
Chapter 7
Human–Computer Interaction

Key Topics

Batch processing
Text-based interface
Graphical User Interface
Voice User Interface
WIMP
SILK
Usability Standards

7.1 Introduction

Human–computer interaction (HCI) is a branch of computer science that is concerned
with the design, evaluation and implementation of interactive computing systems for
human use. It is focused on the interfaces between people and computers, and
involves several different fields including computer science, cognitive psychology,
design and communication. The human–computer interaction field has evolved over
the decades to include text-based interaction systems, graphical user interfaces
(GUI) and voice user interfaces (VUI) for speech recognition and speech synthesis.

The interaction between humans and machines was mainly limited to informa-
tion technology professionals from the early days of computing up to the mid/late
1970s. This changed after the invention of the microprocessor in the early 1970s,
which led to an explosion of interest from computer hobbyists, and the subsequent
development of home computers from the mid-1970s. The introduction of the IBM
personal computer in the early 1980s meant that everyone in the world was now
was a potential computer user, and it led to a new market of personal applications
and tools to support the user. However, it was clear that there were serious defi-
ciencies with respect to the usability of computers in carrying out the tasks that
users wished to perform.

Humans interact with computers in many ways, and so it is important to
understand the interface between human and machines to facilitate an effective
interaction. The early computer systems were batch processing (running programs
in batches without human intervention) on a large expensive mainframe computer.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf

The interaction between the human (operator) and computer was limited, and it
consisted of placing the punched cards (encoded instructions to the computer) on
the card reader, and the computer would then process the cards overnight. These
computers were slow and expensive, and it was important that they be used effi-
ciently 24 h a day. The computer could run only one program at a time, and
programmers were unable to interact with the computer while it was running, and
this made it difficult and time-consuming to identify and correct errors.

A text-based interface (also known as a command line interface) is where the
system interaction (input and output) and navigation are text-based. They are easier
to use than punched card programming, but require skilled operators due to the
difficulty in remembering long lists of system commands.

Licklider wrote an influential paper ‘Man-Computer Symbiosis’ in 1960
(Licklider 1960), in which he outlined the need for a simple interaction between
users and computers. This paper mentioned ideas such as sharing computers among
many users, interactive information processing and programming, large-scale
storage and retrieval, and speech and handwriting recognition.

Doug Engelbart was one of the main developers of NLS (oN Line System) in the
late 1960s, and this online word processor system had features such as the first
computer mouse, time-sharing and a command line interface. User trials and testing
was employed in its development as part of a philosophy towards a system adapting
to people rather than people adapting to a system.

One of the most well-known text-based operating systems was Microsoft’s MS/
DOS operating system for IBM compatible personal computers, which was intro-
duced in 1981 (Fig. 7.1). Text-based interfaces are effective for expert users but are
more difficult for users with an average level of knowledge, as they have a steep
learning curve and the difficulty in remembering a long list of system commands.
The fact that they are not very intuitive or user-friendly motivated research into
alternative approaches.

The graphical user interface (GUI) is a human–computer interface that uses
graphical icons, menus and windows to represent information and action to the user.

Fig. 7.1 FreeDOS text editing

148 7 Human–Computer Interaction

It was a revolution in human and computer interaction and the GUI was intuitive
and user-friendly. They have made computers and electronic devices attractive to
non-technical users, and the usability of the GUI has allowed a large range of users
with varying ability and expertise to successfully interact with computers.

Early work on graphical user interfaces took place at Xerox PARC in the 1970s
with their work on the Xerox Alto personal workstation (Fig. 3.24). This was the
first computer to use a mouse-driven graphical user interface, and it was introduced
in the mid-1970s. It was essentially a small minicomputer rather than a personal
computer (it was not based on the microprocessor). Its significance is that it had a
major impact on the user interface design, and especially on the design of the Apple
Macintosh computer.

The Xerox Star was introduced in the early 1980s, and it followed sound
usability principles (prototyping and analysis, iterative development and testing
with users) in its development. Steve Jobs visited Xerox PARC in late 1979, and he
realised that the future of personal computing was with computers that employed a
graphical user interface (such as in the Xerox Alto). Jobs was amazed that Xerox
had not commercialised the technology, as he saw its graphical user interface as a
revolution in computing and a potential goldmine in the future of computing. The
design of the Apple Macintosh was heavily influenced by the design of the Xerox
Alto, and the release of the Macintosh was a major milestone in computing.

The Macintosh was a much easier machine to use than the existing IBM personal
computer. Its friendly and intuitive graphical user interface was a revolutionary
change from the command-driven operating system of the IBM PC, which required
the users to be familiar with its operating system commands. It was 1990 before
Microsoft introduced its Windows 3.0 GUI-driven operating system (Fig. 7.2).

Today, the prevalent paradigm in human–computer interaction is the WIMP
(windows, icons, menus and pointers) paradigm, which is comprised of a graphic
and text interface navigated by a mouse and keyboard. The future of HCI is pre-
dicted to be the SILK (speech, image, language and knowledge) paradigm, where
communication between humans and machine will be more natural and intuitive.

7.2 HCI Principles

The success of computer systems is critically influenced by the design of the
human–computer interaction, and in the achievement of end-user computing sat-
isfaction. Human–computer interaction is concerned with the study of humans and
machines, and so it needs knowledge of both to be effective. The study of machines
requires knowledge of computer graphics, programming languages, capabilities of
current technology and so on, whereas on the human side it requires knowledge of
cognitive psychology, ergonomics and other human factors such as usability and
computer user satisfaction.

There are several fundamental principles and models underlying HCI. It is
essential to understand the user and their characteristics, as well as their diversity in

7.1 Introduction 149

age, experience, physical and intellectual abilities, and so on. It is customary to
distinguish between two types of user knowledge (IT and domain knowledge), and
the user’s proficiency in each type of knowledge yields several user categories that
range between novice and expert.

– Interface knowledge (knowledge of the IT technology).
– Domain/task knowledge of the real-world system.

The software will generally support multiple user categories, where novices get
opportunities to learn about the system and have fewer opportunities for error. It is
important to understand the domain in which the software will be used and to
identify the tasks to be performed as well as the frequency in which they will be
performed.

There have been several rules and principles proposed for HCI design including
Shneiderman’s ‘Eight Golden Rules of Interface Design’ (Table 7.1) (Shneiderman
and Plaisant 2005).

7.3 Software Usability and User-Centred Design

Usability has become important in software engineering and especially with the
emergence of the World Wide Web in the early 1990s. The usability of the software
is the perception that a user or group of users has of its quality and ease of use (i.e.
is the software easy to use and easy to learn?), and its efficiency and effectiveness.

Fig. 7.2 Microsoft Windows 3.11 (1993). Used with permission from Microsoft

150 7 Human–Computer Interaction

Usability is a multidisciplinary field, and psychological testing may be employed to
evaluate the perception that users have of the computer system. Usability is defined
in the ISO 9241 standard as:

Usability is the degree to which software can be used by specified consumers to achieve
quantified objectives with effectiveness, efficiency and satisfaction in a quantified context of
use.

There are several standards for usability including the ISO 9241 and ISO 16982
standards, and the IEC 62366-1 standard (Applications of Usability Engineering to
Medical Devices) from the International Electrotechnical Commission (IEC).

Usability, like quality, needs to be built into the software product rather than
added later, and it needs to be considered from the earliest stages in the software
development process. It requires an analysis of the user population and the tasks
that they perform, as well as their knowledge and experience. The specification of
the user and system requirements needs to include the usability requirements, as
these are an integral part of the system.

There will often be a variety of different viewpoints to be considered, and this
leads to multiple design solutions and an evaluation of these against the require-
ments. An iterative software development life cycle is generally employed, with
active user involvement during the software development process. Prototyping is
often employed to give the users a flavour of the proposed system and to get early
user feedback on its usability. User acceptance testing (including usability testing)
provides confidence that the software satisfies the usability, accessibility and quality
expectations of the users (Table 7.2).

Table 7.1 Eight golden rules of interface design

Principle Description

Strive for consistency Consistent terminology, sequences of action and commands
throughout the system

Enable frequent users to
use shortcuts

The user will naturally desire to reduce the number of interactions
as the frequency of use increases

Provide informative
feedback

There should be appropriate system feedback

Design dialogue to yield
closure

Sequences of actions should be organised into groups with a
beginning, middle and end

Offer simple error
handling

Design the system (as far as possible) to prevent the user from
making a serious error. The system should be able to detect an
error and provide a handling mechanism

Permit easy reversal of
actions

This is important to the user as it means that errors can be undone

Support internal locus of
control

The system should be designed to make the users initiators of
actions rather than responders to actions

Reduce short-term
memory load

There are limitations to human processing in short-term memory,
and so displays should be kept simple

7.3 Software Usability and User-Centred Design 151

7.3.1 User-Centred Design

User-centred design (UCD) is a design process that is focused on the usability of
and accessibility of the system to be developed, and it places the users at the centre
of the software development process. The users are actively involved from the
beginning of the project, and regular feedback is obtained from them at each stage
of the process. UCD follows well-established techniques for analysis and design,
and it is focused on understanding the characteristics of users and their needs
(Table 7.3).

The UCD design activities focus on the user, including understanding the tasks
that they perform, their needs and their experience. The users clarify what they want
from the product and the environment in which the software will be used. The
designers then determine how the users are currently performing their tasks, and
what they like and dislike about the ways in which the tasks are currently done.
This helps the designer to design a product that will be fit for purpose, that will
satisfy the usability expectations of users, as well as being competitive in the
market.

Table 7.2 Software development life cycle (including usability)

Phase Description

Requirements Interviews with the different categories of users

Prototype Initial prototype developed and structured feedback given by users
(usually via questionnaire)

Spiral design/
development

Design a little, code a little, test a little, formal review and user feedback
prior to new spiral

Acceptance Final acceptance testing by users

Table 7.3 UCD principles

Principle Description

User
understanding

The design is based on an explicit understanding of users, tasks and
environments (i.e. who are the users?, what are their tasks and needs? and
what is their experience?)

User
involvement

The users are involved throughout the design and development (and user
feedback shapes the design and development)

User evaluation The design is driven and refined by user evaluation (and the user
acceptance testing confirms that the usability and functional requirements
are properly implemented)

Iterative
development

The software development process is iterative, and the approach is to
design and develop a little, get feedback from the user evaluation, modify
accordingly and proceed to the next cycle in the iteration

Design The design addresses the whole user experience

Multidisciplinary The design team includes multidisciplinary skills

152 7 Human–Computer Interaction

The software development team produces an initial version (or prototype) of the
product, and the prototype has sufficient functionality to test some parts of the
design. The design and development proceeds in cycles of modification, testing and
a user review of the current version, until the software satisfies functional, usability
and accessibility requirements. The approach is to design a little; code a little; test a
little; evaluate and decide on whether to proceed with subsequent cycles.

A pre-release of the software may be created and sent to a restricted set of users
for their evaluation, and the user feedback is then used to finalise the product prior
to its actual release.

7.4 Review Questions

1. What is a text-based interface?
2. What is a graphical user interface?
3. Explain the importance of software usability.
4. Investigate the various usability standards such as ISO 9241 and ISO

16982.
5. Explain user-centred design.
6. Describe the evolution of human–computer interfaces.

7.5 Summary

Human–computer interaction is a branch of computer science that is concerned with
the design, evaluation and implementation of interactive computing systems for
human use. It is focused on the interfaces between people and computers, and has
grown over the decades to include text-based interaction systems, graphical user
interfaces and voice user interfaces.

The development of home computers from the mid-1970s meant that everyone
in the world was now a potential computer user, and it was clear that there was a
need to improve the usability of machines. Humans interact with computers in
many ways, and so it is important to understand the interface between them to
facilitate the interaction.

The early interaction between humans and computers was via batch processing
with limited interaction between the operator and computer. These were followed
by text-based interfaces (also known as a command line interface), where the
system interaction (input and output) and navigation are text-based. One of the most

7.3 Software Usability and User-Centred Design 153

well-known text-based operating systems was Microsoft’s MS/DOS operating
system for IBM compatible personal computers.

The graphical user interface is a human–computer interface that uses graphical
icons, menus and windows to represent information and action to the user. They are
intuitive and user-friendly, and were a revolution in human and computer inter-
action. They have made computers and electronic devices attractive to
non-technical users, and are a major step forward from command-driven operating
system.

The success of modern software systems is related to the usability of the soft-
ware, and user-centred design has become a key paradigm in building usability in
the software. It places the user at the centre of the software development process
with active user involvement and evaluation employed.

154 7 Human–Computer Interaction

	7 Human–Computer Interaction
	7.1 Introduction
	7.2 HCI Principles
	7.3 Software Usability and User-Centred Design
	7.3.1 User-Centred Design

	7.4 Review Questions
	7.5 Summary

