estimation and traffic measurement overview. This figure summarizes the
steps required to estimate vehicle trajectories and generate traffic measurement data using IMU
measurements

To facilitate the deployments, we developed an automatic calibration procedure,
detailed in [28]. This procedure allows the IMU to identify its orientation with
respect to the vehicle automatically, after a few minutes of driving.

We now focus on reconstructing the trajectory of the vehicle in the Earth
frame. This process requires the computation of the attitude of the vehicle (that
is, the orientation of the vehicle with respect to the Earth frame), since the
trajectory is derived from the integration of the coordinate acceleration, whereas
an accelerometer measures the proper acceleration, that is, the acceleration of the
vehicle with respect to a free-falling frame. The coordinate acceleration can be
computed from the proper acceleration using the formula ac = ap − g, where g
is the vector of acceleration due to gravity.

4.5.2 Attitude Estimation Algorithms

The attitude of the vehicle is encoded by a rotation matrix that translates the vehicles
coordinates to the Earth coordinates. This rotation matrix can be estimated using a
Kalman Filter [22], or a complementary filter such as the direction cosine matrix
(DCM) outlined below. The latter is generally used in attitude estimation and
control of ground or air vehicles, as in [32]. This filter is based on the following
assumptions:



92 T. Lei et al.

• The gyroscopes are used as the primary source of orientation information. For
short time horizons, we assume that the rotation of the object is small, and the
rotation of the frame between times t and t + �t can be represented by the
elementary rotation matrix Rg,t,t+�t , outlined below.

• The DCM filter relies on a rotation matrix estimate generated by the accelerome-
ter and the magnetometer, and integrates the measurements of the gyroscope and
the current estimate of the attitude into a new estimate. Since the accelerometer
and magnetometer reference matrix represent the low frequency component
of the signal, and the rotation matrix Rg,t,t+�t represents the high frequency
component of the signal, we use the update equation R(t + �t) = λRg,t,t+�t ×
R(t) + (1 − λ)Rref(t), where Rref(t) is the rotation matrix obtained from the
accelerometer and magnetometer measurements. The coefficient λ is related
to the time constant of the complementary filter, and can be used to place a
larger weight on the gyroscope or accelerometer/magnetometer measurements.
Its value is a function of the noise levels of the accelerometer and gyroscope,
and is very close to one in practice. A large value of λ puts more weight in
the gyroscope measurements, which can lead to static positioning errors due to
gyro drift. A small value of λ gives too much weight to the accelerometer and
magnetometer measurements, which are not perfect attitude reference vectors
(due to magnetic perturbations or vehicle longitudinal and lateral accelerations).

The elementary rotation matrix Rg,t,t+�t is given by:

Rg,t,t+�t =
⎡

⎣
1 −gz�t gy�t

gz�t 1 −gx�t

−gy�t gx�t 1

⎤

⎦ (4.1)

The matrix Rref(t) can, for instance, be determined using the normalized
acceleration vector a

||a||2 as a first reference vector, and the normalized projection

of the magnetic field vector b on a plane perpendicular to a:
b−<b· a

||a||2 > a
||a||2

||b−<b· a
||a||2 > a

||a||2 ||2 as a

second reference vector. With these reference vectors, the attitude of the vehicle is
determined with respect to the up/magnetic North coordinates.

With these results, the coordinate acceleration in the device frame becomes ap

(t) − Rs/g(t)

⎡

⎣
0
0
g

⎤

⎦, and can be used to estimate the trajectory of the vehicle by

integrating the acceleration measurements.

4.5.3 Vehicle Trajectory Estimation

The calibration and attitude estimation steps allow us to determine the attitude
and the coordinate acceleration of the vehicle (in its frame) at all times. From
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these, estimating the vehicle trajectory can be done through the integration of
the acceleration and attitude measurements. Indeed, for a simple two-dimensional
evolution, in which the vehicle is assumed to remain parallel to the mean surface of
the Earth, the coordinates of the vehicle (x(t), y(t)) in the Earth frame satisfy the
following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = x(tf ) +
∫ tf

t

v(τ )cos(ψ(τ))dτ

y(t) = y(tf ) +
∫ tf

t

v(τ )cos(ψ(τ))dτ

v(t) = v(tf ) +
∫ tf

t

al(τ )dτ

ψ(t) = ψ(tf ) +
∫ tf

t

gz(τ )dτ

(4.2)

where gz(·) and al(·), respectively, represent the yaw rate of the vehicle (vertical
component of the gyrometer measurements) and the longitudinal acceleration of the
vehicle (component of the acceleration along the longitudinal axis of the vehicle).
The coordinates (x(tf ), y(tf )) are approximated as the reader location, given the
very short range (tens of meters) of Bluetooth or WiFi signals.

While the integration of Eq. (4.2) yields the estimated trajectory (x(t), y(t)), this
numerical process is unstable, and diverges after a relatively short amount of time.
To reduce the level of uncertainty associated with the trajectory integration, we use
an algorithm to detect stop events, and reset the velocity to zero whenever a stop
event is detected. Stop events also allow us to estimate the accelerometer gyrometer
bias, which is slowly time-varying, in function of the ambient temperature. These
estimates allow a more precise integration to be carried out. An experimental
trajectory estimate is shown in Fig. 4.6.

In practice, the trajectory estimates need to be mapped onto the road network.
One of the simplest ways to achieve this is to approximate the estimated trajectory
into piecewise linear segments, and use the final location of the vehicle (correspond-
ing to the coordinates of the reader) in conjunction with the road network topology
to enumerate all paths that could be possibly taken by the vehicle. The most likely
path can then be determined by optimizing a cost function (for example a function
of the discrepancy between observed distances and turn angles) among all possible
paths. This approach has been successfully tested in [27].

This measurement data resulting from the trajectory estimates can then be used
as input data for the network traffic estimation framework derived in Sect. 4.6.

4.6 Distributed Computing for Traffic State Estimation

4.6.1 Network Traffic State Estimation

The data assimilation scheme we propose in this article is based on the seminal
Lighthill Whitham Richards [25] (LWR) traffic flow model, a first order scalar
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Fig. 4.6 Illustration of an
experimental trajectory
integrated using (4.2). The
actual trajectory is shown in
the upper subfigure, while the
estimated trajectory is shown
in the lower subfigure. As can
be seen from this figure, the
integrated distances and
angles do not perfectly match
the actual vehicle trajectory,
though it yields a good idea
of the possible vehicle path.
This estimated trajectory can
be mapped onto the actual
road network by leveraging
the final position of the
vehicle, which can known to
be within the range of the
Bluetooth/WiFi reader
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conservation law, with triangular flux function. The model is equivalently written as
an Hamilton Jacobi equation from which the LWR model is derived [9, 10]. Using
this decomposition, we write the problem of estimating traffic density on a section
of road as a mixed integer linear program (MILP) [5]. This formulation can also be
extended to networks, as in [24]. The solution to the MILP corresponds to a vector
of current traffic densities, which can be interpreted as a traffic density map.

The LWR model [25] is described by the following Partial Differential Equation
(PDE):

∂k(t, x)

∂t
+ ∂ψk(t, x)

∂x
= 0 (4.3)

encoded by the following Hamilton-Jacobi [10] partial differential equation:

∂M(t, x)

∂t
− ψ

(

−∂M(t, x)

∂x

)

= 0 (4.4)
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The function ψ(·) defined in Eq. (4.4) is the Hamiltonian. The B-J/F [4, 14]
solutions to Eq. (4.4) are fully characterized by a Lax-Hopf formula [2, 9], which
was initially derived using the control framework of viability theory [1]. We assume
that the Hamiltonian is piecewise affine and continuous [13]:

ψ(ρ) =
{

vf ρ : ρ ∈ [0, kc]
w(ρ − κ) : ρ ∈ [kc, κ] (4.5)

The estimation of traffic requires the knowledge of the demand and supply
flows applying to the boundaries of the transportation network, and of the splitting
coefficients at each intersection. The splitting coefficients can be estimated over
time in each cluster, by computing the average flow ratio at each intersection of the
corresponding subnetwork. The boundary flows are inputs to each traffic estimation
subproblem, and are determined iteratively by a consensus-type algorithm.

4.6.1.1 Input Data

On each segment of the road network, the input data can be written as an affine
initial, boundary or internal condition (including internal density condition), as
follows.

Affine Initial, Upstream/Downstream Boundary and Internal Conditions Let
us define K = {0, . . . , kmax}, N = {0, . . . , nmax}, M = {0, . . . , mmax} and
U = {0, . . . , umax}. For all k ∈ K, n ∈ N, m ∈ M and u ∈ U, we define the
following functions, respectively called initial, upstream, downstream internal flow
and internal density conditions:

Mk(t, x)=

⎧
⎪⎪⎨

⎪⎪⎩

−∑k−1
i=0 ρini(i)X

−ρini(k)(x − kX) if t = 0
and x ∈ [kX, (k + 1)X]

+∞ otherwise

(4.6)

γn(t, x)=

⎧
⎪⎪⎨

⎪⎪⎩

∑n−1
i=0 qin(i)T

+qin(n)(t − nT ) if x = ξ

and t ∈ [nT , (n + 1)T ]
+∞ otherwise

(4.7)

βn(t, x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n−1
i=0 qout(i)T

+qout(n)(t − nT )

−∑kmax
k=0 ρ(k)X if x = χ

and t ∈ [nT , (n + 1)T ]
+∞ otherwise

(4.8)
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μm(t, x)=

⎧
⎪⎪⎨

⎪⎪⎩

L(m) + r(m)(t − tmin(m)) if x = xmin(m)

+vmeas(m)(t − tmin(m))

and t ∈ [tmin(m), tmax(m)]
+∞ otherwise

(4.9)

ϒu(t, x)=
⎧
⎨

⎩

L(u) − ρ(u)(x − xminρ (u)) if x ∈ [xminρ (u), xmaxρ (u)]
and t = tρ(u)

+∞ otherwise
(4.10)

where vmeas(m) = xmax(m)−xmin(m)
tmax(m)−tmin(m)

.
In the above definition, internal density conditions (4.10) are specific to model

density sensors that are inside the computational domain, generating data at positive
times. The data generated by density sensors at time zero would correspond
to an initial density. Flow sensors generate upstream (respectively downstream)
boundary conditions when located at the upstream (respectively downstream)
boundary of the computational domain, and internal conditions associated with
zero velocity when located inside the computational domain. Note that the affine
initial, upstream/downstream boundary and internal conditions defined above for
the HJ PDE (4.4) are equivalent to constant initial, upstream/downstream boundary
and internal conditions for the LWR PDE (4.3). The domain of these conditions is
illustrated in Fig. 4.7.

Fig. 4.7 Illustration of the domains of definitions of the different block boundary conditions
considered in this article
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4.6.2 Traffic State Estimation Using Mixed Integer Linear
Programming

We consider a set of block boundary conditions as in Fig. 4.7, generated by
measurements originating from fixed sensors (initial, upstream, downstream, and
internal flow/density conditions) or probe vehicles (internal velocity conditions).
Some of the coefficients of these block boundary conditions are known, while some
others need to be estimated. For example, a vehicle generating an internal velocity
condition block (4.9) will generate measurements of xmin(m), xmax(m), tmin(m),
tmax(m), and vmeas(m). The remaining coefficients L(m) and r(m), corresponding
to the vehicle label and passing rate, are unmeasured. Let us call V the vector space
of all unknown coefficients, associated with all block boundary conditions of the
traffic estimation problem. The possible values of these coefficients are restricted by
the physics of the problem, which we refer to as model constraints [6]. Similarly, the
measurement data generated by the sensors constrains the possible values of these
coefficients. These constraints are similarly called data constraints. An important
and nontrivial result of [11] is that all these constraints are explicit. The extensive
list of all constraints can be found in [7], which we do not write explicitly for
compactness. The main result is the following:

Mixed Integer Linear Inequality Property The model constraints are mixed
integer linear in the unknown coefficients v of the boundary condition blocks.
The data constraints [11] are linear in the unknown coefficients v of the boundary
condition blocks. The constraints encoded by merge or diverge junctions [16], or
one to one junctions (resulting, for example, from a change of number of lanes or
speed limit on a link) are mixed integer linear in the unknown coefficients v of the
boundary condition blocks.

Hence, the set of possible traffic scenarios compatible with the data and the model
can be written as {y | Ay ≤ b and Cy ≤ d}, where y represents the decision
variable of the problem, which consists of the unknown boundary coefficients v

and additional Boolean variables required to write the model constraints as mixed
integer linear. To select a solution among all possible choices, we optimize a
function of y, which can, for example, be the L1 norm of y, if the data is sparse.
This objective function yields estimates that have the least amount of features
(for example, flow and density changes), and are particularly adapted to traffic
monitoring situations in which data is sparse. For general linear objective functions,
the problem of estimating the state of traffic on the subnetwork can thus be
written as:

Min. cT y

s. t.

{
Ay ≤ b

Cy ≤ d

(4.11)
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Fig. 4.8 Traffic state estimation example. In this figure, we consider a single stretch of highway.
The upper two figures consist in state estimates with boundary data only, in the form of measured
upstream and downstream boundary flows. The upper left subfigure represents solution to (4.11)
minimizing the total accumulation of vehicles at the initial time, while the upper right subfigure
maximizes the same objective. The lower two figures represent the solutions to the same problem,
in which five additional internal conditions (representing probe vehicle measurements) are added

The above estimation process is illustrated for two objective functions in Fig. 4.8,
over data generated over a single link. An example traffic state estimation problem
over a network is illustrated in Fig. 4.8. The later article contains the detailed theory
associated with the estimation framework, which is out of the scope of the present
article.

4.6.3 Boundary Conditions Estimation

One of the difficulties associated with estimating the state of traffic flow over
contiguous subnetworks is enforcing the conservation of flows at the boundaries
of each subnetwork. Since each estimation problem is solved by each cluster
independently, the boundary flows will not be consistent in general. For example,
if a link a is split between subnetworks i and j , the outgoing flow from a, denoted
as qi,out(·) and the incoming flow from a, qj,in(·) have to be equal. However, the
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function qi,out(·) results from the solution associated with subnetwork i, and qj,in(·)
results from the solution associated with subnetwork j , which will not match in
general.

Enforcing these conservation equations at the boundaries of each subnetwork
requires some communication between subnetworks, and cannot be solved easily,
since the boundary conditions associated with a hyperbolic conservation law (such
as the LWR model) are weak, in that they do not necessarily strongly apply, as shown
in [33].

4.6.3.1 Consensus Filtering

Let us consider a cluster ci ∈ I , with S (i) the set of neighboring clusters cj ,
defined as the set of clusters cj for which the subnetworks ci and cj have at least
one vertex in common vi,j . Let us further assume3 that each common vertex vk

i,j is

only connected to two links, Lk
i,j (i) and Lk

i,j (j) within clusters i and j , respectively.

Let us further distinguish incoming and outgoing links in cluster i as I k
i,j (i) and

Ok
i,j (i), and denote as I (i, j) and O(i, j) the set of corresponding indices.
Let ci , Ai and bi correspond to the objective and constraints of each subnetwork

i estimation problem, and let yi correspond to the optimal solutions of each sub-
problem. The variable yi contains the optimal boundary flows qLk

i,j (i)(p)
p∈{1,...,n}

occurring at each link Lk
i,j (i), corresponding to k · n variables, where n represents

the number of time steps on which the estimation is run. The solution yj to the
traffic estimation problem corresponding to subnetwork j similarly contains the
optimal boundary flows qLk

i,j (j)(p)
p∈{1,...,n}

occurring at each link Lk
i,j (j). Since

these problems are solved independently, the boundary flows are not identical in
general.

To regularize the solutions, we propose the following iterative scheme:

1. Solve for yi and yj , j ∈ S (i).

2. Compute average flows rLk
i,j

=
q
Lk

i,j
(i)

(p)+q
Lk

i,j
(j)

(p)

2 , p ∈ {1, . . . , n} between

adjacent clusters.
3. Solve the original problem with an additional objective term minimizing the

difference between boundary flows and the corresponding previously computed
average flows.

4. Return.

3This assumption is not restrictive in practice, since the definition of the boundaries of each cluster
can be adjusted to meet this requirement.
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This algorithm in effect regularizes the flows between each cluster, to minimize
the flow discrepancies between each cluster. Note that a global optimization
formulation of the traffic state estimation problem over the entire network could
be considered based upon the previously introduced framework. This global opti-
mization framework would ensure that flows between clusters agree, at the expense
of privacy, since it would require all traffic data to be sent to a centralized server. An
example distributed traffic state estimation following the process described above is
shown in Fig. 4.9.

4.7 Conclusion

This chapter presents a novel traffic monitoring architecture based on a combination
of fixed Bluetooth or WiFi readers in conjunction with Inertial Measurement
Unit (IMU) based probe vehicles. This system does not rely on classical positioning
devices such as the GPS, making it immune to GPS perturbations due to multipath
effects or GPS spoofing. The immediate benefits of such a system are its very low
marginal cost (particularly when a reader infrastructure is already deployed) and
its privacy by design characteristics. Since the estimation process is decentralized,
an attacker compromising part of the system only has access to partial information
about the users in the corresponding area, making this system very robust to attacks.
We show that the data generated by IMUs allow the extraction of relevant traffic
measurement data, which cannot be achieved using classical positioning systems
due to their measurement uncertainty. We also show that the state estimation can
be performed on the reader nodes using any type of state estimation algorithm
(for example, based on Kalman Filtering, or on an optimization formulation of the
estimation problem to be solved). Each subproblem is associated with unknown
boundary conditions at the edge of the corresponding subnetwork. To make these
boundary conditions agree, a consensus-based approach is proposed. Future work
will deal with the extension of this system to other type of measurements related
to urban, arterial, or highway operations, such as the estimation of pavement
condition, the detection of the presence of disabled vehicles from turning and
acceleration patterns, and the estimation of dangerous hotspot locations where
accidents are likely, based on the estimated inputs of the drivers. These inputs can be
estimated from inertial measurements, using a dynamical model of the vehicle. This
work could also be extended to DSRC-based systems, in which RSEs (Roadside
Equipment) would play the role of the readers, and would process local traffic data
generated by DSRC-equipped vehicles.
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Fig. 4.9 Distributed network traffic state estimation example. In this figure, we consider a road
network partitioned into three sub-clusters (top subfigure). The bottom subfigures correspond to
the state estimates in all links, obtained by iteratively computing the computation of independent
network state estimation problems (for each cluster), and regularizing the boundary conditions
between each subnetwork. The upper two subfigures correspond to cluster 1, and the lower six
subfigures correspond to the traffic state on clusters 2 and 3
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Chapter 5
Data, Methods, and Applications
of Traffic Source Prediction

Chengcheng Wang and Pu Wang

5.1 Introduction

The rapid urbanization occurring globally has caused an imbalance between the fast-
rising demand for transportation and the limited land available for transportation
infrastructure. Therefore, traffic congestion is ubiquitous in many cities, and solving
or mitigating such congestion is crucial for transportation efficiency, energy conser-
vation, environmental protection, and human health. In recent years, much research
and engineering practices have focused on the analysis, avoidance, and mitigation
of traffic congestion. A common strategy has been to isolate the locations closely
linked to traffic congestion in order to implement targeted traffic management to
more effectively mitigate congestion. Traditional traffic surveys only record samples
of the origin and destination of trips, lacking information on how traffic congestion
is caused. To locate the source of traffic congestion, real-time and high-resolution
transportation data is needed, yet traffic information recorded by traditional surveys
is always inaccurate and easily out of date [1]. Fortunately, the fast development of
sensing and computing techniques in recent years has provided the necessary data
for researchers to pinpoint traffic-congested driver sources and develop novel traffic
management strategies.

The concept of driver sources was first proposed by Wang et al. [1], where
large-scale mobile phone data were used to explore road usage patterns. The
exciting finding from Wang et al. [1] was that the major driver sources for most
road segments are limited. Afterwards, dynamic driver sources, which can be
better applied in real-time traffic control, were proposed by Wang et al. [2].
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With the availability of more high-resolution traffic data, such as radio-frequency
identification (RFID), dynamic driver sources can be located at higher temporal
and spatial resolutions. The concept of driver source can be modified to passenger
source, which was applied in the passenger flow analysis of urban rail transit
(URT) networks [3–5]. Traffic source is a more general term that includes both
the sources of drivers in road networks and the sources of passengers in public
transportation networks. A number of applications have been developed to mitigate
traffic congestion based on traffic source information, and the mitigation methods
can basically be grouped into three classes: traffic demand restrictions [1], traffic
routing guidance [4, 6, 7], and transportation infrastructure upgrades [2]. In the
following, we elaborate on the data used, methods developed, and applications
proposed to predict traffic sources.

5.2 Data

Traffic demand is fundamental information for traffic planning and transportation
management. In today’s Big Data era, various types of data that capture abundant
traffic and transportation information have become increasingly available. These
transportation data include data recorded by mobile phones, RFID chips, video
cameras, etc. In this section, we first review the different traffic data sources that are
used to locate traffic sources that contribute the major volumes of flows on congested
roads.

5.2.1 Mobile Phone Data

Because of the timeliness’ absence of traffic origin–destination (OD) matrices, it
is difficult to obtain meaningful data from traditional traffic surveys, which are
always expensive. In recent years, with massive expansion in mobile phone use,
human mobility information can be easily, efficiently, and cheaply collected. Mobile
phone towers are located and densely distributed in urban areas and thus can provide
detailed information on daily human mobility. Human spatiotemporal information,
including detailed time-variant travel demand data, can be extracted from large-
scale mobile phone data, providing foundations for traffic planning. Mobile phone
data are widely available in large cities because they are originally collected by the
billing process. This means that an approach based on mobile phone data can be
easily extended to multiple cities.

Mobile phone data provide a source of generating data on the distribution of
travel demands on an unprecedented scale. Indeed, the wide emergence of mobile
phone data has stimulated rapid developments in human mobility. Gonzalez et al. [8]
analyzed the trajectories of 100,000 mobile phone users through their billing records
and uncovered several universal human mobility laws. Based on mobile phone data,
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Song et al. [9] discovered that human beings are highly predictable regardless
of travel distance, age, and sex, thus establishing the theoretical foundation for
developing accurate predictive models of human mobility. Devillea et al. [10] used
more than 1 billion mobile phone call records from Portugal and France to estimate
dynamic population densities on a national scale. With human mobility models,
human movements can be predicted and, consequently, OD matrices estimated.

Mobile phone call detail records (CDRs) comprise the most general type of
mobile phone data. However, there are two limitations of CDR. First, they contain
sparse and irregular records, in which user displacements (consecutive nonidentical
locations) are often observed with long travel intervals. Second, tower shifting exists
in the data, which represents no actual displacements but is instead caused by the
operator often balancing call traffic among adjacent towers. In summary, CDR
data are more suitable for obtaining the statistical distribution of travel demands.
The other type of mobile phone data is mobile phone signaling data, in which
user locations are recorded at regular time intervals (e.g., 30 min). Mobile phone
signaling data are much better for estimating travel demand information; however,
given their heavy collecting load, such data are few and usually not recorded for a
long period.

5.2.2 Radio-Frequency Identification Data

Travel information extracted by mobile phone data is greatly improved in terms of
timeliness and practicability but has shortcomings in terms of accuracy and real-
time performance. RFID data, which records vehicular locations through RFID
equipment, could better overcome these deficiencies and serve as a kind of high-
resolution data. RFID sensing equipment can accurately record the exact time and
location when an RFID-equipped vehicle passes [11]. Densely distributed RFID
sensing equipment can record information at a high frequency. Usually, the vehicle’s
ID, the ID of the RFID station the vehicle passes, and the exact time the vehicle
passed the station are recorded, so the RFID-equipped vehicles can be traced and
the required traffic information collected.

With the advantage of high resolution, the recording of vehicles’ spatiotemporal
information is more accurate and captured with relatively high frequencies, and the
RFID data are more useful for generating dynamic travel demands and developing
real-time traffic management systems. Khateeb et al. [11] proposed dynamic traffic
light sequence algorithm using RFID, which could improve the efficiency of traffic
management. Yang [12] employed Complex Event Processing technology based
on RFID to improve real-time event detection, while Wen et al. [13] presented an
intelligent traffic management expert system using RFID technology that provided
traffic data collection and control information. However, there is one current
limitation of RFID data, namely that RFID devices are not installed in all vehicles,
which means that only some of the vehicles passing an RFID sensing station can
be detected and recorded. With the installation of RFID devices in more vehicles,
traffic demand information could be obtained on a larger scale.
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5.2.3 Subway Card Data

Subways comprise one of the most important modes of human travel, and therefore,
subway card data are important in passenger flow analysis. In a subway system,
each time a passenger uses his/her card when entering the subway, time, card ID,
subway line ID, subway station ID, and fare collection device ID are recorded.
An advantage of subway card data is that when a passenger exits the subway, the
station is recorded, which provides concrete information on passenger destinations.
Because of the popularity of subway cards, the approach of traffic source prediction
based on subway card data can be easily extended to cities with subway systems.

Subway card data offer complete access to station information, the data defects
and irregularities are few, the extraction of OD information is more accurate, and
the results are usually more credible. Using precise subway traffic information,
passenger flow prediction and passengers’ demand pattern have been investigated in
depth in recent years. Wei and Chen [14] developed a hybrid forecasting approach
combining empirical mode decomposition and back-propagation neural networks;
this approach could perform well and stably in forecasting short-term passenger
flow. Sun et al. [15] used smartcard data to investigate and understand the demand
pattern of passengers and extract a train’s trajectory; this could help transit agencies
better prepare to respond to failures more timely and effectively.

5.2.4 Other Data and Characteristics of Different Data Sources

Different data sources have different characteristics and application scopes in
congestion source prediction. Mobile phone data has advantages of long recording
time, wide spatial coverage, and low collection cost, but it is poor at data accuracy
and frequency. RFID is characterized with two important advantageous features: the
high spatial-temporal resolution and vehicles’ identities being recorded. Therefore,
using RFID data can locate dynamic driver sources. However, RFID data is limited
with its penetration rate and spatial coverage. Conversely, subway card data is a
good data source that provides accurate OD information for locating passenger
sources in subway networks.

Besides the three kinds of data introduced above, video camera data, which is
similar to RFID data, can also be used to locate driver sources. The differences
between video camera data and RFID data is the way vehicle information is
obtained: one is through image processing, the other is through RFID equipment.
Another data source is GPS data, which records vehicle’s location every several
seconds and is characterized with a higher data recording frequency; however, GPS
data cannot provide the full OD information.
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5.3 Methods

Using different kinds of traffic data, traffic demand can be estimated. There are dif-
ferent methods of estimating traffic demand based on different data characteristics.
To explore road usage patterns, traffic demand is assigned to a road segment as
close to actual traffic as far as possible. Through the exploration of traffic flow, the
major driver sources of each road segment are considered. The methods for locating
driver sources, dynamic driver sources, and passenger sources are summarized in
the following.

5.3.1 Travel Demand Estimation

Travel demand is an important decision support for traffic planning, management,
and control, and there are different methods of estimating it using different types
of data (Fig. 5.1).

Regarding mobile phone data, the most challenging aspects of analysis are sparse
and irregular records. In Wang et al. [1], to more accurately extract users’ travel
demands and at the same time ensure that enough travel demand information was
extracted, a trip was usually defined as a displacement occurring within 1 h, and
therefore the travel time window was set to 1 h. Because location information is lost
when users do not use phones, the transient origin destination (t-OD) matrix was put
forward. Then, travel demands could be generated independent of the frequency of
phone activity by selecting stable phone user groups. To offset the deviation caused
by the irregular distribution of mobile phone users, the ratio of the population to the
number of mobile phone users in a zone was applied in Wang et al. [1] to scale up or
scale down the number of trips. Furthermore, because of the different transportation
modes of trips, the vehicle using rate was calculated to determine the number of trips
in each zone traveled by vehicles. Finally, the estimated t-OD was defined based on
vehicle trips and the entire population. Because mobile phone data cannot record
detailed geographical information, only the zone-based t-OD can be obtained using
the above measures. To facilitate the traffic assignment, one intersection within the
zone was randomly selected in Wang et al. [1] to convert the zone-based t-OD to the
intersection-based t-OD. In cases when no intersection was found in the zone, the
origin or destination in the intersection-based t-OD was determined by randomly
selecting one intersection in the nearest-neighboring zone.

Some research has focused on travel demand estimation based on mobile phone
data. In Iqbal et al. [16], for example, a methodology similar to that described
above to develop OD matrices using mobile phone CDRs was proposed. In this
methodology, the time-stamped Base Transceiver Station tower locations of each
user are first extracted from CDR data. Then, tower-to-tower transient OD matrix
was developed by them. The tower-to-tower t-OD must be converted to node-to-
node t-OD before applying them; this is accomplished by connecting origin and
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Fig. 5.1 Flow chart of travel demand estimation with different kinds of transportation data

destination towers to corresponding nodes of the network. Moreover, after obtained
node-to-node t-OD matrix, simulated traffic flow was generated in the road network.
Combining simulated traffic flow and actual traffic flow (generating from video
data), this node-to-node t-OD matrix could be scaled up to developed the actual
OD matrix. In Gong et al. [17], a method for estimating OD distribution among
urban mega traffic analysis zones based on mobile phone data was proposed. Based
on this method, the influence of travel information loss is reduced.

RFID data can record the time and location of vehicles trips more accurately
compared to mobile phone data, which is more helpful in obtaining accurate OD
matrices. Tracing the RFID records of each vehicle, it is easy to find that most
time intervals between two adjacent records are distributed in a small range of
T. Therefore, the time interval T could be assumed to be the standard for trip
separation. For most time intervals smaller than T, the records are assumed to belong
to the same trip. For a few consecutive records in which the time interval is larger
than the usual T, we usually consider the records as belonging to different trips.
Using this method, we can obtain RFID-station-based ODs. In order to facilitate
assignment of the trips to segments, each RFID station should be mapped to a road
intersection, and node-based ODs are thus obtained. However, since RFID devices
have not yet been fully popularized, we usually need to scale up the number of trips
between each pair of sources and destinations by comparing them to other kinds
of data.

Using daily subway card records, which provide detailed information regarding
when a passenger entered and left a station (i.e., the trip’s start and end), the daily
trips of all passengers can be easily accessed. Sometimes, however, OD matrices for
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different peak hours are usually needed, e.g., a case of morning peak OD matrix is
described in He et al. [4]. The trips that start at the first station after 8 a.m. and at
the last station before 9 a.m. belong, of course, to the morning peak OD matrix. In
He et al. [4], for the trips that start and end around the morning peak hour, the first
station after 8 a.m. and the last station before 9 a.m. for each trip was located by
calculating the shortest path of each trip. These stations were used as the new origin
and destination of the trip to generate the morning peak hourly OD matrix.

5.3.2 Traffic Flow Assignment

After travel demand has been estimated, different methods of assigning trips to road
networks can be utilized. The Dijkstra algorithm [18] is the most classical method
of assigning trips to road networks. The algorithm is used to solve the shortest-
path problem for a graph. In traffic field, travel time of each segment is usually
used as edge’s weight. Furthermore, it is the most basic of traffic flow assignment
algorithms. In “all-or-nothing” traffic assignment, all trips are assigned to the road
network by selecting the shortest path of each trip. Then, the traffic flow on each road
segment can be estimated. It is a static nonequilibrium model approach in which the
same trip is assigned to the same shortest path and one that only considers free traffic
conditions without the additional travel time incurred due to traffic congestion. “All-
or-nothing” traffic assignment is usually used in subway networks or simple road
networks for which there is no need to consider additional travel costs in general
and can also be used in road networks with few trips and where congestion does not
usually occur.

All-or-nothing traffic assignment ignores the dynamical change of road segment
travel time that occurs because of the cost of congestion. The incremental traffic
assignment (ITA) [19] method could solve this problem by updating travel costs
that consider travel congestion. In the ITA method, original trips are usually first
split into different sub-trips that contain different percentages of the original trips.
First, one of sub-trips is assigned to the network using the free travel time. After
that, the actual travel time in a road segment is updated using the Bureau of Public
Roads function. Then, the next sub-trips are assigned using the actual travel time,
and the process is continued until all sub-trips are assigned to the road network.
ITA is an improvement of all-or-nothing assignment methods, and because of its
convenience and the fact that it considers additional travel costs, it is often used in
complex road networks with a large number of trips [1, 2].

The ITA method incorporates the change of travel time, but in the actual traffic
conditions each driver always uses the route to minimize his or her travel cost,
which attains user equilibrium (UE). There are many methods of computing UE,
including the method of successive average algorithm, which is a simple, classical,
and efficient assignment algorithm that approximately achieves the UE state. This
algorithm assigns all trips to segments and upgrades travel times constantly until
the traffic flow reaches the UE state. Another convenient algorithm is Frank–Wolfe
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[20] algorithm, and the system approaches the UE state more quickly. These two
algorithms are both easy to realize but are slow in attaining the optimal UE state
because of constant circulation. Because these kinds of algorithms consider user
benefits, they most closely approximate the actual traffic situation and thus are often
used in the analysis of traffic conditions. However, due to their high time cost,
especially when applied to complex road networks, a more convenient algorithm
is sometimes chosen to replace them.

5.3.3 Locating the Driver Sources

Using an appropriate traffic assignment method from those described above, each
trip is assigned to the road network to provide estimated traffic flows. The ratio of
traffic flow to the capacity of a road is called volume over capacity (VOC), and it
can reflect the extent of traffic congestion in some ways. We usually recognize that
a road is congested when the traffic flow is greater than its available capacity. From
the investigation of road segment usage reported in Wang et al. [1], mobile phone
data in the San Francisco Bay Area (California, USA) and Boston (Massachusetts,
USA) were used to analyze traffic flow, betweenness centrality, and VOC in the
two urban areas. Traffic flow follows mixed exponential distribution in the two
urban areas, and the arterial roads’ and highways’ betweenness centrality can
be separately approximated by the power-law distribution and the exponential
distribution. Although topologies of road networks are different, the traffic flow
distribution is similar, which indicates an inherent mechanism in road usage
patterns. VOC follows an exponential distribution in most road segments. In Wang
et al. [1], the surprising finding was that only a few locations caused the congestion.
Furthermore, the driver source was defined as a mobile phone user’s home location.
The process of major driver sources prediction is as follows:

In Fig. 5.2, rectangles represent traffic zones, the red zone H represents the home
location of a mobile phone user, the blue zone A and B, respectively, represent
the start and end of his or her trip, and the red line represents the predicted route
from zone A and zone B. An array variable S[x] (x is the ID of a zone) is defined
to quantify the traffic flow contribution from zones to road segments. If a road
segment belongs to a part of the predicted route, S[x = H] + 1. Then, the traffic
flow contribution from each zone to the segment is calculated by counting S[x] from
all paths in t-OD matrices. Sorting and analyzing traffic contributions of each zone
can reflect the different impact of each zone to the congestion of the road segment.
The authors defined the top-ranked sources as those providing the most traffic flow
on a road segment as its major driver sources (the major driver sources in total
produce 80% of a segment’s traffic flow).

Next, the road usage bipartite network is formed to explore the relationship
between major driver sources and road segments. In bipartite networks, links only
exist in different types of nodes. In the road usage bipartite network, road segments
and major driver sources are the two types of nodes, and each road segment is
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Fig. 5.2 Illustration of a traveler’s origin, destination, and home location. The rectangles represent
different zones, the green lines and white lines, respectively, represent highways and arterial roads.
The red line represents the predicted route from zone A to zone B

connected with its driver sources. In the modeling framework of road usage bipartite
network, the degree of a driver source and the degree of a road segment were
proposed [1]. The former is the number of road segments for which the driver
source is the major driver source, and the latter is the number of major driver
sources of the road segment. The driver sources’ and road segments’ degrees can
be approximated by normal distribution and log-normal distribution, respectively.
The different distributions of the degree of a driver source and the degree of a road
segment reflect different internal relations. First, a similar number of road segments
were used by drivers from each driver source. Second, and useful to congestion
mitigation, is that only a few driver sources provide the major usage of a road
segment.

Static driver sources are useful information for traffic planning and management,
but because of their stability they cannot be used for real-time dynamic traffic
control. In Wang et al. [2], the dynamical driver sources of a road segment were not
defined by a mobile phone user’s home location, but rather by the census tracts for
the location where the trip started in the time window. In this way, the driver sources
information captured the time-variant vehicle sources for a road at different times
of day. Similar to the major driver source described above, in Fig. 5.2, the blue zone
A represents the start zone of the trip to zone B; if the road segment belongs to the
predicted route (red line), S[x = A] + 1. After counting S[x] from all paths, the traffic
flow contribution from each zone to the road segment is obtained. Finally, a road
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segment’s major dynamical driver sources are defined as the top-ranked sources
that, in total, produce 80% of the traffic flow. It is worth noting that the number of
major dynamical driver sources follows an exponential distribution, which means
that fewer sources must be considered when controlling a road segment’s traffic in
real time.

For a road segment, te (the difference between the actual travel time, ta, and
the free flow travel time, tf ) could also be used measure its level of congestion
[1]. If a driver travels through congested roads, he/she will experience a large te.
If where these drivers come from could be determined, the measures necessary to
ease traffic congestion would be easy to realize. In the research described in Wang
et al. [1], the total extra travel time Te generated by driver sources followed an
exponential distribution, which indicates that it is feasible to target the small number
of congested driver sources that could be defined by the top-ranked Te of each
driver source. Different from segment driver sources, the congested driver sources
are more focused on the congestion of the entire city than on the congestion of a
segment.

The driver sources based on mobile phone data could provide useful information
for traffic control, but because of the sparseness of mobile phone data, its accuracy
and instantaneity is defective. The high resolution and high frequency of RFID data
greatly overcomes these problems, since each RFID station is considered a driver
source, and the major sources of driver and congested driver sources are defined
similarly as described before. Because of the higher temporal and spatial resolution
of these dynamic driver sources, the RFID-data-based driver source information is
more applicable in emergent situations.

Similar to the concept of “driver sources,” in the subway network described in
He et al. [4], subway stations are defined as “passenger sources.” In He et al. [4],
OD pairs were first ranked according to their total extra travel cost, and the starting
station of each top-ranked OD pair was defined as a congested passenger source and
was targeted for releasing routing information. In the URT network described in
Wang et al. [3], for a URT segment each passenger’s home census tract was defined
as a passenger source. Similar to the definition of a “driver source,” Wang et al.
[3] ranked census tracts by their passenger flow contribution, and defined the top-
ranked census tracts that, in total, produced 80% of the passenger flow of each URT
segment as the segment’s major passenger sources.

5.3.4 Visualization of Driver Sources

After locating the driver sources of a city road network and the passenger sources
of the sections between stations, in order to clearly show the available driver
source information, an interactive visual analytics system needs to be established.
Such a system’s workflow consists of two phases: preprocessing and visualization.
Construction of the three subsystems—driver source prediction, passenger source
prediction, and congested cluster analysis—provides visual charts, particle trajec-
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Fig. 5.3 Visualization of dynamic driver sources in the San Francisco Bay area (California, USA)
road network

tory views, map zoom, screen shots, custom maps, etc.; meanwhile, the system
uses asynchronous loading, offline maps, and vector data compression techniques to
provide high-quality and efficient services for users. In consideration of portability,
the system supports multiple operating systems. Some driver source information
types are shown in Figs. 5.3 and 5.4, which were generated using the interactive
visual analytics system described.

5.4 Applications

After discovering that the major traffic flows in congested roads are created by
very few driver sources, we began to consider creating new applications based
on targeted strategies to mitigate traffic congestion. A straightforward mitigation
strategy is to control the traffic demand from targeted driver sources. We can also
pinpoint road clusters heavily used by drivers from congested driver sources in order
to improve road network efficiency. Moreover, a convenient mitigation strategy
involves guiding routes from driver sources.

5.4.1 Traffic Demand Control

After congested driver sources are located, a simple way of mitigating congestion
is to reduce the number of trips from congested driver sources. In Wang et al. [1],
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Fig. 5.4 Visualization of passenger sources in the Beijing, China subway network

different percentages of trips from congested driver sources (corresponding to m
(0.1–1%) of the total percentage of trips) were reduced. As a reference, the m total
percentage of trips were randomly reduced without identifying the congested driver
sources. In Wang et al. [1], the total travel time reduction increased linearly with m,
and the total travel time reduction achieved using the selective strategy was almost
many times more than that achieved using the random strategy, which means that the
selective strategy is much more effective in reducing the total additional travel time.
From the study of such a high-efficiency selective strategy, the essential reasons for
its success, namely that congested road segments are few and traffic flow in those
road segments is basically connected to few major driver sources, become obvious.

5.4.2 Pinpointing Road Clusters Heavily Used by Drivers
and Infrastructure Upgrades

After defining dynamic congestion driver sources, a connection between a road
network and its sources of traffic congestion can be built. In Wang et al. [2], the road
cluster was defined as a collection of road segments that were used at least once by
congested driver sources, and these roads are closely related to traffic congestion.
This finding could be applied to effective mitigation of traffic congestion. One way
of mitigating traffic congestion is to increase the capacity of congested roads, which
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is discouraged because of the likelihood of attracting more vehicles and because
of the extra expense. Another way of mitigating traffic congestion is to reduce
the number of vehicles on congested roads; this is easy to implement by lowering
the speed limits on road segments, as reported in Wang et al. [2]. Both measures
were applied in the targeted road clusters, and for comparison, also applied in road
clusters that were randomly generated with the same sizes as the targeted road
clusters. For both approaches, the selective strategy was much more effective than
the random one in reducing total additional travel time and congestion. Comparing
these approaches, lowering the speed limit is more appropriate because it is more
adaptive and reduces operation/construction costs.

5.4.3 Route Guidance

To mitigate traffic congestion, travelers should be routed to use transportation
networks more appropriately and in ways that are more acceptable to them. One
routing guidance method is the hybrid routing model. In He et al. [6], a hybrid
routing model to alleviate traffic jams was proposed, in which guiding a small
portion of travelers to choose the minimum-cost path achieved almost the same
congestion mitigation effect as guiding all travelers to choose the minimum-cost
path. To investigate the feasibility of hybrid routing in real passenger traffic control,
He et al. [7] reported on the use of the hybrid routing model in the Beijing subway
network. The results showed that the hybrid routing model can function as an
effective and feasible solution for alleviating severe congestion in subway networks
since it requires only approximately 20% of passengers to use minimum-cost
routing. To improve the impractical measures that inform every traveler of the proper
route, an information-releasing framework that only suggests routes from targeted
stations was developed and reported in He et al. [4]. The congested passenger
sources were publicized, and routing information was released in the targeted
stations. The results in He et al. [4] showed that very few stations are targeted for
broadcasting, and most stations only provide a small number of suggested routes,
which demonstrates the feasibility of the framework. In He et al. [4], the hybrid
routing model was also used for the San Francisco road network, and it also proved
effective in road traffic improvement.

Another routing guidance method uses information on dynamical driver sources
located by RFID data. It is obvious that it is more feasible to route drivers from
targeted sources than to route them from all over the urban space. We could consider
that only trips from dynamic congested sources are selected for routing guidance.
In this routing guidance method, the social good λ is considered (λ is proposed to
explore the routing strategies for balancing individual benefit and social good [21]).
This routing guidance method can reduce the influence on normal trips by targeting
several appointed places, and the dynamic driver source information could reduce
the difficulty of real-time traffic control.
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5.5 Discussion and Conclusions

To improve the efficiency of transportation systems, there have been many studies
on road network topology and urban traffic demand. The studies of road network
topology mainly focused on spatial accessibility [22], betweenness centrality
[23], and vulnerability [24]. In traffic demand studies, traffic demand estimation
[16, 25], a travel demand transportation supply model [26], and travel demand
management system [27] were extensively studied. However, most existing studies
lack understanding of the internal relation between network and travel demand.

Combined with the internal relation of network analysis and traffic demand,
Wang et al. [1] defined a road usage bipartite network and first proposed “driver
source” to explore the source of the congestion. From the point view of macroanaly-
sis and real-time control, the “static driver source” can be applied to urban planning
while “dynamic driver source” [2] can support real-time traffic control. From the
point view of urban congestion and road segment congestion, the “major driver
source” is estimated by traffic flow, and the “congested driver source” is calculated
by total extra travel time. In Wang et al. [3], “passenger source” was proposed.
With the development of machine learning technology, Wang et al. [28] proposed
a deep learning method for continuous traffic speed prediction, and designed a
novel influence function based on it to recognize congestion sources. Overall, the
“traffic source” provided new insight into traffic management and can be applied in
targeting some travelers to reduce urban congestion more efficiently.

Similar to driver source, “driver major destinations” have also been analyzed
recently. In Gong et al. [29], major providers of traffic information were defined
as major destination zones. Gong et al. [29] estimated the spatial distribution of
vehicles, and discovered that at different times there are always very few major
providers of traffic information for each traffic zone, which suggested that there is
no need for information for an entire area. Toole et al. [30] combined numerous
algorithms, generated representative OD matrices and route trips, and built an
interactive web visualization that showed the trip producing census tracts and
attracting census tracts for a road and roads used by the census tract’s generated
trips. In the URT network, the major passenger sources were not only pinpointed
but a URT segment’s major passenger destinations were also defined as the top-
ranked census tracts that, in total, attracted 80% of the passenger flow of a segment
[3]. Based on this finding, a URT segment’s vulnerability can be measured by
combining the trip failure rate with the number of major passenger sources and
major passenger destinations. When the different segments have the same trip failure
rate, the segment with the larger number of major passenger sources or destinations
is more vulnerable, and it is more difficult to respond to emergencies or accidents.
In addition, Wang et al. [5] found that the impacts of the rail transit network
were different when passenger flow suddenly increased in different stations. In
this paper, the complexity of passengers’ destination was considered, and the Gini
coefficient was used to quantify the inequality of passengers’ destinations. With a
larger Gini coefficient, the passengers’ destinations were more concentrated, and
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thus when emergency occurs, it is more conveniently dealt with. Furthermore, from
their research on major passenger destinations, and considering the Gini coefficient
of passenger flow distribution, they suggested using corresponding strategies and
measures by analyzing impacts and Gini coefficient when dealing with sudden
increases in passenger flow.

Major passenger destinations and major driver destinations are both important in
traffic analysis. In addition, the concept of “source” is used not only in transportation
but also in various complex networks in terms of supply and demand, such as the
Internet and information networks.

“Driver source” has important significance in urban traffic planning and traffic
management, and we believe that methods utilizing it can be applied to a wider
range of transport networks in the future. In the present paper, we give a summary
of existing data, methods, and applications of traffic source prediction. In the current
information era, abundant and highly accurate data provide the basis for travel
demand forecasting. Different traffic assignment methods can be selected according
to the different traffic networks. From understanding the usage of road networks,
we can determine the major “driver sources” and “congested driver sources” and,
moreover, can apply appropriate ways of solving traffic problems based on them.
With further advances in this research, we believe that the concept of the “driver
source” will be more and more widely used in transportation analysis and become a
topic of greater interest.
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Chapter 6
Analyzing the Spatial and Temporal
Characteristics of Subway Passenger
Flow Based on Smart Card Data

Xiaolei Ma, Jiyu Zhang, and Chuan Ding

6.1 Introduction

Passenger flow is a core feature of rail transit stations and is strongly influenced
by the land utilization around the station. Therefore, the rail transit system can
be improved by understanding the passenger characteristic flow and analyzing the
correlation between peak passenger flow and land-use density.

In recent years, many studies have attempted to elucidate the passenger flow
characteristics of rail transit systems. Sun et al. [1] applied a Bayesian algorithm to
investigate the passenger distribution of complex subway networks. Zhou and Han
[2] analyzed the influence of train capacity restriction on subway passenger flow
under a timetable. Recognizing the rapid development of information technology,
Wang et al. [3], Ma et al. [4], and Liu et al. [5] utilized big data to excavate the law
of passenger flow. For example, the mobile phone data of passengers were used to
summarize passenger flow and evaluate the subway service level [6].

Land use is one of the factors contributing to passenger flow. The relationship
between land-use types and traffic demands has been extensively explored in the
literature. Cellular automation and Markov models were used to understand the
changes at regional scale, and discrete choice models to predict the changes at
local level [7]. Dill [8] discovered that the rail transit convergence on the choice
of subway passengers is greater than the subway location. Several scholars have
proposed various evaluation systems for land use and subway passenger flow to
analyze the link between the two factors [9, 10].
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Although researchers have gained knowledge on the relationship between peak
passenger flow and land-use density, the following critical issues should still be
addressed:

1. The characteristics of passenger flow are mostly analyzed from a macro per-
spective, ignoring the micro point of view. In addition, most studies considered
station-level passenger flow as a static data source, thereby disregarding the
temporal characteristic of passenger flow.

2. The majority of studies on the relationship between passenger flow and land-use
density are qualitative, indicating the lack of quantitative calculations.

Therefore, the contributions of the present study can be summarized as fol-
lows:

1. Subway passenger flow is analyzed at station level. Considering the large
number of subway stations and the temporal characteristic of passenger flow,
we develop a sequential K-means clustering algorithm that utilizes smart card
data to categorize subway stations in Beijing.

2. The relation between peak-hour passenger flow and land-use density is quantita-
tively calculated. In view of the spatial nonstationarity of the passenger flow of
rail transit stations, this study proposes the geographically weighted regression
(GWR) model to compute the correlation between peak passenger flow and land-
use density.

The rest of the paper is organized as follows. In Sect. 6.2, a sequential K-
means clustering algorithm is developed for categorizing subway stations in
Beijing to analyze the differences among the station categories in terms of
station-level passenger flow. In Sect. 6.3, we determine the correlation effect
between peak-hour passenger flow and land-use density. We also analyze the
spatial distribution of the correlation coefficients. Finally, the drawn conclusions
and recommended future study directions are elaborated in Sect. 6.4.

6.2 Subway Station Classification

6.2.1 Sequential K-Means Clustering Algorithm

The development of urban rail transits in recent years has resulted in severely
overcrowded passenger flow. To address this issue, the characteristics of passenger
flow must be analyzed. At present, most public transit agencies have adopted smart
cards, which can be used by transit planners and researchers to recognize the
inherent law of passenger flow. For this purpose, subway stations are clustered
because of the large number of stations and the similarity among them.

Each smart card transaction record includes an individual’s boarding timestamp,
alighting timestamp, and station information. The station-level smart card trans-
action data are typical time series data. Thus, the temporal characteristics of daily
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inbound and outbound subway passenger flows must be considered in the clustering.
Sequential K-means clustering algorithm is an extension of traditional K-means
algorithm and is specifically designed to cope with time series data [11, 22].

Time series clustering algorithms can be divided into two categories. The first
category is for modifying traditional algorithms into cluster time series data. The
other category is for adjusting the structure of the input data and making the
modified data structures suitable for the existing clustering algorithms. According
to the classification of time series clustering algorithms, the time series clustering
methods include Raw-data-based and feature-based approaches [12].

Conventional clustering algorithms with suitable distance functions are adopted
to the Raw-data-based method based on raw time series data [13]. One key compo-
nent in model-based methods is to measure the similarity between two time series.
The most commonly used distance is Euclidean distance. In addition to Euclidean
distance, distance related Pearson’s correlation coefficient [14], short time series
(STS) distance [15], dynamic time warping (DTW) distance, and probability-based
distance [16] are also applied to calculate the similarity. Košmelj and Batagelj [17]
modified the relocation clustering procedure for time series data [17]. Liao et al.
[18] applied K-means, fuzzy c-means, and genetic clustering methods to process
time series data. Shumway [19] developed a time series clustering method based on
Kullback–Leibler discrimination information measures.

For the feature-based approaches, feature vectors are extracted from the raw time
series data for reducing the dimensionality of complex data sets. Wang et al. [20]
selected average, standard deviation, skewness, kurtosis, and other characteristics
to cluster time series data by hierarchical clustering. Alonso et al. [21] also applied
the hierarchical clustering method to analyze the carbon dioxide emissions. The
selected distance was probability-based distance function.

How to choose a proper approach is crucial for time series clustering [11, 22].
Unfortunately, there is no unified standard to judge the clustering result quality.
Therefore, the selection of a suitable method will rely on the practical problem and
data characteristics. If the data size is moderate and abundant information can be
used to determine the model parameter, the Raw-data-based methods can be applied
due to the ease for implementation. However, if the raw data is high-dimensional
and complex, the feature-based approach is more appropriate since the number
of dimensions can be significantly reduced with feature extraction, leading to an
improvement of computational efficiency. In this study, the raw data of this study
is ridership of Beijing metro station. The data structure is not complicated and can
be well handled by traditional clustering methods. In addition, the dimension of
ridership time series data at each metro station is equal. Therefore, it is suitable to
apply the conventional distance to measure the similarity between different stations.
Based on the above reasons, the sequential K-means algorithm is adopted in this
study.

The sequential K-means algorithm belongs to the second category, as this
algorithm converts time series data into longitudinal data that can be processed by
traditional K-means algorithms. R provides a package for managing and calculating
longitudinal data.
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6.2.1.1 Algorithm Introduction

K-means is a hill-climbing algorithm under the EM class. EM algorithms work as
follows. Each observation is initially assigned to a cluster. The optimal clustering is
then reached by alternating two phases. During the expectation phase, the centers
of the different clusters (known as seeds) are computed. During the maximization
phase, each observation is then assigned to its nearest cluster. The two phases are
alternated repeatedly until the clusters no longer exhibit any changes [23].

Let S be a matrix, each row represent an object, and each column represent
measurements over time. yi = (yi1, yi2, . . . , yit) is called a trajectory, and yij is the
value of trajectory i measured at time j.

S =

⎛

⎜
⎜
⎜
⎝

y11 y12 · · · y1t

y21 y22 · · · y2t

...
...

...
...

yn1 yn2 · · · ynt

⎞

⎟
⎟
⎟
⎠

(6.1)

The aim of clustering is to divide S into K homogeneous subgroups. The main
issue in homogeneous subgroups is calculating the distance among individuals. K-
means algorithm can operate with different kinds of distances, such as Manhattan,
Minkowski, and Euclidean. We define d(ym, yn) as the distance between ym and
yn. Let Dist be a distance function and ‖ · ‖ be a norm. To compute the distance
d between ym and yn, for each fixed j, we define the distance between ymj andynj

(distance between the individuals’ state at time j) as dj.(ymj, ynj) = Dist(ymj, ynj).
This value is the distance between column j in matrix ym and column j in matrix yn.
The result is a “vector of t distances” as follows:

(d1· (ym1, yn1) , d2· (ym2, yn2) , . . . , dt · (yt2, yt2)) . (6.2)

Then, we combine these t distances by use of a function that algebraically
corresponds to a norm ‖ · ‖ of the vector of the distance. Finally, the distance
between ym and yn is expressed as

d (ym, yn) = ‖Dist (ym1, yn1) , Dist (ym2, yn2) , . . . , Dist (ymt , ynt )‖ . (6.3)

The choice of the norm ‖ · ‖ and the distance Dist can lead to the derivation of
a large number of distances. We can define the distance between two joint variable
trajectories as

Dist (ym, yn) = p

√
√
√
√

t∑

j

∣
∣ymj − ynj

∣
∣p. (6.4)
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The Euclidean distance is obtained by setting p = 2. The Manhattan distance is
acquired by setting p = 1. The maximum distance is determined by passing to the
limit p → + ∞.

K-means computes the objective function after each iteration. Si refers to the set
of individuals belonging to category i, and ci denotes the mean of Si.

J (Y,C) =
k∑

i=1

∑

yj ∈Si

d
(
yj , ci

)
(6.5)

6.2.1.2 Choosing the Optimal Number of Clusters

An unresolved problem of K-means is determining the optimal number of clusters.
A possible solution is to run the K-means algorithm with varying initial number
of seeds and then select the “best” number of clusters according to a few quality
criteria. A “good” partition indicates that the individuals within the same category
are adjunct to one another as close as possible, whereas individuals under different
categories are apart from each other as far as possible. The quality criteria require
high values for partitions of high quality, and low values otherwise (or vice
versa, depending on the criteria). Thus, most indices calculate the “within-cluster
compactness index” and “between-cluster spacing index,” wherein one of which is
divided by the other.

Let nm be the number of individuals in cluster m, Si be the mean trajectories of
cluster m, and y be the mean trajectories of whole individuals. The between-cluster
covariance matrix is

B =
k∑

m=1

nm (ym − y) (ym − y)′. (6.6)

Trace(B) designates the sum of the diagonal coefficients of B. High values of
trace(B) denote well-separated clusters, whereas low values of trace(B) indicate
that the clusters are close to one another. The within-cluster covariance matrix W is
similarly defined as follows:

W =
k∑

m=1

nm∑

k=1

nm (ymk − ym) (ymk − ym)′. (6.7)

Low values of trace(W) correspond to compact clusters, whereas high values of
trace(W) correspond to heterogeneous groups.

The quality criterion combines the within and between matrices to evaluate the
quality of the partition. Specifically,

Calinski and Harabasz criterion

C(k) = trace(B)

trace(W)
· n − k

k − 1
(6.8)
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Calinski and Harabasz, Kryszczuk variant

CK(k) = trace(B)

trace(W)
· n − 1

n − k
(6.9)

Calinski and Harabasz, Genolini variant

CG(k) = B

W
· n − k√

k − 1
(6.10)

The correct solution cannot always be obtained. In practice, researchers often
resort to several criteria to strengthen the reliability of the result. This study uses
Calinski and Harabasz criterion as the main criterion, while the other criteria are
available for checking the result consistency.

6.2.1.3 Initialization of K-Means

The first step of the K-means algorithm is to determine the initial k cluster centers.
(1) Initialization influences the convergence (local or global maximum) and (2)
the computational efficiency of the algorithm. If an initialization method can
determine k individuals that are fairly close to the best partition, then K-means can
rapidly converge to the optimal solution. Several authors have proposed various
initialization methods. The objective of initialization is to choose initial centers
that are as distant as possible from one another. Such individuals ideally belong
to different clusters, thereby enhancing the convergence speed. Unfortunately, no
initialization method can guarantee that the optimal initial centers can be found.
Thus, most approaches allow users to run the method several times. Each run starts
at a different initialization to ensure that one of them reaches the global maximum.
The initial clustering centers can be selected using various traditional initialization
methods:

1. randomK: k individuals are chosen randomly as initial cluster centers.
2. randomAll: All individuals are randomly portioned into K clusters. The mean of

each cluster is the initial cluster center.
3. maxDist: This method is incremental. First, it selects two individuals as the first

centers that are most distant from each other. Then, it adds the individual that is
the farthest from the list of centers already preselected to the center group.

4. kmeans+: maxDist is more effective than random methods because the initial
centers are guaranteed distant from each other. However, this method is time
consuming and complex (with a complexity of o(n2)) because it computes all
of the distances between each two individuals. Kmeans+ combines maxDist
and random methods. This method follows a similar principle: the first two
individuals are chosen randomly, and the other centers are added to the list of
already presented centers. Thus, the matrix of distances need not be computed
among all individuals. The calculation complexity is o(nk), which is less than
that of maxDist method.
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6.2.2 Clustering Result

6.2.2.1 Data Processing and Parameter Calibration

The data used in this study are obtained from the Beijing AFC system, which
covers 266 stations. According to the smart card transactions data, we aggregate the
station-level passenger flow every 15 min. The key information includes inbound
and outbound subway passenger flows, station name, time number, and line number
(Table 6.1). Except for the non-service time (11:45 PM–6:00 AM), the data
complexity is o(266 × 76). This study mainly focuses on station-level passenger
flow. Therefore, we merge the passenger flows from several stations with the same
station name but belonging to different lines. We regard the computed average
passenger flows from Monday to Friday as the base data. We then convert the time
series data into the format of clusterLongData on the R software [24], which can be
processed by the K-means algorithm.

Determining the proper k value and initialization method is crucial to the success
of the sequential K-means clustering algorithm. To consider inbound and outbound
passenger flows, we perform two clustering procedures for inbound and outbound
passengers and then apply cross classification to determine the final number of
categories on the basis of the clustered results. Inbound and outbound are opposite
flows, and their main difference is the peak-hour passenger flow. Therefore, we
select the same number for inbound and outbound directions. According to the
temporal characteristic of passenger flow, the subway stations are divided into the
following three categories [25]:

1. Dual-peak stations: Stations that have morning and evening peaks;
2. Single-peak station: Stations that have either a morning or an evening peak;
3. No-peak station: Stations without peaks. The passenger flow fluctuates irregu-

larly over a day.

We choose the range of 4–6 as the initial number. After several times of running
using different initial numbers, the optimal number is determined by contrasting the
Calinski and Harabasz criterion. We use Euclidean distance to calculate the distance
among individuals. The complexity of the cluster data is 266 × 76, and the runtime

Table 6.1 Example of basic data

ID 30,315 30,330 30,379
Data 20,150,602 20,150,602 20,150,602
Line number 4 4 13
Station number 29 47 43
Time 70 20 52
Inbound passenger flow 385 0 74
Outbound passenger flow 147 2 105
Line name 4 line 4 line 13 line



128 X. Ma et al.

205

210

215

220

225

230

235

176

178

180

182

184

186

188

4 5 6

C
al

in
sk

i &
 H

ar
ab

at
z

C
al

in
sk

i &
 H

ar
ab

at
z

K-value
Inbound Outbound

Fig. 6.1 The result of Calinski and Harabasz criterion

is within a reasonable range. Therefore, we choose maxDist as the initialization
method to guarantee that the initial centers are as distant as possible from each
other.

6.2.2.2 Weekday Station Classification Results

The algorithm is run 20 times for 4–6, and the average Calinski and Harabasz
criterion is calculated (Fig. 6.1). The max Calinski and Harabasz criterion is k = 5
in inbound and outbound clusters. Thus, the inbound and outbound passenger flows
are classified into five clusters. The inbound classifications are marked A–E, and the
outbound classifications are marked a–e. Finally, the subway stations are divided
into 10 groups (Table 6.2) by combining the inbound and outbound cluster results,
such as Aa (inbound passenger belonging to cluster A and outbound passenger
belonging to cluster a). The number of groups is less than 25 (5 × 5), indicating
that the inbound and outbound passengers are related to each other.

The stations are divided into 10 groups marked Xy, where X and y represent the
inbound and outbound cluster results, respectively (Fig. 6.2). The features of the
different stations are summarized below.

1. Group Aa
The Aa group is the largest category with 116 stations, accounting for 43.6%.

The stations are typical dual-peak stations with morning and evening peaks in
inbound and outbound directions. The morning peak passenger flow volume
is around 300 people/15 min, and the evening peak passenger flow volume is
around 210 people/15 min. The stations within this group are located mostly in
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Table 6.2 Information of station groups

Group no. Number of stations Representative station name

1 116 Anhuaqiao (AHQ) Anlilu (ALL) Baliqiao (BLQ)
2 16 Andingmen (ADM) Anzhenmen (AZM) Beijing zoo
3 15 Anheqiaobei (AHQB) Beigongmen (BGM) Beiyuan (BY)
4 15 Changchunjie (CCJ) Guloudajie (GLDJ) Jintailu (JTL)
5 33 Babaoshan (BBS) Bajiao (BJ) Gongyixiqiao (GYXQ)
6 32 BaiShiQiaoDong (BSQD) Beijing South Railway Station
7 22 Caoqiao (CQ) Dongdaqiao (DDQ) Fuxingmen (FXM)
8 9 Caofang (CF) Huilongguan (HLG) Huoying (HY)
9 5 Dawanlu (DWL) Dongzhimen (DZM) Xizhimen (XZM)
10 3 Chaoyangmen (CYM) Guomao (GM) Xierqi (XEQ)

Inbound Clusters

A B C D E
Outbound Clusters

a b c d e

Aa Ab Ba Bb Bc Cb Cd Dc Ed Ee

Fig. 6.2 Cross classification

regions of the Beijing rail transit network, such as stations in suburban areas,
where passengers primarily commute between their residence and workplace.

The passenger flow characteristics of the Aa group are below the designed
station capacity. Nearly half of the Beijing subway falls within this category.
These stations are unlikely to cause congestion from the low passenger flow vol-
ume. Thus, the main problem of Beijing subway stations is not the oversaturated
passenger flow but the reasonable passenger flow allocation to those stations that
are underutilized (Figs. 6.3 and 6.4).

2. Group Ab
The Ab group contains 16 stations, accounting for 6%. The Ab group belongs

to employment-oriented stations. The inbound evening peak passenger flow
volume is 720 people/15 min, and the outbound morning peak passenger flow
volume is 1050 people/15 min. The passenger flow manifests as “morning–
outbound and evening–inbound,” which is the core feature of employment-
oriented stations. The max inbound and outbound metro ridership are 16,200 and
18,000 people/day, respectively. Compared with the Aa group, the Ab group has
a considerably larger average passenger flow, and the increase in peak passenger
flow is much higher than that in the Aa group. However, the increase in passenger
flow does not cause obvious queuing (Fig. 6.5).
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Fig. 6.3 Spatial distribution
of subway station categories
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Fig. 6.4 Temporal distribution of passenger flow (Aa group)
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Fig. 6.5 Temporal distribution of passenger flow (Ab group). The Ab group stations are mainly
located downtown, primarily in the north. The main land types surrounding the stations are
employment land with a few residential buildings. The intensity of land development surrounding
the Ab group stations is higher than that surrounding the Aa group

3. Group Ba
The Ba group contains 15 stations, accounting for 5.6%. The temporal

characteristics of the inbound and outbound passenger flows are contrary to
that in the Ab group. The passenger flow manifests as “morning–inbound and
evening–outbound,” which is the direction of residence-oriented stations. The
inbound morning peak passenger flow volume is 1000 people/15 min, which is
larger than the outbound evening peak. Commuters enter stations to go to their
workplaces during morning peak hours and leave stations to go to their residences
during evening peak hours. The max inbound and outbound metro ridership
are 17,800 and 15,800 people/day, respectively. The level of the Ba group
passenger flow volume is within the same range as the Ab group, suggesting that
“employment” and” residence” are a pair of opposite directions for commuters.
The Ba group stations are distributed in the suburbs outside of the 4th Ring
Road in Beijing. These regions are surrounded by a high density of residential
buildings (Fig. 6.6).

4. Group Bb
The Bb group contains 15 stations, accounting for 5.6%. The characteristics

of this group are similar to that of the Aa group. In particular, double peaks of
inbound and outbound passenger flows are magnified in equal proportions in
this group. The inbound and outbound morning peak metro ridership reach 1160
people/15 min. The max inbound and outbound metro ridership are 47,000 and
41,000 people/day, respectively.
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Fig. 6.6 Temporal distribution of passenger flow (Ba group)

-1200

-900

-600

-300

0

300

600

900

1200

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

P
as

se
n
g
er

 

F
lo

w

Time (15 min)

Inbound

Outbound

Fig. 6.7 Temporal distribution of passenger flow (Bb group)

The Bb group stations are dispersedly distributed without clear spatial dis-
tribution regularities and are located closer to the downtown than the Aa
group (Fig. 6.7).

5. Group Bc
The passenger flow in the Bc group is magnified in equal proportion as

that in the Ba group. This group is a representative residential station wherein
residential-direction peak passenger flows are three times the employment-
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Fig. 6.8 Temporal distribution of passenger flow (Bc group)

direction peak passenger flows. The inbound morning and outbound evening
peak metro ridership are 1300 and 1000 people/15 min. These stations are located
downtown and are closer to the city center than the Ba group. The land-use areas
around these stations are residence communities, which attract a large number of
passengers. We find that most stations in the Bc group will undergo congestion
when the peak passenger flow volume reaches the level of the Bc group (Fig.
6.8).

6. Group Cb
The Cb group contains 32 stations, accounting for 12%. Although the

passenger flow is employment-directed, the differences between the residential-
direction and the employment-direction are not as striking as those in the Ab
group. The inbound evening and outbound morning peak metro ridership are
1200 and 1540 people/15 min. The max inbound and outbound metro ridership
are 40,000 and 42,000 people/day (Fig. 6.9).

Most stations are located in the region of 4th Ring Road, and they are more
concentrated and closer to the downtown than the Ab group. External hub stations,
such as the Beijing South, Beijing, and Beijing West Railway Stations, are assigned
to the Cb group. External hub subway stations have no significant peak passenger
flows.

The characteristics of the other groups, such as Cd and Dc, are similar to those
of the abovementioned six groups. Comparison reveals that the different groups
possess resemblances among one another. The 10 groups are classified under three
categories: employment-oriented, dual-peak, and residence-oriented stations.
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Fig. 6.9 Temporal distribution of passenger flow (Cb group)

Dual-peak stations are stations with double peaks in the inbound and outbound
passenger flows. The gross passenger flow volume is at the middle and lower levels,
avoiding any crowding phenomenon. Many stations have excess capacity that causes
wastage of space. The land-use types surrounding the stations are manifold, and
these stations are widely distributed without centers.

The land-use type surrounding employment-oriented stations mainly comprises
employment land. Passenger flows have obvious directivity and are divided into
peak and off-peak directions. Inbound evening peak and outbound morning
peak belong to employment peak direction, whereas the others are assigned to
employment off-peak direction. Under this commuting direction, passengers around
employment-oriented stations leave the stations to go to their workplaces in the
morning and enter the stations during the evening peak hours. These stations are
located around employment centers, such as CBD and Financial Street.

The peak and off-peak directions of residence-oriented stations are opposite to
that of employment-oriented stations. The inbound evening peak and outbound
morning peak belong to residence off-peak direction. Commuters enter stations
in the morning and leave the stations to return to their residences in the evening.
Residence-oriented stations are located in residential centers away from the down-
town, such as HLG. Most passengers live in this area because of the low prices. The
difference between peak and off-peak direction passenger flows is more significant
in residence-oriented stations than that in employment-oriented stations.

Sequential K-means algorithm is used to divide subway stations in Beijing into
10 groups under three categories. We analyze the differences of these categories
in terms of station-level passenger flow. We also examine the relation between
passenger flow and land use to verify the clustering results.
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6.2.2.3 Weekend Passenger Flow Clustering

The aforementioned clustering results are based mainly on weekday passenger
data. Thus, we contrast weekend passenger flow clustering with that based on
weekday passenger flow. With the use of the same algorithm, inbound and outbound
passenger flows are both divided into two categories. Similar to the weekday data,
weekend inbound clustering results are marked A, B, and outbound clustering results
are marked a, b. The main distinction of the two categories is that the passenger
flow volume of Aa stations is larger than that of Bb stations. If the inbound cluster
results are combined with the outbound cluster results, the stations can be divided
into four groups (Aa, Ab, Ba, Bb) according to the weekday passenger data. The
distributions of weekend passenger flow are stable and have no obvious peak flows.
The characteristic of weekend passenger flow proves that most Beijing subway
riders are commuters.

The Bb groups include 32 stations, accounting for 12%. The Bb group stations,
such as XD and WFJ, among others, are major hubs of the Beijing subway. These
stations belong to the groups with large passenger flows in the weekdays’ clustering
results. The max passenger flow volume ranges from 400 to 500 people/15 min,
which does not lead to crowding (Fig. 6.10).
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Fig. 6.10 Temporal distribution of weekend passenger flow (Bb group)
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6.3 Correlation Between Passenger Flow and Land Use

In the previous chapter, we develop a sequential K-means clustering algorithm for
categorizing Beijing subway stations. The fluctuation of station-level passenger flow
is strongly influenced by its surrounding land-use types. Thus, in this section, we use
GIS data to determine the correlation effect between peak-hour passenger flow and
land-use density.

6.3.1 Calculation of Land-Use Density

To compute land-use density, we should confirm the influential region of a station.
Radiation range is the station-centered region with respect to transportation connec-
tivity. Buffer and Thiessen polygon are the two most commonly employed methods
for generating the influential region.

Buffer refers to the services range of geographically spatial objects. It builds a
fixed-width region surrounding a point, a line, and a plane. Buffer is an important
method in geographical information system and is widely used in spatial analysis.
Thiessen polygons consist of the perpendicular bisector of the line connecting two
adjacent points. This method guarantees that every point is closest to central point
of the polygon to which the point belongs.

Buffer and Thiessen polygon are limited by certain drawbacks. Buffer influential
regions overlap with other regions belonging to multiple buffers. Thiessen polygons
do not pose range limitations, especially when the points are located around edges.
Such setting is inconsistent with practical situations.

To overcome the limitations of these methods, we calculate the influential region
by use of the two methods separately and then consider the common portions as
the final influential region. In this way, different stations do not overlap, and the
distance between two points in the same buffer does not exceed a fixed value. The
buffer radius is 1000 m, which is a typical average walking distance for subway
riders (Fig. 6.11).

The GIS map contains all land-use types in Beijing. For simplicity, we choose
key variables affecting passenger flow. Considering the practical circumstances, we
extract 11 land-use types: restaurants, companies, bus stops, parking lots, financial
institutions, research and education, retail, commercial buildings, entertainment,
medical services, and residential buildings. We map the land-use data on the
influential region to compute the number of land-use types surrounding the stations.
The quantity is divided by the influential region area to obtain the density of every
land-use type. The details of land-use variables are showed in Table 6.3.

Station-level passenger flow is a time series data that cannot be a dependent
variable of regression analysis. The most important parameter of station-level
passenger flow is the metro ridership during peak hours, which are static data that
can be a dependent variable. Thus, we evaluate the correlation effect between peak-
hour passenger flow and land-use density.
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Fig. 6.11 Influential region

Table 6.3 Land-use variables

Type Variable Description

Land use Residential building density Number of residential buildings per km2

Place of employment density Number of companies, agencies, and
government agencies per km2

Commercial building density Number of shopping malls per km2

Restaurant density Number of restaurants per km2

Entertainment density Number of entertainment centers per km2 in
each TAZ

Financial institution density Number of financial institutions per km2

Retail density Number of retail establishments per km2

Research and education density Number of universities and educational services
per km2

Medical service density Number of medical institutions per km2

Transport Bus stop density Number of bus stops per km2

Parking lot density Number of parking lots per km2

6.3.2 Differences in Land-Use Density Between Different
Group Stations

We divide Beijing subway stations into three categories. The fluctuation of station-
level passenger flow is strongly influenced by its surrounding land-use types, as
land use is the primary cause of trip generation and attraction. Thus, we compare
the land-use density between different groups.
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1. Aa group and Bb group
The Aa and Bb groups are dual-peak stations demonstrating similar station-

level fluctuations. Their main distinction is passenger flow volume. The land-use
density surrounding the Bb group is larger than that surrounding the Aa group.
The increase in passenger flow is attributed to the increase in all types of land-use
density rather only a single type.

2. Cd group and Dc group
The Cd and Dc are employment-oriented stations exhibiting similar passenger

flow characteristics. The stations in the Dc group display a greater commuting
passenger flow than those in the Cd group. Both groups have similar land-use
densities. Compared with the other groups, the companies in the Dc and Cd
groups have greater land-use densities. The company land-use density in Cd is 80
per square kilometer, while that in Dc is 140 per square kilometer. The residential
land-use density remains unchanged. The residence passenger flow in the Dc
group is larger than that in the Cd group, and the difference between company
land-use density and residential land-use density is more significant between the
two groups. This finding implies that the residence feature of a station is related
to the difference between company land density and residential density.

The station’s land-use density in the same category has the same distribution.
Two key indicators are employment density and the difference between employment
and residential densities. The former reflects the employment characteristics, and
the latter indicates the residential characteristics of a station. A single residential
density is inadequate for identifying station-level residential characteristics because
detailed information on each residential community, such as house price and floor
area ratio, are lacking.

6.3.3 Geographically Weighted Regression Model

The different groups differ most significantly in peak-hour passenger flow, which is
strongly influenced by the land-use density around stations. Peak-hour passengers
are measured depending on the spatial position of the stations. The variable
displays different structures and characteristics with changes in the locations. The
phenomenon that the relationships and structures of the variable change with
geographic positions is called spatial nonstationarity. For example, we compute the
regression functions between peak-hour passenger flow y and land-use densityx1, x2,
. . . , xp. Basic data change with the geographic position of the observation points.
These changes are highly complex and cannot be described by a specific function.

In the metro system, ridership estimation models are crucial for the analysis
of project feasibility [26]. In the past decades, the ridership models have been
dominated by the four-step approach [27] but yield less effective results for
forecasting ridership on more detailed scales. To address this issue, the direct models
based on the multiple regression analysis are adopted to analyze the relationship
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between land use and ridership [28]. It is believed to better capture the effect of
built environment on ridership. However, the space feature is difficult to assess prior
to the investigation. If linear regression or single nonlinear regression is used to
analyze the correlation, then the results are often unsatisfactory. The reason is that
an important assumption of these global models is the homogeneity of the variables,
which make the results reflect the “global average.” Thus, we must modify the
model to address this problem.

The GWR model embeds the spatial position of the data into regression param-
eters and uses local least square method to evaluate parameters point-by-point. The
weighting factor is the distance between observations. Spatial nonstationarity can
be observed from the parameter estimation of each point. Peak-hour passenger flow
data are the typical spatial data with spatial nonstationarity. Thus, we select the
GWR model to compute the correlation between passenger flow volume and land-
use density.

6.3.3.1 Introduction to GWR

In spatial analysis, n observations are collected in n spatial positions. The GWR
model can handle the spatial nonstationarity by use of different regression functions
to show the spatial difference of observations. GWR is an extension of linear
regression and embeds the spatial position of the data into regression parameters
[29, 30]. The regression function is

yi = β (ui, vi) +
p∑

k=1

βk (ui, vi) xik + εi, (6.11)

where (ui, vi) is the coordinate of the observation i. βk(ui, vi) is the regres-
sion parameter k of observation i. The εi distribution satisfies εi ∼ N(0, σ 2),
Cov(εi, εj) = 0(i �= j). The regression function is simplified into

yi = βio +
p∑

k=1

βikxik + εi, i = 1, 2, . . . , n. (6.12)

If β1k = β2k = · · · = βnk, then GWR degrades into linear regression.
The regression equation is placed into the matrix.

y = (X ⊗ β ′) I + ε (6.13)

In Eq. (6.13), ⊗ is the logical multiplication of the matrix, wherein elements of X
are multiplied by the corresponding elements of β

′
. n observations and p variables

are used. X and β
′

are both n × (p + 1)-dimensional matrix. I is a (p + 1) × 1-
dimensional unit vector. β has n groups of local regression parameters.



140 X. Ma et al.

β =

⎛

⎜
⎜
⎜
⎝

β10 · · · βi0 · · · βn0

β11 · · · βi1 · · · βn1
...

...
...

...
...

β1p · · · βip · · · βnp

⎞

⎟
⎟
⎟
⎠

(6.14)

Each observation has a different set of regression parameters. Thus, the number
of unknown parameters is n × (p + 1), which is greater than n. As such, unknown
parameters are difficult to estimate using parametric regression.

When computing the regression coefficient of point i, the observations have
varying importance. A closer distance indicates a greater importance. By using
weighted least square method, the regression parameters of point i can be estimated
by calculating the minimum of

n∑

j=1

wij

(

yj − βio −
p∑

k=1

βikxik

)2

, (6.15)

where wij is the weight that is inversely proportional to the distance between points
i and j. Letβ t = (β io, β i1, . . . , β ip)

′
, Wt = diag (wi1, wi2, . . . , win). The regression

parameter estimates of point i is

β̂i = (X′WiX
)−1

X′Wiy. (6.16)

Let Ci = (X
′
WiX)−1X

′
Wi, then

V ar
(
β̂i

) = CiCi
′σ 2. (6.17)

The regression value of point i is calculated as

ŷi = Xiβ̂i = Xi

(
X′WiX

)−1
X′Wiy, (6.18)

where Xi is the ith row vector of X. Si = Xi(X
′
WtX)−1X

′
Wi is the hat matrix of

point i. ŷi = Sty. According to the hat matrix, the mathematical expectation of
regression is

XiE (ŷi) = Xt

(
X′WtX

)−1
X′WtE(y). (6.19)

Given that

X′WtE (y)= (X1
′, X2

′, . . . ,Xn
′)

⎡

⎢
⎢
⎢
⎣

wt1 0 · · · 0
0 wt2 · · · 0
...

...
. . .

...

0 0 · · · win

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

X1β̂1

X2β̂2
...

Xnβ̂n

⎤

⎥
⎥
⎥
⎦

=
n∑

j=1

wijXj
′Xj β̂j ,

(6.20)
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we obtain

E (ŷi) =
n∑

j=1

wijXi

(
X′WiX

)−1
Xj

′Xj β̂j . (6.21)

Under this assumption, the error of observations is independent, i.e.,E(εi) = 0,
Var(εi) = σ 2. Thus, Var(y) = σ 2In.

V ar (ŷi) = V ar
(
Xi

(
X′WiX

)−1
X′WiV ar(y)

)

= σ 2Xi

(
X′WiX

)−1
X′Wi

2X
(
X′WiX

)−1
Xi

′ (6.22)

The residual is computed as ei = yi − ŷi = yi − Siy.
The regression matrix β̂ below is determined using the above method:

β̂ =

⎛

⎜
⎜
⎜
⎝

β̂10 · · · β̂i0 · · · β̂n0

β̂11 · · · β̂i1 · · · β̂n1
...

...
...

...
...

β̂1p · · · β̂ip · · · β̂np

⎞

⎟
⎟
⎟
⎠

. (6.23)

Each column represents the estimated value of the same regression parameter
according to different observations that show the spatial nonstationarity of the
variable.

The weighting function is an important feature of GWR, as the core of GWR is to
consider the spatial relationship among different observations. This relationship is
reflected by the weighting function. Gaussian function is the most commonly used
method for computing the weight. In this study, Gaussian function is employed to
fit the relationship between weight and distance. The function is

wij = exp
(
−(dij /b

)2
)

, (6.24)

where b is the bandwidth that describes the function relationship between weight
and distance.

6.3.3.2 Geographically Weighted Regression Implementation

According to the characteristic of station-level passenger flow, we choose four
passenger flows, namely, morning peak-hour inbound passenger flow, morning
peak-hour outbound passenger flow, evening peak-hour inbound passenger flow, and
evening peak-hour outbound passenger flow, as dependent variables. The densities
of 11 land-use types are free variables. Thus, we build four regression equations.
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Table 6.4 Variable explanation

Dependent variable Free variable

Morning peak-hour inbound passenger
flow

Bus stop, parking lot, residential building

Evening peak-hour inbound passenger
flow

Employment, bus stop, parking lot
Commercial building

Morning peak-hour outbound
passenger flow

Employment, bus stop, parking lot
Commercial building

Evening peak-hour outbound
passenger flow

Bus stop, parking lot, residential building,
entertainment

Before calculating the regressive equation, we reduce the dimensions of the free
variables. Multiple stepwise regression method can make a selection from many
free variables. SPSS is utilized to select free variables for four regressive equations
(Table 6.4).

Evening peak-hour inbound passenger flow and morning peak-hour outbound
passenger flow have the same remaining free variables and belong to the working
direction. The mutual remaining free variables of morning peak-hour inbound
passenger flow and evening peak-hour outbound passenger flow are bus stop,
parking lot, and residential building. In addition, the entertainment land use affects
the evening peak-hour outbound passenger flow. These results indicate that peak-
hour passenger flows are influenced by employment, residential building, and traffic
facilities surrounding the stations.

GWR is based on the spatial nonstationarity of variables. Global Moran’s I is the
measure of spatial correlation, which can be expressed as

I = n

S0

n∑

i=1

n∑

j=1
wij zizj

n∑

i=1
zi

2
, (6.25)

where zi is the deviation between the average
(
xi − X

)
and property of element i.

wij is the spatial weight between i and j. n is the number of elements. S0 is the sum
of the spatial weights.

So =
n∑

i=1

n∑

j=1

wij (6.26)

zI can be calculated as

zI = 1 − E [I ]√
V [I ]

(6.27)

E[I] = − 1/(n − 1), V[I] = E[I2] − E[I]2.
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Table 6.5 Confidence interval

zI (standard deviation) P-value (probability) Confidence coefficient (%)

<−1.65 or >+1.65 <0.10 90
<−1.96 or >+1.96 <0.05 95
<−2.58 or >+2.58 <0.01 99

In Eq. (6.27), zI and P-value indicate the statistical significance (Table 6.5).
Moran’s I lies between −1 and +1. Moran’s I > 0 indicates that the spatial
relationship has a positive correlation. Correlations steadily increase with the
absolute value of Moran’s I. If Moran’s I < 0, the spatial relationship is negatively
correlated. Moran’s I = 0 indicates the independence of the spatial data.

The confidence levels of the four dependent variables are above 99%, and all
Moran’s I values are greater than 0.15. These results confirm the positive correlation
among the dependent variables, thereby providing the theoretical basis for further
analysis of the spatial correlation.

The GWR model is sensitive to bandwidth. An unreasonable bandwidth may
lead to a deviation of regression parameter estimation. In this study, the optimal
bandwidth can be calculated as

CV = 1

n

n∑

i=1

[
yi − ŷ�=i (b)

]2
, (6.28)

where ŷ�=i is the other regression point except for i. ARCGIS draws the different
bandwidth with the corresponding CV value into the trend line to facilitate the
selection of the optimal bandwidth.

To verify the rationality of filtering free variables, we calculate the GWR model
with all free variables and remaining free variables.

The R2 values increase after some free variables are removed, demonstrating that
screening free variables can simplify the model and improve the accuracy. Thus, we
regard the remaining variable results as the final results. In addition, the R2 of direct
models are also showed in Table 6.6. It can be found that the R2 of GWR are higher
than direct models, indicating that the GWR accurately depicts the relationship
between ridership and land use (Table 6.7).

Other parameters can be used to justify the rationality of the GWR model.

1. Condition numbers
Condition numbers are used to evaluate local collinearity. When the condition

numbers are more than 30, the fitting result may be unreliable. The condition
numbers for four regressions that meet the requirements are less than 30
(Table 6.8).

2. Standard Residual (StdResid)
High or low predicted values imply that some key explanatory variables are

likely to miss in the regression model. The StdResid of GWR can assess if the
model loses key variables. The significant clustering of StdResid in statistics
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Table 6.6 Moran’s I

Dependent variables

Morning
peak-hour
inbound
passenger flow

Evening
peak-hour
inbound
passenger flow

Morning
peak-hour
outbound
passenger flow

Evening
peak-hour
outbound
passenger flow

Moran’s I 0.246622 0.366187 0.348221 0.16163
Expectation index −0.004425 −0.004425 −0.004425 −0.004425
Variance 0.000614 0.000611 0.000614 0.000618
zI 10.131921 14.995811 14.232787 6.681667
P-value 0 0 0 0

Table 6.7 GWR result

Residual squares Sigma AIC R2 of direct R2 of GWR

Morning peak-hour
inbound passenger flow
(all free variable)

372,494,548.53 1563.81 4051.42 0.40 0.60

Morning peak-hour
inbound passenger flow
(all remaining variable)

367.748,936.27 1479.61 4006.42 0.36 0.61

Evening peak-hour
inbound passenger flow
(all free variable)

471,501,758.06 1567.01 4011.14 0.59 0.65

Evening peak-hour
inbound passenger flow
(all remaining variable)

437,886,316.38 1509.96 3992.26 0.58 0.67

Morning peak-hour
outbound passenger
flow (all free variable)

1,051,239,077.58 2336.11 4192.01 0.60 0.66

Morning peak-hour
outbound passenger
flow (all remaining
variable)

897,986,063.89 2229.66 4178.87 0.59 0.71

Evening peak-hour
outbound passenger
flow (all free variable)

322,471,204.46 1352.46 3957.43 0.15 0.43

Evening peak-hour
outbound passenger
flow (all remaining
variable)

308,316,004.50 1295.30 3929.39 0.13 0.45

indicates a mis-specified regression model. We compute Moran’s I of StdResid,
and the values are approximately equal to 0. Thus, the StdResid does not indicate
any clustering center. The free variables are sufficient without the missing
variables (Table 6.9).
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Table 6.8 Condition number

Max conditions Min conditions

Morning peak-hour inbound passenger flow 12.03 4.22
Evening peak-hour inbound passenger flow 11.94 4.67
Morning peak-hour outbound passenger flow 13.71 5.24
Evening peak-hour outbound passenger flow 11.42 7.18

Table 6.9 StdResid Moran’s I

StdResid Moran’s I

Morning peak-hour inbound passenger flow −0.001177
Evening peak-hour inbound passenger flow −0.001177
Morning peak-hour outbound passenger flow −0.018227
Evening peak-hour outbound passenger flow 0.001277

Table 6.10 Regression coefficients of morning peak-hour inbound passenger flow

Minimum
Upper
quartile Median

Lower
quartile Maximum Average

Standard
deviation

Bus stop −31.03 2.76 25.78 52.46 246.33 40.13 57.55
Parking lot −434.88 −142.21 −65.31 −31.57 44.87 −93.92 93.26
Residential
building

−59.33 48.26 93.99 142.99 335.23 106.18 79.98

6.3.3.3 Regression Coefficient

1. Morning peak-hour inbound passenger flow
The characteristic values of each regression coefficient of the free variables

are summed (Table 6.10).
According to the average, residential building has the greatest impact on

morning peak-hour inbound passenger flow. A higher residential area density
corresponds to a greater number of passengers taking the subway. A strong
negative correlation exists between parking lot density and morning peak-hour
inbound passenger flow. Bus stop density is positively correlated with morning
peak-hour inbound passenger flow. During morning peak hours, buses and
subways complement each other, whereas cars and subways compete against
each other.

The correlation coefficient of residential building density varies from −31.03
to 246.33, with most coefficients being greater than 0. The variation shows that
different spatial distributions significantly influence the morning peak passenger
flow. Figure 6.12a depicts the spatial distribution of the residential density
coefficient. A darker color indicates a larger coefficient. The outside region is
darker than the downtown, particularly in the southwest and northeast areas along
the Fangshan Line and the 15 Line. Passengers in these regions tend to take the
subway in the morning, as it is the main transport mode in these regions. Figure
6.12b illustrates the spatial distribution of the parking lot density coefficient.
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Fig. 6.12 Spatial distribution of morning peak-hour inbound passenger flow: (a) residential
building and (b) parking lot

Table 6.11 Regression coefficients of evening peak-hour inbound passenger flow

Minimum
Upper
quartile Median

Lower
quartile Maximum Average

Standard
deviation

Bus stop −97.02 −29.88 −18.91 −11.78 7.72 −23.32 18.54
Parking lot −6.20 47.31 87.10 101.64 177.62 78.38 43.70
Commercial
building

20.77 63.34 100.01 136.72 498.08 118.68 84.72

Employment −38.51 −4.50 0.26 10.66 17.18 1.47 11.15

All coefficients are negative, such that the light color represents strong negative
correlations. The correlations are distributed along the ring roads. Passengers
in the suburbs prefer to drive to work. Passengers around the 1 Line and the
Yizhuang Line are more likely to take the subway than drive cars.

2. Evening peak-hour inbound passenger flow
Commercial building andemployment density are positively correlated with

evening peak-hour inbound passenger flow, as this passenger flow belongs to
the working direction. By contrast, bus stop and evening peak-hour inbound
passenger flow are negatively correlated. During the evening peak hours, buses
and subways display a competitive relationship; that is, passengers choose
multiple transport modes to return home or visit entertainment places. This
finding conforms to the characteristics of Beijing subway passenger flow that
morning peak-hour passenger flow is larger than the evening one (Table 6.11).

The bus stop density coefficients are distributed into rings (Fig. 6.13a), and
the density is lighter in the downtown than in the periphery. Figure 6.13b depicts
the spatial distribution of the employment density coefficient. The northeast–
southwest diagonal denotes the distribution boundary. The employments in the
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Fig. 6.13 Spatial distribution of evening peak-hour inbound passenger flow: (a) residential
building and (b) parking lot

Table 6.12 Regression coefficients of morning peak-hour outbound passenger flow

Minimum
Upper
quartile Median

Lower
quartile Maximum Average

Standard
deviation

Bus stop −217.38 −58.07 −36.07 −20.29 20.02 −46.55 42.48
Parking lot −67.26 36.73 133.70 172.01 378.58 115.19 92.03
Commercial
building

9.69 93.39 202.98 272.37 877.00 212.40 149.77

Employment −71.19 −7.20 1.84 18.32 26.17 1.73 18.53

South–East significantly affect the evening peak-hour inbound passenger flow.
A number of coefficients in the North–West are negative. This area contains
many residential communities. Passengers prefer transport modes other than the
subway because their workplaces are close to their residences.

3. Morning peak-hour outbound passenger flow
The average of thefour regression coefficients is similar to the evening peak-

hour inbound passenger flow: positive correlation between passenger flow and
parking lot, commercial, and employment; negative correlation between bus stop
and passenger flow. The two passenger flows belong to the working direction,
and the spatial distribution of the coefficients has similar variation patterns
(Table 6.12).

4. Evening peak-hour outbound passenger flow
The coefficients of the evening peak-hour outbound passenger flow are similar

to those of morning peak-hour inbound passenger flow, which both belong
to living direction. Aside from bus stop, parking lot, and residential building,
entertainment also affects the evening peak-hour outbound passenger flow.
Entertainment is an additional free variable because passengers have sufficient
time to relax after work. This difference is noticeable between the evening and
morning peak-hour inbound passenger flows (Table 6.13).
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Table 6.13 Regression coefficient of evening peak-hour outbound passenger flow

Minimum
Upper
quartile Median

Lower
quartile Maximum Average

Standard
deviation

Bus stop −10.32 2.41 20.19 30.00 117.14 25.88 32.74
Parking lot −172.79 −82.57 −49.31 −15.39 22.92 −52.14 43.62
Entertainment −41.00 6.63 19.15 33.00 73.95 19.80 19.85
Residential
building

−42.13 12.72 60.90 87.88 143.78 53.85 44.16

Fig. 6.14 Spatial distribution
of entertainment

Figure 6.14 depicts the spatial distribution of entertainment density coef-
ficients. The coefficients in the downtown are negative, suggesting that the
passengers prefer other transport modes rather than the subway because the
entertainment places are close to the workplace. By contrast, the coefficients are
larger in the suburbs than in the downtown, indicating that passengers tend to
take subway to the entertainment places around suburbs.

The correlation between peak-hour passenger flow and land-use density
has obvious directionality. The regression correlations belonging to the same
direction display the same patterns. Buses can either be complementary or
competitive to subways depending on the time and direction of the passenger
flows. The spatial distribution of the coefficients is influenced by many factors,
such as urban planning scheme and subway line construction.
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6.4 Conclusions

Beijing subway passenger flow is hindered by serious problems of passenger surge
and unbalanced distribution, which are caused by the large population base and
irrational land-use planning. Thus, this study explores the correlation between
land use and passenger flow. First, we analyze the fluctuation of station-level
passenger flow. Given their large number, the stations are classified. We develop a
sequential K-means clustering algorithm that considers the temporal characteristics
of station-level passenger flow. The stations are divided into 10 groups under
three categories: employment-oriented, dual-peak, and residence-oriented stations.
Peak-hour passengers of employment-oriented stations are concentrated in morning
peak outbound and evening peak inbound, whereas residence-oriented stations are
concentrated in the two other directions.

The clustering results indicate that most Beijing subway riders are commuters.
Although Beijing has a large passenger flow, the most serious issue is the unbalanced
distribution of passenger flow. This problem is closely related to land-use type.
Thus, we employ the GWR model to determine the correlation effect between
peak-hour passenger flow and land-use density. This model can embed the spatial
position of data into the regression parameters and use local least square method
to evaluate parameters point-by-point. We then analyze the spatial distribution of
the correlation coefficients. According to the fitting results, peak-hour passenger
flows are related to employment, residence, and transportation facilities. Morning
peak-hour inbound and evening peak-hour outbound passenger flows belong to the
residence direction with the same features of regression coefficient, whereas the two
other types of passenger flows belong to the employment direction with the same
coefficient characteristic.

The innovations of the study are as follows. (1) Sequential K-means clustering
algorithm is presented to categorize the stations on the basis of smart card data; most
previous studies ignored the temporal characteristics of daily inbound and outbound
subway passenger flow. Passenger flow is regarded as static data. According to
the similarity in the same group and the difference between different groups,
transit authorities can formulate targeted measures for subway stations with similar
characteristics. (2) An important assumption of traditional regression model is that
the regression function for each point is the same. However, in reality, regression
functions may not be homogenous, particularly for spatial data. Peak-hour passenger
flow is a typical kind of spatial data collected in different stations. We employ the
GWR model to determine the correlation effect between peak-hour passenger flow
and land-use density. This model embeds the spatial heterogeneity of the data into
the regression parameters. The weighting factor is the distance among observations.
In view of the spatial nonstationarity of passenger flow, GWR can compute different
regression functions for each subway station and discover the spatial distribution of
the correlation coefficients.

This work can be further strengthened in the following aspects. The land-
use density is only the quantitative information without floor area ratio. We can
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enrich the model by incorporating additional land-use data. From the perspective
of algorithm improvements, various sequential clustering approaches should be
implemented, and their performances should be compared. In addition, the GWR
model can be integrated with additional time variables.
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Chapter 7
An Initial Evaluation of the Impact
of Location Obfuscation Mechanisms
on Geospatial Analysis

Pedro Wightman and Mayra Zurbarán

7.1 Introduction

In these past few decades, the rise of mobile technology and GPS capable devices
favored the demand of software for providing context related services and specif-
ically location-based services (LBSs). In the scientific community, this has led to
multiple scopes of research, especially concerning user’s privacy. There have been
plentiful developments of multiple mechanisms for protecting location information,
that is, any information that may lead to the identification of the spatial surroundings
of a subject. Some of these mechanisms are based on location obfuscation, which
is explained as “the means of deliberately degrading the quality of information
about an individual’s location in order to protect that individual’s location privacy”
by Duckham and Kulik [1]. Nevertheless, there is a latent curiosity of whether
or not the resulting degraded location information could still be used to perform
geospatial analysis, which at the end is one of the main issues regarding the studies
of georeferenced data.

It is true that the scientific community cannot and should not neglect the
exploitation of user’s digital footprints while these are made available freely and
publicly. However, there are privacy concerns on the side of users and these may
impact their willingness to share their personal data especially during a prolonged
use of a service [2], besides specific privacy regulations that must be complied
with based on the country where the data is originated. Volunteered geographic
information (VGI) and crowdsourced data, as they provide information that can lead
to the identification of users, their daily habits, and private preferences, should be
protected. Xu and Gupta [2] claim also that user’s privacy concerns translate into
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the fear of losing control of personal information and can be the cause of stress and
anxiety. Therefore, the adoption of privacy measures can increase the perception of
privacy and trust on the providers of a service, leading to more compliance from
users to adopt an LBS.

In order to perform valid spatial data analysis with crowdsourced data, even when
it has been protected by the implementation of a location privacy protection mech-
anism (LPPM), the geospatial data should remain useful, meaning that comparable
results should be reached with the original data as well as with the protected one.

This chapter presents an introduction to current LPPMs, with a focus on noise-
based location obfuscation techniques. Then, a methodology is presented to evaluate
the impact of LPPMs using a real case study, in which geostatistical analysis is
performed over collected georeferenced data from the Twitter streaming API during
5 months in the city of Milan, Italy. This would serve as an initial assessment of
the impact on the results of geostatistical inferences over obfuscated data at a city
level scale and the identification of possible minimum levels of protection for user’s
location that will not interfere dramatically with the conclusion of the analyses.

7.2 Location-Based Services

LBSs have been a very active research topic in the last decade, thanks to the
increasing use of electronic devices capable of calculating their location using
technologies like GPS, Wi-Fi, cellphone antennas, beacons, and the mixture of them
and, on the other hand, also the increasing number of applications that use this
information, either as part of the business core or as a way to gather detailed data
about their users.

Despite the fact that before the appearance of smartphones, some LBSs already
existed, they worked based on static subscription of the area of interest, so they could
not adapt their content to the actual location of the user. This change allowed service
providers to track their users, and use this information to provide a better product.
In addition, having all these data about individuals and their social circles, which
revealed the providers what their users were doing, when, where, and with whom,
permitted the reconstruction of their routines, and an insight on their personalities,
their preferences, and consequently, their value to the market. The age of user
surveying is living its golden age.

LBSs are constituted by a client–server architecture as defined in [3]. Within
Location Services are found actors that perform specific roles that make possible
the use of the service, like in Fig. 7.1, and these roles may be as follows:

• User: the LBS subscribed user who makes a request from a mobile device capable
of obtaining the user’s location.

• Server: the LBS server that processes the query and provides relevant location
information requested by the user, such as points of interest (PoI) or navigation
services.
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Fig. 7.1 Location services
proposed architecture

• Communication network: refers to a communication network such as the Inter-
net, General Packet Radio Service (GPRS), or an ad-hoc network and any other
means that make possible the communication between the user and the LBS
server.

• Proxy: a service that provides security at network level to protect clients’ location
and identity through IP lookups, and these services could be distributed such as
the onion router (TOR) [4] or centralized like virtual private networks (VPNs),
the latter is not recommended for protecting specifically identity privacy for the
arguments presented in [5].

• Community: denotes all the users of the LBS; the community may intervene in
the functionality of the service, as is the case of applications used to monitor
traffic. Community members could participate in methods for providing location
privacy; however, not every LPPM requires a community to work.

• Third parties: are external relations that intervene to provide location privacy in
conjunction with the LPPM. Third parties’ relations act as proxy-like servers
at application level that centralizes the architecture, in [6] it is defined as:
“A subjective, dynamic, context-dependent, non-transitive, non-reflexive, non-
monotone, and non-additive relation between a trustor and a trustee.”

Given that people were not used to consider location as a sensitive information,
compared to their social security number, they were willing to share it with everyone
on every platform: social networks and their geolocated posts, apps that encouraged
sharing their location (Foursquare, friend search, travel journals, geographical
scavenger hunt, etc.), and apps that required location but was not part of their core
functionality (video games, utilities, etc.). The main problem is that, especially in
the first two platforms, this information is made public, so anyone could gather this
information without any explicit authorization from the user, supported on what
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the terms and conditions of use had predetermined on the contract that all users
accepted, but most likely did not read.

In recent years, all social network platforms are encouraging users to understand
better the implication of their decision related to privacy policies, in order to try
to limit the amount of information available to the public. Even though this is a
positive trend, the service providers still have access to all the data, and there is no
option for the user to opt out from the detailed acquisition of these data, including
location; a promise of good faith on their service provider side is the only thing
they have to trust the intentions of the companies that use this information for
profit, especially when there is generalized lack of regulation specifically for dealing
with location information. The European Union Directive on Privacy and Electronic
Communications—2002/58/EC is one of the only pieces of legislation related to the
information privacy that includes aspects of location privacy. In the USA, there is an
ongoing initiative called S.2270—Location Privacy Protection Act of 2015 which
was introduced to the senate, but never approved. Also, there was the SB 1434—
California Location Privacy Act that in 2012 failed to become a state law after being
vetoed by the governor, despite bipartisan approval on the state senate.

Location privacy can be defined as the ability of users to decide what location
information they want to share, when, how, whom they want to share it with, and
until when they prefer to do it [7]. Current LBSs do not offer but one option: “give
us permission to obtain your location or do not use our app.” Even if the user can
decide if the location information is not shared with the public, the company still
has full access to it. Users have no way to verify if their information is being used
according to the contract, and if the aggregated information is really hiding their
information and not allowing individualization, which is a privacy risk. In addition,
if there is a security breach at the server side, the information can be stolen and used
later against users.

The need to include user-centric LPPMs in all the services that individuals use
should be a priority. Regulation should require the inclusion of mechanisms to
actively protect the location information, allowing users to configure it as they
consider adequate according to their preferences. An initiative on this direction
could not be done only by ordering all service providers in the world to include them
in their software, because it would be impossible to verify the real implementation
of the tools, etc. Instead, it would require the participation of the manufactures of
the devices and their operating systems; in order to guarantee that, despite the nature
of the application, the location information provided internally by the phone to the
app would comply with the privacy policies defined by the users.

In the next section, we will present an overview on the location privacy protection
mechanisms in the literature that could be used to provide an extra layer of location
privacy from the user side.
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7.3 Location Privacy Protection Mechanisms

LPPMs comprehend the methods developed to provide location privacy; these
vary in the requirements for implementation, processing and hardware resources,
architecture, privacy provided, and the applications—location services—that are
supported. In the following section, a taxonomy and a brief description of the
techniques are provided.

7.3.1 Taxonomy of Location Privacy Protection Mechanisms

In the literature, there are many different flavors of protection mechanisms, depend-
ing on the application. In general, a basic differentiation can be done between two
types of services: proactive services, in which the user’s application is constantly
sending the location in order to be registered in the system, i.e., tracking, geofencing
and children security, traffic, etc., and reactive, in which the user triggers the service
by sending his location and a specific request, usually related to a PoI, i.e., social
network posts, geolocated search for restaurants, tourist attractions, people, etc. [8].

Each of these services poses different challenges to protecting the privacy of its
data, thus different techniques have advantages that are adequate for each scenario.
Figure 7.2 shows a proposed taxonomy to classify the most common types of
techniques; however, some of them can be used on both types of services, depending
on the approach taken by the specific mechanism [9]. A brief description of each of
the types is presented:

• Cryptography-based methods offer secure communication and preserve location
information accuracy. These methods include the use of symmetric encryption,
hash, and other types of transformation of the data, in such a way that just
a reduced group of trusted users can calculate the original information. The
main problem with these techniques is that, unless they use homomorphic
encryption techniques, an untrusted service provider would be oblivious to the
user’s location, serving only as a blind proxy.

• Location obfuscation mechanisms and specifically noise-based LPPM transform
the user’s location in a way that the original location is permanently lost by
adding randomly generated noise; however, the resulting obfuscated location is
still close enough to be used by an LBS and provides an acceptable quality level.

• Pseudonyms are an alternative to provide identity privacy in location-based
applications; however, the use of pseudonyms alone is not sufficient to provide
location privacy in an LPPM, given that if a pseudonym stays the same over
time, it will eventually end up with the identification of a unique user. Also, if
the location is not altered, other sources of information available to an attacker
can reveal all individuals related to a certain address.

• Private Information Retrieval allows the creation of a common language between
the client and server applications, not known by an attacker. In this technique, the
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Fig. 7.2 Taxonomy of location privacy protection mechanisms (LPPMs)

data is coded in such a way that the server can work with the data as sent and offer
all the available LBSs without actually revealing the original location of the user.

• Dummy query techniques consist on sending N fake requests along with the real
one in order to disguise the user’s true location. This technique poses downsides
as it requires the server to process N additional queries, creating computing and
communication overhead; however, there are some techniques developed based
on dummy queries that manage to decrease such costs, such as piggybacking or
using special coding to allow redundancy in search areas.

• K-anonymity was one of the first approaches presented to achieve location
privacy; it consists on making a user indistinguishable among other K-1 users. In
some implementations, the user may be able to specify the k parameter. In many
of these techniques are used cloaked regions to provide such anonymity, where
k users are similar enough within an area; however, regions with higher density
of users result in smaller cloaked areas, or areas with very little population may
require very large cloaked areas that reveal the existence of an outlier. Both cases
derive in providing little protection. In general, a large of number of techniques
in this category require the existence of a trusted third party that will have the
necessary information to calculate either the K parameter or the best cloaking
area, or the techniques may assume direct communication among users, which
also presents technical challenges as well as issues related to security.
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• Methods based on Progressive Retrieval (PR) perform many requests for a single
user interaction, having each one of them modifying the search area, in order
to reach the objective without pinpointing the user’s original location. This
approach aims to reveal as least location information as possible to obtain the
desired service performance.

For more details on these techniques, please consult the works [10–13]. In
this chapter, location obfuscation mechanisms were selected for the evaluation,
especially noise-based obfuscation, due to their simplicity to implement in a real
environment (no third-party actors, special hardware, or changes on the server side
are necessary) and its nonreversible nature, which will permanently alter the user’s
data and makes difficult to recover the original locations, and the fact that it can
be parametrized by the user, so the definition of a default value is critical because
most users may not be interested in changing it. Measuring the impact of one of the
most likely mechanisms to be adopted by industry, can provide an initial insight on
how much information is actually lost for common geostatistical studies, and which
could be a good starting point for providing a minimum level of security to the users
while maintaining a satisfactory level of accuracy.

7.3.2 Noise-Based Location Obfuscation

Noise-based location privacy techniques are one of the simplest ways to protect the
exact location of the users. Its main characteristic is the induction of random noise
to the original location obtained by any location provider (GPS, Cellphone tower,
Wi-Fi, etc.) in order to alter it permanently. Due to the randomness of the noise, it
is very difficult to recover the original location, which becomes a useful attribute in
terms of security.

Other important advantages are: it does not require major changes on the server
side, because the reported information still is a single valid geographical location,
so it should not alter the data structure; it can be calculated on the device via simple
calculations thus computational complexity is low; and it does not require a third-
party element. In addition, the user can customize these techniques to define the
desired amount of noise that will be applied to the locations; this range can go from
1 m to a few kilometers, depending on the application’s need for accuracy, and the
perception of security that users have about their decision.

A naive approach to these techniques would be that a larger noise area would
be beneficial in terms of security; however, it will degrade the quality of service of
some applications. One example of the impact of the amount of noise are geolocated
marketing services: If a user has a noise level of 3 km, it may be reporting its location
“nearby” a store in which he or she is not really close to; thus, a geolocated offer
could be lost if it is a time restricted one.

Generating random noise is not a new concept; several statistical random
distributions can generate the values needed for this: Gaussian, Uniform, etc. The
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noise generation algorithm is the core element in these techniques. Three techniques
will be presented in this section, all of them based on a uniform distribution; this
is because, it guarantees the highest variability on the data, which facilitates the
generation of faraway points from the center compared to a Gaussian distribution.

7.3.3 The Rand Algorithm

Rand is the simplest among all noise-based location privacy techniques: define an
open ball b (p, r) where p is the original location point and r is the maximum amount
of noise that can be added to the location. Select a point from that open ball, p′, and
report that point as the user’s location to the system [7].

The generation of a single point inside an open ball can be done in two different
ways, as shown in Fig. 7.3. The first one is a Cartesian method, in which a random
number is generated for each component of the coordinate, added up, and then the
new point is verified to fall inside the circle because it could fall on the external
areas on the square area of 2r × 2r.

The second one is the Polar method, in which a distance and an angle are
generated, transformed into Cartesian coordinates, and added to the original point p.
This technique does not require validation because the random distance is validated
to be between 0 and r, this ensures that it cannot fall outside the circle.

Despite the fact that both generate a single point, the distribution of the random
points, when run several times, shows differences between these techniques which
may affect the impact of the algorithm. Figure 7.4 shows the graphical distribution
of 500 points using the Cartesian and the polar approaches.

Fig. 7.3 Generation of a single random point



7 An Initial Evaluation of the Impact of Location Obfuscation Mechanisms. . . 161

Fig. 7.4 Generation of 500 random points with Cartesian and Polar approaches using Rand

Fig. 7.5 Distance distribution of 500 random points with Cartesian and Polar approaches using
Rand

Despite the fact that Cartesian-generated points look more evenly distributed
along the area, without a concentration of points, this impression is false: Polar-
generated points are distributed more evenly along the radius. The fact that there
seems to be more points closer to the center shows that the distance among them
is shorter, generating greater point density. Figures 7.5 and 7.6 confirm this fact.
The distance distribution is clearly biased on the Cartesian approach, which tends to
generate points farther from the center, while the Polar approach generates a more
even amount of points per distance slot. The angle distribution is uniform in both
approaches. Figure 7.7 shows a projection of the points as if the circle area was a
rectangle. In that figure, it is easily seen how the Cartesian points tend to be farther
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Fig. 7.6 Angle distribution of 500 random points with Cartesian and Polar approaches using Rand

Fig. 7.7 Distribution of 500 random points with Cartesian and Polar approaches using Rand

away from the center. These differences may have an impact on the performance of
the location privacy protection techniques.

The main advantage of this technique is that it is very simple to implement.
However, it can generate values very close to the center, which is not entirely
desirable because the protection for that specific point with no difference from the
obfuscated one will be practically null.
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7.3.4 The N-Rand Algorithm

N-Rand [10] is a modified version of the Rand algorithm in which N possible
points are generated per location and just the farthest one to the original point is
reported. This technique notably increased the average distance of the obfuscation
but it decreased the variation of the noise; this fact increased its vulnerability to
moving average-based filtering attacks to reduce the noise. In the paper, the authors
showed that N = 4 presented a good balance between distance and variation. The
original version was tested with Cartesian generation, but in this work it will be
compared with Polar generation.

As it can be seen in Fig. 7.8, Cartesian generation generates a clear belt that starts
around 150 m from the center location; this confirms the conclusions on reduction
of variation showed in the original work. Polar generation shows a similar trend to
drive points away from the center but in a softer manner. The distance distribution
of the points shown in Fig. 7.9 shows how the right tail of the distribution is longer
for the Polar generation, while the angle distribution behaves very similar to the one
in Rand. Figure 7.10 shows the projection of the point distribution for N-Rand.

The distance distribution of the Polar generation should imply that the variation
is higher among the points, which has a potential to generate points in such a way
that it may be more resistant to filter-based attacks due to the increase in variance of
the points.

One drawback of the Rand and N-Rand family of techniques is that both are fully
symmetrical, which can be a problem against noise filtering attacks, like the TIS-
BAD algorithm [14]. This technique uses a modified Exponential Moving Average
to reduce the noise and estimate the original path of the user. The next technique,
Pinwheel, can generate an asymmetrical dominion for the random point selection.

Fig. 7.8 Generation of 500 random points with Cartesian and Polar approaches using N-Rand
N = 4
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Fig. 7.9 Distance distribution of 500 random points with Cartesian and Polar approaches using
N-Rand N = 4

Fig. 7.10 Distribution of 500 random points with Cartesian and Polar approaches using N-Rand
N = 4

7.3.5 The Pinwheel Algorithm

Pinwheel is a mechanism designed to add noise to the original location in order to
distort it [15], hence providing a dummy or fake location that still represents the
original and due to this blurriness, it is able to provide location privacy. The more
noise added, the more privacy is provided, but also the location information can be
distorted with too much noise in a way that may not be useful to provide any kind
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Fig. 7.11 Graphical example
of the Pinwheel algorithm

of service. The aim is to use a noise value that decreases the accuracy but that still
provides useful context information about the location of the user.

Figure 7.11 presented a graphical representation of how the Pinwheel algorithm
works, where P is the original location point at center of the circumference, r-max
defines the radius, and ϕ defines the period for the repetition of the vanes that form
the pinwheel. Each of which at a given α outputs the corresponding radius.

The noise added is calculated by defining a maximum radius, which is the
maximum acceptable noise induced—distance from the original location, forming
a circumference centered in it. The maximum radius serves to limit the dominium
of the resulting obfuscated location, but this dominium is also determined by the
pinwheel formula in Eq. (7.1); given that a θ value defines a specific radius for
each θ within the circle described by the circumference, making the selection of the
radius a deterministic process in the generation of random points with low cost of
processing for doing on the fly transformations even on mobile devices, the formula
used to calculate r(θ ) is intended to be applied using polar coordinates and is as
follows:

r (θ) = θ mod ϕ

ϕ
+ rmax (7.1)

The ϕ value has a great impact on how the random points are distributed. Figures
7.12 and 7.13 show the dominium of the random point generator with ϕ = 12◦
and ϕ = 110◦, respectively. In the first case, high periodicity and a symmetric
distribution shows a distribution very similar to a uniform one, with polar generation
approach. The second case shows a much lower periodicity and a very restricted
area of point generation, which is also asymmetrical, increasing the probability of
generating point in one sector of the circumference, which was shown to perform
better against filtering attacks.



166 P. Wightman and M. Zurbarán

Fig. 7.12 Point distribution of 500 random points using the Pinwheel ϕ = 12◦

Figure 7.14 shows the distance distribution of the first configuration compared
with N-Rand. This was only calculated with polar generation given that generating
Cartesian points to fit in the Pinwheel geometry would include unnecessary
computational complexity to the algorithm. In general, both configurations showed
a uniform distribution of the points, which is forced by the generation formula. For
this reason, just one figure is shown.

Figures 7.15 and 7.16 show the square projection of the points which, as
mentioned before, exemplifies the impact of the parameter ϕ on the definition of
the domain of random point generation.

With noise-based techniques, once the user location is altered, the original data
is lost. This means that what the service provider will receive will be only a
probabilistic hint of where the user was, which, depending on the maximum radius,
will have value for spatial data analysis used in user routine, mobility, or land-use
studies.

Given that the implementation of a standard location privacy mechanism may
happen soon, specially by organizations like the European Union that are very
protective of the user’s rights, it is critical to understand the impact on common
geographical analysis so there would be an appropriate criterion to design this
privacy layer for the general case, and it can be adopted easily by the industry.
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Fig. 7.13 Point distribution of 500 random points using the Pinwheel ϕ = 110◦

Fig. 7.14 Distance distribution of 500 random points using Pinwheel ϕ = 12◦
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Fig. 7.15 Distribution of 500 random points using Pinwheel ϕ = 12◦

Fig. 7.16 Distribution of 500 random points using Pinwheel ϕ = 110◦

7.4 Exploratory Spatial Data Analysis

From a geostatistical point of view, randomness is not desirable, since it impedes
inferences on spatial data, Griffith in [16] refers to Tobler’s first law of geography:
“everything is related to everything else, but near things are more related than
distant things.” Parting from this, Griffith introduces spatial autocorrelation as “the
correlation among values of a single variable strictly attributable to their relatively
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close locational positions on a two-dimensional surface.” Going further, Griffith
states a dependency between values of a variable in neighboring locations due to
underlying common factors. With this understanding, statistical analysis of data
alone without considering their geographical context misses out on the possibility
to make this correlation analysis.

Exploratory spatial data analysis (ESDA) aims to perform analysis of data when
spatial autocorrelation matters, which is the case of most analyses when there is the
possibility of acquiring the geographic component. ESDA includes different statis-
tical techniques to describe and visualize spatial distributions and the identification
of local patterns of spatial autocorrelation. Other kinds of exploratory analysis,
like exploratory data analysis (EDA), proved useful when applied to nonspatial
datasets to get insights before performing hypothesis tests and formal modeling
but were shorthanded when ignoring the possibility of autocorrelation of the two-
dimensional spatial variable, leading to incorrect assumptions of the independence
of observations and therefore disregarding Tobler’s first law of geography.

Currently, the use of ESDA is largely accepted as the best practice for the analysis
of this kind of data, providing dynamic and interactive approaches allowing instant
manipulation and visualization capabilities [17].

Analyses such as Kernel density maps, Hotspot analysis, and Voronoi maps
provide dynamic spatial statistics following the principles depicted on ESDA.

7.4.1 Kernel Density Maps: Heatmaps

The use of Kernel density estimation on spatial data serves to identify the density of
points in a neighborhood centered on each feature, providing local statistics com-
prising the features within a fixed search radius or bandwidth that are represented as
clusters.

These classification maps, also referred as heatmaps, aid in exploring large
datasets to identify atypical concentrations. For the means of visualization, the
density values are classified within ranges and a color gradient palette represents
these ranges. This classification may be subjective and strongly affect the resulting
raster. Therefore, density maps alone cannot determine statistical significance.

To determine the bandwidth used in heatmaps is calculated the mean center of all
input points and then this is used to determine the relative distance for each point,
its medians, and standard distances. The following formula explains the calculated
radius:

r = 0.9 ∗ min

(

SD,

√
(1)

ln (2)
∗ Dm

)

∗ n−0.2 (7.2)

where SD is the standard distance, Dm the median, and n is the total count of
points in the dataset. The output map is a smoothed surface from overlapped circular
density areas of each point [18].
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7.4.2 Hotspot Analysis Using Moran’s Index

Hotspot analysis uses the Getis-Ord local statistic Gi* [19], to define the areas of
high point density occurrence or hotspots versus areas of low occurrence or cold
spots. To perform a hotspot analysis, it is required to aggregate points; for this, the
authors used the Hotspot Analysis Plugin for QGIS, which uses inputs that have the
same coordinates and creates unique weighted values from them.

For the hotspot analysis are calculated the z-score and p values having as null
hypothesis the assumption of complete spatial randomness. The Moran’s Index is
used to determine a bandwidth where the autocorrelation is higher, and this is done
by maximizing the z-scores while iterating through different bandwidths, and then,
the obtained optimal bandwidth is used to compare each point with its neighbors to
obtain local Gi* statistics. Hotspot analysis in contrast with the density analysis is
reliable to determine statistical significance.

To perform this analysis, it is necessary to create weighted points or features;
each feature and its weight are the input for the algorithm to determine if they
are hotspots, cold spots, or not significant. Usually, some kind of geographical
clustering is used to create the features.

7.5 Methodology

The evaluation of the impact of LPPMs on spatial data analysis is a critical step
before a massive adoption can take place. The result of this exploratory study will
give insights on the impact of noise-based location obfuscation techniques in spatial
analysis, and identify a preliminary level of noise in which the impact is minimum
and provides a certain level of protection. Defining a general default noise value that
guarantees protection and reduces interference is still an open problem in the field
and subject to future research.

Each spatial data analysis technique has its own set up, depending on the resultant
data:

• Hotspot analysis: the area of study is divided into regions, either political
divisions or purely geographical. The original algorithm identifies areas with
higher than normal data points (hotspots), or lower than usual (cold spots). After
applying an LPPM, the maps are compared to calculate the number of false
positives and false negatives.

• Heatmap: the map is colored based on the number of points associated to the
hottest areas in the map. This number is expected to change when noise is
applied, due to the diffusion of the points in the map.

The original dataset included a total amount of points of 18,966 from the city of
Milan, Italy, from February to May of 2017, consisting of geolocated tweets. The
comparison will show both the results with the original scenario and the results after
the points were obfuscated using the Pinwheel algorithm previously described, with
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two different maximum radiuses: 500 m and 1 km. The period parameter ϕ was set
to 105◦ on all the experiments in order to have lower periodicity and asymmetrical
random point generation domain.

The first set of experiments include the analysis of distortion using the full
dataset, for both heatmap and hotspot analysis. The second experiment presents a
time lapse analysis on three moments of a single day, to show the possible impact
on mobility pattern analysis. The experiments were performed on QGIS 2.18.

7.6 Analysis of Experiments (the original one, Pinwheel
with maximum radius set to 500 m and to 1 km)

For the experiments, the three datasets were used to create kernel density maps using
1 km for the bandwidth and hotspot analysis where the Moran’s I of the data was
used to calculate the bandwidth value. Hotspot analysis was performed using the
QGIS plugin presented in [6]. In order to create weighted points with the geolocated
tweets, a vector layer of 85 neighborhoods of Milan was used to aggregate; the
resulting features for the analysis are the polygon centroids with the corresponding
count of tweets within each neighborhood.

In Figs. 7.17, 7.18, and 7.19, there is a major concentration depicted in strong
orange in the center of Milan and the overall perception of the maps is similar;
however, in the legends it is evidenced how the concentration is affected when noise

Fig. 7.17 Kernel density map of the original data
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Fig. 7.18 Kernel density map of the obfuscated data with the Pinwheel algorithm set to 500 m of
maximum radius

Fig. 7.19 Kernel density map of the obfuscated data with the Pinwheel algorithm set to 1 km of
maximum radius
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Fig. 7.20 Hotspot analysis map of the original Twitter data

is added. Figure 7.18 with 500 m of maximum noise has the highest value of density
of 4932 and Fig. 7.19 with 1 km of noise has this value set to 3878, while with the
original data of this value is of 5450. This variation exposes how the scale is altered;
when noise is added, the density of the clusters becomes smaller. This is due to
the elimination of overlapping points and more unique locations introduced by the
randomness of the Pinwheel algorithm. Nevertheless, the density relation in the city
remains, allowing to identify the same clusters of abnormal concentrations even
with the obfuscated datasets.

To evaluate less subjectively the identified cluster, it was performed a hotspot
analysis. Figure 7.20 shows the original hotspot analysis map and Figs. 7.21 and
7.22 show the output of the analysis for the obfuscated data with 500 m and 1 km
of maximum noise, respectively.

There were no cold spots identified in any of the experiments and the Moran’s
I resulted in a value of 1200 m for the three datasets. The color of each feature
(aggregated tweets in neighborhood centroids), represents the confidence level of
their probability in respect to the null hypothesis (complete randomness), and the
original analysis in Fig. 7.20 shows a concentration of four neighborhoods marked
as hotspots in the center of the city.

On the output maps for the obfuscated datasets, there are still marked as hotspots
the four neighborhoods that appear with the original dataset, but with 500 m of
maximum noise a new one is marked as a 90% confidence hotspot. With the dataset
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Fig. 7.21 Hotspot analysis map of the obfuscated data with the Pinwheel algorithm set to 500 m
of maximum radius

Fig. 7.22 Hotspot analysis map of the obfuscated data with the Pinwheel algorithm set to 1 km of
maximum radius
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obfuscated with 1 km of maximum noise, there are two new hotspots marked in
contrast with the original data, one with 99% of confidence and the other with 90%
of confidence.

This is explained due to the alteration of the reported original tweets with the
Pinwheel algorithm; the density as seen in the kernel maps decreases, making the
distribution more spread. The count of tweets within neighborhoods tends to become
more even, increasing the possibility of new hotspots where the concentration was
higher before adding noise. The maximum radius set to the Pinwheel algorithm;
however; does not allow a drastic change within the city that has an area of
approximately 15 km2. In the experiments, there was a reduction on the points
considered, since when noise is added the tweets that are placed in the outskirts
of the city may result outside the city boundaries used for the analysis aggregation.
When maximum radius was set to 500 m, 135 points were left out and when using
1 km, 196.

To understand critical clusters throughout the day, a weekday was selected from
the dataset. Thursday 4th of May Twitter data was split into different time spans and
three of them were selected: from 7 to 10 am, from 5 to 7 pm, and from 9 to 11 pm.
These were selected in order to understand mobility within the city and Figs. 7.23,
7.24, and 7.25 depict the result for heatmaps using 400 m for the bandwidth value.

In the morning in Fig. 7.23, there are two important clusters in the center of the
city and very few data around the outskirts. When people are assumed to be leaving
work around 5 pm as seen in Fig. 7.24, there is wider spread of points and a third
cluster can be identified, and this corresponds to the Sempione Park, which is an

Fig. 7.23 Heatmap of tweets in Milan on a weekday from 7 to 10 am
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Fig. 7.24 Heatmap of tweets in Milan on a weekday from 5 to 7 pm

Fig. 7.25 Heatmap of tweets in Milan on a weekday from 9 to 11 pm
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Fig. 7.26 Heatmap of obfuscated tweets in Milan on a weekday from 7 to 10 am with Pinwheel
with a maximum radius of 500 m

important landmark of the city; and a higher concentration of tweets in the outskirts.
From 9 to 11 pm, there is a new cluster, which corresponds to a dining event taking
place in those days and more tweets reported from the outskirts and around a main
station (Porta Garibaldi). This suggests a movement taking place from the center to
outside of Milan.

To evaluate how similar studies may be affected when noise is added to the data,
the three samples were obfuscated with Pinwheel with a maximum radius of 500 m.
The results are seen in Figs. 7.26, 7.27, and 7.28.

The figures with the obfuscated datasets still provide an overall view of what was
inferred with the original data but are more spread from what is seen in the legends
with a decrease in the scales for all three experiments. In Fig. 7.28, from 9 to 11 pm
the map is relatively more distorted not showing the particular cluster previously
seen that corresponds to the dining event.

7.7 Conclusions and Open Problems

ESDA is oriented to determine valid inferences from geospatial data that are useful
in many fields: mobility, land use, urban studies, etc. These inferences depend on
the quality of the data obtained from individuals, thus any alteration of the data
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Fig. 7.27 Heatmap of obfuscated tweets in Milan on a weekday from 5 to 7 pm with Pinwheel
with a maximum radius of 500 m

Fig. 7.28 Heatmap of obfuscated tweets in Milan on a weekday from 9 to 11 pm with Pinwheel
with a maximum radius of 500 m
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will definitely affect the results of any analysis and eventual decisions made using
these results. On the other hand, citizens have the right to protect their personal
information, including their location and specially when it is being used without
their explicit consent.

If location privacy gains popularity in the policy agenda, it may become
mandatory and its adoption will be imminent all around the globe. Professionals
in ESDA must be prepared to deal with this information when it will produce
probabilistic results, with some new kinds of false positives and false negatives that
did not have to be expected in the past.

In the experiments, it can be noted that while in the kernel density maps the
outputs are fairly similar, this is not the case with the hotspot analysis, where the
maps are considerably altered with increased noise. From both analyses in the
experiments, is concluded that, in order to reach equilibrium between the privacy
protection and the quality of the inferences, a noise greater than 500 m strongly
affects the results and should be avoided, for a study of a city scale, like Milan.
This value provides an insight into the feasibility of implementing location privacy
algorithms and a proposed default setting for them.

Also, it is worth to mention that these conclusions are valid for dense urban areas,
where the amount of data is large enough to balance out the alteration of the points,
compared to rural areas in which the population may be very small and a single
change will alter the complete picture.

This chapter only focused on two types of geographical data analysis, but there
are futher more available in the literature as well as location privacy protections
mechanisms. Work needs to be done in terms of evaluation of different combinations
of geospatial analyses and LPPMs.
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Chapter 8
PETRA: The PErsonal TRansport
Advisor Platform and Services

Michele Berlingerio, Veli Bicer, Adi Botea, Stefano Braghin,
Francesco Calabrese, Nuno Lopes, Riccardo Guidotti, Francesca Pratesi,
and Andrea Sassi

8.1 Introduction

Smart Cities applications are fostering research in many fields including Computer
Science and Engineering. Data Mining is used to support applications such as
optimization of a public urban transit network [6], event detection [5], and many
more. Along these lines, the aim of the PErsonal TRansport Advisor (PETRA) EU
FP7 project1 is to develop an integrated platform to supply urban travelers with

1http://www.petraproject.eu.
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smart journey and activity advices, on a multi-modal network, while taking into
account uncertainty. Uncertainty is intrinsic in a transit network, and may come
in different forms: delays in time of arrivals, impossibility to board a (full) bus,
walking speed, as well as incidents, weather conditions, and so on. The PETRA
consortium includes three cities, with different characteristics and problems, and
different sources of uncertainty: Rome (Italy), Venice (Italy), and Haifa (Israel).
While in Rome and Haifa the platform built within the project is enabling demand-
adaptive journey planning intended mainly for commuters, PETRA’s objective in
Venice is enabling smarter tourism. This is an area where predicting the next
locations visited by tourists [1], recommending new locations to visit [12], and,
more in general, mining information related to tourism activities [26], has been
key to better support crowds and individuals when they visit a location during their
holiday or free time.

In the work, we describe the high level architecture of the PETRA platform, and
present the results obtained by applying it to two different use cases coming from
two of the three partnering cities: Rome and Venice.

In Rome, we applied the embedded Journey Planner (JP) on thousands of
planning requests, performed with and without the results coming from the Mobility
Mining module. We show how, by integrating private transport routines into a
public transit network, it is possible to devise better advices, measured both in
terms of number of requests satisfied and in terms of expected time of arrivals.
These experiments are part of the validation for the PETRA use case on Rome,
where we assess the quality of the advices coming from the innovative integrated
platform. The specific PETRA use case for the city of Rome revolves around an
enhanced JP, capable of leveraging information about other users to provide optimal
solutions. Furthermore, connecting the JP to the Data Manager (DM) allows the
JP to efficiently react to changes in the transportation network. Such changes can
automatically be detected by city sensors or manually inserted by city transportation
managers using the PETRA dashboard, a tool that interacts with the stored General
Transit Feed Specification (GTFS) data,2 allowing to directly interact with city
transport information. This chapter describes two core components of the PETRA
technology stack, the JP and the DM, and their application to Rome city’s data.

In Venice, we couple big data fusion, management, and mining, to support
smarter tourism. At a high level, given a set of desired Points of Interest (POIs)
to visit in a city, we devise activity plans that take into account historical patterns
of crowding level at a landmark, or along the path to reach it, along with the
projected paths from the active tourists who are currently visiting the city. Our main
goal is to order the sequence of POIs to visit, set an appropriate departure time,
constantly monitor the crowding level of the city, and re-plan as appropriate, to
reduce the impact of large crowds of people visiting a city. This is a real problem
in the city of Venice: many tourists visiting the historical city centre (with narrow
streets and, in general, a small pedestrian area) often lead to pedestrian congestion
that the city needs to handle, typically by sending police forces to help restore the

2https://developers.google.com/transit/gtfs/reference.

https://developers.google.com/transit/gtfs/reference
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normal pedestrian flows. The city of Venice has also instituted the profession of
“intromettitore”3 (i.e., “intruder”), whose task is to stop incoming tourists where
they typically approach the city (the main train station, the main bus station, and the
main ports for water taxis), listen to their visit preferences, and offer incentives (like
free water taxi rides) to follow alternative plans, serving two purposes: reducing
congestion caused by all the tourists wanting to see the most popular landmarks,
and increasing the visibility of less popular places, with a better distribution of the
impact on the local economy. Without offering incentives, and without suggesting
different places to visit, our goal is to build a system serving the same two purposes,
but in an optimized and automated fashion, by devising plans that help spreading
the tourists over the entire pedestrian area of Venice, with the side effect of also
making less popular areas more visible. To do so, we built togetThere, a system that:
(1) mines historical sensed presence data related to tourism activities; (2) devises
tourism activity plans taking into account historical patterns of crowding levels at
landmarks and along the pedestrian paths; (3) projects the active plans to better
estimate the crowding levels for the rest of the day; (4) constantly monitors active
plans and crowding levels for smarter re-planning and, finally, (5) collects user
experience at the end of the visits to improve the planning algorithm. Our system
has been designed, built, and tested (through simulations) on real data coming from
the 2015 Telecom Italia BigData Challenge4 and is now being deployed in the city
of Venice within the context of the PETRA project.

8.2 Related Work

Work related to our study are in the areas of journey planning, smarter tourism, and
data-driven mobility applications in general.

See [2] for a relatively recent survey on journey planning, including journey
planning in road networks, and multi-modal journey planning.

Mamei and Zambonelli [23] discuss an approach to achieving load balancing
inside a building such as a museum. The authors use a concept of a crowd field,
a continuous mapping of the museum floor area into a field of “hills and valleys”
that reflect the level of crowdedness in each room. The more crowded a room, the
higher the “altitude” of the crowd field in that room. A hill-descending exploration
strategy would encourage tourists to visit less crowded areas. The crowd field can
be combined linearly with a mapping reflecting what rooms are more interesting to
the tourist at hand, to obtain a strategy that allows to visit interesting locations while
avoiding a high level of crowdedness.

3http://www.comune.venezia.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2595.
4http://www.telecomitalia.com/tit/en/bigdatachallenge.html.

http://www.comune.venezia.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2595
http://www.telecomitalia.com/tit/en/bigdatachallenge.html
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In outdoors tourist environments, performing tourist load balancing is motivated
in part by environment protection and sustainability reasons.

A given configuration of tourists in a touristic area (i.e., the number of tourists
at each relevant location in the area) can be evaluated using an objective function.
Lin et al. [22] argue that the Variance and the Gini-Simpson Index, both used as
objective functions in previous mathematical models for tourist load balancing, have
their own limitations. The authors introduce an objective function called the tourism
utility function (TUF), which assigns a lower satisfaction score when a visited spot
is over-crowded (i.e., when the number of tourists exceeds a given capacity).

In designing a strategy to dispatching tourists through a given touristic area,
several authors represent the area as a graph with relevant locations and links [14, 22,
31]. Dispatching strategies discussed in the literature include stochastic (probabilis-
tic) approaches. For example, the average strategy (e.g., [22, 31]), applied at a given
node in the graph, picks any of the successor nodes with an uniform probability.
The space-time strategy (e.g., [22, 31]) favours nodes with a lower occupancy rate.
Zheng et al. [31] combine the two strategies to obtain a reduction in the duration of
bottlenecks (i.e., overcrowded spots).

Some authors [19, 21] have considered using Radio Frequency Identification
(RFID) as a technology suitable for tracking tourists. This information can provide
a view on the crowd levels at various locations within the monitored area, and it can
be utilized as input data to various tourist dispatching strategies.

Hsieh and Li [18] investigate a problem where route planning is combined with
visiting a number of attractions. They consider the pleasure of visiting a location as
a function of the time of visit. For example, it is much more pleasant to visit a beach
at the sunset time, as opposed to the hot time interval around the noon. In contrast,
our focus in the Venice use case is on load balancing both on the travel map and at
the points of interest.

Qiu et al. [27] study the spatio-temporal distributions of visitors in a Chinese
tourist site to provide a navigation for balancing the load of visitors within the site.
The authors simulated the visitor data by assuming the capacity of sites, roads,
visitor walking and sightseeing time, among others, and quantified the loads of
each visitor spot. To balance the loads, the authors build a mathematical model that
minimizes the variance of loads in each spot. The authors do not investigate how to
find a solution to this mathematical model. The paper also points out that vehicle
scheduling can be used to balance the loads within a site. It formalizes a plan for
vehicle scheduling and presents a list of steps for simulating the scheduling. Again,
it does not provide a method to solve the scheduling problem in this context.

Berlingerio et al. [4] apply data mining to telco data, inferring frequent mobility
patterns for telco users. Individual mobility patterns are aggregated to obtain
common mobility patterns for larger groups of users. These are fed into an
optimization engine used to design a public transportation network optimized to
users’ mobility needs observed in the data.

Berlingerio et al. [7, 16] extract mobility demand and personal interest from
Twitter data to enable a more sociable carpooling service. They perform a multi-
objective optimization of cars, drivers, and passengers, aimed at increasing the



8 PETRA: The PErsonal TRansport Advisor Platform and Services 185

“enjoyability” of a car while minimizing the total number of cars needed to meet
the demand.

8.3 Use Cases Overview

In PETRA we focused on two types of use cases: the A to B journey planning
scenario, and the Point of Interest (POI) visiting (or, activity planning) scenario.
The first one has been investigated in the city of Rome, the second in the city of
Venice.

8.3.1 Journey Planning in Rome

Consider the following problem: you are in Rome, Italy, and you want to move
from location A to location B, using Rome’s multi-modal transit network. You want
a solution with the following characteristics, at least:

– being able to specify A, B, and user preferences such as maximum walking time,
which transport means to include or exclude, starting time, and so on

– capable of computing a robust solution that takes into account various types of
uncertainties in the transit network (delays, missed follow-up connections due to
delays, etc.), at planning time (so you do not have to re-query the journey planner
for every change in the transit network)

– being able to fully exploit the potential of the multi-modal transit network,
possibly including private means of transport, such as private cars (that may be
available to offer a ride to passengers).

Ideally, a user would open a mobile application (front-end of the solution) and input
the query, which would connect to the back-end planning engine, would present the
result, and should keep tracking both the user and the transit network for changes in
the original plan.

As real life presents troubles along the way, there may be changes in the network,
or the user may deviate from the plan: if these changes are within a “safe zone” of
events that are predictable (for example, by looking at the historical patterns of
delays in transit), they could be taken into account at planning time, thus avoiding
re-planning. In that case, the mobile application can cache a robust contingent plan
which is not just a sequence of actions that would bring you from A to B but that
would resemble more a tree of possibilities that can be predicted beforehand. If,
on the other hand, the changes represent a major disruption, then this should be
detected as an edge case outside the contingent plan, and re-planning is needed. The
concept of uncertainty in PETRA is further described in Sect. 8.4.

It is well known that most of our mobility is predictable [28], due to recurring
patterns, typically home-work commutes, work-supermarket, supermarket-school,
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etc. So, it is reasonable to assume that people drive most likely following almost
always the same routes, at almost the same time. This information could be exploited
and private cars may be seen as “virtual buses” available to extend the coverage of
the public multi-modal transit network. Mobility Data Mining [6] can be used to
capture this knowledge and use mobility patterns for improving the transit network.

8.3.2 Activity Planning in Venice

This use case was brought to us by the mobility agency in Venice, Italy, which is
dealing with tourism mobility management on a daily basis. In particular, Venice
sees an average of 60 thousands tourists per day (with peaks of 250 thousands),
which is comparable to the number of inhabitants of the town (60 thousands).
Moreover, Venice being an historical town with small streets (pedestrian only), it
has the peculiarity that large crowd movements can sometimes cause pedestrian
congestions that can only be solved by police intervention. This is particularly
relevant in the areas close to the city’s main visitor attractions such as Piazza San
Marco and Ponte di Rialto. At the same time, other roads which are not on the main
tourist routes are more rarely utilized. Figure 8.1 shows an image generated by the
city, estimating the density of pedestrian flows on each road. As it can be seen, there
are potentially many alternatives going through “green roads” to go between any
two attractions in the cities, while mostly the shortest paths are used and so become
congested (“red roads”).

Clearly, cities would like to promote tourism to sustain their local economy,
but are faced with the need to improve the tourists experience while also keeping
the urban mobility flowing for their citizens. To deal with the above problem, we
propose a solution for distributed tourism management by acting on individual
travel plans to achieve a city-wide crowd level balance using BigData analytics and
optimization. The solution is based on:

– understanding the use of the city and popularity of areas from a combination of
data sources: mobile phone locations, mobile app usage, and social media

– issuing city-level optimized plans to avoid local crowding through the use of a
mobile app for tourists

– monitoring crowding in real time from the combination of the above data
– offering plans passing through less crowded areas to tourists, while preserving

visit preferences

We identify three main stakeholders to benefit from the proposed solutions:

– tourists, which will perceived less congestions and queuing times during their
visits;

– municipalities, which will have a more distributed crowd movement, that can
also be better managed during cases on emergencies or evacuations;
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Fig. 8.1 Map of the city of Venice, with streets marked from green to red based on the estimated
pedestrian flow

– local business activities, which will have a better perceived quality of service
(due to less congestions) on the primary streets, and more visits on the secondary
streets.

8.4 Modelling Uncertainty in Multi-Modal Journey Planning

In this section we overview a multi-modal journey planning system that is capable
to reason about the uncertainty in the knowledge available in a multi-modal
transportation network. As we illustrate in this section, this allows to compute
journey plans that are less prone to failures due to unexpected events during a trip.
This is a background section needed for a self-contained document. In the section we
give references with more detailed information about the background information
provided here.

A multi-modal transportation network can feature many types of uncertainty. The
exact arrival and departure times of scheduled public transport vehicles, such as
buses, can differ from the pre-planned, published schedules. This can further lead to
missed connections, when a connection vehicle departs from a stop before another
vehicle arrives at the same stop. The duration of legs such as driving legs, cycling
legs and even walking legs can be non-deterministic. When a bus is too crowded,
it may be impossible for new travelers to board the bus at a stop. When driving,
waiting for a parking spot to become available could have an uncertain duration.
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When using bicycles from a network of shared bicycles in a city, waiting for a
bicycle or a parking spot to become available could also involve an uncertain waiting
duration. In extreme cases, unforeseen events such as accidents can block a road.

Deciding what types, and how many types of uncertainty to encode when
modeling and solving a problem is an important decision. At one extreme, deter-
ministic problem modeling and solving ignores any uncertainty. The advantage
of deterministic problem solving is that a problem instance can be smaller when
uncertainty is ignored. This often translates into solving the problem faster. On the
other hand, deterministic solutions may be too optimistic, reducing their practical
usefulness. Informally, a deterministic solution, such as a journey plan, may ignore
potential failures such as missed connections. Uncertainty-aware solutions could
better avoid such risks along the way. See an example later in this section. At another
extreme, encoding too many types of uncertainty could be problematic as well. The
problem can become too large and computationally difficult, making it hard to solve
the problem in a reasonable amount of time.

Our system can handle the following uncertainty related to the following types of
information: the arrival and departure times of scheduled public transport vehicles,
such as buses, trams, trains, or subway systems; the duration of a driving leg; the
duration of a walking leg; the duration of a cycling leg; the waiting time until a
parking spot becomes available at a car parking lot; the waiting time until a parking
spot becomes available at a bike station; the waiting time until a bike becomes
available at a bike station.

8.4.1 Uncertainty-Aware Journey Plans

A standard, deterministic journey plan is a totally ordered sequence of actions. In
contrast, our uncertainty-aware journey plans can have a tree shape. The AI planning
literature calls tree-shaped plans contingent plans [25]. Branching points in the plan
provide more than one option at the execution time. If one option is not available,
the traveler has the option on continuing on an alternative option, as shown in the
example presented next. One can show that a contingent plan (i.e., a plan with
branches) can be strictly more expressive than a sequential plan, thus being able
to encode an optimal travel strategy in some cases where sequential plans lack this
ability.

We use the examples shown in Figs. 8.2 and 8.3 to illustrate differences between
sequential, deterministic plans and uncertainty-aware, contingent plans.

Figure 8.2 shows a toy transportation network where a user needs to travel from
A to B. Observe the uncertainty in some of the arrival and the departure times. For
example, at node C, the arrival time of the traveler is 9:30, plus or minus 5 min or
less. There are two buses leaving from C to B. The first one departs at 9:35, plus or
minus a few minutes, as shown in the figure. The second one departs at 10:35, give
or take a few minutes.
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Fig. 8.2 Shortcomings of optimistic deterministic journey plans

Fig. 8.3 Shortcomings of conservative deterministic journey plans

Due to such uncertainties, the traveler may catch or may miss the first bus. The
limitation of deterministic journey planning is that a firm assumption needs to be
made about catching the first bus. In other words, a deterministic journey planning
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algorithm has to commit to one of the following two options: it is definitely possible
to catch the first bus, or it is definitely impossible to catch the first bus. When the
first option is chosen, we say that the deterministic planner is optimistic. In the latter
case, we say that the deterministic planner is conservative.

Figure 8.2 illustrates the shortcomings of optimistic deterministic plans. Short-
comings of conservative deterministic plans will be discussed in Fig. 8.3. An
optimistic deterministic planner will recommend the trajectory A,C,B. The dis-
advantage is that, if the first bus is missed, the only alternative left for the traveler is
to wait 1 h for the next bus.

On the other hand, in Fig. 8.2, the best strategy in terms of worst-case arrival time
and expected arrival time is the following. First, drive to D. If the bus from D to
B has not departed yet, take that bus. Otherwise, walk to E and take the bus from
there. Indeed, the arrival time at the destination B varies between 10:25 and 10:30,
as compared to the range from 10:20 (best case) to 11:20 (worst case) featured along
the trajectory A,C,B.

Notice the if–then–else condition in D in the optimal strategy. A contingent plan
is capable of encoding this optimal strategy, whereas a deterministic, sequential plan
cannot.

Figure 8.3 illustrates the shortcomings of conservative deterministic plans. Recall
that, in a conservative plan, uncertain connections are ruled out (i.e., considered to
be impossible to catch). As such, the two distinct trajectories A,C,B and A,F,B

show two conservative deterministic plans with the same arrival time, namely 11:20.
Since the two trajectories look equally good in conservative deterministic planning,
it may happen that a deterministic planner outputs the trajectory A,F,B as a
recommended plan. However, the trajectory A,C,B is better, since there is a chance
to catch the fast bus departing around 9:30 along this trajectory.

Once again, a contingent plan would be able to capture the optimal strategy here,
which is the following: Drive to C and attempt to take the first bus (i.e., the one
departing at around 9:35). If this bus is already gone, wait for the next bus, which
departs around 10:35.

8.4.2 Encoding Uncertainty into a Multi-Modal Transport
Network

We overview our definition of an uncertainty-aware network snapshot. The snapshot
is a knowledge base with all the information available about a multi-modal
transportation network. For more information, see [9].

The data included in a snapshot depends on the transportation modes available.
The snapshot needs to include a set L of relevant locations on the map. Depending
on the transportation modes available, the set of relevant locations can include stops
for scheduled transport (e.g., bus stops), bike stations, car parking lots, and taxi
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ranks. In addition, given a user request to compute a journey plan, the origin and the
destination are added to L as relevant locations, unless already present.

For scheduled public transport data, the snapshot includes route and trip infor-
mation. R is a set of routes. A route r is an ordered sequence of n(r) locations,
corresponding to the stops along the route. Notice that in real life different routes
can have an identical label displayed on a vehicle. For instance, two distinct buses
can be labeled as route 4, but one can go from west to east and the other one can
go from east to west. These are two distinct routes in our encoding, as two different
(ordered) sequences of stops imply the existence of two different routes.

T is a collection of trips. Informally, each trip is one individual scheduled-
transport vehicle (e.g., a bus) going along a route (e.g., the bus that starts on route
4 at 4:30 pm, going westbound). Formally, a trip i is a structure 〈r, fi,1, . . . fi,n(r)〉,
where r is the id of its route, and each fi,k is a probability distribution representing
the estimated arrival time at the k-th stop along the route.

When private car sharing is allowed, we model trajectories of car trips available
for sharing similarly to public transport trips. For instance, model a daily morning
trip from the car owner’s home address to their work similarly to a public transport
trip, with a few stops along the way and timing information at each stop.

The snapshot can further include a table W of walking times for every pair of
relevant locations. Each walking time can be modeled as a probability distribution.
Similarly, a table C can provide the cycling time (as a probability distribution)
between pairs of locations such as bike stations. Given a time of the day t and a
car parking lot l, TP (l, t) is a probability distribution representing the waiting time
until a parking spot is available, if the user arrives at time t . Similar probabilities
are defined for the waiting time at bike stations, to get a bike or a parking spot for a
bike.

The part of the snapshot structure encoding the public transport data is similar
to the GTFS format.5 GTFS, however, handles no stochastic data. Furthermore, our
snapshots cover additional transport modes, such as shared-bike data.

The way the network snapshot is defined is partly justified by practical reasons.
It encodes available knowledge about the current status and about the predicted
evolution over a given time horizon (e.g., estimated bus arrival times). At one
extreme, the snapshot can use static knowledge, such as static bus schedules,
or static knowledge based on historical data. At the other extreme, increasingly
available sensor data can allow to adjust the predicted bus arrival times frequently,
in real time [10]. Our network snapshot definition is suitable for both types of
scenarios, allowing to adjust the approach to the level of accuracy available in the
input data.

5https://developers.google.com/transit/gtfs/reference.

https://developers.google.com/transit/gtfs/reference
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8.4.3 DIJA: An Uncertainty-Aware Multi-Modal Journey
Planner

The input to our planning system are a network snapshot, as described in the
previous section, and a user query. The query states the origin, the destination, and
the departure time. It further states so-called quotas, which are maximum allowed
values for the number of legs in a trip, the walking time and the cycling time. It can
contain flags about what transport means are allowed in the trip at hand.

Our planning system performs heuristic search. The search space is an and/or
state space. We give an informal overview of the state space, followed by an informal
description of our search strategy.

In describing the state space, we need to define states and transitions between
states. The core components of a state s include a position ps , a density function
ts ,6 and a vector of numeric variables qs . Some auxiliary state components are used
for correctness (e.g., to define what types of actions apply in which states) and for
pruning [9]. In this section, we focus on the core components.

The position ps ∈ L ∪ T represents the position of the user in the state at hand.
The position can be either a relevant location on the map or a trip id, in which case
the user is aboard that trip. The time ts is a probability distribution representing
the time when the user has reached position ps . Quotas left in this state (e.g., for
walking time, cycling time, number of legs) are available in qs . In the initial state,
the quotas are taken from the user query. They get updated correspondingly as the
search progresses along an exploration path.

Actions (transitions) considered depend on the transport modes available. Exam-
ples include TakeTrip, GetOffTrip, Cycle, and Walk. TakeTrip actions
can have up to two non-deterministic outcomes, success or failure. Along the
success branch, the user was able to board the vehicle (because the user arrives at
the stop before the departure of the vehicle). Along the fail branch, the user misses
the connection because the vehicle departs before the user arrives at the stop.

When a TakeTrip action has two non-deterministic effects, each branch has a
probability associated with it. The probability p of the success branch is computed
as a function of two distribution probabilities: the one corresponding to the arrival
of the user at the stop, and the one corresponding to the departure of the vehicle at
the stop [9].

Other actions apart from TakeTrip always succeed and therefore they always
are deterministic actions (i.e., applying such an action results in exactly one
successor state).

In exploring the search space outlined earlier in this section, our system is based
on the AO* algorithm. The algorithm requires many search enhancements to make

6For clarity, we stick with the case of continuous random variables. Discrete distributions are
handled very similarly.
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it scale to a domain such as multi-modal journey planning under uncertainty in a
large city.

Our implemented enhancements can be grouped into two categories, heuristic
functions and pruning techniques. A detailed and formal presentation is beyond
the focus of this chapter. Instead, we provide an intuitive idea behind a few
enhancements. Part of our DIJA’s enhancements are presented in detail in previous
work [9].

Heuristics guide the search into more promising areas of the state space. Given a
metric such as the travel time, for instance, a heuristic function h(s) is an estimation
of the travel time from a state s to the destination. A heuristic function is admissible
when it does not overestimate the actual value (i.e., the actual travel time in our
example). Using admissible heuristics ensures that algorithms such as AO* produce
optimal solutions.

We created admissible heuristic functions for several metrics: the travel time, the
number of legs in a trip, the walking time, and the cycling time. The first two are
used to guide the AO* search.

The second, the third, and the fourth are used for pruning. Recall that users can
specify maximum acceptable amounts for the walking time, the cycling time, and
the number of legs in a journey. A state s can be pruned (i.e., treated as a deadend)
when the amount spent so far (for instance, the number of legs from the origin to s),
plus a precomputed admissible estimate of the amount needed from here on (for
instance, an admissible estimation of the legs from s to the destination), exceed the
maximum acceptable amount (the max number of legs specified by the user).

When several bus stops are within walking distance from a current location,
generating a walking action to each of them might be unnecessary (e.g., imagine that
all stops are served by the same route). We have introduced rules for pruning part of
the walking actions, and proved their correctness in the presence of uncertainty.

We also perform state-dominance pruning. Intuitively, a state s1 dominates state
s2 if they have the same position p, and reaching p in state s1 uses less time and
quota amounts than reaching p in state s2. In have proved that, in non-deterministic
planning, the correct application of our dominance pruning depends on the types of
the non-deterministic branches on the path to each of the two states considered, and
implemented our dominance pruning strategy accordingly [9].

8.5 PETRA System Components

The various use cases defined within PETRA required the definition of a general
purpose architecture for data management. Figure 8.4 shows a high level overview
of the system. The entire architecture consists of a series of services that can be
classified in three categories: data integration, data management, and application
services.
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Fig. 8.4 High level PETRA architecture

8.5.1 Data Management

The PETRA project highlights the need to integrate different types of urban
data, from unstructured data to real-time information retrieved from city sensors,
structured public transport schedules and others. Handling large volumes of rich
and heterogeneous urban data requires a tailored and scalable data management
platform. For this purpose, PETRA leverages on Scalink. Scalink is a compre-
hensive data management platform developed within IBM Research Dublin that
expands ElasticSearch7 distributed data storage and indexing capabilities, providing
indexes designed for the different formats of data chat can be handled by the system
(relational, tabular, and graph data), and also their different types (geospatioal,
textual, etc.). This is done extending ElasticSearch framework in such a way that
it is able to handle natively LinkedData, thus extending ElasticSearch capabilities to
seamlessly integrate heterogenous data. Furthermore Scalink expands ElasticSearch
query and searching capabilities providing a combination of structural query
processing and search techniques in order to satisfy the different kind of queries
required by the various use cases.

At a high level, the data management module stores the data of each city as
one massive RDF graph per city. This way, the data of each city is interconnected
and it is possible to perform complex SPARQL queries to reason over the various
dimensions of the data.

7https://www.elastic.co/products/elasticsearch.

https://www.elastic.co/products/elasticsearch
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8.5.2 Mobility Mining

This service queries the DM to fetch GPS data about individual private vehicle
trajectories. We use a data mining process called mobility profiling to extract patterns
from these traces. This process takes as input the users’ trajectories and computes,
in a privacy-preserving fashion, mobility profiles [29] that are then merged via
clustering in routines. The routines are then mapped to transit network lines, as
a sequence of stops, just like other lines of public transport. In this way, we can
consider a routing as “alternative bus routes,” with a specific schedule, and a
probability of existence set to the relative frequency of the routine. These newly
introduced routes represent an embedded carpooling service, transparently available
in the PETRA application. This virtual bus routes are then stored in the Data
Manager to be available to other services.

8.5.3 Data Integration Services

PETRA leverages several data sources, including:

– data provided by transportation agencies, such as GTFS data periodically
published;

– canonical map data, such as OpenStreetMap;
– GPS trajectories; and
– historical information, such as user-location information provided by telecom

operators.

For each and every data source we created a dedicated service that integrates
the original data with a more generic data schema. Note that the system relies on
loosely coupled services, which means that each data integration service can be
implemented independently and it communicates with the data manager via a well-
defined REST API.

The data integration services can be classified according to the use case to which
they relate. Specifically, PETRA system supports the following data sources.

The city of Rome, through the public agency Agenzia Mobilità, provides updated
open data about its public transport systems. In particular, two main sources of
information are offered via its website8:

1. Rome public transport GTFS, which is a snapshot of the entire public transport
network updated every few weeks and

2. Rome public transport real time API.

8See http://www.agenziamobilita.roma.it/.

http://www.agenziamobilita.roma.it/
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Additionally, Agenzia Mobilità is gathering a large collection of GPS traces from
volunteers private cars, used by the mobility mining module, that will be presented
in Sect. 8.5.2.

Importing Rome’s data relies on an ad-hoc data acquisition module (named RDI,
Rome Data Importer), that acts as a bridge between the different kinds of mobility
data previously described and the internal DM.

Given as initial state the Rome public transport GTFS, we can divide the work of
the RDI into two sub-tasks: the daily update and the real time update.

The daily update consists of discovering bus stops routines and enforcing privacy
over them. First the RDI transforms the private car routines into sequences of bus
stops and combines them as bus lines: each GPS location is mapped to the closest
bus stop within a given radius (in our settings the radius is set to 20 m). Then the
RDI further performs data cleaning discarding any bus stop routines consisting of
one stop, or only two bus stops which are closer than a given threshold. Note that
in order to guarantee car drivers’ privacy, the RDI checks if an external attacker
could exploit the bus stops routines to discover their identity by analysing their
vulnerability against the linking attack model [24]. To avoid this kind of attack
the RDI performs a privacy risk analysis. Following the methodology in [3], the
result of this method is a probability distribution of the risk of identifying drivers
for each routine. If possible, the routines with an identification probability higher
than a given acceptable risk (refer to [24] for further details) are transformed into a
safer version by removing some bus stops, otherwise they are deleted.

Finally all the valid bus stop routines are added to the Rome GTFS data and
sent to the DM. Each routine may be used by the JP like any other bus line, even
for a portion of the trip. How to make sure the driver of the car can give a ride
to the traveler is one of the challenges within the PETRA project. In the real time
update, the RDI queries the Rome public transport real time API, which consists
of a set of XML-RPC methods,9 which provide updated transport information such
as updated (estimated) arrival time, etc., every t minutes, checking for updates (e.g.
buses which have been delayed or cancelled) by comparing expected arrival times
on the existing GTFS data with real time arrivals. Then it converts possible updates
into the GTFS format, and sends them to the DM.

The city of Venice provides similar data. Azienda Veneziana della Mobilità
provides through its website10 an updated GTFS for both bus and steamboats
(Venice’s main public transport). We created the equivalent of Rome’s data imported
to daily update Venice’s GTFS data into the DM.

9http://xmlrpc.scripting.com/spec.html.
10http://avm.avmspa.it/.

http://xmlrpc.scripting.com/spec.html
http://avm.avmspa.it/
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8.5.4 Venice Non-transport Data

In order to provide the activity planning service we required additional data
regarding the urban and human components of the city of Venice. To do that, we
primarily used the data provided by Telecom Italia for its 2015 Telecom Italia
BigData Challenge.11

For the city of Venice, the challenge provided telco data of different kinds, plus
additional data like a collection of pre-processed tweets, a GIS grid layer over the
city of Venice, census data, data coming from Cerved12 (an Italian information
provider). In addition to this list, we used OpenStreetMap,13 external data about the
TIM (Telecom Italia Mobile) market share, and statistics about tourism in Venice
from the Municipality of Venice.

In particular, from the BigData Challenge, we used:

– Venice Telecom Grid (GIS shapefile layer), a grid over the city of Venice, defined
by Telecom Italia to provide the other data

– “Telecom Demographics” (outbound phone calls per ZIP code, aggregated by
cell in the above grid and 15-min time slots)

– “Telecommunication—Calls out”, for estimating the crowding level in an area
– “Telecom SocialPulse”, a collection of pre-processed tweets from Venice, where

POIs and landmarks were replaced with their DBpedia entry—for inferring
popularity of POIs

– “Cerved ATECO codes” (selected activity codes for shops, services, etc. in
Venice, excluding bars and restaurants), “Cerved Companies” (list of commercial
activities corresponding to the above codes) and “Cerved HQ & Branches”
(locations of the selected activities), for estimating the list of activities visited
along a plan and estimating how many potential customers are served in a time
slot.

The BigData Challenge also provided a “Presence” dataset, with an estimated count
of people in a cell, in a given time-slot. We decided to use the outgoing calls,
nevertheless, as this could be coupled with the demographics dataset to exclude
calls performed by people living in the Venice ZIP codes, i.e. non-tourists. This also
matches the intuition, confirmed by the municipality of Venice, that Venice residents
typically use non-congested pedestrian paths, as their activities differ from the ones
performed by the tourists.

As external data, we used in particular:

– Venice OpenStreetMap topography (road-network GIS layer) for computing
pedestrian routes

– List of Venice’s attractions from OSM for listing attractions grouped by category

11http://www.telecomitalia.com/tit/en/bigdatachallenge.html.
12http://company.cerved.com/?language=en-us.
13http://www.openstreetmap.org.

http://www.telecomitalia.com/tit/en/bigdatachallenge.html
http://company.cerved.com/?language=en-us
http://www.openstreetmap.org
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Fig. 8.5 One cell over the city of Venice, with crowding levels ready to be digitalized

– TIM market share
– Statistics on # of daily tourists and useful background information from the

Municipality of Venice
– Static pedestrian flow map of Venice, from the Municipality of Venice.

Figure 8.1 shows the entire static map of pedestrial flow intensity in the historical
city centre of Venice. In order to use this information, we overlayed the Venice
Telecom Grid over it, and split the entire map into different cells. Figure 8.5 shows
one of the resulting tiles of the pedestrian map. In each cell, we may see pedestrian
paths marked as green (typically empty), orange (intense pedestrian flow), or red
(typical place of pedestrian congestion). For each cell we then computed the ratio
between the green areas and the total pedestrian area (i.e., green plus orange plus
red). This ratio was used to normalize the maximum congestion observed by the
outgoing calls from a cell.

8.5.5 Data Analysis

The data analysis module is a set of tools and algorithms used to pre-process the
input data in order to extract relevant information, and to extract spatio-temporal
patterns of presence in a cell from historical data.

Here we perform the following tasks:

– we overlay the Telecom grid over all the geo-referenced data, like the static
pedestrian flow map, and we aggregate street-level information, such as walkable
area, etc., up to cell-level;

– we slice time using the same time resolution of the telco data, i.e. 15 min;
– from the static pedestrian flow map, we extract a maximum congestion level

which is a function of the red pedestrian areas over the total pedestrian area in a
given cell;

– from the telco data, we mine the historical presence in a given cell, in a given
time-slot, by aggregating several days of data, after splitting between week-end
data and week-day data;

– we pre-process the Social Pulse data by ranking the POIs in Venice by their
popularity in the available tweets;
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– we pre-process the CERVED data by selecting only relevant business activities
such as local shops (i.e., excluding restaurants, bars, and services).

The output of this module is then stored into the DM for further uses.

8.6 Case Study: Rome

In the Rome’s use case, the PETRA platform, from the traveler’s perspective,
provides journey plans from place A to place B. From the operator perspective,
this is done by: importing static and real time urban transport data; merging private
routines into the public transport data; computing uncertainty-aware multi-modal
advices. We here describe the data used in this chapter, how the import step works,
and the results obtained with and without private routines.

The specific application of the PETRA platform for the city of Rome involves a
multi-modal JP that takes into account not only the available transportation systems
in the city (bus, underground, and public bikes) but also privately owned alternatives
like car sharing. This option can be enabled from the JP application that, when
directing drivers to their destinations, inquires if they are willing to collect other
(trusted) users in the vicinity whose destination is the same. The JP application
further stores individual travel preferences, such as total time for each type of
transport and preferred transportation type. When users ask for a route from place A

to B, the returned plan will take into consideration the users’ preferences.

8.6.1 Impact of Routines in Journey Planning

We have performed an empirical analysis of our approach, with the objective of
evaluating the impact of adding routines to multi-modal journey planning.

All the information available about the multi-modal transport network is put
together into a knowledge base called a network snapshot. We ran the planning
system in two different settings: NoRo, in which the planner uses all the public
transport data available, but no routines; Ro, containing both routines and public
transport data. In each setting, we solved 2000 queries (instances) with the origins
and destinations chosen at random from the logs of the official journey planner
of Agenzia Mobilità. In a query, users can set parameters such as the maximum
walking time per journey mw, and the maximum number of legs (i.e., segments)
per journey ml . We set mw to 20 min, the default planner value. Half of the queries
have ml set to 5, and the other half is for ml = 6. The public transport data we used
has 8896 stops and 391 routes. Each route is served by a number of trips, to a total
of 39,422 trips per day. The Rome roadmap has 522,529 nodes and 566,400 links.
In the GTFS data, we represent routines with a structure similar to public transport
data. Each routine introduces a new route and a new trip. We started from 1,205,258
GPS trajectories from 262,657 users. After routine extraction, bus mapping, and
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Fig. 8.6 Impact of routines on travel time

anonymization, we ended up with 729 safe mapped routines from 641 users. This
increases the number of bus routes to 1120, for a total number of trips of 40,151.

Figure 8.6 illustrates the impact of adding routines as an additional mode. At
the left, we compare the travel time in the Ro and NoRo settings. As expected, in
a subset of cases, the travel time is the same. On the other hand, all points located
below the main diagonal show instances where routines improve the time. In fact,
routines can improve both the travel time and the number of legs per journey. The
latter has two advantages. First, it makes a trip more convenient to the traveller, as
it reduces the number of interchanges. Secondly, it helps increase the set of feasible
instances (i.e., instances for which a solution exists). This is important because user-
imposed constraints on ml and mw can restrict the set of feasible instances. For
example, without using routines, in 29.3% of our queries (instances), it is impossible
to complete the journey with at most 20 min of walking and at most 5 legs in the
journey. Charts at the right in Fig. 8.6 show instances that become feasible after
adding routines. When ml is set to 5, routines are part of the returned plan in 17.5%
of the instances. Routines increase the percentage of feasible instances by 7.1%,
to a total of 77.8%. In 9.6% of the instances, routines improve the travel time, the
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average savings per trip being equal to 25.5 min. When ml = 6, routines become
part of the plans in 22.3% of the instances. They increase the percentage of feasible
instances from 84.5 to 88.9%. In 14.3% of the instances, routines improve the travel
time, the average improvement amounting to 22.05 min per trip. Clearly, besides the
advantages pointed out, such as the travel time and the number of interchanges in a
journey, routines bring additional benefits. These include reducing congestion both
on the road and inside public transport vehicles.

8.6.2 Experiments for Planning with Uncertainty

In this section we summarize part of the experiments contained in a short conference
paper [8]. We use the same public transport data as in the previous section
(i.e., public transport 391 routes, 8896 stops, 39,422 trips per day, 522,529 road
map nodes and 566,400 road map segments). No routines are considered in this
experiment.

The original data is deterministic. This was extended with a stochastic noise
assigned to the original deterministic arrival and departure times. More specifically,
for each city we use three distinct network snapshots, one deterministic (i.e., the
original snapshot), and two with different levels of stochastic noise. The noise
follows a Normal distribution, truncated to a confidence interval of 99.7%. One
snapshot has the variance set to σ 2 = 1600 s, equal roughly to ±2 min around
the original deterministic arrival or departure times. In the other snapshot, we set
σ 2 = 6400 (equal roughly ±4 min).

We generated 3000 journey plan requests (instances), with 1000 for each of the
following departure times: 8 am, 11 am, and 6 pm. The origins and the destinations
are picked at random. Trips are constrained to no more than 20 min of walking,
and at most 5 legs (segments) per trip. We restrict our attention to 11 am data, a
representative subset of the results.

To obtain a deterministic, sequential plan, we have run Dija with a deterministic
network snapshot. Uncertainty-aware plans are computed with Dija using a non-
deterministic snapshot. Both kinds of plans are simulated in a snapshot with
uncertainty, and both the worst-case arrival time and the expected arrival time are
measured.

8.6.2.1 Worst-Case Arrival Time

Figure 8.7 compares deterministic and uncertainty-aware plans, in terms of simu-
lated worst-case arrival time. The “main curve” shows the deterministic-plan data.

Depending on how “det” and “non-det” values compare, we distinguish three
behaviours in this figure. First off, in a majority of cases, “non-det” points fall
on the “main curve”, indicating instances where both simulated times coincide.
Secondly, in most remaining cases, “non-det” points fall underneath the main
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Fig. 8.7 Left: σ 2 = 1600; Right: σ 2 = 6400. Sequential plans (“Det”) vs contingent plans (“Non-
det”). Instances ordered increasingly on the worst-case arrival time of sequential plans

Table 8.1 Contingent vs
deterministic plans: key
statistics with worst-case
travel time

DP ASM ASP DP ASM ASP

σ 2 = 1600 σ 2 = 6400

23.85% 16.71 18.08% 32.70% 18.10 18.35%

DP = percentage of cases when differences occur.
ASM = average savings per trip, in minutes, when dif-
ferences occur. ASP = average savings per trip, as a
percentage of the trip time, when differences occur

curve, corresponding to cases where contingent plans have a better simulated
time. Table 8.1, discussed later, shows exact percentages and other key statistics
corresponding to this behaviour. Thirdly, in just a few cases, deterministic plans
have a better arrival time. Part of the explanation is that the Dija planner optimizes
plans on a linear combination of the number of journey legs (segments) and the
arrival time. In a few cases, the optimal contingent plan has a longer arrival time,
and fewer legs than the corresponding deterministic plan. See details later in this
section about how the weights of the linear combination are chosen.

We conclude from Fig. 8.7 is that uncertainty-aware plans can often help arrive
at the destination earlier.

Table 8.1 shows key statistics of the comparison. Header DP shows the per-
centage of “Non-det” dots not placed on the main curve in Fig. 8.7. As expected,
increasing the level of uncertainty increases the DP value. Remarkably, ASM and
ASP remain stable when σ 2 varies.

8.6.2.2 Expected Arrival Time

On this metric, differences between contingent and deterministic plans are smaller,
and they go in both directions. This is consistent with the planner’s optimization
strategy: the worst-case cost is the main criterion, and the expected cost is for tie-
breaking.
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In Rome, when σ 2 = 1600, in 7.03% of the cases we see an advantage for
contingent plans, whereas 7.49% of all cases favour deterministic plans. When
σ 2 = 6400, the numbers change to 12.63% and 8.53%. The other times of the
day considered (8 am and 6 pm) show similar results.

8.6.2.3 Dynamic Deterministic Replanning (DDR)

We have implemented a strategy that performs, in every state, a deterministic
replanning, but simulates the first leg of each plan under a snapshot with uncertainty.
We have measured the simulated worst-case arrival time. DDR is better than
deterministic planning, but not as good as contingent planning. For example,
when comparing DDR to contingent plans, the percentage of cases favourable to
contingent plans is 9.20% when σ 2 = 1600 and 12.44% when σ 2 = 6400. The
percentage of cases favourable to DDR is smaller, being 0.70% when σ 2 = 1600
and 1.53% when σ 2 = 6400.

8.6.2.4 Search Time

As expected, the search time increases with σ 2. A max limit of 30,000 expanded
nodes was set in experiments. With the most difficult uncertainty level (σ 2 = 6400),
Rome instances are solved in 98% cases. In successful cases, the average search
times in seconds, measured on a 2.7 GHz Ubuntu machine, are: 0.01 (σ 2 = 0), 0.08
(σ 2 = 1600) and 0.18 (σ 2 = 6400). A more detailed discussion is beyond the scope
of this chapter.

8.6.2.5 Weights in the Linear Combination of a Plan Cost Formula

The cost of a branch in a journey plan is a linear combination of two factors: the
travel time t , measured in seconds, and the number of legs l along that branch:

C = cw × t + (1 − cw) × l.

Figure 8.8 illustrates the impact of the weight cw on the CPU time (top) and the
worst-case travel time (bottom). At the left, there is little difference between using
cw = 1 and cw = 0.1, in terms of CPU time and worst-case travel time. In the
middle column of the figure, using cw = 0.005 reduces the CPU time in the case
of many difficult instances, as compared to the benchmark setting cw = 1. There is
little difference in terms of worst-case travel time between cw = 0.005 and cw =
1. Even when worst-case travel time increases slightly, the number of legs in the
journey can actually decrease. In the rightmost column of the figure, observe that
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Fig. 8.8 A few sample values for cw, compared against a benchmark setting cw = 1, which
optimizes plans purely on the travel time

using a value such as cw = 0.0001 decreases the CPU time even further. However,
the worst-case travel time can also increase. Based on such an analysis, the default
value for cw is set to 0.005.

8.7 Case Study: Venice

We present here the use case in the city of Venice, and the key aspects of crowd
balancing and journey planning, which constitute the problem solved by togetThere.

8.7.1 Crowd Balancing

Consider that the map of a city is partitioned into a set of smaller components.
For instance, components could result from a grid discretization of the city area,
with cells having a fixed or a variable size. In a finer-grain decomposition, the
components could be smaller entities such as street segments.

For each component, define a maximum congestion level. Also, at any given
point in time, the component at hand has an actual congestion level. As an actual
congestion level approaches the maximum congestion level, actions such as walking
through the component at hand is negatively impacted. For example, on the narrow
streets of Venice, a high congestion level can significantly reduce the speed of
walking, or even make it impossible to traverse a given area. For a given component,
we compute the walking speed as a function to its actual congestion level and max
congestion level.
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In computing the walking speed v across a component, we adopt Bruno and
Venuti’s approach [13], using the following speed–density formula:

v = vc

(

1 − e
−γ
(

1
u
− 1

uc

))

,

where vc represents the walking speed under no congestion, u is the current
congestion level, and uc is the maximum congestion level. See the empirical
evaluation in Sect. 8.7.4 for a range of values used for the γ parameter.

In addition, we assume that points of interest can have a maximum and an actual
congestion level. We compute the time t to visit a point of interest in a similar
manner, as a function of the current congestion level and the maximum congestion
level at that point of interest:

t = tc

(

1 − e
−γ
(

1
u
− 1

uc

))

.

In the previous equation, tc is the visiting time under no congestion, u is the
actual congestion level, and uc is the maximum congestion level.

Crowd balancing aims at distributing a group of individuals across the city so
that actual congestion levels do not exceed a threshold that would impact the travel
speed or the visiting time at a point of interest.

8.7.2 The Planning Problem

The role of planning is to produce activity plans for individual tourists. Informally,
an activity plan has to specify what points of interest to visit, when to visit them,
and how to travel from one point of interest to the next.

As such, an activity plan is an ordered sequence of locations to visit, together
with a travel plan between any two consecutive such locations. The locations are
a starting point, such as the hotel of the user, an ordered set of points of interest
to visit, and a final destination at the end of the plan. Notice that points of interest
are not limited to tourist objectives, including, for instance, restaurants and shops
as well. Often, the start and the final destination coincide, as it is the case when the
user returns to the hotel at the end of the day. We distinguish between travel actions
and visit actions in a plan. Examples of “visit” actions include enjoying a tourist
attraction, stopping to a restaurant for lunch or performing shopping in a store.
Actions have temporal information that specifies the times to start and complete
the action at hand.

Individual activity plans take into account the impact of previously computed
plans onto the crowding levels across various areas of the map. As such, a new
individual activity plan will avoid going into overcrowded areas. This allows to
achieve a crowd balancing effect when putting all individual plans together.
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The input to the planning engine includes a set of points of interest selected
by the user. Each point of interest can be characterized by constraints such as an
opening-hours interval and the amount of time needed to visit the point of interest at
hand. In addition, the input contains information about the transport network, such
as roadmap information, and the routes and schedules of public transport services.
We call all the transport-network data available a snapshot network.

An activity plan is valid if it includes all the points of interest given as input,
the constraints associated with the points of interest are satisfied, and the travel leg
between each pair of two consecutive points of interest is a valid journey plan. A
journey plan is valid if all its steps can be performed according to the information
encoded in the transportation network snapshot given as input.

The plan-quality criterion considered in this work is the time needed to complete
the activity plan. Thus, the congestion levels of various areas across the map directly
impact the quality of a plan. A planning engine that aims at minimizing the plan-
execution time will prefer travel legs with a faster travel time, which in turn may
result in avoiding congested, low-speed areas.

8.7.3 Journey and Activity Planning

In this section we describe our approach to computing the activity plans. Recall
that an activity plan contains an ordered sequence of locations to visit (start, POIs,
destination), the journey plans connecting each pair of two consecutive locations,
and temporal annotations.

In designing our planning system, we decided to trade away the optimality for
a stronger scalability. As such, as shown in Algorithm 1, the planning problem is
decomposed into two sub-problems, namely finding a good ordering of the points
of interest and finding a detailed journey plan between each pair of consecutive
points of interest in the ordering.

Algorithm 1 Planning approach
Require: Origin s, POI list L, transport network snapshot N , travel-time matrix m

1: O ← computeCandidateOrderings(s, L,m)

2: π ← computePlan(s,O,N,m)

3: return π

8.7.3.1 Computing Candidate Orderings

The role of the method computeCandidateOrderings is to select a subset of
orderings for the POIs contained in the list L. This is necessary because, as shown
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later in this section, computing a plan involves a search in a graph whose size
depends on the number of candidate orderings considered.

When the number of POIs to visit in one day is small (e.g., 5), even a brute-force
enumeration of possible orderings would be feasible. However, in many realistic
scenarios, the number of locations to visit n can be significantly higher. When |L| is
large, a search space considering all |L|! possible orderings is impractical. Pruning
can be employed to reduce the number of candidate orderings to a subset.

For simplicity, in this section we assume that the two endpoints of the plan
trajectory (start and destination) coincide. Thus, finding a good ordering of the
points of interest is equivalent to finding a solution to a TSP problem where the
nodes to consider include the starting point and the points of interest to visit. An
ordering begins with the starting location, continues with all POIs, and ends with
the starting location as well.

In selecting a subset of orderings, we define a TSP instance, solve it with a
suboptimal but scalable tabu search [15], and return the top K solutions, where
K is a parameter. The choice of restricting our attention to only the top K orderings
returned by the tabu search greatly reduces the number of possible combinations,
while generally preserving the quality of the results. To define the TSP instance,
besides the set of locations (start/destination and POIs to visit) we need a matrix
with the travel times between any pair of nodes.

We use a static, pre-computed matrix m with estimated travel times between any
pair of nodes in the TSP problem. For walking legs, these travel times take into
account the distance on the road map, but they ignore at this stage any congestion
level. We found this to be a good tradeoff, as a static pre-computed matrix allows
to quickly look up the travel times needed. Note that using estimated travel times at
this stage of plan computation may affect the quality of the computed orderings, but
it does not affect the correctness of the plans provided in the end. The reason is that
the only role of this routine is to output one or several candidate orderings. Then,
in a subsequent part of the plan computation process, described later in this section,
plans based on various orderings will be computed using the most accurate travel
time information available.

Tabu-search is typically known due its memory structure called tabu-list that
avoids to get back to already visited solutions in the last iterations (the diversity of
the explored solutions increases as compared to a local search algorithm). Based on
the number of the selected POIs, we set the tabu-list size to |L| − 1, and the number
of total iterations to 4×(|L|−1)2. The initial TSP solution considers all the selected
POIs randomly ordered. Only the start and the end positions are constrained to the
explicit selections made by the user. At each iteration, the tabu search moves to the
best neighbouring solution, even if it is worse than the current one, it stores it into
the tabu list, and avoids all the neighbouring solutions contained in the tabu-list. The
number of the solutions to return K is set to 10 in our experiments.
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8.7.3.2 Computing Plans for a Given Set of POI Orderings

The search space explored to find plans is a directed graph. Each node is a
partial sequence of locations (start and POIs), originating at the starting point. In
a transition (directed edge), the successor node has a sequence of locations similar
to the parent’s sequence, except that the successor’s sequence is one step longer.
The subset of POI orderings control the size of the search space.

More precisely, let N = {s} ∪ L be the set of locations to consider (i.e., the start
together with the POIs), and let O be a set of orderings of these locations. Given
an ordering o ∈ O, we call the l-prefix of o the sub-sequence o|l of o restricted
to the first l elements. For every o ∈ O and for every l ≤ |N |, the l-prefix o|l
defines a node in the search space. When two distinct orderings o and o′ have an
identical l-prefix, only one node is defined in the search space. Two nodes n and n′
are connected with a directed edge (transition) from n to n′ iff ∃ o ∈ O, ∃ l < |N |
such that n corresponds to o|l and n′ corresponds to o|l+1.

The cost of a transition is the travel time from the second last location to the last
location in the sequence of locations at hand. This cost is computed dynamically,
using the most accurate data available about the status of the transportation network.
In particular, walking times take into account the known congestion levels. Besides
transitions, POIs have a time cost associated with visiting the POI at hand. Similarly
to travel times, these visiting times are computed dynamically, taking into account
the congestion levels at the time of the visit.

Note the impact of using a subset of orderings onto the size of the search space.
The full search space has a number of nodes in the order of |L|×|L|! nodes, whereas
a restriction to K orderings results in a search space with a number of nodes in the
order of |L| × K .

The search space is explored with the A* algorithm [17], starting from the root
node whose sequence of locations has only the start location. Any node whose
sequence contains a complete cycle (i.e., begins with the start, continues with all
POIs, and ends with the start) is a goal state. The A* algorithm uses a heuristic
function h that guides the search. Given a node n, h(n) estimates the cost from
the current node n to any goal node. When h(n) never over-estimates the smallest
possible cost to reach a goal from n, h is said to be admissible. Using an admissible
function ensures that A* computes optimal solutions in the search graph given
as input. In our application, an easy to compute admissible heuristic is h(n) =
arg maxp m[p, s], where m is a pre-computed travel-time distance with the property
that m[i, j ] never over-estimates the true travel time from i to j , and p is iterated
over all POIs not included in the ordered sequence of locations corresponding to
node n.

Given the departure location and time of the tourist and her expected arrival
location, the TSP problem among all the selected POIs is solved by taking into
account the traveling time affected by the traveling distance only. The set of the first
K-TSP solutions (the K-shortest/K-fastest paths) is stored for further computations.
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The directed graph of the K-TSP solutions,14 with the departure location as
the root node and the arrival location as the target node, is built. The weights on
the edges represent the dynamic traveling time between any pair of POIs, which
is computed by taking into account the crowding level on the walking path that
connects them and the occupancies at the arrival’s POI. Expected arrival times at
POIs and their expected visiting times (that are affected by the POI’s occupancy)
are crucial to the selection of the right, time-based, crowding level.

The graph is traversed with an instance of the A* algorithm, which builds the
fastest sequence of activities. As the speed of travel and the duration of visiting a
POI directly depends on the congestion level along the travel legs and at the POIs,
plans with a shorter duration may correspond to taking less crowded routes and
visiting less crowded POIs.

8.7.3.3 Dynamic Replanning

The recommended visit itinerary is provided to the tourist, which can then begin
her journey. At the end of the visit to each POI included in the current plan, a re-
planning request is sent to our planning system. In these cases, the planning system
computes a new plan, as shown earlier, but with the input data adapted to the new
state of the user. Specifically, now the starting location is the current location of the
user (i.e., the POI at hand), and the locations to visit are all POIs selected to visit in
the initial planning round (e.g., at the beginning of the day), except for those visited
so far.

The re-planning allows to update the recommendation if expected crowding
levels or occupancies during the day have changed due to the requests received since
the last computation performed for the same tourist. Furthermore, crowding levels
and occupancies are updated following the changes between the newly computed
itinerary and the previous one.

8.7.4 Experiments

8.7.4.1 Simulation Setup

In order to simulate tourism activity in a realistic way, we used background
information from the Mobility Agency of Venice in conjunction with the data
coming from the BigData Challenge. In particular, we learned from the Mobility
Agency that Venice expects a minimum of 60,000 tourists in a day, up to a peak

14The choice of solving the K-TSP problem was driven by the need of reducing the complexity
of solving the A* algorithm. This approach lets to prune the full graph connecting the full set of
selected POIs, which would have O(N !) complexity (where N is the amount of selected POIs), to
a graph with traversing complexity of O(NK).
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of 250,000. Thus we generated demand for 60,000 users of our system. For each
demand, we had to include a set of points of attraction. Based on the information
in our possession, we picked the number of points of interest to include in a visit
sequence from a normal distribution with the mean equal to 5. The specific set
of POIs to include was chosen from the list of POIs found in the SocialPulse
dataset, picking a specific POI with a probability proportional to the frequency of
a given POI in the dataset. The duration of the visit at a specific POI or landmark
was estimated using the POI type (i.e., museum, church, monument, etc.), and the
background information in our possession.

We then generated 60,000 visit requests, and solved each of them with toget-
There, as well as with two baselines: a greedy shortest path algorithm, and a greedy
approach [11] typically followed by tourists, i.e. going to the “best attraction”
first, then proceeding to the remaining ones. Each solution returned by the system
consisted in a time-stamped walking path, with time of arrival and departure from
each location.

For γ , we chose the value of 0.245 as reported in [13], plus we made it vary from
0.2 to 0.3 with an increment of 0.01, to enlarge the search space.

As baselines approaches to comparing a travel segment, we chose a method
based on the shortest path, and one based on a greedy approach reaching the
closest location(s) first [11]. In the shortest path approach, each tourist is routed
independently from the others, following just the shortest path among all the POIs
to visit. In togetThere, each tourist is routed according to the forecast crowding
level, and according to the projection of all the previously started plans.

8.7.4.2 Simulation Results

Figure 8.9 shows the comparisons between the returned visit plans by togetThere
vs. shortest path (in (a)) and by togetThere vs greedy (in (b)). Both the plots were
generated with γ = 0.245 in togetThere. Each dot represents a user request. Its
coordinates represent the ratio of the total durations (x axis) and the ratio of the
total distances (y axis). More formally, let tcrowd be the total duration of the plan
returned by togetThere, lcrowd its total distance, tshort the total duration of the
plan returned by the shortest path based approach, lshort its total distance, tgreedy

be the total duration of the plan returned by the greedy based approach, lgreedy its
total distance, then the x axis in (a) is computed as

(
tcrowd

tshort
− 1

)

× 100

the y axis in (a) is computed as

(
lcrowd

lshort
− 1

)

× 100
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Fig. 8.9 Comparing output
of togetThere with shortest
path (a) and togetThere with
greedy (b). In both plots, γ is
set to 0.245 in togetThere.
Each dot is a visit request: the
x axis is the ratio of total
duration; the y axis is the
ratio of total distance

the x axis in (b) is computed as

(
tcrowd

tgreedy
− 1

)

× 100

and finally the y axis in (b) is computed as
(

lcrowd
lgreedy

− 1
)× 100. As we can see, the

majority of the dots are in the left half of both the plots, with a larger proportion in
(b). In (a), the majority of the dots is expected to be in the upper left quadrant, i.e.
the plans returned by togetThere should be faster (this is obtained by design) but
longer (this is the price to pay to have faster plans than the shortest ones). We do
have a small number of dots in the bottom half, which may seem counter-intuitive
as we cannot beat the shortest path in length, by design. However, recall that we are
not executing a pure shortest path approach as a baseline, but rather a greedy version
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Fig. 8.10 Percentage of either faster or longer plans returned by togetThere vs the baselines. (a)
Ratios for all values of γ . (b) % of faster or longer plans

of it, considering only the top k shortest paths. This does not hold in (b), where we
do have room to be not only faster, but also shorter than the greedy approach based
on proceeding always towards the closest next point of interest.

We had similar results for different values of γ . In order to better appreciate these
results, for each scatter plot of this kind, we computed the centroid. The desired
result should have the x coordinate less than 0, while the y coordinate is expected
to be greater than 1 when comparing with the shortest path, and less than 1 when
comparing with the greedy approach.

Figure 8.10a shows the trend of centroid coordinates by varying γ . As we see,
the y coordinate (i.e. the ratio of total distance) stays quite constant, while the
x coordinate fluctuates a bit more, with a slightly increasing trend. Despite this,
we report no major impact of varying γ over the average gain in total duration.
Figure 8.10b shows instead the percentage of plans returned by togetThere that are
either faster than the ones returned by the shortest path or longer than them, with the
same computations repeated also for the comparison with the greedy approach. In
this plot, the almost constant trend of gain by using togetThere instead of one of the
baselines is even more evident. We also note that, with these values of γ , we have
the majority of plans faster than the shortest ones.

Given that the plans returned by togetThere are faster, how much additional time
do tourists typically have? We report that an almost constant (by varying γ ) 20%
of plans will complete at least 15 min earlier than their counterpart provided by the
shortest path. Roughly 14% of the plans will be at least 20 min faster, while about
7% of the plans are at least half an hour faster. This is enough time for one additional
break during the day, or a brief visit to one additional landmark, or, as we see in the
next section, to do more shopping.
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8.7.4.3 Business Impact

Besides leaving the tourists with a better experience, and helping the city reduce
the cost and inconveniences caused by pedestrian congestion, the city of Venice
could see some unexpected additional benefits. First, let us summarize the features
of the majority of plans returned by togetThere, when comparing them with either
the shortest paths or the greedy ones:

– our plans are faster: this leaves more free time;
– our plans are longer than the shortest path: this means tourists see more

landmarks, or business activities, during their visit;
– our plans reduce congestion, also by moving people away from over-crowded

areas.

Can we exploit this with a return on the local economy, without adding any more
tourists to Venice? We performed an experiment aimed at assessing the impact on
local business activities of our smarter plans. To better understand the rationale
behind this experiment, we need some background on the typical business activities
in the city centre in Venice. If we exclude restaurants, bars, and other services,
and take into account only shops, we may realize that Venice is full of small-
size, typically family-ran shops selling handicrafts like glass items, jewelry, fabric
items, and so on. These shops typically extend to 30–40 m2, with one or two persons
attending to customers, with sudden crowds entering the shop, causing the owners
to either lower the quality of service per customer, or temporarily refuse customers
when reaching a certain thresholds of customers per time unit.

We designed our experiments as follows: first, according to the background
knowledge in our possession, we estimated that a typical shop may serve with a
good quality of service up to 15 people in a 15 min time slot (we chose to divide time
according to the same time slots we had in the rest of the data). This also matches
the estimate reported in [30]. Any customer entering the shop over this threshold
falls within the “saturated” shopping, which the shop cannot serve within that time
slot, with an acceptable quality of service. Then, thanks to the availability of the
CERVED dataset of business activities in Venice, we mapped each of the returned
plans to all the shops within 15 m from the walking path, thus estimating which
shops each tourist may potentially visit. In other words, we computed the number
of “impressions” received by each shop in a 15 min time slot. We then looked at the
saturated shops in the shortest path plans, and compared with the plans returned
by togetThere. Given the features as summarized above, we report a significant
decrease in the number of saturated shops, as, by moving people to less crowded
areas, we basically move people from above the saturated threshold, to below that,
by having them see (and potentially visit) different business activities. Moreover,
thanks to the longer plans, we actually also increase the number of shops visited
in a plan. Lastly, by giving more free time in the end, we could increase the local
economy even more, if the additional free time is spent for shopping.
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Fig. 8.11 Shop visibility

Without considering the additional free time that could potentially be spent for
shopping, we have then counted the impressions for 4035 business activities in the
city centre of Venice, reported in Fig. 8.11. Using the crowd steering strategy the
shop visibility increases by 4.5%.

8.8 Conclusion

We have introduced an integrated platform to supply urban travelers with smart
journey and activity advices, on a multi-modal network. We have presented the
architecture of the platform and its main components. We have focused on two use
cases, one on Rome and another in Venice.

In Rome, we have evaluated multi-modal journey planning when variations in
the arrival and departure times of buses could impact a multi-leg trip. In addition,
we have demonstrated the benefits of adding routines (stemming from private car
trips available for car sharing) to a multi-modal transportation network.

In Venice, we have focused on tourist activity and journey planning, where a
tourist visits multiple points of interests during a day. We have shown the benefits
of a planning approach aiming at balancing the crowd levels in a crowded city such
as Venice.
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In future work, we plan to take into account additional sources of uncertainty in
a multi-modal transport network. Introducing additional transport modes, such as
cars available for hire in a shared network, or electrical vehicles, would be another
interesting direction.

Acknowledgements This work has been partially supported by the EC under the FET-Open
Project n. FP7-ICT-609042, PETRA.
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Chapter 9
Mobility Pattern Identification Based
on Mobile Phone Data

Chao Yang, Yuliang Zhang, Satish V. Ukkusuri, and Rongrong Zhu

9.1 Introduction

Understanding human mobility pattern is a crucial component of urban planning
and has applications in analyzing the dynamics of cities, land use changes, and
epidemic control. With economic growth and rapid advances in sensing technology,
mobile phone ownership and usage is increasing. In China, the number of mobile
phone users is close to 1.35 billion by April 2017. Many researches realized that
the mobile phone data can be used as an important complement of the existing
traffic data collection technology [1–3] in human mobility study. In trip origin–
destination (OD) matrix generation, White and Wells [4] obtained the OD matrix
with the MOLA data (OD matrix which was obtained from a roadside survey
conducted in 1992) and phone calls cost data. Combining mobile phone signaling
data with vehicle detection data, Friedrich et al. [5] obtained vehicles OD matrix
by identifying the vehicle on the roads using fuzzy algorithm and generating the
travel path using Kalman filter. This method can be used for continuous monitoring
of road service and network traffic demand. Recently, many researchers focus
on the mobility pattern and activity model of human. For frequency trajectory
identification, there is significant work on the pattern mining using GPS data, and
development of indices such as distance, slope, and spatial similarity to measure the
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frequency patterns [6–9]. But, they only consider the spatial–temporal trajectory and
have not considered the meaning of location for the users. Song et al. [10] calculate
the chaotic degree of personal mobile trajectory (entropy) by the anonymous mobile
phone users and find that 93% of the users are predictable. This research gives us
confidence that it is possible to predict the users’ future travel using historical data.
Ahas et al. [11] propose a way to use passive mobile phone data (data generated
by call and message) to define meaningful points (home point, work point, and
secondary point) for users. Phithakkitnukoon et al. [12] use “activity-aware map”
to estimate the activities most likely related to the specific space and then build a
simple model to describe the activity type of the users. Hasan and Ukkusuri [13]
use check-in data to classify the urban activity pattern using topic models. Kung et
al. [14] identify the home/work location and analyze the commute mobility using
the mobile phone record data and compare the results of different cities. Farrahi
and Gatica-Perez [15] use latent Dirichlet allocation (LDA) model to discover the
location (home, work, and other) routines of the 97 mobile phone users. They build
location sequence bag to represent the mobility information of days, and use topics
to explain the mobility patterns. But, 200 topics of their model are too many to
explain and it is hard to model the mobility by single topic because the mobility
pattern of the day is represented by the distribution of all the topics even though
some days only show one topic.

In this research, we first identify home and work locations for the mobile phone
users. Following the work of Farrahi and Gatica-Perez [15] and Shih et al. [9], we
build the bag of location sequence for all days of users. Then, we develop an LDA
model to analyze the location sequence information of the users. We cluster the
model results to decipher the mobility patterns of the users and compare the different
mobility patterns of the users on weekday and weekend. Finally, representative daily
location sequence is captured for each pattern and by measuring the accuracy of the
representative feature, we find that the representative mobility feature of cluster can
describe the main mobility of the users to a big degree.

9.2 Data and Methodologies

In this study, we use 60 days of the call record data (CRD) of Shenzhen city, China in
August, September, and October in 2013. Data of few days were missing. The base
station regions (BSRs) defined by the Voronoi diagram are illustrated in Fig. 9.1,
and BSRs are used to locate users [16]. Positioning accuracy ranges from 100 m
to 2000 m depending on the density of the base station. There are totally 3884
BSRs in Shenzhen city. Samples of the CRD are listed in Table 9.1. Data cleaning is
conducted due to lack of field information, matching error with BSRs, wrong IMSI,
and duplicate records.
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Fig. 9.1 Base station region (BSR) by Voronoi. Fine line is the boundary of the BSR and coarse
line is the boundary of the district region in Shenzhen

Table 9.1 Sample of the mobile phone call record data (CRD)

IMSI BSC Cellular ID Sector ID Call sign Data and time

4600357544****4 13 200 2 0 2013/08/19 05:45:58
4600357544****1 18 1009 2 0 2013/08/19 23:58:04
4600357544****0 14 131 1 0 2013/08/19 18:50:34

IMSI is the unique sim card ID of user, BSC refers to base station controller. With BSC, cellular
ID, and sector ID, the BSR of user location can be identified. For call sign, 0 means dialing, 1
means incoming call, 2 means hard handover, and 3 means null value

9.2.1 Identification of Home/Work Locations

To identify the home and work location, we only choose the data on weekday
(41 days). It is considered that the span of 2 weeks (for weekday, 10 days) can
relatively show user’s mobility pattern rule well in the general case, so we choose
the users who both have call records during home time (8 pm–8 am) and working
time (9 am–6 pm) for more than 10 weekdays.

Identification of the home/work locations is based on our daily behavior habits.
Residents’ activity starts from home and ends at home. During the daytime,
residents (for commuters) are more likely to stay in their work locations, so most of
the calls in working time are made at work locations. The rules of identifying one
user’s home and work locations are presented below (some definitions are showed
in Fig. 9.2):

• For home location:

– Days are demarcated by 3:00.
– Record the earliest call (after 3:00) and the latest call (before 3:00) of each

day.
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Fig. 9.2 Definitions of working time call record and effective record

– Define the earliest call records before 8:00 and the latest call records after
20:00 as effective records because during 3:00–8:00 and 20:00–3:00 people
are more likely to stay home.

– Count the effective record frequency of the different BSRs and get the most
frequent BSR.

– If the frequency is more than 10 (at least 1 record per day), we set this BSR as
home location for the user.

• For work location:

– Count the frequency of the working time (9:00–18:00) call records in different
BSRs and obtain the most frequent BSR.

– For the BSR above, count the number of days that have at least one working
time call record.

– If the number is larger than 10, we set this BSR as work location for the user.

We get 10,790,048 call records from 12,846 users whose home location and work
location can be identified by the above rules.

9.2.2 Latent Dirichlet Allocation Model

Topic model is a type of statistical model for discovering the abstract “topics” that
occur in a collection of documents. LDA, introduced by Blei in 2003, is the most
common topic model currently used for collections of discrete data. It was originally
used for text analysis which can identify the latent topics for documents with a
set of words [17, 18]. We can get topic distribution of each given document and
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Fig. 9.3 Graphical models of latent Dirichlet allocation (LDA)

word distribution of each topic through word distribution of documents. Nowadays,
the LDA model is widely used in the analysis of image, video, and so on. In this
paper, LDA model is performed to find the latent mobility topic behind the location
information sequence.

Figure 9.3 shows the generative process of the LDA model. Let α and β be
the hyper parameters for Dirichlet document-topic distribution and topic-word
distribution, respectively. θ is an M × K matrix of topic proportions for the K topics
drawn from Dirichlet(α) and ϕ is a V × K matrix of distribution over vocabulary for
the K topics drawn from Dirichlet(β). The topic assignments for a given document
are Z = (Z1, Z2, . . . , ZK) drawn from multinomial distribution with parameter θ .
The words of the document are W = (W1, W2, . . . , WN) drawn from multinomial
distribution with parameter ϕ.

The main objective of LDA is to obtain topic distribution of every given
document and word distribution of every topic.

Parameter perplexity is used to acquire the best latent topic number of the model
[18]. The perplexity, used by convention in language modeling, is monotonically
decreasing in the likelihood of the test data, and is algebraically equivalent to
the inverse of the geometric mean per-word likelihood. A lower perplexity score
indicates better generalization performance. More formally, for a test set of M
documents, the perplexity is:

perplexity (Dtest) = exp

{

−
∑M

d=1 log p (Wd)
∑M

d=1 Nd

}

(9.1)

where d is document, Wd is a sequence of word in document d, and Nd is the number
of words in document d.
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Fig. 9.4 Words generation. One day (one document) consists of 46 words

9.2.3 Bag of Location Sequences

We divide each day into 48 timeslots (Farrahi and Gatica-Perez [15]), where every
timeslot is 30 min and at the same time, location information for every timeslots
(H—Home, W—Work, O—Other, and M—No record) is also labeled. Then, every
three consecutive timeslots is considered to be a sequence. Lastly, we add the coarse-
grain timeslots label to every sequence (one day can be divided into eight coarse-
grain timeslots, (1) 1–7 am, (2) 7–9 am, (3) 9–11 am, (4) 11 am–2 pm, (5) 2–5 pm,
(6) 5–7 pm, (7) 7–9 pm, and (8) 9–12 pm). Thus, the words of the LDA model have
been generated (see details in Fig. 9.4). By calculating the words frequency vector
of the users, we obtain the bag of location sequences, which can be the input of the
LDA model.

9.2.4 Clustering Algorithm: Affinity Propagation

Affinity propagation (AP) adopts the measures of similarity between pairs of data
points to determine the cluster. The number of clusters need not be pre-specified
and all the data points are thought to be the cluster centers in the algorithm, named
“exemplars.” Real-valued messages are exchanged between data points until a high-
quality set of exemplars and corresponding clusters occur. Affinity propagation
found clusters with much lower error than other methods [19].

In this study, we use AP clustering to extract mobility pattern. The input feature
is the topic distribution generated by LDA model. The similarity of two mobility
topic distribution is measured by Euclidean distance.
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9.3 Results and Discussions

For every user, calculate the average number of effective timeslots (timeslots with
call records) per day. Figure 9.5 is the user distribution of effective timeslots number.
To describe the location information better, we use parameter q, which means the
fraction of noneffective timeslots (timeslots with no call records) [10], and select
days’ of users with q < 0.8. Furthermore, we select the days in which the location
information of 48 timeslots can be totally and clearly identified with H, W, O, and
M (H—Home, W—Work, O—Other, and M—No record). After cleaning, we use
3371 days’ records of 287 users on weekday and 1014 days’ records of 275 users
on weekend.

9.3.1 Finding the Best Latent Topic Number of the Model

The perplexity of different number of topics is showed in Fig. 9.6. The perplexity
tends to be stable when k reaches 80 for weekday and 35 for weekend. So, we set k
equal to 80 and 35 for weekday and weekend, respectively.

9.3.2 Model Results

We choose k = 80 for weekday and k = 35 for weekend to calculate the results of
the LDA model, and we obtain the daily probability distribution matrix of topics
and probability distribution matrix of words for every topic (part of results is shown
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Table 9.2 Some results of weekday by LDA model

Topic
Day 1 2 3 4 5 6 7
1 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0378
2 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065
3 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0378
4 0.0065 0.0169 0.0065 0.0065 0.0065 0.0065 0.0898
5 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0169

Word
Topic 1.H.H.H 1.H.H.M 1.H.H.O 1.H.H.W 1.H.M.H 1.H.M.M 1.H.M.O
1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
2 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.0001 0.0006 0.0001 0.0006 0.0001 0.0012 0.0001
4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
5 0.7421 0.1077 0.0000 0.0000 0.0000 0.0812 0.0008

For weekday, we get distributions of 80 topics for 3371 days and distributions of 512 words for 80
topics. For weekend, distributions of 35 topics for 1014 days and distributions of 512 words for 35
topics are obtained

in Table 9.2). We observe that a single topic cannot explain the mobility well in
our case. As shown in Fig. 9.7, top 5 probability topics are chosen from the topic
distribution matrix and the top 10 probability days’ location information for each
of the 5 topics are plotted. The higher the probability of a topic in a day, the more
evident is the mobility related to the topic for this day. Thus, we get the highlighted
5 topics and the days which show the topics most obviously. In this way, we are able
to know what mobility the topic means. The reason why results of the topics are not
satisfactory will be discussed in next section. Finally, clustering has been performed
to get a better outcome.
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Fig. 9.7 Top 10 probability days’ mobility for some topics. Different colors mean different
locations of users. The horizontal axis is time of the day and vertical axis shows different days.
Each row of the figure represents 1 day’s mobility and by this way the mobility of different days
can be specifically described. The five figures above are the top five probability topics among the
topic distribution matrix and the five figures below are some topics without expectation. Topic 6
and topic 79 are mobility about home location but at different times, topic 42 and topic 51 are about
other locations; however, obvious regularity cannot be captured from other topics in this figure

9.3.3 Cluster Results and Analysis

Before clustering the results of the LDA model, two issues ought to be addressed.
The reason for expending a lot of effort on clustering the LDA model results instead
of using the topics directly to explain mobility patterns and why we do not cluster
the location information directly. For the first question, on the one hand, it is hard
to model the mobility by single topic because the mobility pattern of the day is
represented by the distribution of all the topics even though some day obviously
shows one topic and it is impossible to explain all the days’ patterns by topics
directly. On the other hand, with the sparsity of the CRD (showed in Fig. 9.5),
the topics about “M” (missing location information) will account for a large part
of the results (e.g., blue part of topic 16, 23, and 40 showed in Fig. 9.7) and the
significant information (topics about “H,” “W,” and “O”) may easily be ignored
if we just consider single topic. For the second question, performing a cluster
first does not yield satisfactory results. The main reason can be attributed to the
sparsity of our data. When we calculate the distance matrix of our data, a lot of
“M” will adversely impact the final results of the cluster and thus weakens the real
information of interest to us (“H,” “W,” and “O”). But, by considering the similarity
of the distribution of the topics, this problem can be addressed. Some results by
clustering the location information directly are shown in Fig. 9.8 using the same
cluster algorithm and the same data.
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Fig. 9.8 Results of clustering the location information directly. (a) is for weekday and (b) is for
weekend. Details about the figure are shown in Fig. 9.7. Much noise makes it difficult to classify
mobility patterns in this way

Fig. 9.9 Cluster results of affinity propagation. (a) is for weekday and (b) is for weekend. Details
about the figure are showed in Fig. 9.7. We can see several main patterns in this figure and the
different density of the color shows the different mobility on weekday and weekend

We use affinity propagation (19) to cluster the topic distribution matrix and we
get 25 clusters for weekday data and 17 clusters for weekend data. The location
information of all the users are plotted in Fig. 9.9 and users in the same cluster are
put together.

Figure 9.9 shows the different classification of the mobility patterns of the
days on weekday and weekend. We can easily get the location information during
daytime because people usually make calls during this time. But, from 0:00 to 6:00,
people make few calls. Concerning this situation, we label the timeslots between
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two consecutive calls with home or work location when the interval between two
consecutive calls at the same location (home or work) is less than 8 h. For other
locations, we use 4 h. But, not all users make calls before they go to sleep and after
they wake up at home location and this is the reason why there still are a lot of
blue grids in the figure. Generally speaking, activities of users at late night are few,
and if they have some entertainment or work behaviors at that time, the probability
they make calls is higher than usual and we are more likely to capture the location
information. Above all, the missing location information does not affect the results
too much when we extract the main travel behaviors of the users.

Left part of the Fig. 9.9 is about weekday and users of our data are commute
users whose home location and work location can be identified, so the cluster result
shows high density for working activities. Most of the users are working between
9 am and 6 pm, which is in accordance with the result of Shenzhen travel survey
data in 2010, and some users do not finish their work until 9 pm. In [20], we also
conclude that the evening peak extends to 3–4 h in Shenzhen. Few users work on
the night shift. And some users are not at the work spots all day, for example, jobs
like watchman may work for some days and have some days off. Right part of the
Fig. 9.9 is for weekend and we can see lower density of working than weekday. But,
some users still work on the weekends and even have higher work intensity in some
days. This situation is normal for some jobs like services. Some users stay home all
day on the weekends and most users do not leave far away from home (because of
the black and green stripes). Few users go out all day, they may go to some remote
places to spend their weekends.

Results of different clusters are plotted, respectively, in Fig. 9.10. We can see
a very significant regularity on the whole, but there still remains a lot of noise
from the micro perspective. Because of the limitation of the CRD, the same travel
behavior of a user may show different results by mobile phone data, and sometimes
even two calls in the same location may be recorded in different BSRs due to the
signal intensity of the base station. This limitation can be showed by the jagged
shape of location switching boundaries in the figure. As mentioned before, sparsity
of the CRD may result in the loss of some location information of the users,
which is another limitation. Hence, the results cannot be used to assess microlevel
locational analysis but can be used to aggregate patterns of travel. We have changed
the parameters of the AP algorithm to put all the information of the data into
consideration. However, too many clusters (e.g., weekday data has 190 clusters)
makes our result too specialized to make sense. Regarding the noise as the part of
results will make it difficult to capture the real and main mobility patterns of the
users. Thus, like the fuzzy processing showed in Fig. 9.11, the mobility patterns are
more distinct when we make the streaks fuzzy and negative effects of the noise can
be reduced.

In order to better describe the characteristics of each cluster, we regard repetitive
behavior patterns of most days of the cluster as the type of mobility pattern for this
cluster. If ϕi

l (j) represents the count of location label l (H, W, O, M) on the day of
number i in the cluster number n during timeslot j (ϕi

l (j) = 0, 1), then
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Fig. 9.10 Results of different clusters. (a) is for weekday and (b) is for weekend. Details about
the figure are showed in Fig. 9.7. There are 25 clusters on weekday and 17 clusters on weekend
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Fig. 9.11 Fuzzy processing of the figure (for weekday). After fuzzy processing, the color becomes
more regular and the mobility patterns are more distinct

Fig. 9.12 Mobility feature of different clusters. (a) is for weekday and (b) is for weekend.
Different colors represent different locations for users. The horizontal axis is time of the day and
vertical axis shows different clusters. Each row of the figure is the mobility feature of one cluster
and by this way mobility features of all clusters can be clearly described. It is worth noting that
the mobility of cluster 17 on weekend does not have any location information because the cluster
shows less regularity (we can see the last figure of Fig. 9.10b)

fn(j) = arg max
l

∑Dn

i
ϕi

l (j) (9.2)

where fn(j) is the assigned characteristic location label for timeslot j of cluster
number n and Dnis the total day number of cluster n. Thus, we can get the
representative mobility feature of every cluster in Fig. 9.12 and we can know
what pattern the cluster represents. It can be found that people’s main mobility
is very regular and focuses on several patterns which can be easily explained by
our life experience. Particularly, the mobility patterns are just generated by CRD
and we have no idea about the location information for the timeslots with no call.
As mentioned above, most of the timeslots with unknown location information
are in 0:00–6:00, which is the time for sleeping and with low activity intensity,
but if they have some entertainment or work behaviors at this time, it also has a
greater possibility to make a call. So, we believe that our results can capture the
main mobility patterns of the users. It needs to be noted that all the classes are
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not completely independent. For example, as illustrated in Fig. 9.10a-1-4 (Figure in
the first row and fourth column of the Fig. 9.10a) and Fig. 9.10a-2-4, the main
mobility feature of the two clusters is at home before 6:30 (cluster 22) and at
home after 17:30 (cluster 12). These two daily behavior patterns of weekdays are
not contradicting. As pointed out before, the same behavior pattern may generate
different results because of limitation of the CRD and these two patterns maybe
two mobility pieces of one behavior captured by our data. Through extracting the
behavior characteristics of several days, the complete mobility patterns of users can
be acquired.

We use the cluster feature to explain the mobility and the parameter ϕ is defined
to describe the accuracy of the results. Parameter ϕ is used to measure the similarity
between real mobility and the mobility of representative cluster feature. If Lij

is the timeslots’ sequence for a given day i of cluster number j (the label “M”
is not effective location information), and Fj is timeslots’ sequence for a given
representative feature of cluster number j, then

ϕj = 1

Dj

∑Dj

i=1

S
(
Lij ∩ Fj

)

N
(
Lij ∩ Fj

) (9.3)

where ϕj is the accuracy of cluster j, and Lij ∩ Fj is the timeslot sequence both have
the real location information and cluster feature information in a given day i, and
N(Lij ∩ Fj) is the number of effective timeslots in the Lij ∩ Fj, and S(Lij ∩ Fj) is the
number of the timeslots which have the same location information in the Lij ∩ Fj

about real and cluster situation, and Dj is the days’ number of cluster j. The results
of ϕj are showed in Fig. 9.13. The mean value of ϕ is 0.841 for weekday and 0.837
for weekend. Almost all clusters have reached high accuracy. Low accuracy of some

Fig. 9.13 Accuracy of cluster feature. (a) is for weekday and (b) is for weekend. Almost all
clusters have reached high accuracy. Low accuracy of some clusters can be subject to the fluctuation
of home and other places (black and green stripes in Fig. 9.10)
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clusters can be subject to the fluctuation of home and other places (black and green
stripes in Fig. 9.10). On the whole, our cluster results can show one’s mobility to a
great degree.

9.4 Conclusions

In this study, we simplify users’ travel destination by home, work, and other to
describe their mobility. By clustering the output of the LDA model, we reduce
the negative impact of missing information to the cluster results and identify the
mobility patterns of the mobile phone users (25 classes on weekday and 17 classes
on weekend). The results are explainable and consistent with our life experience.

Locating users using CRD has its own advantages and limitations. On the one
hand, it has a large sample which can be accessed continuously for a very long
time and with little deviation (almost everyone has a mobile phone and most traffic
modes can be covered, while people have various usage habits). On the other hand,
localization error and data sparsity are the main limitation of the methodology, and
we are unable to obtain the social attributes of the users. Hence, we would get stuck
if we excessively pursuit the accurate result. It is very likely to treat the location
error as a part of results, which will make it difficult to capture the real and main
mobility patterns of the users. For data sparsity, we just consider the mobility which
is shown by the CRD and by combining the behavior characteristics of several days,
the relatively complete mobility patterns of users can be acquired. For localization
noise, we use LDA model, AP algorithm, and representative feature extraction to
capture the main mobility patterns of the users, finding that almost all the mobility
of users gathered in several classes.

Many researches indicate that humans follow simple reproducible patterns
with high predictability [10, 21], and our results support this conclusion from
the perspective of the activity sequence based on home and work location. For
commuter, home and work make up a high proportion of daily mobility and show
different density on weekday and weekend.

Through learning the mobility of the users, we can predict the future travel
behaviors for various users. There still remain doubts about how to choose classifier
and how to deal with the situation that all the classes are not completely independent
with each other. Therefore, multi-label classification will be an alternative choice in
our future research.
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