
World of
Computing

Gerard O’Regan

A Primer Companion
for the Digital Age

World of Computing

Gerard O’Regan

World of Computing
A Primer Companion for the Digital Age

123

Gerard O’Regan
SQC Consulting
Mallow, Cork
Ireland

ISBN 978-3-319-75843-5 ISBN 978-3-319-75844-2 (eBook)
https://doi.org/10.1007/978-3-319-75844-2

Library of Congress Control Number: 2018932550

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To
Kevin Crowley

For lifelong friendship

Preface

Overview

The objective of this book is to provide a concise introduction to the world of
computing to students and general readers. The computing field is a vast area and so
it is not possible to cover every area of computing, or to cover every topic in detail.
Therefore, the goal is to give the reader a flavour of some of the important areas of
computing, and to stimulate the reader to study the more advanced articles and
books that are available.

Organisation and Features

Chapter 1 introduces analog and digital computers, and the von Neumann archi-
tecture which is the fundamental architecture underlying a digital computer.
Chapter 2 discusses the foundations of computing, and we describe the binary
number system and the Step Reckoner calculating machine that were invented by
Leibniz. Babbage designed the Difference Engine as a machine to evaluate poly-
nomials, and his Analytic Engine provided the vision of a modern computer. Boole
was an English mathematician who made important contributions to mathematics
and logic, and his symbolic logic is the foundation for digital computing.

Chapter 3 presents a concise history of computing including a discussion of the
first digital computers, the first commercial computers, the SAGE air defence
system, the invention of the transistor at Bell Labs, and early transistor computers,
the invention of the integrated circuit at Texas Instruments, the development of the
IBM System/360, and its influence on later computer development, later main-
frames and minicomputers, including DEC’s minicomputers. We discuss the rev-
olutionary invention of the microprocessor, and how it led to the development of
home computers such as the Apple I and II, Commodore computers, Atari com-
puters, the Sinclair ZX 81 and ZX spectrum computers and the Apple Macintosh.

vii

We discuss the introduction of the IBM personal computer, which was a major
milestone in the computing field.

Chapter 4 introduces the essential mathematics for computing including sets,
relations and functions. Sets are collections of well-defined objects; relations
indicate relationships between members of two sets A and B; and functions are a
special type of relation where there is exactly (or at most) one relationship for each
element a 2 A with an element in B.

Chapter 5 presents a short introduction to algorithms, where an algorithm is a
well-defined procedure for solving a problem. It consists of a sequence of steps that
takes a set of values as input, and produces a set of values as output. An algorithm
is an exact specification of how to solve the problem, and it explicitly defines the
procedure so that a computer program may implement the solution in some pro-
gramming language.

Chapter 6 presents an introduction to logic for computing, and includes a short
history of logic, and an introduction to propositional and predicate logic.
Propositional logic is the study of propositions, where a proposition is a statement
that is either true or false. It may be used to encode simple arguments that are
expressed in natural language, and to determine their validity. Predicate logic
allows complex facts about the world to be represented, and new facts may be
determined via deductive reasoning.

Chapter 7 discusses human–computer interaction (HCI), which is a branch of
computer science that is concerned with the design, evaluation and implementation
of interactive computing systems for human use. It is focused on the interfaces
between people and computers, and involves several fields including computer
science, cognitive psychology, design and communication.

Chapter 8 presents a short introduction to programming languages starting with
machine languages; to assembly languages; to early high-level procedural lan-
guages such as Fortran and COBOL; to later high-level procedural languages such
as Pascal and C; and to object-oriented languages such as C++ and Java. Functional
programming languages and logic programming languages are discussed, and there
is a short discussion on the important area of syntax and semantics.

Chapter 9 presents a short introduction of the software engineering field. We
discuss its key challenges and several high-profile software failures. The waterfall
and spiral lifecycles are discussed, as well as a brief discussion on the rational
unified process and the popular Agile methodology. We discuss the key activities in
the waterfall model such as requirements, design, implementation, unit, system and
acceptance testing.

Chapter 10 presents a short introduction to operating systems including the IBM
OS/360, which was the operating system for the IBM System/360 family of
computers. We discuss the MVS and VM operating systems, which were used on
the IBM System/370 mainframe computer. We discuss the UNIX operating system,
which is a multi-user, and multi-tasking operating system. It was written almost
entirely in C. DEC developed the VAX/VMS operating system in the late 1970s for
its VAX family of minicomputers. Microsoft developed MS/DOS for the IBM
personal computer in 1981, and it introduced Windows as a response to the

viii Preface

GUI-driven operating system of the Apple Macintosh. There is a short discussion
on Android and iOS, which are popular operating systems for mobile devices.

Chapter 11 presents a short introduction to databases including a discussion
of the hierarchical and network models. We discuss the relational database model
which was developed by Codd at IBM in more detail, as most databases used today
are relational. There is a short discussion on the SQL query language and on the
Oracle database.

Chapter 12 presents a short introduction to telecommunications, and it focuses
on the development of mobile phone technology. The development of the AXE
system by Ericsson is discussed, as this was the first fully automated digital
switching system. We discuss the concept of a cellular system, which was intro-
duced by Bell Labs, as well as the introduction of the first mobile phone, the
DynaTAC, by Motorola.

Chapter 13 describes the Internet revolution starting from ARPANET, which
was a packet switched network and TCP/IP, which is a set of network standards for
interconnecting networks and computers. These developments led to the birth of the
Internet, and Tim Berners-Lee’s work at CERN led to the birth of the World Wide
Web. We discuss various applications of the World Wide Web, as well as the
dot-com bubble and burst of the late 1990s/early 2000. We conclude with a brief
discussion on the Internet of Things and the Internet of Money (including bitcoin).

Chapter 14 discusses the invention of the smartphone and the rise of social
media. It describes the evolution of the smartphone from PDAs and mobile phone
technology, and the impact of Facebook and Twitter in social networking is dis-
cussed. Facebook has become a way for young people to discuss their hopes and
aspirations as well as a tool for social protest and revolution. Twitter has become a
popular tool in political communication, and it is also an effective way for busi-
nesses to advertise its brand to its target audience. We briefly discuss how social
media has been abused by individuals and states to spread fake news, and the
challenges this poses to western democracies.

Chapter 15 discusses legal aspects of computing and is concerned with the
overlap of the law and the computing field. We discuss intellectual property such as
patents, copyright and trademarks and the licensing of software. We examine the
area of hacking and computer crime, and explore the nature of privacy, free speech
and censorship. We consider the legal issues of bespoke software development, and
the legal aspects of the Internet.

Chapter 16 discusses ethics and professional responsibility in computing. Ethics
is a branch of philosophy that deals with moral questions such as what is right or
wrong, and computer ethics are a set of principles that guide the behaviour of
individuals when using computer resources. Professional ethics are a code of
conduct that governs how members of a profession deal with each other and with
third parties.

Chapter 17 discusses innovation in the computing field including distributed
systems, service-oriented architecture (SOA), Software as a Service (SaaS), cloud
computing and embedded systems. Chapter 18 is the concluding chapter in which
we summarise the journey that we have travelled in the book.

Preface ix

Audience

The main audience of this book are computer science students and the general
reader who are interested in learning about the fascinating world of computing.

Acknowledgements

I am indebted to friends and family who supported my efforts in this endeavour.
This book is dedicated to Kevin Crowley (a lifelong friend) who is currently
fighting a difficult illness with all his strength and determination. I wish him victory
in this major challenge, and my thoughts are with him and his family at this difficult
time. I would like to thank the team at Springer for their constant professional work
and support. I would like to thank all copyright owners for the permission to use
their images. I believe that all of the required permissions have been obtained, but
in the unlikely event that an image has been used without the appropriate autho-
risation, please contact me so that the required permission can be obtained.

Cork, Ireland Gerard O’Regan

x Preface

Contents

1 What Is a Computer? . 1
1.1 Introduction . 1
1.2 Analog Computers . 2
1.3 Digital Computers . 3

1.3.1 Vacuum Tubes . 4
1.3.2 Transistors . 4
1.3.3 Integrated Circuits . 6
1.3.4 Microprocessor S . 7

1.4 Von Neumann Architecture . 7
1.5 Hardware and Software . 9
1.6 Review Questions . 9
1.7 Summary . 10

2 Foundations of Computing . 11
2.1 Introduction . 11
2.2 Step Reckoner Calculating Machine . 12
2.3 Binary Numbers . 14
2.4 The Difference Engine . 16
2.5 The Analytic Engine—Vision of a Computer 17

2.5.1 Applications of Analytic Engine 19
2.6 Boole’s Symbolic Logic . 20

2.6.1 Switching Circuits and Boolean Algebra 23
2.7 Application of Symbolic Logic to Digital Computing 25
2.8 Review Questions . 26
2.9 Summary . 27

3 A Concise History of Computing . 29
3.1 Introduction . 29
3.2 Early Digital Computers . 30

3.2.1 Harvard Mark 1 . 30

xi

3.2.2 Atanasoff–Berry Computer . 32
3.2.3 ENIAC . 34
3.2.4 EDVAC . 36
3.2.5 Bletchley Park and Colossus 37
3.2.6 Zuse’s Machines . 40
3.2.7 Z1, Z2 and Z3 Machines . 41
3.2.8 University of Manchester . 42
3.2.9 Manchester Mark I . 42

3.3 Early Commercial Computers . 44
3.3.1 The SAGE System . 45
3.3.2 Invention of the Transistor . 47
3.3.3 Early Transistor Computers . 47

3.4 Integrated Circuits . 48
3.4.1 Invention of Integrated Circuit 49
3.4.2 Moore’s Law . 51
3.4.3 Early Integrated Circuit Computers 52
3.4.4 Birth of Silicon Valley . 52

3.5 IBM System 360 . 54
3.5.1 Background to the Development of System/360 55

3.6 Minicomputers and Later Mainframes 57
3.7 Microprocessor Revolution . 59

3.7.1 Early Microprocessors . 61
3.8 Home Computers . 62

3.8.1 Xerox Alto Personal Computer 62
3.8.2 MITS Altair 8800 . 62
3.8.3 Apple I and II Home Computers 64
3.8.4 Commodore PET . 64
3.8.5 Atari 400 and 800 . 66
3.8.6 Commodore 64 . 67
3.8.7 Apple Macintosh . 68

3.9 The IBM Personal Computer . 69
3.9.1 Operating System for IBM PC 72

3.10 Review Questions . 73
3.11 Summary . 74

4 Overview Mathematics in Computing . 75
4.1 Introduction . 75
4.2 Set Theory . 76

4.2.1 Set Theoretical Operations . 78
4.2.2 Properties of Set Theoretical Operations 81
4.2.3 Russell’s Paradox . 81
4.2.4 Computer Representation of Sets 83

xii Contents

4.3 Relations . 84
4.3.1 Reflexive, Symmetric and Transitive Relations 85
4.3.2 Composition of Relations . 87
4.3.3 Binary Relations . 88
4.3.4 Applications of Relations to Databases 89

4.4 Functions . 91
4.4.1 Application of Functions to Functional

Programming . 95
4.5 Number Theory . 96

4.5.1 Elementary Number Theory 97
4.6 Automata Theory . 99

4.6.1 Finite-State Machines . 100
4.7 Graph Theory . 102
4.8 Computability and Decidability . 103
4.9 Review Questions . 104
4.10 Summary . 104

5 Introduction to Algorithms . 107
5.1 Introduction . 107
5.2 Early Algorithms . 108

5.2.1 Greatest Common Divisors (GCD) 109
5.2.2 Euclid’s Greatest Common Divisor Algorithm 109
5.2.3 Sieve of Eratosthenes Algorithm 111
5.2.4 Early Cipher Algorithms . 112

5.3 Sorting Algorithms . 114
5.4 Binary Trees and Graph Theory . 117
5.5 Modern Cryptographic Algorithms . 118
5.6 Computational Complexity . 120
5.7 Review Questions . 121
5.8 Summary . 121

6 A Concise Introduction to Logic . 123
6.1 Introduction . 123
6.2 A Brief History of Logic . 124

6.2.1 Syllogistic Logic . 125
6.2.2 Paradoxes and Fallacies . 126
6.2.3 Stoic Logic . 127
6.2.4 Boole’s Symbolic Logic . 129
6.2.5 Frege . 130

6.3 Propositional Logic . 131
6.3.1 Truth Tables . 133
6.3.2 Properties of Propositional Calculus 135
6.3.3 Proof in Propositional Calculus 135
6.3.4 Semantic Tableaux in Propositional Logic 137

Contents xiii

6.3.5 Natural Deduction . 139
6.3.6 Applications of Propositional Calculus 139

6.4 Predicate Logic . 141
6.4.1 Semantic Tableaux in Predicate Calculus 143

6.5 Review Questions . 144
6.6 Summary . 145

7 Human–Computer Interaction . 147
7.1 Introduction . 147
7.2 HCI Principles . 149
7.3 Software Usability and User-Centred Design 150

7.3.1 User-Centred Design . 152
7.4 Review Questions . 153
7.5 Summary . 153

8 Introduction to Programming Languages . 155
8.1 Introduction . 155
8.2 Plankalkül . 158
8.3 Imperative Programming Languages . 158

8.3.1 FORTRAN and COBOL . 159
8.3.2 ALGOL . 161
8.3.3 Pascal and C . 162

8.4 Object-Oriented Languages . 165
8.4.1 C++ and Java . 166

8.5 Functional Programming Languages . 169
8.5.1 Miranda . 170
8.5.2 Lambda Calculus . 171

8.6 Logic Programming Languages . 173
8.7 Syntax and Semantics . 175

8.7.1 Programming Language Semantics 176
8.8 Review Questions . 177
8.9 Summary . 177

9 Overview of Software Engineering . 179
9.1 Introduction . 179
9.2 What Is Software Engineering? . 182
9.3 Challenges in Software Engineering . 185
9.4 Software Processes and Life Cycles . 186

9.4.1 Waterfall Life Cycle . 187
9.4.2 Spiral Life Cycles . 188
9.4.3 Rational Unified Process . 189
9.4.4 Agile Development . 190

xiv Contents

9.5 Activities in Waterfall Life Cycle . 192
9.5.1 Business Requirements Definition 192
9.5.2 Specification of System Requirements 193
9.5.3 Design . 194
9.5.4 Implementation . 194
9.5.5 Software Testing . 195
9.5.6 Maintenance . 196

9.6 Software Inspections . 198
9.7 Software Project Management . 198
9.8 CMMI Maturity Model . 199
9.9 Formal Methods . 200
9.10 Review Questions . 201
9.11 Summary . 202

10 Overview of Operating Systems . 203
10.1 Introduction . 203
10.2 Fundamentals of Operating Systems . 205
10.3 IBM OS/360 and MVS . 207
10.4 VM . 208
10.5 VMS . 209
10.6 UNIX . 210
10.7 MS/DOS . 211
10.8 Microsoft Windows . 212
10.9 Mobile Operating Systems . 213
10.10 Review Questions . 214
10.11 Summary . 214

11 Overview of Databases . 217
11.1 Introduction . 217
11.2 Hierarchical and Network Models . 218
11.3 The Relational Model . 219
11.4 Structured Query Language (SQL) . 222
11.5 Oracle Database . 223
11.6 Review Questions . 224
11.7 Summary . 224

12 Overview of Telecommunications . 227
12.1 Introduction . 227
12.2 AXE System . 229
12.3 Development of Mobile Phone Standards 230
12.4 Development of Mobile Phone Technology 232
12.5 The Iridium Satellite System . 234
12.6 Review Questions . 236
12.7 Summary . 236

Contents xv

13 The Internet and World Wide Web . 239
13.1 Introduction . 239
13.2 The ARPANET . 241
13.3 TCP/IP . 242
13.4 Birth of the Internet . 244
13.5 Birth of the World Wide Web . 244
13.6 Applications of the World Wide Web 246
13.7 Dot-Com Companies . 247

13.7.1 Dot-Com Failures . 248
13.7.2 Business Models . 250
13.7.3 Bubble and Burst . 250

13.8 E-Commerce Security . 253
13.9 Internet of Things . 254
13.10 Internet of Money and Bitcoin . 255
13.11 Review Questions . 256
13.12 Summary . 256

14 The Smartphone and Social Media . 257
14.1 Introduction . 257
14.2 Evolution of the Smartphone . 258
14.3 The Facebook Revolution . 259
14.4 The Tweet . 261
14.5 Social Media and Fake News . 263
14.6 Review Questions . 264
14.7 Summary . 265

15 Legal Aspects of Computing . 267
15.1 Introduction . 267
15.2 Intellectual Property . 268

15.2.1 Patent Law . 269
15.2.2 Copyright Law . 269
15.2.3 Trademarks . 270

15.3 Hacking and Computer Security . 271
15.4 Computer Crime . 273
15.5 Software Licensing . 274

15.5.1 Software Licensing and Failure 275
15.6 Bespoke Software Development . 276
15.7 Dark Side of the Internet . 277
15.8 Ecommerce and the Law . 277
15.9 Free Speech and Censorship . 278
15.10 Computer Privacy in the Workplace . 279
15.11 Review Questions . 280
15.12 Summary . 280

xvi Contents

16 Ethics and Professional Responsibility . 281
16.1 Introduction . 281
16.2 Business Ethics . 282
16.3 What Is Computer Ethics? . 283

16.3.1 Ethics and Artificial Intelligence 285
16.3.2 Robots and Ethics . 286

16.4 Parnas on Professional Responsibility 287
16.5 ACM Code of Ethics and Professional Conduct 288
16.6 British Computer Society Code of Conduct 289
16.7 Review Questions . 290
16.8 Summary . 290

17 Innovation in the Computing Field . 293
17.1 Introduction . 293
17.2 Distributed Systems . 294
17.3 Service-Oriented Architecture . 296
17.4 Software as a Service . 296
17.5 Cloud Computing . 297
17.6 Embedded Systems . 298
17.7 Software Engineering and Innovation 299
17.8 Review Questions . 300
17.9 Summary . 300

18 Epilogue . 301

Glossary . 305

References . 313

Index . 317

Contents xvii

List of Figures

Fig. 1.1 Vannevar Bush with the Differential Analyser 3
Fig. 1.2 Replica of transistor. Courtesy of Lucent Bell Labs 5
Fig. 1.3 Von Neumann architecture . 8
Fig. 1.4 Fetch/Execute cycle . 8
Fig. 2.1 Wilhelm Gottfried Leibniz . 13
Fig. 2.2 Replica of Step Reckoner at Technische Sammlungen

Museum, Dresden . 13
Fig. 2.3 Decimal to binary conversion . 15
Fig. 2.4 Charles Babbage . 17
Fig. 2.5 Difference Engine No. 2. Photo Public Domain 18
Fig. 2.6 Lady Ada Lovelace. 20
Fig. 2.7 George Boole . 21
Fig. 2.8 Binary AND Operation. 24
Fig. 2.9 Binary OR Operation . 24
Fig. 2.10 NOT Operation. 24
Fig. 2.11 Half-Adder . 24
Fig. 2.12 Claude Shannon . 26
Fig. 3.1 Howard Aiken . 31
Fig. 3.2 Harvard Mark I (IBM ASCC). Courtesy of International

Business Machines Corporation, © International Business
Machines Corporation. 31

Fig. 3.3 John Atanasoff with components of ABC. 33
Fig. 3.4 Replica of ABC computer. Courtesy of Iowa State University . . 33
Fig. 3.5 Setting the switches on ENIAC’s Function Tables.

U.S. Army Photo . 35
Fig. 3.6 Replacing a valve on ENIAC. U.S. Army Photo 36
Fig. 3.7 The EDVAC Computer. U.S. Army Photo 37
Fig. 3.8 Tommy Flowers . 38
Fig. 3.9 Colossus.Mark 2. Photo Courtesy of UK Government 39
Fig. 3.10 Konrad Zuse. Courtesy of Horst Zuse, Berlin. 40

xix

Fig. 3.11 Zuse and the Reconstructed Z3. Courtesy
of Horst Zuse, Berlin . 42

Fig. 3.12 Replica of the Manchester Baby. Courtesy
of Tommy Thomas . 43

Fig. 3.13 The Manchester Mark 1 Computer. Courtesy of the University
of Manchester . 44

Fig. 3.14 SAGE. Photo Courtesy of Steve Jurvetson 46
Fig. 3.15 William Shockley. Courtesy Chuck Painter, Stanford News

Service . 48
Fig. 3.16 Jack Kilby c. 1958. Courtesy of Texas Instruments 49
Fig. 3.17 First integrated circuit. Courtesy of Texas Instruments 50
Fig. 3.18 The DEC PDP-8/e . 53
Fig. 3.19 HP Palo Alto Garage. Birthplace of Silicon Valley.

Courtesy of HP. 54
Fig. 3.20 IBM System/360. Courtesy of International Business

Machines Corporation, © International Business Machines
Corporation. 56

Fig. 3.21 PDP-11 minicomputer. 58
Fig. 3.22 Amdahl 5890. Courtesy of Robert Broughton, University

of Newcastle . 59
Fig. 3.23 Intel 4004 microprocessor. 60
Fig. 3.24 Xerox Alto . 63
Fig. 3.25 MITS Altair Computer. Photo Public Domain 63
Fig. 3.26 Apple II Computer. Photo Public Domain 65
Fig. 3.27 Commodore PET 2001 Home Computer 66
Fig. 3.28 The Atari 800 Home Computer . 67
Fig. 3.29 Commodore 64 Home Computer . 67
Fig. 3.30 Apple Macintosh Computer. Photo Public Domain. 68
Fig. 3.31 Don Estridge. Courtesy of International Business

Machines Corporation, © International Business
Machines Corporation. 70

Fig. 3.32 IBM Personal Computer. Courtesy of International
Business Machines Corporation, © International Business
Machines Corporation. 71

Fig. 4.1 Bertrand Russell . 82
Fig. 4.2 Reflexive relation . 85
Fig. 4.3 Symmetric relation . 86
Fig. 4.4 Transitive relation . 86
Fig. 4.5 Partitions of A . 87
Fig. 4.6 Composition of relations S o R . 88
Fig. 4.7 Edgar Codd . 90
Fig. 4.8 PART relation. 91
Fig. 4.9 Domain and range of a partial function 92
Fig. 4.10 Injective and surjective functions . 94

xx List of Figures

Fig. 4.11 Bijective function (one to one and onto). 94
Fig. 4.12 Pierre de Fermat . 97
Fig. 4.13 Triangular numbers. 98
Fig. 4.14 Marin Mersenne . 99
Fig. 4.15 Deterministic FSM . 101
Fig. 4.16 Königsberg seven bridges problem . 103
Fig. 4.17 Königsberg graph . 103
Fig. 5.1 Euclid of Alexandria. 110
Fig. 5.2 Primes between 1 and 50 . 112
Fig. 5.3 Caesar cipher . 113
Fig. 5.4 Insertion sort example. 114
Fig. 5.5 Merge sort example . 116
Fig. 5.6 Sorted binary tree . 118
Fig. 5.7 Symmetric key cryptosystem . 119
Fig. 5.8 Public key cryptosystem . 120
Fig. 6.1 Zeno of Citium . 129
Fig. 6.2 Gottlob Frege . 131
Fig. 6.3 Gerhard Gentzen. 140
Fig. 7.1 FreeDOS text editing . 148
Fig. 7.2 Microsoft Windows 3.11 (1993). Used with permission

from Microsoft . 150
Fig. 8.1 Grace Murray and UNIVAC. 161
Fig. 9.1 Standish report––results of 1995 and 2009 survey 181
Fig. 9.2 Standish 1998 report––estimation accuracy. 185
Fig. 9.3 Waterfall versus life cycle model . 188
Fig. 9.4 SPIRAL life cycle model. Public domain 189
Fig. 9.5 Rational unified process . 190
Fig. 9.6 Software process improvement . 200
Fig. 10.1 Process state transitions . 206
Fig. 10.2 A simple deadlock . 207
Fig. 10.3 Virtual machine operating system . 209
Fig. 10.4 Android 6.0 . 213
Fig. 11.1 Simple part/supplier––network model . 219
Fig. 11.2 Simple part/supplier––hierarchical model 219
Fig. 11.3 PART relation. 221
Fig. 11.4 Domains versus attributes . 222
Fig. 12.1 AXE system. Courtesy of Ericsson . 229
Fig. 12.2 Frequency reuse in cellular networks . 231
Fig. 12.3 Martin Cooper re-enacts DynaTAC call 233
Fig. 12.4 Iridium system. Courtesy of Iridium Satellite LLC 235
Fig. 13.1 Vannevar Bush . 240
Fig. 13.2 Dow Jones (1995–2002) . 252
Fig. 13.3 NASDAQ (1995–2002) . 252
Fig. 14.1 Apple iPhone 4. 259

List of Figures xxi

Fig. 14.2 Mark Zuckerberg . 260
Fig. 14.3 Jack Dorsey at the 2012 time 100 Gala 262
Fig. 17.1 A distributed system . 295
Fig. 17.2 Service-oriented architecture . 296
Fig. 17.3 Cloud computing. Creative commons . 298
Fig. 17.4 Example of an embedded system . 299

xxii List of Figures

List of Tables

Table 1.1 Von Neumann architecture . 9
Table 2.1 Binary number system . 15
Table 2.2 Analytic Engine . 18
Table 4.1 Properties of set operations. 82
Table 4.2 Properties of set operations. 101
Table 5.1 Notation in cryptography . 118
Table 6.1 Types of syllogistic premises . 125
Table 6.2 Forms of syllogistic premises . 126
Table 6.3 Table: Fallacies in arguments . 128
Table 6.4 Truth table for formula W. 132
Table 6.5 Conjunction . 134
Table 6.6 Disjunction . 134
Table 6.7 Implication . 134
Table 6.8 Equivalence . 134
Table 6.9 Not operation . 134
Table 6.10 Truth table for W(P, Q, R) . 134
Table 6.11 Proof of argument with a truth table. 137
Table 6.12 Rules of semantic tableaux . 138
Table 6.13 Extra rules of semantic tableaux (for predicate Calculus) 144
Table 7.1 Eight golden rules of interface design. 151
Table 7.2 Software development life cycle (including usability). 152
Table 7.3 UCD principles. 152
Table 8.1 Object-oriented paradigm . 167
Table 8.2 Programming language semantics . 176
Table 13.1 TCP layers . 243
Table 13.2 Features of World Wide Web. 245
Table 13.3 Characteristics of e-commerce . 247
Table 13.4 Characteristics of business models . 250

xxiii

Table 16.1 Ten commandments on computer ethics 284
Table 16.2 Professional responsibilities of software engineers 288
Table 16.3 ACM code of conduct (general obligations) 289
Table 16.4 BCS code of conduct . 290

xxiv List of Tables

Chapter 1
What Is a Computer?

Key Topics

Analog computers
Digital computers
Vacuum tubes
Transistors
Integrated circuits
Von Neumann architecture
Generation of computers
Hardware
Software

1.1 Introduction

It is difficult to think of western society today without modern technology. We have
witnessed in recent decades a proliferation of high-tech computers, mobile phones,
text messaging, the Internet, the World Wide Web and social media. Software is
pervasive and it is an integral part of automobiles, airplanes, televisions and mobile
communication. The pace of change is relentless, and communication today is
instantaneous with technologies such as Skype, Twitter and WhatsApp.

Today, people may book flights over the World Wide Web as well as keeping in
contact with friends and family members around the world. In previous generations,
communication involved writing letters that often took months to reach the recip-
ient. However, today’s technology has transformed the modern world into a global
village, and the modern citizen may make video calls over the Internet or post
pictures and videos on social media sites such as Facebook and Twitter. The World
Wide Web allows business to compete in a global market.

A computer is a programmable electronic device that can process, store and
retrieve data. It processes data according to a set of instructions or program. All
computers consist of two basic parts namely hardware and software. The hardware
is the physical part of the machine, and the components of a digital computer
include memory for short-term storage of data or instructions; an arithmetic/logic

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_1&domain=pdf

unit for carrying out arithmetic and logical operations; a control unit responsible for
the execution of computer instructions in memory; and peripherals that handle the
input and output operations. Software is a set of instructions that tells the computer
what to do.

The original meaning of the word ‘computer’ referred to someone who carried
out calculations rather than an actual machine. The early digital computers built in
the 1940s and 1950s were enormous machines consisting of thousands of vacuum
tubes. They typically filled a large room but their computational power was a
fraction of the personal computers and mobile devices used today.

There are two distinct families of computing devices namely digital computers
and the historical analog computer. The earliest computers were analog not digital,
and these two types of computer operate on quite different principles.

The computation in a digital computer is based on binary digits: i.e. ‘0’ and ‘1’.
Electronic circuits are used to represent binary numbers, with the state of an
electrical switch (i.e. ‘on’ or ‘off’) representing a binary digit internally within a
computer.

A digital computer is a sequential device that generally operates on data one step
at a time, and the earliest digital computers were developed in the 1940s. The data
are represented in binary format, and a single transistor (initially bulky vacuum
tubes) is used to represent a binary digit. Several transistors are required to store
larger numbers.

An analog computer operates in a completely different way to a digital com-
puter. The representation of data in an analog computer reflects the properties of the
data that are being modelled. For example, data and numbers may be represented by
physical quantities such as electric voltage, whereas a stream of binary digits is used
to represent them in a digital computer.

1.2 Analog Computers

James Thompson (who was the brother of the physicist Lord Kelvin) did early
foundational work on analog computation in the nineteenth century. He invented a
wheel-and-disk integrator, which was used in mechanical analog devices, and he
worked with Kelvin to construct a device to perform the integration of a product of
two functions. Kelvin later described a general-purpose analog machine (he did not
build it) for integrating linear differential equations. He built a tide predicting
analog computer that remained in use at the Port of Liverpool up to the 1960s.

The operations in an analog computer are performed in parallel, and they are
useful in simulating dynamic systems. They have been applied to flight simulation,
nuclear power plants and industrial chemical processes.

Vannevar Bush at the Massachusetts Institute of Technology developed the first
large-scale general-purpose mechanical analog computer. Bush’s Differential
Analyser (Fig. 1.1) was a mechanical analog computer designed to solve
sixth-order differential equations by integration, using wheel-and-disk mechanisms

2 1 What Is a Computer?

to perform the integration. The mechanisation allowed integration and differential
equations problems to be solved more rapidly. The machine took up the space of a
large table in a room and weighed about 100 tonnes.

It contained wheels, disks, shafts and gears to perform the calculations. It
required a considerable set-up time by technicians to solve an equation. It contained
150 motors and miles of wires connecting relays and vacuum tubes.

Data representation in an analog computer is compact, but it may be subject to
corruption with noise. A single capacitor can represent one continuous variable in
an analog computer. Analog computers were replaced by digital computers shortly
after the Second World War.

1.3 Digital Computers

Early digital computers used vacuum tubes to store binary information, and a
vacuum tube may represent the binary value ‘0’ or ‘1’. These tubes were large and
bulky and generated a significant amount of heat. Air conditioning was required to
cool the machine, and there were problems with the reliability of the tubes.

Shockley and others invented the transistor in the late 1940s, and it replaced
vacuum tubes from the late 1950s onwards. Transistors are small and consume very
little power, and the resulting machines were smaller, faster and more reliable.

Integrated circuits were introduced in the early 1960s, and a massive amount of
computational power could now be placed on a very small chip. Integrated circuits
are small and consume very little power, and may be mass-produced to a very
high-quality standard. However, integrated circuits are difficult to modify or repair,
and are nearly always replaced on failure.

Fig. 1.1 Vannevar Bush with
the Differential Analyser

1.2 Analog Computers 3

The fundamental architecture of a computer has remained basically the same
since von Neumann and others proposed it in the mid-1940s. It includes a central
processing unit which includes the control unit and the arithmetic unit, an input and
output unit and memory.

1.3.1 Vacuum Tubes

A vacuum tube is a device that relies on the flow of an electric current through a
vacuum. Vacuum tubes (thermionic valves) were widely used in electronic devices
such as televisions, radios and computers until the invention of the transistor.

The basic idea of a vacuum tube is that the current passes through the filament,
which then heats it up so that it gives off electrons. The electrons are negatively
charged and are attracted to the small positive plate (or anode) within the tube.
A unidirectional flow is thus established between the filament and the plate.
Thomas Edison had observed this while investigating the reason for breakage of
lamp filaments. He noted an uneven blackening (darkest near one terminal of the
filament) of the bulbs in his incandescent lamps, and noted that current flows from
the lamp’s filament and a plate within the vacuum.

The first generation of computers used several thousand bulky vacuum tubes,
with several racks of vacuum tubes taking up the space of a large room. The
vacuum tube used in the early computers was a three-terminal device, and it con-
sisted of a cathode, a grid and a plate. It was used to represent one of two binary
states: i.e. the binary value ‘0’ or ‘1’.

The filament of a vacuum tube becomes unstable over time. In addition, if air
leaks into the tube then oxygen will react with the hot filament and damage it. The
size and unreliability of vacuum tubes motivated research into more compact and
reliable technologies. This led to the invention of the transistor in the late 1940s.

The first generation of digital computers all used vacuum tubes: e.g. the
Atanasoff–Berry Computer (ABC) developed at the University of Iowa in 1942;
Colossus developed at Bletchley Park in 1944; and ENIAC developed in the United
States in the mid-1940s.

1.3.2 Transistors

The transistor is a fundamental building block in modern electronic systems, and its
invention revolutionised the field of electronics. It was smaller, cheaper and more
reliable than the existing vacuum tubes.

The transistor is a three-terminal, solid-state electronic device. It can control
electric current or voltage between two of the terminals by applying an electric
current or voltage to the third terminal. The three-terminal transistor enables an
electric switch to be made which can be controlled by another electrical switch.

4 1 What Is a Computer?

Complicated logic circuits may be built up by cascading these switches (switches
that control switches that control switches, and so on).

These logic circuits may be built very compactly on a silicon chip with a density
of over a million transistors per square centimetre. The switches may be turned on
and off very rapidly (e.g. every 0.000000001 s). These electronic chips are at the
heart of modern electronic devices.

The transistor (Fig. 1.2) was developed at Bell Labs after the Second World
War. The goal of the research was to find a solid-state alternative to vacuum tubes,
as this technology was too bulky and unreliable. Three Bell Labs inventors
(Shockley, Bardeen and Brattain) were awarded the Nobel Prize in physics in 1956
in recognition of their invention of the transistor.

William Shockley (Fig. 3.14) was involved in radar research and anti-submarine
operations research during the Second World War, and after the war he led the Bell
Labs research group (that included Bardeen and Brattain) that aimed to find a
solid-state alternative to the glass-based vacuum tubes.

Bardeen and Brattain succeeded in creating a point contact transistor in 1947
independently of Shockley who was working on a junction-based transistor.
Shockley believed that the points contact transistor would not be commercially
viable, and his junction point transistor was announced in 1951.

Shockley formed Shockley Semiconductor Inc. (part of Beckman Instruments)
in 1955. The second generation of computers used transistors instead of vacuum
tubes. The University of Manchester’s experimental Transistor Computer was one
of the earliest transistor computers. The prototype machine appeared in 1953 and
the full-size version was commissioned in 1955. The invention of the transistor is
discussed in more detail in Chap. 3.

Fig. 1.2 Replica of
transistor. Courtesy of Lucent
Bell Labs

1.3 Digital Computers 5

1.3.3 Integrated Circuits

Jack Kilby (Fig. 3.16) of Texas Instruments invented the integrated circuit in 1958.
His invention used a wafer of germanium, and Robert Noyce of Fairchild
Semiconductors did subsequent work on silicon-based integrated circuits. The
integrated circuit was an effective solution to the problem of building a circuit with
many components, and the Nobel Prize in Physics was awarded to Kirby in 2000
for his contributions to its invention.

An integrated circuit consists of a set of electronic circuits on a small chip of
semiconductor material, and it is much smaller than a circuit made from indepen-
dent components. Integrated circuits today are extremely compact, and may contain
billions of transistors and other electronic components in a tiny area. The width of
each conducting line has got smaller and smaller over the years due to advances in
technology, and it is now measured is in tens of nanometres.

The number of transistors per unit area has been doubling (roughly) every 1–
2 years over the last 30 years. This amazing progress in circuit fabrication is known
as Moore’s law after Gordon Moore (one of the founders of Intel) who formulated
the law in the mid-1960s (O’Regan 2013).

Kilby was designing micro-modules for the military and this involved con-
necting many germanium1 wafers of discrete components together by stacking each
wafer on top of one another. The connections were made by running wires up the
sides of the wafers.

Kilby saw this process as unnecessarily complicated and realised that if a piece
of germanium was engineered properly, it could act as many components simul-
taneously. That is, instead of making transistors one-by-one, several transistors
could be made at the same time on the same piece of semiconductor. In other
words, transistors and other electric components such as resistors, capacitors and
diodes can be made by the same process with the same materials.

This idea led to the birth of the first integrated circuit and its development
involved miniaturising transistors and placing them on silicon chips called semi-
conductors. The use of semiconductors led to third generation computers, with a
major increase in speed and efficiency.

Users interacted with third generation computers through keyboards and mon-
itors and interfaced with an operating system, which allowed the device to run
several applications at a time with a central program that monitored the memory.
Computers became accessible to a wider audience, as they were smaller and
cheaper than their predecessors. The invention of the integrated circuit is discussed
in more detail in Chap. 3.

1Germanium is an important semiconductor material used in transistors and other electronic
devices.

6 1 What Is a Computer?

1.3.4 Microprocessor S

The Intel P4004 microprocessor (Fig. 3.20) was the world’s first microprocessor,
and it was released in 1971. It was the first semiconductor device that provided, at
the chip level, the functions of a computer.

The invention of the microprocessor happened by accident rather than design.
Busicom, a Japanese company, requested Intel to design a set of integrated circuits
for its new family of high-performance programmable calculators. Ted Hoff, an
Intel engineer, studied Busicom’s design and rejected it as unwieldy. He proposed a
more elegant solution requiring just four integrated circuits (Busicom’s required 12
integrated circuits), and his design included a chip that was a general-purpose logic
device that derived its application instructions from the semiconductor memory.
This was the Intel 4004 microprocessor.

It provided the basic building blocks that are used in today’s microcomputers,
including the arithmetic and logic unit and the control unit. The 4-bit Intel 4004 ran
at a clock speed of 108 kHz and contained 2300 transistors. It processed data in
four bits, but its instructions were eight bits long. It could address up to 1 Kb of
program memory and up to 4 Kb of data memory.

Gary Kildall of Digital Research was one of the early people to recognise the
potential of a microprocessor as a computer. He worked as a consultant with Intel,
and he began writing experimental programs for the Intel 4004 microprocessor. He
later developed the CP/M operating system for the Intel 8080 chip, and he set up
Digital Research to commercialise the operating system.

The development of the microprocessor led to the fourth generation of com-
puters with thousands of integrated circuits placed onto a single silicon
chip. A single chip could now contain all the components of a computer from the
CPU and memory to input and output controls. It could fit in the palm of the hand
whereas first generation of computers filled an entire room. The invention of the
microprocessor is discussed in more detail in Chap. 3.

1.4 Von Neumann Architecture

The earliest computers were fixed program machines that were designed to do a
specific task. This proved to be a major limitation as it meant that a complex manual
rewiring process was required to enable the machine to solve a different problem.

The computers used today are general-purpose machines designed to allow a
variety of programs to be run on the machine. Von Neumann and others (von
Neumann 1945) described the fundamental architecture underlying the computers
used today in the late 1940s. It is known as von Neumann architecture (Fig. 1.3).

The von Neumann architecture arose on work done by von Neumann, Eckert,
Mauchly and others on the design of the EDVAC computer (which was the

1.3 Digital Computers 7

successor to ENIAC computer). Von Neumann’s draft report on EDVAC (von
Neumann 1945) described the new architecture (Table 1.1).

The architecture led to the birth of stored program computers, where a single
store is used for both machine instructions and data. Its key components are as
follows.

The key approach to building a general-purpose device according to von
Neumann was in its ability to store not only its data and the intermediate results of
computation, but also to store the instructions or commands for the computation.
The computer instructions can be part of the hardware for specialised machines but
for general-purpose machines, the computer instructions must be as changeable as
the data that are acted upon by the instructions. His insight was to recognise that
both the machine instructions and data could be stored in the same memory.

The key advantage of the von Neumann architecture over the existing approach
was that it was much simpler to reconfigure a computer to perform a different task.
All that was required was to enter new machine instructions in computer memory
rather than physically rewiring a machine as was required with ENIAC. The lim-
itations of von Neumann architecture include that it is limited to sequential pro-
cessing and not very suitable for parallel processing.

Fig. 1.3 Von Neumann
architecture

Memory

CPU
Accumulator

Fetch Execute

Decode (Instructions / Data)

Fig. 1.4 Fetch/Execute cycle

8 1 What Is a Computer?

1.5 Hardware and Software

Hardware is the physical part of the machine. It is tangible and may be seen or
touched, and includes punched cards, vacuum tubes, transistors and circuit boards,
integrated circuits and microprocessors. The hardware of a personal computer
includes a keyboard, network cards, a mouse, a DVD drive, hard disk drive, printers
and scanners and so on.

Software is intangible and consists of a set of instructions that tells the computer
what to do. It is an intellectual creation of a programmer (or a team of
programmers).

Operating system software manages the computer hardware and resources, and
acts as an intermediary between the application programs and the computer
hardware.

Application software refers to software programs that provide functionality for
users to exploit the power of the computer to perform useful tasks such as business
applications including spreadsheets and accountancy packages, financial applica-
tions, editors, compilers for programming languages, computer games, social media
and so on.

1.6 Review Questions

1. Explain the difference between analog and digital computers.
2. Explain the difference between hardware and software.
3. What is a microprocessor?

Table 1.1 Von Neumann architecture

Component Description

Arithmetic
Unit

The arithmetic unit can perform basic arithmetic operations

Control Unit The program counter contains the address of the next instruction to be
executed. This instruction is fetched from memory and executed. This is the
basic fetch and execute cycle (Fig. 1.4)
The control unit contains a built-in set of machine instructions

Input–Output
Unit

The input and output unit allows the computer to interact with the outside
world

Memory The one-dimensional memory stores all program instructions and data. These
are usually kept in different areas of memory
The memory may be written to or read from: i.e. it is random access memory
(RAM)
The program instructions are binary values, and the control unit decodes the
binary value to determine which instruction to execute

1.5 Hardware and Software 9

4. Explain the difference between vacuum tubes, transistors and integrated
circuits.

5. Explain the von Neumann architecture.
6. What are the advantages and limitations of the von Neumann architecture?
7. Explain the difference between a fixed program machine and a stored

program machine.

1.7 Summary

A computer is a programmable electronic device that can process, store and retrieve
data. It processes data according to a set of instructions or program. All computers
consist of two basic parts namely the hardware and software. The hardware is the
physical part of the machine, whereas software is intangible and is the set of
instructions that tells the computer what to do.

There are two distinct families of computing devices namely digital computers
and the historical analog computer. These two types of computer operate on quite
different principles. The earliest digital computers were built in the 1940s, and these
were large machines consisting of thousands of vacuum tubes. However, their
computational power was a fraction of what is available today.

A digital computer is a sequential device that generally operates on data one step
at a time. The data are represented in binary format, and a single transistor in a
digital computer can store only two states: i.e. on and off. Several transistors are
required to store larger numbers.

The representation of data in an analog computer reflects the properties of the
data that is being modelled. Data and numbers may be represented by physical
quantities such as electric voltage, whereas a stream of binary digits represents the
data in a digital computer.

Von Neumann architecture is the fundamental architecture used on digital
computers, and a single store is used for both machine instructions and data. Its
introduction made it much easier to reconfigure a computer to perform a different
task. All that was required was to enter new machine instructions in computer
memory rather than physically rewiring a machine as was required with ENIAC.

10 1 What Is a Computer?

Chapter 2
Foundations of Computing

Key Topics

Leibniz
Binary Numbers
Step Reckoner
Babbage
Difference Engine
Analytic Engine
Lovelace
Boole
Shannon
Switching Circuits

2.1 Introduction

This chapter considers important foundational work done by Wilhelm Leibniz,
Charles Babbage, George Boole, Lady Ada Lovelace and Claude Shannon. Leibniz
was a seventeenth-century German mathematician, philosopher and inventor, and
he is recognised (with Isaac Newton) as the inventor of Calculus. He developed the
Step Reckoner calculating machine that could perform all four basic arithmetic
operations (i.e. addition, subtraction, multiplication and division), and he also
invented the binary number system (which is used extensively in the computer
field).

Boole and Babbage are considered grandfathers of the computing field, with
Babbage’s Analytic Engine providing a vision of a mechanical computer, and
Boole’s logic providing the foundation for modern digital computers.

Babbage was a nineteenth-century scientist and inventor who did pioneering
work on calculating machines. He invented the Difference Engine (a sophisticated
calculator that could be used to produce mathematical tables), and he also designed
the Analytic Engine (the world’s first mechanical computer). The design of the
Analytic Engine included a processor, memory and a way to input information and
output results.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_2&domain=pdf

Lady Ada Lovelace was introduced into Babbage’s ideas on the Analytic Engine
at a dinner party. She was fascinated and predicted that such a machine could be
used to compose music, produce graphics, as well as solving mathematical and
scientific problems. She explained how the Analytic Engine could be programmed,
and she wrote what is considered the first computer program.

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, probability theory and logic. Boole’s logic provides
the foundation for digital computers.

Shannon was the first person to apply Boole’s logic to switching theory, and he
showed that Boole’s logic could simplify the design of circuits and telephone
routing switches. It provides the perfect mathematical model for switching theory
and for the subsequent design of digital circuits and computers.

2.2 Step Reckoner Calculating Machine

Leibniz (Fig. 2.1) was a German philosopher, mathematician and inventor in the
field of mechanical calculators. He developed the binary number system used in
digital computers, and he invented the Calculus independently of Sir Isaac Newton.
He became familiar with Pascal’s calculating machine, the Pascaline, while in Paris
in the early 1670s. He recognised its limitations as the machine could perform
addition and subtraction operations only.

He designed and developed a calculating machine that could perform addition,
subtraction, multiplication, division and the extraction of roots. He commenced
work on the machine in 1672, and the machine was completed in 1694. It was the
first calculator that could perform all four arithmetic operations, and Leibniz’s
machine was called the Step Reckoner (Fig. 2.2). It allowed the common arithmetic
operations to be carried out mechanically.

The operating mechanism used in his calculating machine was based on a
counting device called the stepped cylinder or ‘Leibniz wheel’. This mechanism
allowed a gear to represent a single decimal digit from zero to nine in just one
revolution, and this remained the dominant approach to the design of calculating
machines for the next 200 years. It was essentially a counting device consisting of a
set of wheels that were used in calculation. The Step Reckoner consisted of an
accumulator which could hold 16 decimal digits and an 8-digit input section. The
eight dials at the front of the machine set the operand number, which was then
employed in the calculation.

The machine performed multiplication by repeated addition and division by
repeated subtraction. The basic operation is to add or subtract the operand from the
accumulator as many times as desired. The machine could add or subtract an 8-digit
number to the 16-digit accumulator to form a 16-digit result. It could multiply two
8-digit numbers to give a 16-digit result, and it could divide a 16-bit number by an

12 2 Foundations of Computing

Fig. 2.1 Wilhelm Gottfried Leibniz

Fig. 2.2 Replica of Step Reckoner at Technische Sammlungen Museum, Dresden

2.2 Step Reckoner Calculating Machine 13

8-digit number. Addition and subtraction are performed in a single step, with the
operating crank turned in the opposite direction for subtraction. The result is stored
in the accumulator.

2.3 Binary Numbers

Arithmetic has traditionally been done using the decimal notation1, and Leibniz was
one of the first to recognise the potential of the binary number system. This system
uses just two digits namely ‘0’ and ‘1’, with the number two represented by 10; the
number four by 100; and so on. Leibniz described the binary system in Explication
de l’Arithmétique Binaire (Leibniz 1703), which was published in 1703. A table of
values for the first fifteen binary numbers is given in Table 2.1.

Leibniz’s 1703 paper describes how binary numbers may be added, subtracted,
multiplied and divided, and he was an advocate of their use. The key advantage of
the use of binary notation is in digital computers, where a binary digit may be
implemented by an on/off switch, with the digit 1 representing that the switch is on,
and the digit 0 representing that the switch is off.

The use of binary arithmetic allows more complex mathematical operations to be
performed by relay circuits, and Boole’s Logic (described in a later section) is the
perfect model for simplifying such circuits, and is the foundation underlying digital
computing.

The binary number system (base 2) is a positional number system, which uses
two binary digits 0 and 1, and an example binary number is 1001.012 which
represents 1 � 23 + 0 � 22 + 0 � 21 + 1 � 20 + 0 � 2−1 + 1 � 2−2 = 1 �
23 + 1 � 20 + 1 � 2−2 = 8 + 1 + 0.25 = 9.25.

The decimal system (base 10) is more familiar for everyday use, and there are
algorithms to convert numbers from decimal to binary and vice versa. For example,
to convert the decimal number 25 to its binary representation 110012, we proceed as
follows (Fig. 2.3).

The base 2 is written on the left and the number to be converted to binary is
placed in the first column. At each stage in the conversion, the number in the first
column is divided by 2 to form the quotient and remainder, which are then placed
on the next row. For the first step, the quotient when 25 is divided by 2 is 12 and the
remainder is 1. The process continues until the quotient is 0, and the binary rep-
resentation result is then obtained by reading the second column from the bottom
up. Thus, we see that the binary representation of 25 is 110012.

Similarly, there are algorithms to convert decimal fractions to binary represen-
tation (to a defined number of binary digits as the representation may not terminate),

1The sexagesimal (or base-60) system was employed by the Babylonians c. 2000 BC. Indian and
Arabic mathematicians developed the decimal system between 800 and 900 AD.

14 2 Foundations of Computing

and the conversion of a number that contains an integer part and a fractional part
involves converting each part separately and then combining them.

The octal (base 8) and hexadecimal (base 16) are often used in computing, as the
bases 2, 8 and 16 are related bases and easy to convert between, as to convert
between binary and octal involves grouping the bits into groups of three on either
side of the point. Each set of three bits corresponds to one digit in the octal
representation. Similarly, the conversion between binary and hexadecimal involves
grouping into sets of four digits on either side of the point. The conversion from
octal to binary or hexadecimal to binary is equally simple, and involves replacing
the octal (or hexadecimal) digit with the 3-bit (or 4-bit) binary representation.

Numbers are represented in a digital computer as sequences of bits of fixed
length (e.g. 16 bits, 32 bits). There is a difference in the way in which integers and
real numbers are represented, with the representation of real numbers being more
complicated.

An integer number is represented by a sequence (usually 2 or 4) bytes where
each byte is eight bits. For example, a 2-byte integer has 16 bits with the first bit
used as the sign bit (the sign is 1 for negative numbers and 0 for positive integers),
and the remaining 15 bits represent the number. This means that two bytes may be
used to represent all integer numbers between −32,768 and 32,767. A positive
number is represented by the normal binary representation discussed earlier,
whereas a negative number is represented using 2’s complement of the original
number (i.e. 0 changes to 1 and 1 changes to 0 and the sign bit is 1). All the
standard arithmetic operations may then be carried out (using modulo 2 arithmetic).

The representation of floating-point real numbers is more complicated, and a real
number is represented to a fixed number of significant digits (the significand) and

Table 2.1 Binary number system

Binary Dec. Binary Dec. Binary Dec. Binary Dec.

0000 0 0100 4 1000 8 1100 12

0001 1 0101 5 1001 9 1101 13

0010 2 0110 6 1010 10 1110 14

0011 3 0111 7 1011 11 1111 15

2 25

12
6
3

1

0

0
0

1

1

1

Fig. 2.3 Decimal to binary
conversion

2.3 Binary Numbers 15

scaled using an exponent in some base (usually 2). That is, the number is repre-
sented (approximated as):

significand� baseexponent

The significand (also called mantissa) and exponent have a sign bit. For
example, in simple floating-point representation (4 bytes), the mantissa is generally
24 bits and the exponent 8 bits, whereas for double precision (8 bytes) the mantissa
is generally 53 bits and the exponent 11 bits. There is an IEEE standard for
floating-point numbers (IEEE 754).

2.4 The Difference Engine

Babbage (Fig. 2.4) is considered (along with Boole) to be one of the grandfathers of
the computing field. He made contributions to several areas including mathematics,
statistics, astronomy, calculating machines, philosophy, railways and lighthouses.
He founded the British Statistical Society and the Royal Astronomical Society.

Babbage was interested in accurate mathematical tables for scientific work.
However, there was a high error rate in the existing tables due to human error
introduced during calculation. He became interested in finding a mechanical
method to perform calculation to eliminate the errors introduced by humans. He
planned to develop a more advanced machine than the Pascaline or the Step
Reckoner, and his goal was to develop a machine that could compute polynomial
functions.

He designed the Difference Engine (No. 1) in 1821 for the production of
mathematical tables. This was essentially a mechanical calculator (analogous to
modern electronic calculators), and it was designed to compute polynomial func-
tions of degree 4. It could also compute logarithmic and trigonometric functions
such as sine or cosine (as these may be approximated by polynomials).2

The accurate approximation of trigonometric, exponential and logarithmic
functions by polynomials depends on the degree of the polynomials, the number of
decimal digits that it is being approximated to, and on the error function. A higher
degree polynomial is generally able to approximate the function more accurately.

Babbage produced prototypes for parts of the Difference Engine, but he never
actually completed the machine. The Swedish engineers, Georg and Edvard

2The power series expansion of the sine function is given by Sin(x) = x − x3/3! + x5/5! − x7/
7! + … The power series expansion for the cosine function is given by Cos(x) = 1 − x2/2! + x4/
4! − x6/6! + … Functions may be approximated by interpolation and the approximation of a
function by a polynomial of degree n requires n + 1 points on the curve for the interpolation. That
is, the curve formed by the polynomial of degree n that passes through the n + 1 points of the
function to be approximated is an approximation to the function. The error function also needs to
be considered.

16 2 Foundations of Computing

Scheutz, built the first working Difference Engine (based on Babbage’s design) in
1853 with funding from the Swedish government. Their machine could compute
polynomials of degree 4 on 15-digit numbers, and the 3rd Scheutz Difference
Engine is on display at the Science Museum in London.

It was the first machine to compute and print mathematical tables mechanically.
The machine was accurate, and it showed the potential of mechanical machines as a
tool for scientists and engineers.

The machine is unable to perform multiplication or division directly. Once the
initial value of the polynomial and its derivative are calculated for some value of x,
the Difference Engine may calculate any number of nearby values using the
numerical method of finite differences. This method replaces computational inten-
sive tasks involving multiplication or division, by an equivalent computation that
just involves addition or subtraction.

The British government cancelled Babbage’s project in 1842. He designed an
improved Difference Engine No. 2 (Fig. 2.5) in 1849. It could operate on
seventh-order differences (i.e. polynomials of order 7) and 31-digit numbers. The
machine consisted of eight columns with each column consisting of 31 wheels.
However, it was over 150 years later before it was built (in 1991) to mark the two
hundredth anniversary of his birth. The Science Museum in London also built the
printer that Babbage designed, and both the machine and the printer worked cor-
rectly according to Babbage’s design (after a little debugging).

2.5 The Analytic Engine—Vision of a Computer

The Difference Engine was designed to produce mathematical tables, but it required
human intervention to perform the calculations. Babbage recognised its limitations,
and he proposed a revolutionary solution by outlining his vision of a mechanical
computer. His plan was to construct a new machine that would be capable of

Fig. 2.4 Charles Babbage

2.4 The Difference Engine 17

executing all tasks that may be expressed in algebraic notation. His vision of such a
computer (Analytic Engine) consisted of two parts (Table 2.2).

Babbage intended that the operation of the Analytic Engine would be analogous
to the operation of the Jacquard loom.3 The latter is capable of weaving (i.e.
executing on the loom) a design pattern that has been prepared by a team of skilled
artists. The design pattern is represented by a set of cards with punched holes,
where each card represents a row in the design. The cards are then ordered; placed
in the loom; and the loom produces the exact pattern.

The use of the punched cards in the Analytic Engine allowed the formulae to be
manipulated in a manner dictated by the programmer. The cards commanded the

Fig. 2.5 Difference Engine No. 2. Photo Public Domain

Table 2.2 Analytic Engine

Part Function

Store This contains the variables to be operated upon as well as all those quantities, which
have arisen from the result of intermediate operations

Mill The mill is essentially the processor of the machine into which the quantities about to
be operated upon are brought

3The Jacquard loom was invented by Joseph Jacquard in 1801. It is a mechanical loom which used
the holes in punch cards to control the weaving of patterns in a fabric. The use of punched cards
allowed complex designs to be woven from the pattern defined on the punched cards. Each
punched card corresponds to one row of the design and the cards were appropriately ordered. It
was very easy to change the pattern of the fabric being weaved on the loom, as this simply
involved changing cards.

18 2 Foundations of Computing

Analytic Engine to perform various operations and to return a result. Babbage
distinguished between two types of punched cards:

– Operation Cards
– Variable Cards.

Operation cards are used to define the operations to be performed, whereas the
variable cards define the variables or data that the operations are performed upon.
His planned use of punched cards to store programs in the Analytic Engine is
similar to the idea of a stored computer program in von Neumann architecture.
However, Babbage’s idea of using punched cards to represent machine instructions
and data was over 100 years before digital computers. Babbage’s Analytic Engine
is therefore an important milestone in the history of computing.

Babbage intended that the program be stored on read-only memory using punch
cards, and that the input and output would be carried out using punch cards. He
intended that the machine would be able to store numbers and intermediate results
in memory that could then be processed. There would be several punch card readers
in the machine for programs and data. He envisioned that the machine would be
able to perform conditional jumps as well as parallel processing where several
calculations could be performed at once.

The Analytic Engine was designed in 1834 as the world’s first mechanical
computer (Lovelace 1842). It included a processor, memory, and a way to input
information and output results. However, the machine was never built, as Babbage
was unable to secure funding from the British Government.

2.5.1 Applications of Analytic Engine

Lady Augusta Ada Lovelace (nee Byron)4 (Fig. 2.6) was a mathematician who
collaborated with Babbage on applications for the Analytic Engine. She is con-
sidered the world’s first programmer, and the Ada programming language is named
in her honour.

She was introduced to Babbage at a dinner party in 1833, and she visited
Babbage’s studio in London, where the prototype Difference Engine was on dis-
play. She recognised the beauty of its invention, and she was fascinated by the idea
of the Analytic Engine. She communicated regularly with Babbage with ideas on its
applications.

Lovelace produced an annotated translation of Menabrea’s ‘Notions sur la
machine analytique de Charles Babbage’ (Lovelace 1842). She added copious
notes to the translation,5 which were about three times the length of the original

4Lady Ada Lovelace was the daughter of the poet, Lord Byron.
5There is some controversy as to whether this was entirely her own work or a joint effort by
Lovelace and Babbage.

2.5 The Analytic Engine—Vision of a Computer 19

memoir, and considered many of the difficult and abstract questions connected with
the subject. These notes are regarded as a description of a computer and software.

She explained in the notes how the Analytic Engine could be programmed, and
wrote what is considered to be the first computer program. This program detailed a
plan be written for how the engine would calculate Bernoulli numbers. Lady Ada
Lovelace is therefore considered to be the first computer programmer, and Babbage
called her the ‘enchantress of numbers’.

She saw the potential of the Analytic Engine to fields other than mathematics.
She predicted that the machine could be used to compose music, produce graphics,
as well as solving mathematical and scientific problems. She speculated that the
machine might act on other things apart from numbers, and be able to manipulate
symbols according to rules. In this way, a number could represent an entity other
than a quantity.

2.6 Boole’s Symbolic Logic

George Boole (Fig. 2.7) was born in Lincoln, England in 1815. His father (a
cobbler who was interested in mathematics and optical instruments) taught him
mathematics, and showed him how to make optical instruments. Boole inherited his
father’s interest in knowledge, and he was self-taught in mathematics and Greek.
He taught at various schools near Lincoln, and he developed his mathematical
knowledge by working his way through Newton’s Principia, as well as applying
himself to the work of mathematicians such as Laplace and Lagrange.

Fig. 2.6 Lady Ada Lovelace

20 2 Foundations of Computing

He published regular papers from his early 20s, and these included contributions
to probability theory, differential equations and finite differences. He developed
Boolean algebra, which is the foundation for modern computing, and he is con-
sidered (along with Babbage) to be one of the grandfathers of computing. His work
was theoretical, and he never actually built a computer or calculating machine.
However, Boole’s symbolic logic was the perfect mathematical model for switching
theory and for the design of digital circuits.

Boole became interested in formulating a Calculus of reasoning, and he pub-
lished ‘Mathematical Analysis of Logic’ in 1847 (Boole 1848). This work devel-
oped novel ideas on a logical method, and he argued that logic should be considered
as a separate branch of mathematics, rather than as a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations. He corresponded regularly on logic with Augustus De
Morgan.6

His paper on logic introduced two quantities ‘0’ and ‘1’. He used the quantity 1
to represent the universe of thinkable objects (i.e. the universal set), and the quantity
0 represents the absence of any objects (i.e. the empty set). He then employed
symbols such as x, y, z, etc., to represent collections or classes of objects given by
the meaning attached to adjectives and nouns. Next, he introduced three operators
(+, −, and �) that combined classes of objects.

The expression xy (i.e. x multiplied by y or x � y) combines the two classes x, y
to form the new class xy (i.e. the class whose objects satisfy the two meanings
represented by class x and class y). Similarly, the expression x + y combines the

Fig. 2.7 George Boole

6De-Morgan was a nineteenth-century British mathematician based at University College London.
De-Morgan’s laws in Set Theory and Logic state that: (A [B)c = Ac \ Bc and ¬ (A _ B) � ¬A
^ ¬B.

2.6 Boole’s Symbolic Logic 21

two classes x, y to form the new class x + y (that satisfies either the meaning
represented by class x or class y). The expression x − y combines the two classes x,
y to form the new class x − y. This represents the class (that satisfies the meaning
represented by class x but not class y. The expression (1 − x) represents objects that
do not have the attribute that represents class x.

Thus, if x = black and y = sheep, then xy represents the class of black
sheep. Similarly, (1 − x) would represent the class obtained by the operation of
selecting all things in the world except black things; x (1 − y) represents the class
of all things that are black but not sheep; and (1 − x) (1 − y) would give us all
things that are neither sheep nor black.

He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc., in a manner that is like real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations. The rules include the following:

These operations are similar to the modern laws of set theory with the set union
operation represented by ‘+’, and the set intersection operation is represented by
multiplication. The universal set is represented by ‘1’ and the empty by ‘0’. The
associative and distributive laws hold. Finally, the set complement operation is
given by (1 − x).

He applied the symbols to encode Aristotle’s Syllogistic Logic, and he showed
how the syllogisms could be reduced to equations. This allowed conclusions to be
derived from premises by eliminating the middle term in the syllogism. He refined
his ideas on logic further in ‘An Investigation of the Laws of Thought’ which was
published in 1854 (Boole 1958). This book aimed to identify the fundamental laws
underlying reasoning in the human mind, and to give expression to these laws in the
symbolic language of a Calculus.

He considered the equation x2 = x to be a fundamental law of thought. It allows
the principle of contradiction to be expressed (i.e. for an entity to possess an
attribute and at the same time not to possess it):

1. x + 0 = x (Additive Identity)

2. x + (y + z) = (x + y) + z (Associative)

3. x + y = y + x (Commutative)

4. x + (1 − x) = 1

5. x 1 = x (Multiplicative Identity)

6. x 0 = 0

7. x + 1 = 1

8. xy = yx (Commutative)

9. x(yz) = (xy)z (Associative)

10. x(y + z) = xy + xz (Distributive)

11. x(y − z) = xy − xz (Distributive)

12. x2 = x (Idempotent)

22 2 Foundations of Computing

x2 ¼ x

) x�x2 ¼ 0

) x 1�xð Þ ¼ 0

For example, if x represents the class of horses then (1 − x) represents the class
of ‘not-horses’. The product of two classes represents a class whose members are
common to both classes. Hence, x (1 − x) represents the class whose members are
at once both horses and ‘not-horses’, and the equation x (1 − x) = 0 expresses that
fact that there is no such class. That is, it is the empty set.

Boole contributed to other areas in mathematics including differential equations,
finite differences7 and to the development of probability theory. Des McHale has
written an interesting biography of Boole (McHale 1985). Boole’s logic appeared to
have no practical use, but this changed with Claude Shannon’s 1937 Master’s
Thesis, which showed its applicability to switching theory and to the design of
digital circuits.

2.6.1 Switching Circuits and Boolean Algebra

Claude Shannon’s Master’s Thesis showed that Boole’s algebra provided the
perfect mathematical model for switching theory and for the design of digital
circuits. It may be employed to optimise the design of systems of electromechanical
relays, and circuits with relays solve Boolean algebra problems. The use of the
properties of electrical switches to process logic is the basic concept that underlies
all modern electronic digital computers. Digital computers use the binary digits 0
and 1, and Boolean logical operations may be implemented by electronic AND, OR
and NOT gates. More complex circuits (e.g. arithmetic) may be designed from these
fundamental building blocks.

Modern electronic computers use billions of transistors that act as switches and
can change state rapidly. The use of switches to represent binary values is the
foundation of modern computing. A high voltage represents the binary value 1 with
low voltage representing the binary value 0. A silicon chip may contain billions of
tiny electronic switches arranged into logical gates. The basic logic gates are AND,
OR and NOT. These gates may be combined in various ways to allow the computer
to perform more complex tasks such as binary arithmetic. Each gate has binary
value inputs and outputs.

The example in Fig. 2.8 is that of an ‘AND’ gate which produces the binary
value 1 as output only if both inputs are 1. Otherwise, the result will be the binary
value 0. Figure 2.9 shows an ‘OR’ gate which produces the binary value 1 as output
if any of its inputs is 1. Otherwise, it will produce the binary value 0.

7Finite Differences are a numerical method used in solving differential equations.

2.6 Boole’s Symbolic Logic 23

Finally, a NOT gate (Fig. 2.10) accepts only a single input which it inverts. That
is, if the input is ‘1’ the value ‘0’ is produced and vice versa.

The logic gates may be combined to form more complex circuits. The example
in Fig. 2.11 is that of a half-adder of 1 + 0. The inputs to the top OR gate are 1 and
0 which yields the result of 1. The inputs to the bottom AND gate are 1 and 0 which
yields the result 0, which is then inverted through the NOT gate to yield binary 1.

1

0

1

0

0

1

1

0

0

Fig. 2.8 Binary AND
Operation

1

1

1OR

1

0

1OR

0

0

0OR

Fig. 2.9 Binary OR
Operation

1 0
Fig. 2.10 NOT Operation

AND

OR1

0

AND
1

Fig. 2.11 Half-Adder

24 2 Foundations of Computing

Finally, the last AND gate receives two 1’s as input and the binary value 1 is the
result of the addition. The half-adder computes the addition of two arbitrary binary
digits, but it does not calculate the carry. It may be extended to a full adder that
provides a carry for addition.

2.7 Application of Symbolic Logic to Digital Computing

Claude Shannon (Fig. 2.12) was the first person8 to see the applicability of Boole’s
algebra to simplify the design of circuits and telephone routing switches. He
showed that Boole’s symbolic logic was the perfect mathematical model for
switching theory and for the subsequent design of digital circuits and computers.

His influential Master’s Thesis is a key milestone in computing, and it shows
how to lay out circuits according to Boolean principles. It provides the theoretical
foundation of switching circuits, and his insight of using the properties of electrical
switches to do Boolean logic is the basic concept that underlies all electronic digital
computers.

Shannon realised that you could combine switches in circuits in such a manner
as to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons and thus capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

Vannevar Bush (O’Regan 2013) was Shannon’s supervisor at MIT, and
Shannon’s initial work was to improve Bush’s mechanical computing device
known as the Differential Analyser. This machine had a complicated control circuit
that was composed of one hundred switches that could be automatically opened and
closed by an electromagnet. Shannon’s insight was his realisation that an electronic
circuit is similar to Boolean algebra, and he showed how Boolean algebra could be
employed to optimise the design of systems of electromechanical relays used in the
analog computer. He also realised that circuits with relays could solve Boolean
algebra problems.

His Master’s thesis ‘A Symbolic Analysis of Relay and Switching Circuits’
(Shannon 1937) showed that the binary digits (i.e. 0 and 1) can be represented by
electrical switches. This allowed binary arithmetic and more complex mathematical
operations to be performed by relay circuits, and provided electronics engineers
with the mathematical tool that they needed to design digital electronic circuits and
provided the foundation for the field.

8Victor Shestakov at Moscow State University also proposed a theory of electric switches based on
Boolean algebra (published in Russian in 1941 whereas Shannon’s were published in 1937).

2.6 Boole’s Symbolic Logic 25

The design of circuits and telephone routing switches could be simplified with
Boole’s symbolic algebra. Shannon showed how to lay out circuits according to
Boolean principles, and his Master’s thesis became the foundation for the practical
design of digital circuits. These circuits are fundamental to the operation of modern
computers and telecommunication systems, and his insight of using the properties
of electrical switches to do Boolean logic is the basic concept that underlies all
electronic digital computers.

2.8 Review Questions

1. Explain the significance of binary numbers in the computing field.
2. Explain the importance of Shannon’s Master Thesis.
3. Explain the significance of the Analytic Engine.
4. Explain why Ada Lovelace is considered the world’s first programmer.
5. Explain the significance of Boole to the computing field.
6. Explain the significance of Babbage to the computing field.
7. Explain the significance of Leibniz to the computing field.

Fig. 2.12 Claude Shannon

26 2 Foundations of Computing

2.9 Summary

This chapter considered the foundational work done by Leibniz, Babbage, Boole,
Ada Lovelace and Shannon. Leibniz developed a calculating machine (the Step
Reckoner) that could perform the four basic arithmetic operations. He also invented
the binary number system, which is used extensively in the computer field.

Babbage did pioneering work on calculating machines. He designed the
Difference Engine (a sophisticated calculator that could be used to produce math-
ematical tables), and he also designed the Analytic Engine (the world’s first
mechanical computer).

Lady Ada Lovelace was introduced to Babbage’s ideas on the Analytic Engine,
and she predicted that such a machine could be used to compose music, produce
graphics, as well as solving mathematical and scientific problems.

Boole was a nineteenth-century English mathematician who made important
contributions to mathematics, and his symbolic logic provides the foundation for
digital computers.

Shannon was a twentieth-century American mathematician and engineer, and he
showed that Boole’s symbolic logic provided the perfect mathematical model for
switching theory, and for the subsequent design of digital circuits and computer.

2.9 Summary 27

Chapter 3
A Concise History of Computing

Key Topics

Harvard Mark I
ABC computer
ENIAC and EDVAC
Colossus
Zuse’s Machines
Manchester Mark I
SAGE
System 360
Transistor
Integrated Circuits
Microprocessor
Home Computers
IBM Personal Computer

3.1 Introduction

The objective of this chapter is to give a brief account of the computing field from
its beginnings up to the development of the IBM personal computer in the early
1980s. We discuss some of the early computers developed in the United States,
Britain and Germany in the 1940s, where the objective was to provide faster
methods of computation to solve practical (often military) problems. These large
bulky machines were mainly based on vacuum tube technology.

We discuss the invention of the transistor in the late 1940s, and this led to
smaller more powerful machines. We proceed to the development of integrated
circuits in the late 1950s, and the later development of minicomputers and more
powerful mainframes. We discuss the introduction of the IBM System/360 in the
1960s, and its impact on the computer sector.

We then proceed to the invention of the microprocessor and the subsequent
development of home computers. Finally, we discuss the introduction of the IBM
personal computer in the early 1980s, and the introduction of the Apple Macintosh
in the mid-1980s.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_3&domain=pdf

3.2 Early Digital Computers

The Second World War motivated researchers to investigate faster ways to perform
calculation to solve practical problems. This led research into the development of
digital computers to determine if they could assist in speeding up computation, and
the early computers were large bulky machines consisting of several thousand
vacuum tubes. A computer often took up the space of a large room, and it was slow
and unreliable.

The early computers considered include the Harvard Mark I designed and
developed by Howard Aiken and IBM. John Atanasoff and Clifford Berry designed
and developed the Atanasoff–Berry (ABC) computer, and it was designed to solve a
set of linear equations using Gaussian elimination. John Mauchly and Presper
Eckert designed the ENIAC and EDVAC computers, which was a fixed program
computer that needed to be physically rewired to solve different problems. Its
successor, the EDVAC computer, implemented the concept of a stored program,1

and did not need to be physically rewired to solve a new problem.
The team at Bletchley Park in England designed and developed the Colossus

computer as part of their code-breaking work during the Second World War. This
machine allowed them to crack the German Lorenz codes, and to provide important
military intelligence for the D-Day landings in 1944.

Konrad Zuse designed and developed the Z1, Z2 and Z3 machines in Germany.
The Z3 was operational in 1941, and it was the world’s first programmable com-
puter. Zuse’s machines were based on relays rather than vacuum tube technology.

3.2.1 Harvard Mark 1

Howard Aiken (Fig. 3.1) made several important contributions to the early com-
puting field. He showed that a large calculating machine could be built that would
provide speedy solutions to mathematical problems.

He designed and constructed an electromechanical machine to perform mathe-
matical operations quickly and efficiently, and the machine could handle positive
and negative numbers, scientific functions such as logarithms and was able to work
with minimal human intervention.

He discussed the idea with colleagues and IBM, and he was successful in
obtaining IBM funding to build the machine. The machine was built at the IBM
laboratories at Endicott with several IBM engineers involved in its construction.
The construction took seven years, and it was completed in late 1943.

1This meant that the program instructions were stored in memory and all that was required to carry
out a new task was to load a new program into memory.

30 3 A Concise History of Computing

The machine became known as the Harvard Mark I [also known as the IBM
Automatic Sequence Controlled Calculator (ASCC)]. Aiken was influenced by
Babbage’s ideas on the design of the Analytic Engine.

IBM presented the machine to Harvard University in 1944, and the ASCC was
essentially an electromechanical calculator that could perform large computations
automatically. It could perform addition, subtraction, multiplication and division,
and it could refer to previous results.

The Harvard Mark I (Fig. 3.2) was designed to assist in the numerical compu-
tation of differential equations. It was 50 feet long, 8 feet high and weighed 5 tons.
It performed additions in less than a second, multiplications in 6 s, and division in

Fig. 3.1 Howard Aiken

Fig. 3.2 Harvard Mark I (IBM ASCC). Courtesy of International Business Machines
Corporation, © International Business Machines Corporation

3.2 Early Digital Computers 31

about 12 s. It used electromechanical relays to perform the calculations, and it
could execute long computations automatically.

It was constructed out of switches, relays, rotating shafts and clutches, and it
used 500 miles of wiring and over 750,000 components. It was the industry’s
largest electromechanical calculator, and it had 60 sets of 24 switches for manual
data entry. It could store 72 numbers, each 23 decimal digits long. The instructions
were read on paper tape, and punched cards were used to input the data, and the
results were either on punched cards or an electric typewriter.

The US Navy used the Harvard Mark I for ballistic calculations, and the machine
remained in use until 1959. It cost approximately half a million dollars, but it was
never mass-produced by IBM. It differed from most of the early digital computers
as it used relays instead of vacuum tubes.

The announcement of the Harvard Mark 1 led to tension between Aiken and
IBM, as Aiken announced himself as the sole inventor without acknowledging the
important role played by IBM.

3.2.2 Atanasoff–Berry Computer

John Atanasoff (Fig. 3.3) was born in New York in 1903. He studied electrical
engineering at the University of Florida and did a Master’s in Mathematics at Iowa
State College. He earned a PhD in theoretical physics from the University of
Wisconsin in 1930 and became an assistant professor at Iowa State College, where
he taught mathematics and physics.

He became interested in developing faster methods of computation while doing
his Ph.D. research. He did some work on an analog calculator in 1936, but he
concluded that analog devices were too restrictive and unable to give the desired
accuracy. His goal was to mechanise calculation to enable accurate computation to
be carried out faster.

The existing computing devices were mechanical, electromechanical or analog.
Atanasoff developed the concept of digital machine in the late 1930s, and he
believed that his proposed machine would be faster and more accurate than the
existing analog machines. He published his design of a machine to solve linear
equations using his own version of Gaussian elimination in 1939 and used his
research grant of $650 to build the Atanasoff–Berry Computer (ABC), with the
assistance of his graduate student, Clifford Berry, from 1939 to 1942.

The ABC (Fig. 3.4) was approximately the size of a large desk and had
approximately 270 vacuum tubes. Two hundred and ten tubes controlled the arith-
metic unit, 30 tubes controlled the card reader and card punch, and the remaining
tubes helped maintain charges in the condensers. It employed rotating drum mem-
ory, with each of the two drum memory units able to hold thirty 50-bit numbers.

32 3 A Concise History of Computing

Fig. 3.3 John Atanasoff with components of ABC

Fig. 3.4 Replica of ABC computer. Courtesy of Iowa State University

3.2 Early Digital Computers 33

It was designed for a specific purpose (i.e. solving linear equations) rather than
as a general-purpose computer. The working prototype was one of the earliest
electronic digital computers.2 However, the ABC was slow, and it required constant
operator monitoring.

It used binary mathematics and Boolean logic to solve simultaneous linear
equations. It employed over 270 vacuum tubes for digital computation, but it had no
central processing unit (CPU), and it was not programmable.

It weighed over 300 kg and it used 1.6 km of wiring. It used 50-bit numbers,
and it could perform 30 additions or subtractions per second. The memory and
arithmetic units could operate and store 60 such numbers at a time (60 * 50 = 3000
bits). The arithmetic logic unit was fully electronic, and it was implemented with
vacuum tubes.

The input was in decimal format with standard IBM 80 column punch cards, and
the output was in decimal format via a front panel display. A paper card reader was
used as an intermediate storage device to store the results of operations that were
too large to be handled entirely within electronic memory. The ABC pioneered
important elements in modern computing including:

– Binary arithmetic and Boolean logic
– All calculations were performed using electronics rather than mechanical

switches
– Computation and memory were separated.

The ABC was tested and operational by 1942, and its historical significance is
that it demonstrated the feasibility of electronic computing. Several of its concepts
were later used in the ENIAC computer developed by Mauchly and Eckert.

3.2.3 ENIAC

The Electronic Numerical Integrator and Computer (ENIAC) (Fig. 3.5) was one of
the first large general-purpose digital computers. It was used to integrate ballistic
equations, and to calculate the trajectories of naval shells. It was completed in 1946,
and it remained in use until 1955.

It was a large bulky machine (100 feet long, 10 feet high, 3 feet deep and
weighed about 30 tons). Its development commenced in 1943 at the University of
Pennsylvania, and it was built for the US Army’s Ballistics Research Laboratory
The project team included Presper Eckert as chief engineer and John Mauchly as a
consultant. ENIAC had over 18,000 vacuum tubes, and the machine generated a
vast quantity of heat, as each vacuum tube generated heat like a light bulb. The
machine used 150 kW of power and air conditioning was used to cool it.

2The ABC was ruled to be the first electronic digital computer in the Sperry Rand versus Honeywell
patent case in 1973. However, Zuse’s Z3 computer (completed in Germany in 1941) preceded it.

34 3 A Concise History of Computing

It employed decimal numerals and it could add five thousand numbers, do over
three hundred and fifty 10-digit multiplications, or thirty-five 10-digit divisions in
one second. It could be programmed to perform complex sequences of operations,
and this included loops, branches and subroutines. However, the task of taking a
problem and mapping it onto the machine was complex, and it usually took weeks
to perform. The first step was to determine what the program was to do on paper;
the second step was the process of manipulating the switches and cables to enter the
program into ENIAC, and this usually took several days. The final step was veri-
fication and debugging, and this often involved single step execution of the
machine.

There were problems initially with the reliability of ENIAC, as several vacuum
tubes burned out most days (Fig. 3.6). This meant that the machine was often
non-functional, as high-reliability vacuum tubes only became available in the late
1940s. However, most of these problems with the tubes occurred during the
warm-up and cool-down periods, and it was therefore decided not to turn the
machine off. This led to improvements in its reliability to the acceptable level of one
tube every two days. The longest continuous period of operation without a failure
was five days.

The very first program run on ENIAC took just 20 s, and the answer was
manually verified to be correct after forty hours of work with a mechanical cal-
culator. One of the earliest problems solved was related to the feasibility of the
hydrogen bomb, and this program involved the input of 500,000 punch cards, and it
ran for six weeks and gave an affirmative reply.

ENIAC was a fixed-program computer, and the machine had to be physically
rewired to perform different tasks. It was clear that there was a need for an

Fig. 3.5 Setting the switches on ENIAC’s Function Tables. U.S. Army Photo

3.2 Early Digital Computers 35

architecture that would allow a machine to perform different tasks without physical
rewiring each time. This led to the concept of the stored program, which was
implemented on EDVAC (the successor to ENIAC).

The idea of a stored program is that the program is stored in memory, and
whenever there is a need to change the task that is to be computed, then all that is
required is to place a new program in the memory of the computer, rather than
rewiring the machine. EDVAC implemented the concept of a stored program in
1949, just after its implementation on the Manchester Baby prototype machine in
England. The concept of a stored program and von Neumann architecture is
detailed in von Neumann’s report on EDVAC (von Neumann 1945).

ENIAC was preceded in development by Zuses’s Z3 machine in Germany; the
Atanasoff–Berry Computer (ABC) in the United States; and the Colossus computer
developed in the UK. ENIAC was a major milestone in the history of computing.

3.2.4 EDVAC

The Electronic Discrete Variable Automatic Computer (EDVAC) (Fig 3.7) was the
successor to the ENIAC computer. It was a stored program computer and it was
proposed by Eckert and Mauchly in 1944, and design work commenced prior to the
completion of ENIAC.

Fig. 3.6 Replacing a valve on ENIAC. U.S. Army Photo

36 3 A Concise History of Computing

It was delivered to the Ballistics Research Laboratory in 1949, and it com-
menced operations in 1951. It remained in operations until 1961. It employed 6000
vacuum tubes and its power consumption was 56,000 W. It had 5.5 Kb of memory.

EDVAC was one of the earliest stored-program computers, and the program
instructions were stored in memory, rather than rewiring the machine each time.

3.2.5 Bletchley Park and Colossus

Tommy Flowers (Fig. 3.8) was a British engineer who led the team that designed
and built Colossus, which was one of the earliest electronic computers. The
machine was designed to decode the top-level encrypted German military com-
munication sent by German High Command to its commanders in the field. This
provided British and American Intelligence with important information on German
military plans around the D-Day invasion and later battles, and it helped to ensure
the success of the Normandy landings and the ultimate defeat of Nazi Germany.

Flowers was born in East London in 1905, and he obtained a position with the
telecommunications branch of the General Post Office in 1926. He moved to the
research station at Dollis Hill in 1930, and he investigated the use of electronics for
telephone exchanges. He was convinced at an early stage that an all-electronic
system was possible.

He became involved with the code-breaking work taking place at Bletchley Park
(located near Milton Keynes north-west of London) during the Second World War.

Fig. 3.7 The EDVAC
Computer. U.S. Army Photo

3.2 Early Digital Computers 37

Alan Turing and others had cracked the German Enigma codes by building a
machine known as the Bombe. This machine employed a crib to deduce the settings
of the Enigma machine for that day. Turing introduced Flowers to Max Newman
who was leading British efforts to break a German cipher generated by the Lorenz
SZ42 machine.

Their existing approach to deciphering the Lorenz codes was with the Heath
Robinson machine (a slow and unreliable machine). Flowers proposed an alternate
solution involving the use of an electronic machine in 1943. This machine was
called Colossus and it employed 1800 thermionic valves. The management at
Bletchley Park was sceptical, but they encouraged him to continue with his work.
Flowers and others at the Post Office Research Centre built the machine in
11 months, and its successor, the Mark 2 Colossus, contained 2400 valves. This
machine commenced operations on June 1st, 1944. It was a large bulky machine
and took up the space of a small room and weighed a ton.

It provided vital information for the Normandy landings, and it confirmed that
Hitler had been successfully misled by Allied disinformation into believing that the
Normandy landings were to be a diversionary tactic. Further, it confirmed that no
additional German troops were to be moved there, and it played a key role in
helping the British to monitor the German reaction to their deception tactics.

Flowers and others designed and built the original Colossus machine at the Post
Office Research Station at Dollis Hill in London. The machine was used to find
possible key combinations for the Lorenz machines rather than decrypting an inter-
cepted message in its entirety. The Lorenz machine was based on the Vernam cipher.

Colossus compared two data streams to identify possible key settings for the
Lorenz machine. The first data stream was the encrypted message, and it was read at
high speed from a paper tape. The second stream was generated internally and was
an electronic simulation of the Lorenz machine at various trial settings. If the match
count for a setting was above a certain threshold, it would be sent as output to an
electric typewriter.

Fig. 3.8 Tommy Flowers

38 3 A Concise History of Computing

The Lorenz codes were a more complex cipher than the Enigma codes, and they
were used in the transmission of important messages between the German High
Command in Berlin and the military commanders in the field. The Lorenz SZ 40/42
machine performed the encryption. The Bletchley Park codebreakers called the
typewriter-coding machine ‘Tunny’ and the coded messages ‘Fish’.

The Colossus Mark 1 machine was specifically designed for codebreaking rather
than as a general-purpose computer. It was semi-programmable and helped in
deciphering messages encrypted using the Lorenz machine. A prototype was
available in 1943 and a working version was available in early 1944 at Bletchley
Park. The Colossus Mark 2 (Fig. 3.9) was introduced just prior to the Normandy
landings in June 1944.

The Colossus Mark 1 used 15 kW of power and it could process 5000 characters
of paper tape per second. It enabled a large amount of mathematical work to be
done in hours rather than in weeks. There were ten Colossi machines working at
Bletchley Park by the end of the war. A replica of the Colossus was rebuilt by a
team of volunteers led by Tony Sale from 1993 to 96, and it is at Bletchley Park
museum.

The contribution of Bletchley Park to the cracking of the German Enigma and
Lorenz codes, and to early computing remained clouded in secrecy until recent
times. The museum at Bletchley Park provides insight into the important contri-
bution made by this organisation to codebreaking and to early computing during the
Second World War.

Fig. 3.9 Colossus.Mark 2. Photo Courtesy of UK Government

3.2 Early Digital Computers 39

3.2.6 Zuse’s Machines

Konrad Zuse (Fig. 3.10) is considered ‘the father of the computer’ in Germany, as
he built the world’s first programmable machine (the Z3) in 1941.

He was born in Berlin in 1910, and he studied civil engineering at the Technical
University of Berlin. He commenced working for Henschel (an airline manufac-
turer) after his graduation in 1935. He resigned after one year with the intention of
forming his own company to build automatic calculating machines, and he com-
menced work on what would become the Z1 machine in 1936. Zuse employed the
binary system for the calculator and metallic shafts that could shift from position 0
to 1 and vice versa. The Z1 was operational by 1938.

He served in the German Army on the Eastern Front for six months in 1939 at
the start of the Second World War. Henschel helped Zuse to obtain a deferment
from the army, and he remained affiliated with Henschel for the duration of the war.
He built the Z2 and Z3 machines during this period, and the Z3 was operational in
1941, and it was the world’s first programmable computer.

He started his own company in 1941, and this was the first company founded
with the sole purpose of developing computers. The Z4 was almost complete as the
Red Army advanced on Berlin in 1945, and Zuse left Berlin for Bavaria with the
Z4. His other machines were destroyed in the Allied bombing of Germany.

He designed the world’s first high-level programming language (Plankalkül)
between 1943 and 1945. He later restarted his company (Zuse KG), and he com-
pleted the Z4 in 1950. This was the first commercial computer, as it was completed
ahead of the Ferranti Mark 1, Univac and LEO computers. Its first customer was the
Technical University of Zurich.

Fig. 3.10 Konrad Zuse.
Courtesy of Horst Zuse,
Berlin

40 3 A Concise History of Computing

Zuse’s results are all the more impressive given that he was working alone in
Germany, and was unaware of developments in other countries. He independently
implemented the principles of modern digital computers in isolation (O’Regan
2013).

3.2.7 Z1, Z2 and Z3 Machines

Zuse commenced work on his first machine called the Z1 in 1936, and the machine
was operational by 1938. It was demonstrated to a small number of people who saw
it rattle and compute the determinant of a three by three matrix. It was essentially a
binary electrically-driven mechanical calculator with limited programmability. It
could execute instructions read from the program punch cards, but the program
itself was never loaded into the memory.

It employed the binary system and metallic shafts that could slide from position
0 to position 1 and vice versa. The machine was essentially a 22-bit floating-point
value adder and subtracter. A decimal keyboard was used for input, and the output
was decimal digits. The machine included some control logic, which allowed it to
perform more complex operations such as multiplications and division. These
operations were performed by repeated additions for multiplication and repeated
subtractions for division. The multiplication took approximately 5 s. The computer
memory contained 64 22-bit words. Each word of memory could be read from and
written to by the program punch cards and the control unit. It had a clock speed of
1 Hz, and two floating-point registers of 22 bits each. The machine was unreliable,
and there is a reconstruction of it in the Deutsches Technikmuseum in Berlin.

His Z2 machine aimed to improve on the Z1, and this mechanical and relay
computer was created in 1939. It used a similar mechanical memory, but it replaced
the arithmetic and control logic with 600 electrical relay circuits. It used 16-bit
fixed-point arithmetic instead of the 22-bit used in the Z1. It had a 16-bit word size
and the size of its memory was 64 words. It had a clock speed of 3 Hz.

The Z3 machine (Fig. 3.11) was the first functional tape-stored-program-
controlled computer, and it was created in 1941. It used 2600 telephone relays, the
binary number system, and it could perform floating-point arithmetic. It had a clock
speed of 5 Hz, and multiplication and division took 3 s. The input to the machine
was with a decimal keyboard, and the output was on lamps that could display
decimal numbers. The word length was 22-bits, and the size of the memory was 64
words.

It used a punched film for storing the sequence of program instructions. It could
convert decimal to binary and back again. It was the first digital computer since it
predates the Atanasoff–Berry Computer by one year. It was proven to be Turing
complete in 1998. There is a reconstruction of the Z3 computer in the Deutsches
Museum in Munich.

3.2 Early Digital Computers 41

3.2.8 University of Manchester

The Manchester Small-Scale Experimental Computer (better known by its nick-
name ‘Baby’) was developed at the University of Manchester. It was the first
stored-program computer, and it was designed and built at Manchester University
in England by Frederic Williams, Tom Kilburn, Geoff Tootill and others.

The task to be computed is defined by the computer instructions that are placed
in memory, and to change the task to be computed, all that is required is to load a
different program into the computer memory. Kilburn wrote and executed the first
stored program, and it was a short 17-line program written and executed in 1948.

The prototype ‘Baby’ (Fig. 3.12) demonstrated the feasibility and potential of a
stored program computer. Its memory consisted of 32 32-bit words, and it took
1.2 ms to execute one instruction: i.e. 0.00083 MIPS (million instructions per
second). Today’s computers are rated at speeds of up to 1000 MIPS and more). The
team in Manchester developed the machine further and in 1949, the Manchester
Mark 1 was available.

3.2.9 Manchester Mark I

The Manchester Automatic Digital Computer (MADC), also known as the
Manchester Mark 1, was developed at the University of Manchester. It was one of
the earliest stored-program computers, and it was the successor to the Manchester
‘Baby’ computer. It was designed and built by Williams, Kilburn and others.

Fig. 3.11 Zuse and the Reconstructed Z3. Courtesy of Horst Zuse, Berlin

42 3 A Concise History of Computing

Each word could hold one 40-bit number or two 20-bit instructions. The main
memory consisted of two pages (i.e. two Williams tubes with each holding
32 � 40-bit words or 1280 bits). The secondary backup storage was a magnetic
drum consisting of 32 pages (this was updated to 128 pages in the final specifi-
cation). Each track consisted of two pages (2560 bits). One revolution of the drum
took 30 ms, and this allowed the 2560 bits to be transferred to main memory.

The Manchester Mark I (Fig. 3.13) contained 4050 vacuum tubes, and it had a
power consumption of 25,000 W. The standard instruction cycle was 1.8 ms but
multiplication was much slower. The machine had 26 defined instructions, and the
programs were entered into the machine in binary format, as assembly languages
and assemblers were not yet available.

It had no operating system and its only systems software were some basic
routines for input and output. Its peripheral devices included a teleprinter and a
5-hole paper tape reader and punch.

A display terminal used with the Manchester Mark 1 computer mirrored what
was happening within the Williams Tube. A metal detector plate placed close to the
surface of the tube detected changes in electrical charges. The metal plate obscured
a clear view of the tube, but the technicians could monitor the tubes used with a
video screen. Each dot on the screen represented a dot on the tube’s surface, and the

Fig. 3.12 Replica of the Manchester Baby. Courtesy of Tommy Thomas

3.2 Early Digital Computers 43

dots on the tube’s surface worked as capacitors that were either charged and bright
or uncharged and dark. The information translated into binary code (0 for dark, 1
for, bright) became a way to program the computer.

The Manchester Mark I influenced later computer development such as
Ferranti’s Mark I general-purpose computer which was released in 1951, as well as
early IBM computers such as the IBM 701.

3.3 Early Commercial Computers

This section considers a selection of computers developed during the 1950s, and it
includes a selection of vacuum tube-based computers as well as transistor com-
puters. One of the drivers for the design and development of more powerful
computers was the perceived threat of the Soviet Union. This led to an arms race
between the two superpowers, and it was clear that computing technology would
play an important role in developing more sophisticated weapon and defence
systems. The SAGE air defence system developed for the United States and Canada
was an early example of the use of computer technology for the military.

Fig. 3.13 The Manchester Mark 1 Computer. Courtesy of the University of Manchester

44 3 A Concise History of Computing

The other key driver for the development of more powerful computers was to
support business, universities and government. The machines developed during this
period were mainly large proprietary mainframes designed for business, scientific
and government use. They were expensive and this eventually led vendors such as
IBM and DEC to introduce families of computers in the 1960s, where a customer
could choose a small cheaper member of the family, and to upgrade over time to a
larger computer as their needs evolved.

3.3.1 The SAGE System

The Semi-Automated Ground Environment (SAGE) was an automated system for
tracking and intercepting enemy aircraft in North America. It was used by the North
American Aerospace Defense Command (NORAD) from the late 1950s until the
1980s. The interception of enemy aircraft was extremely difficult prior to the
invention of radar during the Second World War. Its introduction allowed fighter
aircraft to be scrambled just in time to meet the enemy threat. The radar stations
were ground-based, and they needed to communicate with and send interception
instructions to fighter aircraft to deal with hostile aircraft.

However, after the war the speed of aircraft increased considerably, thereby
reducing the time available to scramble fighter aircraft. This necessitated a more
efficient and automatic way to transmit interception instructions to provide security
to the United States. The SAGE system (Fig. 3.14) was designed to solve this
problem, and it analysed the information that it received from the various radar
stations around the country in real-time. It then automated the transmission of
interception messages to fighter aircraft.

IBM and MIT played an important role in the design and development of SAGE.
Some initial work on real-time computer systems had been done at Massachusetts
Institute of Technology on a project for the United States Navy. This project was
concerned with building an aircraft flight simulator computer for training bombing
crews, and it led to the development of the Whirlwind digital computer. This
computer was originally intended to be an analog machine, but instead, it became
the Whirlwind digital computer. It was used for experimental development of
military combat information systems.

Whirlwind was the first real-time computer, and George Valley and Jay Forrester
wrote a proposal to employ Whirlwind for air defence. This led to the Cape Cod
system, which demonstrated the feasibility of an air defence system covering New
England. The design and development of SAGE commenced in 1953.

IBM was responsible for the design and manufacture of the AN/FSQ-7 vacuum
tube computer used in SAGE. Its design was based on the Whirlwind II computer,
which was intended to be the successor to Whirlwind. However, the Whirlwind II
was never built, and the AN/FSQ-7 computer weighed 275 tons and included
500,000 lines of assembly code.

3.3 Early Commercial Computers 45

The AN/FSQ holds the current world record for the largest computer ever built.
It employed 55,000 vacuum tubes; covered an area over 18,000 square feet, and it
used about three megawatts of power.

There were twenty-four SAGE Direction Centres and three SAGE Combat
Centres located in the United States. Each SAGE site included two computers for
redundancy, and long-distance telephone lines linked each centre. Burroughs pro-
vided the communications equipment to enable the centres to communicate with
one another, and this was one of the earliest computer networks.

Each site was connected to multiple radar stations with tracking data transmitted
by modem over a standard telephone wire. The SAGE computers then collected the
tracking data for display on a cathode ray tube (CRT). The console operators at the
centre could select any of the targets on the display to obtain information on the
tracking data. This enabled aircraft to be tracked and identified, and the electronic
information was presented to operators on a display device.

The engineering effort in the SAGE project was immense and the total cost is
believed to have been several billion US dollars. It was a massive construction
project, which involved erecting buildings and building power lines, and commu-
nication links between the various centres and radar stations.

SAGE influenced the design and development of the Federal Aviation Authority
(FAA) automated air traffic control system.

Fig. 3.14 SAGE. Photo Courtesy of Steve Jurvetson

46 3 A Concise History of Computing

3.3.2 Invention of the Transistor

The early computers were large bulky machines taking up the size of a large room.
They contained thousands of vacuum tubes,3 and these tubes consumed large
amounts of power and generated a vast quantity of heat. This led to problems with
the reliability of the early computers, as several tubes burned out each day. This
meant that machines were often nonfunctional for parts of the day until the
defective tube was identified and replaced (see Fig. 3.6).

Therefore, there was a need to find a better solution, and Shockley (Fig. 3.15) set
up the solid physics research group at Bell Labs after the Second World War. His
goal was to find a solid-state alternative to the existing glass-based vacuum tubes.
His solid physics research team included John Bardeen and Walter Brattain, who
would later share the 1956 Nobel Prize in Physics with him for their invention of
the transistor (Fig. 1.2).

Their early research was unsuccessful, but by late 1947 Bardeen and Brattain
succeeded in creating a point contact transistor independently of Shockley, who
was working on a junction-based transistor. Shockley believed that the point
contact transistor would not be commercially viable, and his junction point tran-
sistor was announced in mid-1951. The junction point transistor soon eclipsed the
point-contact transistor, and it became dominant in the marketplace.

Shockley published a book on semiconductors in 1950 (Shockley 1950), and he
resigned from Bell Labs in 1955. He formed Shockley Laboratory for
Semiconductors (part of Beckman Instruments) at Mountain View in California.
This company played an important role in the development of transistors and
semiconductors, and several of its staff later formed semiconductor companies in
the Silicon Valley area.

Shockley was the director of the company but his management style alienated
several of his employees. This led to the resignation of eight key researchers in
1957 following his decision not to continue research into silicon-based semicon-
ductors. This gang of eight went on to form Fairchild Semiconductors and other
companies in the Silicon Valley area in the following years (O’Regan 2016a).

3.3.3 Early Transistor Computers

The University of Manchester Experimental Transistor Computer was one of the
first transistor-based computers.4 The prototype machine used 92 point-contact
transistors and had a 48-bit word size, whereas the full-scale version used 200

3ENIAC contained over 18,000 vacuum tubes and the AN/FSQ-7 computer used in SAGE con-
tained 55,000 vacuum tubes.
4It was not a fully transistorised computer in that it employed a small number of vacuum tubes in
its clock generator.

3.3 Early Commercial Computers 47

point-contact transistors. There were serious problems with the reliability of the
point-contact transistors, and Metropolitan-Vickers (a Manchester company)
adapted the design and changed the circuits to use the more reliable junction-based
transistors. This led to the development of the full-scale version called the
Metrovick 950 in 1956.

The TRADIC computer was designed and developed by Bell Labs in early 1954,
and it included both transistors and vacuum tubes. The Harwell CADET was an
early fully transistorised machine when it appeared in early 1955. The IBM 608 was
the first IBM product to use transistor circuits, and the fully transistorised calculator
was introduced in late 1957. The Burroughs SM-65-Atlas ICBM was an early
transistorised computer, which appeared in 1957.

The IBM 7090 was one of the earliest commercial computers with transistor
logic, and it was introduced in 1958. It was designed for large-scale scientific
applications, and it was over thirteen times faster than the older vacuum tube IBM
701. It used 36-bit words, had an address space of 32,768 words, and could perform
229,000 calculations per second. It was used by the U.S. Air Force to provide an
early warning system for missiles, and by NASA to control space flights.

3.4 Integrated Circuits

The invention of the transistor was a revolution in computing, and it led to smaller,
faster and more reliable computers. However, it was still a challenge for engineers
to design complex circuits, as they had to wire hundreds (thousands) of separate
components together.

It is essential when building a circuit that all the connections are intact, otherwise
the electric current will be stopped on its way through the circuit, and the circuit
will fail. Prior to the invention of the integrated circuit, engineers had to construct
circuits by hand, which involved soldering each component in place and connecting
them with wires. However, the manual assembly of the large number of

Fig. 3.15 William Shockley.
Courtesy Chuck Painter,
Stanford News Service

48 3 A Concise History of Computing

components required in a computer often resulted in faulty connections, and
advanced computers required so many connections that they were almost impos-
sible to build. Clearly, there was a need for a better solution.

The invention of the integrated circuit allowed many transistors to be combined
on a single chip, and it was another revolution in computing. The integrated circuit
placed the previously separated transistors, resistors, capacitors and wiring circuitry
onto a single chip made of silicon or germanium. The integrated circuit shrunk the
size and cost of making electronics, and it had a major influence on the design of
later computers and electronics. It led to faster and more powerful computers.

3.4.1 Invention of Integrated Circuit

Transistors were tiny in comparison to vacuum tubes, they consumed very little
power and they were more reliable. This stimulated engineers to design ever more
complex electronic circuits containing hundreds or thousands of discrete compo-
nents such as transistors, diodes, rectifiers and capacitors.

This meant that engineers faced problems in increasing the performance of their
designs as the number of components in the design increased. Each component needed
to be wired to many other components, and the wiring and soldering were done
manually. Clearly, more components would be required to improve performance, and
therefore, it seemed that future designs would consist almost entirely of wiring.

The hand soldering of thousands of components to thousands of bits of wire was
expensive and time-consuming, and it was also unreliable since every soldered joint
was a potential source of trouble. The challenge for the industry was to find a
cost-effective and reliable way of producing these components and interconnecting
them.

Jack Kilby (Fig. 3.16) joined Texas Instruments in 1958, and he began inves-
tigating how to solve this problem. He realised that semiconductors were all that
were really required, as resistors and capacitors could be made from the same

Fig. 3.16 Jack Kilby c.
1958. Courtesy of Texas
Instruments

3.4 Integrated Circuits 49

material as the transistors. He realised that since all the components could be made
of a single material that they could also be made in situ interconnected to form a
complete circuit.

Kilby succeeded in building an integrated circuit made of germanium that
contained several transistors in 1958, and Robert Noyce of Fairchild
Semiconductors built an integrated circuit on a single wafer of silicon in 1960.
Kirby and Noyce are considered co-inventors of the integrated circuit, and Kilby
was awarded the Nobel Prize in Physics in 2000 for his role in its invention.

Kilby’s integrated circuit consisted of a transistor and other components on a
slice of germanium (Fig. 3.17). His invention revolutionised the electronics
industry, and the integrated circuit is the foundation of almost every electronic
device in use today. His integrated circuit was 7/16 by 1/16-in.

Robert Noyce at Fairchild Semiconductors developed an integrated circuit based
on a single wafer of silicon in 1960, and today silicon is the material of choice for
semiconductors. Noyce made an important improvement on Kirby’s design, in that
he added a thin layer of metal to the chip to better connect the various components
in the circuit. Noyce’s solution made the integrated circuit more suitable for mass
production, and Fairchild Semiconductors pioneered the use of the planar process
for making transistors. The existing semiconductor companies soon employed this
process. Noyce was one of the co-founders of Intel, which is one of the largest
manufacturers of integrated circuits in the world.

Fig. 3.17 First integrated circuit. Courtesy of Texas Instruments

50 3 A Concise History of Computing

An integrated circuit (IC) consists of a set of electronic circuits on a small chip
of semiconductor material, and it is much smaller than a circuit made from
independent components. The IC is made on a small plate of semiconductor
material that is usually made of silicon. It is extremely compact, and it may contain
billions of transistors and other electronic components in a tiny area. The width of
each conducting line has got smaller and smaller due to advances in technology
over the years, and it is now measured in tens of nanometres.5 The invention of the
integrated circuit led to major reductions in the size and cost of making electronics,
and it impacted the design of all future computers and other electronics.

The size of the components in a modern fabrication plant is extremely small,
with thousands of transistors fitting inside the cross section of a strand of hair. The
production of a chip requires precision at the atomic level, with tiny particles such
as those in tobacco smoke are large enough to ruin a chip. For this reason, chip
production takes place in a clean room, which is a special room designed with
furniture made of special materials that don’t give off particles, and very effective
air filters and air circulation systems.

There has been a massive reduction in the production costs of integrated circuits,
with the initial production cost of integrated circuits at $1000 in 1960. However, as
demand increased and production techniques improved, the cost of production was
reduced to $25 by 1963.

There are several generations of integrated circuits, from the small-scale inte-
gration (SSI) of the early 1960s, which typically had less than 30 transistors on the
chip, to medium scale integration (MSI) of the late 1960s with less than 300
transistors on the chip; to large-scale integration (LSI) of the mid-70s with less than
3000 transistors on the chip; to very large-scale (VLSI) and ultra large-scale inte-
gration (ULSI) of the 1980s; which have over a million transistors on the chip. For
more detailed information on Jack Kirby and Texas Instruments see O’Regan
(2013).

3.4.2 Moore’s Law

Gordon Moore observed that over a period of time (from 1958 up to 1965) that the
number of transistors on an integrated circuit doubled approximately every year.
This led him to formulate what became known as Moore’s Law in 1965 (Moore
1965), which predicted that this trend would continue for at least another ten years.
He refined the law in 1975 and predicted that a doubling in transistor density would
occur every two years for the following ten years.

His prediction of exponential growth in transistor density has proved to be
accurate over the last 50 years, and the capabilities of many digital electronic
devices are linked to Moore’s Law.

51 nm (nm) is equal to 10−9 m.

3.4 Integrated Circuits 51

The exponential growth in the capability of processor speed, memory capacity
and so on is all related to this law. It is likely that the growth in transistor density
will slow down to a doubling of density every 3 years.

The phenomenal growth in productivity is due to continuous innovation and
improvement in manufacturing processes. It has led to more and more powerful
computers running more and more sophisticated applications.

3.4.3 Early Integrated Circuit Computers

It took some time for integrated circuits to take off, as they were an unproven
technology and they remained expensive until mass production. Kilby and others at
Texas Instruments successfully commercialised the integrated circuit by designing a
handheld calculator that was as powerful as the existing large, electromechanical
desktop models. The resulting electronic handheld calculator was small enough to
fit in a coat pocket. This battery-powered device could perform the four basic
arithmetic operations on six-digit numbers, and it was completed in 1967.

The earliest computers that used integrated circuits appeared in the 1960s, and
the early use of integrated circuits was mainly in embedded systems. They played
an important role in early aerospace projects such as the Apollo Guidance
Computer and Minuteman missile. The Apollo flight computer was one of the
earliest computers to use integrated circuits, and it was developed by MIT/Raytheon
and introduced in 1966. It provided capabilities for the guidance, navigation and
control of the Apollo spacecraft. The Minuteman II program used a computer built
from integrated circuits, and the guidance system of the Minuteman II interconti-
nental ballistic missile was much smaller due to their use.

DEC’s first minicomputer to use integrated circuits was the popular PDP-8
(Fig. 3.18), which was designed by Edson de Castro, and introduced in 1965.
Hewlett-Packard introduced the 2116A minicomputer in 1966, and this minicom-
puter used Fairchild Semiconductors integrated circuits.

The Honeywell ALERT airborne computer was designed to handle complex
airborne data in a real-time environment, and it was introduced in 1966. The Central
Air Data Computer, was designed in the late 1960s, and it was used for flight
control in the US Navy’s F-14A Tomcat Fighter.

3.4.4 Birth of Silicon Valley

Silicon Valley is the nickname for the southern portion of the San Francisco Bay
area, and it is home to many of the world’s largest high-tech companies as well as
thousands of start-up companies.

52 3 A Concise History of Computing

The term ‘Silicon Valley’ first appeared in the printed media in 1971, in a series
by Don Hoefler titled ‘Silicon Valley in the USA’, which was published in the
weekly newspaper Electronics News. The term was used widely from the early
1980s following the introduction of the IBM personal computer, and the high
concentration of semiconductor technology companies in the area. The word ‘sil-
icon’ originally referred to the large number of silicon chip manufacturers in the
area, as most semiconductors are made from silicon. The word ‘valley’ refers to the
Santa Clara Valley.

Bill Hewlett and Dave Packard started their two-person company
(Hewlett-Packard) in a Palo Alto garage (Fig. 3.19) on 367 Addison Street in 1938.
Fruit orchards covered the surrounding area, as Silicon Valley, as it is known today,
did not exist. This 12 by 18-foot garage is now a historical landmark, and it has
been officially declared the ‘birthplace of Silicon Valley’. HP purchased the
property in 2000 to preserve it for future generations.

William Shockley (one of the inventors of the transistor) moved from New
Jersey to Mountain View in California to start Shockley Semiconductors in 1956.
Shockley’s work served as the foundation for many electronics developments, but
his management style led to the resignation of eight key researchers in 1957 (the
‘traitorous eight’). This gang of eight went on to form Fairchild Semiconductors
and other companies in the Silicon Valley area in the following years. They
included Gordon Moore and Robert Noyce, who founded Intel in 1968. Other
employees from Fairchild Semiconductors formed companies such as National
Semiconductors and Advanced Micro Devices in the Silicon Valley area in later
years. Shockley Semiconductors and these new companies formed the nucleus of
what became Silicon Valley.

Fig. 3.18 The DEC PDP-8/e

3.4 Integrated Circuits 53

Stanford University played an important role in the development of Silicon
Valley, and Frederick Terman, the Dean of Engineering and provost of Stanford
University in the 1950s, encouraged graduates to form companies in the Silicon
Valley area. Stanford University set up an industrial park (Stanford Research Park)
for high-technology companies. Terman has been described as the father of
Silicon Valley.

3.5 IBM System 360

The IBM System/3606 was a family of mainframe computers designed and
developed by IBM. It set IBM on the road to dominate the computing field for the
next twenty years, up to the introduction of personal computers in the 1980s. It was
the beginning of an era of computer compatibility, where machines across a product
line could work with each other. It meant that IBM customers could start off with a
low specification member of the family, and upgrade over time to a more powerful
member.

This allowed the customer to choose the appropriate model to meet its current
needs, and it could upgrade to a more powerful member of the family as its needs
evolved. It was a massive $5 billion investment (bet the business gamble) by
Thomas Watson Jr., and it moved IBM from its traditional business and product
lines into the unknown with the gamble that the future would be the System/360.

Fig. 3.19 HP Palo Alto Garage. Birthplace of Silicon Valley. Courtesy of HP

6The number ‘360’ (the number of degrees in a circle) was chosen to represent the ability of each
computer to handle all types of applications.

54 3 A Concise History of Computing

Thomas Watson Jr.7 announced the System/360 in 1964, and it changed business
and the world of computing. The System 360 replaced all five of IBM’s computer
product lines with one strictly compatible family. It used a new computer archi-
tecture that employed hybrid integrated circuit technology, and it pioneered the
8-bit byte, which remains in use on every computer today.

The System/360 included a multiprogramming disk-based operating system,
which was called OS/360. It included free software packages such as compilers for
several programming languages, as well as packages for communication network
capabilities (Pugh 2009).

It was an extremely successful product line for IBM with orders rapidly
exceeding forecasts and over a thousand orders placed in the first four weeks after
the announcement. Its success made it difficult for IBM competitors8 (such as
Burroughs, Honeywell and Sperry-Rand) to compete against IBM in the
general-purpose computer market.

Monthly rental prices ranged from under $3000 per month for the most basic
system to over $100,000 per month for a large system. The purchase cost ranged
from $130,000 for a basic system to over $5 million for a large system. In 1989,
25 years after the announcement of the System/360, products based on the System/
360 architecture and its extensions still accounted for over 50% of IBM revenue.

3.5.1 Background to the Development of System/360

Thomas Watson Jr., the son of Thomas Watson Sr. (the first president of IBM),
became president of IBM in 1952. He recognised that computers would play a key
role for business in the years ahead, and he realised that the future of IBM was in
the computer business, and not in tabulators. It was clear to him that IBM needed to
change, and he played a key role in transforming the company to become the world
leader in the computer industry.

IBM was already a successful computer company in the 1950s. It introduced its
first large computer (the IBM 701) based on vacuum tubes in 1952; the IBM 650
(Magnetic Drum Calculator) in 1954, and the IBM 704 data processing system
computer in 1954. It had also played a key role in the development of the computers
for the SAGE air defence system in the United States. IBM was the market leader
and it employed over 100,000 people around the world. That is, IBM was the
‘Snow White’ of the computer industry, and Burroughs, Sperry, NCR, Control Data
Corporation, Honeywell, General Electric and RCA were the seven dwarfs of the
computer sector.

7Thomas Watson Jr. later stated, ‘The System/360 was the biggest, riskiest decision that I ever
made, and I agonised about it for weeks, but deep down I believed that there was nothing that IBM
couldn’t do’.
8IBM and its competitors were referred to as Snow White and the Seven Dwarfs.

3.5 IBM System 360 55

However, within IBM there were concerns that the company had reached a
plateau, and competitors were launching alternative products to IBM. The origins of
the System/360 go back to the late 1950s, and Watson’s determination to transform
IBM to position it for future success. IBM was supporting five different product
lines by 1959, and it was becoming a major challenge to train staff to service and
maintain software to support so many different computer products.

There were major problems with incompatibility between different hardware and
software among the different computer vendors, as well as incompatibility among
IBM’s own products. IBM had an existing product line of several computers, each
excellent, but all with incompatible architectures. It meant that customers who
wished to move up from their existing small system to a larger system had to invest
in a new system, new printers, new storage devices and new software (often totally
rewritten for the new machine).

It was clear to Watson and other senior IBM executives that there was a need to
develop a totally cohesive product line so that computers produced at different IBM
facilities would be compatible with one another. IBM set up a corporate-wide task
group to establish an overall IBM plan for its future products. The task group had
the acronym SPREAD (System Programming, Research, Engineering and Design),
and it completed its final report in late 1961. It made a series of recommendations
such as that there would be five processors spanning a 200-fold range in perfor-
mance. IBM made the brave decision in 1962 to replace the company’s entire
product line of computers, and to build a new family of compatible machines
(Fig. 3.20).

Fig. 3.20 IBM System/360. Courtesy of International Business Machines Corporation, ©
International Business Machines Corporation

56 3 A Concise History of Computing

It would mean that code written for the smallest member of the family would be
upwardly compatible with each of the processors in the family. Further, the various
peripherals such as printers and storage devices would be compatible across the
family. It was an incredibly brave decision, and Fortune Magazine later described it
as ‘IBM’s five-billion-dollar gamble’.

3.6 Minicomputers and Later Mainframes

The minicomputer was a new class of low-cost computers that arose during the
1960s. The development of minicomputers was facilitated by the introduction of
integrated circuits, and their improved performance and declining cost.
Minicomputers were distinguished from the large mainframe computers by price
and size, and they formed a class of the smallest general-purpose computers.

Mainframes were large, expensive machines (typically costing over $1 million)
and they required separate rooms for technicians and operation, whereas mini-
computers cost well under $100,000 and they were designed for direct, personal
interaction with the programmer.

Digital Equipment Corporation (DEC) and Control Data Corporation
(CDC) introduced small or minicomputers in the early 1960s. These included
DEC’s PDP-1, which was released in 1961, and the CDC-160A, which was
released in 1960. These machines cost $110,000 and $60,000, respectively, which
was a fraction of the cost of a mainframe computer.

The DEC PDP series of minicomputers became popular in the 1960s. The PDP-8
minicomputer (Fig. 3.18) was released in 1965, and it was a 12-bit machine with a
small instruction set. The PDP-11 (Fig. 3.21) was a family of 16-bit minicomputers
produced by DEC from 1970 to the early 1990s. It was DEC’s most successful
computer, with over 600,000 machines sold. It was the only 16-bit computer made by
the company, as its successor was the 32-bit VAX:11 series. It started its life as a
minicomputer and ended its life as micro/super-microcomputer. The rise of the
microprocessor and microcomputer led to the availability of low-cost personal com-
puters, and this later challengedDEC’s product line.DECwas too late in responding to
the paradigm shift in the industry, and this proved to be fatal for the company. Compaq
acquired DEC in 1998 for $9.8 billion, and HP later acquired Compaq.

Gene Amdahl was the chief architect for the IBM System/360, and he resigned
from IBM to set up Amdahl Corporation in 1970. His goals were to develop a
mainframe that would provide better performance than the existing IBM machines,
and do so a lower cost, as well as being compatible with IBM hardware and
software. Amdahl Corporation launched its first product, the Amdahl 470V/6, in
1975. This was an IBM S/370 compatible mainframe that could run IBM software,
and so it was an alternative to a full IBM proprietary solution. It meant that
companies around the world now had the choice of continuing to run their software
on IBM machines or purchasing the cheaper and more powerful IBM compatibles

3.5 IBM System 360 57

produced by Amdahl. Amdahl Corporation became a major competitor to IBM in
large-scale computer placements.

IBM launched a new product, the IBM 3033, in 1977 to compete with the
Amdahl 470. However, Amdahl Corporation responded with a new machine, the
470V/7, which was one and a half times faster than the 3033, and only slightly
more expensive. Customers voted with their feet and chose Amdahl as their sup-
plier, and by late 1978 it had sold over a hundred of the 470V/7 machines.

IBM introduced a medium-sized computer, the 4300 series, in early 1979, and in
late 1980 it announced plans for the 3081 processor, which would have twice the
performance of the existing 3033 on its completion in late 1981. In response, Amdahl
announced the 580 series that would have twice the performance of the existing 470
series. The 580 series was released in mid-1982, but their early processors had some
reliability problems and lacked some of the features of the new IBM product.

Amdahl moved into large system multiprocessor design from the mid-1980s. It
introduced its 5890 model (Fig. 3.22) in late 1985, and its superior performance
allowed Amdahl to gain market share and increase its sales to approximately
$1 billion in 1986. It now had over 1300 customers in around twenty countries
around the world. It launched a new product line, the 5990 processor, in 1988, and
this processor outperformed IBM by 50%. Customers voted with their feet and
chose Amdahl as their supplier.

It was clear that Amdahl was now a major threat to IBM in the high-end
mainframe market. Amdahl had a 24% market share and annual revenues of
$2 billion at the end of 1988. This led to a price war with IBM, with the latter
offering discounts to its customers to protect its market share. Amdahl responded
with its own discounts, and this led to a reduction in profitability for the company.

The IBM personal computer was introduced in the early 1980s, and by the early
1990s, it was clear that the major threat to Amdahl was the declining mainframe

Fig. 3.21 PDP-11
minicomputer

58 3 A Concise History of Computing

market rather than IBM. Revenue and profitability fell, and Amdahl shut factory
lines and cut staff numbers. By the late 1990s, Amdahl was making major losses,
and there were concerns about the future viability of the company. Amdahl became
a wholly owned subsidiary of Fujitsu in 1997, and it exited the mainframe business
in 2002.

3.7 Microprocessor Revolution

The invention of the microprocessor (initially called microcomputer) in 1971 was a
revolution in computing. It meant that the power of a computer was now available
on a tiny microprocessor chip, and its invention made handheld calculators and
personal computers (PCs) possible. Intel’s microprocessors are used on most PCs
and laptops around the world.

A microprocessor is a central part of a modern personal computer (or computer
device). It integrates the functions of the central processing unit (the part of a
computer that processes the program instructions) onto a single integrated circuit,
and places a vast amount of processing power in a tiny space.

The microprocessor was initially developed as an enhancement to allow users to
add more memory to their units. However, it soon became clear that it had great
potential for everything from calculators to cash registers and traffic lights. Its
invention made personal computers, tablets and mobile phones possible.

The invention of the microprocessor happened by accident rather than design.
The Nippon Calculating Machine Corporation (later known as Busicom), a
Japanese company, requested Intel to design a set of integrated circuits for its new

Fig. 3.22 Amdahl 5890. Courtesy of Robert Broughton, University of Newcastle

3.6 Minicomputers and Later Mainframes 59

family of high-performance programmable calculators. At that time, it was standard
practice to custom design all logic chips for each customer’s product, and this
clearly limited the applicability of a logic chip to a specialised domain.

The design proposed by Busicom required twelve integrated circuits. Ted Hoff,
an Intel engineer, studied Busicom’s design and he rejected it as unwieldy. He
proposed a more elegant solution requiring just four integrated circuits, and his
design included a chip that was a general-purpose logic device (microprocessor)
that derived its application instructions from the semiconductor memory. Busicom
accepted his proposed design, and Intel engineers then implemented it.

Hoff’s 4004-microprocessor design (Fig. 3.23) included a central processing
unit (CPU) on one chip. It contained 2300 transistors on a one-eighth by
one-sixth-inch chip surrounded by three ICs containing ROM, shift registers, input/
output ports and RAM.

Busicom had exclusive rights to the design and components, but following
discussion and negotiations, Busicom agreed to give up its exclusive rights to the
chips. Intel shortly afterwards announced the availability of the first microproces-
sor, the Intel 4004.

This was the world’s first microprocessor, and although it was initially devel-
oped as an enhancement to allow users to add more memory to their units, it soon
became clear that the microprocessor could be applied to many other areas.

This small Intel 4004 microprocessor chip was launched in late 1971, and it
could execute 60,000 operations per second. The tiny chip had an equivalent
computing power as the large ENIAC computer, which used 18,000 vacuum tubes,
and took up the space of an entire room (O’Regan 2016a).

The Intel 4004 sold for $200 and for the first-time affordable computing power
was available to designers of all types of products. The introduction of the
microprocessor was a revolution in computing, and its invention had applications to
everything from traffic lights, to medical instruments, and to the development of
home and personal computers.

Fig. 3.23 Intel 4004
microprocessor

60 3 A Concise History of Computing

Gary Kildall was one of the early people to recognise the potential of the
microprocessor as a computer in its own right, and he began writing experimental
programs for the Intel 4004 in the early 1970s. Kildall worked as a consultant with
Intel on the later 8008 and 8080 microprocessors.

He developed the first high-level programming language for a microprocessor
(PL/M) in 1973, which enabled programmers to write applications for micropro-
cessors. He developed the CP/M operating system (Control Program for
Microcomputers), which allowed the Intel 8080 microprocessor to control a floppy
disk drive allowing files to be read and written to and from an eight-inch floppy
disk. CP/M made it possible for computer hobbyists and companies to build the first
home computers.

Kildall made CP/M hardware independent by creating a separate module called
the BIOS (Basic Input/Output System). He added several utilities such as an editor,
debugger and assembler, and by 1977 several manufacturers were including CP/M
with their systems. He set up Digital Research Inc. (DRI) in 1976 to commercialise
the CP/M operating system.

3.7.1 Early Microprocessors

Intel has introduced more and more powerful microprocessors since its invention of
the Intel 4004 in 1971. The Intel 8008 was launched in 1972, and it led to the 8-bit
Intel 8080 microprocessor, which was released in 1974. The Intel 8080 was the first
general-purpose microprocessor, and it was sold for $360, i.e. a whole computer on
one chip was sold for $360, while conventional computers were sold for hundreds
of thousands of dollars. The Intel 8080 soon became the industry standard, and Intel
became the industry leader in the 8-bit market. The 8080 played an important role
in starting personal computer development, as it attracted the interest of computer
developers and engineers.

IBM considered several microprocessors for its IBM PC including the IBM 801
processor, the Motorola 68000 microprocessor, and the Intel 8088 microprocessor.
IBM chose the Intel 8088 chip (which was cheaper than the 16-bit Intel 8086), and
it took a 20% stake in Intel leading to strong ties between both companies.

Today, Intel’s microprocessors are used on most personal computers around the
world, and the contract to supply the Intel 8088 microprocessor was a major turning
point for the company. Intel had been focused more on the sale of dynamic
random-access memory chips, with sales of microprocessors in thousands or in tens
of thousands. However, sales of microprocessors rocketed following the intro-
duction of the IBM PC, and soon sales were in tens of millions of units.

The cost of computing processing power has fallen exponentially since the
introduction of the first microprocessor, and Intel has played a key role in squeezing
more and more transistors onto a chip leading to more and more powerful micro-
processors and personal computers.

3.7 Microprocessor Revolution 61

3.8 Home Computers

The invention of the microprocessor was a revolution in computing, and it led to the
development of home and personal computers. We discuss a selection of home
computers in this section, including the MITS Altair 8800; the Apple I and II
computers; the Commodore PET and Commodore 64 computers; and the Atari 400
and 800 computers. We discuss the Apple Macintosh computer, which was a major
milestone in computing.

Many of the early home computers were based on the inexpensive 8-bit MOS
6502 microprocessor (e.g. Apple I, the Atari 400 and the Commodore PET).
The MITS Altair 8800 was based on the Intel 8080 microprocessor, and later home
and personal computers used a variety of microprocessors. The Apple Macintosh
was based on the Motorola 68000 microprocessor, and the Atari personal computer
was based on the Intel 8088 microprocessor.

We start with a discussion of the Xerox Alto computer, which was developed at
Xerox PARC. It pioneered several key concepts in personal computing and had a
major impact on the design of the Apple Macintosh.

3.8.1 Xerox Alto Personal Computer

The Xerox Alto (Fig. 3.24) was one of the earliest personal computers, and it was
introduced in early 1973. Chuck Thacker and others at Xerox designed it, and it was
one of the first computers to use a mouse-driven graphical user interface. It was
designed for individual rather than home use and was used by a single person sitting
at a desk. It was essentially a small minicomputer rather than a personal computer,
and it was unlike modern personal computers in that it was not based on the
microprocessor. The significance of the Xerox Alto is that it had a major impact on
the design of early personal computers, and especially on the design of the Apple
Macintosh computer.

3.8.2 MITS Altair 8800

Micro Instrumentation and Telemetry Systems (MITS) was founded by Ed Roberts
and others in 1969. Roberts had a background in electronics from the US military,
and the initial focus of the company was to design and sell electronic kits to model
rocket enthusiasts. This had become a popular hobby in the 1960s, due to manned
space flights and the race to the moon.

MITS began working on the Altair 8800 home computer (Fig. 3.25) in 1974,
and the prototype was available in October of that year. The cover page of the
January 1975 edition of Popular Electronics featured an early design of the Altair

62 3 A Concise History of Computing

8800, and this publicity helped in generating sales that vastly exceeded expecta-
tions. Over 5000 machines were delivered by August 1975, and the home computer
kit version (which was assembled by the customer) cost $439, whereas the fully
assembled version cost $621.

The home kit included assembly instructions, a metal case, a front panel with
switches, a power supply, a motherboard with expansion slots and various cards to
plug into the expansion slots, as well as any other components required to build the
computer. The actual assembly was quite a challenge as it involved careful sol-
dering and assembly. There was no actual keyboard or monitor, which meant that
the task of programming the machine was non-trivial, and required the user to
program in machine language and watch the LEDs on the front panel to get the
results. Several expansion cards (e.g. for keyboard, monitor and data storage) were
soon released, and this made it easier to use. The Altair 8800 used the 8-bit Intel
8080 microprocessor, which was introduced in 1974.

Fig. 3.24 Xerox Alto

Fig. 3.25 MITS Altair
Computer. Photo Public
Domain

3.8 Home Computers 63

Bill Gates and Paul Allen developed a BASIC interpreter for the Altair 8800, and
the 4k/8k versions of BASIC were released in July 1975. This cost the customer an
additional $60/$75. Gates and Allen formed Microsoft later in 1975, and
Altair BASIC was their first product.

3.8.3 Apple I and II Home Computers

Steve Jobs and Steve Wozniak formed Apple Computer, Inc. in 1976, and the
company commenced operations in Jobs’ family garage. Their goal was to develop
a user-friendly alternative to the existing mainframe and minicomputers produced
by IBM and Digital. Wozniak was responsible for product development and Jobs
for marketing. Jobs and Wozniak were both college dropouts, and both attended the
Homebrew Computer Club of computer enthusiasts in Silicon Valley during the
mid-1970s.

The Apple I computer was released in 1976, and it was mainly of interest to
computer hobbyists and engineers. This was since it was not a fully assembled
personal computer as such, and it was essentially an assembled motherboard that
lacked features such as a keyboard, monitor and case. It used a television as the
display system, and it had a cassette interface to allow programs to be loaded and
saved. It used the inexpensive MOS Technologies 6502 microprocessor chip, which
had been released earlier that year, and Wozniak had already written a BASIC
interpreter for this chip.

The Apple II computer (Fig. 3.26) was released in 1977, and it was a significant
advance on its predecessor. It was a personal computer with a monitor, keyboard
and case, and it was one of the earliest computers to come pre-assembled. It was a
popular 8-bit home computer, and it was one of the earliest computers to have a
colour display with colour graphics.

The BASIC programming language was built in, and it contained 4K of RAM
(which was could be expanded to 48K). The VisiCalc spreadsheet program was
released on the Apple II, and this helped to transform the computer into a credible
business machine. For more detailed information on Apple see O’Regan (2015).

3.8.4 Commodore PET

Commodore Business Machines was a leading North American home computer and
electronics manufacturing company. It played an important role in the development
of the home computer industry in the 1970s and 1980s, and it is especially famous
for its development of the Commodore PET computer, which was very popular in
the education field. It also developed the popular VIC-20 and Commodore 64 home
computers.

64 3 A Concise History of Computing

Commodore initially manufactured typewriters for the North American market,
and it diversified into the manufacture of mechanical calculators from the early
1960s. It introduced both consumer and scientific calculators in the late 1960s, and
by the early 1970s it was one of the most popular brands. The calculators used
Texas Instruments chips but when Texas Instruments entered the calculator market
in the mid-1970s, Commodore was unable to compete with their prices.

Commodore purchased the semiconductor company, MOS technologies, with
the intention of using MOS chips in its calculators. However, Chuck Peddle, one of
MOS’s employees convinced Commodore that the future was in computers and not
calculators. Commodore used one of MOS’s Technologies chips, the 8-bit 6502, to
enter the home computer market in 1977 with the launch of its Commodore
Personal Electronic Transactor (PET) computer.

This Commodore PET was very popular in the education market and one of its
models was called the ‘Teachers PET’. It used the MOS 8-bit 6502 microprocessor,
which was designed by Chuck Peddle and others at MOS Technology. The 6502
controlled the screen, keyboard, the cassette recorder and any peripherals connected
to the expansion ports. The machine used the Commodore BASIC operating sys-
tem. There were several models of the Commodore PET introduced during its
lifetime including the PET 2001 series, the PET 4000 series and the Super PET
8000 series.

The first model introduced was the PET 2001 (Fig. 3.27), which had either 4 Kb
or 8 Kb of RAM. It had a built-in monochrome monitor with 40 � 25 character
graphics enclosed in a metal case. It included a magnetic data storage device known
as a datasette (data + cassette) in the front of the machine as well as a small
keyboard. There were complaints with respect to the small keyboard, which soon
led to the appearance of external replacement keyboards.

Fig. 3.26 Apple II
Computer. Photo Public
Domain

3.8 Home Computers 65

Commodore introduced other models such as the PET 4000-series and the
8000-series. For more detailed information on Commodore see O’Regan (2015).

3.8.5 Atari 400 and 800

Atari designed and produced four lines of home and personal computers from the
late 1970s up to the early 1990s. These were the 8-bit Atari 400 and 800 lines, the
16-bit ST line, the IBM PC compatible series and the 32-bit series.

The Atari 8-bit series began as a next-generation follow up to its successful Atari
2600 video game console. Atari’s management noted the success of Apple in
the early personal computer market, and they tasked their engineers to transform the
hardware into a personal computer system. The net result was the Atari 400 and the
Atari 800 home computers, which were introduced in 1979.

The Atari 800 (Fig. 3.28) came with 8 KB of RAM and the Atari 400 was a
lower specification version. Both machines were based on the MOS 6502 micro-
processor, and they provided sound and graphics capabilities that were superior to
competitor products such as the Apple II or the Commodore PET.

The Atari 400 and 800 made an impact on the home computing field, and both
machines included joystick ports for playing games. Atari BASIC was provided on
an external cartridge for each machine.

Fig. 3.27 Commodore PET
2001 Home Computer

66 3 A Concise History of Computing

The Atari 400 was Atari’s entry-level computer, and it was designed for younger
children. It had a membrane keyboard designed to prevent damage from food or
small objects, and the keys could not be removed or swallowed by children. It was
initially designed for 4K of memory but as memory costs declined it was shipped
with 8K (and later 16K). This meant that it could run most cartridge- and
cassette-based software. It was connected to a standard television.

The Atari 800 came with a graphics/audio chipset that allowed it to produce the
most advanced graphics and sound on an existing home computer system. For more
detailed information on Atari see O’Regan (2015).

3.8.6 Commodore 64

The Commodore 64 (C64) was a very successful 8-bit home computer introduced
by Commodore in 1982 (Fig. 3.29). It used the MOS 6501 microprocessor and it
came with 64 kbyte of RAM. It had 320 � 200 colour graphics with 16 colours
using the VIC-II graphics chip, and the MOS Sound Interface Device
(SID) chip. The SID chip was one of the first sound chips to be included in a home
computer. The C64 dominated the low-end home computer market for most of the
1980s, and approximately 15 million of the Commodore 64 machines were sold.

It came with the Commodore BASIC, but support for other languages was also
available. The Commodore 64’s graphics and sound capabilities were quite
advanced for the time, and the C64 was very popular for computer games.
Commodore published detailed technical documentation to assist programmers and

Fig. 3.28 The Atari 800
Home Computer

Fig. 3.29 Commodore 64
Home Computer

3.8 Home Computers 67

enthusiastic users to develop applications, and this led to over 10,000 commercial
software applications such as development tools, games and office productivity
applications for the machine.

The C64 included a ROM-based version of the BASIC 2.0 programming lan-
guage. There was no operating system as such, and instead, the kernel was accessed
via BASIC commands. BASIC did not provide commands for sound or graphics
manipulation, and instead, the user had to use the ‘POKE’ command to access these
chips directly. The Commodore 64 remained highly popular throughout the 1980s,
and there is a more detailed account of Commodore in Bagnall (2012).

3.8.7 Apple Macintosh

The Apple Macintosh (Fig. 3.30) was announced during a famous television
commercial played during the third quarter of the Super Bowl in January 1984. This
was one of the most creative advertisements of all time, and it ran just once on
television. It generated more excitement than any other advertisement up to then,
and it immediately positioned Apple as a creative and innovative company, while
implying that its competition (i.e. IBM) was stale and robotic.

It presented Orwell’s totalitarian world of 1984, with a lady runner with orange
shorts and a white tee shirt with a picture of the Apple Macintosh running towards a
big screen, and hurling a hammer at the big brother character on the screen. The
audience is stunned at the broken screen and the voice over states ‘On January 24th
Apple will introduce the Apple Macintosh and you will see why 1984 will not be like
“1984”’. Ridley Scott who has directed well-known films such as Alien, Blade
Runner, Robin Hood and Gladiator directed the short film.

Fig. 3.30 Apple Macintosh
Computer. Photo Public
Domain

68 3 A Concise History of Computing

The Macintosh project began in Apple in 1979 with the goal of creating an
easy-to-use low-cost computer for the average consumer. It was influenced by the
design of the Apple Lisa, and it employed the Motorola 68000 processor. Steve
Jobs became involved in the project in 1981, and he negotiated a deal with Xerox
that allowed him and other Apple employees to visit the Xerox PARC research
centre at Palo Alto in California to see their pioneering work on the Xerox Alto
computer. PARC’s research work had a major influence on the design and devel-
opment of the Macintosh, as Jobs was convinced that future computers would use a
graphical user interface. The design of the Macintosh included a friendly and
intuitive graphical user interface (GUI), and the release of the Macintosh was a
major milestone in computing.

The Macintosh was a much easier machine to use than the existing IBM PC. Its
friendly and intuitive graphical user interface was a revolutionary change from the
command-driven operating system of the IBM PC, which required the users to be
familiar with its operating system commands. The introduction of the Mac GUI is
an important milestone in the computing field, and it was 1990 before Microsoft
introduced its Windows 3.0 GUI-driven operating system.

Apple intended that the Macintosh would be an inexpensive and user-friendly
personal computer that would rival the IBM PC and compatibles. However, it was
significantly more expensive than the IBM PC, and initially it had a limited number
of applications available, whereas the IBM PC had spreadsheets, word processors
and databases applications, and so it was more attractive to customers. The tech-
nically superior Apple Macintosh was unable to break the IBM dominance of the
market. However, the machine became very popular in the desktop publishing
market, due to its advanced graphics capabilities.

3.9 The IBM Personal Computer

The introduction of the IBM personal computer was a paradigm shift in computing
with computing power placed in the hands of millions of people. The previous
paradigm was that an individual user had limited control over a computer, with the
system administrators controlling the access privileges of the users. Today’s per-
sonal computers are more powerful than the mainframes that were used to send man
to the moon.

IBM introduced the IBM Personal Computer (PC) in 1981 as a machine to be
used by small businesses and users in the home. The IBM goal at the time was to
get quickly into the home computer market, which was then dominated by
Commodore, Atari and Apple.

IBM assembled a small team of twelve people led by Don Estridge (Fig. 3.31),
and their objective was to get the personal computer to the market as quickly as
possible. They designed and developed the IBM PC within one year, and as time to
market was the key driver they built the machine with ‘off-the-shelf’ parts from
several equipment manufacturers.

3.8 Home Computers 69

IBM’s traditional approach up to then in product development was to develop a
full proprietary solution. However, due to the aggressive timescales associated with
the introduction of the IBM PC, it decided instead to outsource the development of
the microprocessor to a small company called Intel and to outsource the develop-
ment of the operating system to a small company called Microsoft.

The team had intended using the IBM 801 processor, which was developed at
the IBM Research Centre in Yorktown Heights. However, they decided instead to
use the Intel 8088 microprocessor, which was inferior to the IBM 801. They chose
the PC/DOS operating system from Microsoft rather than developing their own
operating system. These decisions would later prove costly to IBM, as Microsoft
and Intel reaped the benefits and later became technology giants.

The unique IBM elements in the personal computer were limited to the system
unit and keyboard. The team decided on an open architecture so that other man-
ufacturers could produce and sell peripheral components and software without
purchasing a license. They published the IBM PC Technical Reference Manual,
which included the complete circuit schematics; the IBM ROM BIOS source code,
and other engineering and programming information.

The IBM PC (Fig. 3.32) was the cheapest IBM computer produced up to then,
and it was priced at an affordable $1565. It offered 16 kbyte of memory (expandable
to 256 kbyte), a floppy disk, a keyboard and a monitor. The IBM personal computer
became an immediate success, and it became the industry standard.

The open architecture led to a new industry of ‘IBM-compatible’ computers,
which had all the essential features of the IBM PC, except that they were cheaper.

The development of the IBM PC meant that computers were now affordable to
ordinary users, and this led to a huge consumer market for personal computers and
software. It led to the development of business software such as spreadsheets and
accountancy packages, banking packages, programmer developer tools such as
compilers for various programming languages; specialised editors; and computer
games.

The introduction of the personal computer was a paradigm shift in computing,
and it led to a fundamental change in the way in which people worked. It placed
computing power directly in the hands of millions of people, with individual users

Fig. 3.31 Don Estridge.
Courtesy of International
Business Machines
Corporation, © International
Business Machines
Corporation

70 3 A Concise History of Computing

having complete control over the machine. The previous paradigm was that the
system administrators strictly controlled the access privileges of the individual
users, and so users had limited control over the computer. The introduction of the
client-server architecture led to the linking of the personal computers (clients) to
larger computers (servers). These servers contained large amounts of data that could
be shared with the individual client computers.

The IBM strategy in developing the IBM personal computer was deeply flawed,
and it cost the company dearly. IBM had traditionally produced all the components
for its machines, but with its open architecture model, any manufacturer could now
produce an IBM compatible machine. IBM had outsourced the development of the
microprocessor chip to Intel, and Intel later became the dominant player in the
microprocessor industry.

The development of the operating system, PC/DOS (PC Disk Operating System)
was outsourced to a small company called Microsoft.9 This proved to be a major
mistake by IBM, as the terms of the licensing deal with Microsoft were favourable
to the latter, and it allowed Microsoft to sell its own version of the operating system
(i.e. MS/DOS) to other manufacturers as the operating system for the IBM com-
patibles. The IBM compatibles were cheaper than the IBM PC, and over time came
to dominate the personal computer market. This led inexorably to the rise of the
Microsoft Corporation.

Fig. 3.32 IBM Personal
Computer. Courtesy of
International Business
Machines Corporation, ©
International Business
Machines Corporation

9Microsoft was founded by Bill Gates and Paul Allen in 1975.

3.9 The IBM Personal Computer 71

3.9.1 Operating System for IBM PC

Digital Research lost out on the opportunity of a lifetime to supply the operating for
the IBM personal computer to IBM, and instead, it was Microsoft that reaped the
benefits. Bloomberg Business Week published an article in 2004 describing
the background to the development of the operating system for the IBM PC, and the
failed negotiations between Digital Research and IBM on the licensing of the CP/M
operating system. The article was titled ‘The Man who could have been Bill Gates’
(Bloomberg Business Week Magazine 2004).

The IBM team initially asked Bill Gates and Microsoft in Seattle to supply them
with an operating system.Microsoft had already signed a contract with IBM to supply
a BASIC interpreter for the IBMPC, but they lacked the expertise in operating system
development. Gates referred IBM to Gary Kildall at DRI, and the IBM team
approached Digital Research with a view to licensing its CP/M operating system.

Digital Research was working on a new version of CP/M for the 16-bit Intel
8086 microprocessor, which had been introduced in 1978. IBM decided to use the
lower cost Intel 8088 microprocessor (a slower version of the 8086) for its new
personal computer.

IBM and Digital Research failed to reach an agreement on the licensing of CP/M
for the IBM PC. The precise reasons for failure are unclear, but some immediate
problems arose with respect to the signing of an IBM non-disclosure agreement
during the visit. It is unclear whether Kildall met with IBM and whether there was
an informal handshake agreement between both parties. However, there was no
documented legal agreement between IBM and DRI.

There may also have been difficulties in relation to the amount of royalty pay-
ment being demanded by Digital Research, as well as practical difficulties in
achieving the required IBM delivery schedule (due to Digital Research’s existing
commitments to Intel).

Gates offered to provide an operating system (later called PC/DOS) and BASIC
to IBM on favourable terms. IBM accepted the offer, and the contract allowed
Microsoft to market and sell its version (MS/DOS) of the operating systems on IBM
compatibles. Microsoft reaped the benefits, as sales of IBM compatibles soared, and
MS/DOS became the dominant operating system for personal computers.

Gates was aware of the work done by Tim Patterson on a simple quick and dirty
version of CP/M (called QDOS) for the 8086 microprocessor for Seattle Computer
Products (SCP). Gates licensed QDOS for $50,000, and he hired Patterson to
modify it to run on the IBM PC for the Intel 8088 microprocessor. Gates then
licensed the operating system to IBM for a low per-copy royalty fee.

IBM called the new operating system PC/DOS, and Microsoft retained the rights
to MS/DOS, which was used on IBM compatible computers produced by other
hardware manufacturers. In time, MS/DOS would become the dominant operating
system (eclipsing PC/DOS due to the open architecture of the IBM PC and the rapid
growth of clones) leading to the growth of Microsoft into a major corporation.

72 3 A Concise History of Computing

DRI released CP/M-86 shortly after IBM released PC DOS. Kildall examined
PC/DOS, and it was clear to him that it had been derived from CP/M. He was
furious and met separately with IBM and Microsoft, but nothing was resolved.
Digital Research considered suing Microsoft for copying all the CP/M system calls
in DOS 1.0, as it was clear that Patterson’s QDOS was a copy of CP/M.

Kildall considered his legal options but his legal advice suggested that as
intellectual copyright law with respect to software had only been recently intro-
duced in the United States, that it was not clear what constituted infringement of
copyright. There was no guarantee of success in any legal action against IBM, and
considerable expense would be involved. Kildall threatened IBM with legal action,
and IBM agreed to offer both CP/M-86 and PC-DOS. However, as CP/M was
priced at $240 and DOS at $60, few personal computer owners were willing to pay
the extra cost. CP/M was to fade into obscurity.

Perhaps, if Kildall had played his hand differently Digital Research could well
have been, the ‘Microsoft’ of the PC industry. Kildall’s delay in developing the
operating system gave Patterson the opportunity to create his own version. IBM
was under serious time pressures with the development of the IBM PC, and Kildall
may have been unable to meet the IBM deadline. This may have resulted in IBM
dealing with Gates instead of DRI.

Further, the size of the royalty fee demanded by Kildall for CP/M resulted in
very low sales for the DRI product, whereas if a more realistic price had been
proposed then DRI may have made some reasonable revenue. Nevertheless, Kildall
could justly feel hard done by, and he may have viewed Microsoft’s actions as the
theft of his intellectual ideas and technical inventions.

3.10 Review Questions

1. Explain what is meant by a ‘stored program’ computer.
2. Explain the significance of the work done at Bletchley Park.
3. Describe the work of the University of Manchester in early computing.
4. Explain the significance of the transistor in the computing field.
5. Explain the significance of the SAGE system to the computing field.
6. Describe the contributions of IBM to the computing field.
7. Explain the significance of Moore’s Law.
8. What is an integrated circuit?
9. Why did IBM decide to develop the System/360?

10. Describe the competition between Amdahl Corporation and IBM.
11. What is the significance of the Intel 4004?
12. What are the main contributions made by Intel to the semiconductor field?
13. What is the significance of the Xerox Alto in the history of computing?
14. Discuss the contributions of DRI to the computing field.

3.9 The IBM Personal Computer 73

3.11 Summary

This chapter considered some of the earliest computers developed in the United
States (ENIAC and EDVAC), Britain (Colossus and Manchester Mark I), and
Germany (Z1-Z3). The Second World War led to research into the development of
digital computers to determine if they could provide faster methods of computation.
The early computers were mainly large bulky machines consisting of several
thousand vacuum tubes.

We discussed early commercial computers as well as the SAGE air defence
system. We discussed the invention of the transistor, and it led to smaller, faster and
more reliable computers. The integrated circuit consists of a set of electronic cir-
cuits on a small chip of semiconductor material, and it is much smaller than a circuit
made from independent components. Its invention was a revolution in computing,
and it shrunk the size and cost of making electronics.

The IBM System/360 was a family of small to large computers, and it was a
paradigm shift away from the traditional ‘one size fits all’ philosophy of the
computer industry. The minicomputer was a new class of low-cost computers and
their development was facilitated by the introduction of integrated circuits, as this
helped to reduce cost and size of computers. Minicomputers formed a class of the
smallest general-purpose computers.

Intel’s invention of the microprocessor in 1971 changed computing forever, and
it placed the power of a computer on a tiny chip. A microprocessor is a central part
of a modern personal computer (or computer device), and it places a vast amount of
processing power on a tiny chip.

It led to the development of home and personal computers, and many of the early
home computers were based on the 8-bit MOS 6502 microprocessor, with later
home and personal computers using a variety of microprocessors such as the 8-bit
Zilog Z80 microprocessor; the Motorola 68000 microprocessor, the Intel 8088
microprocessor and later, Intel microprocessors.

We discussed various home computers such as the Apple I and II computers; the
Commodore PET computer; the Atari 400 and 800 computers; the Commodore 64
computer and the Apple Macintosh computer. The IBM Personal Computer was
introduced in 1981 and was a major milestone in the computing field.

74 3 A Concise History of Computing

Chapter 4
Overview Mathematics in Computing

Key Topics

Sets
Set Operations
Russell’s Paradox
Computer Representation of Sets
Relations
Composition of Relations
Functions
Partial and Total Functions
Functional Programming
Number Theory
Automata Theory
Graph Theory

4.1 Introduction

This chapter introduces the essential mathematics for computing and discusses
fundamental concept such as sets, relations and functions. Sets are collections of
well-defined objects; relations indicate relationships between members of two sets
A and B; and functions are a special type of relation where there is exactly (or at
most)1 one relationship for each element a 2 A with an element in B.

A set is a collection of well-defined objects that contains no duplicates. The term
‘well defined’ means that for a given value it is possible to determine whether or not
it is a member of the set. There are many examples of sets such as the set of natural
numbers ℕ, the set of integer numbers ℤ and the set of rational numbers ℚ. The
natural numbers ℕ is an infinite set consisting of the numbers {1, 2, …}. Venn
diagrams may be used to represent sets pictorially.

1We distinguish between total and partial functions. A total function f : A ! B n : ℕ in A whereas
a partial function may be undefined for one or more values in A.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_4&domain=pdf

A binary relation R (A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A and the co-domain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) 2 R. An n-ary relation R (A1, A2, … An) is a subset of
(A1 � A2 � ⋯ � An). However, an n-ary relation may also be regarded as a binary
relation R(A, B) with A = A1 � A2 � ⋯ � An-1 and B = An.

Functions may be total or partial. A total function f : A ! B is a special relation
such that for each element a 2 A there is exactly one element b 2 B. This is written
as f(a) = b. A partial function differs from a total function in that the function may
be undefined for one or more values of A. The domain of a function (denoted by
dom f) is the set of values in A for which the partial function is defined. The domain
of the function is A if f is a total function. The co-domain of the function is B.

We introduce topics such as number theory, automata theory and graph theory.
Number theory is the branch of mathematics that is concerned with the mathe-
matical properties of the natural numbers and integers. Automata theory is the
branch of computer science that is concerned with the study of abstract machines
and automata. These include finite-state machines, pushdown automata and Turing
machines. Graph theory is a practical branch of mathematics that deals with the
arrangements of certain objects known as vertices (or nodes) and the relationships
between them. We briefly discuss computability and decidability and more detailed
information on mathematics in computing is available in O’Regan (2012, 2017).

4.2 Set Theory

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and they
are distinct with no repetition of the same element in the set.2 Most sets encountered
in computer science are finite, as computers can only deal with finite entities. Venn
diagrams3 are often employed to give a pictorial representation of a set, and to
illustrate various set operations such as set union, intersection and set difference.

There are many well-known examples of sets including the set of natural
numbers denoted by ℕ, the set of integers denoted by ℤ, the set of rational numbers
denoted by ℚ, the set of real numbers denoted by ℝ and the set of complex numbers
denoted by ℂ.

2There are mathematical objects known as multi-sets or bags that allow duplication of elements.
For example, a bag of marbles may contain three green marbles, two blue and one red marble.
3The British logician, John Venn, invented the Venn diagram. It provides a visual representation of
a set and the various set theoretical operations. Their use is limited to the representation of two or
three sets as they become cumbersome with a larger number of sets.

76 4 Overview Mathematics in Computing

Example 4.1 The following are examples of sets:

– The books on the shelves in a library.
– The books that are currently overdue from the library.
– The customers of a bank.
– The bank accounts in a bank.
– The set of natural numbers ℕ = {1, 2, 3, …}.
– The Integer Numbers ℤ = {…, −3, −2, −1, 0, 1, 2, 3, …}.
– The non-negative integers ℤ+ = {0, 1, 2, 3, …}.
– The set of Prime Numbers = {2, 3, 5, 7, 11, 13, 17, …}.
– The Rational Numbers is the set of quotients of integers.

Q ¼ fp=q : p; q 2 Z and q 6¼ 0g

A finite set may be defined by listing all its elements. For example, the set
A = {2, 4, 6, 8, 10} is the set of all even natural numbers less than or equal to 10.
The order in which the elements are listed is not relevant: i.e. the set {2, 4, 6, 8, 10}
is the same as the set {8, 4, 2, 10, 6}.

a
b

A

Sets may be defined by using a predicate to constrain set membership. For
example, the set S = {n : ℕ : n � 10 ^ n mod 2 = 0} also represents the set {2, 4,
6, 8, 10}. That is, the use of a predicate allows a new set to be created from an
existing set by using the predicate to restrict membership of the set. The set of even
natural numbers may be defined by a predicate over the set of natural numbers that
restricts membership to the even numbers. It is defined by

Evens ¼ fxjx 2 N ^ even xð Þg:

In this example, even(x) is a predicate that is true if x is even and false otherwise.
In general, A = {x 2 E|P(x)} denotes a set A formed from a set E using the pred-
icate P to restrict membership of A to those elements of E for which the predicate is
true.

The elements of a finite set S are denoted by {x1, x2, … xn}. The expression
x 2 S denotes that the element x is a member of the set S, whereas the expression
x 62 S indicates that x is not a member of the set S.

A set S is a subset of a set T (denoted S � T) if whenever s 2 S then s 2 T, and
in this case the set T is said to be a superset of S (denoted T � S). Two sets S and
T are said to be equal if they contain identical elements: i.e. S = T if and only if
S � T and T � S. A set S is a proper subset of a set T (denoted S � T) if S � T and
S 6¼ T. That is, every element of S is an element of T and there is at least one

4.2 Set Theory 77

element in T that is not an element of S. In this case, T is a proper superset of
S (denoted T � S).

T

S

The empty set (denoted by ∅ or {}) represents the set that has no elements.
Clearly ∅ is a subset of every set. The singleton set containing just one element x is
denoted by {x}, and clearly x 2 {x} and x 6¼ {x}. Clearly, y 2 {x} if and only if
x = y.

Example 4.2

(i) 1; 2f g� 1; 2; 3f g.
(ii) £ � N � Z � Q � R � C.

The cardinality (or size) of a finite set S defines the number of elements present
in the set. It is denoted by |S|. The cardinality of an infinite4 set S is written as
|S| = ∞.

Example 4.3

(i) Given A = {2, 4, 5, 8, 10} then |A| = 5.
(ii) Given A = {x 2 ℤ : x 2 = 9} then |A| = 2.
(iii) Given A = {x 2 ℤ : x 2 = −9} then |A| = 0.

4.2.1 Set Theoretical Operations

Several set theoretical operations are considered in this section. These include the
Cartesian product operation, the power set of a set, the set union operation, the set
intersection operation, the set difference operation and the symmetric difference
operation.

Cartesian Product
The Cartesian product allows a new set to be created from existing sets. The
Cartesian5 product of two sets S and T (denoted S � T) is the set of ordered pairs

4The natural numbers, integers and rational numbers are countable sets (i.e. they may be put into a
one-to-one correspondence with the natural numbers), whereas the real and complex numbers are
uncountable sets.
5Cartesian product is named after René Descartes who was a famous seventeenth-century French
mathematician and philosopher. He invented the Cartesian coordinates system that links geometry
and algebra, and allows geometric shapes to be defined by algebraic equations.

78 4 Overview Mathematics in Computing

{(s, t) | s 2 S, t 2 T}. Clearly, S � T 6¼ T � S and so the Cartesian product of two
sets is not commutative. Two ordered pairs (s1, t1) and (s2, t2) are considered equal
if and only if s1 = s2 and t1 = t2.

The Cartesian product may be extended to that of n sets S1, S2, …, Sn. The
Cartesian product S1 � S2 � ⋯ � Sn is the set of ordered n-tuples {(s1, s2,..,
sn) | s1 2 S1, s2 2 S2, …, sn 2 Sn}. Two ordered n-tuples (s1, s2, …, sn) and (s1’,
s2’, …, sn’) are considered equal if and only if s1 = s1’, s2, = s2’, …, sn = sn’.

The Cartesian product may also be applied to a single set S to create ordered
n-tuples of S: i.e. Sn = S � S � ⋯ � S (n-times).

Power Set
The power set of a set A (denoted ℙA) denotes the set of subsets of A. For example,
the power set of the set A = {1, 2, 3} has eight elements and is given by

PA ¼ f£; 1f g; 2f g; 3f g; 1; 2f g; 1; 3f g; 2; 3f g; 1; 2; 3f gg
There are 23 = 8 elements in the power set of A = {1, 2, 3} where the cardinality

of A is 3. In general, there are 2|A| elements in the power set of A.

Theorem 4.1 (Cardinality of Power Set of A)
There are 2|A| elements in the power set of A

Proof Let |A| = n then the cardinality of the subsets ofA are subsets of size 0, 1,…, n.
There are n

k

� �
subsets of A of size k.6 Therefore, the total number of subsets of A is the

total number of subsets of size 0, 1, 2, up to n. That is,

PAj j ¼
Xn

k¼0

n
k

� �

The binomial theorem states that

1þ xð Þn¼
Xn

k¼0

n
k

� �
xk

Therefore, putting x = 1 we get that

2n ¼ 1þ 1ð Þn¼
Xn

k¼0

n
k

� �
1k ¼ PAj j

Union and Intersection Operations
The union of two sets A and B is denoted by A [B. It results in a set that contains
all of the members of A and of B and is defined by

A[B ¼ rjr 2 A or 2 Bf g

6Permutations and combinations are discussed in Chap. 5 of O’Regan (2017).

4.2 Set Theory 79

For example, suppose A = {1, 2, 3} and B = {2, 3, 4} then A [B = {1, 2, 3, 4}.
Set union is a commutative operation: i.e. A [B = B [A. Venn diagrams are
used to illustrate these operations pictorially.

A B A B

A B A ∩ B

The intersection of two sets A and B is denoted by A \ B. It results in a set
containing the elements that A and B have in common and is defined by

A\B ¼ frjr 2 A and r 2 Bg

Suppose A = {1, 2, 3} and B = {2, 3, 4} then A \ B = {2, 3}. Set intersection is a
commutative operation: i.e. A \ B = B \ A.

Union and intersection may be extended to more generalised union and inter-
section operations. For example,

[n
i¼1Ai denotes the union of n sets

\ n
i¼1Ai denotes the intersection of n sets

Set Difference Operations
The set difference operation A\B yields the elements in A that are not in B. It is
defined by

AnB ¼ faja 2 A and a 62 Bg

For A and B defined as A = {1, 2} and B = {2, 3}, we have A\B = {1} and B
\A = {3}. Clearly, set difference is not commutative: i.e. A\B 6¼ B\A. Clearly,
A\A = ∅ and A\ ∅ = A.

The symmetric difference of two sets A and B is denoted by A Δ B and is given
by:

ADB ¼ AnB[BnA

The symmetric difference operation is commutative: i.e. A Δ B = B Δ A. Venn
diagrams are used to illustrate these operations pictorially.

A B A B A B

A \ B B \ A A ∆ B

The complement of a set A (with respect to the universal set U) is the elements in
the universal set that are not in A. It is denoted by Ac (or A′) and is defined as

80 4 Overview Mathematics in Computing

Ac ¼ fuju 2 U and u 62 Ag ¼ UnA

The complement of the set A is illustrated by the shaded area below:

A A

4.2.2 Properties of Set Theoretical Operations

The set union and set intersection properties are commutative and associative. Their
properties are listed in Table 4.1.

These properties may be seen to be true with Venn diagrams, and we give a
proof of the distributive property (this proof uses logic which is discussed in
Chap. 6).

Proof of Properties (Distributive Property)
To showA\ ðB[CÞ ¼ ðA\BÞ [ðA\CÞ
Suppose x 2 A\ ðB[CÞthen

x 2 A ^ x 2 ðB[CÞ
) x 2 A ^ ðx 2 B _ x 2 CÞ

) x 2 A ^ x 2 Bð Þ _ ðx 2 A ^ x 2 CÞ
) x 2 ðA\BÞ _ x 2 ðA\CÞ
) x 2 ðA\BÞ [x 2 ðA\CÞ

Therefore, A\ ðB[CÞ�ðA\BÞ [ðA\CÞ.
Similarly, ðA\BÞ [ðA\CÞ�A\ ðB[CÞ.
Therefore, A\ ðB[CÞ ¼ ðA\BÞ [ðA\CÞ.

4.2.3 Russell’s Paradox

Bertrand Russell (Fig. 4.1) was a famous British logician, mathematician and
philosopher. He was the co-author with Alfred Whitehead of Principia Mathematica,
which aimed to derive all the truths of mathematics from logic. Russell’s paradox was
discovered by Bertrand Russell in 1901 and showed that the system of logicism being
proposed by Frege (discussed in Chap. 6) contained a contradiction.

QUESTION (POSED BY RUSSELL TO FREGE)

Is the set of all sets that do not contain themselves as members a set?

4.2 Set Theory 81

RUSSELL’S PARADOX

Let A = {S a set and S 62 S}. Is A 2 A? Then A 2 A) A 62 A and vice versa.
Therefore, a contradiction arises in either case and there is no such set A.

Two ways of avoiding the paradox were developed in 1908, and these were
Russell’s theory of types and Zermelo set theory. Russell’s theory of types was a
response to the paradox by arguing that the set of all sets is ill-formed. Russell

Table 4.1 Properties of set operations

Property Description

Commutative Union and intersection operations are commutative: i.e.
S [T = T [S
S \ T = T \ S

Associative Union and intersection operations are associative: i.e.
R [(S [T) = (R [S) [T
R \ (S \ T) = (R \ S) \ T

Identity The identity under set union is the empty set ∅, and the identity under
intersection is the universal set U
S [∅ = ∅ [S = S
S \ U = U \ S = S

Distributive The union operator distributes over the intersection operator and vice versa
R \ (S [T) = (R \ S) [(R \ T)
R [(S \ T) = (R [S) \ (R [T)

De Morgan’sa

law
The complement of S [T is given by
(S [T)c = Sc \ Tc

The complement of S \ T is given by
(S \ T)c = Sc [Tc

aDe Morgan’s law is named after Augustus De Morgan, a nineteenth-century English
mathematician who was a contemporary of George Boole

Fig. 4.1 Bertrand Russell

82 4 Overview Mathematics in Computing

developed a hierarchy of individual elements: the lowest level, sets of elements at
the next level, sets of sets of elements at the next level and so on. It is then
prohibited for a set to contain members of different types.

A set of elements has a different type from their elements, and one cannot speak
of the set of all sets that do not contain themselves as members as these are of
different types. The other way of avoiding the paradox was Zermelo’s axiomati-
zation of set theory.

Remark Russell’s paradox may also be illustrated by the story of a town that has
exactly one barber who is male. The barber shaves all and only those men in town
who do not shave themselves. The question is who shaves the barber.

If the barber does not shave himself then according to the rule he is shaved by
the barber (i.e. himself). If he shaves himself, then according to the rule he is not
shaved by the barber (i.e. himself).

The paradox occurs due to self-reference in the statement, and a logical exam-
ination shows that the statement is a contradiction.

4.2.4 Computer Representation of Sets

Sets are fundamental building blocks in mathematics, and so the question arises as
to how is a set is stored and manipulated in a computer. The representation of a set
M on a computer requires a change from the normal view that the order of the
elements of the set is irrelevant, and we will need to assume a definite order in the
underlying universal set from which the set M is defined.

That is, a set is always defined in a computer program with respect to an
underlying universal set, and the elements in the universal set are listed in a definite
order. Any set M arising in the program that is defined with respect to this universal
set is a subset of . Next, we show how the set M is stored internally on the
computer.

The set M is represented in a computer as a string of binary digits b1, b2 … bn
where n is the cardinality of the universal set . The bits bi (where i ranges over the
values 1, 2, … n) are determined according to the rule:

bi = 1 if ith element of is in M.
bi = 0 if ith element of is not in M.

For example, if = {1, 2, … 10} then the representation of M = {1, 2, 5, 8} is
given by the bit string 1100100100 where this is given by looking at each element
of in turn and writing down 1 if it is in M and 0 otherwise.

Similarly, the bit string 0100101100 represents the set M = {2, 5, 7, 8}, and this
is determined by writing down the corresponding element in that corresponds to
a 1 in the bit string.

Clearly, there is a one-to-one correspondence between the subsets of and all
possible n-bit strings. Further, the set theoretical operations of set union,

4.2 Set Theory 83

intersection and complement can be carried out directly with the bit strings (pro-
vided that the sets involved are defined with respect to the same universal set). This
involves a bitwise ‘or’ operation for set union, a bitwise ‘and’ operation for set
intersection, and a bitwise ‘not’ operation for the set complement operation.

4.3 Relations

A binary relation R(A, B), where A and B are sets, is a subset of A � B: i.e.
R � A � B. The domain of the relation is A and the co-domain of the relation is
B. The notation aRb signifies that (a, b) 2 R.

A binary relation R(A, A) is a relation between A and A (or a relation on A). This
type of relation may always be composed with itself, and its inverse is also a binary
relation on A. The identity relation on A is defined by a iAa for all a 2 A.

Example 4.4 There are many examples of relations:

(i) The relation on a set of students in a class where (a, b) 2 R if the height of
a is greater than the height of b.

(ii) The relation between A and B where A = {0, 1, 2} and B = {3, 4, 5} with
R given by

R ¼ 0; 3ð Þ; 0; 4ð Þ; 1; 4ð Þf g

(iii) The relation less than (<) between and ℝ and ℝ is given by

f x; yð Þ 2 R2 : x\yg:

(iv) A bank may represent the relationship between the set of accounts and the set
of customers by a relation. The implementation of a bank account may be a
positive integer with at most eight decimal digits.
The relationship between accounts and customers may be done with a
relation R � A � B, with the set A chosen to be the set of natural numbers,
and the set B chosen to be the set of all human beings alive or dead. The set
A could also be chosen to be A = {n 2 ℕ : n < 108}.

A relation R(A, B) may be represented pictorially. This is referred to as the graph
of the relation, and it is illustrated in the diagram below. An arrow from x to y is
drawn if (x, y) is in the relation. Thus, for the height relation R given by {(a, p), (a,
r), (b, q)}, an arrow is drawn from a to p, from a to r and from b to q to indicate that
(a, p), (a, r) and (b, q) are in the relation R.

a
b

p
q
r

A B

84 4 Overview Mathematics in Computing

The pictorial representation of the relation makes it easy to see that the height of
a is greater than the height of p and r, and that the height of b is greater than the
height of q.

An n-ary relation R (A1, A2, … An) is a subset of (A1 � A2 � ⋯ � An).
However, an n-ary relation may also be regarded as a binary relation R(A, B) with
A = A1 � A2 � ⋯ � An-1 and B = An.

4.3.1 Reflexive, Symmetric and Transitive Relations

A binary relation on A may have additional properties such as being reflexive,
symmetric or transitive. These properties are defined as

(i) A relation on a set A is reflexive if (a, a) 2 R for all a 2 A.
(ii) A relation R is symmetric if whenever (a, b) 2 R then (b, a) 2 R.
(iii) A relation is transitive if whenever (a, b) 2 R and (b, c) 2 R then (a, c) 2 R.

A relation that is reflexive, symmetric and transitive is termed an equivalence
relation.

Example 4.5 (Reflexive Relation) A relation is reflexive if each element possesses
an edge looping around on itself. The relation in Fig. 4.2 is reflexive.

Example 4.6 (Symmetric Relation) The graph of a symmetric relation will show for
every arrow from a to b an opposite arrow from b to a. The relation in Fig. 4.3 is
symmetric: i.e. whenever (a, b) 2 R then (b, a) 2 R.

Example 4.7 (Transitive Relation) The graph of a transitive relation will show that
whenever there is an arrow from a to b and an arrow from b to c that there is an
arrow from a to c. The relation in Fig. 4.4 is transitive: i.e. whenever (a, b) 2 R and
(b, c) 2 R then (a, c) 2 R.

Example 4.8 (Equivalence Relation) The relation on the set of integers ℤ defined
by (a, b) 2 R if a – b = 2 k for some k 2 ℤ is an equivalence relation, and it
partitions the set of integers into two equivalence classes: i.e. the even and odd
integers.

Domain and Range of Relation
The domain of a relation R (A, B) is given by {a 2 A | 9b 2 B and (a, b) 2 R}. It is
denoted by dom R. The domain of the relation R = {(a, p), (a, r), (b, q)} is {a, b}.

c

a
b

Fig. 4.2 Reflexive relation

4.3 Relations 85

The range of a relation R (A, B) is given by {b 2 B | 9a 2 A and (a, b) 2 R}. It
is denoted by rng R. The range of the relation R = {(a, p), (a, r), (b, q)} is {p, q, r}.

Inverse of a Relation
Suppose R � A � B is a relation between A and B then the inverse relation
R−1 � B � A is defined as the relation between B and A and is given by

b R�1a if and only if a R b

That is,

R�1 ¼ f b; að Þ 2 B� A : a; bð Þ 2 Rg

Example 4.9 Let R be the relation between ℤ and ℤ+ defined by mRn if and only if
m2 = n. Then R = {(m, n) 2 ℤ � ℤ+ : m2 = n} and R−1 = {(n, m) 2 ℤ+ � ℤ :
m2 = n}.
For example, −3 R 9, −4 R 16, 0 R 0, 16 R−1 −4, 9 R−1 −3, etc.

Partitions and Equivalence Relations
An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite set and let A1, A2, …, An be subsets of A such Ai 6¼ ∅ for all i,
Ai \ Aj = ∅ if i 6¼ j and A = [i

n Ai = A1 [A2 [⋯ [An.
The sets Ai partition the set A, and these sets are called the classes of the partition

(Fig. 4.5).

Theorem 4.2 (Equivalence Relation and Partitions)
An equivalence relation on A gives rise to a partition of A where the equivalence

classes are given by Class (a) = {x | x 2 A and (a, x) 2 R}. Similarly, a partition
gives rise to an equivalence relation R, where (a, b) 2 R if and only if a and b are
in the same partition.

a

c d
b

Fig. 4.3 Symmetric relation

a

b c

Fig. 4.4 Transitive relation

86 4 Overview Mathematics in Computing

Proof Clearly, a 2 Class(a) since R is reflexive and clearly the union of the
equivalence classes is A. Next, we show that two equivalence classes are either
equal or disjoint.

Suppose Class(a) \ Class(b) 6¼ ∅. Let x 2 Class(a) \ Class(b) and so (a, x)
and (b, x) 2 R. By the symmetric property (x, b) 2 R and since R is transitive from
(a, x) and (x, b) in R we deduce that (a, b) 2 R. Therefore, b 2 Class(a). Suppose
y is an arbitrary member of Class (b) then (b, y) 2 R therefore from (a, b) and (b, y)
in R we deduce that (a, y) is in R. Therefore, since y was an arbitrary member of
Class(a) we deduce that Class(b) � Class(a). Similarly, Class(a) � Class(b) and so
Class(a) = Class(b).

This proves the first part of the theorem and for the second part, we define a
relation R such that (a, b) 2 R if a and b are in the same partition. It is clear that this
is an equivalence relation.

4.3.2 Composition of Relations

The composition of two relations R1(A, B) and R2(B, C) is given by R2 o R1 where
(a, c) 2 R2 o R1 if and only there exists b 2 B such that (a, b) 2 R1 and (b, c) 2 R2.
The composition of relations is associative: i.e.

R3 oR2ð Þ oR1 ¼ R3 o R2 oR1ð Þ

Example 4.10 (Composition of Relations) Consider a library that maintains two
files. The first file maintains the serial number s of each book as well as the details
of the author a of the book. This may be represented by the relation R1 = sR1a. The
second file maintains the library card number c of its borrowers and the serial
number s of any books that they have borrowed. This may be represented by the
relation R2 = c R2s.

The library wishes to issue a reminder to its borrowers of the authors of all books
currently on loan to them. This may be determined by the composition of R1 o R2:
i.e. c R1o R2 a if there is book with serial number s such that c R2 s and s R1 a.

Example 4.11 (Composition of Relations) Consider sets A = {a, b, c}, B = {d, e,
f}, C = {g, h, i} and relations R(A, B) = {(a, d), (a, f), (b, d), (c, e)} and

A1

A7

A2

A3

A4

A5

A6

Fig. 4.5 Partitions of A

4.3 Relations 87

S(B, C) = {(d, h), (d, i), (e, g), (e, h)}. Then, we graph these relations and show how
to determine the composition pictorially.

S o R is determined by choosing x 2 A and y 2 C and checking if there is a route
from x to y in the graph (Fig. 4.6). If so, we join x to y in S o R. For example, if we
consider a and h we see that there is a path from a to d and from d to h, and
therefore, (a, h) is in the composition of S and R.

The union of two relations R1(A, B) and R2(A, B) is meaningful (as these are both
subsets of A � B). The union R1 [R2 is defined as (a, b) 2 R1 [R2 if and only
if (a, b) 2 R1 or (a, b) 2 R2.

Similarly, the intersection of R1 and R2 (R1 \ R2) is meaningful and is defined
as (a, b) 2 R1 \ R2 if and only if (a, b) 2 R1 and (a, b) 2 R2. The relation R1 is a
subset of R2 (R1 � R2) if whenever (a, b) 2 R1 then (a, b) 2 R2.

The inverse of the relation R was discussed earlier and is given by the relation
R−1 where R−1 = {(b, a) | (a, b) 2 R}.

The composition of R and R−1 yields: R−1 o R = {(a, a) | a 2 dom R} = iA and
R o R−1 = {(b, b) | b 2 dom R−1} = iB.

4.3.3 Binary Relations

A binary relation R on A is a relation between A and A, and a binary relation can
always be composed with itself. Its inverse is a binary relation on the same set. The
following are all relations on A:

R2 = R o R.
R3 = (R o R) o R.
R0 = iA (identity relation).
R−2 = R−1 o R−1.

Example 4.12 Let R be the binary relation on the set of all people P such that (a,
b) 2 R if a is a parent of b. Then, the relation Rn is interpreted as follows:

R is the parent relationship.
R2 is the grandparent relationship.
R3 is the great-grandparent relationship.
R−1 is the child relationship.

a

b

c

d

e

f

g

h

i

A B C

R(A,B) S(B,C)

Fig. 4.6 Composition of
relations S o R

88 4 Overview Mathematics in Computing

R−2 is the grandchild relationship.
R−3 is the great-grandchild relationship.

This can be generalised to a relation Rn on A where Rn = R o R o⋯o R (n-times).
The transitive closure of the relation R on A is given by

R	 ¼ [1
i¼0R

i ¼ R0 [R1 [R2 [

 Rn [

 :

where R0 is the reflexive relation containing only each element in the domain of R:
i.e. R0 = iA = {(a, a) | a 2 dom R}.

The positive transitive closure is similar to the transitive closure except that it
does not contain R0. It is given by

Rþ ¼ [1
i¼1R

i ¼ R1 [R2 [. . .[Rn [::

a R+ b if and only if a Rn b for some n > 0: i.e. there exists c1, c2 … cn 2A such
that

aRc1; c1Rc2; . . .; cnRb

Parnas7 introduced the concept of the limited domain relation (LD relation), and an
LD relation L consists of an ordered pair (RL, CL) where RL is a relation and CL is a
subset of Dom RL. The relation RL is on a set U and CL is termed the competence
set of the LD relation L.

The importance of LD relations is that they may be used to describe program
execution. The relation component of the LD relation L describes a set of states
such that if execution starts in state x it may terminate in state y. The set U is the set
of states. The competence set of L is such that if execution starts in a state that is in
the competence set then it is guaranteed to terminate. For a more detailed
description of LD relations and their properties, see Chap. 2 of Parnas (2001).

4.3.4 Applications of Relations to Databases

A relational database management system (RDBMS) is a system that manages data
using the relational model, and a relation is defined as a set of tuples that is usually
represented by a table. A table is data organised in rows and columns, with the data
in each column of the table of the same data type. Constraints may be employed to
provide restrictions on the kinds of data that may be stored in the relations, and
these Boolean expressions are a way of implementing business rules in the
database.

7Parnas made important contributions to software engineering in the 1970s. He invented infor-
mation hiding which is used in object-oriented design.

4.3 Relations 89

Relations have one or more keys associated with them, and the key uniquely
identifies the row of the table. An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all tuples in the relation.

The concept of a relational database was first described in a paper ‘A Relational
Model of Data for Large Shared Data Banks’ by Codd (1970). A relational data-
base is a database that conforms to the relational model, and it may be defined as a
set of relations (or tables).

Codd (Fig. 4.7) developed the relational database model in the late 1960s, and
today, this is the standard way that information is organised and retrieved from
computers. Relational databases are at the heart of systems from hospitals’ patient
records to airline flight and schedule information.

An n-ary relation R (A1, A2, …An) is a subset of the Cartesian product of the
n sets: i.e. a subset of (A1 � A2 � ⋯ � An). However, an n-ary relation may also
be regarded as a binary relation R(A, B) with A = A1 � A2 � ⋯ � An-1 and
B = An.

The data in the relational model is defined as a set of n-tuples and is usually
represented by a table. A table is a visual representation of the relation, and the data
is organised in rows and columns.

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from Date (1981), where this relation consists of a heading
and the body. There are five data types representing part numbers, part names, part
colours, part weights and locations where the parts are stored. The body consists of
a set of n-tuples, and the PART relation in Fig. 4.8 is of cardinality six.

There is more detailed information on the relational model and databases in
Chap. 11.

Fig. 4.7 Edgar Codd

90 4 Overview Mathematics in Computing

4.4 Functions

A function f : A ! B is a special relation such that for each element a 2 A there is
exactly (or at most)8 one element b 2 B. This is written as f(a) = b.

a

b

c

p

q

r

A B

f

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a 2 A.

a

b

c

p

q

r

A B

R

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A if f is a total function.
The co-domain of the function is B. The range of the function (denoted rng f) is a
subset of the co-domain and consists of:

rng f ¼ frjr 2 B such that f að Þ ¼ r for some a 2 Ag:

Functions may be partial or total. A partial function (or partial mapping) may be
undefined for some values of A, and partial functions arise regularly in the com-
puting field (Fig. 4.9). Total functions are defined for every value in A, and many
functions encountered in mathematics are total.

P# PName Colour Weight City
P1
P2
P3
P4
P5
P6

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

London
Paris
Rome
London
Paris
London

Fig. 4.8 PART relation

8We distinguish between total and partial functions. A total function is defined for all elements in
the domain whereas a partial function may be undefined for one or more elements in the domain.

4.4 Functions 91

Example 4.13 (Functions) Functions are an essential part of mathematics and
computer science, and there are many well-known functions such as the trigono-
metric functions sin(x), cos(x) and tan(x); the logarithmic function ln(x); the
exponential functions ex; and polynomial functions.

(i) Consider the partial function f : ℝ ! ℝ f(x) = 1/x (where x 6¼ 0).
Then, this partial function is defined everywhere except for x = 0.

(ii) Consider the function f : ℝ ! ℝ where

f xð Þ ¼ x2

Then, this function is defined for all x 2 ℝ.

Partial functions often arise in computing as a program may be undefined or fail
to terminate for several values of its arguments (e.g. infinite loops). Care is required
to ensure that the partial function is defined for the argument to which it is to be
applied.
Consider a program P that has one natural number as its input and which fails to
terminate for some input values. It prints a single real result and halts if it termi-
nates. Then, P can be regarded as a partial mapping from ℕ to ℝ.

P : N ! R

Example 4.14 How many total functions f : A ! B are there from A to B (where
A and B are finite sets)?

Each element of A maps to any element of B, i.e. there are |B| choices for each
element a 2 A. Since there are |A| elements in A, the number of total functions is
given by

Bj j Bj j. . .:: Bj j Aj j timesð Þ
¼ Bj jAj total functions between A andB

Example 4.15 How many partial functions f : A ! B are there from A to B (where
A and B are finite sets)?

dom rng

A B
Fig. 4.9 Domain and range
of a partial function

92 4 Overview Mathematics in Computing

Each element of A may map to any element of B or to no element of B (as it may be
undefined for that element of A). In other words, there are |B| + 1 choices for each
element of A. As there are |A| elements in A, the number of distinct partial functions
between A and B is given by

Bj j þ 1ð Þ Bj j þ 1ð Þ. . . Bj j þ 1ð Þ Aj j timesð Þ
¼ Bj j þ 1ð Þ Aj j

Two partial functions f and g are equal if

1. dom f = dom g.
2. f(a) = g(a) for all a 2 dom f.

A function f is less defined than a function g (f � g) if the domain of f is a subset
of the domain of g, and the functions agree for every value on the domain of f

1. dom f � dom g.
2. f(a) = g(a) for all a 2 dom f.

The composition of functions is similar to the composition of relations. Suppose
f : A ! B and g : B ! C then g o : A ! C is a function, and it is written as g o f(x)
or g(f(x)) for x 2 A.

The composition of functions is not commutative and this can be seen by an
example. Consider the function f : ℝ ! ℝ such that f(x) = x2 and the function g :
ℝ ! ℝ such that g(x) = x + 2. Then

g o f xð Þ ¼ g x2
� � ¼ x2 þ 2

f o g xð Þ ¼ f xþ 2ð Þ ¼ xþ 2ð Þ2¼ x2 þ 4xþ 4

Clearly, g o f(x) 6¼ f o g(x) and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. For f : A ! B, g : B ! C, and h :
C ! D, we have

h o g o fð Þ ¼ h o gð Þ o f

A function f : A ! B is injective (one to one) if

f a1ð Þ ¼ f a2ð Þ) a1 ¼ a2

For example, consider the function f: ℝ ! ℝ with f(x) = x2. Then,
f (3) = f (−3) = 9 and so this function is not one to one.

A function f: A ! B is surjective (onto) if given any b 2 B there exists an
a 2 A such that f(a) = b (Fig. 4.10). Consider the function f: ℝ ! ℝ with f(x) =
x + 1. Clearly, given any r 2 ℝ then f(r – 1) = r and so f is onto.

4.4 Functions 93

A function is bijective if it is one to one and onto (Fig. 4.11). That is, there is a
one-to-one correspondence between the elements in A and B, and for each
b2B there is a unique a 2 A such that f(a) = b.

The inverse of a relation was discussed earlier, and the relational inverse of a
function f: A ! B clearly exists. The relational inverse of the function may or may
not be a function.

However, if the relational inverse is a function it is denoted by f−1 : B ! A. A
total function has an inverse if and only if it is bijective whereas a partial function
has an inverse if and only if it is injective.

The identity function 1A : A ! A is a function such that 1A(a) = a for all
a 2 A. Clearly, when the inverse of the function exists, then we have that f−1 o
f = 1A and f− o f−1 = 1B.

Theorem 4.3 (Inverse of Function)
A total function has an inverse if and only if it is bijective.

Proof Suppose f: A ! B has an inverse f−1. Then, we show that f is bijective.
We first show that f is one to one. Suppose f(x1) = f(x2) then

f�1ðf ðx1ÞÞ ¼ f�1ðf ðx2ÞÞ
) f�1o f ðx1Þ ¼ f�1o f ðx2Þ
) 1Aðx1Þ ¼ 1Aðx2Þ
) x1 ¼ x2

Next, we first show that f is onto. Let b 2 B and let a = f−1 (b) then

A B A B

1-1, Not Onto Onto, Not 1-1

a

b

p

q

r

a

b

c

p

q

Fig. 4.10 Injective and surjective functions

a

b

c

p

q

r

A B

f

Fig. 4.11 Bijective function
(one to one and onto)

94 4 Overview Mathematics in Computing

f að Þ ¼ f f�1 bð Þ� � ¼ 1B bð Þ ¼ b and so f is surjective

The second part of the proof is concerned with showing that if f: A ! B is
bijective then it has an inverse f −1. Clearly, since f is bijective, we have that for
each a 2 A, there exists a unique b 2 B such that f (a) = b.

Define g: B ! A by letting g(b) be the unique a in A such that f(a) = b. Then,
we have that

g o f að Þ ¼ g bð Þ ¼ a and f o g bð Þ ¼ f að Þ ¼ b:

Therefore, g is the inverse of f.

4.4.1 Application of Functions to Functional Programming

Functional programming involves the evaluation of mathematical functions,
whereas imperative programming involves the execution of sequential (or iterative)
commands that change the state. For example, the assignment statement alters the
value of a variable, and the value of a given variable x may change during program
execution.

There are no changes of state for functional programs, and the fact that the value
of x will always be the same makes it easier to reason about functional programs
than imperative programs. Functional programming languages provide referential
transparency : i.e. equals may be substituted for equals, and if two expressions have
equal values, then one can be substituted for the other in any larger expression
without affecting the result of the computation.

Functional programming languages use higher order functions,9 recursion, lazy
and eager evaluation, monads,10 and Hindley–Milner type inference systems.11

These languages are mainly used in academia, but there has been some industrial
use, including the use of Erlang for concurrent applications in industry. Alonzo
Church developed Lambda Calculus in the 1930s, and it provides an abstract
framework for describing mathematical functions and their evaluation. It provides
the foundation for functional programming languages. Church employed lambda
Calculus to prove that there is no solution to the decision problem for first-order
arithmetic (O’Regan 2017).

9Higher order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics, and one example is the
derivative function dy/dx that takes a function as an argument and returns a function as a result.
10Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of this feature.
11This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.

4.4 Functions 95

The original Calculus developed by Church was untyped, but typed lambda
calculi have since been developed. Any computable function can be expressed and
evaluated using lambda Calculus, but there is no general algorithm to determine
whether two arbitrary lambda Calculus expressions are equivalent. Lambda Calculus
influenced functional programming languages such as Lisp, ML and Haskell.

Functional programming uses higher order functions which take functions as
arguments and return functions as results. The derivative function d/dx f(x) = f′(x) is
a higher order function, which takes a function as an argument and returns a
function as a result. Higher order functions may employ currying (a technique
developed by Schönfinkel) which allows a function with several arguments to be
applied to each of its arguments one at a time, with each application returning a new
(higher order) function that accepts the next argument. This allows a function of n-
arguments to be treated as n applications of a function with 1-argument.

John McCarthy developed LISP at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming lan-
guages.12 Robin Milner designed the ML programming language in the early
1970s. David Turner developed Miranda in the mid-1980s. The Haskell pro-
gramming language was released in the late 1980s. There is more detailed infor-
mation on functional programming in Chap. 8.

4.5 Number Theory

Number theory is the branch of mathematics that is concerned with the mathe-
matical properties of the natural numbers and integers. These include properties
such as the parity of a number, divisibility, additive and multiplicative properties,
whether a number is prime or composite, the prime factors of a number, the greatest
common divisor and least common multiple of two numbers, and so on.

Number theory has many applications in computing including cryptography and
coding theory. For example, the RSA public key cryptographic system relies on its
security due to the infeasibility of the integer factorization problem for large
numbers.

There are several unsolved problems in number theory and especially in prime
number theory. For example, Goldbach’s13 Conjecture states that every even
integer greater than two is the sum of two primes, and this result has not been
proved to date. Fermat’s14 last theorem (Fig. 4.12) states that there is no integer

12Lisp is a multi-paradigm language rather than a functional programming language.
13Goldbach was an eighteenth-century German mathematician and Goldbach’s conjecture has
been verified to be true for all integers n < 12 � 1017.
14Pierre de Fermat was a seventeenth-century French civil servant and amateur mathematician. He
occasionally wrote to contemporary mathematicians announcing his latest theorem without pro-
viding the accompanying proof and inviting them to find the proof. The fact that he never revealed
his proofs caused a lot of frustration among his contemporaries, and in his announcement of his

96 4 Overview Mathematics in Computing

solution to xn + yn = zn for n > 2, and this result remained unproved for over three
hundred years until Andrew Wiles finally proved it in the mid-1990s.

The natural numbers ℕ consist of the numbers {1, 2, 3, …}. The integer
numbers ℤ consist of {…, −2, −1, 0, 1, 2, …}. The rational numbers ℚ consist of
all numbers of the form {p/q where p and q are integers and q 6¼ 0}. The real
numbers ℝ is defined to be the set of converging sequences of rational numbers and
they are a superset of the rational numbers. They contain the rational and irrational
numbers. The complex numbers ℂ consist of all numbers of the form {a + bi where
a, b 2 ℝ and i ¼ p�1g.

Pythagorean triples are combinations of three whole numbers that satisfy
Pythagoras’ equation x2 + y2 = z2. There are an infinite number of such triples, and
an example of such a triple is 3, 4, 5 since 32 + 42 = 52.

The Pythagoreans discovered the mathematical relationship between the har-
mony of music and numbers, and their philosophy was that numbers are hidden in
everything from music to science and nature. This led to their philosophy that
‘everything is number’.

4.5.1 Elementary Number Theory

A square number is an integer that is the square of another integer. For example, the
number 4 is a square number since 4 = 22. Similarly, the number 9 and the number

Fig. 4.12 Pierre de Fermat

famous last theorem, he stated that he had a wonderful proof that was too large to include in the
margin. He corresponded with Pascal and they did some early work on the mathematical rules of
games of chance and early probability theory. He also did some early work on the Calculus.

4.5 Number Theory 97

16 are square numbers. A number n is a square number if and only if one can
arrange the n points in a square.

The square of an odd number is odd whereas the square of an even number is
even. This is clear since an even number is of the form n = 2k for some k, and so
n2 = 4k2 which is even. Similarly, an odd number is of the form n = 2k + 1 and so
n2 = 4k2 + 4k + 1 which is odd.

A rectangular number n may be represented by a vertical and horizontal rect-
angle of n points. For example, the number 6 may be represented by a rectangle
with length 3 and breadth 2, or a rectangle with length 2 and breadth 3. Similarly,
the number 12 can be represented by a 4 � 3 or a 3 � 4 rectangle.

A triangular number (Fig. 4.13) n may be represented by an equilateral triangle
of n points. It is the sum of k natural numbers from 1 to k. = That is,

n ¼ 1þ 2þ

 þ k

Parity of Integers
The parity of an integer refers to whether the integer is odd or even. An integer n is
odd if there is a remainder of one when it is divided by two, and it is of the form
n = 2k + 1. Otherwise, the number is even and of the form n = 2k.

The sum of two numbers is even if both are even or both are odd. The product of
two numbers is even if at least one of the numbers is even. These properties are
expressed as follows:

Even ± even = even,
Even ± odd = odd,
Odd ± odd = even,
Even � even = even,
Even � odd = even and
Odd � odd = odd.

Divisors
Let a and b be integers with a 6¼ 0 then a is said to be a divisor of b (denoted by a|
b) if there exists an integer k such that b = ka.

A divisor of n is called a trivial divisor if it is either 1 or n itself; otherwise, it is
called a non-trivial divisor. A proper divisor of n is a divisor of n other than n itself.

•
• •

• • •

•
• •

• • •
• • • •

•
• •

Fig. 4.13 Triangular
numbers

98 4 Overview Mathematics in Computing

Definition
(Prime Number) A prime number is a number (>1) whose only divisors are trivial.
There are an infinite number of prime numbers.

The fundamental theorem of arithmetic states that every integer number can be
factored as the product of prime numbers.

Mersenne Primes
Mersenne primes are prime numbers of the form 2p – 1 where p is a prime. They
are named after Marin Mersenne (Fig. 4.14) who was a seventeenth-century French
monk. Mersenne did some early work in identifying primes of this format, and there
are 47 known Mersenne primes. It is an open question as to whether there are an
infinite number of Mersenne primes.

For more information on number theory, see O'Regan (2017).

4.6 Automata Theory

Automata theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state at a
time (current state), and the input symbol causes a transition from the current state
to the next state. Finite-state machines have limited computational power due to
memory and state constraints, but they have been applied to several fields including
communication protocols, neurological systems and linguistics.

Pushdown automata have greater computational power, and they contain extra
memory in the form of a stack from which symbols may be pushed or popped. The
state transition is determined from the current state of the machine, the input symbol
and the element on the top of the stack. The action may be to change the state and/
or push/pop an element from the stack.

Fig. 4.14 Marin Mersenne

4.5 Number Theory 99

The Turing machine is the most powerful model for computation, and this
theoretical machine is equivalent to an actual computer in the sense that it can
compute the same set of functions. The memory of the Turing machine is a tape that
consists of a potentially infinite number of one-dimensional cells. The Turing
machine provides a mathematical abstraction of computer execution and storage, as
well as providing a mathematical definition of an algorithm. However, Turing
machines are not suitable for programming, and therefore, they do not provide a
good basis for studying programming and programming languages.

4.6.1 Finite-State Machines

Warren McCulloch and Walter Pitts published early work on finite-state automata
in 1943. They were interested in modelling the thought process for humans and
machines. Moore and Mealy developed this work further, and their finite-state
machines are referred to as the ‘Mealy machine’ and the ‘Moore machine’. The
Mealy machine determines its outputs through the current state and the input,
whereas the output of Moore’s machine is based upon the current state alone.

Definition
(Finite-State Machine) A finite-state machine (FSM) is an abstract mathematical
machine that consists of a finite number of states. It includes a start state q0 in which
the machine is in initially, a finite set of states Q, an input alphabet R, a state
transition function d and a set of final accepting states F (where F � Q).

The state transition function d takes the current state and an input symbol, and
returns the next state. That is, the transition function is of the form

d : Q� R! Q

The transition function provides rules that define the action of the machine for
each input symbol, and its definition may be extended to provide output as well as a
transition of the state. State diagrams are used to represent finite-state machines, and
each state accepts a finite number of inputs. A finite-state machine may be deter-
ministic or non-deterministic. A deterministic machine changes to exactly (or at
most)15 one state for each input transition, whereas a non-deterministic machine
may have a choice of states to move to for a particular input symbol.

Finite-state automata can compute only very primitive functions, and so they are
not adequate as a model for computing. There are more powerful automata such as
the Turing machine that is essentially a finite automaton with a potentially infinite
storage (memory). Anything that is computable is computable by a Turing machine.

15The transition function may be undefined for a particular input symbol and state.

100 4 Overview Mathematics in Computing

A finite-state machine can model a system that has a finite number of states, and
a finite number of inputs/events that can trigger transitions between states. The
behaviour of the system at a point in time is determined from the current state and
input, with behaviour defined for the possible input to that state. The system starts
in an initial state.

A finite-state machine (also known as finite-state automata) is defined mathe-
matically as a quintuple (R, Q, d, q0, F). The alphabet of the FSM is given by R; the
set of states is given by Q; the transition function is defined by d : Q � R ! Q; the
initial state is given by q0; and the set of accepting states is given by F (where F is a
subset of Q). A string is given by a sequence of alphabet symbols: i.e. s 2 R*, and
the transition function d may be extended to d* : Q � R* ! Q.

A string s 2 R* is accepted by the finite-state machine if d*(q0, s) = qf where
qf 2 F, and the set of all strings accepted by a finite-state machine is termed the
language generated by the machine. A finite-state machine is termed deterministic
(Fig. 4.15) if the transition function d is a function,16 and otherwise (where it is a
relation) it is said to be non-deterministic. A non-deterministic automaton is one for
which the next state is not uniquely determined from the present state and input
symbol, and the transition may be to a set of states rather than a single state.

For the example above, the input alphabet is given by R = {0, 1}, the set of
states by {A, B, C}, the start state by A and the final state by {C}, and the transition
function is given by the state transition table (Table 4.2). The language accepted by
the automata is the set of all binary strings that end with a one that contains exactly
two ones.

For more detailed information on automata theory, see O'Regan (2017).

A B C

0 0

1 1

Fig. 4.15 Deterministic FSM

Table 4.2 Properties of set
operations

State 0 1

A A B

B B C

C – –

16It may be a total or a partial function.

4.6 Automata Theory 101

4.7 Graph Theory

Graph theory is a practical branch of mathematics that deals with the arrangements
of certain objects known as vertices (or nodes) and the relationships between them.
It has been applied to practical problems such as the modelling of computer net-
works, determining the shortest driving route between two cities, the link structure
of a website, the travelling salesman problem and the four-colour problem.17

The map of the London underground does not represent every feature of the city
of London, as it includes only material that is relevant to the users of the London
underground transport system. The exact geographical location of the stations is
unimportant, as the essential information is how the stations are interconnected to
one another. This allows a passenger to plan a route from one station to another.
That is, the map of the London underground is essentially a model of the transport
system that shows how the stations are interconnected.

The seven bridges of Königsberg in Prussia18 (Fig. 4.16) is one of the earliest
problems in graph theory. The city was set on both sides of the Pregel River in the
early eighteenth century, and it consisted of two large islands that were connected to
each other and the mainland by seven bridges. The problem was to find a walk
through the city that would cross each bridge once and once only.

Euler showed that the problem had no solution, and his analysis helped to lay the
foundations for graph theory as a discipline. This problem is concerned with the
question as to whether it is possible to travel along the edges of a graph starting
from a vertex and returning to it and travelling along each edge exactly once. An
Euler path in a graph G is a simple path containing every edge of G.

Euler noted, in effect, that for a walk through a graph traversing each edge
exactly once depends on the degree of the nodes (i.e. the number of edges touching
it). He showed that a necessary and sufficient condition for the walk is that the
graph is connected and has zero or two nodes of odd degree. For the Königsberg
graph, the four nodes (i.e. the land masses) have an odd degree (Fig. 4.17).

A graph is a collection of objects that are interconnected in some way. The
objects are typically represented by vertices (or nodes), and the interconnections
between them are represented by edges (or lines). We distinguish between directed
and adirected graphs, where a directed graph is mathematically equivalent to a
binary relation, and an adirected (undirected) graph is equivalent to a symmetric
binary relation. For more detailed information on graph theory, see O’Regan
(2017).

17The four-colour theorem states that given any map it is possible to colour the regions of the map
with no more than four colours such that no two adjacent regions have the same colour. This result
was finally proved in the mid-1970s.
18Königsberg (now called Kaliningrad) was founded in the thirteenth century by Teutonic Knights
and was one of the cities of the Hanseatic League. It was the historical capital of East Prussia (part
of Germany), and it was annexed by Russia at the end of the Second World War. The famous
German philosopher, Immanuel Kant, spent all his life in the city and is buried there.

102 4 Overview Mathematics in Computing

4.8 Computability and Decidability

It is impossible for a human or machine to write out all members of an infinite
countable set, such as the set of natural numbers ℕ. However, humans can do
something quite useful in the case of certain enumerable infinite sets: they can give
explicit instructions (that may be followed by a machine or another human) to
produce the nth member of the set for an arbitrary finite n. The problem remains
that for all but a finite number of values of n, it will be physically impossible for any
human or machine to carry out the computation, due to the limitations on the time
available for computation, the speed at which the individual steps in the compu-
tation may be carried out, and due to finite materials.

The intuitive meaning of computability is in terms of an algorithm (or effective
procedure) that specifies a set of instructions to be followed to complete the task.
That is, a function f is computable if there exists an algorithm that produces the
value of f correctly for each possible argument of f. The computation of f for an
argument x just involves following the instructions in the algorithm, and it produces
the result f(x) in a finite number of steps if x is in the domain of f. If x is not in the
domain of f then the algorithm may produce an answer saying so or it might run
forever never halting. A computer program implements an algorithm and algo-
rithms are discussed in more detail in Chap. 5.

The concept of computability may be made precise in several equivalent ways
such as Church’s lambda Calculus, recursive function theory or by the theoretical
Turing machines.19 These are all equivalent and perhaps the most well known is the
Turing machine (O’Regan 2017), where the set of functions that are computable are
those that are computable by a Turing machine.

River
Pregel

Fig. 4.16 Königsberg seven bridges problem

•
•

•
•

Fig. 4.17 Königsberg graph

19The Church–Turing thesis states that anything that is computable is computable by a Turing
machine.

4.8 Computability and Decidability 103

Decidability is an important topic in contemporary mathematics. Church and
Turing independently showed in 1936 that mathematics is not decidable. In other
words, there is no mechanical procedure (i.e. algorithm) to determine whether an
arbitrary mathematical proposition is true or false, and so the only way is to
determine the truth or falsity of a statement is to try to solve the problem. For a
more detailed account on computability and decidability, see O’Regan (2017).

4.9 Review Questions

1. What is a set? A relation? A function?
2. Explain the difference between a partial and a total function
3. Explain the difference between a relation and a function
4. Determine A � B where A = {a, b, c, d} and B = {1, 2, 3}
5. Determine A D B where A = {a, b, c, d} and B = {c, d, e}
6. What is the graph of the relation � on the set A = {2, 3, 4}?
7. What is the domain and range of R = {(a, p), (a, r), (b, q)}?
8. Determine the inverse relation R−1 where R = {(a, 2), (a, 5), (b, 3), (b, 4),

(c, 1)}
9. Determine the inverse of the function f : ℝ x ℝ ! ℝ defined by

f xð Þ ¼ x�2
x�3 ðx 6¼ 3Þ and f 3ð Þ ¼ 1:

10. Give examples of injective, surjective and bijective functions
11. Explain the differences between imperative programming languages and

functional programming languages.

4.10 Summary

This chapter introduced essential mathematics for computing including set theory,
relations and functions. Sets are collections of well-defined objects; a relation
between A and B indicates relationships between members of the sets A and B; and
functions are a special type of relation where there is at most one relationship for
each element a 2 A with an element in B.

A binary relation R (A, B) is a subset of the Cartesian product (A � B) of A and
B where A and B are sets. The domain of the relation is A and the co-domain of the
relation is B. An n-ary relation R (A1, A2,…An) is a subset of (A1 � A2 � ⋯ � An).

A total function f : A ! B is a special relation such that for each element
a 2 A there is exactly one element b 2 B. This is written as f(a) = b. A function is
a relation but not every relation is a function.

104 4 Overview Mathematics in Computing

Functional programming is quite distinct from imperative programming in that
there is no change of state, and the value of the variable x remains the same during
program execution. This makes functional programs easier to reason about than
imperative programs.

Automata theory is the branch of computer science that is concerned with the
study of abstract machines and automata. These include finite-state machines,
pushdown automata and Turing machines. Graph theory is a practical branch of
mathematics that deals with the arrangements of certain objects known as vertices
(or nodes) and the relationships between them.

4.10 Summary 105

Chapter 5
Introduction to Algorithms

Key Topics

Euclid’s Algorithm
Sieve of Eratosthenes Algorithm
Early Ciphers
Sorting Algorithms
Insertion Sort and Merge Sort
Analysis of Algorithms
Complexity of Algorithms
NP Complete

5.1 Introduction

An algorithm is a well-defined procedure for solving a problem, and it consists of a
sequence of steps that takes a set of values as input and produces a set of values as
output. It is an exact specification of how to solve the problem, and it explicitly
defines the procedure so that a computer program may implement the algorithm.
The origin of the word ‘algorithm’ is from the name of the ninth-century Persian
mathematician, Mohammed Al Khwarizmi.

It is essential that the algorithm is correct, and that it terminates in a reasonable
time. This may require mathematical analysis of the algorithm to demonstrate its
correctness and efficiency, and to show that termination is within an acceptable
timeframe. There may be several algorithms to solve a problem, and so the choice
of the best algorithm (e.g. fastest/most efficient) needs to be considered. For
example, there are several well-known sorting algorithms (e.g. Merge sort and
insertion sort), and the Merge sort algorithm is more efficient [o(n lg n)] than the
insertion sort algorithm [o(n2)].

An algorithm may be implemented by a computer program written in some
programming language (e.g. C++ or Java). The speed of the program depends on
the algorithm employed, the input value(s), how the algorithm has been imple-
mented in the programming language, the compiler, the operating system and the
computer hardware.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_5&domain=pdf

An algorithm may be described in natural language (care is needed to avoid
ambiguity), but it is more common to use a more precise formalism for its
description. These include pseudocode (an informal high-level language descrip-
tion), flowcharts, a programming language such as C or Java, or a formal specifi-
cation language such as VDM or Z. We shall mainly use natural language and
pseudocode to describe an algorithm. One of the earliest algorithms developed was
Euclid’s algorithm for determining the greatest common divisor of two natural
numbers, and it is described in the next section.

5.2 Early Algorithms

Euclid lived in Alexandria during the early Hellenistic period,1 and he is considered
the father of geometry and the deductive method in mathematics. His systematic
treatment of geometry and number theory is published in the 13 books of the
Elements (Heath 1956). It starts from five axioms, five postulates and 23 definitions
to logically derive a comprehensive set of theorems in geometry.

His method of proof was generally constructive, in that as well as demonstrating
the truth of the theorem, a construction of the required entity was provided. He
employed some indirect proofs and one example was his proof that there are an
infinite number of prime numbers. The procedure is to assume the opposite of what
one wishes to prove and to show that a contradiction results. This means that the
original assumption must be false, and the theorem is established.

1. Suppose there are a finite number of primes (say n primes).
2. Multiply all n primes together and add 1 to form N.

N ¼ p1
� p2 �. . .�pnþ 1ð Þ

3. N is not divisible by p1, p2, …, pn as dividing by any of these gives a remainder
of one.

4. Therefore, N must either be prime or divisible by some other prime that was not
included in the original list.

5. Therefore, there must be at least n + 1 primes.
6. This is a contradiction (it was assumed that there are exactly n primes).
7. Therefore, the assumption that there are a finite number of primes is false.
8. Therefore, there are an infinite number of primes.

1This refers to the period following the conquests of Alexander the Great, which led to the spread
of Greek culture throughout the Middle East and Egypt.

108 5 Introduction to Algorithms

His proof that there are an infinite number of primes is indirect, and he does not
present an algorithm to as such to construct the set of prime numbers. We present
the well-known Sieve of Eratosthenes algorithm for determining the prime numbers
up to a given number n later in the chapter.

The material in the Euclid’s Elements is a systematic development of geometry
starting from the small set of axioms, postulates and definitions. It leads to many
well-known mathematical results such as Pythagoras’s theorem, Thales theorem,
sum of angles in a triangle, prime numbers, greatest common divisor and least
common multiple, Euclidean algorithm, areas and volumes, tangents to a point and
algebra.

5.2.1 Greatest Common Divisors (GCD)

Let a and b be integers not both zero. The greatest common divisor d of a and b is a
divisor of a and b (i.e. d | a and d | b), and it is the largest such divisor (i.e. if k |
a and k | b then k | d). It is denoted by gcd (a, b).

Properties of Greatest Common Divisors

(i) Let a and b be integers not both zero, then exist integers x and y such that

d ¼ gcd a; bð Þ ¼ axþ by

(ii) Let a and b be integers not both zero, then the set S = {ax + by where x, y 2
ℤ} is the set of all multiples of d = gcd (a, b).

5.2.2 Euclid’s Greatest Common Divisor Algorithm

Euclid’s algorithm is one of the oldest known algorithms, and it provides the
procedure for finding the greatest common divisor of two numbers a and b. It
appears in Book VII of Euclid’s Elements, but the algorithm was known prior to
Euclid (Fig. 5.1).

The inputs for the gcd algorithm consist of two natural numbers a and b, and the
output of the algorithm is d (the greatest common divisor of a and b). It is computed
as follows:

gcd ða; bÞ ¼ Check if b is zero: If so; then a is the gcd:
Otherwise; the gcd ða; bÞ is given by gcd ðb; a mod bÞ:

�

5.2 Early Algorithms 109

It is also possible to determine integers p and q such that apþ bq ¼ gcd a; bð Þ.
The (informal) proof of the Euclidean algorithm is as follows. Suppose a and

b are two positive numbers whose greatest common divisor is to be determined, and
let r be the remainder when a is divided by b.

1. Clearly, a = qb + r where q is the quotient of the division.
2. Any common divisor of a and b is also a divider or r (since r = a − qb).
3. Similarly, any common divisor of b and r will also divide a.
4. Therefore, the greatest common divisor of a and b is the same as the greatest

common divisor of b and r.
5. The number r is smaller than b, and we will reach r = 0 in finitely many steps.
6. The process continues until r = 0.

Comment 5.1
Algorithms are fundamental in computing as they define the procedure by which a
problem is solved. A computer program implements the algorithm in some pro-
gramming language.

Next, we deal with the Euclidean algorithm more formally, and we start with a
basic lemma.

Lemma Let a, b, q and r be integers with b > 0 and 0 � r < b such that
a = bq + r. Then, gcd(a, b) = gcd(b, r).

Proof Let K = gcd(a, b) and let L = gcd(b, r) then we need to show that
K = L. Suppose m is a divisor of a and b, then as a = bq + r we have m is a divisor
of r and so any common divisor of a and b is a divisor of r. Therefore, the greatest
common divisor K of a and b is a divisor of r. Similarly, any common divisor n of

Fig. 5.1 Euclid of
Alexandria

110 5 Introduction to Algorithms

b and r is a divisor of a. Therefore, the greatest common divisor L of b and r is a
divisor of a. That is, K divides L and L divides K and so L = K, and so the greatest
common divisor of a and b is equal to the greatest common divisor of b and r.

Euclid’s Algorithm (more formal proof)
Euclid’s algorithm for finding the greatest common divisor of two positive integers
a and b involves a repeated application of the division algorithm as follows:

a ¼ bq0þ r1 0\r1\b

b ¼ r1q1þ r2 0\r2\r1
r1 ¼ r2q2þ r3 0\r3\r2
� � � � � � � � � � � �
� � � � � � � � � � � �
rn�2 ¼ rn�1qn�1þ rn 0\rn\rn�1
rn�1 ¼ rnqn

Then, rn (i.e. the last non-zero remainder) is the greatest common divisor of
a and b: i.e. gcd(a, b) = rn.

Proof It is clear from the construction that rn is a divisor of rn − 1,r n – 2,…, r3, r2, r1
and of a and b. Clearly, any common divisor of a and b will also divide rn. Using
the results from the lemma above, we have

gcd a; bð Þ
¼ gcd b; r1ð Þ
¼ gcd r1r2ð Þ
¼ . . .
¼ gcd rn�2rn�1ð Þ
¼ gcd rn�1; rnð Þ
¼ rn

5.2.3 Sieve of Eratosthenes Algorithm

Eratosthenes was a Hellenistic mathematician and scientist who worked in the
famous library in Alexandria. He devised a system of latitude and longitude, and he
was the first person to estimate the size of the circumference of the earth. He
developed a famous algorithm (the well-known Sieve of Eratosthenes algorithm)
for determining the prime numbers up to a given number n.

5.2 Early Algorithms 111

The algorithm involves listing all numbers from 2 up to n. The first step is to
remove all multiples of 2 up to n; the second step is to remove all multiples of 3 up
to n; and so on (Fig. 5.2).

The kth step involves removing multiples of the kth prime pk up to n and the
steps in the algorithm continue while pk �

p
n. The numbers remaining in the list

are the prime numbers from 2 to n.

1. List the integers from 2 to n.
2. For each prime pk up to

p
n remove all multiples of pk.

3. The numbers remaining are the prime numbers between 2 and n.

The list of primes between 1 and 50 are then given by 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43 and 47.

The steps in the algorithm may also be described as follows (in terms of two
lists):

1. Write a list of the numbers from 2 to the largest number to be tested. This first
list is called A.

2. A second List B is created to list the primes. It is initially empty.
3. The number 2 is the first prime number, and it is added to List B.
4. Strike off (or remove) all multiples of 2 from List A.
5. The first remaining number in List A is a prime number and this prime number

is added to List B.
6. Strike off (or remove) this number and all multiples of it from List A.
7. Repeat steps 5 through 7 until no more numbers are left in List A.

5.2.4 Early Cipher Algorithms

Julius Caesar employed a substitution cipher on his military campaigns to ensure
that important messages were communicated safely. The Caesar cipher is a very
simple encryption algorithm, and it involves the substitution of each letter in the
plaintext (i.e. the original message) by a letter a fixed number of positions down in
the alphabet. The Caesar encryption algorithm involves a shift of three positions
and causes the letter B to be replaced by E, the letter C by F and so on. The Caesar

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Fig. 5.2 Primes between 1 and 50

112 5 Introduction to Algorithms

cipher is easily broken, as the frequency distribution of letters may be employed to
determine the mapping. The Caesar cipher is defined as follows (Fig. 5.3).

The process of enciphering a message (i.e. the plaintext) involves mapping each
letter in the plaintext to the corresponding cipher letter. For example, the encryption
of ‘summer solstice’ involves:

Plaintext : summer solstice
Cipher Text vxpphu vrovwleh

The decryption involves the reverse operation: i.e. for each cipher letter, the
corresponding plaintext letter is determined from the table.

Cipher Text vxpphu vrovwleh
Plaintext : summer solstice

The Caesar encryption algorithm may be expressed formally using modular
arithmetic. The numbers 0–25 represent the alphabet letters, and the algorithm is
expressed using addition (modula 26) to yield the encrypted cipher. The encoding
of the plaintext letter x is given by

c ¼ xþ 3 mod 26ð Þ

Similarly, the decoding of a cipher letter represented by the number c is given by

x ¼ c� 3 mod 26ð Þ

The emperor Augustus2 employed a similar substitution cipher (with a shift key
of 1). The Caesar cipher remained in use up to the early twentieth century.
However, by then frequency analysis techniques were available to break the cipher.
The Vignère cipher uses a Caesar cipher with a different shift at each position in the
text. The value of the shift to be employed with each plaintext letter is defined using
a repeating keyword.

Alphabet Symbol abcde fghij klmno pqrst uvwxyz
Cipher Symbol dfegh ijklm nopqr stuvw xyzabc

Fig. 5.3 Caesar cipher

2Augustus was the first Roman emperor and his reign ushered in a period of peace and stability
following the bitter civil war that occurred after the assassination of Julius Caesar. Augustus was
the adopted son of Julius Caesar (he was called Octavian before he became emperor). The civil war
broke out between Mark Anthony and Octavian, and Anthony and Cleopatra were defeated by
Octavian and Agrippa at the battle of Actium in 31 B.C.

5.2 Early Algorithms 113

5.3 Sorting Algorithms

One of the most common tasks to be performed in a computer program is that of
sorting (e.g. consider the problem of sorting a list of names or numbers). This has
led to the development of many sorting algorithms (e.g. selection sort, bubble sort,
insertion sort, Merge sort and quicksort) as sorting is a fundamental task to be
performed.

For example, consider the problem of specifying the algorithm for sorting a
sequence of n numbers. Then, the input to the algorithm is x1; x2; . . .xnh i, and the
output is x01; x

0
2; . . .x

0
n

� �
, where x01� x02� . . .� x0n. Further, x01; x

0
2; . . .x

0
n

� �
is a per-

mutation of x1; x2; . . .xnh i: i.e. the same numbers are in both sequences except that
the sorted sequence is in ascending order, whereas no order is imposed on the
original sequence.

Insertion sort is an efficient algorithm for sorting a small list of elements. It
iterates over the input sequence, examines the next input element during the iter-
ation and builds up the sorted output sequence. During the iteration, insertion sort
removes the next element from the input data, and it then finds and inserts it into the
location where it belongs in the sorted list. This continues until there are no more
input elements to process (Fig. 5.4).

We first give an example of insertion sort and then give a more formal definition
of the algorithm. The example considered is that of the insertion sort algorithm
applied to the sequence A ¼ 5; 3 1; 4h i. The current input element for each iteration
is highlighted, and the arrow points to the location where it is inserted in the sorted
sequence. For each iteration, the elements to the left of the current element are
already in increasing order, and the operation of insertion sort is to move the current
element to the appropriate position in the ordered sequence.

We shall assume that we have an unsorted array A with n elements that we wish
to sort. The operation of insertion sort is to rearrange the elements of A within the
array, and the output is that the array A contains the sorted output sequence.

Insertion Sort
for i from 2 to n do

C A i½ �
j i� 1
while j[0 and A j½ �[C do

A jþ 1½ � A j½ �
j j� 1

A jþ 1½ � C

5 3 1 4
3 5 1 4
1 3 5 4
1 3 4 5

Fig. 5.4 Insertion sort
example

114 5 Introduction to Algorithms

The analysis of an algorithm involves determining its efficiency, and establishing
the resources that it requires (e.g. memory and bandwidth), as well as determining
the computational time required. The time taken by the insertion sort algorithm
depends on the size of the input sequence (clearly a large sequence will take longer
to sort than a short sequence), and on the extent to which the sequences are already
sorted. The worst-case running time for the insertion sort algorithm is of order n2—
i.e. o(n2), where n is the size of the sequence to be sorted (the average case is also of
order n2 with the best case linear).

There are a number of ways to design sorting algorithms, and the insertion sort
algorithm uses an incremental approach, with the sub-array A[1 … i − 1] already
sorted and the element A[i] is then inserted into its correct place to yield the sorted
array A[1 … i].

Another approach is to employ divide and conquer techniques, and this tech-
nique is used in the Merge sort algorithm. This is a more efficient algorithm than
insertion sort, and the divide and conquer method involves breaking a problem
down into several sub-problems, and then solving each problem separately. The
problem-solving may involve recursion or directly solving the sub-problem (if it is
small enough), and then combining the solutions to the sub-problems into the
solution for the original problem. The Merge sort algorithm involves three steps
(divide, conquer and combine):

1. Divide the List A (with n elements) to be sorted into two subsequences (each
with n/2 elements).

2. Sort each of the subsequences by calling Merge sort recursively (Conquer).
3. Merge the two sorted subsequences to produce a single sorted list (Combine).

The recursive part of the Merge sort algorithm bottoms out when the sequence to
be sorted is of length 1, as for this case the sequence is of length 1 which is already
(trivially) sorted. The key operation then (where all the work is done) is the
combine step that Merges two sorted sequences to produce a single sorted
sequence. The Merge sort algorithm may also be described as follows:

1. Divide the sequence (with n elements) to be sorted into n subsequences each
with one element (a sequence with one element is sorted).

2. Repeatedly Merge subsequences to form new subsequences (each new subse-
quence is sorted), until there is only one remaining subsequence (the sorted
sequence).

First, we consider an example (Fig. 5.5) to illustrate how the Merge sort
algorithm operates, and we then give a formal definition.

It may be seen from the example that the list is repeatedly divided into equal
halves with each iteration, until we get to the atomic values that can no longer be
divided. The lists are then combined in the order in which they were broken down,
and this involves comparing the elements of both lists and combining them to form
a sorted list. The merging continues in this way until there are no more lists to

5.3 Sorting Algorithms 115

Merge, and the list remaining is the sorted list. The formal definition of Merge sort
is as follows:

Merge Sort A;m; nð Þ
If m\n then

r mþ nð Þ div 2
Merge Sort A;m; rð Þ
Merge Sort A; rþ 1; nð Þ
Merge A;m; r; nð Þ

The worst-case and average-case running times for the Merge sort algorithm are
of order n lg n—i.e. o(n lg n), where n is the size of the sequence to be sorted (the
average case and best case are also of order o(n lg n)).

The Merge procedure Merges two sorted lists to produce a single sorted list.
Merge (A, p, q, r) Merges A[p … q] with A[q + 1 … r] to yield the sorted List A
[p … r]. We use a temporary working array B[p … r] with the same index range as
A. The indices i and j point to the current element of each sub-array, and we move
the smaller element into the next position in B (indicated by index k) and then
increment either i or j. When we run out of entries in one array then we copy the rest
of the other array into B. Finally, we copy the entire contents of B back to A.

15 7 2 12 9 3 10

15 7 2 12 9 3 10

15 7 2 12 9 3 10

15 7 2 12 9 3 10

7 15 2 12 3 9 10

2 7 12 15 3 9 10

2 3 7 9 10 12 15

6

6

6

6

6

6

6

Fig. 5.5 Merge sort example

116 5 Introduction to Algorithms

5.4 Binary Trees and Graph Theory

A binary tree (Fig. 5.6) is a tree in which each node has at most two child nodes
(termed left and right child node). A node with children is termed a parent node,
and the top node of the tree is termed the root node. Any node in the tree can be
reached by starting from the root node, and by repeatedly taking either the left
branch (left child) or right branch (right child) until the node is reached. Binary
trees are often used in computing to implement efficient searching algorithms.

The depth of a node is the length of the path (i.e. the number of edges) from the
root to the node. The depth of a tree is the length of the path from the root to the
deepest node in the tree. A balanced binary tree is a binary tree in which the depth
of the two subtrees of any node never differs by more than one.

Tree traversal is a systematic way of visiting each node in the tree exactly once,
and we distinguish between breadth-first search algorithms in which every node at
a particular level is visited before going to a lower level, and depth-first search
algorithms where one starts at the root and explores as far as possible along each

5.3 Sorting Algorithms 117

branch before backtracking. The traversal in depth-first search may be in preorder,
inorder or postorder.

Graph algorithms are employed to solve various problems in graph theory
including network cost minimization problems, construction of spanning trees,
shortest path algorithms, longest path algorithms and timetable construction
problems.

A length function l : E ! ℝ may be defined on the edges of a connected graph
G = (V, E), and the shortest path from u to v in G is a path P with edge set Eʹ such
that l(Eʹ) is minimal. The reader may consult the many texts on graph theory to
explore many well-known graph algorithms such as Dijkstra’s shortest path algo-
rithm and longest path algorithm, Kruskal’s minimal spanning tree algorithm and
Prim’s minimal spanning tree algorithms (Piff 1991).

5.5 Modern Cryptographic Algorithms

A cryptographic system is concerned with the secure transmission of messages. The
message is encrypted prior to its transmission, and any unauthorised interception
and viewing of the message is meaningless to anyone other than the intended
recipient. The recipient uses a key to decrypt the encrypted text to retrieve the
original message (Table 5.1).

There are essentially two different types of cryptographic systems, namely, the
public key cryptosystems and secret key cryptosystems. A public key cryptosystem
is an asymmetric cryptosystem where two different keys are employed: one for

M

QF

OB S

UN

Fig. 5.6 Sorted binary tree

Table 5.1 Notation in
cryptography

Symbol Description

M Represents the message (plaintext)

C Represents the encrypted message (cipher text)

ek Represents the encryption key

dk Represents the decryption key

E Represents the encryption process

D Represents the decryption process

118 5 Introduction to Algorithms

encryption and one for decryption. The fact that a person can encrypt a message
does not mean that the person is able to decrypt a message.

The same key is used for both encryption and decryption in a secret key cryp-
tosystem, and anyone who has knowledge on how to encrypt messages has suffi-
cient knowledge to decrypt messages. The encryption and decryption algorithms
satisfy the following equation:

Ddk Cð Þ ¼ DdkðEek Mð ÞÞ ¼ M

There are two different keys employed in a public key cryptosystem. These are
the encryption key ek and the decryption key dk with ek 6¼ dk. It is called asym-
metric as the encryption key differs from the decryption key.

A symmetric key cryptosystem (Fig. 5.7) uses the same secret key for encryp-
tion and decryption, and so the sender and the receiver first need to agree on a
shared key prior to communication. This needs to be done over a secure channel to
ensure that the shared key remains secret. Once this has been done, they can begin
to encrypt and decrypt messages using the secret key.

The encryption of a message is in effect a transformation from the space of
messages to the space of cryptosystems ℂ. That is, the encryption of a message
with key k is an invertible transformation f such that

The cipher text is given by C = Ek(M), where M 2 and C 2 ℂ. The legiti-
mate receiver of the message knows the secret key k (as it will have transmitted
previously over a secure channel), and so the cipher text C can be decrypted by the
inverse transformation f−1 defined by

Therefore, we have that Dk Cð Þ ¼ Dk Ek Mð Þð Þ ¼ M the original plaintext
message.

Message
M

Encryption
C = Ek(M)

Decryption
M= Dk(C)

Message
M

Secret Key
(k)

Public Channel
(Insecure)

Hostile Attack
(Enemy)

Secure Channel

Fig. 5.7 Symmetric key cryptosystem

5.5 Modern Cryptographic Algorithms 119

A public key cryptosystem (Fig. 5.8) is an asymmetric key system where there is
a separate key ek for encryption and dk decryption with ek 6¼ dk. Martin Hellman
and Whitfield Diffie invented it in 1976. The fact that a person is able to encrypt a
message does not mean that the person has sufficient information to decrypt mes-
sages. There is more information on cryptography in (O’Regan 2017).

5.6 Computational Complexity

An algorithm is of little practical use if it takes millions of years to compute the
solution to a problem. That is, the fact that there is an algorithm to solve a problem
is not sufficient, as there is also the need to consider the efficiency of the algorithm.
The security of the RSA encryption algorithm relies on the fact that there is no
known efficient algorithm to determine the prime factors of a large number.

There are often slow and fast algorithms for the same problem, and a measure of
the complexity of an algorithm is the number of steps in its computation. An
algorithm is of time complexity f(n) if for all n and all inputs of length n, the
execution of the algorithm takes at most f(n) steps.

An algorithm is said to be polynomially bounded if there is a polynomial p
(n) such that for all n and all inputs of length n the execution of the algorithm takes
at most p(n) steps. The notation P is used for all problems that can be solved in
polynomial time.

A problem is said to be computationally intractable if it may not be solved in
polynomial time: that is, there is no known algorithm to solve the problem in
polynomial time.

A problem L is said to be in the set NP (non-deterministic polynomial time
problems) if any given solution to L can be verified quickly in polynomial time.

Message
M

Encryption
C = Eek(M)

Decryption
M= Ddk(C)

Message
M

Public Channel
(Insecure)

Hostile Attack
(Enemy)

Decryption Key
(Private)

Encryption Key
(Public)

Fig. 5.8 Public key cryptosystem

120 5 Introduction to Algorithms

A non-deterministic Turing machine may have several possibilities for its beha-
viour, and an input may give rise to several computations.

A problem is NP complete if it is in the set NP of non-deterministic polynomial
time problems and it is also in the class of NP hard problems. A key characteristic
to NP complete problems is that there is no known fast solution to them, and the
time required to solve the problem using known algorithms increases quickly as the
size of the problem grows. Often, the time required to solve the problem is in
billions of years. That is, although any given solution may be verified quickly, there
is no known efficient way to find a solution.

5.7 Review Questions

1. What is an algorithm?
2. Explain why the efficiency of an algorithm is important.
3. Investigate the principles underlying modern cryptography, and how it is

related to computer algorithms.
4. What factors should be considered in the choice of algorithm where

several algorithms exist for solving the particular problem?
5. Investigate some of the early algorithms developed by the Babylonians

(e.g. finding square roots and factorization).
6. Explain the difference between the insertion sort algorithm and Merge sort.
7. Investigate famous computer algorithms such as Dijkstra’s shortest path,

Prim’s algorithm and Kruskal’s algorithm.

5.8 Summary

This chapter gave a short introduction to computer algorithms, where an algorithm
is a well-defined procedure for solving a problem. It consists of a sequence of steps
that take a set of input values and produce a set of output values. It is an exact
specification of how to solve the problem, and a computer program implements the
algorithm in some programming language.

It is essential that the algorithm is correct, and that it terminates in a reasonable
period of time. There may be several algorithms for a problem, and so the choice of
the best algorithm (e.g. fastest/most efficient) needs to be considered.

This may require mathematical analysis of the algorithm to demonstrate its
correctness and efficiency, and to show that it terminates in a finite period of time.
An algorithm may be implemented by a computer program, and the speed of the

5.6 Computational Complexity 121

program depends on the algorithm employed, the input value(s), how the algorithm
has been implemented in the programming language, the compiler, the operating
system and the computer hardware.

An algorithm may be described in natural language, pseudocode, in flowchart, in
a programming language or in a formal specification language.

122 5 Introduction to Algorithms

Chapter 6
A Concise Introduction to Logic

Key Topics

Syllogistic Logic
Fallacies
Stoic Logic
Boole and Frege
Propositions
Truth Tables
Semantic Tableaux
Natural Deduction
Proof
Predicates
Universal Quantifiers
Existential Quantifiers

6.1 Introduction

Logic is the study of reasoning and the validity of arguments, and it is concerned
with the truth of statements (propositions) and the nature of truth. Formal logic is
concerned with the form of arguments and the principles of valid inference. Valid
arguments are truth preserving, and for a valid deductive argument, the conclusion
will always be true if the premises are true.

Propositional logic is the study of propositions, where a proposition is a state-
ment that is either true or false. Propositions may be combined with other propo-
sitions (with a logical connective) to form compound propositions. Truth tables are
used to give operational definitions of the most important logical connectives, and
they provide a mechanism to determine the truth-values of more complicated
logical expressions.

Propositional logic may be used to encode simple arguments that are expressed
in natural language, and to determine their validity. The validity of an argument
may be determined from truth tables, or using inference rules such as modus ponens
to establish the conclusion via deductive steps.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_6&domain=pdf

Predicate logic allows complex facts about the world to be represented, and new
facts may be determined via deductive reasoning. Predicate Calculus includes
predicates, variables and quantifiers, and a predicate is a characteristic or property
that the subject of a statement can have. A predicate may include variables, and
statements with variables become propositions once the variables are assigned
values.

The universal quantifier is used to express a statement such as all members of the
domain of discourse have property P. This is written as (8x) P(x), and it expresses
the statement that the property P(x) is true for all x.

The existential quantifier states that there is at least one member of the domain of
discourse that has property P. This is written as (9x) P(x).

6.2 A Brief History of Logic

The origins of logic are with the Greeks who were interested in the nature of truth.
The sophists (e.g. Protagoras and Gorgias) were teachers of rhetoric, who taught
their pupils techniques in winning an argument and persuading an audience. Plato
explores the nature of truth in some of his dialogues, and he is critical of the
position of the sophists who argue that there is no absolute truth, and that truth
instead is always relative to some frame of reference. The classic sophist position is
stated by Protagoras ‘Man is the measure of all things: of things which are, that
they are, and of things which are not, that they are not’. In other words, what is true
for you is true for you, and what is true for me is true for me.

Socrates had a reputation for demolishing an opponent’s position, and the
Socratic enquiry consisted of questions and answers in which the opponent would
be led to a conclusion incompatible with his original position. The approach was
like a reductio ad absurdum argument, although Socrates was a moral philosopher
who did no theoretical work on logic.

Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic logic
is a ‘term-logic’, with letters used to stand for the individual terms. A syllogism
consists of two premises and a conclusion, where the conclusion is a valid
deduction from the two premises. Aristotle also did some early work on modal logic
and was the founder of the field.

The Stoics developed an early form of propositional logic, where the assertibles
(propositions) have a truth-value such that at any time they are either true or false.
The assertibles may be simple or non-simple, and various connectives such as
conjunctions, disjunctions and implication are used in forming more complex
assertibles.

George Boole developed his symbolic logic in the mid-1800s, and it later formed
the foundation for digital computing. Boole argued that logic should be considered
as a separate branch of mathematics, rather than as a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human

124 6 A Concise Introduction to Logic

mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations.

Logic plays a key role in reasoning and deduction in mathematics, but it is
considered a separate discipline to mathematics. There were attempts in the early
twentieth century to show that all mathematics can be derived from formal logic,
and that the formal system of mathematics would be complete, with all the truths of
mathematics provable in the system. However, this program failed when the
Austrian logician, Kurt Goedel, showed that there are truths in the formal system of
arithmetic that cannot be proved within the system (i.e. first-order arithmetic is
incomplete).

6.2.1 Syllogistic Logic

Early work on logic was done by Aristotle in the fourth century B.C. in the
Organon (Ackrill 1994). Aristotle regarded logic as a useful tool of enquiry into
any subject, and he developed syllogistic logic. This is a form of reasoning where a
conclusion is deduced from two premises, where each premise is in a subject–
predicate form. A common or middle term is present in each of the two premises
but not in the conclusion. For example,

All Greeks aremortal
Socrates is a Greek
���������
Therefore; Socrates ismortal

The common (or middle) term in this example is ‘Greek’. It occurs in both
premises but not in the conclusion. The above argument is valid, and Aristotle
studied and classified the various types of syllogistic arguments to determine those
that were valid or invalid. Each premise contains a subject and a predicate, and the
middle term may act as subject or a predicate. Each premise is a positive or negative
affirmation, and the affirmation may be universal or particular (Table 6.1).

This leads to four basic forms of syllogistic arguments (Table 6.2) where the
middle is the subject of both premises, the predicate of both premises and the
subject of one premise and the predicate of the other premise.

Table 6.1 Types of
syllogistic premises

Type Symbol Example

Universal affirmative G A M All Greeks are mortal

Universal negative G E M No Greek is mortal

Particular affirmative G I M Some Greeks are mortal

Particular negative G O M Some Greeks are not mortal

6.2 A Brief History of Logic 125

There are four types of premises (A, E, I, O) and therefore 16 sets of premise
pairs for each of the forms above. However, only some of these premise pairs will
yield a valid conclusion. Aristotle went through every possible premise pair to
determine if a valid argument may be derived. The syllogistic argument above is of
the form (iv) and is valid:

G A M
S I G
���
S I M

Syllogistic logic is a ‘term-logic’ with letters used to stand for the individual
terms. Syllogistic logic was the first attempt at a science of logic and it remained in
use up to the nineteenth century. There are many limitations to what it may express,
and on its suitability for logical deduction.

6.2.2 Paradoxes and Fallacies

A paradox is a statement that apparently contradicts itself, and it presents a situation
that appears to defy logic. Some logical paradoxes have a solution, whereas others
are contradictions or invalid arguments. They often arise due to self-reference in
which one or more statements refer to each other. The liar paradox and the sorites
paradox were invented by Eubulides of Miletus, and the barber paradox was
introduced by Russell to explain the contradictions in naïve set theory.

The liar paradox is illustrated by the statement ‘Everything that I say is false’,
which is made by the liar. This looks like a normal sentence but it is also saying
something about itself as a sentence. If the statement is true, then the statement must
be false, since the meaning of the sentence is that every statement (including the
current statement) made by the liar is false. If the current statement is false, then the
statement that everything that I say is false is false, and so this must be a true
statement.

The Epimenides paradox is a variant of the liar paradox. Epimenides was a
Cretan who allegedly stated that ‘All Cretans are liars’. If the statement is true, then
since Epimenides is Cretan, he must be a liar, and so the statement is false and we
have a contradiction. However, if we assume that the statement is false and that
Epimenides is lying about all Cretan being liars, then we may deduce (without

Table 6.2 Forms of syllogistic premises

Form (i) Form (ii) Form (iii) Form (iv)

Premise 1 M P P M P M M P

Premise 2 M S S M M S S M

Conclusion S P S P S P S P

126 6 A Concise Introduction to Logic

contradiction) that there is at least one Cretan who is truthful. Therefore, in this
case, the paradox can be avoided.

The sorites paradox (paradox of the heap) involves a heap of sand in which
grains are individually removed. It is assumed that removing a single grain of sand
does not turn a heap into a non-heap, and the paradox is to consider what happens
after when the process is repeated often enough. Is a single remaining grain a heap?
When does it change from being a heap to a non-heap? This paradox may be
avoided by specifying a fixed boundary of the number of grains of sand required to
form a heap, or to define a heap as a collection of multiple grains (� 2 grains).
Then, any collection of grains of sand less than this boundary is not a heap.

The barber paradox is a variant of Russell’s paradox (a contradiction in naïve
set theory), which was discussed in Chap. 4. In a village, there is a barber who
shaves everyone who does not shave himself, and no one else. Who shaves the
barber? The answer to this question results in a contradiction, as the barber cannot
shave himself, since he shaves only those who do not shave themselves. Further, as
the barber does not shave himself then he falls into the group of people who would
be shaved by the barber (himself). Therefore, we conclude that there is no such
barber.

The purpose of a debate is to convince an audience of the correctness of your
position, and to challenge and undermine your opponent’s argument. Often, the
arguments made are factual, but occasionally individuals skilled in rhetoric intro-
duce bad arguments to persuade the audience. Aristotle studied and classified bad
arguments (known as fallacies), and these include the ad hominem argument, the
appeal to authority argument and the straw man argument (Table 6.3).

6.2.3 Stoic Logic

The Stoic school1 was founded in the Hellenistic period by Zeno of Citium (in
Cyprus) in the late fourth/early third century B.C. (Fig. 6.1). The school presented
its philosophy as a way of life, and it emphasised ethics as the focus of human
knowledge. The Stoics stressed the importance of living a good life in harmony
with nature.

The Stoics recognised the importance of reason and logic, and Chrysippus, the
head of the Stoics in the third century B.C., developed an early version of
propositional logic. This was a system of deduction in which the smallest unana-
lyzed expressions are assertibles (Stoic equivalent of propositions). The assertibles
have a truth-value such that at any moment of time they are either true or false. True

1The origin of the word Stoic is from the Stoa Poikile (Rsoa Poijikη), which was a covered
walkway in the Agora of Athens. Zeno taught his philosophy in a public space at this location, and
his followers became known as Stoics.

6.2 A Brief History of Logic 127

assertibles are viewed as facts in the Stoic system of logic, and false assertibles are
defined as the contradictories of true ones.

Truth is temporal and assertions may change their truth-value over time. The
assertibles may be simple or non-simple (more than one assertible), and there may
be present tense, past tense and future tense assertibles. Chrysippus distinguished
between simple and compound propositions, and he introduced a set of logical
connectives for conjunction, disjunction and implication that are used to form
non-simple assertibles from existing assertibles.

The conjunction connective is of the form ‘both … and …’, and it has two
conjuncts. The disjunction connective is of the form ‘either … or … or …’, and it
consists of two or more disjuncts. Conditionals are formed from the connective ‘if
…,….’ and they consist of an antecedent and a consequence.

His deductive system included various logical argument forms such as modus
ponens and modus tollens. His propositional logic differed from syllogistic logic, in

Table 6.3 Table: Fallacies in arguments

Fallacy Description/example

Hasty/accident
generalisation

This is a bad argument that involves a generalisation that
disregards exceptions

Slippery slope This argument outlines a chain reaction leading to a highly
undesirable situation that will occur if a certain situation is
allowed. The claim is that even if one step is taken onto the
slippery slope then we will fall all the way down to the bottom

Against the person (ad
hominem)

The focus of this argument is to attack the person rather than the
argument that the person has made

Appeal to people (ad
populum)

This argument involves an appeal to popular belief to support an
argument, with a claim that most of the population supports this
argument. However, popular opinion is not always correct

Appeal to authority (ad
verecundiam)

This argument is when an appeal is made to an authoritative
figure to support an argument, and where the authority is not an
expert in this area

Appeal to pity (ad
misericordiam)

This is where the arguer tries to get people to accept a conclusion
by making them feel sorry for someone

Appeal to ignorance The arguer makes the case that there is no conclusive evidence on
the issue at hand and that therefore, his conclusion should be
accepted

Straw man argument The arguer sets up a version of an opponent’s position of the
argument and defeats this watered-down version

Begging the question This is a circular argument where the arguer relies on a premise
that says the same thing as the conclusion and without providing
any real evidence for the conclusion

Red Herring The arguer goes off on a tangent that has nothing to do with the
argument in question

False dichotomy The arguer presents the case that there are only two possible
outcomes (often there are more). One of the possible outcomes is
then eliminated leading to the desired outcome

128 6 A Concise Introduction to Logic

that the Stoic logic was based on propositions (or statements) as distinct from
Aristotle’s term-logic. However, he could express the universal affirmation in
syllogistic logic (e.g. All As are B) by rephrasing it as a conditional statement that if
something is A then it is B.

Chrysippus’ propositional logic did not replace Aristotle’s syllogistic logic, and
syllogistic logic remained in use up to the mid-nineteenth century, until George
Boole developed his symbolic logic in the mid-1800s.

6.2.4 Boole’s Symbolic Logic

George Boole (Fig. 2.6) was born in Lincoln, England in 1815, and he was
self-taught in mathematics and Greek. He taught at various schools near Lincoln,
and he developed his mathematical knowledge by working his way through
Newton’s Principia, as well as applying himself to the work of mathematicians such
as Laplace and Lagrange.

He published regular papers from his early twenties on probability theory, dif-
ferential equations and finite differences. He developed his symbolic algebra, which
is the foundation for modern computing, and he is considered (along with Babbage)
to be one of the grandfathers of computing. His work was theoretical, and he never

Fig. 6.1 Zeno of Citium

6.2 A Brief History of Logic 129

actually built a computer or calculating machine. However, his symbolic logic was
the perfect mathematical model for switching theory and for the design of digital
circuits.

He published ‘Mathematical Analysis of Logic’ in 1847 (Boole 1848), and this
short book developed novel ideas on a logical method. He argued that logic should
be considered a separate branch of mathematics, and he showed that there are
mathematical laws to express the operation of reasoning in the human mind. He
showed how Aristotle’s syllogistic logic could be reduced to a set of algebraic
equations.

He introduced two quantities ‘0’ and ‘1’, with the quantity 1 used to represent
the universe of thinkable objects (i.e. the universal set), and the quantity 0 repre-
sents the absence of any objects (i.e. the empty set). He then employed symbols
such as x, y, z, etc., to represent collections or classes of objects given by the
meaning attached to adjectives and nouns. Next, he introduced three operators (+, −
and �) that combined classes of objects.

Boole’s logic appeared to have no practical use, but this changed with Claude
Shannon’s 1937 Master’s thesis, which showed its applicability to switching theory
and to the design of digital circuits. Boole’s logic was discussed in Chap. 2.

6.2.5 Frege

Gottlob Frege (Fig. 6.2) was a German mathematician and logician who is con-
sidered (along with Boole) to be one of the founders of modern logic. He also made
important contributions to the foundations of mathematics, and he attempted to
show that all the basic truths of mathematics (or at least of arithmetic) could be
derived from a limited set of logical axioms (this approach is known as logicism).

He invented predicate logic and the universal and existential quantifiers, and
predicate logic was a significant advance on Aristotle’s syllogistic logic. Predicate
logic is described in more detail later in the chapter.

Frege published several important books on logic, including Begriffsschrift
(Definition) in 1879, Die Grundlagen der Arithmetik (The Foundations of
Arithmetic) in 1884 and the two-volume work Grundgesetze der Arithmetik (Basic
Laws of Arithmetic), which were published in 1893 and 1903. These books
described his invention of axiomatic predicate logic, the use of quantified variables
and the application of his logic to the foundations of arithmetic.

He used his predicate logic to define the natural numbers and their properties. He
had intended producing three volumes of the Basic Laws of Arithmetic, with the
later volumes dealing with the real numbers and their properties. However, Bertrand
Russell discovered a contradiction in Frege’s system (see Russell’s paradox in
Chap. 4), which he communicated to Frege shortly before the publication of the
second volume. Frege struggled to find a satisfactory solution, and Russell later
introduced the theory of types in the Principia Mathematica as a solution.

130 6 A Concise Introduction to Logic

6.3 Propositional Logic

Propositional logic is the study of propositions where a proposition is a statement
that is either true or false. There are many examples of propositions such as
‘1 + 1 = 2’ which is a true proposition, and the statement that ‘Today is
Wednesday’ which is true if today is Wednesday and false otherwise. The statement
x > 0 is not a proposition as it contains a variable x, and it is only meaningful to
consider its truth or falsity only when a value is assigned to x. Once the variable x is
assigned a value it becomes a proposition. The statement ‘This sentence is false’ is
not a proposition as it contains a self-reference that contradicts itself. Clearly, if the
statement is true then it is false, and if is false then it is true.

A propositional variable may be used to stand for a proposition (e.g. let the
variable P stand for the proposition ‘2 + 2 = 4’ which is a true proposition).
A propositional variable takes the value true or false. The negation of a proposition
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false if
and only if P is true.

A well-formed formula (wff) in propositional logic is a syntactically correct
formula created according to the syntactic rules of the underlying Calculus. It is built
up from variables, constants, terms and logical connectives such as conjunction
(and), disjunction (or), implication (if … then …), equivalence (if and only if) and
negation. A distinguished subset of these well-formed formulae are the axioms of the
Calculus, and there are rules of inference that allow the truth of new formulae to be

Fig. 6.2 Gottlob Frege

6.3 Propositional Logic 131

derived (from the axioms and from formulae that have already been demonstrated to
be true in the Calculus).

A formula in propositional Calculus may contain several propositional variables,
and the truth or falsity of the individual variables needs to be known prior to
determining the truth or falsity of the logical formula.

Each propositional variable has two possible values, and a formula with n-
propositional variables has 2n values associated with the n-propositional variables.
The set of values associated with the n variables may be used derive a truth table
with 2n rows and n + 1 columns. Each row gives each of the 2n truth-values that the
n variables may take, and column n + 1 gives the result of the logical expression for
that set of values of the propositional variables. For example, the propositional
formula W defined in the truth table (Table 6.4) has two propositional variables
A and B, with 22 = 4 rows for each of the values that the two propositional variables
may take. There are 2 + 1 = 3 columns with W defined in the third column.

A rich set of connectives is employed in the Calculus to combine propositions
and to build up the well-formed formulae. This includes the conjunction of two
propositions (A ^ B), the disjunction of two propositions (A _ B) and the impli-
cation of two propositions (A ! B). These connectives allow compound proposi-
tions to be formed, and the truth of the compound propositions is determined from
the truth-values of its constituent propositions and the rules associated with the
logical connective. The meaning of the logical connectives is given by truth tables.2

Mathematical logic is concerned with inference, and it involves proceeding in a
methodical way from the axioms and using the rules of inference to derive further
truths.

The rules of inference allow new propositions to be deduced from a set of
existing propositions. A valid argument (or deduction) is truth preserving: i.e. for a
valid logical argument if the set of premises is true then the conclusion (i.e. the
deduced proposition) must be true. The rules of inference include rules such as
modus ponens, and this rule states that given the truths of the proposition A, and the
proposition A ! B, then the truth of proposition B may be deduced.

The propositional Calculus is employed in reasoning about propositions, and it
may be applied to formalise arguments in natural language. Boolean algebra is used
in computer science, and it is named after George Boole, who was the first professor
of mathematics at Queens College, Cork.3

Table 6.4 Truth table for
formula W

A B W (A, B)

T T T

T F F

F T F

F F T

2Basic truth tables were first used by Frege and developed further by Post and Wittgenstein.
3This institution is now known as University College Cork.

132 6 A Concise Introduction to Logic

6.3.1 Truth Tables

Truth tables give operational definitions of the most important logical connectives,
and they provide a mechanism to determine the truth-values of more complicated
compound expressions. Compound expressions are formed from propositions and
connectives, and the truth-values of a compound expression containing several
propositional variables are determined from the underlying propositional variables
and the logical connectives.

The conjunction of A and B (denoted A ^ B) is true if and only if both A and
B are true, and is false in all other cases (Table 6.5). The disjunction of two
propositions A and B (denoted A _ B) is true if at least one of A and B are true, and
false in all other cases (Table 6.6). The disjunction operator is known as the ‘in-
clusive or’ operator as it is also true when both A and B are true; there is also an
exclusive or operator that is true exactly when one of A or B is true and is false
otherwise.

Example 6.1 Consider proposition A given by ‘An orange is a fruit’ and the
proposition B given by ‘2 + 2 = 5’ then A is true and B is false. Therefore,

(i) A ^ B (i.e. an orange is a fruit and 2 + 2 = 5) is false.
(ii) A _ B (i.e. an orange is a fruit or 2 + 2 = 5) is true.

The implication operation (A ! B) is true if whenever A is true means that B is
also true, and it is also true whenever A is false (Table 6.7). It is equivalent (as
shown by a truth table) to ¬A _ B. The equivalence operation (A $ B) is true
whenever both A and B are true, or whenever both A and B are false (Table 6.8).

The not operator (¬) is a unary operator (i.e. it has one argument) and is such that
¬A is true when A is false and is false when A is true (Table 6.9).

Example 6.2 Consider proposition A given by ‘Jaffa cakes are biscuits’ and the
proposition B given by ‘2 + 2 = 5’, then A is true and B is false. Therefore,

(i) A ! B (i.e. Jaffa cakes are biscuits implies 2 + 2 = 5) is false.
(ii) A $ B (i.e. Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false.
(iii) ¬B (i.e. 2 + 2 6¼ 5) is true.

Creating a Truth Table
The truth table for a well-formed formula W(P1, P2, …, Pn) is a table with 2n rows
and n + 1 columns. Each row lists a different combination of truth-values of the
propositions P1, P2, …, Pn followed by the corresponding truth-value of W.

Table 6.10 gives the truth table for a formula W with three propositional
variables (meaning that there are 23 = 8 rows in the truth table and 3 + 1 = 4
columns).

6.3 Propositional Logic 133

Table 6.5 Conjunction A B A ^ B

T T T

T F F

F T F

F F F

Table 6.6 Disjunction A B A _ B

T T T

T F T

F T T

F F F

Table 6.7 Implication A B A ! B

T T T

T F F

F T T

F F T

Table 6.8 Equivalence A B A $ B

T T T

T F F

F T F

F F T

Table 6.9 Not operation A ¬A

T F

F T

Table 6.10 Truth table for W
(P, Q, R)

P Q R W(P, Q, R)

T T T F

T T F F

T F T F

T F F T

F T T T

F T F F

F F T F

F F F F

134 6 A Concise Introduction to Logic

6.3.2 Properties of Propositional Calculus

There are many well-known properties of the propositional Calculus such as the
commutative, associative and distributive properties. These ease the evaluation of
complex expressions and allow logical expressions to be simplified.

The commutative property holds for the conjunction and disjunction operators,
and it states that the order of evaluation of the two propositions may be reversed
without affecting the resulting truth-value. The associative property holds for the
conjunction and disjunction operators, which means that order of evaluation of a
sub-expression does not affect the resulting truth-value. The conjunction operator
distributes over the disjunction operator and vice versa.

The result of the logical conjunction of two propositions is false if one of the
propositions is false (irrespective of the value of the other proposition). The result
of the logical disjunction of two propositions is true if one of the propositions is true
(irrespective of the value of the other proposition). The result of the logical dis-
junction of two propositions, where one of the propositions is known to be false is
given by the truth-value of the other proposition. The result of the logical con-
junction of two propositions, where one of the propositions is known to be true, is
given by the truth-value of the other proposition.

The conjunction and disjunction operators are idempotent. That is, when the
arguments of the conjunction or disjunction operator are the same proposition A the
result is A. The law of the excluded middle is a fundamental property of the
propositional Calculus. It states that a proposition A is either true or false: i.e. there
is no third logical value.

We noted that A ! B is logically equivalent to ¬A _ B (same truth table), and
clearly ¬A _ B is the same as ¬A _ ¬¬B which is the same as ¬¬B _ ¬A which is
logically equivalent to ¬B ! ¬A. That is, A ! B is logically equivalent to
¬B ! ¬A (this is known as the contrapositive). De Morgan’s law states:

:ðA ^ BÞ � :A _ :B
:ðA _ BÞ � :A ^ :B

A proposition that is true for all values of its constituent propositional variables
is termed a tautology. For example, the proposition A _ ¬A is a tautology.
A proposition that is false for all values of its constituent propositional variables is
termed a contradiction. For example, the proposition A ^ ¬A is a contradiction.

6.3.3 Proof in Propositional Calculus

Logic enables further truths to be derived from existing truths by rules of inference
that are truth preserving. Propositional Calculus is both complete and consistent.
The completeness property means that all true propositions are deducible in the

6.3 Propositional Logic 135

Calculus, and the consistency property means that there is no formula A such that
both A and ¬A are deducible in the Calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all the premises are true.

Consider a set of premises P1, P2, … Pn and conclusion Q. Then to determine if
the argument is valid using a truth table involves adding a column in the truth table
for each premise P1, P2, … Pn, and then identifying the rows in the truth table for
which these premises are all true. The truth-value of the conclusion Q is examined
in each of these rows, and if Q is true for each case for which P1, P2, … Pn are all
true then the argument is valid. This is equivalent to P1 ^ P2 ^… ^ Pn ! Q is a
tautology.

An alternative approach is to assume the negation of the desired conclusion (i.e.
¬Q) and to show that the premises and the negation of the conclusion result in a
contradiction (i.e. P1 ^ P2 ^… ^ Pn ^ ¬Q) is a contradiction. The use of truth
tables becomes cumbersome when there are many variables involved, as there are
2n truth table entries for n propositional variables.

Procedure for Proof by Truth Table

(i) Consider argument P1, P2, …, Pn with conclusion Q.
(ii) Draw truth table with column in truth table for each premise P1, P2, …, Pn.
(iii) Identify the rows in truth table for when the premises are all true.
(iv) Examine truth-value of Q for these rows.
(v) If Q is true for each case that P1, P2,… Pn are true then the argument is valid.
(vi) That is P1 ^ P2 ^… ^ Pn ! Q is a tautology.

Example 6.3 (Truth Tables) Consider the argument adapted from (Kelly 1997) and
determine if it is valid.

If the pianist plays the concerto then crowds will come if the prices are not too
high.

If the pianist plays the concerto then the prices will not be too high.
Therefore, if the pianist plays the concerto then crowds will come.

Solution
We will adopt a common proof technique that involves showing that the negation of
the conclusion is incompatible (inconsistent) with the premises, and from this, we
deduce the conclusion must be true.

Let P stand for ‘The pianist plays the concerto’; C stands for ‘Crowds will
come’; and H stands for ‘Prices are too high’. Then, the argument may be expressed
in propositional logic as

P ! ð:H ! CÞ
P ! :H
P ! C

136 6 A Concise Introduction to Logic

Then, we negate the conclusion P ! C and check the consistency of P !
ð:H ! CÞ ^ ðP ! :HÞ ^ :ðP ! CÞ� using a truth table (Table 6.11).

It is clear from the last column in the truth table that the negation of the con-
clusion is incompatible with the premises, and therefore, it cannot be the case that
the premises are true and the conclusion false. Therefore, the conclusion must be
true whenever the premises are true, and we conclude that the argument is valid.

6.3.4 Semantic Tableaux in Propositional Logic

The problem with using truth tables to prove the validity of an argument is that they
can get extremely large very quickly, and so we will consider an alternative
approach known as semantic tableaux.

The basic idea of semantic tableaux (developed by the Dutch logician, Evert
Beth) is to determine if it is possible for a conclusion to be false when all the
premises are true. If this is not possible, then the conclusion must be true when the
premises are true, and so the conclusion is semantically entailed by the premises.
The method of semantic tableaux is a technique to expose inconsistencies in a set of
logical formulae, by identifying conflicting logical expressions.

We present a short summary of the rules of semantic tableaux in Table 6.12, and
we then give a proof of Example 6.3 using semantic tableaux.

Whenever a logical expression A and its negation ¬A appear in a branch of the
tableau, then an inconsistency has been identified in that branch, and the branch is
said to be closed. If all the branches of the semantic tableaux are closed, then the
logical propositions from which the tableau was formed are mutually inconsistent,
and cannot be true together.

The method of proof is to negate the conclusion and to show that all branches in
the semantic tableau are closed, and that therefore, it is not possible for the premises
of the argument to be true and for the conclusion to be false. Therefore, the
argument is valid and the conclusion follows from the premises.

Table 6.11 Proof of argument with a truth table

P C H ¬H ¬H!C P!(¬H! C) P!¬H P!C ¬(P!C) *

T T T F T T F T F F

T T F T T T T T F F

T F T F T T F F T F

T F F T F F T F T F

F T T F T T T T F F

F T F T T T T T F F

F F T F T T T T F F

F F F T F T T T F F

6.3 Propositional Logic 137

Example 6.4 (Semantic Tableaux) Perform the proof, for example, 6.3 using
semantic tableaux.

Solution
We formalised the argument previously as

ðPremise 1Þ P ! ð:H ! CÞ
ðPremise 2Þ P ! :H
ðConclusionÞ P ! C

We negate the conclusion to get ¬(P ! C) and we show that all branches in the
semantic tableau are closed, and that therefore, it is not possible for the premises of
the argument to be true and for the conclusion false.

Table 6.12 Rules of semantic tableaux

Rule
No.

Definition Description

1. A ∧ B
A
B

If A ^ B is true then both A and B are true, and may be added to
the branch containing A ^ B

2. A ∨ B

A B

If A _ B is true then either A or B is true, and we add two new
branches to the tableaux, one containing A and one containing B

3. A → B

¬A B

If A! B is true then either ¬A or B is true, and we add two new
branches to the tableaux, one containing ¬A and one containing
B

4. A ↔ B

A∧B ¬A ∧¬B

If A $ B is true then either A ^ B or ¬A ^ ¬B is true, and we
add two new branches, one containing A ^ B and one
containing ¬A ^ ¬B

5. ¬¬A
A

If ¬¬A is true then A may be added to the branch containing
¬¬A

6. ¬(A ∧ B)

¬A ¬ B

If ¬(A ^ B) is true then either ¬A or ¬B is true, and we add two
new branches to the tableaux, one containing ¬A and one
containing ¬B

7. ¬(A ∨ B)
¬A
¬B

If ¬(A _ B) is true then both ¬A and ¬B are true, and may be
added to the branch containing ¬(A _ B)

8. ¬(A → B)
A
¬B

If ¬(A ! B) is true then both A and ¬B are true, and may be
added to the branch containing ¬(A ! B)

138 6 A Concise Introduction to Logic

P → (¬H → C)
P → ¬H
¬(P → C)

|
P

¬C
/ \

¬P ¬H
------ / \

closed ¬P (¬H → C)
------ / \

closed ¬¬H C
| -----

H closed

closed

We have showed that all branches in the semantic tableau are closed, and that
therefore, it is not possible for the premises of the argument to be true and for the
conclusion false. Therefore, the argument is valid as required.

6.3.5 Natural Deduction

Gerhard Gentzen (Fig. 6.3) developed a method for logical deduction known as
‘Natural Deduction’, which aims to be as close as possible to natural reasoning.
Gentzen worked as an assistant to David Hilbert at the University of Göttingen in
Germany, and he died in Prague at the end of the Second World War.

Natural deduction includes rules for ^, _, ! introduction and elimination and
also for reductio ad absurdum. There are ten inference rules in the system, with two
inference rules per operator (an introduction rule and an elimination rule). Natural
deduction is described in more detail in O’Regan (2017).

6.3.6 Applications of Propositional Calculus

Propositional Calculus may be employed in reasoning with arguments in natural
language. First, the premises and conclusion of the argument are identified and
formalised into propositions, and we then determine if the conclusion is a valid
deduction from the premises. Consider the following argument that aims to prove
that Superman does not exist.

‘If Superman were able and willing to prevent evil, he would do so. If Superman
were unable to prevent evil he would be impotent; if he were unwilling to prevent

6.3 Propositional Logic 139

evil he would be malevolent; Superman does not prevent evil. If superman exists he
is neither malevolent nor impotent; therefore, Superman does not exist’.

First, letters are employed to represent the propositions as follows:

a Superman is able to prevent evil.
w Superman is willing to prevent evil.
i Superman is impotent.
m Superman is malevolent.
p Superman prevents evil.
e Superman exists.

Then, the argument above is formalised in propositional logic as follows:

Premises
P1 ða ^ wÞ ! p
P2 ð:a ! iÞ ^ ð:w ! mÞ
P3 :p
P4 e ! i ^ :m�����������������

Conclusion :e

Fig. 6.3 Gerhard Gentzen

140 6 A Concise Introduction to Logic

Proof that Superman Does Not Exist
1. ¬p P3

2. ¬(a ^w) _ p P1 (A ! B � ¬A _ B)

3. ¬(a ^w) 1, 2 A _ B, ¬B ├ A

4. ¬a _ ¬w 3, De Morgan’s law

5. (¬a ! i) P2 (^-Elimination)

6. ¬a ! i _ m 5, x ! y ├ x ! y _ z

7. (¬w ! m) P2 (^-Elimination)

8. ¬w ! i _ m 7, x ! y ├ x ! y _ z

9. (¬a _ ¬w) ! (i _ m) 8, x ! z, y! z ├ x _ y ! z

10. (i _ m) 4,9 Modus Ponens

11. e ! ¬(i _ m) P4 (De Morgan’s Law)

12. ¬e _ ¬ (i _ m) 11, (A ! B � ¬A _ B)

13. ¬e 10, 12 A _ B, ¬B ├ A

Therefore, the conclusion that Superman does not exist is a valid deduction from
the given premises. Next, we discuss predicate Calculus.

6.4 Predicate Logic

Predicate logic is a richer system than propositional logic, and it allows complex
facts about the world to be represented. It allows new facts about the world to be
derived in a way that guarantees that if the initial facts are true then the conclusions
are true. Predicate Calculus includes predicates, variables, constants and quantifiers.

A predicate is a characteristic or property that an object can have, and we are
predicating some property of the object. For example, ‘Socrates is a Greek’
expresses the property that the subject ‘Socrates’ has the property that he is ‘Greek’.
This may be expressed as G(s), with capital letters standing for predicates and small
letters standing for objects. A predicate may include variables, and a statement with
a variable becomes a proposition once the variables are assigned values. For
example, G(x) states that the variable x is a Greek, whereas G(s) is an assignment of
values to x. The set of values that the variables may take is termed the universe of
discourse, and the variables take values from this set.

Predicate Calculus employs quantifiers to express properties such as all members
of the domain have a particular property: e.g. (8x)P(x), or that there is at least one
member that has a particular property: e.g. (9x)P(x). These are referred to as the
universal and existential quantifiers.

The syllogism ‘All Greeks are mortal; Socrates is a Greek; therefore, Socrates is
mortal’ may be easily expressed in predicate Calculus by

6.3 Propositional Logic 141

ð8xÞðG xð Þ ! M xð ÞÞ
G sð Þ
� � �������
M sð Þ

In this example, the predicate G(x) stands for x is a Greek and the predicate M
(x) stands for x is mortal. The formula G(x)! M(x) states that if x is a Greek then
x is mortal, and the formula (8x)(G(x)! M(x)) states for any x that if x is a Greek
then x is mortal. The formula G(s) states that Socrates is a Greek and the formula M
(s) states that Socrates is mortal.

Example 6.5 (Predicates) A predicate may have one or more variables. A predicate
that has only one variable (i.e. a unary or 1-place predicate) is often related to sets, a
predicate with two variables (a 2-place predicate) is a relation and a predicate with
n variables (an n-place predicate) is an n-ary relation. Propositions do not contain
variables and so they are 0-place predicates. The following are examples of
predicates:

(i) The predicate Prime(x) states that x is a prime number (with the natural
numbers being the universe of discourse).

(ii) Lawyer(a) may stand for a is a lawyer.
(iii) Mean(m, x, y) states that m is the mean of x and y: i.e. m = 1/2(x + y)
(iv) LT(x, 6) states that x is less than 6.
(v) GT(x, y) states that x is greater than y.
(vi) LE(x, y) states that x is less than or equal to y.
(vii) Real(x) states that x is a real number.
(viii) Father(x, y) states that x is the father of y.
(ix) ¬(9x)(Prime(x) ^ B(x, 32, 36)) states that there is no prime between 32 and

36.

Universal and Existential Quantification
The universal quantifier is used to express a statement such as that all members of
the domain have property P. This is written as (8x)P(x) and expresses the statement
that the property P(x) is true for all x. Similarly, (8x1, x2, …, xn) P(x1, x2, …, xn)
states that property P(x1, x2, …, xn) is true for all x1, x2, …, xn. Clearly, the predicate
(8x) P(a, b) is identical to P(a, b) since it contains no variables, and the predicate
(8y 2ℕ) (x � y) is true if x = 1 and false otherwise.

The existential quantifier states that there is at least one member in the domain of
discourse that has property P. This is written as (9x)P(x) and the predicate (9x1, x2,
…, xn) P(x1, x2, …, xn) states that there is at least one value of (x1, x2, …, xn) such
that P(x1, x2, …, xn) is true.

142 6 A Concise Introduction to Logic

Example 6.6 (Quantifiers)

(i) (9p) (Prime(p) ^ p > 1,000,000) is true
It expresses the fact that there is at least one prime number greater than a
million, which is true as there are an infinite number of primes.

(ii) (8x) (9 y) x < y is true
This predicate expresses the fact that given any number x we can always find a
larger number: e.g. take y = x + 1.

(iii) (9 y) (8x) x < y is false
This predicate expresses the statement that there is a natural number y such
that all natural numbers are less than y. Clearly, this statement is false since
there is no largest natural number, and so the predicate is false.

Comment 6.1
It is important to be careful with the order in which quantifiers are written, as the
meaning of a statement may be completely changed by the transposition of two
quantifiers.

Scope of Quantifiers
The scope of the quantifier (8x) in the well-formed formula (8x) A is A. Similarly,
the scope of the quantifier (9x) in the well-formed formula (9x) B is B. The variable
x that occurs within the scope of the quantifier is said to be a bound variable, and a
variable that is not within the scope of a quantifier is said to be free.

6.4.1 Semantic Tableaux in Predicate Calculus

We discussed the use of semantic tableaux for determining the validity of argu-
ments in propositional logic earlier in the chapter, and its approach is to negate the
conclusion of an argument and to show that this results in inconsistency with the
premises of the argument.

The use of semantic tableaux is similar with predicate logic, except that there are
some additional rules to consider. As before, if all branches of a semantic tableau
are closed, then the premises and the negation of the conclusion are mutually
inconsistent, and we deduce that the conclusion must be true. The additional rules
logic is detailed in Table 6.13.

Example 6.7 (Semantic Tableaux) Show that the syllogism ‘All Greeks are mortal;
Socrates is a Greek; therefore, Socrates is mortal’ is a valid argument in predicate
Calculus.

6.4 Predicate Logic 143

Solution
We expressed this argument previously as (8x) (G(x) ! M(x)); G(s); M(s).
Therefore, we negate the conclusion (i.e. ¬M(s)) and try to construct a closed
tableau.

 (∀x)(G(x)→ M(x))
 G(s)
¬M(s).
G(s) → M(s) Universal Instantiation

/\
¬G(s) M(s)
----- --------

closed closed

Therefore, as the tableau is closed we deduce that the negation of the conclusion is
inconsistent with the premises, and that therefore, the conclusion follows.

6.5 Review Questions

1. Draw a truth table to show that ¬ (P ! Q) � P ^¬ Q.
2. Translate the sentence ‘Execution of program P begin with x < 0 will not

terminate’ into propositional form.
3. Explain the difference between the universal and the existential quantifier.
4. Express the following statements in the predicate Calculus:

a. All natural numbers are greater than 10.
b. There is at least one natural number between 5 and 10.

Table 6.13 Extra rules of semantic tableaux (for predicate Calculus)

Rule
No.

Definition Description

1 (8x) A(x)
A(t) where t is a term

Universal instantiation

2. (9x) A(x)
A(t) where t is a term that has not been
used in the derivation so far

Rule of existential instantiation. The
term ‘t’ is often a constant ‘a’

3. ¬(8x) A(x)
(9x) ¬A(x)

4. ¬(9x) A(x)
(8x)¬A(x)

144 6 A Concise Introduction to Logic

5. Which of the following predicates are true?

a. 8i 2{10, …,50}. i2 < 2000 ^ i < 100.
b. 9 i 2 ℕ. i > 5 ^ i2 = 25.

6. Use semantic tableaux to show that (A ! A) _ (B ^ ¬B) is true.

6.6 Summary

Propositional logic is the study of propositions, where a proposition is a statement
that is either true or false. A formula in propositional Calculus may contain several
variables, and the truth or falsity of the individual variables, and the meanings of the
logical connectives determine the truth or falsity of the logical formula.

A rich set of connectives is employed to build up the well-formed formulae of
the Calculus. This includes the conjunction of two propositions (A ^ B), the dis-
junction of two propositions (A _ B) and the implication of two propositions
(A ! B). These connectives allow compound propositions to be formed, and the
truth of the compound propositions is determined from the truth-values of the
constituent propositions and the rules associated with the logical connectives. The
meaning of the logical connectives is given by truth tables.

Propositional Calculus is complete and consistent with all true propositions
deducible in the Calculus, and there is no formula A such that both A and ¬A are
deducible in the Calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises and another formula that is the conclusion. One elementary way to see
if the argument is valid is to produce a truth table to determine if the conclusion is
true whenever the premises are true.

Predicates are statements involving variables and these statements become
propositions once the variables are assigned values. Predicate Calculus allows
expressions such as all members of the domain have a particular property to be
expressed formally: e.g. (8x) Px, or that there is at least one member that has a
particular property: e.g. (9x) Px.

Semantic tableaux may be used for determining the validity of arguments in
propositional or predicate logic, and its approach is to negate the conclusion of an
argument and to show that this results in inconsistency with the premises of the
argument.

6.5 Review Questions 145

Chapter 7
Human–Computer Interaction

Key Topics

Batch processing
Text-based interface
Graphical User Interface
Voice User Interface
WIMP
SILK
Usability Standards

7.1 Introduction

Human–computer interaction (HCI) is a branch of computer science that is concerned
with the design, evaluation and implementation of interactive computing systems for
human use. It is focused on the interfaces between people and computers, and
involves several different fields including computer science, cognitive psychology,
design and communication. The human–computer interaction field has evolved over
the decades to include text-based interaction systems, graphical user interfaces
(GUI) and voice user interfaces (VUI) for speech recognition and speech synthesis.

The interaction between humans and machines was mainly limited to informa-
tion technology professionals from the early days of computing up to the mid/late
1970s. This changed after the invention of the microprocessor in the early 1970s,
which led to an explosion of interest from computer hobbyists, and the subsequent
development of home computers from the mid-1970s. The introduction of the IBM
personal computer in the early 1980s meant that everyone in the world was now
was a potential computer user, and it led to a new market of personal applications
and tools to support the user. However, it was clear that there were serious defi-
ciencies with respect to the usability of computers in carrying out the tasks that
users wished to perform.

Humans interact with computers in many ways, and so it is important to
understand the interface between human and machines to facilitate an effective
interaction. The early computer systems were batch processing (running programs
in batches without human intervention) on a large expensive mainframe computer.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_7&domain=pdf

The interaction between the human (operator) and computer was limited, and it
consisted of placing the punched cards (encoded instructions to the computer) on
the card reader, and the computer would then process the cards overnight. These
computers were slow and expensive, and it was important that they be used effi-
ciently 24 h a day. The computer could run only one program at a time, and
programmers were unable to interact with the computer while it was running, and
this made it difficult and time-consuming to identify and correct errors.

A text-based interface (also known as a command line interface) is where the
system interaction (input and output) and navigation are text-based. They are easier
to use than punched card programming, but require skilled operators due to the
difficulty in remembering long lists of system commands.

Licklider wrote an influential paper ‘Man-Computer Symbiosis’ in 1960
(Licklider 1960), in which he outlined the need for a simple interaction between
users and computers. This paper mentioned ideas such as sharing computers among
many users, interactive information processing and programming, large-scale
storage and retrieval, and speech and handwriting recognition.

Doug Engelbart was one of the main developers of NLS (oN Line System) in the
late 1960s, and this online word processor system had features such as the first
computer mouse, time-sharing and a command line interface. User trials and testing
was employed in its development as part of a philosophy towards a system adapting
to people rather than people adapting to a system.

One of the most well-known text-based operating systems was Microsoft’s MS/
DOS operating system for IBM compatible personal computers, which was intro-
duced in 1981 (Fig. 7.1). Text-based interfaces are effective for expert users but are
more difficult for users with an average level of knowledge, as they have a steep
learning curve and the difficulty in remembering a long list of system commands.
The fact that they are not very intuitive or user-friendly motivated research into
alternative approaches.

The graphical user interface (GUI) is a human–computer interface that uses
graphical icons, menus and windows to represent information and action to the user.

Fig. 7.1 FreeDOS text editing

148 7 Human–Computer Interaction

It was a revolution in human and computer interaction and the GUI was intuitive
and user-friendly. They have made computers and electronic devices attractive to
non-technical users, and the usability of the GUI has allowed a large range of users
with varying ability and expertise to successfully interact with computers.

Early work on graphical user interfaces took place at Xerox PARC in the 1970s
with their work on the Xerox Alto personal workstation (Fig. 3.24). This was the
first computer to use a mouse-driven graphical user interface, and it was introduced
in the mid-1970s. It was essentially a small minicomputer rather than a personal
computer (it was not based on the microprocessor). Its significance is that it had a
major impact on the user interface design, and especially on the design of the Apple
Macintosh computer.

The Xerox Star was introduced in the early 1980s, and it followed sound
usability principles (prototyping and analysis, iterative development and testing
with users) in its development. Steve Jobs visited Xerox PARC in late 1979, and he
realised that the future of personal computing was with computers that employed a
graphical user interface (such as in the Xerox Alto). Jobs was amazed that Xerox
had not commercialised the technology, as he saw its graphical user interface as a
revolution in computing and a potential goldmine in the future of computing. The
design of the Apple Macintosh was heavily influenced by the design of the Xerox
Alto, and the release of the Macintosh was a major milestone in computing.

The Macintosh was a much easier machine to use than the existing IBM personal
computer. Its friendly and intuitive graphical user interface was a revolutionary
change from the command-driven operating system of the IBM PC, which required
the users to be familiar with its operating system commands. It was 1990 before
Microsoft introduced its Windows 3.0 GUI-driven operating system (Fig. 7.2).

Today, the prevalent paradigm in human–computer interaction is the WIMP
(windows, icons, menus and pointers) paradigm, which is comprised of a graphic
and text interface navigated by a mouse and keyboard. The future of HCI is pre-
dicted to be the SILK (speech, image, language and knowledge) paradigm, where
communication between humans and machine will be more natural and intuitive.

7.2 HCI Principles

The success of computer systems is critically influenced by the design of the
human–computer interaction, and in the achievement of end-user computing sat-
isfaction. Human–computer interaction is concerned with the study of humans and
machines, and so it needs knowledge of both to be effective. The study of machines
requires knowledge of computer graphics, programming languages, capabilities of
current technology and so on, whereas on the human side it requires knowledge of
cognitive psychology, ergonomics and other human factors such as usability and
computer user satisfaction.

There are several fundamental principles and models underlying HCI. It is
essential to understand the user and their characteristics, as well as their diversity in

7.1 Introduction 149

age, experience, physical and intellectual abilities, and so on. It is customary to
distinguish between two types of user knowledge (IT and domain knowledge), and
the user’s proficiency in each type of knowledge yields several user categories that
range between novice and expert.

– Interface knowledge (knowledge of the IT technology).
– Domain/task knowledge of the real-world system.

The software will generally support multiple user categories, where novices get
opportunities to learn about the system and have fewer opportunities for error. It is
important to understand the domain in which the software will be used and to
identify the tasks to be performed as well as the frequency in which they will be
performed.

There have been several rules and principles proposed for HCI design including
Shneiderman’s ‘Eight Golden Rules of Interface Design’ (Table 7.1) (Shneiderman
and Plaisant 2005).

7.3 Software Usability and User-Centred Design

Usability has become important in software engineering and especially with the
emergence of the World Wide Web in the early 1990s. The usability of the software
is the perception that a user or group of users has of its quality and ease of use (i.e.
is the software easy to use and easy to learn?), and its efficiency and effectiveness.

Fig. 7.2 Microsoft Windows 3.11 (1993). Used with permission from Microsoft

150 7 Human–Computer Interaction

Usability is a multidisciplinary field, and psychological testing may be employed to
evaluate the perception that users have of the computer system. Usability is defined
in the ISO 9241 standard as:

Usability is the degree to which software can be used by specified consumers to achieve
quantified objectives with effectiveness, efficiency and satisfaction in a quantified context of
use.

There are several standards for usability including the ISO 9241 and ISO 16982
standards, and the IEC 62366-1 standard (Applications of Usability Engineering to
Medical Devices) from the International Electrotechnical Commission (IEC).

Usability, like quality, needs to be built into the software product rather than
added later, and it needs to be considered from the earliest stages in the software
development process. It requires an analysis of the user population and the tasks
that they perform, as well as their knowledge and experience. The specification of
the user and system requirements needs to include the usability requirements, as
these are an integral part of the system.

There will often be a variety of different viewpoints to be considered, and this
leads to multiple design solutions and an evaluation of these against the require-
ments. An iterative software development life cycle is generally employed, with
active user involvement during the software development process. Prototyping is
often employed to give the users a flavour of the proposed system and to get early
user feedback on its usability. User acceptance testing (including usability testing)
provides confidence that the software satisfies the usability, accessibility and quality
expectations of the users (Table 7.2).

Table 7.1 Eight golden rules of interface design

Principle Description

Strive for consistency Consistent terminology, sequences of action and commands
throughout the system

Enable frequent users to
use shortcuts

The user will naturally desire to reduce the number of interactions
as the frequency of use increases

Provide informative
feedback

There should be appropriate system feedback

Design dialogue to yield
closure

Sequences of actions should be organised into groups with a
beginning, middle and end

Offer simple error
handling

Design the system (as far as possible) to prevent the user from
making a serious error. The system should be able to detect an
error and provide a handling mechanism

Permit easy reversal of
actions

This is important to the user as it means that errors can be undone

Support internal locus of
control

The system should be designed to make the users initiators of
actions rather than responders to actions

Reduce short-term
memory load

There are limitations to human processing in short-term memory,
and so displays should be kept simple

7.3 Software Usability and User-Centred Design 151

7.3.1 User-Centred Design

User-centred design (UCD) is a design process that is focused on the usability of
and accessibility of the system to be developed, and it places the users at the centre
of the software development process. The users are actively involved from the
beginning of the project, and regular feedback is obtained from them at each stage
of the process. UCD follows well-established techniques for analysis and design,
and it is focused on understanding the characteristics of users and their needs
(Table 7.3).

The UCD design activities focus on the user, including understanding the tasks
that they perform, their needs and their experience. The users clarify what they want
from the product and the environment in which the software will be used. The
designers then determine how the users are currently performing their tasks, and
what they like and dislike about the ways in which the tasks are currently done.
This helps the designer to design a product that will be fit for purpose, that will
satisfy the usability expectations of users, as well as being competitive in the
market.

Table 7.2 Software development life cycle (including usability)

Phase Description

Requirements Interviews with the different categories of users

Prototype Initial prototype developed and structured feedback given by users
(usually via questionnaire)

Spiral design/
development

Design a little, code a little, test a little, formal review and user feedback
prior to new spiral

Acceptance Final acceptance testing by users

Table 7.3 UCD principles

Principle Description

User
understanding

The design is based on an explicit understanding of users, tasks and
environments (i.e. who are the users?, what are their tasks and needs? and
what is their experience?)

User
involvement

The users are involved throughout the design and development (and user
feedback shapes the design and development)

User evaluation The design is driven and refined by user evaluation (and the user
acceptance testing confirms that the usability and functional requirements
are properly implemented)

Iterative
development

The software development process is iterative, and the approach is to
design and develop a little, get feedback from the user evaluation, modify
accordingly and proceed to the next cycle in the iteration

Design The design addresses the whole user experience

Multidisciplinary The design team includes multidisciplinary skills

152 7 Human–Computer Interaction

The software development team produces an initial version (or prototype) of the
product, and the prototype has sufficient functionality to test some parts of the
design. The design and development proceeds in cycles of modification, testing and
a user review of the current version, until the software satisfies functional, usability
and accessibility requirements. The approach is to design a little; code a little; test a
little; evaluate and decide on whether to proceed with subsequent cycles.

A pre-release of the software may be created and sent to a restricted set of users
for their evaluation, and the user feedback is then used to finalise the product prior
to its actual release.

7.4 Review Questions

1. What is a text-based interface?
2. What is a graphical user interface?
3. Explain the importance of software usability.
4. Investigate the various usability standards such as ISO 9241 and ISO

16982.
5. Explain user-centred design.
6. Describe the evolution of human–computer interfaces.

7.5 Summary

Human–computer interaction is a branch of computer science that is concerned with
the design, evaluation and implementation of interactive computing systems for
human use. It is focused on the interfaces between people and computers, and has
grown over the decades to include text-based interaction systems, graphical user
interfaces and voice user interfaces.

The development of home computers from the mid-1970s meant that everyone
in the world was now a potential computer user, and it was clear that there was a
need to improve the usability of machines. Humans interact with computers in
many ways, and so it is important to understand the interface between them to
facilitate the interaction.

The early interaction between humans and computers was via batch processing
with limited interaction between the operator and computer. These were followed
by text-based interfaces (also known as a command line interface), where the
system interaction (input and output) and navigation are text-based. One of the most

7.3 Software Usability and User-Centred Design 153

well-known text-based operating systems was Microsoft’s MS/DOS operating
system for IBM compatible personal computers.

The graphical user interface is a human–computer interface that uses graphical
icons, menus and windows to represent information and action to the user. They are
intuitive and user-friendly, and were a revolution in human and computer inter-
action. They have made computers and electronic devices attractive to
non-technical users, and are a major step forward from command-driven operating
system.

The success of modern software systems is related to the usability of the soft-
ware, and user-centred design has become a key paradigm in building usability in
the software. It places the user at the centre of the software development process
with active user involvement and evaluation employed.

154 7 Human–Computer Interaction

Chapter 8
Introduction to Programming
Languages

Key Topics

Generations of programming languages
Imperative Languages
ALGOL
Fortran and Cobol
Pascal and C
Object-oriented Languages
Java and C++
Functional Programming Languages
Logic Programming Languages
Syntax and Semantics

8.1 Introduction

Hardware is physical and can be seen and touched, whereas software is intangible
and is an intellectual undertaking by a team of programmers. Software is written in
a programming language, and hundreds of languages have been developed since the
development of the early computers. Programming languages have evolved with
the earliest languages using machine code to instruct the computer. The next
development was the use of assembly languages to represent machine language
instructions. These were then translated into machine code by an assembler. The
next step was to develop high-level programming languages such as FORTRAN
and COBOL. These were easier to use than assembly languages and machine code,
and helped to improve quality and productivity.

A first-generation programming language (or 1GL) is a machine-level pro-
gramming language that consists of 1s and 0s. The main advantage of these lan-
guages is execution speed as they may be directly executed on the computer, and

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_8&domain=pdf

they do not require a compiler or assembler to convert from a high-level language
or assembly language into the machine code.

However, writing a program in machine code is difficult and error prone, as it
involves writing a stream of binary numbers. This made the programming language
difficult to learn and difficult to correct should any errors occur. The programming
instructions were entered through the front panel switches of the computer system,
and adding new code was difficult. Further, the machine code was not portable as
the machine language for one computer could differ significantly from that of
another computer. Often, the program needed to be totally rewritten for the new
computer. First-generation languages were used mainly on the early computers.

Second-generation languages, or 2GL, are low-level assembly languages that
are specific to a computer and processor. However, assembly languages are easier
to read than the first-generation machine code, and the assembler converts the
assembly code into the actual machine code to run on the computer. The assembly
language is specific to a particular processor family and environment, and it is
therefore not portable. They require considerably more programming effort than
high-level programming languages, and are more difficult to use for larger
applications.

A program written in assembly language often needs to be rewritten for a
different platform. However, since the assembly language is in the native language
of the processor it has significant speed advantages over high-level languages.
Second-generation languages are still used today, but high-level programming
languages have generally replaced them.

The third-generation languages, or 3GL, include high-level programming lan-
guages such as Pascal, C or FORTRAN. These are general-purpose languages and
have been applied to business, scientific and general applications. A program
written in a high-level programming language is generally translated by the com-
piler1 into the machine language of the target computer for execution. They are
designed to be easier for a human to understand, and include features such as named
variables, conditional statements, iterative statements, assignment statements and
data structures. Early examples of third-generation languages are FORTRAN,
ALGOL and COBOL, and later examples are C, C++ and Java. The advantages of
these high-level languages are:

1This is true of code generated by native compilers. Other compilers may compile the source code
to the object code of a Virtual Machine, and the translator module of the Virtual Machine translates
the bytecode of the Virtual Machine to the corresponding native machine instruction. That is, the
Virtual Machine translates each generalised machine instruction into a specific machine instruction
(or instructions) that may then be executed by the processor on the target computer. A computer
language such as C requires a separate compiler for each computer platform (i.e. computer and
operating system). However, a language such as Java comes with a virtual machine for each
platform. This allows the source code statements in these programs to be compiled just once, and
they may then be executed on any platform.

156 8 Introduction to Programming Languages

– Ease of readability,
– Clearly defined syntax (and semantics2),
– Suitable for Business or Scientific applications,
– Machine independent,
– Portability to other platforms,
– Ease of debugging,
– Execution speed.

These languages are machine independent and may be compiled for different
platforms. The early 3GLs were procedural in that they focus on how something is
done rather than on what needs to be done. The later 3GLs were object-oriented3

and the programming tasks were divided into objects. Objects may be employed to
build larger programs, in a manner that is analogous to building a prefabricated
building from its constituent parts. Java, C++ and Smalltalk are examples of
modern object-oriented language.

High-level programming languages allow programmers to focus on problem
solving rather than on the low-level details associated with assembly languages.
They are easier to debug and to maintain than assembly languages.

Fourth-generation languages specify what needs to be done rather than how it
should be done. They are designed to reduce programming effort and include report
generators and form generators. Report generators take a description of the data
format and the report that is to be created, and then automatically generate a
program to produce the report. Form generators are used to generate programs to
manage online interactions with the application system users. However, a disad-
vantage of 4GLs is that they are slow compared to compiled languages.

A fifth-generation programming language, or 5GL, is a programming language
that is based around solving problems using constraints applied to the program,
rather than using an algorithm written by the programmer. Fifth-generation lan-
guages are designed to make the computer (rather than the programmer) solve the
problem. The programmer specifies the problem and the constraints to be satisfied,
and is not concerned with the algorithm or implementation details. These languages
are mainly used for research purposes especially in the field of artificial intelligence.
Prolog is one of the best-known fifth-generation languages, and it is a logic pro-
gramming language.

The task of deriving an efficient algorithm from a set of constraints for a par-
ticular problem is nontrivial and to date, this step has not been successfully auto-
mated. Fifth-generation languages are used mainly in academia.

2The study of programming language semantics commenced in the 1960s. It includes work done
by Hoare on Axiomatic Semantics; work done by Gordon Plotkin on Operational Semantics; and
work done by Scott and Strachey on Denotational Semantics.
3Norwegian Research originally developed object-oriented programming with their work on
Simula 67 in the late 1960s.

8.1 Introduction 157

8.2 Plankalkül

Plankalkül was developed by Konrad Zuse in 1946 and it is the earliest high-level
programming language. It means “Plan” and “Kalkül”: i.e. a Calculus of programs.
It is a relatively modern language for such an old language, and there was no
compiler available at the time of its creation. It was many years later before the first
Plankalkül program was run, when the Free University of Berlin designed and
developed a compiler for the language in 2000 (over 50 years after its conception).

The language employs data structures and Boolean algebra, and includes a
mechanism to define more powerful data structures. Zuse demonstrated that the
Plankalkül language could be used to solve scientific and engineering problems,
and he wrote several example programs including programs for sorting lists and
searching a list for a particular entry. The main features of Plankalkül are:

– A high-level language.
– Fundamental data types are arrays and tuples of arrays.
– While construct for iteration.
– Conditionals are addressed using guarded commands.
– There is no GOTO statement.
– Programs are non-recursive functions.
– Type of a variable is specified when it is used.

The main constructs of the language are variable assignment, arithmetical and
logical operations, guarded commands and while loops. There are also some list and
set processing functions.

8.3 Imperative Programming Languages

Imperative programming is a programming style that describes computation in
terms of a program state, and statements that change the state. The term “imper-
ative” is a command to carry out a specific instruction or action, and imperative
programming consists of a set of commands to be executed on the computer, and is,
therefore, concerned with how the program will be executed. The execution of an
imperative command generally results in a change of state.

Imperative programming languages are quite distinct from functional and logic
programming languages. Functional programming languages, like Miranda, have
no global state, and programs consist of mathematical functions that have no side
effects. In other words, there is no change of state, and the variable x will have the
same value later in the program as it does earlier. Logic programming languages,
like Prolog, define “what” is to be computed, rather than “how” the computation is
to take place.

Most high-level programming languages are imperative languages, and assem-
bly languages and machine code are also imperative languages. Imperative

158 8 Introduction to Programming Languages

programs tend to be more difficult to reason about due to the change of state, as the
variable x may have a different value later in the program. Functional programming
and relational programming languages are mainly used in academia.

High-level imperative languages use program variables and employ commands
such as assignment statements, conditional statements, iterative commands and
calls to procedures. An assignment statement performs an operation on information
located in memory, and stores the results in memory. Its effect is a change of the
program state. A conditional statement allows a statement to be executed only if a
specified condition is satisfied, whereas an iterative statement allows a statement (or
a group of statements) to be executed multiple times while a specified condition is
satisfied.

High-level imperative languages allow the evaluation of complex expressions
such as arithmetic operations and function evaluations, and the resulting value of
the expression is assigned to memory.

FORTRAN was developed in the mid-1950s, and it was one of the earliest
programming languages. ALGOL was developed in the late 1950s and 1960s, and
it became a popular language for the expression of algorithms. COBOL was
designed in the late 1950s as a programming language for business use. George
Kemeny and Thomas Kurtz designed the BASIC (beginner’s all-purpose symbolic
instruction code) programming language in the 1960s. Niklaus Wirth developed
Pascal in the early 1970s. Denis Ritchie developed the C programming language at
Bell Labs in the early 1970s.

The Ada programming language was developed for the US military in the early
1980s. Object-oriented languages include features to support objects, and Bjarne
Stroustrup designed C++ in 1985 as an object-oriented extension of the C language.
Sun Microsystems released Java in 1996.

8.3.1 FORTRAN and COBOL

FORTRAN (FORmula TRANslator) was the first high-level programming lan-
guage to be implemented. John Backus at IBM developed it in the mid-1950s, and
the first compiler was available in 1957. The language includes named variables,
complex expressions and subprograms. It was designed for scientific and engi-
neering applications, and remains the most important programming language for
these domains. The main statements of the language include:

– Assignment Statements (using the = symbol),
– IF Statements,
– Goto Statements,
– DO Loops.

8.3 Imperative Programming Languages 159

Fortran II was developed in 1958, and it introduced sub-programs and functions
to support procedural (or imperative) programming. Each procedure (or subroutine)
contains computational steps to be carried out when it is called (at any point) during
program execution. This could include calls by other procedures or by itself.
However, recursion was not allowed until Fortran 90. Fortran 2003 provides sup-
port for object-oriented programming.

The basic types supported in FORTRAN include Boolean, Integer and Real.
Support for double precision and complex numbers was added later. The language
includes relational operators for equality (.EQ.), less than (.LT.) and so on.
FORTRAN is good at handling numbers and computation, and this is especially
useful for mathematical and engineering problems. The following code (written in
Fortran 77) gives a flavour of the language.

PROGRAM HELLOWORLD

C FORTRAN 77 SOURCE CODE COMMENTS FOR HELLOWORLD

PRINT ‘(A)’, ‘HELLO WORLD’

STOP

END

FORTRAN remains a popular language for application such as climate mod-
elling, simulations of the solar system, modelling the trajectories of artificial
satellites and simulation of automobile crash dynamics.

It was initially weak at handling input and output, which was important to
business computing. This led to the development of the COBOL programming
language in the late 1950s.

The common business-oriented language (COBOL) was the first business pro-
gramming language, and it was introduced in 1959. Grace Murray Hopper4

(Fig. 8.1) and a group of computer professionals called the Conference on Data
Systems Languages (CODASYL) designed it with the objective of improving the
readability of software source code. It has an English-like syntax designed to make
it easy to learn the language, and its only data types were numbers and strings of
text, that may be grouped into arrays and records. The language is verbose:

‘DIVIDE A BY B GIVING C REMAINDER D’.

COBOL was the first computer language, whose use was mandated by the US
Department of Defense. The language remains in use today, and there is an
object-oriented version of the language.

4Mary Hopper was a programmer on the Mark 1, Mark II and Mark III and UNIVAC 1 computers.
She was the technical advisor to the CODASYL committee.

160 8 Introduction to Programming Languages

8.3.2 ALGOL

ALGOL (ALGOrithmic Language) is a family of imperative programming lan-
guages that was originally developed in the mid-1950s. It was later revised in
ALGOL 60, and ALGOL 68, and the language was designed to address some of the
problems in FORTRAN. ALGOL was not a widely used language, and this may
have been due to the refusal of IBM to support ALGOL, and the dominance of IBM
in the computing field.

A committee of American and European computer scientists designed the lan-
guage, and ALGOL had a significant influence on later language design. ALGOL
60 (Naur 1960) was the most popular member of the family, and Edsger Dijkstra
developed an early ALGOL 60 compiler. John Backus and Peter Naur developed a
method for describing the syntax of the ALGOL 58 programming language, which
is known as Backus–Naur form (or BNF).

ALGOL includes data structures and block structures. Block structures were
designed to allow blocks of statements to be created (e.g. for procedures or func-
tions). A variable defined within a block may be used within the block, but is out of
scope outside of the block.

ALGOL 60 introduced two ways of passing parameters to sub-programs, and
these are “call by value” and “call by name”. The call by value parameter passing
technique involves the evaluation of the arguments of a function or procedure
before the function or procedure is entered. The values of the arguments are passed
to the function or procedure, and any changes to the arguments within the called
function or procedure have no effect on the actual arguments. The call by name
parameter passing technique is the default parameter passing technique in ALGOL
60. It involves re-evaluating the actual parameter expression each time the formal
parameter is read. Call by name is used today in C/C++ macro expansion.

ALGOL 60 includes conditional statements and iterative statements. It supports
recursions: i.e. it allows a function or procedure to call itself. It includes:

Fig. 8.1 Grace Murray and
UNIVAC

8.3 Imperative Programming Languages 161

• Dynamic Arrays: These are arrays in which the subscript range is specified by
variables.

• Reserved Words: These are keywords that are not allowed to be used as iden-
tifiers by the programmer.

• User-defined data types: These allow the user to design their own data types.
• ALGOL uses bracketed statement blocks and it was the first language to use

begin end pairs for delimiting blocks.

ALGOL was used mainly by researchers in the United States and Europe. There
was a lack of interest in its adoption by commercial companies due to the absence
of standard input and output facilities in its description. ALGOL 60 became the
standard for the publication of algorithms, and it had a major influence on later
language development.

ALGOL evolved during the 1960s but not in the right direction. The ALGOL 68
committee decided on a very complex design rather than the simple and elegant
ALGOL 60 specification. Tony Hoare remarked that:

“ALGOL 60 was a great improvement on its successors”.

8.3.3 Pascal and C

Niklaus Wirth designed the Pascal programming language in the early 1970s. It is
named after Blaise Pascal (a seventeenth-century French mathematician), and it was
based on the ALGOL programming language. It was intended as a language to
teach students structured programming.

Structured programming is concerned with rigorous techniques to design and
develop programs, and there was an intense debate on correct approaches to soft-
ware development in the late 1960s. Dijkstra argued against the use of the GOTO
statement “GOTO Statement considered harmful” (Dijkstra 1968), and this influ-
enced language design, and led to several languages that did not include the
construct.

The Pascal language includes the conditional if statement, the iterative while,
repeat and for statements, the assignment statement and the case statement (which is
a generalised if statement). The statement in the body of the repeat statement is
executed at least once, whereas the statement within the body of a while statement
may never be executed.

The language has several reserved words (known as keywords) that have a
special meaning, and these may not be used as program identifiers. The Pascal
program that displays ‘Hello World’ is given by:

program HELLOWORLD (OUTPUT);

begin

WRITELN (‘Hello, World!’)

end.

162 8 Introduction to Programming Languages

Pascal includes several simple data types such as Boolean, integer, character and
reals, and it also has more advanced data types such as arrays, enumeration types,
ordinal types and pointer data types. It allows complex data types to be constructed
from existing data types, and types are introduced with the reserved word ‘type’.

type

c = record

a: integer;

b: char

end;

Pascal includes a “pointer” data type, and this data type allows linked lists to be
created by including a pointer type field in the record. The variable linklist is a
pointer to the data type B in the example below where B is a record.

type

BPTR = ^B;

B = record

A: integer;

C: BPTR

end;

var

linklist : BPTR;

Pascal is a block-structured language with programs structured into procedures
and function blocks. These can be nested to any depth, and recursion is allowed.
Each block has its own constants, types, variables and other procedures and
functions, which are defined, within the scope of the block.

Pascal was criticised as being unsuitable for serious programming by Brian
Kernighan and others (Kernighan 1981). Many of these deficiencies were addressed
in later versions of the language. However, by then Denis Richie at Bell Labs had
developed the C programming language, which became popular in the industry.
C is a general-purpose and a systems programming language.

It was originally designed as a language to write the kernel for the UNIX
operating system, which was novel as operating systems were traditionally written
in assembly languages. The success of C in writing the UNIX kernel led to its use
on several other operating systems such as Windows and Linux. It also influenced
later language development such as C++, and it is one of the most commonly used
systems programming languages. The language is described in detail in Kernighan
and Ritchie (1978).

It provides high-level and low-level capabilities, and a C program that is written
in ANSI C with portability in mind may be compiled for a very wide variety of
computer platforms and operating systems with minimal changes to the source
code. The C language is now available on a wide range of platforms.

8.3 Imperative Programming Languages 163

C is a procedural programming language and includes conditional statements
such as the “if statement”, the “switch statement”, iterative statements such as the
“while” statement or “do” statement and the assignment statement.

• If Statement

if (A == B)

A = A + 1;

else

A = A – 1;5

• Assignment Statement

i ¼ iþ 1;

One of the first programs that people write in C is the Hello world program. This
is given by:

main()

{

printf(“Hello, World\n”);

}

It includes several predefined data types including integers and floating point
numbers.

- int (integer)

- long (long integer)

- float (floating point real)

- double (double precision real)

It allows more complex data types to be created using “structs”, which are
similar to records in Pascal. It allows the use of pointers to access memory loca-
tions, which allows the memory locations to be directly referenced and modified.
For example, the result of the following is to assign 5 to the variable x.

int x;

int *ptr_x;

x = 4;

ptr_x = &x;

*ptr_x = 5;

5The semi-colon in Pascal is used as a statement separator, whereas it is used as a statement
terminator in C.

164 8 Introduction to Programming Languages

C is a block-structured language, and a program is structured into functions (or
blocks). Each function block contains variables and functions, and a function may
call itself (i.e. recursion is allowed).

One key criticism of C is that it is very easy to make errors in C programs, and to
thereby produce undesirable results. For example, one of the easiest mistakes to
make is to accidentally write the assignment operator (=) for the equality operator
(==). This totally changes the meaning of the original statement as can be seen
below:

if (a == b)

a ++; …. Program fragment A

else

a−−

if (a = b)

a ++; …. Program fragment B

else

a−−

Both program fragments are syntactically correct and the intended meaning of a
program is easily changed. The philosophy of C to allow statements to be written as
concisely as possible, and this is potentially dangerous.6 The use of pointers may
lead to problems as uninitialised pointers may point anywhere in memory, and may,
therefore, write anywhere in memory. Therefore, the effective use of C requires
experienced programmers, well-documented source code and formal peer reviews
of the source code by other developers.

8.4 Object-Oriented Languages

The traditional view of programming is that a program is a collection of functions,
or a list of instructions to be performed on the computer. Object-oriented pro-
gramming is a paradigm shift in programming, where a computer program is
considered to be a collection of objects that act on each other. Each object may send
and receive messages and process data. That is, each object may be viewed as an
independent entity or actor with a distinct role or responsibility.

6It is very easy to write incomprehensible code in C and even a 1 line of C code can be
incomprehensible. The maintenance of poorly written code is a challenge unless programmers
follow good programming practice. This discipline needs to be enforced by formal reviews of the
source code.

8.3 Imperative Programming Languages 165

An object is a “black box” which sends and receives messages. A black box
consists of code (computer instructions) and data (information which these
instructions operate on). The traditional way of programming kept code and data
separate. For example, functions and data structures in the C programming lan-
guage are not connected. However, in the object-oriented world, code and data are
Merged into a single indivisible thing called an object.

The reason that an object is called a black box is that the user of an object never
needs to look inside the box, since all communication to it is done via messages.
Messages define the interface to the object. Everything an object can do is repre-
sented by its message interface. Therefore, there is no need to know anything about
what is in the black box (or object) to use it. The access to an object is only through
its messages, while keeping the internal details private. This is called information
hiding7 and is due to work by Parnas in the early 1970s.

The origins of object-oriented programming go back to the invention of Simula
67 at the Norwegian Computing Research Centre8 in the late 1960s. Simula 67
introduced the notion of a class and instances of a class9, and it influenced later
languages such as Smalltalk developed at Xerox PARC in the mid-1970s. Xerox
introduced the term ‘Object-oriented programming’ for the use of objects and
messages as the basis for computation. Most modern programming languages
support object-oriented programming (e.g. Java and C++), and object-oriented
features added to many existing languages such as BASIC, FORTRAN and Ada.
The main features of object-oriented languages are described in Table 8.1.

Object-oriented programming has become popular in large-scale software
development, and it became the dominant paradigm in programming from the early
1990s. Its proponents argue that it is easier to learn, and simpler to develop and
maintain such programs. Its growth in popularity was helped by the rise in popu-
larity of graphical user interfaces (GUI), which is well suited to object-oriented
programming. The C++ programming language has become popular, and it is an
object-oriented extension of the C programming language.

8.4.1 C++ and Java

Bjarne Stroustrup developed the C++ programming language in 1983 as an
object-oriented extension of the C programming language. It was designed to use
the power of object-oriented programming, and to maintain the speed and

7Information hiding is a key contribution by Parnas to computer science. He has also done work on
mathematical approaches to software quality using tabular expressions (O’Regan 2017).
8The inventors of Simula 67 were Ole-Johan Dahl and Kristen Nygaard.
9Dahl and Nygaard were working on ship simulations and were attempting to address the huge
number of combinations of different attributes from different types of ships. Their insight was to
group the different types of ships into different classes of objects, with each class of objects being
responsible for defining its own data and behaviour

166 8 Introduction to Programming Languages

portability of C. It provides a significant extension of Cs capabilities, but it does not
force the programmer to use the object-oriented features of the language.

A key difference between C++ and C is the concept of a class. A class is an
extension to the C concept of a structure, where the main difference is that while a C
data structure can hold only data, a C++ class may hold both data and functions. An
object is an instantiation of a class: i.e. the class is essentially the type, whereas the
object is essentially a variable of that type. Classes are defined in C++ by using the
keyword class:

class class_name

{

access_specifier_1:

member1;

access_specifier_2:

Table 8.1 Object-oriented paradigm

Feature Description

Class A class defines the abstract characteristics of a thing, including its
attributes (or properties), and its behaviours (or methods). The
members of a class are termed objects

Object An object is a particular instance of a class with its own set of
attributes. The set of values of the attributes of an object is called
its state

Method The methods associated with a class represent the behaviours of the
objects in the class

Message passing Message passing is the process by which an object sends data to
another object, or asks the other object to invoke a method

Inheritance A class may have subclasses (or children classes) that are more
specialised versions of the class. A subclass inherits the attributes
and methods of the parent class. This allows the programmer to
create new classes from existing classes. The derived classes inherit
the methods and data structures of the parent class

Encapsulation
(information hiding)

One fundamental principle of the object-oriented world is
encapsulation (or information hiding). The internals of an object
are kept private to the object, and may not be accessed from outside
the object. That is, encapsulation hides the details of how a
particular class is implemented, and it requires a clearly specified
interface around the services provided

Abstraction Abstraction simplifies complexity by modelling classes and
removing all unnecessary detail. All essential detail is represented,
and non-essential information is ignored

Polymorphism Polymorphism is behaviour that varies depending on the class in
which the behaviour is invoked. Two or more classes may react
differently to the same message. The same name is given to
methods in different subclasses: i.e. one interface, and multiple
methods

8.4 Object-Oriented Languages 167

member2;

…

}

The members may be either data or function declarations, and an access specifier
is included to specify the access rights for each member (e.g. private, public or
protected). Private members of a class are accessible only by other members of the
same class, public members are accessible from anywhere where the object is
visible, protected are accessible by other members of same class and also from
members of their derived classes. An example of a class in C++ is the definition of
the class rectangle:

class CRectangle

{

int x, y;

public:

void set_values (int, int);

int area (void);

} rect;

Java is an object-oriented programming language developed by James Gosling
and others at Sun Microsystems in the early 1990s. C and C++ influenced the
syntax of the language, and Java was designed with portability in mind. The
objective is for a program to be written once and executed anywhere. Platform
independence is achieved by compiling the Java code into Java bytecode, which are
simplified machine instructions specific to the Java platform.

This code is then run on a Java virtual machine (JVM) that interprets and
executes the Java bytecode. The JVM is specific to the native code on the host
hardware. The problem with interpreting bytecode is that it is slow compared to
traditional compilation. However, Java has a number of techniques to address this
including just in time compilation and dynamic recompilation. Java also provides
automatic garbage collection. This is a very useful feature as it protects program-
mers who forget to deallocate memory (thereby causing memory leaks).

Java is a proprietary standard that is controlled through the Java Community
Process. SunMicrosystemsmakesmost of its Java implementations available without
charge. The following is an example of the Hello World program written in Java.

class HelloWorld

{

public static void main (String args[])

{

System.out.println (“Hello World!”);

}

}

168 8 Introduction to Programming Languages

8.5 Functional Programming Languages

Functional programming is quite distinct from imperative programming in that it
involves the evaluation of mathematical functions. Imperative programming
involves the execution of sequential (or iterative) commands that change the state.
For example, the assignment statement alters the value of a variable, and the value
of a given variable x may change during program execution.

There is no change of state in functional programs, and the fact that the value of
x will always be the same makes it easier to reason about functional programs than
imperative programs. Functional programming languages provide referential
transparency: i.e. equals may be substituted for equals, and if two expressions have
equal values, then one can be substituted for the other in any larger expression
without affecting the result of the computation.

Functional programming languages use higher order functions,10 recursion, lazy
and eager evaluation, monads,11 and Hindley–Milner-type inference systems.12

These languages are mainly used in academia, but there has been some industrial
use, including the use of Erlang for concurrent applications in industry. Alonzo
Church developed Lambda Calculus in the 1930s, and it provides an abstract
framework for describing mathematical functions and their evaluation. It provides
the foundation for functional programming languages, and Church employed
lambda Calculus to prove that there is no solution to the decision problem for
first-order arithmetic in 1936.

Lambda Calculus uses transformation rules, and one of these rules is variable
substitution. The original Calculus developed by Church was untyped, but typed
lambda calculi have since been developed. Any computable function can be
expressed and evaluated using lambda Calculus, but there is no general algorithm to
determine whether two arbitrary lambda Calculus expressions are equivalent.
Lambda Calculus influenced functional programming languages such as Lisp, ML
and Haskell.

Functional programming uses the notion of higher order functions. Higher order
takes other functions as arguments, and may return functions as results. The
derivative function d/dx f(x) = f’(x) is a higher order function that takes a function as
an argument and returns a function as a result. For example, the derivative of the
function Sin(x) is given by Cos(x). Higher order functions allow currying which is a
technique developed by Schönfinkel. It allows a function with several arguments to
be applied to each of its arguments one at a time, with each application returning a

10Higher order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics.
11Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of uses this
feature.
12This is the most common algorithm used to perform type inference, which is concerned with
determining the type of the value derived from the eventual evaluation of an expression.

8.5 Functional Programming Languages 169

new (higher order) function that accepts the next argument. This allows a function
of n-arguments to be treated as n applications of a function with 1-argument.

John McCarthy developed LISP at MIT in the late 1950s, which includes many
of the features found in modern functional programming languages.13 Scheme built
upon the ideas in LISP, and Kenneth Iverson developed APL14 in the early 1960s.
APL influenced Backus’s FP programming language, and Robin Milner designed
the ML programming language in the early 1970s. David Turner developed
Miranda in the mid-1980s, and it influenced the Haskell programming language
developed by Philip Wadler and others in the late 1980s/early 1990s.

8.5.1 Miranda

Miranda was developed by David Turner at the University of Kent in the mid-1980s
(Turner 1985). It is a non-strict functional programming language: i.e. the argu-
ments to a function are not evaluated until they are required within the function
being called. This is also known as lazy evaluation, and one of its key advantages is
that it allows a potentially infinite data structure to be passed as an argument to a
function. Miranda is a pure functional language in that there are no side effect
features in the language. The language has been used for:

– Rapid prototyping
– Specification language
– Teaching Language

A Miranda program is a collection of equations that define various functions and
data structures. It is a strongly typed language with a terse notation.

z ¼ sqr p =sqr q
sqr k ¼ k � k
p ¼ aþ b
q ¼ a� b
a ¼ 10
b ¼ 5

The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the definition of the function in which it occurs.

One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8].
Lists may be appended to by using the “++” operator. For example:

13Lisp is a multi-paradigm language rather than a functional programming language.
14Iverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing award paper was “Notation as a tool of thought”.

170 8 Introduction to Programming Languages

1; 3; 5½ � þ þ 2; 4½ � is 1; 3; 5; 2; 4½ �

The length of a list is given by the “#” operator:

1; 3½ � ¼ 2

The infix operator “:” is employed to prefix an element to the front of a list. For
example:

5 : 2; 4; 6½ � is equal to 5; 2; 4; 6½ �

The subscript operator “!” is employed for subscripting: For example:

Nums ¼ 5; 2; 4; 6½ � then Nums!0 is 5

The elements of a list are required to be of the same type. A sequence of
elements that contains mixed types is called a tuple. A tuple is written as follows:

Employee = (“Holmes”, “221B Baker St. London”, 50, “Detective”)
A tuple is similar to a record in Pascal, whereas lists are similar to arrays. Tuples

cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

fac 0 ¼ 1

fac nþ 1ð Þ ¼ nþ 1ð Þ * fac n

The definition of the factorial function uses two equations, distinguished by
using different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:

reverse ½ � ¼ ½ �
reverse a : xð Þ ¼ reverse xþþ a½ �

Miranda is a higher order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
n-arguments to be treated as n applications of a function with 1-argument. Function
application is left associative: i.e. f x y means (f x) y. That is, the result of applying
the function f to x is a function, and this function is then applied to y. Every function
with two or more arguments in Miranda is a higher order function.

8.5.2 Lambda Calculus

Lambda Calculus (k-Calculus) was designed by Alonzo Church in the 1930s to
study computability. It is a formal system that may be used to study function

8.5 Functional Programming Languages 171

definition, function application, parameter passing and recursion. Any computable
function may be expressed and evaluated using lambda Calculus.

Lambda Calculus is equivalent to the abstract Turing machine formalism in that
they compute the same set of functions. However, lambda Calculus emphasises the
use of transformation rules, whereas Turing machines are concerned with com-
putability on primitive machines. Lambda Calculus consists of a small set of rules:

Alpha-conversion rule (a-conversion)15

Beta-reduction rule (b-reduction)16

Eta-conversion (η-conversion)17

Every expression in the k-Calculus stands for a function with a single argument.
The argument of the function is itself a function with a single argument and so on.
The definition of a function is anonymous in the Calculus. For example, the
function that adds one to its argument is usually defined as f(x) = x + 1. However,
in k-Calculus the function is defined as:

k x � xþ 1

The name of the formal argument x is irrelevant and an equivalent definition of
the function is k z�z + 1. The evaluation of a function f with respect to an argument
(e.g. 3) is usually expressed by f(3). In k-Calculus this would be written as (k
x�x + 1) 3, and this evaluates to 3 + 1 = 4. Function application is left associative:
i.e. f x y = (f x) y. A function of two variables is expressed in lambda Calculus as a
function of one argument, which returns a function of one argument. This is known
as currying and has been discussed earlier. For example, the function f(x,
y) = x + y is written as k x � k y � x + y. This is often abbreviated to k x y � x + y.

k-Calculus is a simple mathematical system and its syntax is defined as follows:

k-Calculus’s four lines of syntax plus conversion rules, are sufficient to define
Booleans, integers, data structures and computations on them. It inspired LISP and
modern functional programming languages.

15This essentially expresses that the names of bound variables are unimportant.
16This essentially expresses the idea of function application.
17This essentially expresses the idea that two functions are equal if and only if they give the same
results for all arguments.

172 8 Introduction to Programming Languages

8.6 Logic Programming Languages

Logic programming languages describe what is to be done, rather than how it
should be done. These languages are concerned with the statement of the problem
to be solved, rather than how the problem will be solved.

These languages use mathematical logic as a tool in the statement of the problem
definition. Logic is a useful tool in developing a body of knowledge (or theory), and
it allows rigorous deduction of further truths from the existing set of truths. The
theory is built up from a small set of axioms or postulates and rules of inference to
derive further truths logically.

The objective of logic programming is to employ mathematical logic to assist
with computer programming. Many problems are naturally expressed as a theory,
and the statement of a problem to be solved is often equivalent to determining if a
new hypothesis is consistent with an existing theory. Logic provides a rigorous way
to determine this, as it includes a rigorous process for conducting proof.

Computation in logic programming is essentially logical deduction, and logic
programming languages use first-order18 predicate Calculus. It employs theorem
proving to derive the desired truth from an initial set of axioms. These proofs are
constructive19 in the sense that an actual object that satisfies the constraints is
produced, rather than a reliance on a theoretical existence theorem. Logic pro-
gramming specifies the objects, the relationships between them and the constraints
that must be satisfied for the problem. It specifies:

– The set of objects involved in the computation.
– The relationships that hold between the objects.
– The constraints that must be satisfied for the problem.

The language interpreter then decides how to satisfy the constraints. Artificial
intelligence influenced the development of logic programming, and John
McCarthy20 demonstrated that mathematical logic could be used for expressing
knowledge. The first logic programming language was Planner developed by Carl
Hewitt at MIT in 1969. It uses a procedural approach for knowledge representation
rather than McCarthy’s declarative approach.

The best-known logic programming languages is Prolog, which was developed
in the early 1970s by Alain Colmerauer and Robert Kowalski. It stands for
programming in logic. It is a goal-oriented language that is based on predicate

18First-order logic allows quantification over objects but not functions or relations. Higher order
logics allow quantification of functions and relations.
19For example, the constructive proof of the statement 9x such that x = √4 (i.e. there is an x such
that x is the square root of 4) provides more than a proof of existence, and an actual object
satisfying the existence criteria is explicitly produced (i.e. that x = 2 or x − −2).
20John McCarthy received the Turing Award in 1971 for his contributions to artificial intelligence.
He also developed the programming language LISP.

8.6 Logic Programming Languages 173

logic. Prolog became an ISO standard in 1995. The language attempts to solve a
goal by tackling the sub-goals that the goal consists of:

goal: - subgoal1;. . .; subgoaln:

That is, in order to prove a particular goal it is sufficient to prove subgoal1
through subgoaln. Each line of a Prolog program consists of a rule or a fact, and the
language specifies what exists rather than how. The following program fragment
has one rule and two facts:

grandmother(G,S) :- parent(P,S), mother(G,P).mother(Sarah, isaac).parent(isaac, Jacob).

The first line in the program fragment is a rule that states that G is the grand-
mother of S, if there is a parent P of S and G is the mother of P. The next two
statements are facts stating that Isaac is a parent of Jacob, and that Sarah is the
mother of isaac. A goal clause is true if all of its subclauses are true:

goalclause Vg
� �

: � clause1 V1ð Þ; . . .; clausem Vmð Þ

A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog finds solutions by unification: i.e. by binding a variable to a
value. For an implication to succeed, all goal variables Vg on the left side of:- must
find a solution by binding variables from the clauses which are activated on the
right side. When all clauses are examined and all variables in Vg are bound, the
goal succeeds. But if a variable cannot be bound for a given clause, then that clause
fails. Following the failure, Prolog backtracks, and this involves going back to the
left to previous clauses to continue trying to unify with alternative bindings.
Backtracking gives Prolog the ability to find multiple solutions to a given query or
goal.

Most logic programming languages use a simple searching strategy to consider
alternatives:

If a goal succeeds and there are more goals to achieve, then remember any untried
alternatives and go on to the next goal.
If a goal is achieved and there are no more goals to achieve then stop with success.
If a goal fails and there are alternative ways to solve it then try the next one.
If a goal fails and there are no alternate ways to solve it, and there is a previous
goal, then go back to the previous goal.
If a goal fails and there are no alternate ways to solve it, and no previous goal, then
stop with failure.

Constraint programming is a programming paradigm, where relations between
variables can be stated in the form of constraints. Constraints specify the properties
of the solution, and it differs from imperative programming in that the sequence of
steps to execute to establish the solution is not specified.

174 8 Introduction to Programming Languages

8.7 Syntax and Semantics

There are two key parts to any programming language namely its syntax and
semantics. The syntax is the grammar of the language, and a program needs to be
syntactically correct with respect to its grammar. The semantics of the language is
deeper, and determines the meaning of what has been written by the programmer.
The semantics of a language determines what a syntactically valid program will
compute. A programming language is therefore given by:

Programming Language ¼ Syntaxþ Semantics

The theory of the syntax of programming languages is well established, and
Chomsky21 defined a hierarchy of grammars (regular, context-free, context-
sensitive). Backus–Naur form22 (BNF) is often employed to specify the grammar of
languages, which may be input into a parser to determine whether the program is
syntactically correct. A BNF specification consists of a set of rules such as:

\symbol[::¼ expression with symbols[

Where <symbol> is a non-terminal and the expression consists of sequences of
symbols and/or sequences separated by the vertical bar “|” which indicates a choice.
Symbols that never appear on a left side are called terminals. The partial definition
of the syntax of various statements in a programming language is given below:

< loop statement > :: = < while loop > | < for loop>

<while loop > :: = while (< condition >) < statement>

<for loop > :: = for (< expression >) < statement>

<statement > :: = < assignment statement > | < loop statement>

<assignment statement > :: = < variable > : = < expression>

The example above includes various non-terminals (<loop statement>, <while
loop>, <for loop>, <condition>, <expression>, <statement>, <assignment state-
ment>, and <variable>). The terminals include “while”, “for”, “:=” “(“and”)”. The
production rules for <condition> and <expression> are not included.

There are various types of grammars such as regular grammars, context-free
grammars, and context-sensitive grammars. A parser translates the grammar of a

21Chomsky made important contributions to linguistics and the theory of grammars. He is more
widely known today as a critic of United States foreign policy.
22Backus–Naur form is named after John Backus and Peter Naur. It was created as part of the
design of Algol 60, and used to define the syntax rules of the language.

8.7 Syntax and Semantics 175

language into a parse table, and each type of grammar has its own parsing algorithm
to determine whether a particular program is syntactically correct with respect to its
grammar.

8.7.1 Programming Language Semantics

The formal semantics of a programming language is concerned with the meaning of
programs. A program is written according to the rules of its grammar (syntax), and
the compiler then checks that it is syntactically correct, and if so, it generates the
equivalent machine code.23

The compiler must preserve the semantics of the language, and the syntax of the
language gives no information as to the meaning of a program. It is possible to write
syntactically correct programs that behave in quite a different way from the
intentions of the programmer.

The formal semantics of a language is given by a mathematical model, which
describes the possible computations described by the language. The three main
approaches to programming language semantic are axiomatic semantics, opera-
tional semantics and denotational semantics. A short summary of each approach is
described in Table 8.2.

Table 8.2 Programming language semantics

Approach Description

Axiomatic
semantics

Axiomatic semantics involves giving meaning to phrases of the language
with logical axioms. This approach is based on mathematical logic, and it
employs pre- and post-condition assertions to specify what happens when
the statement executes. The relationship between the initial assertion and
the final assertion essentially gives the semantics of the code

Operational
semantics

The operational semantics for a programming language was developed by
Plotkin (1981). It describes how a valid program is interpreted by a
sequence of computational steps.
An abstract machine (SECD machine) may be defined to give meaning to
phrases, by describing the transitions they induce on states of the
machine.
A precise mathematical interpreter (such as the lambda Calculus) may
also give the semantics

Denotational
semantics

Denotational semantics (originally called mathematical semantics)
provides meaning to programs in terms of mathematical objects such as
integers, tuples and functions.
Each phrase in the language is translated into a mathematical object that is
the denotation of the phrase. Christopher Strachey and Dana Scott
developed it in the mid-1960s

23Of course, what the programmer has written may not be what the programmer had intended.

176 8 Introduction to Programming Languages

8.8 Review Questions

1. Describe the five generations of programming languages.
2. Explain the difference between machine code and assembly languages.
3. What are the key features of Fortran and COBOL.
4. Describe the key features of Pascal and C.
5. What are the key features of object-oriented languages.
6. Explain the differences between imperative programming languages and

functional programming languages.
7. What are the key features of logic programming languages?
8. What is the difference between syntax and semantics?
9. Explain the main approaches to programming language semantics.

8.9 Summary

This chapter considered the evolution of programming languages from the older
machine languages, to the low-level assembly languages, to high-level program-
ming languages and object-oriented languages, and to functional and logic pro-
gramming languages. The syntax and semantics of programming languages were
briefly discussed.

The advantages of machine languages are execution speed and efficiency.
However, it is difficult to write programs in these languages, as the program
involves a stream of binary numbers. Further, these languages are not portable, as
the machine language for one computer may differ significantly from the machine
language of another.

The second-generation languages are low-level assembly languages that are
specific to a particular computer and processor. These are easier to write and
understand, but they must be converted into the actual machine code to run on the
computer. They are specific to a processor family and environment and are not
portable. However, their advantages are execution speed, as the assembly language
is the native language of the processor.

The third-generation languages are high-level programming languages, and have
been applied to business, scientific and general applications. They are designed to
be easier to understand, and to allow the programmer to focus on problem-solving.
Their advantages include ease of readability, portability and ease of debugging and
maintenance. The early 3GLs were procedure-oriented and the later 3GLs were
object-oriented.

8.8 Review Questions 177

Fourth-generation languages consist of statements similar to human language,
and are often used in database programming. They specify what needs to be done
rather than how it should be done, and they have been used as report generators and
form generators.

Fifth-generation programming languages or 5GLs, are programming languages
that are based around solving problems using logic programming or applying
constraints to the program. They are designed to make the computer (rather than the
programmer) solve the problem. The programmer only needs to be concerned with
the specification of the problem and the constraints to be satisfied, and does not
need to be concerned with the algorithm or implementation details.

178 8 Introduction to Programming Languages

Chapter 9
Overview of Software Engineering

Key Topics

Standish Chaos Report
Software Lifecycles
Waterfall Model
Spiral Model
Rational Unified Process
Agile Development
Software Inspections
Software Testing
Project Management
CMMI

9.1 Introduction

The approach to software development in the 1950s and 1960s has been described
as the ‘Mongolian Hordes Approach’ by Brooks (1975)1. The ‘method’ or lack of
method was applied to projects that were running late, and it involved adding many
inexperienced programmers to the project, with the expectation that this would
allow the project schedule to be recovered. However, this approach was deeply
flawed as it led to inexperienced programmers with inadequate knowledge of the
project attempting to solve problems, and they inevitably required significant time
from the other project team members resulting in further delays.

This led to the project being delivered even later, as well as subsequent problems
with quality (i.e. the approach of throwing people at a problem does not work). The
philosophy of software development back in the 1950/60s was characterised by:

1The ‘Mongolian Hordes’ management myth is the belief that adding more programmers to a
software project that is running late will allow catch-up. In fact, as Brooks says adding people to a
late software project actually makes it later.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_9

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_9&domain=pdf

The completed code will always be full of defects.

The coding should be finished quickly to correct these defects.

Design as you code approach.

This philosophy accepted defeat in software development, and suggested that
irrespective of a solid engineering approach, that the completed software would
always contain lots of defects. It, therefore, made sense to code as quickly as
possible, and to then identify the defects that were present in order to correct them
as quickly as possible.

In the late 1960s, it was clear that the existing approaches to software devel-
opment were deeply flawed, and that there was an urgent need for change.
The NATO Science Committee organised two famous conferences to discuss
critical issues in software development (Buxton 1975). The first conference was
held at Garmisch, Germany, in 1968, and it was followed by a second conference in
Rome in 1969. Over 50 people from 11 countries attended the Garmisch confer-
ence, including Edsger Dijkstra, who did important theoretical work on formal
specification and verification. The NATO conferences highlighted the problems that
existed in the software sector in the late 1960s, and the term ‘software crisis’ was
coined to refer to these. There were problems with budget and schedule overruns, as
well as problems with the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline, and the
realisation that programming is quite distinct from science and mathematics.
Programmers are like engineers in that they build software products, and so they
need an education in traditional engineering as well as on the latest technologies.
The education of a classical engineer includes product design and mathematics.
However, often computer science education places an emphasis on the latest
technologies, rather than on the essential engineering foundations for designing and
building high-quality products that are safe for the public to use.

Programmers, therefore, need to learn the key engineering skills to enable them
to build products that are safe for the public to use. These engineering skills include
a solid foundation on design and on the mathematics required for building safe
software products. Mathematics plays a key role in classical engineering, and it has
a role to play in some situations (especially in the safety-critical and security-critical
fields) in developing high-quality software products. Several mathematical
approaches that may assist software engineers are described in (O’Regan 2017b).

There are parallels between the software crisis of the late 1960s, and the crisis
with bridge construction in the nineteenth century. Several bridges collapsed or
were delivered late or overbudget in the nineteenth century, because people
involved in their design and construction did not have the required engineering
knowledge. This led to bridges that were poorly designed and constructed, leading
to their collapse and loss of life, as well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organisation speci-
fied a core body of knowledge that the engineer is required to possess, and the
licensing body verifies that the engineer has the required qualifications and

180 9 Overview of Software Engineering

experience. This helps to ensure that only personnel competent to design and build
products actually do so. Engineers have a professional responsibility to ensure that
the products are properly designed and built, and are safe for the public to use.

The Standish group has conducted research (Fig. 9.1) on the extent of problems
with IT projects since the mid-1990s. These studies were conducted in the United
States, but there is no reason to believe that European or Asian companies perform
any better. The results indicate serious problems with on time delivery of projects,
and projects being cancelled prior to completion.2 However, the comparison
between 1995 and 2009 suggests that there have been some improvements with a
greater percentage of projects being delivered successfully, and a reduction in the
percentage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no
silver bullet that will resolve all problems associated with software development
such as schedule or budget overruns (Brooks 1975; Brooks 1986). Poor software
quality can lead to defects in the software that may adversely impact the customer,
or even cause loss of life. It is, therefore, essential that software development
organisations place sufficient emphasis on quality throughout the software devel-
opment process.

The Y2K problem was caused by a two-digit representation of dates, and it
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of the
date, which would have led to minimal changes for year 2000 compliance. Instead,
companies spent vast sums of money to rectify the problem.

The quality of software produced by some companies is impressive.3 These
companies employ mature software processes, and are committed to continuous
improvement. There is a lot of industrial interest in software process maturity
models for software organisations, and various approaches to assess and mature

Fig. 9.1 Standish report––
results of 1995 and 2009
survey

2These are IT projects covering diverse sectors including banking, telecommunications, etc., rather
than pure software companies. Software companies following maturity frameworks such as the
CMMI generally achieve more consistent results.
3I recall projects at Motorola that regularly achieved 5.6r-quality in a L4 CMM environment (i.e.
approx. 20 defects per million lines of code. This represents very high quality).

9.1 Introduction 181

software companies are described in (O’Regan 2010, 2014).4 These models focus
on improving the effectiveness of the management, engineering and organisation
practices related to software engineering, and in introducing best practice in soft-
ware engineering into the organisation. The disciplined use of the mature software
processes by the software engineers plays a key role in the consistent delivery of
high-quality software.

9.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version pro-
grams. The IEEE 610.12 definition of Software Engineering is:

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes:

1. Methodologies to design, develop and test software to meet customers’ needs.
2. Software is engineered. That is, the software products are properly designed,

developed and tested in accordance with engineering principles.
3. Quality and safety are properly addressed.
4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the
safety-critical nature of the product. Systematic peer reviews and rigorous
testing will often be sufficient to build quality into the software, with heavy
mathematical techniques reserved for safety- and security-critical software.

5. Sound project management and quality management practices are employed.
6. Support and maintenance of the software are properly addressed.

Software engineering is not just programming. It requires the engineer to state
precisely the requirements that the software product is to satisfy, and then to pro-
duce designs that will meet these requirements. The project needs to be planned and
delivered on time and budget. The requirements must provide a precise description
of the problem to be solved: i.e. it should be evident from the requirements what is
and what is not required.

The requirements need to be rigorously reviewed to ensure that they are clear
and unambiguous, and reflect the customer’s needs. The next step is then to create

4Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and
organisational practices required in software engineering. The emphasis is on defining software
processes that are fit for the purpose and consistently following them. The process maturity models
focus on what needs to be done rather how it should be done. This gives the organisation the
freedom to choose the appropriate implementation to meet its needs. The models provide useful
information on practices to consider in the implementation.

182 9 Overview of Software Engineering

the design that will solve the problem, and it is essential to validate the correctness
of the design. Next, the software code to implement the design is written, and peer
reviews and software testing are employed to verify and validate the correctness of
the software.

The verification and validation of the design are rigorously performed for
safety-critical systems, where it may be appropriate to employ mathematical
techniques. However, it will usually be sufficient to employ peer reviews or soft-
ware inspections for verification and validation, as these methodologies provide a
high degree of rigour. This may include approaches such as Fagan inspections
(Fagan 1976), Gilb inspections (Gilb and Graham 1994), or Prince 2’s approach to
quality reviews (Office of Government Commerce 2004).

The term ‘engineer’ is a title that is awarded on merit in classical engineering. It
is generally applied only to people who have attained the necessary education and
competence to be called engineers, and who base their practice on classical engi-
neering principles. The title places responsibilities on its holder to behave profes-
sionally and ethically. Often in computer science, the term ‘software engineer’ is
employed loosely to refer to anyone who builds things, rather than to an individual
with a core set of knowledge, experience and competence.

Several computer scientists (such as Parnas5) have argued that computer sci-
entists should be educated as engineers to enable them to apply appropriate sci-
entific principles to their work. They argue that computer scientists should receive a
solid foundation in mathematics and design, to enable them to have the professional
competence to perform as engineers in building high-quality products that are safe
for the public to use. The use of mathematics is an integral part of the engineer’s
work in other engineering disciplines, and so the software engineer should be able
to use mathematics to assist with modelling and understanding the behaviour or
properties of the proposed software system.

Software engineers need education6 on specification, design, turning designs
into programs, software inspections and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional
engineers.7 They are responsible for designing and implementing high-quality and

5Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques in software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented design.
6Software Companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualification of staff prior to assigning staff to performing specific roles. The
appropriate qualifications and experience for the specific role are considered prior to appointing a
person to carry out the role. Many companies are committed to the education and continuous
development of their staff.
7The ancient Babylonians used the concept of accountability in the code of laws known as the
Hammurabi Code, c. 1750 B.C. It included a law that stated that if a house collapsed and killed the
owner then the builder of the house would be executed.

9.2 What Is Software Engineering? 183

reliable software that is safe to use. They are also accountable for their decisions
and actions,8 and have a responsibility to object to decisions that violate profes-
sional standards. Engineers are required to behave professionally and ethically with
their clients. The membership of the professional engineering body requires the
member to adhere to the code of ethics9 of the profession. Engineers in other
professions are licensed, and therefore Parnas argues that a similar licensing
approach be adopted for professional software engineers10 to provide confidence
that they are competent for the assignment. Professional software engineers are
required to follow best practice in software engineering and the defined software
processes.11 Chapter 16 discusses ethics and professional responsibility.

Many software companies invest heavily in training, as the education and
knowledge of its staff are essential to delivering high-quality products and services.
Further, as the computer sector is rapidly changing, employees need to regularly
reskill during their careers. Employees receive professional training related to the
roles that they are performing, and the fact that the employees are professionally
qualified increases confidence in the ability of the company to deliver high-quality
products and services. A company that pays little attention to the competence and
continuous development of its staff will obtain poor results, and suffer a loss of
reputation and market share.

8However, it is unlikely that an individual programmer would be subject to litigation where a
program failure causes damage or loss of life. A comprehensive disclaimer of responsibility for
problems rather than a guarantee of quality accompanies most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and it
would be potentially difficult for an outside party to prove that the cause of failure was due to the
professional negligence of an individual software engineer, as there are many others involved in
the process such as reviewers, testers and the entire project team that developed the software.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from litiga-
tion. However, greater legal protection for the customer can be built into the contract between the
supplier and the customer for bespoke-software development.
9Many software companies have a defined code of ethics that employees are expected to
adhere. Larger companies will wish to project a good corporate image and to be respected
worldwide.
10The British Computer Society (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information Systems Examination Board (ISEB), which allows IT professionals
to be qualified in service management, project management, software testing and so on.
11Software companies that are following the CMMI or ISO 9001 standards will employ audits to
verify that the processes and procedures have been followed. Auditors report their findings to
management and the findings are addressed appropriately by the project team and affected
individuals.

184 9 Overview of Software Engineering

9.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish Group was dis-
cussed earlier in this chapter, and their 1998 research (Fig. 9.2) on project cost
overruns in the US indicated that 33% of projects are between 21 and 50% over-
estimate, 18% are between 51 and 100% overestimate and 11% of projects are
between 101 and 200% overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process is and to make appropriate improvements. The use of
software metrics is an objective way to do this, and improvements in estimation will
be evident from a reduced variance between the estimated and actual effort. The
project manager will determine and report the actual versus estimated effort and
schedule for the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project, and to manage them
appropriately. The probability of each risk occurring and its impact is determined
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor quality software lead to a negative perception of
the company, and may damage the customer relationship leading to a loss of market
share.

There is a strong economic case for building quality into the software, as less
time is spent in reworking defective software. The cost of poor quality (COPQ)
should be measured and targets set for its reductions. It is important that lessons are
learned during the project and are acted upon appropriately. This helps to promote a
culture of continuous improvement.

There have been several high-profile software failures (O’Regan 2014) such as
the millennium bug (Y2K) problem; the floating-point bug in the Intel

Fig. 9.2 Standish 1998 report––estimation accuracy

9.3 Challenges in Software Engineering 185

microprocessor in the mid-1990s; and the European Space Agency Ariane-5 dis-
aster in 1996. The millennium bug was due to the use of two digits to represent
dates rather than four digits. The solution involved finding and analysing all code
that had a Y2K impact; planning and making the necessary changes; and verifying
the correctness of the changes. The worldwide cost of correcting the millennium
bug is estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating-point problem in its
Pentium microprocessor, and in providing adequate information on its impact on its
customers. This led to a large financial cost in replacing microprocessors for its
customers. The Ariane-5 failure caused major embarrassment and damage to the
credibility of the European Space Agency (ESA). Its maiden flight ended in failure
on 4 June 1996, after a flight time of just 40 s.

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs to correct the software, loss of credibility of the company or even loss of life.

9.4 Software Processes and Life Cycles

Organisations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many processes
such as those for defining requirements, processes for project management and
estimation, processes for design, implementation, testing and so on.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes, and compliance to them.
Therefore, it is necessary to focus on the quality of the processes, as well as the
quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use
is institutionalised in the organisation. That is, all employees need to follow the
processes consistently. This requires that people are trained on the new processes
and that process discipline is instilled by an appropriate audit strategy.

Employees need to be trained on the processes, and audits are conducted to
ensure process compliance. Data will be collected to improve the process. The
software process assets in an organisation generally consist of:

– A software development policy for the organisation.
– Process maps that describe the flow of activities.
– Procedures and guidelines that describe the processes in more detail.
– Checklists to assist with the performance of the process.
– Templates for the performance of specific activities (e.g. design, testing).
– Training materials.

186 9 Overview of Software Engineering

The processes employed to develop high-quality software generally include:

– Project management process,
– Requirements process,
– Design process,
– Coding process,
– Peer review process,
– Testing process,
– Supplier selection processes,
– Configuration management process,
– Audit process,
– Measurement process,
– Improvement process,
– Customer support and maintenance processes.

The software development process has an associated life cycle that consists of
various phases. There are several well-known life cycles employed such as the
waterfall model, the spiral model (Boehm 1988), the Rational Unified Process
(Jacobson et al. 1999) and the Agile methodology which has become popular in
recent years. The choice of the software development life cycle is determined from
the needs of the specific project, and various life cycles are described in more detail
in the following sections.

9.4.1 Waterfall Life Cycle

The origins of the waterfall model12 (Fig. 9.3) are in the manufacturing and con-
struction industry, and Winston Royce defined it formally for software development
in 1970 (Royce 1970). It starts with requirements gathering and definition. It is
followed by the functional specification, the design and implementation of the
software and comprehensive testing. The testing generally includes unit, system and
user acceptance testing.

It is employed for projects where the requirements can be identified early in the
project life cycle or are known in advance. It is also called the ‘V’ life cycle model,
with the left-hand side of the ‘V’ detailing requirements, specification, design and
coding and the right-hand side detailing unit tests, integration tests, system tests and
acceptance testing. Each phase has entry and exit criteria that must be satisfied
before the next phase commences.

Many companies employ a set of templates to enable the activities in the various
phases to be consistently performed. Templates may be employed for project
planning and reporting requirements definition, design, testing and so on. These
templates may be based on the IEEE standards or on industrial best practice.

12We treat the waterfall model as identical to the V model in this text.

9.4 Software Processes and Life Cycles 187

9.4.2 Spiral Life Cycles

The spiral model (Fig. 9.4) was developed by Barry Boehm in the mid-1980s, and
it is useful when the requirements are not fully known at project initiation, or where
the requirements evolve as a part of the development life cycle. The software
development involves several spirals, where each spiral typically involves objec-
tives and an analysis of the risks, updates to the requirements, design, code, testing
and a user review of the iteration or spiral. The early spirals are concerned with
prototyping, and the later spirals are concerned with the full implementation of the
system.

The spiral is, in effect, a reusable prototype with the business analysts and the
customer reviewing the current iteration, and providing feedback to the develop-
ment team. The feedback is analysed and used to plan the next iteration. This
approach is often used in joint application development, where the usability and
look and feel of the application is a key concern. This is important in web-based
development and in the development of a graphical user interface (GUI). The
implementation of part of the system helps in gaining a better understanding of the
requirements of the system, and this feeds into subsequent development cycles. The
process repeats until the requirements and the software product are fully complete.

There are several variations of the spiral model including rapid application
development (RAD), joint application development (JAD) models, and the dynamic
systems development method (DSDM) model. Agile methods have become popular
in recent years and these generally employ sprints (or iterations) of 2 weeks
duration to implement several user stories.

There are other life cycle models, for example the iterative development process
that combines the waterfall and spiral life cycle model. The cleanroom approach
developed by Harlan Mills at IBM includes a phase for formal specification, and its
approach to software testing is based on the predicted usage of the software
product. The Rational Unified Process is discussed in the next section.

Fig. 9.3 Waterfall versus life cycle model

188 9 Overview of Software Engineering

9.4.3 Rational Unified Process

The rational unified process (Jacobson et al. 1999) was developed at the Rational
Corporation (now part of IBM) in the late 1990s. It uses the unified modelling
language (UML) as a tool for specification and design, where UML is a visual
modelling language for software systems that provide a means of specifying,
constructing and documenting the object-oriented system. UML was developed by
James Rumbaugh, Grady Booch and Ivar Jacobson, and it facilitates understanding
of the architecture and complexity of the system.

RUP is use case driven, architecture centric, iterative and incremental, and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement and configuration control. Software projects may be very complex, and
there are risks that requirements may be incomplete, or that the interpretation of a
requirement may differ between the customer and the project team.

Requirements are gathered as use cases, which describe the functional
requirements from the point of view of the user of the system. They describe what
the system will do at a high level, and ensure that there is an appropriate focus on
the user when defining the scope of the project. Use cases also drive the devel-
opment process, as the developers create a series of design and implementation
models that realise the use cases. The developers review each successive model for
conformance to the use-case model, and the test team verifies that the implemen-
tation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and

Fig. 9.4 SPIRAL life cycle model. Public domain

9.4 Software Processes and Life Cycles 189

factors such as the platform that the software is to run on, deployment considera-
tions, legacy systems and non-functional requirements.

RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product.
The iteration consists of one or more steps in the workflow, and generally leads to
the growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather than the entire product. That is, RUP
is a way to mitigate risk in software engineering (Fig. 9.5).

9.4.4 Agile Development

There has been a growth of popularity among software developers in lightweight
methodologies such as Agile. This is a software development methodology that
claims to be more responsive to customer needs than traditional methods such as the
waterfall model. The waterfall development model is like a wide and slow-moving
value stream, and halfway through the project 100% if the requirements are typi-
cally 50% done. However, for agile development 50% of requirements are typically
100% done halfway through the project.

An early version of the methodology was introduced in the late 1980s/early
1990s, and the Agile Manifesto was introduced in early 2001 (www.agilealliance.
org). Agile has a strong collaborative style of working and its approach includes:

– Aim is to achieve a narrow fast flowing value stream.
– Feedback and adaptation are employed in decision-making.
– User stories and sprints are employed.
– Stories are either done or not done.
– Iterative and incremental development is employed.
– A project is divided into iterations.

Fig. 9.5 Rational unified process

190 9 Overview of Software Engineering

– An iteration has a fixed length (i.e. time boxing is employed).
– Entire software development life cycle is employed in the implementation of

each story.
– Change is accepted as a normal part of life in the Agile world.
– Delivery is made as early as possible.
– Maintenance is considered part of the development process.
– Refactoring and evolutionary design employed.
– Continuous integration is employed.
– Short cycle times.
– Emphasis on quality.
– Stand-up meetings
– Plan regularly.
– Direct interaction preferred over documentation.
– Rapid conversion of requirements into working functionality.
– Demonstrate value early.
– Early decision-making.

Ongoing changes to requirements are considered normal in the Agile world, and
it is believed to be more realistic to change requirements regularly during the
project rather than attempting to define all the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and regular feedback is an essential part of the process.

A story may be a new feature or a modification to an existing feature. It is
reduced to the minimum scope that can deliver business value, and a feature may
give rise to several stories. Stories often build upon other stories and the entire
software development life cycle is employed for the implementation of each story.
Stories are either done or not done: i.e. there is such thing as a story being 80%
done. The story is complete only when it passes its acceptance tests. Stories are
prioritised based on several factors including:

– Business value of story
– Mitigation of risk
– Dependencies on other stories.

Sprint planning is performed before the start of the iteration, and stories are
assigned to the iteration to fill the available time. The estimates for each story and
their priority are determined, and the prioritised stories are assigned to the iteration.
A short morning stand-up meeting is held daily during the iteration, and attended by
the project manager and the project team. It discusses the progress made the pre-
vious day, problem reporting and tracking, and the work planned for the day ahead.
A separate meeting is held for issues that require more detailed discussion.

Once the iteration is complete, the latest product increment is demonstrated to an
audience including the product owner. This is to receive feedback and to identify
new requirements. The team also conducts a retrospective meeting to identify what
went well and what went poorly during the iteration, and this is used for continuous
improvement in future iterations.

9.4 Software Processes and Life Cycles 191

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives in
decision-making and a broader understanding of the issues.

Software testing is very important and Agile generally employs automated
testing for unit, acceptance, performance and integration testing. Tests are run
frequently with the goal of catching programming errors early. They are generally
run on a separate build server to ensure that all dependencies are checked. Tests are
rerun before making a release. Agile employs test-driven development with tests
written before the code. The developers write code to make a test pass with ideally
developers only coding against failing tests. This approach forces the developer to
write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refactoring
is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identified. The automated test suite is
essential in showing that the integrity of the software is maintained following
refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all
automated tests to be run thereby identifying problems earlier.

9.5 Activities in Waterfall Life Cycle

This section describes the various activities in the waterfall software development
life cycle in more detail. The activities discussed include:

• Business Requirements Definition,
• Specification of System Requirements,
• Design,
• Implementation,
• Unit Testing,
• System Testing,
• UAT Testing,
• Support and Maintenance.

9.5.1 Business Requirements Definition

The business requirements specify what the customer wants, and define what the
software system is required to do (as distinct from how this is to be done). The
requirements are the foundation for the system, and if they are incorrect, then the

192 9 Overview of Software Engineering

implemented system will be incorrect. Prototyping may be employed to assist in the
definition and validation of the requirements.

The specification of the requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding
of what is to be developed and tested.

Requirements gathering involve meetings with the stakeholders to gather all
relevant information for the proposed product. The stakeholders are interviewed,
and requirements workshops conducted to elicit the requirements from them. An
early working system (prototype) is often used to identify gaps and misunder-
standings between developers and users. The prototype may serve as a basis for
writing the specification.

The requirements workshops are used to discuss and prioritise the requirements,
as well as identifying and resolving any conflicting requirements. The collected
information is consolidated into a coherent set of requirements.

The requirements are validated by the stakeholders to ensure that they are
actually those desired, and to establish their feasibility. This may involve several
reviews of the requirements until all stakeholders are ready to approve the
requirements. Changes to the requirements may occur during the project, and these
need to be controlled. It is essential to understand the impacts of a change prior to
its approval.

The requirements for a system are generally documented in a natural language
such as ‘English’. Other notations that may be employed to express the require-
ments include the visual modelling language UML (Jacobson et al. 2005), and
formal specification languages such as VDM or Z.

9.5.2 Specification of System Requirements

The specification of the system requirements of the product is essentially a state-
ment of what the software development organisation will provide to meet the
business requirements. That is, the detailed business requirements are a statement of
what the customer wants, whereas the specification of the system requirements is a
statement of what will be delivered by the software development organisation.

It is essential that the system requirements are valid with respect to the business
requirements, and the stakeholders review them to ensure their validity. Traceability
may be employed to show how the business requirements are addressed by the
system requirements

There are two categories of system requirements: namely, functional and
non-functional requirements. The functional requirements define the functionality
that is required of the system, and it may include screenshots, report layouts or
the desired functionality specified in natural language, use cases, etc. The non-

9.5 Activities in Waterfall Life Cycle 193

functional requirements will generally include security, reliability, performance and
portability requirements, as well as usability and maintainability requirements.

9.5.3 Design

The design of the system consists of engineering activities to describe the archi-
tecture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design and data structure design. There are often
several possible design solutions for the proposed system, and the designer will
need to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The
notation may include flowcharts, or various UML diagrams such as sequence
diagrams, state charts and so on. Program description languages or pseudocode may
be employed to define the algorithms and data structures that are the basis for
implementation.

Functional design involves starting with a high-level view of the system and
refining it into a more detailed design. The system state is centralised and shared
between the functions operating on that state.

Object-oriented design is based on the concept of information hiding (Parnas
1972). The system is viewed as a collection of objects rather than functions, with
each object managing its own state information. The system state is decentralised
and an object is a member of a class. The definition of a class includes attributes and
operations on class members, and these may be inherited from superclasses. Objects
communicate by exchanging messages.

It is essential to verify and validate the design with respect to the system
requirements, and this will be done by design reviews, and traceability of the design
to the system requirements.

9.5.4 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g. C++ or Java), and involves writing or generating the actual code.
The development team divides up the work to be done, with each programmer
responsible for one or more modules. The coding activities include code reviews or
walkthroughs to ensure that quality code is produced, and to verify its correctness.
The code reviews will verify that the source code adheres to the coding standards,

194 9 Overview of Software Engineering

that maintainability issues are addressed, and that the code produced is a valid
implementation of the software design.

Software reuse has become more important in recent times as it provides a way
to speed up the development process. Components or objects that may be reused
need to be identified and handled accordingly. The implemented code may use
software components that have either been developed internally or purchased off
the shelf. Open-source software has become popular in recent years, and it allows
software developed by others to be used (under an open-source license) in the
development of applications.

The benefits of software reuse include increased productivity and a faster time to
market. There are inherent risks with customized-off-the shelf (COTS) software, as
the supplier may decide to no longer support the software, or there is no guarantee
that software that has worked successfully in one domain will work correctly in a
different domain. It is, therefore, important to consider the risks as well as the
benefits of software reuse and open-source software.

9.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented, and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing and
user acceptance testing. These are described below:

Unit Testing

Unit testing is performed by the programmer on the completed unit (or module),
and prior to its integration with other modules. The programmer writes these tests,
and the objective is to show that the code satisfies its design. Each unit test case is
documented and it should include a test objective and the expected result.

Code coverage and branch coverage metrics are often recorded to give an
indication of how comprehensive the unit testing has been. These metrics provide
visibility into the number of lines of code executed as well as the branches covered
during unit testing.

The developer executes the unit tests, records the results, corrects any identified
defects and retests the software. Test-driven development has become popular in
recent years (e.g. in the Agile world), and this involves writing the unit test case
before the code, and the code is written to pass the unit test cases.

Integration Test

The development team performs this type of testing on the integrated system, once
all individual units work correctly in isolation. The objective is to verify that the
modules and their interfaces work correctly together, and to identify and resolve

9.5 Activities in Waterfall Life Cycle 195

any issues. Modules that work correctly in isolation may fail when integrated with
other modules.

System Test

The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specification and execution of
system test cases to verify that the system requirements have been correctly
implemented. An independent test group generally conducts this type of testing,
and the system tests are traceable to the system requirements.

Any system requirements that have been incorrectly implemented will be
identified, and defects logged and reported to the developers. The test group will
verify that the revised version of the software is correct, and regression testing is
carried out to verify system integrity. System testing may include security testing,
usability testing and performance testing.

The preparation of the test environment may involve ordering special hardware
and tools, and it is important that the test environment is set up as early as possible
to allow the timely execution of the test cases.

Performance Test

The purpose of performance testing is to ensure that the performance of the system
is within the bounds specified in the non-functional requirements, and to determine
if the system is scalable to support future growth. It may include load performance
testing, where the system is subjected to heavy loads over a long period, and stress
testing, where the system is subjected to heavy loads during a short time interval.

Performance testing often involves the simulation of many users using the
system, and measuring the response times for various activities. Test tools are
employed to simulate many users and heavy loads.

User Acceptance Test

UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation, and can judge if the system is fit for
purpose.

The objective is to demonstrate that the product satisfies the business require-
ments and meets the customer expectations. Upon its successful completion, the
customer should be happy to accept the product.

9.5.6 Maintenance

This phase continues after the release of the software product to the customer. Any
problems that the customer notes with the software are reported as per the customer

196 9 Overview of Software Engineering

support and maintenance agreement. The support issues will require investigation,
and the issue may be a defect in the software, an enhancement to the software or
due to a misunderstanding. The support and maintenance team will identify the
causes of any identified defects, and will implement an appropriate solution.
Testing is conducted to verify that the solution is correct, and that the changes made
have not adversely affected other parts of the system. Mature organisations will
conduct postmortems to learn lessons from the defect13, and will take corrective
action to prevent a reoccurrence.

The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identified post release. The goal of developing a
correct and reliable software product the first time is very difficult to achieve, and
the customer is always likely to find some issues with the released software product.
It is accepted today that quality needs to be built into each step in the development
process, with the role of software inspections and testing to identify as many defects
as possible prior to release, and minimise the risk that that serious defects will be
found post release.

The more effective the in-phase inspections of deliverables, the higher the
quality of the resulting implementation, with a corresponding reduction in the
number of defects detected by the test groups. The testing group plays a key role in
verifying that the system is correct, and in providing confidence that the software is
fit for purpose. Testing and retesting to achieve quality, until the testing group is
confident that all defects have been eliminated almost seems to be a ‘brute force’
approach. Dijkstra (1972) noted that:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent testing, it can never be said with
absolute confidence that the program is correct, and, at best, statistical techniques
may be employed to give a measure of the confidence in its correctness. That is,
there is no guarantee that all defects have been found in the software.

Many software companies may consider one defect per thousand lines of code
(KLOC) to be reasonable quality. However, if the system contains one million lines
of code this is equivalent to a thousand post-release defects, which is unacceptable.

Some mature organisations have a quality objective of three defects per million
lines of code. This goal is known as Six Sigma (6r), and Motorola developed it
initially for its manufacturing businesses and later applied to its software organi-
sation. The goal is to reduce variability in manufacturing processes and to ensure
that the processes performed within strict process control limits. Motorola was
awarded the first Malcolm Baldridge Quality Award for its Six Sigma initiative and
its commitment to quality.

13This is essential for serious defects that have caused significant inconvenience to customers (e.g.
a major telecom outage). The software development organisation will wish to learn lessons to
determine what went wrong in its processes that prevented the defect from been identified during
peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented.

9.5 Activities in Waterfall Life Cycle 197

9.6 Software Inspections

Software inspections are used to build quality into software products, and there are
several well-known approaches such as the Fagan Methodology (Fagan 1976)
developed by Michael Fagan of IBM. This is a seven-step process that identifies
and removes errors in work products. The process mandates that requirement
documents, design documents, source code and test plans are all formally inspected
by experts who are independent of the author of the deliverable.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the
deliverable, and the author is the creator of the deliverable and the tester role is
concerned with the testing viewpoint.

The inspection process will consider whether the design is correct with respect to
the requirements, and whether the source code is correct with respect to the design.
Software inspections play an important role in building quality into the software,
and in reducing the cost of poor quality in the organisation. For more detailed
information on software inspections see (O’Regan 2014).

9.7 Software Project Management

The timely delivery of quality software requires good project management and
engineering processes. Software projects have a history of being delivered late or
overbudget, and good project management practices include activities such as:

– Initiating and planning the project.
– Estimation of cost, effort and schedule for the project.
– Preparing the initial project plan and schedule.
– Definition of the key milestones.
– Obtaining approval for the project plan and schedule from the stakeholders.
– Identifying and managing risks.
– Staffing the project.
– Managing project execution.
– Monitoring and managing progress, budget, schedule, effort, risks, issues,

change requests and quality.
– Taking corrective action.
– Replanning and rescheduling the project.
– Communicating progress to the stakeholders.
– Preparing status reports and presentations.
– Closing the project.

The project plan will contain or reference several other plans such as the project
quality plan, the communication plan, the configuration management plan and the
test plan.

198 9 Overview of Software Engineering

Project estimation and scheduling are difficult for software projects as often these
involve new technologies and are breaking new ground. This means that they are
often may be quite different from previous projects, and so historical estimates may
not be a good basis for estimation. Further, unanticipated problems may arise with
technically advanced projects, and so the estimates may be overly optimistic.

Gantt charts are generally employed for project scheduling, and these show the
work breakdown for the project, as well as task dependencies. The Gantt chart
shows the allocation of staff to the various tasks, where each task has a start date
and an end date, the effort associated with it, as well as the staff involved.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty and the risk management cycle involves14 risk
identification; risk analysis and evaluation, identifying responses to risks, selecting
and planning a response to the risk and risk monitoring. The risks are logged, and
the likelihood of each risk arising and its impact is then determined. The risk is
assigned an owner and an appropriate response to the risk determined. For more
detailed information on project management see (O’Regan 2017a).

9.8 CMMI Maturity Model

The CMMI is a framework to assist an organisation in the implementation of best
practice in software and systems engineering (Chrissis et al. 2011). It is an inter-
nationally recognised model for process improvement and assessment, and is used
worldwide by thousands of organisations. It provides a framework for an organi-
sation to introduce a solid engineering approach to the development of software,
and the CMMI practices support the implementation of high-quality processes for
the various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI), who adapted the
process improvement principles used in the manufacturing field to the software
field. It developed the original CMM model in the early 1990s, and its successor is
the CMMI. The CMMI states what the organisation needs to do to mature its
processes rather than how this should be done, and so the organisation has the
freedom to interpret the model meets its business needs effectively.

The CMMI consists of five maturity levels with each maturity level consisting of
several process areas. Each process area consists of a set of goals, which are
implemented by practices related to that process area. Level two is focused on
management practices; level three is focused on engineering and organisation
practices; level four is concerned with ensuring that key processes are performing
within strict quantitative limits; level five is concerned with continuous process
improvement. Maturity levels may not be skipped in the staged implementation of
the CMMI, as each maturity level provides the foundation for the next level.

14These are the risk management activities in the Prince2 methodology.

9.7 Software Project Management 199

The CMMI allows organisations to benchmark themselves against other
organisations. This is done by a formal appraisal conducted by an authorised lead
appraiser (Standard CMMI Appraisal Method for Process Improvement 2006). The
results of the appraisal are generally reported back to the SEI, and there is a strict
qualification process to become an authorised lead appraiser.

An appraisal is useful in that it allows the organisation to determine its current
software process maturity. It may be used to verify that the organisation has
improved, and it enables the organisation to prioritise improvements (Fig. 9.6).
The CMMI is discussed in more detail in (O’Regan 2010, 2014).

9.9 Formal Methods

Dijkstra and Hoare argued that the appropriate way to develop correct software is to
derive the program from its formal mathematical specification, and to employ
mathematical proof to demonstrate the correctness of the software with respect to
the specification. This is a rigorous framework to develop programs adhering to the
highest quality constraints. However, in practice mathematical techniques have
proved to be cumbersome to use, and their widespread deployment in industry is
unlikely at this time.

The safety-critical area is one domain to which mathematical techniques have
been successfully used. For example, it is essential in the railway domain that a
property such as ‘when a train is in a level crossing, then the gate is closed’ is
demonstrated to be correct, and formal methods can play a key role in the verifi-
cation of safety-critical properties. There is a need for extra rigour in the software
development process in the safety-critical field, and mathematical techniques can
demonstrate the presence or absence of certain desirable or undesirable properties.

Spivey (1992) defines a ‘formal specification’ as the use of mathematical
notation to describe in a precise way the properties which an information system
must have, without unduly constraining the way in which these properties are

Fig. 9.6 Software process improvement

200 9 Overview of Software Engineering

achieved. It describes what the system must do, as distinct from how it is to be
done. This abstraction away from implementation enables questions about what the
system does to be answered, independently of the detailed code. Further, the
unambiguous nature of mathematical notation avoids the problem of speculation
about the meaning of phrases in an imprecisely worded natural language description
of a system.

The formal specification thus becomes the key reference point for the different
parties concerned with the construction of the system, and is a useful way of
promoting a common understanding for all those concerned with the system.

The term ‘formal methods’ is used to describe a formal specification language
and a method for the design and implementation of computer systems. The spec-
ification is written in a mathematical language, and its precision helps to avoid the
problem of ambiguity inherent in a natural language specification.

The derivation of the software from the specification may be achieved via step-
wise refinement. Each refinement step makes the specification more concrete and
closer to the actual implementation. There is an associated proof obligation that the
refinement be valid, and that the concrete state preserves the properties of the
abstract state. Thus, assuming the original specification is correct and the proofs of
correctness of each refinement step are valid, then there is a very high degree of
confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, artificial intelligence, specification of standards, specification and
verification of programs, etc. They are described in more detail in (O’Regan
2017b).

9.10 Review Questions

1. Discuss the research results of the Standish Group on the current state of
IT project delivery.

2. What are the main challenges in software engineering?
3. Describe the various existing software life cycles
4. What are the advantages and disadvantages of Agile?
5. Describe the purpose of software inspections? What are the benefits?
6. Describe the main activities in software testing.
7. Describe the advantages and disadvantages of formal methods.
8. Describe the main activities in project management.
9. Explain the significance of the CMMI.

9.9 Formal Methods 201

9.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term ‘software crisis’ was coined to refer to these. It
led to the realisation that software engineers need to be properly trained to enable
them to build high-quality products that are safe to use.

The Standish Group conducts research on the extent of problems with the
delivery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as well as on
the latest technologies. Classical engineers receive training on product design, and
an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version pro-
grams. It is a systematic approach to the development and maintenance of the
software, and it requires a precise statement of the requirements of the software
product, and then the design and development of a solution to meet these
requirements. The solution is verified by rigorous software testing.

Software process maturity models such as the CMMI place an emphasis on
understanding and improving the software processes in an organisation. The CMMI
is a framework to implement high-quality processes, and a SCAMPI appraisal
allows organisations to benchmark themselves against other similar organisations.

Formal methods involve the use of mathematical techniques to provide extra
confidence in the correctness of the software. They are used mainly in the safety-
and security-critical field.

202 9 Overview of Software Engineering

Chapter 10
Overview of Operating Systems

Key Topics

MVS
VM
OS/360
UNIX
MS/DOS
Windows
Android
iOS
Multiprogramming
Process
Interrupt
Deadlock

10.1 Introduction

An operating system is a collection of software programs that control the hardware
of a computer and makes it usable. It makes the computing power of the hardware
available to the users of the computer, and it manages the hardware to achieve good
system performance. An operating system manages system hardware such as the
processors, storage, input/output devices, communication devices and data, and it
provides functionality such as sharing hardware among users, scheduling resources
among users, preventing users from interfering with each other, facilitating input/
output, recovering from errors and handling network communication.

The earliest computers did not have an operating system, and the user had
exclusive control over a large computer for a specified period. The user entered the
program one bit at a time in machine code (initially using mechanical switches and
later with a stack of punched cards), and waited for the results. People began to
develop libraries to share the code for common activities, and these are in a sense
the precursor of today’s operating systems.

The earliest operating systems were designed in the 1950s with the goal of
making more efficient use of expensive computer resources. These batch-processing

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_10

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_10&domain=pdf

systems ran one job at a time, and programs and data were submitted in groups (or
batches).

These evolved during the early 1960s into multi-batch systems that were
designed to improve utilisation of the expensive computer resources. They could
handle several diverse jobs at once, which offered a way to optimise computer
utilisation. One job could be using the processor while another job could be using
the various I/O devices. These later batch-processing systems contained many
peripheral devices such as card readers, card punches, printers, tape drives and disk
drives. Jobs were normally submitted on punched cards and computer tape, and
often a user’s job could sit for hours (days) on an input table until it was processed.
However, even a very slight error in a program would cause the program to fail, and
it would require resubmission. This meant that software development in this
environment was very slow.

This led operating system designers to develop the concept of multiprogram-
ming in which several jobs are in main memory at once, and the concept of
interrupts, where an interrupt allows one unit to gain the attention of another. The
state of the interrupted unit is saved prior to the processing of the interrupt, and
restored once processing is complete.

MIT developed the CTSS time-sharing system in the early 1960s, and this
operating system provided users with typewriter-like terminals to obtain computing
power from the machine. CTSS ran a conventional batch stream (to ensure high
utilisation of expensive computer resources), but it was also able to give fast
responses to users who were editing or debugging programs. It was a highly inter-
active environment where the computer provided rapid responses to user requests.

IBM announced the System/360 family of computers in 1964, and the computers
in the family were designed to use the IBM System/360 operating system (OS/360).
OS/360 was a batch-oriented operating system, and IBM supported three variants of
OS/360, which allowed multiprogramming for the mid-range and top-range
members of the family.

The other major operating system used in the System 360 was the disk operating
system (DOS/360)1. The IBM System/360 evolved over time into the System/370
series. IBM began work on the CP/CMS operating system in 1964, and this
time-sharing operating system was popular in the 1960s. It evolved into IBM’s VM
operating system in the early 1970s.

MIT’s successor to the CTSS operating system was a general time-sharing
operating system called “Multics”, and Bell Labs was initially involved in its
development. UNIX arose out of work on the development of Multics, and it was
developed at Bell Labs in the early 1970s. It is a multitasking and multi-user
operating system.

The IBM PC was introduced in 1981, and IBM outsourced the development of
the operating system to a small company called Microsoft. The terms of the deal
with IBM allowed Microsoft the right to license its version of the operating system,

1Not to be confused with DOS which was used on the original IBM personal computers.

204 10 Overview of Operating Systems

MS/DOS, on IBM compatibles, with PC/DOS (or simply DOS) reserved for IBM
personal computers only. MS/DOS managed floppy disks and files, input and
output, memory and it contained an external command processor that interpreted
user commands, and allowed the user to interact with the system.

The Macintosh was a paradigm shift in the computer industry when it was
introduced in 1984. Its MAC operating system was GUI based, friendly, intuitive
and easy to use, and it was clear that the future of operating systems was in
GUI-driven systems, rather than primitive command-driven operating systems such
as MS/DOS.

Microsoft Windows is a family of graphical operating systems developed by
Microsoft, and it was Microsoft’s initial response to Apple’s GUI operating system.
Windows has evolved to become the dominant operating system on laptops and
personal computers, but it has failed to make an impact on the smartphone oper-
ating system market, which is dominated by Apple’s iOS and Google’s Android
operating systems.

The Android operating system was designed mainly for touchscreen smartphones
and tablets, and it was developed by Google and the Open Handset Alliance.
Android is built on the Linux kernel, and its first version was released in late 2007.

The iOS operating system is a mobile operating system employed on Apple’s
mobile devices such as smartphones and tablets. It was introduced in 2007. For
more detailed information on operating systems see (Deitel 1990; Anderson and
Dahlin 2014).

10.2 Fundamentals of Operating Systems

An operating system is a collection of software programs that control the hardware
of a computer and makes it usable. The operating system may be dealing with a
single processor or multiprocessor system. The concept of a process (program in
execution) is central to understanding modern operating systems, and a process
goes through a series of discrete process states with an event leading to a change of
state. A process is said to be running if it currently has the CPU, and a process is
said to be ready if it could use a CPU (should one be available). A process is said to
be blocked if it is waiting for some event to happen (e.g. an i/o event) before it can
continue (Fig. 10.1).

A process is created in response to the submission of a job to the system, and it is
generally added to the end of the ready list. The process then gradually moves to the
head of the ready queue, and when the CPU becomes available the process makes a
transition from the ready state to the running space. The assignment of the CPU to
the first process on the ready list is termed dispatching, and the operating system
sets a hardware interrupting clock to allow the process to run for a fixed period (or
quantum), and the operating system interrupts (where appropriate) to ensure that the
next ready process is dispatched to running before (or at) the end of the time
quantum.

10.1 Introduction 205

The process control block (PCB) is a data structure containing key information
about the process including its current state, priority and pointers to parent and child
processes (i.e. the process that created it and any processes that it created). It defines
the process to the operating system. Processes may be created or destroyed, sus-
pended or resumed, blocked or woken up and dispatched. A suspended process
cannot continue until another process resumes it, and the suspension may be ini-
tiated by the process itself or another process.

An interrupt is an event that alters the sequence in which a processor executes
instructions, and it is generated by the hardware of the computer system. It results in
the operating system gaining control, and the state of the interrupted process is
saved. The operating system then analyses the interrupt and passes control to the
interrupt handler for processing the interrupt. Finally, the interrupted process is
resumed.

Concurrency is a form of computing in which multiple computations (processes)
are executed during the same time period. Parallel computing allows execution to
occur in the same time instant (on separate processors of a multiprocessor machine),
whereas concurrent computing consists of process lifetimes overlapping and where
execution need not happen at the same time instant.

Concurrency employs interleaving where the execution steps of each process
employ time-sharing slices so that only one process runs at a time, and if it does not
complete within its time slice it is paused, another process begins or resumes, and
then later the original process is resumed. That is, only one process is running at a
given time instant, whereas multiple processes are part of the way through
execution.

It is important to identify and deal with concurrency-specific errors such as
deadlock and livelock. A deadlock is a situation in which the system has reached a
state in which no further progress can be made, and at least one process needs to
complete its tasks. Figure 10.2 illustrates a deadlock situation, where both pro-
cesses are waiting for the other to free a resource that it will not free until the other
frees its resource (circular wait). Livelock refers to a situation where the processes in
a system are stuck in a repetitive task, and are making no progress towards their
functional goals.

RunningReady

Blocked

Dispatch

Block
Wakeup

TimeoutFig. 10.1 Process state
transitions

206 10 Overview of Operating Systems

It is essential that properties such as mutual exclusion (at most one process is in
its critical section at any given time) should not be violated. The critical section
refers to shared modifiable data, and so it must be ensured that when one process is
in a critical section then all other processes that access the same shared modifiable
data are excluded from their critical sections. One common implementation of
mutual exclusion is by semaphores (a protected variable whose values may be
accessed and modified only by the P and V operations).

It is essential that something bad (e.g. a deadlock situation) never happens, and
that liveness properties (a desired event or something good eventually happens). It
is essential that invariants (properties that are true all the time) are not violated.

10.3 IBM OS/360 and MVS

IBM announced the System/360 family of computers in 1964 (Fig. 3.20), and the
family was designed to use the IBM System/360 operating system (OS/360). OS/
360 was a batch-oriented operating system, and IBM supported three variants of it.
These were OS/360 PCP (Principal Control Program), OS/360 MFT (Multiple
Programming with a Fixed number of Tasks) and OS/360 MVT (Multiple
Programming with a Variable number of Tasks).

OS/360 PCP was the simplest version, and it could run only one program at a
time. The smaller members of the System/360 family used it. OS/360 MFT could
run several programs at once, but only after partitioning the memory required to run
each. It was subject to the limitation that if a program was idle, its allocated
memory was unavailable to other programs. It was developed as an interim solution
pending the delayed introduction of OS/360 MVT. However, the simpler MFT
continued in use for many years due to problems with MVT.

OS/360 MVT was the most sophisticated version of OS/360, and it was intended
for the largest members in the System/360 family. It allowed memory divisions to
be re-created as needed, and it could allocate all the computer’s memory (if

Resource
1

Resource 1 allocated
to process A

Process A Process B

Resource
2

Resource 2 allocated
to process B

Process B requests
Resource 1

Process A requests
Resource 2

Fig. 10.2 A simple deadlock

10.2 Fundamentals of Operating Systems 207

required) to a single large job. Further, whenever memory was available, OS/MVT
searched the queue of jobs to see if any could be run on the available memory. OS/
MVT was introduced in 1967.

All three versions of OS/360 provided similar features from the point of view of
application programs. This included the same application programming interface
(API); the same job control language (JCL) for initiating batch jobs; the same
access methods for reading and writing files and data communication; the same
spooling facility and multitasking.

OS/360 MVT evolved over time to become OS/VS2 following the introduction
of virtual memory in the IBM System/370. OS/VS2 was later renamed to OS/MVS.

IBM introduced the multiple virtual storage (MVS) operating system in 1974,
and it was an enhancement of the MVT version of the OS/360 operating system that
supported virtual memory. It was the most commonly used operating system on the
IBM System/370 and System/390 mainframe computers.

The System/370 was an enhancement of the System/360 architecture in that it
provided virtual storage capabilities, where virtual storage (memory) allows a
much larger memory space to be addressed than is available in the primary memory
of the computer. The concept of virtual storage dates to the design of the Atlas
Computer at the University of Manchester in 1960, and the two most common
methods of implementing virtual storage are paging and segmentation.

The 24-bit addressing of the System/370 meant that each user (or job) had a
16-megabyte (224) virtual address space (i.e. 256 segments, with each segment
containing 16 pages, and each page contained 4096 bytes). The page table performs
the translation between the virtual address as seen by the application into the
physical address used by the hardware, and this may involve swapping pages from
physical storage to main memory.

MVS provided multiprogramming and multiprocessing capabilities, and it was a
large operating system designed with performance, reliability and availability in
mind. The operating system had recovery routines that gained control in the event
of an operating system failure, and it attempted recovery from hardware errors.

MVS included a master scheduler that initialised the system and responded to
commands issued by the system operator. It contained a job entry subsystem for
jobs to be entered, and its system management facility collected information to
analyse system performance. Its time sharing option (TSO) provided users with
interactive editing, testing and debugging capabilities, and its data management
functionality handled all input/output and file management activities. Its telecom-
munication functionality allowed remote terminal users to access MVS.

10.4 VM

The virtual machine (VM) operating system makes a single machine appear as
several real machines (Fig. 10.3). The user at a VM virtual machine has what seems
to be a complete real machine, even though this is just an illusion. A virtual

208 10 Overview of Operating Systems

machine runs programs in a similar way to a real machine, and the user commu-
nicates with the virtual machine through a terminal. The most widely used virtual
machine operating system is IBM’s VM, which was released in the early 1970s. It
was used on an IBM System/370 mainframe, and created the illusion that each user
operating at a terminal had access to a complete IBM 370, including its input/output
devices.

VM can run several different operating systems at once, each of them on its own
virtual machine. This is a very attractive feature as running multiple operating
systems offers a form of backup in the event of failure. The operating systems
running on virtual machines perform their normal functions such as storage man-
agement, control of input/output, processor scheduling and multiprogramming.

Virtual machines create virtual processors, virtual storage and virtual I/O devi-
ces. The VM user may run operating systems such as MVS, VM/370, AIX/370 or
VM itself.

The main components of VM are the control program (CP), the conversational
monitor system (CMS), the remote spooling communications subsystem (RSCS),
the interactive problem control system (IPCS) and the CMS Batch.

CP creates the environment in which virtual machines may execute, and it
provides support for the various operating systems that may be used to control the
IBM/370. It manages the real machine underlying the virtual machine environment,
and gives each user access to the facilities of the real machine.

CMS is an applications system with editors, debugging tools and various
application packages. RSCS provides the ability to transmit and receive files, and
IPCS is used for online analysis and for fixing VM software problems. The CMS
batch facility allows the user to submit longer jobs for batch processing.

10.5 VMS

The VAX virtual memory system (VMS) was designed as the operating system for
the VAX family of minicomputers. Digital Equipment Corporation (DEC) intro-
duced the VAX family in the late 1970s, and DEC was a major player in the
minicomputer market with its popular PDP and VAX minicomputers. The models

Fig. 10.3 Virtual machine
operating system

10.4 VM 209

in the VAX family of computers all had the same architecture, and they could all
run the VMS operating system.

David Cutler and others at DEC designed VMS as a high-end, secure, scalable,
multi-user, multitasking and virtual memory operating system, that supported a
broad class of applications and systems. DEC developed VAX and VMS together,
and the designers balanced the trade-offs between the work done by the hardware
and the work done by the operating system.

VAXes may operate together in a peer-to-peer relationship, where any VAX
may be a client or any may be a server. This allows flexibility when several
computers perform tasks in cooperation. Several VAXes may be connected so that
they work as a cooperating unit called a VAXcluster.

VMS expanded the memory of the machine by disk or other peripheral storage to
act as extra memory. The VAX-11 provided a 32-bit virtual address space per
process, divided into 512 byte pages. VMS used paging and segmentation, with the
first 23 bits used as the virtual page number (VPN), and a 9-bit offset within the
page.

VMS was a popular and easy-to-use operating system. Its commands are easy to
remember English like words, and it has an extensive online help system. It
included utilities such as a mail program and a text editor. Open VMS is the latest
version of the operating system, and is sold by HP.

10.6 UNIX

Ken Thompson, Dennis Ritchie and others designed and developed the UNIX
operating system at Bell Labs in the early 1970s. It is a multitasking and multi-user
operating system that was written almost entirely in the C programming language
(which was designed by Denis Ritchie at Bell Labs). UNIX arose out of work by
Massachusetts Institute of Technology, General Electric and Bell Labs on the
development of a general time-sharing operating system called “Multics”.

Bell Labs decided in 1969 to withdraw from the Multics project (as they
believed that it would be a large and expensive system), and to use General
Electric’s GECOS operating system. However, several of the Bell Lab researchers
(led by Ken Thompson) decided to continue the work on a smaller scale operating
system, and the name “UNIX” was coined by Brian Kernighan. The first version of
the operating system was written on a Digital PDP-7 minicomputer in assembly
language, and Dennis Ritchie joined the project. He helped in rewriting UNIX in
the C programming language for the PDP-11 computer in 1973, which had recently
been introduced. Thompson and Ritchie later received the Turing Award for their
design and development of the UNIX operating system. Microsoft introduced
XENIX, a commercial version of UNIX, in 1980.

The use of C helped to make UNIX more portable, and it became a widely used
operating system. It was initially used by universities and the US government, and it
later became popular in industry. It is a powerful and flexible operating system that

210 10 Overview of Operating Systems

is used on a variety of machines from micros to supercomputers. It is designed to
allow several programmers to access the computer at the same time, and to share its
resources, and it offers powerful real-time sharing of resources.

It includes features such as multitasking which allows the computer to do several
things at once; multi-user capability which allows several users to use the computer
at the same time; and portability of the operating system which allows it to be used
on several computer platforms with minimal changes to the code. It includes a
collection of tools and applications. There are three levels of the UNIX system
namely kernel, shell and tools and applications.

The kernel is the central part of the UNIX operating system, and it provides
systems services to applications programs. This includes services for process
management, memory management, and input/output management. UNIX manages
many concurrent processes.

The UNIX shell is a command interpreter that acts as the interface between the
user and the operating system. There are several popular shells for UNIX including
the Bourne shell and Korn shell. UNIX uses a hierarchical file system with the root
node at its origin, with each directory entry containing files and other directories.
For a more detailed account of UNIX see (Robbins 2005).

10.7 MS/DOS

We discussed the introduction of the IBM personal computer in Chap. 3, as well as
the controversy with respect to the development of the PC/DOS operating system.
Digital Research, the developers of the CP/M operating system, lost out on the
major opportunity of supplying the operating system for the IBM PC, and instead it
was Microsoft that reaped the benefits. The terms of the deal with IBM allowed
Microsoft the right to license its operating system, MS/DOS, on IBM compatibles,
whereas PC/DOS (or simply DOS) was reserved for IBM personal computers only.

The open architecture of the IBM PC led to the development of cheaper IBM
compatible personal computers (clones of the IBM PC but cheaper), and they
rapidly gained market share, as it was difficult for IBM to compete on price. This
led to a massive international demand for MS/DOS (which was the operating
system for IBM compatibles and clones).

The IBM PC was introduced in 1981, and the first version of the operating
system was compatible with Digital Research’s CP/M operating system (as it
essentially was CP/M). It managed floppy disks and files, input and output, memory
and it contained an external command processor that interpreted user commands,
and allowed the user to interact with the system.

MS/DOS version 2.0 was introduced in 1983, and it was designed to support the
10 MB hard disk on the IBM PC/XT, as well as providing support for device
drivers. Microsoft had previously licensed XENIX (their commercial version of
UNIX) from AT&T, and MS/DOS 2.0 was a move towards XENIX. It employed a
hierarchical file system, and a unique path name identified each file (like XENIX).

10.6 UNIX 211

It provided limited multitasking for background print spooling. The hard disk on the
XT helped to establish the IBM PC in the business marketplace.

MS/DOS 3.0 was released in 1984, and it provided support for the IBM PC/AT,
which had a 20 MB hard disk. Several versions of MS/DOS followed through the
1980s and 1990s, and were used with Microsoft Windows 95 and Windows
Millennium. Today, Microsoft Windows is the operating system used on personal
computers, and development of MS/DOS ceased in 2000. It is now of historical
interest.

10.8 Microsoft Windows

The Apple Macintosh was released in 1984, and its MAC operating system was
GUI based and was a paradigm shift in the computer industry. It was friendly,
intuitive and easy to use, and it was clear that the future of operating systems was in
GUI-driven systems, rather than in the primitive command driven operating sys-
tems such as MS/DOS.

Microsoft Windows is a family of graphical operating systems developed by
Microsoft. The original Windows 1.0 operating environment was introduced in late
1985 as a graphical operating system shell for its command-driven MS/DOS
operating system. It was Microsoft’s initial response to Apple’s GUI operating
system.

The early versions of Windows were not complete operating systems as such and
were instead graphical shells in that they ran on top of MS/DOS and extended the
operating system. Windows 1.0 used MS/DOS for file system services, and it also
included applications such as a calculator, calendar and clock. However, Windows
differed from MS/DOS in that it allowed multiple graphical applications to be run at
the same time, and this was done through cooperative multitasking.

Windows 2.0 was introduced in 1987 and it was more popular than its prede-
cessor. It included improvements to the user interface and to memory management.
Windows 3.0 improved the design of the operating system, and it used virtual
memory and virtual device drivers that allowed arbitrary devices to be shared
between multitasked DOS applications. It was introduced in 1990 and it was the
first Windows operating system to achieve commercial success.

Windows 3.1 was introduced in 1992, Windows 95 in 1995, Windows 98 in
1998 and Windows Millennium (ME) in 2000. Windows ME provided expanded
multimedia capabilities including the Windows Media Player, and it was the last
DOS-based version of Windows. Windows ME was criticised for its speed and
instability.

Windows XP was introduced in 2001 and it was marketed as a “Home” edition
for personal users and a “Professional” edition for business users. Windows Vista
was released in 2006, Windows 7 in 2009, Windows 8 in 2012 and Windows 10
was released in 2015.

212 10 Overview of Operating Systems

Microsoft Windows dominates the personal computer and laptop market with
over 90% market share. Windows has not been as successful on mobile computing
platforms such as mobile phones and tablets, where Google’s Android operating
system is the dominant platform.

10.9 Mobile Operating Systems

Android (Fig. 10.4) is a mobile operating system that was developed by Google and
the Open Handset Alliance for touchscreen smartphones and tablets. It is built on
the Linux kernel, and the first version of the operating system was released in late
2007. The first Android smartphone was released in late 2008, and Android is
currently the most widely used operating system.

The source code for Android is released under an open-source license, and its
open-source philosophy has led to a large community of developers who maintain
and develop new versions of it. Manufacturers may modify Android as they see fit,
and this allows them to customise their devices and differentiate them from com-
petitor products.

There are over a million applications (apps) for Android, and developers are
challenged to ensure that the apps are compatible with the many mobile devices
using different hardware and running various (possibly customised) versions of
Android.

The iOS operating system is a mobile operating system employed on Apple’s
mobile devices such as smartphones and tablets. It was created from the MAC OS/
X operating system, and introduced in 2007. Multitasking for iOS was introduced
in 2010 with the release of iOS version 4.0.

Fig. 10.4 Android 6.0

10.8 Microsoft Windows 213

10.10 Review Questions

1. What is an operating system?
2. What are the main functions of an operating system?
3. Explain the following operating system concepts: Processor scheduling,

multiprogramming, paging/segmentation and multitasking.
4. Explain what is meant by the operating system terms: process, interrupt,

concurrency, interleaving, deadlock and livelock.
5. Describe IBM’s contributions to operating system development.
6. Describe the similarities and differences between VM and MVS.
7. Describe the influence of the UNIX operating system.
8. Describe the features of DEC’s VMS operating system.
9. Describe the operating systems available for touchscreen smartphones.

10.11 Summary

An operating system is a collection of software programs that control the hardware
of a computer and makes it usable. It makes the computing power of the hardware
available to the users of the computer, and it manages the hardware to achieve good
system performance.

The earliest computers did not have an operating system, and the user had
exclusive control over a large computer for a specified period. The earliest oper-
ating systems were designed in the 1950s with the goal to make more efficient use
of the computer (as computers were expensive). These batch-processing systems
ran one job at a time, and programs and data were submitted in groups (or batches).

These evolved during the early 1960s into multi-batch systems that were
designed to get better utilisation of the expensive computer resources. They could
handle several diverse jobs at once. However, software development in this envi-
ronment was very slow which led operating system designers to develop the con-
cept of multiprogramming in which several jobs are in main memory at once.

IBM announced the System/360 family of computers in 1964, and the computers
in the family were designed to use the IBM System/360 operating system (OS/360).
UNIX was developed at Bell Labs in the early 1970s, and it is a multitasking and
multi-user operating system.

IBM outsourced the development of the operating system for the IBM PC to a
small company called Microsoft, and Microsoft had the right to license its operating
system, MS/DOS, on IBM compatibles, with PC/DOS (or simply DOS) reserved
for IBM personal computers only.

214 10 Overview of Operating Systems

The Macintosh was a paradigm shift in the computer industry, when it was
introduced in 1984. Its MAC operating system was GUI based, friendly, intuitive
and easy to use. Microsoft Windows is a family of graphical operating systems
developed by Microsoft, and it is the dominant operating system on laptops and
personal computers. It has failed to make an impact on the smartphone operating
system market, which is dominated by Apple’s iOS and Google’s Android oper-
ating systems.

The Android operating system was designed mainly for touchscreen smart-
phones and tablets, and the iOS operating system is a mobile operating system
employed on Apple’s mobile devices.

10.11 Summary 215

Chapter 11
Overview of Databases

Key Topics

Hierarchical Model
Network Model
Relational Model
Table
Key
Index
SQL
Oracle Database

11.1 Introduction

A database (DB) is essentially an organised collection of data, and it consists of
schemas, tables, queries, reports and views. It is organised in such a way that a
computer program (termed the database management system) may easily select and
analyse the desired pieces of data. A database holds information about many dif-
ferent types of entities, as well as information about the relationships between them.

A database management system (DBMS) is a collection of software programs that
allows a user to store, modify and extract data from a database. The interaction
between the users and the database is through the DBMS, and it enables the definition,
creation, query, update and administration of databases. Historically, there are three
main categories of database management systems, which are hierarchical, network
and relational models. These differ in how the DBMS organises data internally, which
determines the speed and efficiently of data retrieval from the database.

The network model database is perceived by the user to be a collection of record
types, and relationships between them organised as a network. The network model
defines the relationships explicitly as part of the structure of the network. The
hierarchical model is perceived by a user to be a collection of hierarchies or trees,
and it is a more restricted structure than the network model, as only one arrow may
enter each box on the network. The relational model is perceived by the user to be a
collection of tables (or relations), and it has been the most popular category of
databases since the 1980s.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_11

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_11&domain=pdf

Early work on database management systems began in the 1960s as part of the
Apollo mission to land man on the moon. It was clear that the existing systems were
not capable of handling the coordination of the vast amounts of data required for the
project. IBM developed the Generalised Update Access Method (GUAM) product
in 1964, and this product evolved into Data Language/1 (DL/1). DL/1 is the data
management component of the Information Management System (IMS) database,
which was one of the earliest database management systems when it was introduced
in 1968. IMS used the hierarchical model.

The CODASYL committee1 set up a database task group and devised a standard,
which became known as the ‘CODASYL approach’. This became the network
standard, and it was defined in the late 1960s and introduced in 1971.

Codd proposed the relational model, a radically new approach to the manage-
ment of data in 1970, and IBM developed the prototype system called System R in
the mid-1970s. Commercial relational database systems were introduced from the
early 1980s, and today relational databases are dominant with the network or
hierarchical databases mainly of historical interest. Among the popular relational
databases used today are Oracle, Microsoft SQL Server and Informix.

11.2 Hierarchical and Network Models

A database management system uses the network model if the data relationships are
defined in terms of a graph. The relationships are defined in terms of records (a
record is a collection of fields, with each field containing one value), which are
connected via links. Any given record may have several parent records and several
dependent records, and cycles are permitted in the model. Charles Bachman and
others on the CODASYL Committee defined the network model in the late 1960s.

General Electric’s integrated data store (IDS), and the integrated database
management system (IDMS) are well-known databases that were based on the
network model. These mainframe databases were introduced in the early 1970s.

The network model of suppliers and parts allows many-to-many relationships to
be expressed, and is presented in a simple graph like structure (Fig. 11.1). There is
more detailed information in (Date 1981).

A database management system uses the hierarchical model if the data rela-
tionships are defined in terms of hierarchies (i.e. in a tree-like structure). The
relationships are simple but inflexible (as they are one to many). The data are
defined as records, which are connected to each other through links. Each child
record may have only one parent, whereas each parent record may have several

1The CODASYL committee is the group that defined and standardised the COBOL programming
language. It was also involved in work in standardising database interfaces.

218 11 Overview of Databases

children records. The whole tree (starting from the root) needs to be traversed to
retrieve data from a hierarchical database. That is, the hierarchical model is a more
restricted version of the network model, where no box can have more than one
arrow entering the box although several arrows can leave a box.

The hierarchical model of suppliers and parts presents the data in a simple
tree-like structure (Fig. 11.2). Each tree consists of one part record together with a
set of supplier record occurrences, one for each supplier of the part. There is more
detailed information in (Date 1981).

The database access and manipulation component of the hierarchical model is
termed Data Language/1, and it includes a data definition language and a data
manipulation language. The IBM Information Management System (IMS) is one of
the most widely used hierarchical databases, and it was created in the late 1960s.

11.3 The Relational Model

A relational database management system (RDBMS) is a system that manages data
using the relational model, and examples include RDMS developed at MIT in the
1970s; Ingres developed at the University of California, Berkeley in the mid-1970s;
Oracle developed in the late 1970s; DB2 developed by IBM in the early 1980s;
Informix which was originally developed by Informix Corp. in the early 1980s, and
acquired by IBM in 2001; and Microsoft SQL Server.

London12RedNutP1 London12RedNutP1

London20SmithS1 London20SmithS1 Paris10JonesS2 Paris10JonesS2

300

Paris17GreenBoltP2 Paris17GreenBoltP2

300 400

Fig. 11.1 Simple part/supplier––network model

P1 Nut Red 12 London

S1 Smith 20 London 300
S2 Jones 10 Paris 300

Fig. 11.2 Simple part/
supplier––hierarchical model

11.2 Hierarchical and Network Models 219

A relation is defined as a set of tuples and is represented by a table. A table is
organised in rows and columns, with the data in each column of the table is of the
same data type. Constraints may be employed to provide restrictions on the kinds of
data that may be stored in the relations. These are Boolean expressions which
indicate whether the constraint holds or not, and are a way of implementing
business rules in the database.

Relations have one or more keys associated with them, and the key uniquely
identifies the row of the table. An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all tuples in the relation.

The structured query language (SQL) is a computer language that tells the
relational database what to retrieve and how to display it. A stored procedure is
executable code that is associated with the database, and it is used to perform
common operations on the database.

The concept of a relational database was first described in a paper ‘A Relational
Model of Data for Large Shared Data Banks’ by Codd (Codd 1970). A relational
database is a database that conforms to the relational model, and it may be defined
as a set of relations (or tables).

Codd (Fig. 4.7) was a British mathematician, computer scientist and IBM
researcher, who initially worked on the SSEC (selective sequence electronic
computer) project in New York, and then on the IBM 701 and 702 computers. He
later worked on the IBM 7030 STRETCH computer (IBM’s first transistorised
computer). He was the creator of STEM (statistical database expert manager).

He developed the relational database model in the late 1960s, and he published
an internal IBM paper on the relational model in 1969. Today, this is the standard
way that information is organised and retrieved from computers, and relational
databases are at the heart of systems from hospitals’ patient records to airline flight
and schedule information.

IBM was promoting its IMS hierarchical database in the 1970s, and it showed
little interest or enthusiasm for Codd’s new relational database model. It made
business sense for IBM to preserve revenue for the IMS/DB model, rather than
embarking on a new technology. However, IBM agreed to implement Codd’s ideas
on the relational model for the System R research project in the 1970s, and this
project demonstrated the power of the model, as well as demonstrating good
transaction processing performance. The project introduced a data query language
that was initially called SEQUEL (later renamed to SQL), and this language was
designed to retrieve and manipulate data in the IBM database.

Codd continued to develop and extend his relational model, and several theo-
rems are named after him. In later years, he proposed a three-valued logic to deal
with missing or undefined information, and he even proposed a four-valued logic in
the 1990s. These proposals were never implemented and were controversial at the
time. The relational model became popular from the early 1980s, and Codd
received the ACM Turing Award in 1981 in recognition of its development.

A binary relation R(A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A, and the co-domain of

220 11 Overview of Databases

the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) 2R. An n-ary relation R (A1, A2, …, An) is a subset of the
Cartesian product of the n sets: i.e. a subset of (A1 � A2 � ��� � An). However, an
n-ary relation may also be regarded as a binary relation R (A, B) with A = A1 � A2

� ��� � An-1 and B = An.
The data in the relational model are represented as a mathematical n-ary relation.

That is, a relation is defined as a set of n-tuples, and a table provides a visual
representation of the relation, with the data organised in rows and columns. The
data stored in each column of the table is of the same data type.

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from (Date 1981), where this relation consists of a heading
and the body. There are five data types representing part numbers, part names, part
colours, part weights and locations in which the parts are stored. The body consists
of a set of n-tuples. The PART relation is of cardinality six (Fig. 11.3).

Strictly speaking, there is no ordering defined among the tuples of a relation,
since a relation is a set, and a set may be unordered. However, in practice, relations
are often considered to have an ordering.

There is a distinction between a domain and the columns (or attributes) that are
drawn from that domain. An attribute represents the use of a domain within a
relation, and the distinction is often emphasised by giving attributes names that are
distinct from the underlying domain. The difference between domains and attributes
can be seen in the PART relation (Fig. 11.4) from Date (1981).

A normalised relation satisfies the property that at every row and column
position in the table there is exactly one value (i.e. never a set of values). All
relations in a relational database are required to satisfy this condition, and an
un-normalised relation may be converted into an equivalent normalised form.

It is often the case that within a given relation that there is one attribute with
values that is unique within the relation, and can thus be used to identify the tuples
of the relation. For example, the attribute P# of the PART relation has this property
since each PART tuple contains a distinct P# value, which may be used to dis-
tinguish that tuple from all other tuples in the relation. P# is termed the primary key

P# PName Colour Weight City
P1
P2
P3
P4
P5
P6

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

London
Paris
Rome
London
Paris
London

Fig. 11.3 PART relation

11.3 The Relational Model 221

for the PART relation, and a candidate key that is not the primary key is termed the
alternate key.

An index is a way of providing quicker access to the data in a relational data-
base, as it allows the tuple in a relation to be looked up directly (using the index)
rather than checking all tuples in the relation.

The consistency of a relational database is enforced by a set of constraints that
provide restrictions on the kinds of data that may be stored in the relations. The
constraints are declared as part of the logical schema and are enforced by the
database management system. They are used to implement the business rules for the
database.

11.4 Structured Query Language (SQL)

Codd proposed the Alpha language as the database language for his relational
model. However, IBM’s implementation of his relational model in the System R
project introduced a data query language that was initially called SEQUEL (later
renamed to SQL). This language did not adhere to Codd’s relational model but it
became the most popular and widely used database language. It was designed to
retrieve and manipulate data in the IBM database, and its operations include insert,
delete, update, query, schema creation and modification and data access control.

Structured query language (SQL) is a computer language that tells the relational
database what to retrieve and how to display it. It was designed and developed at
IBM by Donald Chamberlin and Raymond Boyce, and it became an ISO standard
in 1987.

The most common operation in SQL is the query command, which is performed
with the SELECT statement. The SELECT statement retrieves data from one or
more tables, and the query specifies one or more columns to be included in the

DOMAIN PART_NUMBER CHARACTER(6)

DOMAIN PART_NAME CHARACTER(20)

DOMAIN COLOUR CHARACTER(6)

DOMAIN WEIGHT NUMERIC(4)

DOMAIN LOCATION CHARACTER(15)

RELATION PART

(P# : DOMAIN PART_NUMBER

PNAME : DOMAIN PART_NAME

COLOUR : DOMAIN COLOUR

WEIGHT : DOMAIN WEIGHT

CITY : DOMAIN LOCATION)

Fig. 11.4 Domains versus
attributes

222 11 Overview of Databases

result. Consider the example of a query that returns a list of expensive books
(defined as books that cost more than $100.00).

SELECT *2

FROM Book
WHERE Price > 100.00
ORDER by title;

The data manipulation language (DML) is the subset of SQL used to add,
update and delete data. It includes the INSERT, UPDATE and DELETE com-
mands. The data definition language (DDL) manages table and index structure, and
includes the CREATE, ALTER, RENAME and DROP statements.

There are extensions to standard SQL that add programming language func-
tionality. A stored procedure is executable code that is associated with the database.
It is usually written in an imperative programming language, and it is used to
perform common operations on the database.

Oracle is recognised as a world leader in relational database technology and its
products play a key role in business computing. An Oracle database consists of a
collection of data managed by an Oracle Database Management System, and Oracle
is the main standard for database technology.

11.5 Oracle Database

An Oracle database is a collection of data treated as a unit, and the database is used
to store and retrieve related information. The database server manages a large
amount of data in a multi-user environment. It allows concurrent access to the data,
and the database management system prevents unauthorised access to the database.
It also provides a smooth recovery of database information in the case of an outage
or any other disruptive event.

Every Oracle database consists of one or more physical data files, which contain
the database data, and a control file that contains entries that specify the physical
structure of the database.

An Oracle database includes logical storage structures that directly refer to the
database’s data. A schema is a collection of database objects, which include
structures such as tables, views and indexes.

Tables are the basic unit of data storage in an Oracle database, and each table has
several rows and columns. An index is an optional structure associated with a table,
and it is used to enhance the performance of data retrieval. The index provides an
access path to the table data. A view is the customised presentation of data from one
or more tables. It does not contain actual data and derives the data from the actual
tables on which it is based.

2The asterisk (*) indicates that all columns of the Book table should be included in the result.

11.4 Structured Query Language (SQL) 223

Each Oracle database has a data dictionary, which stores information about the
logical and physical structure of the database. The data dictionary is created when
the database is created, and is updated automatically by the Oracle database to
ensure that it accurately reflects the status of the database.

An Oracle database uses various processes to manage and access the database,
including server processes, background processes and user processes. A database
administrator (DBA) is responsible for setting up the Oracle database server and
application tools, and managing database performance. The role involves allocating
system storage and planning future storage requirements for the database man-
agement system.

The DBA will create appropriate storage structures to meet the needs of appli-
cation developers who are designing a new application. The access to the database
will be monitored and controlled, and the performance of the database monitored
and optimised. The DBA will plan backups and recovery of database information.

11.6 Review Questions

1. What is a database?
2. What is a database management system?
3. Explain relational, hierarchical and network databases.
4. Explain the difference between a key and an index.
5. What is a stored procedure?
6. What is the role of the Oracle DBA?
7. Explain the differences between tables, views and schemas.
8. What is SQL?
9. What is an Oracle database?

11.7 Summary

A database management system is a collection of software programs that allows a
user to store, modify and extract data from a database. There are three main cat-
egories of database management systems, and these are hierarchical, network and
relational models.

A network model database is perceived by the user to be a collection of record
types and relationships between them organised as a network. A hierarchical model
is perceived by a user to be a collection of hierarchies or trees, and it is a more

224 11 Overview of Databases

restricted structure than the network model. A relational model is perceived by the
user to be a collection of tables (or relations).

Early work on database management systems began in the 1960s, and IBM
developed the information management system (IMS) database in the late 1960s.
This hierarchical database was one of the earliest database management systems.

Codd proposed the relational model as a new approach to the management of
data in 1970, and IBM developed the prototype System R relational database in the
1970s. Relational databases are now dominant with the hierarchical and network
model mainly of historical interest.

11.7 Summary 225

Chapter 12
Overview of Telecommunications

Key Topics

Telegraph
Telephone
AMPS
AXE
Telephone
Telegraph
Mobile Phone System
Iridium

12.1 Introduction

Telecommunications is a branch of technology concerned with the transmission of
information over a distance, where the transmitter sends the information to a
receiver. Early societies used fire and smoke signals for visual communication,
with drums used for auditory communication. This allowed simple messages
(e.g. ‘danger’) to be communicated to other groups.

The Persian Empire established an early postal system in the sixth century B.C.,
and the Egyptians and Romans later established their own postal systems. A pigeon
messaging system, where the homing characteristics of pigeons were employed to
send messages, was later introduced.

The Greeks introduced an early semaphore system in the fourth century B.C.,
which allowed very simple messages to be exchanged between groups on two
different hills (similar in a sense to smoke signals). A ship semaphore system was
introduced in the fifteenth century, which allowed two ships to communicate with
each other. This system used flags where the position and motion of a flag repre-
sented a letter.

The Chappe brothers in France introduced an early optical telegraph system in
Europe in the late eighteenth century. It used similar principles as the ship-based
semaphore system, and it allowed messages to be sent from one high tower to
another. It was used by the French military.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_12

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_12&domain=pdf

Early electrical telegraph systems were introduced in the early nineteenth cen-
tury, and Samuel Morse devised a system (the Morse code) that allowed letters to
be represented by a series of on–off tones in the late 1830s. This was the foundation
for electrical telegraphs and later telephone systems. The first Atlantic telegraph
cable was laid between Britain and America (via Valencia Island in Ireland) in
1858, and this allowed messages to be sent and responded to the same day rather
than the usual delivery time of 10 days for letters sent by ships.

The telephone was invented by Alexander Graham Bell in 18761, and early
telephones were hardwired to and communicated with a single other telephone (e.g.
from a person’s business to his home), as initially there were no telephone
exchanges. A telephone exchange provides switching or interconnection between
two subscriber lines, and the earliest manual commercial telephone exchanges were
introduced in the late 1870s. The first mechanical automated exchanges were
introduced in the early 1890s. The first North American transcontinental phone call
from the east coast to the west coast was made by Bell in 1915, and it made
long-distance communication a reality.

The invention of the telephone was a paradigm shift from face-to-face com-
munication, where people met to exchange ideas and share information, or where
individuals wrote letters to each other to exchange information. The telephone was
a new medium that provided direct and instantaneous communication between two
people. It allowed two individuals to establish and maintain two-way communi-
cation irrespective of being at two different physical locations. Initially, the business
community and the affluent members of society used the telephone, but this
changed rapidly in the years that followed.

Marconi, an Italian engineer, introduced a system for the wireless transmission
of sounds in 1896, and the British Marconi Company was established in 1897. It
began communication between ships at sea and coastal radio stations, and the first
radio messages were sent across the Atlantic in 1902. The awareness of the value of
radio communication was highlighted in the sinking of the Titanic in 1912. Marconi
established an early radio factory in England in 1912.

The first prototype electronic television was developed and demonstrated by
Philip Farnsworth in the late 1920s. It was the result of research on ways to transmit
images, and it had been determined that radio waves could be encoded with an
image, and then transmitted back to the screen. Farnsworth’s prototype is consid-
ered the first electronic television.

The foundations of the mobile cellular industry go back to the introduction of a
limited-capacity mobile phone system that was introduced for automobiles in 1946.
Martin Cooper of Motorola made the first mobile phone call to Joe Engels at Bell
Labs in 1973, and a prototype mobile phone network was operational in the late
1970s with commercial mobile phone networks introduced in the early 1980s. The

1He was the first person to patent the telephone as an ‘apparatus for transmitting vocal or other
sounds telegraphically’. There are several other claimants for inventing the telephone.

228 12 Overview of Telecommunications

first global mobile phone system (Iridium) was operational in 1998, and the Iridium
system consisted of 66 satellites, with the customers using handheld satellite phones.

The ARPANET packet switching network was introduced in the late 1960s, and
it remained operational until 1990, when the Internet became operational. The
Internet has led to almost instantaneous communication, and it has led to electronic
mail, the World Wide Web, which was developed by Tim Berners Lee at CERN,
social networking, electronic commerce and telephone calls over the Internet with
the VOIP protocol.

This chapter considers a small number of events in the history of telecommu-
nications including the development of the AXE system, which was the first fully
automated digital switching system, the development of mobile phone technology
and the development of the Iridium satellite mobile phone system.

12.2 AXE System

Ericsson introduced the AXE (Automatic Exchange Electric) switching system in
1977 (Fig. 12.1). This was the first fully automated digital switching system, and it
converted speech into digital (i.e. the binary language used by computers).
Ericsson’s competitors were still using the slower and less reliable analog systems.

The analog system uses an electric current to convey the vibrations of the human
voice, whereas a digital system uses a stream of binary digits to represent sound.
The AXE system was an immediate success with telecom companies, and it has

Fig. 12.1 AXE system.
Courtesy of Ericsson

12.1 Introduction 229

been sold in many countries around the world. AXE was originally a digital
exchange for landline telephony, but it was later extended for use with mobile
telephony systems.

Ellemtel was established in 1970 as a pure research and development company,
and it was a joint venture between Televerket (Sweden’s state-owned PTT) and
Ericsson. Its primary task was to develop an electronic and automated switching
system for telephone stations that would become the AXE system.

Ericsson had been working to develop a commercial electronic switching system
called AKE, while Televerket was working on its own electronic switch. Ericsson
realised that its AKE system was not suitable for large switching stations, and that it
needed to develop a new generation of switching systems. It decided to combine its
resources with Televerket and to jointly develop an electronic telephone switching
system.

Bengt-Gunnar Magnusson was the project manager for the AXE project, and
AXE had a modular system design which made the system flexible. New func-
tionality could be added, and existing modules updated or replaced. The modular
design allowed the system to be easily adapted to different markets.

The development of AXE also involved the development of hardware and
software such as programs and processors to control the AXE stations. The first
prototype AXE system was installed at a Televerket station in 1976, and Ellemtel’s
work in developing the AXE system was complete in 1978.

The AXE system was then commercialised and many of Ellemtel’s employees
moved to Ericsson. AXE was an immediate success and Ericsson soon had cus-
tomers in Sweden, Finland, France, Australia and Saudi Arabia. The Saudi order
was the largest that Ericsson had ever received, and it involved increasing the
capacity of the Saudi network by 200% and installing the AXE system.

The introduction of AXE meant that by the early 1980s that Ericsson had the
market’s most advanced and flexible switching system, and this made it ideally
placed for the transition from fixed line to mobile telephony. It meant that Ericsson
had moved from being a minor player in the telecoms business to a major-league
player. It was now the leader in fixed line phone technology, and it had the right
foundations in place for success in mobile telephony. It became the leader in mobile
technology in the late 1980s, and today the AXE system has been installed in over
130 countries.

12.3 Development of Mobile Phone Standards

Bell Labs played an important role (with Motorola) in the development of the
analog mobile phone system in the United States. It developed a system in the
mid-1940s that allowed mobile users to place and receive calls from automobiles,
and Motorola developed mobile phones for automobiles. However, these phones
were large and bulky and they consumed a lot of power. A user needed to keep the
automobile’s engine running to make or receive a call.

230 12 Overview of Telecommunications

Bell Labs first proposed the idea of a cellular system back in the late 1940s,
when they proposed hexagonal rings for mobile communication. Large geograph-
ical areas were divided into cells, where each cell had its own base station and
channels. The available frequencies could be used in parallel in different cells
without disturbing each other (Fig. 12.2). Mobile telephone could now, in theory,
handle many subscribers. However, it was not until the late 1960s that Bell Labs
prepared a detailed plan for implementing the cellular system.

Bell Labs developed the Advanced Mobile Phone System (AMPS) standard
from 1968 to 1983. Motorola and other telecommunication companies designed and
built phones for this cellular system. The AMPS system uses separate frequencies
(or channels) for each conversation and requires considerable bandwidth for many
users.

The signals from a transmitter cover an area called a cell. As a user moves from
one cell into a new cell, a handover to the new cell takes place without any
noticeable difference to the user. The signals in the adjacent cell are sent and
received on different channels to the existing cell’s signals, and so there is no
interference.

The Total Access Communication (TACS) and extended TACS (ETACS) sys-
tem were variants of AMPS that were employed in the United Kingdom and
Europe. These analog standards employed separate frequencies (or channels) for
each conversation using frequency division multiple access (FDMA). However, the
analog system suffered from static and noise, and there was no protection from
eavesdropping using a scanner.

Ericsson became the leader in the first generation of mobile with Motorola, and
the extent of its leadership was clear when its proposed design for digital mobile
radio transmission was selected as the US Standard for Cellular Communications
over entries from Motorola and AT&T in 1989.

Fig. 12.2 Frequency reuse in
cellular networks

12.3 Development of Mobile Phone Standards 231

The AMPS system represents the first generation of cellular technology, and it
has several weaknesses when compared to today’s cellular systems. Mobile tech-
nology evolved to the second-generation digital global system for mobile com-
munication (GSM) and code division multiple access (CDMA) technologies; to
general packet radio service (GPRS); to third-generation mobile, including 3G and
WCDMA; and to fourth- and fifth-generation mobile (4G and 5G).

12.4 Development of Mobile Phone Technology

The invention of the telephone by Graham Bell in the late nineteenth century was a
revolution in human communication, as it allowed people in different geographic
locations to communicate instantaneously rather than meeting face-to-face.
However, the key restriction of the telephone was that the actual physical location
of the person to be contacted was required prior to communication, as otherwise
communication could not take place, i.e. communication was between places rather
than people.

The origins of the mobile phone revolution date to work done on radio tech-
nology in the 1940s. Bell Labs had proposed the idea of a cellular communication
system back in 1947, and it was eventually brought to fruition by researchers at Bell
Labs and Motorola. Bell Labs constructed and operated a prototype cellular system
in Chicago in the late 1970s, and performed public trials in 1979. Motorola com-
menced the second U.S. cellular system test in the Washington/Baltimore area. The
first commercial systems commenced operation in the United States in 1983.

The DynaTAC (Dynamic adoptive Total Area Coverage) used cellular radio
technology to link people and not places. Motorola was the first company to
incorporate the technology into a portable device designed for use outside of an
automobile, and it spent $100 million on the development of cellular technology.
Martin Cooper (Fig. 12.3) led the team at Motorola that developed the
DynaTAC8000X, and he made the first mobile phone call on a prototype DynaTAC
phone to Joel Engels, the head of research at Bell Labs, in April 1973.

Commercial cellular services commenced in North America in 1983, and the
world’s first commercial mobile phone went on sale the same year. This was the
Motorola DynaTAC 8000X, and it was popularly known as the ‘brick’ due to its
size and shape. It weighed 28 oz (almost 2 lbs); it was 13.5” (over a foot) in length
and 3.5” in width. It had a LED display and could store 30 numbers. It had a talk
time of 30 min, 8 h of standby, and it took over 10 h to recharge.

The cost of the Motorola DynacTAC 8000X was $3995, and it was too
expensive for most people apart from wealthy consumers. Today, mobile phones
are ubiquitous, and there are more mobile phone users than fixed line users. The
cost of a mobile phone today is typically less than $100, and a mobile phone
typically weighs as little as 3 oz.

The first-generation mobile phone system introduced into North America in the
early 1980s used the 800 MHz cellular band. It had a frequency range between 800

232 12 Overview of Telecommunications

and 900 MHz. Each service provider could use half of the 824–849 MHz range for
receiving signals from cellular phones and half the 869–894 MHz range for
transmitting to cellular phones. The bands were divided into 30 kHz sub-bands
called channels and a separate frequency (or channel) was used for each conver-
sation. The division of the spectrum into sub-band channels is achieved by using
frequency division multiple access (FDMA).

This first-generation system allowed voice communication only, and it was
susceptible to static and noise. Further, it had no protection from eavesdropping
using a scanner.

The AXE system provided the foundation for Ericsson’s growth in mobile
telephony, as its flexible modular design allowed new functionality to be added, and
by changing a module AXE could be reconfigured to handle mobile telephone calls.
This allowed Ericsson to design the first mobile telephone exchange (MTX) by
replacing the sub-system for fixed subscribers with a new sub-system for mobile
subscribers. The MTX switch was developed in the late 1970s/early 1980s and was
a key part of the Nordic mobile telephone system (NMT) which would be used in
all Nordic countries.

Ericsson was awarded a large Saudi Arabian contract to deliver a fixed line and
mobile system, and it was agreed that the NMT standard would be used and that

Fig. 12.3 Martin Cooper
re-enacts DynaTAC call

12.4 Development of Mobile Phone Technology 233

Ericsson would supply the entire system. The Saudi mobile phone network became
operational from 1981, and Ericsson provided base stations, radio towers and
switches. Ericsson had now acquired cell-planning experience, and it was awarded
the contract to develop the entire mobile telephone network in the Netherlands.
Ericsson was now a total systems supplier in mobile telephony, and it provided the
entire infrastructure such as switches and base stations. Today, its base stations
range from small picocells to large macrocells.

The second generation (2G) of mobile technology was a significant improve-
ment on the existing analog technology. This digital, cellular technology encrypted
telephone conversations and provided data services such as text and picture mes-
sages. The second-generation technologies included the GSM standard developed
by the European Telecommunications Standards Institute (ETSI), and CDMA
developed in the United States. The first GSM call was made by the Finnish prime
minister in Finland in 1991, and the first short message service (SMS) or text
message was sent in 1992.

The subscriber identity module (SIM) card was a new feature in GSM, and a
SIM card is a detachable smart card that contains the user’s subscription infor-
mation and phone book. The SIM card may be used in other GSM phones, and this
is useful when the user purchases a replacement phone. GSM provides an increased
level of security, with communication between the subscriber and base station
encrypted.

GSM networks evolved into GPRS (2.5 G), which became available in 2000.
Third- and fourth-generation mobile (3G and 4G) provide mobile broadband multi-
media communication. Mobile phone technology has transformed the earlier para-
digm of communication between places to that of communication between people.

Motorola dominated the analog mobile phone market. However, it was slow to
adapt to the GSM standard, and it paid a heavy price with a loss of market share to
Nokia and Ericsson. It was very slow to see the potential of a mobile phone as a
fashion device,2 and it was too slow in adapting to smartphones.

12.5 The Iridium Satellite System

Iridium was a global satellite phone company that was backed by Motorola. In
many ways, it was an engineering triumph over common sense, and over $5 billion
was spent in building an infrastructure of low earth orbit (LEO) satellites to provide
global coverage. It was launched in late 1998 to provide worldwide wireless
coverage to its customers, including the oceans, airways and polar regions. The
existing telecom systems had limited coverage in remote areas, and so the concept
of global coverage as provided by Iridium was potentially very useful.

2The attitude of Motorola at the time seemed to be like that of Henry Ford, i.e. they can have
whatever colour they like as long as it is black.

234 12 Overview of Telecommunications

Iridium was implemented by a constellation of 66 satellites (Fig. 12.4). The
original design required 77 satellites, and so the name ‘Iridium’ was chosen (since
its atomic number in the periodic table is 77). However, the later design required
just 66 satellites, and so ‘Dysprosium’ may have been a more appropriate choice.
The satellites are in low earth orbit at a height of approximately 485 miles, and
communication between the satellites is via inter-satellite links. Each satellite
contains seven Motorola Power PC 603E processors running at 200 MHz, which
are used for satellite communication and control.

Iridium routes phone calls through space and there are several earth stations. As
satellites leave the area of an earth base station the routing tables change, and
frames are forwarded to the next satellite just coming into view of the earth base
station.

The Iridium constellation is a large commercial satellite constellation, and it is
especially suited for industries such as maritime, aviation, government and the
military. Motorola was the prime contractor for Iridium, and it played a key role in
its design and development. The satellites were produced at a cost of $5 million
each ($40 million each including launch costs), and Motorola engineers could make
a satellite in the phenomenal time of 2–3 weeks.

The first Iridium call was made by Al Gore in late 1998. However, despite being
an engineering triumph, Iridium was a commercial failure, and it went bankrupt in
late 1999 due to insufficient demand for its services. It had needed a million
subscribers to break even, and as the cost of an Iridium call was very expensive
compared to the existing cellular providers, and as the cost of its handsets was much
higher and more cumbersome to use than existing mobile phones, there was very
little demand for its services.

Fig. 12.4 Iridium system. Courtesy of Iridium Satellite LLC

12.5 The Iridium Satellite System 235

Specifically, the reasons for failure included:

– Insufficient demand for its services (10,000 subscribers),
– High cost of its service ($5 per minute for a call),
– Cost of its mobile handsets ($3000 per handset),
– Bulky mobile handsets,
– Competition from existing mobile phone networks and
– Management failures.

However, the Iridium satellites remained in orbit, and the service was
re-established in 2001 by the newly founded Iridium satellite LLC. The new
business model required just 60,000 subscribers to break even. Today, it has over
half a million customers, and it is used extensively by the US Department of
Defense.

Iridium was designed in the late 1980s and so it is designed primarily for voice
rather than data. It lacks the sophistication of modern mobile phone networks, and
so it is not as attractive to users. However, it provides service in remote parts of the
world, which is very useful. Iridium is developing and launching a second gener-
ation of satellites (Iridium Next), which will include new features such as data
transmission.

12.6 Review Questions

1. Describe the contributions of Bell Labs to mobile technology.
2. What are the advantages of mobile technology over fixed line technology?
3. Describe the various generations of mobile technology.
4. Describe Motorola’s contributions to mobile technology.
5. What factors led to Ericsson’s success and leadership in mobile

technology?
6. What factors led to the (initial) commercial failure of the Iridium System?

12.7 Summary

The invention of the telephone by Graham Bell in the late nineteenth century was a
revolution in human communication, as it allowed people in different geographic
locations to communicate instantaneously rather than meeting face-to-face. The
early phones had major limitations, but the development of automated telephone
exchanges helped to deal with these.

236 12 Overview of Telecommunications

However, the key limitation of the telephone was that the actual physical
location of the person to be contacted was needed prior to communication, i.e.
communication was between places rather than people.

This led to research by Bell Labs and others into ways in which communication
could take place between people (and not places). Bell Labs developed a system in
the mid-1940s that allowed mobile users to place and receive calls from automo-
biles, with Motorola developing the phones for automobiles. However, these
phones were large and bulky, and the automobile’s engine needed to be running to
make or receive a call.

Bell Labs proposed the idea of a cellular system back in the late 1940s, and it
prepared a detailed plan for its implementation in the late 1960s. A cellular system
is divided into cells, where each cell has its own base station and channels. The
available frequencies may be used in parallel in different cells without interference
with each other.

Motorola developed the first mobile phone, the DynaTAC, and it made the first
mobile phone call in 1973. The first mobile phone systems were analog and based
on the AMPS standard. The later generations of mobile technology are digital and
are a significant advance on the older cellular technology.

Iridium provides global wireless coverage to its customers including coverage in
the oceans, airways and polar regions. It was implemented by a constellation of 66
satellites. For a more detailed account of the contributions of Bell Labs, Ericsson
and Motorola, see (Gertner 2013; Meurling and Jeans 2001; Motorola 1999;
O’Regan 2015).

12.7 Summary 237

Chapter 13
The Internet and World Wide Web

Key Topics

ARPANET
TCP/IP
The Internet
Internet of Things
Internet of Money
The world Wide Web
Dot-Com Bubble
Facebook
The Twitter Revolution

13.1 Introduction

The vision of the Internet and World Wide Web goes back to an article by
Vannevar Bush in the 1940s. Bush was an American scientist who had done work
on submarine detection for the U.S. Navy. He designed and developed the
Differential Analyser (Fig. 1.1), which was a mechanical computer whose function
was to evaluate and solve first-order differential equations. Bush supervised Claude
Shannon at MIT (see Chap. 2), and Shannon’s initial work was to improve the
Differential Analyser.

Bush (Fig. 13.1) became director of the office of Scientific Research and
Development, and he developed a win-win relationship between the U.S. military
and universities. He arranged generous research funding for the universities to carry

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_13

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_13&domain=pdf

out applied research to assist the military. This allowed the military to benefit from
the early exploitation of research results, and it also led to better facilities and
laboratories at the universities. It led to close links and cooperation between uni-
versities such as Harvard and Berkeley, and this would eventually lead to the
development of ARPANET by DARPA.

Bush outlined his vision of an information management system called the
‘memex’ (memory extender) in a famous essay ‘As We May Think’ (Bush 1945). He
envisaged the memex as a device electronically linked to a library that would be
able to display books and films. It describes a proto-hypertext computer system and
influences the later development of hypertext systems.

A memex is a device in which an individual stores all his books, records, and communi-
cations, and which is mechanized so that it may be consulted with exceeding speed and
flexibility. It is an enlarged intimate supplement to his memory.

It consists of a desk, and while it can presumably be operated from a distance, it is
primarily the piece of furniture at which he works. On the top are slanting translucent
screens, on which material can be projected for convenient reading. There is a keyboard,
and sets of buttons and levers. Otherwise it looks like an ordinary desk.

Bush predicted that:

Wholly new forms of encyclopedias will appear, ready made with a mesh of associative
trails running through them, ready to be dropped into the memex and there amplified.

This description motivated Ted Nelson and Douglas Engelbart to independently
formulate ideas that would become hypertext. Tim Berners-Lee would later use
hypertext as part of the development of the World Wide Web.

Fig. 13.1 Vannevar Bush

240 13 The Internet and World Wide Web

13.2 The ARPANET

There were approximately 10,000 computers in the world in the 1960s. These were
expensive machines (often over $1 million) with limited processing power. They
contained only a few thousand words of magnetic memory, and programming and
debugging was difficult. Further, communication between computers was virtually
non-existent.

However, several computer scientists had dreams of worldwide networks of
computers, where every computer around the globe is interconnected to all other
computers in the world. Licklider1 wrote memos in the early 1960s on his concept
of an intergalactic network, which envisaged that everyone around the globe would
be interconnected and able to access programs and data at any site from anywhere.

The U.S. Department of Defense founded the Advance Research Projects
Agency (ARPA) in the late 1950s. ARPA embraced high-risk, high-return research,
and Licklider became the head of its computer research program. He developed
close links with MIT, UCLA and BBN Technologies.2 The concept of packet
switching3 was invented in the 1960s, and several organisations including the
National Physical Laboratory (NPL), the RAND Corporation and MIT commenced
work on its implementation.

The early computers had different standards for data representation, and so it was
essential to know the standard employed by each computer prior to communication.
This led to recognition of the need for common standards in data representation,
and a U.S. government committee developed the American Standard Code for
Information Interchange (ASCII) in 1963. This was the first universal standard for
data, and it allowed machines from different manufacturers to exchange data. The
standard allowed a 7-bit binary number to stand for a letter in the English alphabet,
an Arabic numeral or a punctuation symbol. The use of 7 bits allowed 128 distinct
characters to be represented. The development of the IBM System/360 mainframe
(discussed in Chap. 3) standardised the use of 8-bits for a word, and 12-bit or 36-bit
words became obsolete.

We discussed the SAGE system and early work done on wide-area networks for
military use in the late 1950s (see Chap. 3). The first civilian wide-area network
connection was created in 1965, and it involved the connection of a computer at
MIT to a computer in Santa Monica. This was done via a dedicated telephone line,
and it showed that a telephone line could be used for data transfer. ARPA

1Licklider was an early pioneer of AI and wrote an influential paper ‘Man-Computer Symbiosis’ in
1960 (Licklider 1960), which outlined the need for simple interaction between users and
computers.
2BBN Technologies (originally Bolt Beranek and Newman) is a research and development
technology company. It played an important role in the development of packet switching and in the
implementation and operation of ARPANET. The ‘@’ sign used in an email address was a BBN
innovation.
3Packet switching is a message communication system between computers. Long messages are
split into packets, which are then sent separately to minimise the risk of congestion.

13.2 The ARPANET 241

recognised the need to build a network of computers, and this led to the ARPANET
project in 1966 which aimed to implement a packet-switched network with a net-
work speed of 56 Kbps. ARPANET was to become the world’s first
packet-switched network.

BBN Technologies was awarded the contract to implement the network, with
plans for a total of 19 nodes. The first two nodes were based at UCLA and Stanford
Research Institute (SRI). The network management was performed by intercon-
nected Interface Message Processors (IMPs), which were in front of the main
computers. The IMPs eventually evolved to become the network routers that are
used today.

The team at UCLA called itself the Network Working Group, and it saw its role
as developing a set of rules that specified how the computers on the network should
communicate. These rules were called the Network Control Protocol (NCP). The
first host-to-host connection was made between a computer in UCLA and a com-
puter at SRI in late 1969. Several other nodes were added to the network until it
reached its target of 19 nodes in 1971.

The Network Working Group developed the telnet protocol and the file transfer
protocol (FTP) in 1971. The telnet program allowed the user of one computer to
remotely log into the computer of another computer. The file transfer protocol
allows the user of one computer to send (or receive) files to (from) another com-
puter. A highly successful public demonstration of ARPANET was made in 1972,
and one of the earliest demos was that of Weizenbaum’s ELIZA program (see O’
Regan 2016). This famous artificial intelligence (AI) program allowed a user to
conduct a typed conversation with an artificially intelligent machine (Rogerian
psychotherapist) at MIT.

The viability of packet switching as a standard for network communication had
been clearly demonstrated. Ray Tomlinson of BBN Technologies developed a
program that allowed electronic mail to be sent over the ARPANET. Over 30
institutions were connected to the ARPANET by the early 1970s.

13.3 TCP/IP

ARPA was renamed to the Defense Advanced Research Projects Agency (DARPA)
in 1973. It commenced a project to connect seven computers on four islands using a
radio-based network, and a project to establish a satellite connection between a site
in Norway and in the United Kingdom. This led to a need for the interconnection of
the ARPANET with other networks. The key problems were to investigate ways of
achieving convergence between ARPANET, radio-based networks and the satellite
networks, as these all had different interfaces, packet sizes and transmission rates.
Therefore, there was a need for a network-to-network connection protocol.

An international network working group (INWG) was formed in 1973. The
concept of the transmission control protocol (TCP) was developed at DARPA by
Bob Kahn and Vint Cerf, and they presented their ideas at an INWG meeting at the

242 13 The Internet and World Wide Web

University of Sussex in England in 1974 (Kahn and Cerf 1974). TCP allowed
cross-network connections, and it began to replace the original NCP protocol that
was used in ARPANET.

TCP is a set of network standards that specify the details of how computers
communicate, as well as the standards for interconnecting networks and computers.
It was designed to be flexible and provides a transmission standard that deals with
physical differences in host computers, routers and networks. It is designed to
transfer data over networks which support different packet sizes, and which may
sometimes lose packets. It allows the inter-networking of very different networks,
which then act as one network.

The new protocol standards were known as the transport control protocol
(TCP) and the Internet protocol (IP). TCP details how information is broken into
packets and re-assembled on delivery, whereas IP is focused on sending the packet
across the network. These standards allow users to send electronic mail or to
transfer files electronically, without needing to concern themselves with the
physical differences in the networks. TCP/IP consists of four layers (Table 13.1).

The Internet protocol (IP) is a connectionless protocol that is responsible for
addressing and routing packets. It breaks large packets down into smaller packets
when they are travelling through a network that supports smaller packets.
A connectionless protocol means that a session is not established before data is
exchanged, and packet delivery with IP is not guaranteed, as packets may be lost or
delivered out of sequence.

An acknowledgement is not sent when data is received, and the sender or
receiver is not informed when a packet is lost or delivered out of sequence. The
router forwards a packet only if it knows a route to the destination, and otherwise
the packet is dropped. Packets are dropped if their checksum is invalid or if their
time to live is zero. The acknowledgement of packets is the responsibility of the
TCP protocol. The ARPANET employed the TCP/IP protocols as a standard from
1983.

Table 13.1 TCP layers

Layer Description

Network
interface layer

This layer is responsible for formatting packets and placing them on to
the underlying network

Internet layer This layer is responsible for network addressing. It includes the Internet
protocol and the address resolution protocol

Transport layer This layer is concerned with data transport and is implemented by TCP
and the user datagram protocol (UDP)

Application layer This layer is responsible for liaising between user applications and the
transport layer.
It includes the file transfer protocol (FTP), telnet, domain naming system
(DNS) and simple mail transfer program (SMTP)

13.3 TCP/IP 243

13.4 Birth of the Internet

The use of ARPANET was initially limited to academia and to the United States
military, and in the early years there was little interest from industrial companies. It
allowed messages to be sent between the universities that were part of ARPANET.
There were over 2000 hosts on the TCP/IP enabled network by the mid-1980s.

It was decided to shut down the network by the late-1980s, and the National
Science Foundation (NSF) commenced work on its successor, the NSFNET, in the
mid-1980s. This network consisted of multiple regional networks connected to a
major backbone. The original links in NSFNET were 56 Kbps but these were
updated to 1.544 Mbps T1 links in 1988. The NSFNET T1 backbone initially
connected 13 sites, but this increased, as there was growing academic and industrial
interest from around the world. The NSF quickly realised that the Internet had
commercial potential.

The Internet began to become more international with nodes in Canada and
several European countries. DARPA formed the computer emergency response
team (CERT) to deal with any emergency incidents arising from the operation of
the network.

The independent not-for-profit company, advanced network services (ANS), was
founded in 1991. It installed a new network (ANSNET) that replaced the NSFNET
T1 network, and it operated over T3 (45 Mbps) links. It was owned and operated by
a private company rather than the U.S. government, with the NSF focusing on the
research aspects of networks rather than on the operational side.

The ANSNET network was a distributive network architecture operated by
commercial providers such as Sprint, MCI and BBN. The various parts of the
network were connected by major network exchange points. These were termed
network access points (NAPs), and there were over 160,000 hosts connected to the
Internet by the late 1980s.

13.5 Birth of the World Wide Web

Tim Berners-Lee invented the World Wide Web at CERN in 1990 (Berners-Lee
2000). CERN is an important European centre for research in the nuclear field, and
it is based in Switzerland. It employs several thousand physicists and scientists from
around the world, and has many visiting scientists.

One of the problems that scientists at CERN faced in the late 1980s was in
keeping track of people, computers, documents and databases. The centre had many
visiting scientists who spent several months there, as well as a large pool of per-
manent staff. There was no efficient way in CERN at that time to share information
among scientists.

A visiting scientist might need to obtain information or data from a CERN
computer, or to make the results of their research available to researchers at CERN.

244 13 The Internet and World Wide Web

Berners-Lee came to CERN in the early 1980s, and he developed a program called
‘Enquire’ to assist with information sharing and in keeping track of the work of
visiting scientists. He returned to CERN in the mid-1980s to work on other projects,
and he devoted part of his free time to consider solutions to the information-sharing
problem.

He built on several existing inventions such as the Internet, hypertext and the
mouse. Ted Nelson invented hypertext in the 1960s, and it allowed links to be
present in text. For example, a document such as a book contains a table of
contents, an index and a bibliography. These are all links to material that is either
within the book itself or external to the book. The reader of a book may follow the
link to obtain the internal or external information. Doug Engelbart invented the
mouse in the 1960s, and it allowed the cursor to be steered around the screen.

The major leap that Berners-Lee made was essentially a marriage of the Internet,
hypertext and the mouse into what has become the World Wide Web. His vision
and its subsequent realisation benefited CERN and the wider world.

He created a system that gives every web page a standard address called the
universal resource locator (URL). Each page is accessible via the hypertext transfer
protocol (HTTP), and the page is formatted with the hypertext mark-up language
(HTML). Each page is visible using a web browser. The key features of
Berners-Lee invention are listed in Table 13.2.

Berners-Lee invented the well-known terms such as URL, HTML and World
Wide Web, and he wrote the first browser program that allowed users to access web
pages throughout the world. Browsers are used to connect to remote computers over
the Internet, and to request, retrieve and display the web pages on the local
machine.

The early browsers included Gopher developed at the University of Minnesota,
and Mosaic developed at the University of Illinois. These were replaced in later
years by Netscape, which dominated the browser market until Microsoft developed
Internet Explorer (IE). The development of the graphical browsers led to the
commercialisation of the World Wide Web.

The World Wide Web creates a space in which users can access information
easily from any part of the world. This is done using only a web browser and simple
web addresses. The user can then click on hyperlinks on web pages to access further

Table 13.2 Features of World Wide Web

Feature Description

URL Universal resource identifier [later renamed to Universal Resource Locator (URL)]
provides a unique address code for each web page

HTML Hypertext mark-up language (HTML) is used for designing the layout of web
pages

HTTP The hypertext transport protocol (HTTP) allows a new web page to be accessed
from the current page

Browser A browser is a client program that allows a user to interact with the pages and
information on the World Wide Web

13.5 Birth of the World Wide Web 245

relevant information that may be on an entirely different continent. Berners-Lee
later became the director of the World Wide Web Consortium, and this MIT-based
organisation sets the software standards for the web.

The invention of the World Wide Web was a revolutionary milestone in the
history of computing. It transformed the use of the Internet from mainly academic
use to where it is now an integral part of peoples’ lives. Users may now surf the
web, i.e. hyperlink among the millions of computers in the world and obtain
information easily. It is revolutionary in that:

• No single organisation is controlling the web.
• No single computer is controlling the web.
• Millions of computers are interconnected.
• It is an enormous market place of billions of users.
• The web is not located in one physical location.
• The web is a space and not a physical thing.

13.6 Applications of the World Wide Web

Berners-Lee realised that the World Wide Web offered the potential to conduct
business in cyberspace, rather than the traditional way where buyers and sellers
come together to do business in the marketplace.

Anyone can trade with anyone else except that they do not have to go to the market square
to do so

The growth of the World Wide Web has been phenomenal, with exponential
growth rate curves a feature of newly formed Internet companies and their business
plans. It has been applied to many areas including:

• Travel industry (Booking flights, train tickets and hotels),
• E-Marketing,
• Online shopping,
• Portal sites,
• Recruitment services,
• Internet banking,
• Online casinos,
• Online auction sites,
• Newspapers and news channels and
• Social media.

The prediction in the early days was that the new web-based economy would
replace traditional bricks and mortar companies. It was expected that most business
would be conducted over the web, with traditional enterprises losing market share
and going out of business. Exponential growth of e-commerce companies was

246 13 The Internet and World Wide Web

predicted, and the size of the new web economy was estimated to be in trillions of
U.S. dollars.

New companies were formed to exploit the opportunities of the web, and
existing companies developed e-business and e-commerce strategies to adapt to the
brave new world. Companies providing full e-commerce solutions were concerned
with the selling of products or services over the web to either businesses or con-
sumers. These business models are referred to as Business-to-Business (B2B) or
Business-to-consumer (B2C). E-commerce websites have the following character-
istics (Table 13.3).

13.7 Dot-Com Companies

The success of the World Wide Web was phenomenal and it led to a boom in the
formation of ‘new economy’ businesses. These businesses were conducted over the
web and included the Internet portal company, Yahoo; the online bookstore,
Amazon; and the online auction site, eBay. Yahoo provides news and a range of
services, and most of its revenue comes from advertisements. Amazon initially sold
books, but it now sells a collection of consumer and electronic goods. eBay brings
buyers and sellers together in an online auction space.

Some of these new technology companies were successful and remain in busi-
ness. Others were financial disasters due to poor business models, poor manage-
ment and poor implementation of the new technology. Some of these technology
companies offered an Internet version of traditional bricks and mortar company,
with others providing a unique business offering. For example, eBay offers an
auctioneering Internet site to consumers worldwide which was a totally new service
and quite distinct from traditional auctioneering.

David Filo and Jerry Yang founded Yahoo, and they used it to keep track of their
personal interests and the corresponding websites on the Internet. Filo and Yang

Table 13.3 Characteristics of e-commerce

Feature Description

Catalogue of products The catalogue of products details the products available for sale and
their prices

Well-designed and
easy to use

This is essential as otherwise the website will not be used

Shopping carts This is analogous to shopping carts in a supermarket

Security Security of credit card information is a key concern for users of the
web, as users need to have confidence that their credit card details
will not be compromised

Payments Once the user has completed the selection of purchases, there is a
checkout facility to arrange for the purchase of the goods

Order fulfilment/
order enquiry

Once payment has been received, the products must be delivered to
the customer

13.6 Applications of the World Wide Web 247

were students at Stanford in California, and their list of interests grew over time and
became too long and unwieldy. Therefore, they broke their interests into a set of
categories and then subcategories, and this is the core concept of the website.

There was a lot of interest in the site from other students, family and friends and
a growing community of users. The founders realised that the site had commercial
potential, and they incorporated it as a business in 1995. The company launched its
initial public offering (IPO) 1 year later in April 1996, and it was valued at $850
million. Yahoo is a portal site and it offers free email accounts to users, a search
engine, news, shopping, entertainment, health and so on. The company earns most
of its revenue from advertisement (including the click-through advertisements that
appear on a Yahoo web page).

Jeff Bezos founded Amazon in 1995 as an online bookstore, and its product
portfolio has expanded to include just about everything. Its initial focus was to build
up the ‘Amazon’ brand throughout the world, and to become the world’s largest
bookstore. It initially sold books at a loss by giving discounts to buyers to build
market share. It was very effective in building its brand through advertisements,
marketing and discounts.

It became the largest online bookstore in the world and has a solid business
model with a very large product catalogue, a well-designed website with good
searching facilities, good check out facilities and good order fulfilment. It also
developed an associate model, which allows its associates to receive a commission
for purchases of Amazon products made through the associate site.

Pierre Omidyar founded eBay in 1995, and the site brings buyers and sellers
together. Millions of items are listed, bought and sold on eBay every day. The
sellers are individuals or international companies. Any legal product that does not
violate the company’s terms of service may be bought or sold on the site. A buyer
makes a bid for a product or service, and competes against several other bidders.
The highest bid is successful, and payment and delivery are then arranged. The
revenue earned by eBay includes fees to list a product and commission fees that are
applied whenever a product is sold.

Any product listed that violates eBay’s terms of service is removed from the site
as soon as the company is aware of them. The company also has a fraud prevention
mechanism, which allows buyers and sellers to provide feedback on each other and
to rate each other following the transaction. The feedback may be positive, negative
or neutral, and relevant comments included. This offers a way to help to reduce
fraud as unscrupulous sellers or buyers will receive negative ratings and comments.

13.7.1 Dot-Com Failures

Several of the companies formed during the dot-com era were successful and
remain in business today. Others had inappropriate business models or poor
management and failed in a spectacular fashion. This section considers some of the
dot-com failures and highlights the reasons for failure.

248 13 The Internet and World Wide Web

Webvan.com was an online grocery business based in California. It delivered
products to a customer’s home within a 30-min period of their choosing. The
company expanded to several other cities before it went bankrupt in 2001. Many of
its failings were due to management as the business model was reasonable, and
today there are several successful online fresh food delivery businesses. The
management was inexperienced in the supermarket or grocery business, and the
company spent excessively on infrastructure. It had been advised to build up an
infrastructure to deliver groceries as quickly as possible, rather than developing
partnerships with existing supermarkets. It built warehouses, purchased a fleet of
delivery vehicles and top of the range computer infrastructure before running out of
money.

Ernst Malmsten and others founded Boo.com in 1998, as an online fashion
retailer that was based in the UK. The company spent over $135 million of
shareholder funds in less than 3 years, before it went bankrupt in 2000. Its website
was poorly designed for its target audience, and it went against many of the
accepted usability conventions of the time. The website was designed in the days
before broadband, with 56 K modems used by most customers. However, its design
included the latest Java and Flash technologies, and it took most users several
minutes to load the first page of the website. Further, the navigation of the website
was inconsistent and changed as the user moved around the site.

Other reasons for failure included poor management and leadership, lack of
direction, lack of communication between departments, spirally costs left
unchecked and crippling payroll costs. Further, purchasers returned many products,
and there was no postage charge applied for this service. The company went
bankrupt in 2000, and an account of its formation and collapse is in the book, Boo
Hoo (Malmsten and Portanger 2002). This book is a software development horror
story, and the maturity of the software development practices employed may be
judged from the fact that the developers were working without any source code
control mechanism in place (a basic software engineering practice). The net effect
was that despite extensive advertising by the company users were not inclined to
use the site.

Pets.com was an online pet supply company founded in 1998 by Greg
McLemore. It sold pet accessories and supplies, and it had a well-known adver-
tisement as to ‘why one should shop at an online pet store?’. The answer to this
question was: ‘Because Pets Can’t Drive!’. Its famous mascot (the Pets.com dog
sock puppet) was used in its marketing campaign. It launched its IPO in February
2000 just before the dot-com collapse.

Pets.com made investments in infrastructure such as warehousing and vehicles.
It needed a critical mass of customers to break even and its management believed
that it needed $300 million of revenue to achieve this. They expected that this
would take a minimum of 4–5 years, and therefore there was a need to raise further
capital. However, following the dot-com collapse, there was negative sentiment
towards technology companies, and it was apparent that it would be unable to raise
further capital. The management tried to sell the company without success, and it
went into liquidation 9 months after its IPO.

13.7 Dot-Com Companies 249

Joseph Park and Yong Kang founded Kozmo.com in New York in 1998 as an
online company that promised free 1-hour delivery of small consumer goods. It
provided point-to-point delivery (usually on a bicycle) and did not charge a delivery
fee. Its business model was deeply flawed, as it is expensive to offer point-to-point
delivery of small goods within a 1-hour period without charging a fee. The com-
pany argued that they could make savings to offset the delivery costs, as they did
not require retail space. It expanded into several cities in the United States, and
raised about $280 million from investors. The company ceased trading in 2001.

13.7.2 Business Models

A business model converts a business or technology idea into a commercial reality,
and it needs to be appropriate for the company and its intended operating market.
A company with an excellent business idea but with a weak business model may
fail, whereas a company with an average business idea but an excellent business
model may be quite successful. Several of the business models in the dot-com era
were deeply flawed, and the eventual collapse of many of these companies was
predictable. Chesbrough and Rosenbloom (Chesbrough and Rosenbloom 2002)
have identified six key components in a business model (Table 13.4):

13.7.3 Bubble and Burst

The initial public offering of Netscape in 1995 demonstrated the incredible value of
the new Internet companies. Netscape had planned to issue the share price at $14,
but it decided at the last minute to issue it at $28. The share price reached $75 later

Table 13.4 Characteristics of business models

Constituent Description

Value proposition This describes how the product or service is a solution to a customer
problem

Market segment This describes the customers that will be targeted (including market
segments)

Value chain structure This describes where the company fits into the value chain (Porter
1998)

Revenue generation
and margins

This describes how revenue will be generated, including revenue
streams from sales, support, etc.

Position in value
network

This involves identifying competitors and other players that can assist
in delivering added value to the customer

Competitive strategy This describes how it will develop a competitive advantage to be
successful

250 13 The Internet and World Wide Web

that day. This was followed by what became the dot-com bubble where there were
many public offerings of Internet stock, and the value of these stocks reached
astronomical levels. Reality returned to the stock market when it crashed in April
2000, and share values returned to more realistic levels.

Most of these Internet companies were losing substantial sums of money, and
few expected to deliver profits in the short term. Financial instruments such as the
balance sheet, profit and loss account, and price to earnings ratio are normally
employed to estimate the value of a company. However, investment bankers argued
that there was a new paradigm in stock market valuation for Internet companies.
This paradigm suggested that the potential future earnings of technology companies
be considered in determining their value, and this was used to justify the high prices
of shares, as frenzied investors rushed to buy these over-priced and over-hyped
stocks. Common sense seemed to play no role in decision-making. The dot-com
bubble was characterised by:

• Irrational exuberance on the part of investors.
• Insatiable appetite for Internet stocks.
• Incredible greed from all parties involved.
• Following herd mentality.
• A lack of rationality and common sense by all concerned.
• Traditional method of company valuation not employed.
• Interest in making money rather than in building the business first.
• Questionable decisions by Federal Reserve Chairman (Alan Greenspan).
• Questionable analysis by investment firms.
• Investment banks had conflicts of interest and did not question the boom too

closely.
• Market had left reality behind.

There were winners and losers in the boom and collapse. Some investors made a
lot of money from the bubble, with others including pension funds and life
assurance funds making significant losses. The investment banks typically earned
5–7% commission on each successful IPO, and it was not in their interest to
question the boom too closely. Those who bought and disposed early obtained a
good return, whereas those who kept their shares for too long suffered losses. The
full extent of the boom can be seen in the rise and fall of the value of the Dow Jones
and NASDAQ from 1995 through 2002.

The extraordinary rise of the Dow Jones (Fig. 13.2) from a level of 3800 in 1995
to 11,900 in 2000 represented a 200% increase over 5 years or approximately 26%
annual growth (compound) during this period. The rise of the NASDAQ (Fig. 13.3)
over this period is even more dramatic. It rose from a level of 751 in 1995 to 5000
in 2000 representing a 566% increase during the period. This is equivalent to a 46%
compounded annual growth rate of the index.

The fall of the indices was equally as dramatic especially in the case of the
NASDAQ. It peaked at 5000 in March 2000, and fell to 1200 (a 76% drop) by
September 2002. It had become clear that Internet companies were rapidly going

13.7 Dot-Com Companies 251

through the cash raised at the IPOs, and analysts noted that a significant number
would be out of cash by the end of 2000. Therefore, these companies would either
go out of business or would need to go back to the market for further funding. This
led to questioning of the hitherto relatively unquestioned business models of these
Internet firms. Funding is easy to obtain when stock prices are rising at a rapid rate.
However, when prices are static or falling, with negligible or negative business
return to the investor, then funding dries up. The actions of the Federal Reserve in
rising interest rates to prevent inflationary pressures also helped to correct the
irrational exuberance of investors.

Some independent commentators had recognised the bubble but their comments
and analysis had been largely ignored. These included ‘The Financial Times’ and
the ‘Economist’ as well as some commentators in the investment banks. Investors
rarely queried the upbeat analysis coming from Wall Street and seemed to believe
that rising stock prices would be a permanent feature of the US stock markets.
Greenspan had argued that it is difficult to predict a bubble until after the event, and
that even if the bubble had been identified it could not have been corrected without
causing a contraction. Instead, the responsibility of the Fed (according to
Greenspan) was to mitigate the fallout when it occurs.

Do w Jo n e s Tr e n d

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2

Do w Jo n e s Tr e n d

Fig. 13.2 Dow Jones (1995–2002)

Na s d a q Tre n d

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2

Na s d a q Tre n d

Fig. 13.3 NASDAQ (1995–2002)

252 13 The Internet and World Wide Web

There have, of course, been other stock market bubbles throughout history. For
example, in the 1800s there was a rush on railway stock in England leading to a
bubble and eventual burst of railway stock prices in the 1840s. There was a dev-
astating property bubble and collapse (2002–2009) in the Republic of Ireland. The
failure of the Irish political class, the Irish Central bank and financial regulators, the
Irish Banking sector in their irresponsible lending policies, and failures of the media
in questioning the bubble are deeply disturbing. Its legacy remains and while the
country has made a remarkable recovery, the failures of so many at senior level in
the state remain deeply disturbing.

13.8 E-Commerce Security

The World Wide Web consists of unknown users and suppliers with unpredictable
behaviour operating in unknown countries around the world. These users and
websites may be friendly or hostile and the issue of trust arises:

• Is the other person who they claim to be?
• Can the other person be relied upon to deliver the goods on-payment?
• What legal remedies are there if the goods are not delivered?
• Can the other person be trusted not to inflict malicious damage?
• Is financial information kept confidential on the server?

Hostility may manifest itself in various acts of destruction. For example, mali-
cious software may attempt to format the hard disk of the local machine, and if
successful all local data will be deleted. Other malicious software may attempt to
steal confidential data from the local machine including bank account or credit card
details. The denial-of-service attack is when a website is overloaded by a malicious
attack and where users are unable to access the website for an extended period.

The display of web pages on the local client machine may involve the down-
loading of programs from the server, and running the program on the client
machine. Standard HTML allows the static presentation of a web page, whereas
many web pages include active content (e.g. Java Applets or Active X). There is a
danger that a Trojan horse4 may be activated during the execution of active content.

Security threats may be from anywhere (e.g. client side, server side and trans-
mission) in an e-commerce environment, and therefore a holistic approach is

4The origin of the term ‘Trojan Horse’ is from Homer’s Illiad and concerns the Greek victory in
the Trojan war. The Greek hero, Odysseus and others hid in a wooden horse while the other
Greeks sailed away from Troy. This led the Trojans to believe that the Greeks had abandoned their
attack and were returning to their homeland leading behind a farewell gift for the citizens of Troy.
The Trojans brought the wooden horse into the city and later that night Odysseus and his com-
panions opened the gates of Troy to the returning Greeks, leading to the mass slaughter of its
citizens. Hence, the phrase ‘Beware of Greeks bearing gifts’. Troy was located at the mouth of the
Dardanelles in Turkey.

13.7 Dot-Com Companies 253

required to protect the user. Internal and external security measures need to be
considered, with internal security generally implemented with good processes and
procedures and assigning appropriate access privileges.

It is essential that users have confidence in the security provided as otherwise
they will be reluctant to pass credit card details over the web for purchases.
Technologies such as secure socket layer (SSL) and secure HTTP (S-HTTP) help to
ensure security.

13.9 Internet of Things

The Internet of Things refers to interconnected technology that is now an integral
part of modern society, where computation and data communication are embedded
in our environment. The Internet of Things is not a single technology as such, and
instead it is a collection of devices, sensors and services that capture data to monitor
and control the world around them. It means that information processing is now an
integral part of people’s lives.

The Internet of Things has been applied to several areas including our bodies
(quantified self), our homes (smart homes) and public spaces (smart city). Wearable
biometric sensors may be used to determine the calories burned during a period of
exercise, as well as monitoring heart rate, breathing, skin temperature and perspi-
ration. In theory, this helps individuals to control key parameters associated with
their health.

The rise of the smart home is intended to deliver convenience to home occupiers,
and these consist of connected devices that provide useful functionality. The var-
ious digital controls in a modern home may be used to control lighting, enter-
tainment and security, as well as cooling and ventilation systems. The devices
gather data about the environment as well as passing data back to the service
provider. However, there are dangers with giving all this data about your life to a
service provider, as it is essential that the privacy of an individual is protected.

The rise of the smart city is where the modern city collects data about its
inhabitants and uses it to make more efficient use of energy, space and other
resources. The data may be gathered through CCTV and other devices, and in the
future the smart city will have knowledge of the habits and energy use of the
citizens, allowing it to control resources more effectively.

There are several implicit assumptions with respect to smart cities, and it seems
to be assumed that it is possible to know all aspects of the world perfectly with data,
that the data will always be accurate and that the data will be easy to interpret.
These assumptions are questionable.

That is, while the Internet of Things presents new possibilities, it is important to
proceed cautiously and to use it sensible as an extra tool that may support
decision-making rather than assuming that it provides all the answers. For further
information on the Internet of Things, see the thought-provoking Guardian article
(Greenfield 2017).

254 13 The Internet and World Wide Web

13.10 Internet of Money and Bitcoin

The idea of the Internet of Money is to build a financial environment that is suitable
for the Internet world, and it moves away from the traditional centralised model
where third-party banks record and manage all financial transactions. The new
paradigm is a decentralised model via the Internet where buyers and sellers interact
directly through digital currencies and decentralised ledgers. This decentralised
model is termed the ‘Internet of Money’, and Bitcoin aims to satisfy this model.

Digital currency is a type of currency that is available only in digital form, and it
exhibits properties like the traditional physical currencies in that they may be used
to buy goods and services. They include virtual currencies and cryptocurrencies.

The concept of digital cash was proposed by David Chaum in the early 1980s,
and he formed DigiCash (an electronics cash company) in the early 1990s to
commercialise his research (Chaum 1982). The goal of electronic cash (ecash) is to
allow the user to be anonymous, and it allows users to spend in a manner that is
untraceable to a bank or any other third party.

Chaum introduced the idea of blind signatures in his 1982 paper, which blinds
the content of a message before it is signed. This means that the signer cannot
determine the content of the message, but the resulting blind signature can be
verified against the original unblinded message.

One of the earliest digital currencies was e-Gold (it was backed by Gold), and
this centralised service appeared in the mid-1990s. It was later shut down by the US
government, due to concerns over money laundering. Q coins emerged around 2005
and Bitcoin appeared in 2008. Bitcoin is the most widely used and accepted digital
currency, and it is based on cryptographic algorithms (i.e. it is a cryptocurrency).

There are several types of digital currency including centralised systems (e.g.
PayPal and eCash) which sell digital currency directly to the end user, mobile
digital wallets for contactless payment transfer to facilitate easy payment (e.g.
Google Wallet and Apple Pay make it easy to carry all your debit and credit cards
on your smartphone) and decentralised system which employ cryptocurrencies and
rely on cryptography (Bitcoin is the most well known of these). Finally, there are
virtual currencies which are issued and controlled by its developers, and accepted
by the members of a virtual community.

Bitcoin is a cryptocurrency and digital payment system, and it is the first
decentralised digital currency. It was created by an unknown inventor(s) with the
pseudonym Satoshi Nakamoto in 2008 (Nakamoto 2008), and it works without a
central repository or single administrator. It is peer-to-peer with transactions taking
place directly between users without the need for third-party intermediaries, and the
transactions are verified by network nodes and recorded in a public distributed
ledger termed a blockchain. The open-source software for Bitcoin was released by
Nakamoto in early 2009, and the domain name bitcoin.org was registered in 2008.

The unit of account in the Bitcoin system is the bitcoin (BTC) with smaller
amounts represented by millibitcoins (0.001 BTC), and the smallest amount is the
satoshi (0.00000001 BTC).

13.10 Internet of Money and Bitcoin 255

13.11 Review Questions

1. Describe the development of the Internet.
2. Describe the development of the World Wide Web and its key

constituents.
3. Describe the applications of the World Wide Web.
4. Describe the key constituents of an electronic commerce site.
5. Describe a successful dot-com company that you are familiar with. What

has made the company successful?
6. Describe a dot-com failure that you are familiar with. What caused the

company to fail?
7. Discuss the key components of a business model.
8. Discuss security in an e-commerce environment.

13.12 Summary

This chapter considered the evolution of the Internet from the early work on packet
switching and ARPANET, to the subsequent development of the TCP/IP network
protocol which is a transmission standard that deals with physical differences in
host computers, routers and networks.

TCP/IP is designed to transfer data over networks which support different packet
sizes and which may sometimes lose packets. TCP details how information is
broken into packets and re-assembled on delivery, whereas IP is focused on sending
the packet across the network.

The invention of the World Wide Web by Tim Berners-Lee was a revolutionary
milestone in computing. It transformed the Internet from mainly academic use to
commercial use, and it led to a global market of consumers and suppliers. Today,
the World Wide Web is an integral part of peoples’ lives.

The growth of the World Wide Web was exponential, and it led to the formation
of many ‘new economy’ businesses. These new companies conducted business over
the web as distinct from the traditional bricks and mortar companies. Some of these
new companies were very successful (e.g. Amazon) and remain in business. Others
were financial disasters due to poor business models, poor management and poor
implementation of the new technology.

The dot-com bubble was characterised by many public offerings of Internet
stock, where the value of these stocks reached astronomical levels. Reality returned
to the stock market when the bubble burst and the market crashed in 2000. Finally,
we discussed the Internet of Things and the Internet of Money.

256 13 The Internet and World Wide Web

Chapter 14
The Smartphone and Social Media

Key Topics

PDA
Smartphone
Facebook
Tweets
Twitter

14.1 Introduction

Smartphones arose as the outcome of the marriage of the existing mobile phone
technology and PDA technology, and they contain advanced computing capabilities
that are attractive to users. Today, the smartphone is ubiquitous, with most people
in advanced countries owning one.

The introduction of the PDA by Apple and Palm played a role in the develop-
ment of the smartphone, and its introduction facilitated a major growth of social
networking. Users were now able to communicate news events or update their
personal information in real time. Social networking sites such as Facebook and
Twitter have transformed human communication.

Social media involves the use of computer technology for the creation and
exchange of user-generated content. These web-based technologies allow users to
discuss and modify user-created content, and it has led to major changes in com-
munication between individuals, communities and organisations.

Facebook helps users to keep in touch with friends and family, and it allows
them to share their opinions on what is happening around the world. Users may
upload photos and videos, express opinions and ideas, and exchange messages.
Facebook allows the user’s community of friends to be actively kept up to date on
important events that the user wishes to share.

Facebook has become an important communication channel for educated young
people to discuss their aspirations for the future, as well as their grievances with
society and the state. It has become an effective tool for protest and social
revolution.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_14

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_14&domain=pdf

Twitter has become an effective way to communicate the latest news and its
effectiveness as a communication tool increases as the number of a person’s fol-
lowers grows. It allows a person or organisation to determine what people are
saying about it, including their positive or negative experiences. This allows direct
interaction with the followers, and so it is a powerful way to engage the audience
and to make people feel heard.

14.2 Evolution of the Smartphone

A smartphone is more than a mobile device for making and receiving calls, and it is
essentially a touch-based computer on a phone, which comes with its own touch-
screen keyboard, operating system, Internet access and third-party applications. It
provides many other features such as a camera, maps, browser, email, calendar,
alarm clock and games.

IBM (in a joint venture with BellSouth) introduced one of the earliest precursors
of today’s smartphones in 1993. This was the IBM Simon, and it included voice
and data services. It acted as a mobile phone, a PDA and a fax machine, and it also
included a touchscreen that could be used to dial numbers. It could send faxes and
emails as well as making or receiving calls, and it included applications such as an
address book, calendar and calculator. However, it was an expensive and large
bulky device, and it was priced at $900.

John Sculley, the CEO of Apple, coined the term ‘Personal Digital Assistant’,
and Apple introduced the first PDA, the Newton, in 1993. The Apple Newton
included some nice features including limited handwriting recognition abilities.
Xerox PARC had created a prototype PDA, the Dynabook, in the 1970s, but they
did not commercialise it.

A PDA allows a large amount of data to be stored on a small handheld device.
Palm introduced an early PDA device, the Palm Pilot 1000, in 1996, and this was
used for mobile data. It played an important role in popularising the use of mobile
data by business users. The Palm Pilot started the PDA industry, and it included
128 Kb of memory and 16 MHz of processing power. It had better handwriting
recognition capabilities than the Newton and a graphical user interface (GUI).

The Nokia 9000 Communicator was released in 1996, and this phone combined
the features of a PDA and a mobile phone. It included a physical QWERTY
keyboard, and it provided features such as email, calendar, address book and cal-
culator. However, it did not provide the ability to browse the web, and a colour
display was introduced in the Nokia 9120 in 1998.

Qualcomm introduced its pdQ smartphone in 1999, and this phone combined a
Palm PDA with Internet connectivity capabilities. Research in motion (RIM)
released its first Blackberry devices in 1999, and these provided secure email
communication into a single inbox. Samsung’s first smartphone was the Samsung
SPH-I300, which was released in 2001, and this Palm-powered smartphone is a
distant ancestor of today’s smartphones. Samsung introduced its SGH i607

258 14 The Smartphone and Social Media

smartphone in 2006, and this Window’s powered phone was inspired by Research
in Motion’s Blackberry phone.

Smartphone technology continued to evolve through the early 2000s, and Apple
introduced its revolutionary iPhone in 2007. This Internet-based multimedia
smartphone included a touchscreen, and features such as a video camera, email,
web browsing, text messaging and voice. The iPhone had a 3.5 inch 480 � 320
touchscreen, a QWERTY touchscreen keyboard and 4 GB of storage. Apple
developed its own operating system, iOS, for the iPhone.

Google introduced its open-source Android operating system in late 2007, and
the first Android phone was introduced in late 2008. Android is now the dominant
operating system for smartphones and tablets, with iOS used on Apple’s products.
The Samsung Instinct was released in 2008, but it was based on an operating
system developed by Samsung from various Java components. Although its
touchscreen operating system was not in the same league as Apple’s iOS, it became
a competitor to Apple’s iPhone.

Apple’s iPhone 4 (Fig. 14.1) was introduced in 2010, and this powerful
smartphone has a 3.5 in. 960 � 640 screen and a 5-megapixel camera. The
Samsung Galaxy S smartphone was launched in 2010, and this touchscreen-enabled
Android smartphone became extremely popular. The Samsung Galaxy S series of
smartphones have been very successful and have become a major competitor to
Apple’s iPhone.

Apple released the iPad in 2010, which is a large screen tablet-like device that
uses a touchscreen operating system. Samsung is a major competitor to Apple in the
tablet market.

14.3 The Facebook Revolution

Facebook is the leading social networking site (SNS) in the world, and its mission is
to make the world more open and connected. It helps users to keep in touch with
friends and family, and it allows them to share their opinions on what is happening
around the world. Users may upload photos and videos, express opinions and ideas,

Fig. 14.1 Apple iPhone 4

14.2 Evolution of the Smartphone 259

and exchange messages. Facebook is very popular with advertisers as it allows
them to easily reach a large target audience.

Mark Zuckerberg (Fig. 14.2) founded the company in 2004 while he was a
student studying psychology at Harvard University. Zuckerberg was interested in
programming, and he had already developed several social networking websites for
his fellow students including Facemash which could be used to rate the attrac-
tiveness of a person, and Coursematch which allowed students to view people
taking their degree.

Zuckerberg launched ‘The Facebook’ (thefacebook.com) at Harvard in February
2004, and over a thousand Harvard students had registered on the site within the
first 24 h. Over half of the Harvard student population had a profile on Facebook
within the first month. The membership of the site was initially restricted to students
at Harvard, then to students at the other universities in Boston, and then to students
at the other universities in the United States. Its membership was extended to
international universities from 2005.

The use of Facebook was extended beyond universities to anyone with an email
address from 2006, and the number of registered users began to increase expo-
nentially. The number of registered users reached 100 million in 2008, 500 million
in 2010, it exceeded 1 billion in 2012 and reached 2 billion in 2017. It is now one of
the most popular websites in the world.

Facebook’s business model is quite distinct from that of a traditional business in
that it does not manufacture or sell any products. Instead, it earns its revenue mainly
from advertisements, and its business model is based on advertisement revenue, with
advertisements targeted to its over 2 billion users based on their specific interests.
Facebook is essentially selling its users to advertisers (i.e. the users are the product).
The users really do all the work, and Facebook collects data about them (e.g. age,
gender, location, education, work history and interests) and classifies and categories

Fig. 14.2 Mark Zuckerberg

260 14 The Smartphone and Social Media

them, so that it may target advertisements that will potentially be of interest to them.
This ensures that the advertisements are targeted to the right audience.

Social media have become important communication channels for educated
young people to discuss their aspirations for the future, as well as their grievances
with society and the state. The effectiveness of Facebook as a tool for protests and
revolution is evident in the relatively short protests that culminated in the resig-
nation of President Hosni Mubarak of Egypt in 2011.

Egypt has a young population with roughly 60% of the population under the age
of 30, and the country has faced many challenges since independence such as
improving education and literacy for its young population, as well as finding jobs
for its citizens.

Facebook provided a platform for Egyptian youth to discuss issues such as
unemployment, low wages, police brutality and corruption. Young Egyptians set up
groups on Facebook to discuss specific issues (e.g. a group that aimed to provide
solidarity with striking workers was set up). Further momentum for revolution
followed the beating and killing of Khalid Mohammed Said, as photos of his
disfigured body were posted over the Internet and went viral. An influential
Facebook group called ‘We are All Khalid Said’ was set up, and the killing pro-
vided a tangible focus for solidarity among young Egyptians.

The protests lasted for 18 days and it led to hundreds of thousands of young
Egyptians taking to the streets and gathering in Tahrir Square in Cairo. They
demanded an end to police brutality as well as the end of the 30-year reign of
President Hosni Mubarak. The authorities reacted swiftly in closing the Internet in
Egypt, but this act of censorship failed to stop the demonstrations and protests.
Social media played an important role in mobilising protests, and in influencing the
outcome of the revolution.

14.4 The Tweet

Twitter is a social communication tool that allows people to broadcast short mes-
sages. It is often described as the ‘SMS of the Internet’, and Twitter is an online
social media and micro-blogging site that allows its users to send and receive short
140-character messages called ‘tweets’. The restriction to 140 characters is to allow
Twitter to be used on non-smartphone mobile devices.1 Twitter has over 300
million active users, and it is one of the most visited websites in the world. Users
may access Twitter through its website interface, a mobile device app or SMS.

Jack Dorsey (Fig. 14.3) and others founded the company in 2006. Dorsey
introduced the idea of an individual using an SMS service to communicate with a
small group while he was still an undergraduate student at New York University.
The word ‘twitter’ was the chosen name for this new service, and its definition as
‘a short burst of information’ and ‘chirps from birds’ was highly appropriate.

1Twitter plans to increase the character limit of the tweet to 280 characters.

14.3 The Facebook Revolution 261

Twitter messages are often about friends telling one another about their day,
what they are doing, where they are, whey they are thinking and doing, and Twitter
has transformed the world of media, politics and business. It is possible to include
links to web pages and other media as a tweet. News such as natural disasters,
sports results and so on are often reported first by Twitter. The site has impacted
political communication in a major way, as it allows politicians and their followers
to debate and exchange political opinions. It allows celebrities to engage and stay in
contact with their fans, and it provides a new way for businesses to advertise its
brands to its target audience.

A Twitter user may select which other people that they wish to follow, and when
you follow someone their tweets show up in a list known as your Twitter stream.
Similarly, anyone that chooses to follow you will see your tweets in their stream.

A hashtag is an easy way to find all the tweets about a topic of interest, and it
may be used even if you are not following the people who are tweeting. It also
allows you to contribute to the topic that is of interest, and a hashtag consists of a
short word or acronym preceded by the hash sign (#). Conferences, hot topics and
so on often have a hashtag.

A word or topic that is tagged at a greater rate than other hashtags is said to be a
trending topic, and a trending topic is often the result of an event that prompts
people to discuss the topic. Trending may also result from the deliberate action of
certain groups (e.g. in the entertainment industry) to raise the profile of a musician
or celebrity and to market their work.

Twitter has evolved to become an effective way to communicate the latest news,
and its effectiveness as a communication tool for an organisation increases as the
number of its followers grows. An organisation may determine what people are
saying about it, as well as their positive or negative experience in interacting with it.
This allows the organisation to directly interact with its followers, which is a
powerful way to engage with its audience and to make people feel heard. It allows

Fig. 14.3 Jack Dorsey at the
2012 time 100 Gala

262 14 The Smartphone and Social Media

the organisation to respond to any negative feedback and to deal with such feedback
sensitively and appropriately.

The first version of Twitter was introduced in mid-2006, and it took the company
some time to determine exactly what type of entity it was. There was nothing quite
like it in existence, and initially it was considered a micro-blogging and social
media site. Today, it is viewed as an information network rather than just a social
media site.

Twitter has experienced rapid growth from 400,000 tweets posted per quarter in
2007, to 100 million per quarter in 2008, to 65 million tweets per day from 2010, to
140 million tweets per day in 2011 and to 500 million tweets per day in 2016.
Twitter’s usage spikes during important events such as major sporting events,
natural disasters, the death of a celebrity and so on. For such events, there may be
over 100,000 tweets per second.

Twitter’s main source of revenue is advertisements through ‘promoted tweets’
that appear in a user’s timeline (Twitter stream). The first promoted tweets appeared
from late 2011, and the use of a tweet for advertisement was ingenious. It helped to
make the advertisement feel like part of Twitter, and it meant that an advertisement
could go anywhere that a tweet could go. Advertisers are only charged when the
user follows the links or re-tweets the original advertisements. Further, the use of
tweets for advertisement meant that the transition to mobile was easy, and today
about 80% of Twitter use is on mobile devices.

Twitter has recently embarked on a strategy that goes beyond these advertise-
ments to sell products directly (including to people who do not use Twitter). Twitter
also earns revenue from a data licensing arrangement where it sells its information
to companies who use this information to analyse consumer trends. Twitter analyses
what users tweet to understand their intent. For more detailed information on
Twitter, see (Schaefer 2014).

14.5 Social Media and Fake News

Fake news is the systematic spreading of misleading or false information in tra-
ditional print or online social media, with the intention of misleading or damaging
another person or institution. It can negatively affect individuals in a country and
lead to violence or hate against minority ethnic groups. The popularity of social
media sites such as Facebook have contributed to the spread of fake news, and this
new phenomenon poses threats to twenty-first-century democracy. Fake news may
be spread by individuals, organisations and hostile states, and it consists of news
that has no basis in fact, but which is presented as being factually correct.

Fake news in the form of propaganda has been around for centuries, where such
news is generally published for political reasons. Military leaders have often
embellished their bravery and result in battle throughout history (e.g. Ramses II’s
description of the Battle of Kadesh in the thirteenth century B.C. paints a very
positive but factually inaccurate account of the battle).

14.4 The Tweet 263

Following the invention of the printing press in the fifteenth century, news
publications became popular, and over time fake news stories appeared in the print
media. Fake news played an important role in propaganda during the first and
second world wars, with radio broadcasts and printed material used to persuade the
public at home as well as discouraging enemy troops. Today, modern society is
highly dependent on accurate information in the print, radio, television and online
media. The effectiveness of fake news increases when the stories spread widely (as
often occurs in social media), and where users interact with and rely on these stories
rather than on traditional news media.

Fake news played a key role in the 2016 presidential election in the United
States, which led to the election of Donald Trump. Most of the fake election news
in the last 3 months of the campaign were anti-Clinton, but it is very difficult to
determine the extent to which this influenced the outcome of the election. Trump
and his supporters seem to use the word ‘fake news’ to refer to the mainstream
media that is opposed to him and his policies.

It is important when considering the accuracy of an article to consider the source
of the news (e.g. is it written by a reputable news organisation such as the BBC or
Reuters?), as well as considering the authenticity of its authors and the supporting
sources. Fake news is a deeply disturbing Internet trend that needs to be resolved if
technology is to serve humanity. Modern technology has provided many benefits to
modern society, but it needs to be managed effectively.

Fake news is a dangerous trend in society, as false news can spread easily due to
the speed and accessibility of modern technology. It allows individuals to be misled
and negatively influenced. Online social media sites such as Facebook and Twitter
have a responsibility to develop appropriate solutions to address this serious
problem.

14.6 Review Questions

1. What is a PDA?
2. What is a smartphone?
3. What is social media? Explain how sites such as Facebook and Twitter

have transformed human communication.
4. Explain how a company may use social media to market new products to

its customers.
5. Explain how social media has been used as a tool for protest and

revolution.
6. Why has Twitter been described as the SMS of the Internet?
7. Explain how social media has facilitated the spread of fake news.

264 14 The Smartphone and Social Media

14.7 Summary

A smartphone is essentially touch-based computer on a phone, which comes with
its own keyboard, operating system, Internet access and third-party applications. It
provides many other attractive features such as a camera, maps, calendar, alarm
clock and games. It arose from the marriage of mobile phone technology and PDA
technology.

The smartphone has facilitated a major growth of social networking, as users are
now able to communicate news or update their personal information in real time.
Social media involves the use of computer technology that allows the creation and
exchange of user-generated content. It has led to major changes in communication
between individuals, communities and organisations. Social networking sites such
as Facebook and Twitter have transformed human communication.

Facebook helps users to keep in touch with friends and family, and it allows
them to share their opinions on what is happening around the world. Users may
upload photos and videos, express opinions and ideas, and exchange messages. It
has become an important communication channel for young people to discuss their
aspirations for the future, and it has also become an effective tool for mobilising
protests and social revolution.

Twitter has become an effective way to communicate the latest news, and its
effectiveness as a communication tool increases as the number of its followers
grows. It allows a person or organisation to determine what people are saying about
it, as well as their positive or negative experiences.

14.7 Summary 265

Chapter 15
Legal Aspects of Computing

Key Topics

Intellectual property
Patents, Copyright and trademarks
Computer crime
Hackers and privacy
Freedom of speech and censorship
Cyberextortion
Software licenses
Bespoke software
Ecommerce law
Plagiarism/censorship

15.1 Introduction

Legal aspects of computing are concerned with the application of the legal system
to the computing field. This chapter explores several legal aspects of digital
information and software, as well as legal aspects of the Internet.

We discuss intellectual property law including patents, copyright, trademarks
and trade secrets. Patents provide legal protection for intellectual ideas; copyright
law protects the expression of an idea; and trademarks provide legal protection of
names or symbols.

We discuss the problem of hacking where a hacker is a person who uses his
computer skills to gain unauthorised access to a computer system. We distinguish
between ethical white hat hackers and malicious black hat hackers. We discuss
computer crime including the unauthorised access of computer resources, the theft
of personal information, cyberextortion and denial-of-service attacks.

A software license is a legal agreement between the copyright owner and the
licensee, which governs the use or distribution of software to the user. The two
most common categories of software licenses that may be granted under copyright
law are those for proprietary software and those for free open-source software.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_15

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_15&domain=pdf

We discuss the legal aspects of bespoke software development, and a legal
contract is prepared between the supplier and the customer. This will generally
include a statement of work that stipulates the deliverables to be produced, and it
may also include a service-level agreement and an Escrow agreement.

We discuss the nature of electronic commerce including transactions to place an
order, the acknowledgement of the order, the acceptance of the order and order
fulfilment.

15.2 Intellectual Property

Intellectual property law deals with the rules that apply in protecting inventions,
designs and artistic work, and in enforcing such rights. Intangible assets such as
software designs or inventions may be protected in a similar way to the protection
of private property, and the inventor is generally granted exclusive rights to the
invention for a defined period. This provides the inventor the incentive to develop
creative works that may benefit society, as it allows the owner of the invention to
profit from their work without fear of misappropriation by others.

The main forms of intellectual property are patents, copyright and trademarks.
Patents give inventors exclusive rights to their invention for a specified period
(possibly up to 20 years), or to profit from the invention by transferring the right to
another party. A patent protects innovative ideas and concepts, and the invention
itself must be novel and more than an obvious next step from existing technology.
The patent needs to be filed at the Patent Office, and the patent gives the inventor
protection against patent infringement in a specific country or region of the world.

A copyright applies to original writing, music, motion pictures and other original
intellectual and artistic expressions. It does not protect the underlying idea as such,
and what is protected is the expression of the idea. Copyrights are exclusive rights
to making copies of the expression, where the ways of expressing ideas is copy-
rightable. Computer software source code is protected by copyright law. The term
‘fair use’ refers to the permitted limited use of copyrightable material without
acquiring permission from the copyright owner.

A trademark protects names or symbols that are used to identify goods or
services, and their purpose is to avoid confusion and to help customers to distin-
guish one brand from another.

A trade secret is information that provides competitive advantage over others,
and it is of value only if it is kept secret. It applies in the computer sector where
programs may use algorithms that are unknown to others.1

1It is not illegal to use reverse engineering to try to discover the trade secret.

268 15 Legal Aspects of Computing

15.2.1 Patent Law

Patents are a part of intellectual property and they protect innovative ideas and
concepts. A patent gives the inventor protection against infringement, and the
inventor needs to file the patent at the Patent Office. The patent needs to be pre-
cisely described and to be successfully accepted the idea or invention must be novel
(and more than an obvious next step from the existing technology). There needs to
be a good business case for the patent (i.e. the idea must be such that competitors
will need to use the invention and are unable to bypass the invention), and once the
patent has been described at the right level of detail by the inventor, there will be a
business decision on whether to file the patent at the Patent Office or not.2

The prosecution of the patent at the Patent Office will be done by a patent
attorney, and it will require a detailed search to ensure that there is no existing prior
art that would invalidate the patent application. Finally, the Patent Office grants (or
rejects) the patent, and the inventor may then earn a royalty fee from the invention
for a defined period (based upon its use).

A patent should have an informative title as well as a concise summary of the
invention. It needs to provide a description of the current state-of-the-art as well as a
technical description of the invention. It needs to highlight the applications and
advantages of invention, and drawings should be included. It needs to employ clear
wording and a glossary may be required. It is essential that the invention is novel
and more than an obvious next step, and more than a transpose of existing tech-
nology. It needs a good business case, and it is desirable that competitors are unable
to bypass the invention (as otherwise competitors will be able to avoid the payment
of a license fee for its use).

The status of a patent application may be unassessed (if it has not been subject to
a business review), dropped (the business review decides that it should not proceed
any further), filed (an application has been made to the patent office), prosecuted
and granted (the patent office has awarded the patent) and defensive publication
(it has been decided not to file an application at the patent office, but to publish an
article on the invention placing the invention in the public domain, thereby pre-
venting a competitor from lodging a patent application).

15.2.2 Copyright Law

Copyrights apply to original writing and to original intellectual and artistic
expressions, and it protects the expression of the idea rather than facts or the idea
itself. Copyright law protects literary, musical and artistic works such as poetry,

2The decision may be to put the invention in the public domain with a defensive publication
thereby preventing competitors from filing a patent for the invention.

15.2 Intellectual Property 269

songs, movies and computer software. It provides exclusive rights to making copies
of the expression (subject to copyright law and fair use), where the ways of
expressing ideas is copyrightable.

A copyright gives the copyright owner rights to exclude others from using or
copying the finished work, and most copyrights are generally valid for the creator’s
lifetime plus 70 years (the exact period depends on the jurisdiction as copyright
laws vary between countries).

The term ‘fair use’ refers to the permitted limited use of copyrighted material
without acquiring permission from the copyright owner. There are several factors
that need to be considered before deciding whether fair use may be applied such as
the purpose of use (e.g. non-profit educational use), the amount used (e.g. it is
generally valid to use a small portion of the work for criticism or for education
purposes), the amount used as a proportion of the whole of the copyrighted work
and the effect of use on the market or value of the copyrighted work. The defendant
bears the burden of proving fair use in any litigation on copyright infringement.

Computer software source code was granted protection by copyright law from
the mid-1970s, which means that the reproduction of the computer software created
by software developers and software companies is protected. The copyright grants
the author the right to exclude others from making copies, and the owners of the
copies have the right to make additional copies (for archival purposes) without the
authorisation of the copyright owner. Further, owners of copies have the right to sell
their copies.

This has led the software sector to move towards licensing their software rather
than selling it. There is some software code that is freely available, and this includes
software created by the free software movement (which began in the mid-1980s),
the open-source initiative (which began in the late 1990s as a move that wished to
highlight the benefits of freely available source code) or software that is in the
public domain and that is therefore not subject to copyright. Open-source software
(OSS) is software that is freely available under an open-source license to study,
change and distribute to anyone for any purpose.

15.2.3 Trademarks

Trademarks protect names or symbols that are used to identify goods or services,
and help customers to distinguish one brand from another. Trademark rights come
from actual use, and a trademark does not expire after a fixed period provided it
continues to be used. Brand names, slogans and logos are examples.

The registration of a trademark is not mandatory as rights to a mark may be
granted based on its use. A registered trademark is indicated by®, whereas an
unregistered trademark is indicated by TM for goods and SM for services.

270 15 Legal Aspects of Computing

15.3 Hacking and Computer Security

A hacker is a person who uses his (or her) computer skills to gain unauthorised
access to computer files or networks. A hacker may enjoy experimenting with
computer technology (the original meaning of the term), but some hackers enjoy
breaking into systems and causing damage (the modern meaning of the word).
Ethical (white hat) hackers are former hackers who play an important role in the
security industry in testing network security, and in helping to create secure
products and services. Malicious (black hat) hackers (also called crackers) are
generally motivated by personal gain, and they exploit security and system vul-
nerabilities to steal, exploit or sell data.

Many computer systems in use today have vulnerabilities that may be exploited
by a determined hacker to gain unauthorised entry to the system, and access to
unauthorised information. It is vital that best practice in software and system
engineering is employed to develop safe and secure systems, and that known
vulnerabilities in system security are addressed promptly by updates to the system
software. Further, it is essential to educate staff on security, and to define (and
follow) the appropriate procedures to prevent security breaches.

The early hackers were mainly young students (without malicious intent) who
were exploring the university computer systems (such as the students at
Massachusetts Institute of Technology in the late 1950s who were interested in
exploring the IBM 704 computer), and they would enter areas of the system without
authorisation and gain access to privileged resources. They were motivated by
knowledge and wished to have a deeper understanding of the systems that they had
access to. The idea of a hacker ethic was formulated in a book by Steven Levy in
the mid-1980s (Levy 1984), and he outlined several key ethical principles including
free access to computers and information and improvement to quality of life.
Specifically, he defined six key tenets:

– Access to computers should be unlimited and total.
– All information should be free.
– Mistrust authority.
– Hackers should be judged by their hacking and not by bogus criteria such as

race and religion.
– Art and beauty can be created on a computer.
– Computers can change your life for the better.

The free software movement arose in the early 1980s from followers of the
hacker ethic, with Richard Stallman (its founder) often referred to as ‘the last true
hacker’ (O’Regan 2015). Today, ethical hackers need to obtain permission prior to
acting, as their actions may potentially cause major disruption to an organisation.
Responsible (white hat) hackers can provide useful information on security vul-
nerabilities and may assist in improving computer security.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks, which are common today since most computers are

15.3 Hacking and Computer Security 271

networked and connected to the Internet. There are various security threats in any
networked system including threats to the confidentiality and integrity of the system
and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are
unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted
data is unreadable to the attacker. There may be controls that detect and repel
attacks, and these controls are used to monitor the system and to take appropriate
action to shut down parts of the system or restrict access in the event of an attack.
There may be controls that limit exposure (e.g. insurance policies and automated
backup strategies) that allow recovery from the problems introduced.

The introduction of the Internet in the early 1990s has transformed the world of
computing, and it later led to an explosive growth in attacks on computers and
systems, as hackers and malicious software sought to exploit known security vul-
nerabilities. It is therefore essential to develop secure systems that can deal with and
recover from such external attacks.

Hackers will often attempt to steal confidential data and to disrupt the services
being offered by a system. Security engineering is concerned with the development
of systems that can prevent such malicious attacks and recover from them. It has
become an important part of software and system engineering, and software
developers need to be aware of the threats facing a system and develop solutions to
manage them.

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorised access to the system. There is a
need to conduct a risk assessment of the security threats facing a system early in the
software development process, and this will lead to several security requirements
for the system.

The system needs to be designed for security, as it is difficult to add security after
the system has been implemented. Security loopholes may be introduced in the
development of the system, and so care needs to be taken to prevent these as well as
preventing hackers from exploiting security vulnerabilities.

The choice of architecture and how the system is organised is fundamental to the
security of the system, and different types of systems will require different technical
solutions to provide an acceptable level of security to its users. The following
guidelines for designing secure systems are described in (Sommerville 2010).

– Security decisions should be based on the security policy.
– A security-critical system should fail securely.
– A secure system should be designed for recoverability.
– A balance is needed between security and usability.
– A single point of failure should be avoided.
– A log of user actions should be maintained.
– Redundancy and diversity should be employed.
– Organisation of information in system into compartments.

272 15 Legal Aspects of Computing

The unauthorised access to the system and the theft of confidential data and
disruption of its services is unlawful, and we discuss computer crime in the
next section.

15.4 Computer Crime

It is common in the major urban areas to encounter dangers in some streets or
neighbourhoods, and such dangers need to be managed. Similarly, the Internet has
dangers with hackers, scammers and web predators lurking in the shadows.
A hacker may be accessing a computer resource without authorisation with the
intention of committing an unlawful act. The hacker’s activities may be limited to
eavesdropping (listening to a conversation), or it may be an active man-in-the-
middle attack, where the hacker may possibly alter the conversation between two
parties.

One of the earliest Internet attacks was back in 1988 when a graduate student
from Carnegie Mellon University released a program on the Internet (an Internet
Worm) that exploited security vulnerability in the mail software to automatically
replicate itself locally and on remote machines. It affected lots of machines and
effectively shut down the Internet for 1–2 days.

Today, more and more individuals and companies are online, and networking
systems and computers have become quite complex. There has been a major growth
in attacks on businesses and individuals, and so it is essential to consider computer
and network security. The Internet was developed based on trust with security
features added as a response to different types of attacks.

There are several threats associated with network connectivity such as unau-
thorised access (a break-in by an unauthorised person), disclosure of sensitive
information to people who should not have access to the information and denial of
service (DoS), where there is a degradation of service that makes it impossible to
access the website and perform productive work.

There may be attacks that lead to defacement of the websites, bank fraud,
stealing of credit card numbers, hoax (scam) letters, phishing emails that appear to
come from legitimate parties but contain links to a site that is different from the one
that the user expects to go to, intercepting of packets and password sniffing.
Phishing is an attempt to obtain sensitive information such as usernames, pass-
words and credit card details with the intention of committing fraud.

A computer virus is a self-replicating computer program that is installed on the
user’s computer without consent. It is a malicious software program that when
executed replicates itself and infects other computer programs by modifying them.
A virus often performs some type of harmful activity on the infected computers
such as accessing private information, spamming email contacts or corrupting data.
It is not a crime per se to write a computer virus or malicious software. However, if
that software or other malware spreads to other computers, then it could be con-
sidered a crime.

15.3 Hacking and Computer Security 273

Cyberextortion is a crime that involves an attack or threat of an attack,
accompanied by a demand for money to stop the attack. They are often initiated
through malware in an email attachment. These may include denial-of-service
attacks or ransomware attacks that encrypt the victim’s data. The victim is then
offered the private key to resolve the encryption in return for payment. Companies
need to manage the risks associated with cyberextortion and to ensure that end users
are properly educated on malware and phishing.

Another form of computer crime is Internet fraud where one party is intent on
deceiving another. Among these are hoax email scams, which are designed to
deceive and fraud the email recipient. These may include the Nigeria 419 scams,
where the email recipient is offered a share of a large amount of money trapped in
their country, if the recipient will help in getting the money out of the country. The
recipient may be asked for their bank account details to help them to transfer the
money (this information will later be used by them to steal funds), or the request
may be to pay fees or taxes to release payment with further fees requested. Of
course, the money will never arrive (if an email looks like it really is too good to be
true then it has a high probability of being a scam).

15.5 Software Licensing

A software license is a legal agreement between the copyright owner and the
licensee, which governs the use or distribution of software to the user (licensee).
Computer software code is protected under copyright law in most countries, and a
typical software license grants the user permission to make one or more copies of
the software, where the copyright owner retains exclusive rights to the software
under copyright law.

The two most common categories of software licenses that may be granted under
copyright law are those for proprietary software and those for free open-source
software (FOSS). The rights granted to the licensee are quite different for each of
these categories, where the user has the right to copy, modify and distribute (under
the same license) software that has been supplied under an open-source license,
whereas proprietary software typically does not grant these rights to the user.

The licensing of proprietary software typically gives the owner of a copy of the
software the right to use it (including the rights to make copies for archival pur-
poses). The software may be accompanied with an end-user license agreement
(EULA) that may place further restrictions on the rights of the user. There may be
restrictions on the ownership of the copies made, and on the number of installations
allowed under the term of the distribution. The ownership of the copy of the
software often remains with the copyright owner, and the end user must accept the
license agreement to use the software.

The most common licensing model is per single user, and the customer may
purchase a certain number of licenses over a fixed period. Another model employed
is the license per server model (for a site license), or a license per dongle model,

274 15 Legal Aspects of Computing

which allows the owner of the dongle use the software on any computer. A license
may be perpetual (it lasts forever) or it may be for a fixed period (typically 1 year).

The software license often includes maintenance for a period (typically 1 year),
and the maintenance agreement generally includes updates to the software during
that time and it may also cover a limited amount of technical support. The two
parties may sign a service-level agreement (SLA), which stipulates the service that
will be provided by the service provider. This will generally include timelines for
the resolution of serious problems, as well as financial penalties that will be
applicable where the customer service performance does not meet the levels defined
in the SLA.

Free and open-source licenses are often divided into two categories depending
on the rights to be granted in distribution of the modified software. The first
category aims to give users unlimited freedom to use, study and modify the soft-
ware, and if the user adheres to the terms of an open-source license such as GNU or
General Public License (GPL), the freedom to distribute the software and any
changes made to it. The second category of open-source licenses gives the user
permission to use, study and modify the software, but not the right to distribute it
freely under an open-source license (it could be distributed as part of a proprietary
software license).

15.5.1 Software Licensing and Failure

Software license agreements generally include limited warranties on the quality of
the licensed software, and they often provide limited remedies to the customer when
the software is defective. The software vendor typically promises that the software
will conform to the software documentation for a specified period (the warranty
period), and the software warranty generally excludes problems that are not caused
by the software or are beyond the software vendor’s control.

The customers are generally provided with limited remedies in the case of
defective software (e.g. the replacement of the software with a corrected version, or
termination of the user’s right to use the defective software and a refund of the
license fee). The payment of compensation for loss or damage is generally excluded
in the software licensing agreement.

Software licensing agreements are generally accompanied by a comprehensive
disclaimer that protects the software vendor from any liability (however remote) that
might result from the use of the software. It may include statements such as ‘the
software is provided“as is”, and that the customers use the software at their own risk’.

A limited warranty and disclaimer limits the customer’s rights and remedies if
the licensed software is defective, and so the customer may need to consider how
best to manage the associated risks.

15.5 Software Licensing 275

15.6 Bespoke Software Development

Bespoke software (or custom software) is software that is developed for a specific
customer or organisation, and it needs to satisfy the defined customer requirements.
The organisation will need to be rigorous in its selection of the appropriate supplier,
as it is essential that the supplier selected has the capability of delivering
high-quality and reliable software on time and on budget.

This means that the capability of the supplier is clearly understood and the
associated risks are known prior to selection. The selection is based on objective
criteria such as cost, the approach, the ability of the supplier to deliver the required
solution, the supplier capability, and while cost is an important criterion, it is just
one among several other important factors.

Once the selection of the supplier is finalised a legal agreement is drawn up
between the contractor and supplier, which states the terms and condition of the
contract, as well as the statement of work. The statement of work (SOW) details the
work to be carried out, the deliverables to be produced, when they will be produced,
the personnel involved their roles and responsibilities, any training to be provided
and the standards to be followed. The agreement will need to be signed by both
parties and may (depending on the type of agreement) include:

– Legal contract,
– Statement of work,
– Implementation plan,
– Training plan,
– User guides and manuals,
– Customer support to be provided,
– Service-level agreement,
– Escrow agreement and
– Warranty period.

A service-level agreement (SLA) is an agreement between the customer and
service provider which specifies the service that the customer will receive as well as
the response time to customer issues and problems. It will also detail the penalties
should the service performance fall below the defined levels.

An Escrow agreement is an agreement made between two parties where an
independent trusted third party acts as an intermediary between both parties. The
intermediary receives money from one party and sends it to the other party when
contractual obligations are satisfied. Under an Escrow agreement, the trusted third
party may also hold documents and source code.

276 15 Legal Aspects of Computing

15.7 Dark Side of the Internet

The Internet has a dark and secret side where harmless or sinister activities may be
conducted. These include online services such as online pornography and adult chat
rooms, escort sites and so on. There are more sinister sites where a consenting adult
unintentionally downloads malicious software from an adult chat room which
infects the computer and allows someone to hack into the machine’s camera, and
the adult is captured on camera performing compromising acts and is then contacted
by the gang or fraudster with demands for a payout (sextortion) to prevent the
images and video being made public.

Other unsavoury activities include revenge porn where one of the parties to the
relationship releases private images/videos of their former partner as an act of
revenge at the end of the relationship. Sexting is where the sender sends privates
images (of himself or herself) to the recipient, and the recipient makes the images
available publicly (betrayal of trust and the naivety of the sender).

Other distasteful activities include cyberbullying where a child or young adult is
bullied online by his or her peers, and sometimes there are devastating conse-
quences. The Internet is a great resource but care is required to avoid being a victim
of its dark side, and this requires education on its dangers as well as on its many
positive aspects.

15.8 Ecommerce and the Law

The invention of the World Wide Web led to a revolution in business with com-
merce conducted online over the Internet, and today ecommerce sites are ubiquitous
with business marketing and selling their products to customers around the world.
Ecommerce uses several technologies such as the Internet and World Wide Web,
electronic funds transfer, supply chain management and inventory management
systems.

The ecommerce website needs to be carefully designed so that users can easily
navigate its catalogue of products and make an informed decision on which pro-
duces to purchase. Further, the website needs to provide information about the
business, its address and contact details, its products and their prices, the shipping
costs and so on.

The user may select several products/services to purchase and may place an
electronic order (the website will include an order/buy button). An acknowledge-
ment email is sent shortly after placing the order (this is confirming that an order
has been received but it is not confirming acceptance of the order). A separate email
is sent confirming acceptance of the order, and this is confirmation of the electronic
transaction between both parties (a contract now exists between both parties). The
terms and conditions of purchase are specified either on the website or included in
the email confirming the acceptance of the order. This will include information on

15.7 Dark Side of the Internet 277

the delivery period as well as the consumer’s cancellation rights (during the cooling
off period). Further, the terms of purchase must be fair and reasonable and written
clearly, with unfair terms legally unenforceable.

The law of tort refers to a civil wrong where one party (the defendant) is held
accountable for their actions (by the plaintiff). There are several actions that the
defendant could be held accountable, e.g. negligence, trespass, misstatement, pro-
duct liability, defamation and so on. For example, the defendant may be accused of
negligence and a breach of his duty of care, where damage that was reasonably
foreseeable was caused by negligence.

The Internet is global with business conducted internationally over the World
Wide Web. However, a business is subject to the ecommerce laws of the country in
which it is doing business, i.e. the law is National, and so a business needs to be
familiar with and follow the specifics of the ecommerce law in the particular
jurisdiction in which it is doing business. Ecommerce law is not radically different
from standard commerce law, and in general, it follows the same basic principles.
For example, false advertising and copyright infringement are not allowed, and if an
item cannot be sold in a physical shop in a given country, then it cannot legally be
sold online in that country.

Privacy is one area where ecommerce law differs from commerce law, since an
online business collects a lot of information about the customer (financial and
non-financial). It is essential that the online business has an appropriate privacy
policy and that it protects the privacy of the customer’s information. Data pro-
tection law refers to laws that define the ways in which information about living
people may be legally used, with the goal of protecting people from the misuse or
abuse of their personal information.

15.9 Free Speech and Censorship

Free speech and censorship are the opposites of one another, with censorship
viewed as the suppression of free speech. Censorship is concerned with suppressing
or removing anything deemed objectionable (e.g. obscene or indecent material). For
example, television networks often bleep out swear words that are potentially
offensive to their audience. Several countries around the world control access to
specific websites, and thereby restrict the information that their citizens may
receive. For example, the Great Firewall of China (GFW) regulates the use of the
Internet in China, and it blocks access to selected foreign websites (e.g. Google and
Facebook). State censorship is often concerned with controlling the population and
preventing free expression that could lead to an uprising against the state.

Freedom of speech (or expression) is concerned with the right to express one’s
opinions and ideas without fear of censorship or government sanction. It is
recognised as a right under Article 19 of the UN Declaration of Human rights, but it
is a right that is subject to special duties and responsibilities (i.e. freedom of speech
is not an absolute right, and is subject to limitations such as libel, slander,

278 15 Legal Aspects of Computing

obscenity, defamation, hate speech, public order and incitement to violence).
Freedom of speech is a key tenet of western democracies, but it also places
responsibilities on the citizens.

Social media sites such as Facebook are testing the legal boundaries of free
speech, and the question is how far a person’s public speech may inflame its
audience before it may be restrained. The use of Facebook plays an important role
as a tool for social protest and revolution (see Chap. 14), and it played an important
role in the 2011 revolution that led to the overthrow of President Hosni Mubarak of
Egypt.

15.10 Computer Privacy in the Workplace

The right of an employee to privacy in the workplace has become more contro-
versial in the digital age. Employers now have technology to monitor the use of
computer resources in the workplace and may monitor communications such as the
Internet and electronic mail. Employees may naturally feel that such monitoring is a
violation of their privacy, but employee activities when using an employer’s
computer systems are generally not protected by privacy laws.

That is, emails are company property, and employers generally have the right to
monitor and view such emails to check for productivity, illegal use and so on.
Further, emails may be used as evidence in cases of proof of employee misconduct
or wrongdoing.

Further, employers have the right to track websites visited by their employees to
ensure that an employee is not spending an excessive amount of time at a specific
site. Employers have the right to block or limit the time that an employee may
spend online.

Employee has rights to privacy in the workplace but these need to be balanced
against the employer’s right to monitor its business operations. That is, while it is
reasonable for an employer to monitor email and Internet use to ensure that
employees do not abuse it and that the business is operating effectively, an
employee has reasonable rights of privacy if computer resources are used appro-
priately. And so, it is about balancing rights given that on the one hand, the
employer is paying the employee’s salary and has a reasonable expectation that
the employee does not abuse email and the Internet, and on the other hand the
employee has reasonable expectations of privacy provided that the computer
resources are used appropriately and not abused.

15.9 Free Speech and Censorship 279

15.11 Review Questions

1. What is intellectual property law?
2. Explain the difference between a patent, copyright and trademark.
3. What is computer crime?
4. Explain how software is licensed to users.
5. Explain cyberextortion.
6. Explain the legal aspects of bespoke software development.
7. Explain the difference between ethical and malicious hackers.
8. Discuss ecommerce law and standard commerce law.

15.12 Summary

Legal aspects of computing are concerned with the legal aspects of digital infor-
mation and software, as well as the legal aspects of the Internet. It deals with
Intellectual property law including patents, copyright, trademarks and trade secrets.

Computer crime includes the unauthorised access to computer resources, the
theft of personal information and denial-of-service attacks. A hacker uses his
computer skills to gain unauthorised access to a computer system. Computer crime
also includes Internet fraud, cyberextortion and viruses.

A software license is a legal agreement between the copyright owner and the
licensee, which governs the use or distribution of software to the user (licensee).
Computer software code is protected under copyright law, and the license grants the
user permission to make one or more copies of the software. Software license
agreements generally include limited warranties on the quality of the software and
provide limited remedies to the customer when the software is defective.

Bespoke software (or custom software) is software that is developed for a specific
customer or organisation, and needs to satisfy specific customer requirements. An
appropriate supplier is selected, and a legal agreement is drawn up, which states the
terms and condition of the contract, as well as the statement of work.

Ecommerce law is concerned with laws to regulate online electronic transactions
and to protect the rights of consumers. Freedom of speech and censorship are
opposite sides of the same coin, with censorship concerned with the suppression of
free speech.

280 15 Legal Aspects of Computing

Chapter 16
Ethics and Professional Responsibility

Key Topics

Ethics
Parnas on Professional Responsibility
ACM Code of Ethics and Professional Practice
BCS Code of Conduct
Licensing of Software Engineers
Professional Conduct

16.1 Introduction

Ethics is a practical branch of philosophy that deals with moral questions such as
what is right or wrong, and how a person should behave in a given situation in a
complex world. Ethics explores what actions are right or wrong within a specific
context or within a certain society, and seeks to find satisfactory answers to moral
questions. The origin of the word ‘ethics’ is from the Greek word ἠhijό1, which
means habit or custom.

There are various schools of ethics such as the relativist position (as defined by
Protagoras), which argues that each person decides on what is right or wrong for
them; cultural relativism argues that the particular society determines what is right
or wrong based upon its cultural values; deontological ethics (as defined by Kant)
argues that there are moral laws to guide people in deciding what is right or wrong;
and utilitarianism argues that an action is right if its overall effect is to produce
more happiness than unhappiness in society.

Professional ethics are a code of conduct that governs how members of a pro-
fession deal with each other and with third parties. A professional code of ethics
expresses ideals of human behaviour, and it defines the fundamental principles of
the organisation and is an indication of its professionalism. Several organisations
such as the Association Computing Machinery (ACM) and British Computer
Society (BCS) have developed a code of conduct for their members, and violations
of the code by members are taken seriously and are subject to investigations and
disciplinary procedures.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_16

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_16&domain=pdf

Business ethics define the core values of the business and are used to guide
employee behaviour. Should an employee accept gifts from a supplier to a company
as this could lead to a conflict of interest? A company may face ethical questions on
the use of technology. For example, should the use of a new technology be restricted
because people can use it for illegal or harmful actions as well as beneficial ones?

Consider mobile phone technology, which has transformed communication
between people, and thus is highly beneficial to society. What about mobile phones
with cameras? On the one hand, they provide useful functionality in combining a
phone and a camera. On the other hand, they may be employed to take indiscreet
photos without permission of others, which may then be placed on inappropriate
sites. In other words, how can citizens be protected from inappropriate use of such
technology?

16.2 Business Ethics

Business ethics (also called corporate ethics) is concerned with ethical principles and
moral problems that arise in a business environment. They refer to the core principles
and values of the organisation, and apply throughout the organisation. They guide
individual employees in carrying out their roles, and ethical issues include the rights
and duties between a company and its employees, customers and suppliers.

Many corporation and professional organisations have a written ‘code of ethics’
that defines the professional standards expected of all employees in the company.
All employees are expected to adhere to these values whenever they represent the
company. The human resource function in a company plays an important role in
promoting ethics, and in putting internal HR policies in place relating to the ethical
conduct of the employees, as well as addressing discrimination, sexual harassment
and ensuring that employees are treated appropriately (including cultural sensitiv-
ities in a multicultural business environment).

Companies are expected to behave ethically and not to exploit its workers. There
was a case of employee exploitation at the Foxconn plant (an Apple supplier of the
iPhone) in Shenzhen in China in 2006, where conditions at the plant were so
dreadful (long hours, low pay, unreasonable workload and cramped accommoda-
tion) that several employees committed suicide. The scandal also raised questions
on the extent to which a large corporation such as Apple should protect the safety
and well-being of the factory workers of its suppliers. Further, given the profits that
Apple makes from the iPhone, is it ethical for Apple to allow such workers to be
exploited?

Today, the area of corporate social responsibility (CSR) has become applicable
to the corporate world, and it requires the corporation to be an ethical and
responsible citizen in the communities in which it operates (even at a cost to its
profits). It is therefore reasonable to expect a responsible corporation to pay its fair

282 16 Ethics and Professional Responsibility

share of tax, and to refrain from using tax loopholes to avoid paying billions in
taxes on international sales. Today, environment ethics has become topical, and it is
concerned with the responsibility of business in protecting the environment in
which it operates. It is reasonable to expect a responsible corporation to make the
protection of the environment and sustainability part of its business practices.

Unethical business practices refer to those business actions that do not meet the
standard of acceptable business operations, and they give the company a bad
reputation. It may be that the entire business culture is corrupted or it may be result
of the unethical actions of an employee. It is important that such practices be
exposed, and this may place an employee in an ethical dilemma (i.e. the loyalty of
the employee to the employer versus what is the right thing to do such as exposing
the unethical practices).

Some accepted practices in the workplace might cause ethical concerns. For
example, in many companies it is normal for the employer to monitor email and
Internet use to ensure that employees do not abuse it, and so there may be grounds
for privacy concerns. On the one hand, the employer is paying the employee’s
salary and has a reasonable expectation that the employee does not abuse email and
the Internet. On the other hand, the employee has reasonable rights of privacy
provided computer resources are not abused.

The nature of privacy is relevant in the business models of several technology
companies. For example, Google specialises in Internet-based services and products,
and its many products include Google Search (the world’s largest search engine),
Gmail for email and Google Maps (a web mapping application that offers satellite
images and street views). Google’s products gather a lot of personal data and create
revealing profiles of everyone, which can then be used for commercial purposes.

A Google search leaves traces on both the computer and in records kept by
Google, which has raised privacy concerns as such information may be obtained by
a forensic examination of the computer, or in records obtained from Google or the
Internet Service Providers (ISP). Gmail automatically scans the contents of emails
to add context-sensitive advertisements to them and to filter spam, which raises
privacy concerns, as it means that all emails sent or received are scanned and read
by some computer. Google has argued that the automated scanning of emails is
done to enhance the user experience, as it provides customised search results,
tailored advertisements, and the prevention of spam and viruses. Google’ maps
provide location information which may be used for targeted advertisements.

16.3 What Is Computer Ethics?

Computer ethics is a set of principles that guide the behaviour of individuals when
using computer resources. Several ethical issues that may arise include intellectual
property rights, privacy concerns, as well as the impacts of computer technology on
wider society.

16.2 Business Ethics 283

The Computer Ethics Institute (CEI) is an American organisation that examines
ethical issues that arise in the information technology field. It published the
well-known ten commandments on computer ethics (Table 16.1) in the early 1990s
(Barquin 1992), which attempted to outline principles and standards of behaviour to
guide people in the ethical use of computers.

The first commandment says that it is unethical to use a computer to harm another
user (e.g. destroy their files or steal their personal data), or to write a program that on
execution does so. That is, activities such as spamming, phishing and cyberbullying
are unethical. The second commandment is related and may be interpreted that
malicious software and viruses that disrupt the functioning of computer systems are
unethical. The third commandment says that it is unethical (with some exceptions
such as dealing with cybercrime and international terrorism) to read another person’s
emails, files and personal data as this is an invasion of their privacy.

The fourth commandment argues that the theft or leaking of confidential elec-
tronic personal information is unethical (computer technology has made it easier to
steal personal information). The fifth commandment states that it is unethical to
spread false or incorrect information (e.g. fake news or misinformation spread via
email or social media). The sixth commandment states that it is unethical to obtain
illegal copies of copyrighted software, as software is considered an artistic or
literary work that is subject to copyright. All copies should be obtained legally.

The seventh commandment states that it is unethical to break into a computer
system with another user’s id and password (without their permission), or to gain
unauthorised access to the data on another computer by hacking into the computer
system. The eight commandment states that it is unethical to claim ownership of a
work that is not yours (e.g. of programs).

The ninth commandment states that it is important for companies and individuals
to think about the social impacts of the software that is being created and to create

Table 16.1 Ten commandments on computer ethics

No. Description

1. Thou shalt not use a computer to harm other people

2. Thou shalt not interfere with other people’s computer work

3. Thou shalt not snoop around in other people’s computer files

4. Thou shalt not use a computer to steal

5. Thou shalt not use a computer to bear false witness

6. Thou shalt not copy or use proprietary software for which you have not paid

7. Thou shalt not use other people’s computer resources without authorization or proper
compensation

8. Thou shalt not appropriate other people’s intellectual output

9. Thou shalt think about the social consequences of the program you are writing or the
system you are designing

10. Thou shalt always use a computer in ways that ensure consideration and respect for your
fellow humans

284 16 Ethics and Professional Responsibility

software only if it is beneficial to society (i.e. it is unethical to create malicious
software). The tenth commandment states that communication over computers and
the Internet should be courteous, as well as showing respect for others (e.g. no
abusive language or spreading false statements).

16.3.1 Ethics and Artificial Intelligence

Weizenbaum created the famous ELIZA program at MIT in 1966, and the program
interacted with a user sitting at an electric typewriter, in English, in the manner of a
Rogerian psychotherapist.1

The name ‘Eliza’2 was chosen because it could be taught to speak increasingly
well, as in Shaw’s Pygmalion. It was one of the earliest natural language processing
programs, and Weizenbaum gave an example of a conversation between Eliza and a
young woman in Weizenbaum (1966). Many users believed that Eliza had real
understanding, and they began to unburden themselves in long computer sessions.

The program operated by decomposing the user’s input into its constituent parts
of speech, and then typing them back at the user in a manner to continue with the
dialogue. The program provided very convincing human-like interaction, as may be
seen in the sample dialogue below:

User/Patient Men are all alike.
ELIZA In what way?
User/Patient They are always bugging us about something or other.
ELIZA Can you think of a specific example?
User/Patient Well, my boyfriend made me come here.
ELIZA Your boyfriend made you come here?
User/Patient He says I’m depressed much of the time.
ELIZA I am sorry to hear that you are depressed.
User/Patient It’s true, I am unhappy.
ELIZA Do you think that coming here will help you not to be unhappy?
User/Patient I need some help, that much seems certain.
ELIZA What would it mean to you if you got some help?
User/Patient Perhaps, I could learn to get along with my mother.
ELIZA Tell me more about your family.

Weizenbaum was shocked to discover that so many users were convinced that
the program had real understanding, and users spent hours sharing their personal
problems with the program. It led Weizenbaum to think about the ethics and
implications of the artificial intelligence field, and the ability of a relatively trivial

1Rogerian psychotherapy (person-centred therapy) was developed by Carl Rodgers in the 1940s.
2Eliza Doolittle was a working-class character in Shaw’s play Pygmalion. She is taught to speak
with an upper-class English accent.

16.3 What Is Computer Ethics? 285

program to deceive a naïve user to reveal personal information. He became a
leading critic of the AI field and an advocate for professional and social
responsibility.

His views on the ethics of AI are discussed in his book ‘Computer Power and
Human Reason’ (Weizenbaum 1976). He displays ambivalence towards computer
technology, and he argues that AI is a threat to human dignity, and that AI should
not replace humans in positions that require respect and care. He states that
machines lack empathy, and that if they replace humans in positions such as police
officers or judges, this would lead to alienation and a devaluation of the human
condition.

His ELIZA program demonstrated the threat that AI poses to privacy. It is con-
ceivable that an AI program may be developed in the future that is capable of
understanding speech and natural languages. Such a program could theoretically
eavesdrop on every phone conversation and email, and gather private information
on what is said and who is saying it. Such a program could be used by a state to
suppress dissent and to eliminate those who pose a threat.

16.3.2 Robots and Ethics

As more and more sophisticated machines and robots are created, it is, of course,
essential that intelligent machines behave ethically, and have a moral compass to
distinguish right from wrong. It remains an open question as to how to teach a robot
right from wrong, and in view of the recent progress that has been made in the AI
field, the time is approaching where machines will routinely make ethical decisions.

For example, it is reasonable to expect that driverless cars (self-driving vehicles)
will be common on the road in the next 10–20 years. A driverless car is a vehicle
that can sense its environment and navigate a route without human intervention.
Suppose a self-driving vehicle is travelling on a road and two children roll off a
grassy bank on to the road and there is no time for the vehicle to brake. However, if
the vehicle swerves to the left, it can avoid the children but hit an oncoming
motorbike. Which decision should the car make and how should it make such a
decision?

This is a variant of the trolley problem which is a famous thought experiment in
ethics. A train is rushing down a track out of control as its brakes have failed.
Disaster lies ahead as five people are tied to the track and will perish in the absence
of action. There is sufficient time to flick the points and divert the train down a
sidetrack where there is one man tied to the track. Is it ethical to divert the train to
do this? Most people would be inclined to take the view that this is the best (least
worst) possible outcome.

There is a controversial variant of the problem where the train is rushing towards
five people and you are standing on top of a footbridge overlooking the track next
to a man with a very bulky rucksack. The only way to save the five people is to
push the man to his doom, as his rucksack will block the train and save the five. Is it

286 16 Ethics and Professional Responsibility

ethical to deliberately kill or sacrifice another human being to save five others?
Most people would say no to this deliberate killing, but it would be valid in the
utilitarian school of ethics which seeks to maximise happiness in the world.

Even though the trolley problem is a thought experiment, it is conceivable that a
driverless car will face situations where a moral choice must be made (e.g. who to
harm or injure such as pedestrians, passengers or driver). Clearly, this raises the
importance of the type of ethics that are programmed into the car, and who is to
decide what ethics are programmed into a car?

Teaching ethics may involve programming in certain principles, and then the
machine learns from scenarios on how to apply the principles to new situations.
There is a need for care with machine learning as the machine may learn the wrong
lessons, or as its learning evolves it may not be possible to predict its behaviour in
the future. Further questions arise as to who is to be held accountable in the event of
a machine making incorrect or unethical decisions. For further information on the
feasibility of teaching ethics to robots, see the interesting BBC article ‘Can we
teach robots ethics?’ (BBC Magazine 2017).

16.4 Parnas on Professional Responsibility

Software engineering involves multi-person construction of multi-version pro-
grams. It requires the engineer to state precisely the requirements that the software
product is to satisfy and to produce designs that will meet these requirements. It
involves starting with a precise description of the problem to be solved, producing a
design and validating the correctness of the design, and finally, the implementation
and testing are performed.

Parnas is a strong advocate of a classical engineering approach, and he argues
that computer scientists need the right education to apply scientific and mathe-
matical principles in their work. Software engineers need education on specifica-
tion, design, turning designs into programs, software inspections and testing. The
education should enable the software engineer to produce well-structured programs
using module decomposition and information hiding.

Parnas argues that software engineers have individual responsibilities as pro-
fessionals.3 They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their own
decisions and actions,4 and have a responsibility to object to decisions that violate
professional standards.

3The concept of accountability for actions dates back thousands of years. The ancient Babylonians
employed a code of laws c. 1750 B.C. known as ‘The Hammarabi Code’. This included a law that
if a house collapsed and killed the owner then the builder of the house would be executed.
4However, it is unlikely that an individual programmer would be subject to litigation in the case of
a flaw in a program causing damage or loss of life. Most software products are accompanied by a
comprehensive disclaimer of responsibility for problems (rather than a guarantee of quality).

16.3 What Is Computer Ethics? 287

Professional engineers have a duty to their clients to ensure that they are solving
the real problem of the client. They need to precisely state the problem before
working on its solution. Engineers need to be honest about current capabilities
when asked to work on problems that have no appropriate technical solution, rather
than accepting a contract for something that cannot be done.5

The licensing of a professional engineer provides confidence that the engineer
has the right education, experience to build safe and reliable products. Otherwise,
the profession gets a bad name because of poor work carried out by unqualified
people. Professional engineers are required to follow rules of good practice and to
object when rules are violated. The licensing of an engineer requires that the
engineer completes an accepted engineering course and understands the profes-
sional responsibility of an engineer. The professional body is responsible for
enforcing standards and certification. The term ‘engineer’ is a title that is awarded
on merit, but it also places responsibilities on its holder.

Engineers have a professional responsibility and are required to behave ethically
with their clients. The membership of the professional engineering body requires
the member to adhere to the code of ethics of the profession. The code of ethics6

will detail the ethical behaviour and responsibilities including (Table 16.2).

16.5 ACM Code of Ethics and Professional Conduct

The Association of Computing Machinery (ACM) has defined a code of ethics and
professional conduct for its members. The general obligations are detailed in
Table 16.3.

Table 16.2 Professional responsibilities of software engineers

No. Responsibility

1. Honesty and fairness in dealings with clients

2. Responsibility for actions

3. Continuous learning to ensure appropriate knowledge to serve the client effectively

5Parnas applied this professional responsibility faithfully when he argued against the Strategic
Defense Initiative (SDI), as he believed that the public (i.e. taxpayers) were being misled and that
the goals of the project were not achievable.
6These are core values of most mature software companies and many companies today have a code
of ethics that employees are required to adhere to.

288 16 Ethics and Professional Responsibility

16.6 British Computer Society Code of Conduct

The BCS has a code of conduct that defines the standards expected of BCS
members, and it applies to all grades of members during their professional work.
Any known breaches of the BCS codes by a member are investigated by the BCS,
and appropriate disciplinary procedures followed. The main parts of the BCS code
of conduct are listed in Table 16.4.

Table 16.3 ACM code of conduct (general obligations)

No. Area Description

1. Contribute to society and
human well-being

Computer professionals must strive to develop computer
systems that will be used in socially responsible ways
and have minimal negative consequences

2. Avoid harm to others Computer professionals must follow best practice to
ensure that they develop high-quality systems that are
safe for the public. The professional has a responsibility
to report any signs of danger in the workplace that could
result in serious damage or injury

3. Be honest and trustworthy The computer professional will give an honest account of
their qualifications and any conflicts of interest. The
professional will make accurate statement on the system
and the system design, and will exercise care in
representing ACM

4. Be fair and act not to
discriminate

Computer professionals are required to ensure that there
is no discrimination in the use of computer resources, and
that equality, tolerance and respect for others are
respected

5. Respect property rights The professional must not violate copyright or patent
law, and only authorised copies of software should be
made

6. Respect intellectual
property

Computer professionals are required to protect the
integrity of intellectual property, and must not take credit
for another person’s ideas or work

7. Respect the privacy of
others

The professional must ensure that any personal
information gathered for a specific purpose is not used
for another purpose without the consent of the
individuals. User data observed during normal system
operation must be treated with the strictest confidentiality

8. Respect confidentiality The professional will respect all confidentiality
obligations to employers, clients and users

16.6 British Computer Society Code of Conduct 289

16.7 Review Questions

1. What is ethics?
2. Describe the main schools of ethics.
3. What is business ethics?
4. Give examples of unethical behaviour.
5. Discuss the relevance of the Eliza program to computer ethics.
6. Describe Parnas’s contributions to the debate concerning the professional

responsibility of software engineers.
7. Describe the ACM code of ethics and professional conduct.
8. Describe the BCS code of conduct.

16.8 Summary

Ethics is a branch of philosophy that deals with moral questions such as what is
right or wrong, and the right behaviour for an individual in a given situation. There
are various schools of ethics such as the relativist position, cultural relativism,
deontological ethics and utilitarianism.

Table 16.4 BCS code of conduct

Area Description

Public interest Due regards to rights of third parties
Conduct professional activities without discrimination
Promote equal access to IT

Professional competence and
integrity

Only do work within professional competence
Do not claim competence that you do not possess
Ongoing development of knowledge/skills
Avoid injuring others
Reject bribery and unethical behaviour

Duty to relevant authority Carry out professional responsibilities with due care and
diligence
Exercise professional judgment
Accept professional responsibility for work

Duty to the profession Uphold reputation of profession and BCS
Seek to improve professional standards
Act with integrity
Support other members in their professional development

290 16 Ethics and Professional Responsibility

Business ethics (also called corporate ethics) is concerned with ethical principles
and moral problems that arise in a business environment. They refer to the core
principles and values of the organisation, and apply throughout the organisation.
The ethical issues include the rights and duties between a company and its
employees, customers and suppliers.

Professional ethics are a code of conduct that governs how members of a pro-
fession deal with each other and with third parties. It defines the fundamental
principles of the organisation, which is an indication of the professionalism of the
organisation.

Several organisations such as the ACM and BCS have developed a code of
conduct for their members, and violations of the code by members are subject to
investigations and disciplinary procedures.

16.8 Summary 291

Chapter 17
Innovation in the Computing Field

Key Topics

Distributed system
Service-oriented architecture
Software as a Service
Cloud computing
Aspect-oriented software engineering
Embedded systems
Innovation in software engineering

17.1 Introduction

The process of translating a business idea or invention into a product or service that
adds value and that people will pay for is termed innovation. However, for a
business idea to be termed innovative, it must be commercially viable at an eco-
nomic cost that people will be willing to pay, and it must satisfy a specific customer
need (as otherwise there will be no demand for it).

There are two broad categories of innovations namely evolutionary and revo-
lutionary innovations. An evolutionary innovation is generally brought about by
incremental advances in technology, whereas a revolutionary innovation is often
totally new and completely different from the existing products in the market place
(e.g. the development of the Apple Macintosh or iPhone were paradigm shifts from
the existing state of the art). There is generally greater risk with a revolutionary
innovation as it is creating an entirely new product, whereas evolutionary inno-
vations generally involve less risk.

The success of hi-tech companies relies on the creativity and innovation of its
staff, and therefore it is important to foster innovation in the workplace. An inno-
vative work environment generally has a low power distance between management
and staff, with an emphasis on open communication and inter-department collab-
oration. Brainstorming sessions to come up with innovative ideas or solutions to
problems are encouraged, as well as the use of a suggestion box where employees
can submit ideas or improvement suggestions as well as making them to their
supervisor.

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_17

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_17&domain=pdf

The objective of this chapter is to give a flavour of several topics that have
become relevant to the computing field in recent times. The software field is highly
innovative and is continually evolving, and this has led to the development of many
new technologies and systems. This includes distributed systems, service-oriented
architecture (SOA), Software as a Service (SaaS), cloud computing, embedded
systems, and many more. Software engineering needs to continually respond to the
emerging technology trends with innovative solutions and methodologies to sup-
port the latest developments.

A distributed system is a collection of computers that appears to be a single
system, and many large computer systems used today are distributed systems.
A distributed system allows hardware and software resources to be shared, and it
supports concurrency with multiple processors running on different computers on
the network.

SOA is a way of developing a distributed system consisting of stand-alone web
services that may be executing on distributed computers in different geographic
regions. SaaS allows software to be hosted remotely on a server (or servers), and the
user can access the software over the Internet through a web browser. Cloud
computing is a type of internet-based computing that provides computing resources
and various other services on demand.

An embedded system is a computer system within a larger electrical or
mechanical system, and it is embedded as part of a complete system that includes
hardware and mechanical parts. An embedded system is usually designed to do a
specific task rather than as a general-purpose device, and it may be subject to
real-time performance constraints.

17.2 Distributed Systems

A distributed system (Fig. 17.1) is a collection of computers, interconnected via a
network, which is capable of collaborating on a task. It appears to be a single
integrated computing system to the user, and most large computer systems today
are distributed systems. The components (or nodes) of a distributed system are
located on networked computers, and interact to achieve a common goal.

The communication and coordination of action is via message passing.
A distributed system is not centrally controlled, and as a result the individual
computers may behave differently at different times, and each computer has a
limited and incomplete view of the system.

A distributed system allows hardware and software resources (e.g. printers and
files) to be shared, and information may be shared between people and processes
located in distant geographical regions. It supports concurrency with multiple
processors running on different computers on the network. The processors in a
distributed system run concurrently in parallel, and each computer is running on its
own local operating system.

294 17 Innovation in the Computing Field

A distributed system is designed to tolerate failures on individual computers, and
the system is designed to be reliable and to continue service when a node fails. That
is, a distributed system needs to be designed to be fault tolerant, and it must remain
available if there are hardware, software or network failures. This requires building
in redundancy and recovery features (e.g. duplicating information on several
computers). The fault tolerant design allows continuity of service (possibly a
degraded service) when failures occur.

The design of distributed systems is more complex than a centralised system, as
there may be complex interactions between its components and the system
infrastructure. The performance of the distributed system is dependent on the
network bandwidth and load, as well as on the speed of the computers that are on
the network. This differs from a centralised system, which is dependent on the
speed of a single processor. The performance and response time of a distributed
system may vary (and be unpredictable) depending on the network load and net-
work bandwidth, and so the response time may vary from user to user.

The nodes in a distributed system are often independent systems with no central
control, and the network connecting the nodes is a complex system, which is not
controlled by the systems using the network. There are many applications of dis-
tributed system in the telecommunication domain, such as fixed line, mobile and
wireless networks, company intranets, the Internet and the World Wide Web. Next,
we describe SOA and how it is used in distributed systems.

Fig. 17.1 A distributed system

17.2 Distributed Systems 295

17.3 Service-Oriented Architecture

The objective of this section is to give a brief introduction to service-oriented
architecture (SOA), which is a way of developing a distributed system using
stand-alone web services executing on distributed computers in different geographic
regions. It is an approach to creating an architecture based upon the use of services,
where a service may carry out some small function such as producing data or
validating a customer.

A web service is a computational or information resource that may be used by
another program, and it allows a service provider to provide a service to an
application (service requestor) that wishes to use the service. The web service may
be accessed remotely, and is acted upon independently. The service provider is
responsible for designing and implementing the service, and specifying the inter-
face to the service.

The service is platform and implementation language independent, and it is
designed and implemented by the service provider with the interface to the service
specified. Information about the service is published in an accessible service reg-
istry, and service clients (requestors) can locate the service provider and link their
application with the specific service and communicate with it. The idea of a SOA is
illustrated in Fig. 17.2.

There are several standards that support communication between services, as
well as standards for service interface definition. These are discussed in
Sommerville (2010).

17.4 Software as a Service

The idea of Software as a Service (SaaS) is that the software may be hosted
remotely on a server (or servers), and access provided to it over the Internet through
a web browser. The functionality is provided at the remote server with client access
provided through the web browser.

Service
Registry

Service
Requestor

Service
Provider

service

find publish

bind

Fig. 17.2 Service-oriented
architecture

296 17 Innovation in the Computing Field

The cost model for traditional software is made up of an upfront cost for a
perpetual license and optional ongoing support fees. SaaS is a software licensing
and delivery model where the software is licensed to the user on a subscription
basis. The software provider owns and provides the service, whereas the software
organisation that is using the service will pay a subscription for its use.
Occasionally, the software is free to use with funding for the service provided
through advertisements, or there may be a free basic service provided with charges
applied for the more advanced version.

A key benefit of SaaS is that the cost of hosting and management of the service
is transferred to the service provider, with the provider responsible for resolving
defects and installing upgrades of the software. Consequently, the initial set-up
costs for users are significantly less than for traditional software.

The disadvantages to the user are that data must be transferred at the speed of the
network, and the transfer of a large amount of data may take a lot of time. The
subscription charges may be monthly or annual, with extra charges possibly due
depending on the amount of data transferred.

17.5 Cloud Computing

Cloud computing is a type of Internet-based computing that provides computing
processing resources on demand. It provides access to a shared pool of configurable
computing resources such as networks, servers and applications on demand, and
such resources may be provided and released with minimal effort. It provides users
and organisations with capabilities to store and process their data at third-party data
centres that may be in distant geographical locations.

A key advantage of cloud computing is that it allows companies to avoid large
upfront infrastructure costs such as purchasing hardware and servers, and it allows
organisations to focus on their core business. Further, it allows companies to get
their applications operational in a shorter space of time, as well as providing an
efficient way for companies to adjust resources to deal with fluctuating demand.
Companies can scale up as computing needs increase and scale down as demand
decreases. Cloud providers generally use a ‘pay as you go’ model (Fig. 17.3).

Among the well-known cloud computing platforms are Amazon’s Elastic
Compute Cloud, Microsoft’s Azure and Oracle’s cloud. The main enabling tech-
nology for cloud computing is virtualisation, which separates a physical computing
device into one or more virtual devices. Each of the virtual devices may be easily
used and managed to perform computing tasks, and this leads to the creation of a
scalable system of multiple independent computing devices that allows the idle
physical resources to be allocated and used more effectively.

Cloud computing providers offer their services according to different models.
These include infrastructure as a service (IaaS) where computing infrastructure

17.4 Software as a Service 297

such as virtual machines and other resources are provided as a service to sub-
scribers. Platform as a service (Paas) provides capability to the consumer to deploy
infrastructure related or application related that are supported by the provider onto
the cloud. PaaS vendors offer a development platform to application developers.
Software as a Service (SaaS) provides capability to the consumer to use the pro-
vider’s applications running on a cloud infrastructure through a web browser or a
program interface. Cloud providers manage the infrastructure and platforms that run
the applications.

17.6 Embedded Systems

An embedded system is a computer system within a larger electrical or mechanical
system that is usually subject to real-time constraints. The computer system is
embedded as part of a complete system that includes hardware and mechanical
parts. Embedded systems vary from personal devices such as MP3 players and
mobile phones, to household devices such as dishwashers and cookers, to the
automotive sector and to traffic lights. An embedded system is usually designed to
do a specific task rather than as a general-purpose device, and it may be subject to
real-time performance constraints (Fig. 17.4).

Some embedded systems are termed reactive systems as they react to events that
occur in their environment, and so their design is often based on a
stimulus-response model. An event (or condition) that occurs in the system envi-
ronment that causes the system to respond in some way is termed a stimulus, and a
response is a signal sent by the software to its environment. For example, in the
automotive sector there are sensors in a car that detect when the temperature in the
engine goes too high, and the response may be an audio alarm and visual warning to
the driver.

Fig. 17.3 Cloud computing.
Creative commons

298 17 Innovation in the Computing Field

One of the earliest embedded system was the guidance computer developed for
the Minuteman II missile (O’ Regan 2016) in the mid-1960s. Embedded systems
are ubiquitous today, and they control many devices that are in common use such as
microwave ovens, washing machines, coffee makers, clocks, DVD players, mobile
phones and televisions.

Embedded systems became more popular following the introduction of the
microprocessor in the early 1970s, as cheap microprocessors could fulfil the same
role as many components. Most microprocessors produced today are used as
components of embedded systems.

17.7 Software Engineering and Innovation

The software field is highly innovative and many new technologies and systems
have been developed. We have discussed a sample of these innovations in this
chapter, and the software engineering field needs to continually respond to
emerging technology trends with innovative solutions and methodologies.

There have been many innovations in software engineering since its birth in the
late 1960s. These include the waterfall and spiral lifecycle models, the Rational
Unified Process; the Agile methodology; software inspections and reviews; soft-
ware testing and test-driven development; information hiding, object-oriented
design and development; formal methods and UML; software process improve-
ment, the CMM, CMMI and ISO SPICE.

There is also the need to focus on best practice in software engineering, as well
as emerging technologies from various research programs. Piloting or technology
transfer of innovative technology is an important part of continuous improvement.

Fig. 17.4 Example of an
embedded system

17.6 Embedded Systems 299

17.8 Review Questions

1. What is a distributed system?
2. What is service-oriented architecture?
3. What is Software as a Service?
4. What is cloud computing?
5. What is embedded software engineering?
6. Describe the various models that are used in cloud computing.
7. Describe various innovations in software engineering.

17.9 Summary

The process of translating a business idea or invention into a product or service that
adds value and that people will pay for is termed innovation, and the success of a
business relies on the creativity and innovation of its staff. It is therefore important
to foster innovation in the workplace, and an innovative work environment gen-
erally has an emphasis on open communication and inter-department collaboration.
Brainstorming sessions to come up with innovative ideas or solutions to problems
are encouraged.

This chapter gave a brief introduction to distributed systems, SOA, SaaS, cloud
computing, embedded systems and aspect-oriented software engineering.

A distributed system is a collection of interconnected computers that appears to
be a single system. SOA is a way of developing a distributed system consisting of
stand-alone web service executing on distributed computers in different geographic
regions. SaaS allows software to be hosted remotely on a server (or servers), and
access is provided to it over the Internet through a web browser. Cloud computing
is a type of internet-based computing that provides computing resources and var-
ious other services on demand.

An embedded system is a computer system within a larger electrical or
mechanical system, and it is usually designed to do a specific task rather than as a
general-purpose device, and it may be subject to real-time performance constraints.

300 17 Innovation in the Computing Field

Chapter 18
Epilogue

We embarked on a long journey is this book to provide readers with a concise
introduction to the world of computing. The first chapter introduced analog and
digital computers, and the von Neumann architecture which is the fundamental
architecture underlying a digital computer.

We then discussed the foundations of computing including the binary number
system and the Step Reckoner calculating machine. Babbage designed the Difference
Engine as a machine to evaluate polynomials, and his Analytic Engine provided the
vision of a modern computer. Boole’s symbolic logic provided the foundation for
digital computing.

We presented a brief history of computing including the first digital computers,
the first commercial computers, the SAGE air defence system, the invention of the
transistor at Bell Labs, the invention of the integrated circuit at Texas Instruments,
the development of the IBM System/360 and later mainframes and minicomputers.
We discussed the invention of the microprocessor, and how it led to home com-
puters. We discussed the introduction of the IBM personal computer.

We introduced the fundamental mathematics used in computing, including sets,
relations and functions. Sets are collections of well-defined objects; relations
indicate relationships between members of two sets A and B; and functions are a
special type of relation where there is exactly (or at most) one relationship for each
element a 2 A with an element in B.

We then presented a short introduction to algorithms, where an algorithm is a
well-defined procedure for solving a problem. It consists of a sequence of steps that
takes a set of values as input, and produces a value (or set of values) as output. It is
an exact specification of how to solve the problem, and it may be implemented by a
computer program.

We presented an introduction to logic for computing, including propositional
and predicate logic. Propositional logic is the study of propositions, where a
proposition is a statement that is either true or false. It may be used to encode
simple arguments that are expressed in natural language, and to determine their

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2_18

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75844-2_18&domain=pdf

validity. Predicate logic allows complex facts about the world to be represented,
and new facts may be determined via deductive reasoning.

We then discussed human–computer interaction (HCI), which is a branch of
computer science that is concerned with the design, evaluation and implementation
of interactive computing systems for human use. It is focused on the interfaces
between people and computers.

We presented a short introduction to programming languages starting with
machine languages; to assembly languages; to early high-level procedural lan-
guages such as Fortran and COBOL; to later high-level procedural languages such
as Pascal and C and to object-oriented languages such as C++ and Java. Functional
programming languages and logic programming languages were discussed, and
there was a short discussion on syntax and semantics.

We then presented a short introduction of the software engineering field,
including the waterfall and spiral lifecycles, the rational unified process and the
popular Agile methodology. We discussed the key activities in the waterfall model
such as requirements, design, implementation, unit, system and acceptance testing.

We gave a short introduction to operating systems including the IBM OS/360,
the MVS and VM operating systems, the UNIX operating system which is a
multi-user and multi-tasking operating system and the DEC VAX/VMS operating
system. Microsoft developed MS/DOS operating system for IBM compatible per-
sonal computers, and its Windows operating system was a response to the
GUI-driven Apple Macintosh. We discussed Android and iOS, which are popular
operating systems for mobile devices.

We then presented a short introduction to databases including the hierarchical
and network models. We discussed the relational model as developed by Codd at
IBM in more detail, and most databases used today are relational.

We gave a short introduction to telecommunications, including the AXE system
(the first fully automated digital switching system), and the development of mobile
phone technology. We discussed the introduction of the first mobile phone, the
DynaTAC, by Motorola.

We described the Internet revolution starting from ARPANET, which was a
packet switched network and TCP/IP, which is a set of network standards for
interconnecting networks and computers. These developments led to the birth of the
Internet and the World Wide Web. We discussed applications of the World Wide
Web, and the dot-com bubble and burst of the late 1990s/early 2000. We discussed
the Internet of Things and the Internet of Money.

We discussed the invention of the smartphone and the rise of social media, and
the impact of Facebook and Twitter in social networking. Facebook has become a
way for young people to discuss their hopes and aspirations as well as a tool for
social protest and revolution. Twitter has become a popular tool in political com-
munication, and it is also an effective way for businesses to advertise its brand to its
target audience. We discussed how social media has facilitated the growth of fake
news, and the challenges that poses to western society.

We discussed legal aspects of computing including the overlap of the law and
computing. This covered the legal aspects of digital information and software, as

302 18 Epilogue

well as the legal aspects of the Internet. We discussed intellectual property law
including patents, copyright, trademarks and trade secrets, and the problem of
hacking where a hacker is a person who uses his computer skills to gain unau-
thorised access to a computer system.

A software license is a legal agreement between the copyright owner and the
licensee, which governs the use or distribution of software to the user. The two
most common categories of software licenses that may be granted under copyright
law are those for proprietary software and those for free open source software. We
discussed the legal aspects of bespoke software development, and a legal contract is
prepared between the supplier and the customer.

We discussed ethics and professional responsibility in computing. Ethics is a
branch of philosophy that deals with moral questions such as what is right or
wrong, professional ethics are a code of conduct that governs how members of a
profession should deal with each other and with third parties.

We discussed innovation in the computer field including distributed systems,
service-oriented architecture (SOA), Software as a Service (SaaS), cloud computing
and embedded systems. Finally, we summarised the journey that we have travelled
in the book.

18 Epilogue 303

Glossary

ABC Atanasoff-Berry Computer

ACM Association Computing Machinery

AI Artificial Intelligence

ALGOL Algorithmic Language

AMPS Advanced Mobile Phone System

ANS Advanced Network Services

ANSI American National Standards Institute

API Application Programmer Interface

ARPA Advanced Research Projects Agency

ASCC Automatic Sequence Controlled Calculator

ASCII American Standard Code for Information Interchange

AXE Automatic Exchange Electric switching system

B2B Business to Business

B2C Business to Consumer

BASIC Beginners All-purpose Symbolic Instruction Code

BBN Bolt, Beranek and Newman

BCS British Computer Society

BIOS Basic Input Output System

BNF Backus Naur Form

CD Compact Disc

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2

305

CDC Control Data Corporation

CDMA Code Division Multiple Access

CEI Computer Ethics Institute

CEO Chief Executive Officer

CERN Conseil Européen pour la Recherche Nucléaire

CERT Certified Emergency Response Team

CMM® Capability Maturity Model

CMMI® Capability Maturity Model Integration

CMS Conversational Management System

COBOL Common Business Oriented Language

CODASYL Conference on Data Systems Languages

COPQ Cost of Poor Quality

COTS Customised Off The Shelf

CP Control Program

CP/M Control Program for Microcomputers

CPU Central Processing Unit

CRT Cathode Ray Tube

CSR Corporate Social Responsibility

CTSS Compatible Time-Sharing System

DARPA Defense Advanced Research Project Agency

DB Database

DBA Database Administrator

DBMS Database Management System

DDL Data Definition Language

DEC Digital Equipment Corporation

DL/1 Data Language 1

DML Data Manipulation Language

DNS Domain Naming System

DOS Disk Operating System

DoS Denial of Service

306 Glossary

DRI Digital Research Incorporated

DSDM Dynamic Systems Development Method

DVD Digital Versatile Disc

EDVAC Electronic Discrete Variable Automatic Computer

ENIAC Electronic Numerical Integrator and Computer

ESA European Space Agency

ETACS Extended TACs

ETSI European Telecommunications Standards Institute

EULA End-user license agreement

FAA Federal Aviation Authority

FDMA Frequency Division Multiple Access

FTP File Transfer Protocol

FORTRAN Formula Translation

FOSS Free Open Source Software

FSM Finite State Machine

GB Giga Byte

GECOS General Electric Comprehensive Operating System

GFW Great Firewall of China

GL Generation Language

GPL GNU Public License

GPRS General Packet Radio Service

GSM Global System Mobile

GUAM Generalised Update Access Method

GUI Graphical User Interface

HCI Human Computer Interaction

HP Hewlett Packard

HR Human Resources

HTML Hypertext Markup Language

HTTP Hyper Text Transport Protocol

IBM International Business Machines

Glossary 307

IC Integrated Circuit

IDMS Integrated Database Management System

IDS Integrated Data Store

IE Internet Explorer

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

IMP Interface Message Processor

IMS Information Management System

INWG International Network-Working Group

IP Internet Protocol

IPCS Interactive Problem Control System

IPO Initial Public Offering

ISEB Information Systems Examination Board

ISO International Standards Organization

ISP Internet Service Provider

IT Information Technology

JAD Joint Application Development

JCL Job Control Language

JVM Java Virtual Machine

KB Kilo Byte

KLOC Thousand Lines of Code

LD Limited Domain

LED Light Emitting Diode

LEO Lyons Electronic Office

LEO Low Earth Orbit

LISP List Processor

LSI Large Scale Integration

MADC Manchester Automatic Digital Computer

MB Mega Byte

ME Millennium

308 Glossary

MFT Multiple Programming with a Fixed number of Tasks

MIPS Million Instructions Per Second

MIT Massachusetts Institute of Technology

MITS Micro Instrumentation and Telemetry System

MOS Metal Oxide Semiconductor

MSI Medium Scale Integration

MS/DOS Microsoft Disk Operating System

MTX Mobile Telephone Exchange

MVS Multiple Virtual Storage

MVT Multiple Programming with a Variable number of Tasks

NAP Network Access Point

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organisation

NCP Network Control Protocol

NLS On Line System

NMT Nordic Mobile Telephony system

NORAD North American Aerospace Defence

NPL National Physical Laboratory

NSF National Science Foundation

OS Operating System

OSS Open Source Software

PARC Palo Alto Research Centre

PC Personal Computer

PCB Process Control Block

PCP Principal Control Program

PC/DOS Personal Computer Disk Operating System

PET Personal Electronic Transactor

PDA Personal Digital Assistant

PDP Programmed Data Processor

PL/M Programming Language for Microcomputers

Glossary 309

PTT Postal Telephone and Telegraph

RAD Rapid Application Development

RAM Random Access Memory

RDBMS Relational Database Management System

RIM Research in Motion

ROM Read Only Memory

RSA Rivest, Shamir and Adleman

RSCS Remote Spooling Communications Subsystem

RUP Rational Unified Process

SAGE Semi-Automatic Ground Environment

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SECD Stack, Environment, Control, Dump

SEI Software Engineering Institute

SID Sound Interface Device

SILK Speech, Images, Language, Knowledge

SIM Subscriber Identity Module

SLA Service Level Agreement

SM Service Mark

SMS Short Message Service

SMTP Simple Mail Transfer Program

SNS Social Networking Site

SOA Service Oriented Architecture

SOW Statement of Work

SPREAD System Programming, Research, Engineering and Design

SQL Structured Query Language

SRI Stanford Research Institute

SSEC Selective Sequence Electronic Computer

SSI Small Scale Integration

SSL Secure Socket Layer

TACS Total Access Communication

310 Glossary

TCP Transport Control Protocol

TM Trade Mark

TSO Time Sharing Option

UAT User Acceptance Testing

UCD User-centred design

UCLA University of California (Los Angeles)

UDP User Datagram Protocol

ULSI Ultra Large-Scale Integration

UML Unified Modelling Language

UNIVAC Universal Automatic Computer

URL Universal Resource Locator

VAX Virtual Address eXtension

VDM Vienna Development Method

VLSI Very Large-Scale Integration

VM Virtual Memory

VMS Virtual Memory System

VUI Voice User Interface

WCDMA Wideband CDMA

WIMP Windows, Icons, Menus, Pointers

Glossary 311

References

Ackrill JL (1994) Aristotle the Philosopher. Clarendon Press Oxford, Oxford
Anderson T, Dahlin M (2014) Operating systems: principles and practice. Recursive Books
Bagnall B (2012) Commodore: a company on the edge, 2nd edn. Variant Press
Barquin RC (1992) In Pursuit of a ‘Ten Commandments’ for Computer Ethics. Computer Ethics

Institute
BBC Magazine (2017) Can we teach Robots Ethics. BBC Magazine, 17 Oct 2017
Berners-Lee T (2000) Weaving the Web. Collins Book, New York
Bloomberg Business Week Magazine (2004) The ManWho Could Have Been Bill Gates, Oct 2004
Boehm B (1988) A Spiral Model for software development and enhancement. Computer, May 1988
Boole G (1848) The calculus of logic. Cambridge and Dublin Mathematical Journal, vol III,

pp 183–198
Boole G (1958)An investigation into the laws of thought. Dover Publications (First published in 1854)
Brooks F (1975) The Mythical Man Month. Addison Wesley, Boston
Brooks F (1986) No Silver Bullet. Essence and accidents of software engineering. Information

processing. Elsevier. Amsterdam
Bush V (1945) As we may think. The Atlantic Monthly, 176, No. 1, July 1945
Buxton IN, Naur P, Randell B (1975) Software engineering. Petrocelli. Report on two NATO

Conferences held in Garmisch, Germany (October1968) and Rome, Italy (October 1969)
Chaum D (1982) Blind signatures for untraceable payments. Advances in cryptology. Proceedings

of crypto, vol 82(3), pp 199–203
Chesbrough H, Rosenbloom R (2002) The role of the business model in capturing value from

innovation: evidence from Xerox Corporation’s technology spin-off companies. Ind Corp
Change 11(3):529–555

Chrissis MB, Conrad M, Shrum S (2011) CMMI. Guidelines for process integration and product
improvement, 3rd edn. SEI series in software engineering. Addison Wesley, Boston

Codd EF (1970) A relational model of data for large shared data banks. Commun ACM
13(6):377–387

Date CJ (1981) An introduction to database systems, 3rd edn. The systems programming series
Deitel HM (1990) Operating systems, 2nd edn. Addison Wesley, Boston
Dijkstra EW (1968) Go to statement considered harmful. Commun ACM, Mar 1968
Dijkstra EW (1972) Structured programming. Academic Press, London
Dijkstra EW (1976) A discipline of programming. Prentice Hall, Englewood Cliffs
Fagan M (1976) Design and code inspections to reduce errors in software development. IBM

Syst J 15(3)
Gertner J (2013) The idea factory: Bell Labs and the great age of American innovation. Penguin

Books, New York
Gilb T, Graham D (1994) Software inspections. Addison Wesley, Boston

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2

313

Greenfield A (2017) Rise of the machines. Who is the internet of things good for? Guardian
Article. 6 June 2017. https://www.theguardian.com/technology/2017/jun/06/internet-of-things-
smart-home-smart-city.

Jacobson I et al (2005) The unified modelling language, User Guide, 2nd edn. Addison Wesley
Professional, Boston

Jacobson I, Booch G, Rumbaugh J (1999) The unified software development process. Addison
Wesley, Boston

Kahn B, Cerf V (1974) Protocol for packet network interconnections. IEEE Trans Commun
Technol

Kelly J (1997) The essence of logic. Prentice Hall, Englewood Cliffs
Kernighan B (1981) Why Pascal is not my favourite language. AT&T Bell Laboratories
Kernighan B, Ritchie D, The C Programming Language, 1st edn
Leibniz WG (1703) Explication de l’Arithmétique Binaire. Memoires de l’Academie Royale des

Sciences
Levy S (1984) Hackers: heroes of the computer revolution. O’Reilly Media
Licklider JCR (1960) Man-computer symbiosis. IRE Trans Hum Factors Electron HFE 1:4–11
MacHale D (1985) Boole. Cork University Press, Cork
Malmsten E, Portanger E (2002) Boo Hoo. $135 Million, 18 Months. . . A Dot.Com Story from

Concept to Catastrophe. Arrow
Menabrea LF (1842a) Sketch of the analytic engine invented by Charles Babbage (trans: Lady Ada

Augusta, Countess of Lovelace). Bibliothèque Universelle de Genève, Oct 1842, No. 82
Menabrea LF (1842b) Sketch of the analytical engine invented by Charles Babbage (trans:

Lovelace LA). Bibliothèque Universelle de Genève
Meurling J, Jeans R (2001) The Ericsson Chronicle: 125 Years in Telecommunications.

Informationsforlaget, Stockholm
Moore G (1965) Cramming more components onto integrated circuits. Electronics Magazine
Motorola Museum of Electrics and Motorola (1999) Motorola (CB)—a journey through time and

technology. Purdue University Press, West Lafayette
Nakamoto S (2008) Bitcoin. A peer-to-peer electronic cash system
Naur P (ed) (1960) Report on the algorithmic language: ALGOL 60. Commun ACM 3(5):299–314
O’ Regan G (2010) Introduction to software process improvement. Springer, New York
O’ Regan G (2012) Mathematics in computing. Springer, New York
O’ Regan G (2013) Giants of computing. Springer, New York
O’ Regan G (2014) Introduction to software quality. Springer, New York
O’ Regan G (2015) Pillars of computing. Springer, New York
O’ Regan G (2016) Introduction to the history of computing. Springer, New York
O’ Regan G (2017a) Guide to discrete mathematics. Springer, New York
O’ Regan G (2017b) Concise guide to software engineering. Springer, New York
O’ Regan G (2017c) Concise guide to formal methods. Springer, New York
Office of Government Commerce (2004) Managing Successful Projects with PRINCE2
Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12)
Parnas D (2001) Software fundamentals. Collected papers (Weiss D, Hoffman D, eds). Addison

Wesley, Boston
Piff M (1991) Discrete mathematics. An introduction for software engineers. Cambridge

University Press, Cambridge
Plotkin G (1981) A structural approach to operational semantics. Technical report DAIM FN-19.

Computer Science Department, Aarhus University, Denmark
Porter ME (1998) Competitive advantage. Creating and sustaining superior performance. Free

Press, New York
Pugh EW (2009) Building IBM: shaping an industry and its technology. MIT Press, Cambridge
Robbins A (2005) Unix in a Nutshell, 4th edn. O’Reilly Media
RoyceW (1970) The software lifecycle model (Waterfall Model). In: Proc. WESTCON, August 1970

314 References

https://www.theguardian.com/technology/2017/jun/06/internet-of-things-smart-home-smart-city
https://www.theguardian.com/technology/2017/jun/06/internet-of-things-smart-home-smart-city

Schaefer MW (2014) The Tao of Twitter. Changing your life and business 140 characters at a time,
2nd ed. McGraw-Hill, New York

Shannon C (1937) A symbolic analysis of relay and switching circuits. Masters thesis,
Massachusetts Institute of Technology

Shockley W (1950) Electrons and holes in semiconductors with applications to transistor
electronics. Van Nostrand, New York

Sir Thomas Heath (1956) Euclid. The thirteen books of the elements, vol 1 (trans: Sir Thomas
Heath). Dover Publications, New York (First published in 1925)

Shneiderman B, Plaisant C (2005) Designing the user interface. Pearson Education, London
Sommerville I (2010) Software engineering, vol 9. Pearson, London
Spivey JM (1992) The Z Notation. A reference manual. Prentice Hall International Series in

Computer Science
Standard CMMI Appraisal Method for Process Improvement. CMU/SEI-2006-HB-002. V1.2, Aug

2006
Turner D (1985) Miranda. In: Proceedings IFIP Conference, Nancy France, Springer LNCS (201),

Sept 1985
von Neumann J (1945) First draft of a report on the EDVAC. University of Pennsylvania
Weizenbaum J (1966) ELIZA. A computer program for the study of natural language

communication between man and machine. Commun ACM 9(1):36–45
Weizenbaum J (1976) Computer power and human reason: from judgment to calculation. W.H.

Freeman and Co, San Francisco

References 315

Index

A
Ada Lovelace, 19, 20
Advanced Mobile Phone System, 230
Agile Development, 190
ALGOL, 161
Alonzo Church, 95
Amdahl 470V/6, 57
Amdahl Corporation, 57
Analog Computers, 2
Analytic Engine, 18
Android, 213
Apple I, 64
Apple II, 64
Apple Macintosh, 68
Application of Functions, 95
Applications of Relations, 89
Ariane 5 disaster, 186
ARPANET, 240, 241
Atanasoff–Berry Computer, 32
Atari 400, 66
Atari 800, 66
Automata Theory, 76, 99
AXE System, 229
Axiomatic approach, 214
Axiomatic semantics, 176

B
B2B, 247
B2C, 247
Babbage, 16
BBN Technologies, 242
BCS Code of Conduct, 289
Bespoke software, 276
Bijective, 94
Bill Hewlett, 53

Binary Numbers, 14
Binary relation, 76, 84, 104, 220
Birth of Silicon Valley, 52
Bitcoin, 255
Bletchley Park, 39
Bombe, 119, 120
Boo.com, 249
Boole, 20, 129
Boole’s Symbolic Logic, 129
Bubble and Burst, 250
Business Ethics, 282
Business model, 250

C
C programming language, 163
C++, 166
Capability Maturity Model Integration, 179,

306
Claude Shannon, 23
Cloud Computing, 297
CMMI Maturity Model, 199
COBOL, 159, 160
CODASYL, 160
Colossus, 39
Colossus Mark 1, 39
Commodore 64, 67
Commodore Business Machines, 64
Commodore PET, 64
Competence set, 89
Computable function, 96, 169
Computer Algorithms, 121
Computer Crime, 273
Computer Representation of Sets, 83
Concurrency, 206
Copyright Law, 269

© Springer International Publishing AG, part of Springer Nature 2018
G. O’Regan, World of Computing,
https://doi.org/10.1007/978-3-319-75844-2

317

Corporate social responsibility, 282
Cryptographic Systems, 118

D
DARPA, 240, 242
Database, 217
Database management system, 217
Dave Packard, 53
Deadlock, 206
Deduction theorem, 139
Denis Ritchie, 210
Denotational semantics, 176
Deutsches Technikmuseum, 41
Difference Engine (No. 1), 16
Difference Engine, 16, 17
Differential Analyser, 2
Digital Computers, 3
Digital currency, 255
Digital Research, 7, 72
Distributed Systems, 294
Don Estridge, 69
Dot-Com, 247
Dot-com bubble, 251, 256
Dot-Com Failures, 248
Doug Engelbart, 148
DynaTAC, 232

E
Early Algorithms, 108
Early Ciphers, 112
EBay, 248
E-Commerce Security, 253
Edgar Codd, 90, 220
EDVAC, 36
Eliza program, 285
Embedded Systems, 298
ENIAC, 34, 35
Equivalence relation, 86
Eratosthenes, 111
Ericsson, 230
Escrow agreement, 276
Ethics, 281
Ethics and AI, 285, 286
Euclid, 108
Euclidean algorithm, 110
European Space Agency, 186
Existential quantifier, 124, 142

F
Facebook, 259
Facebook Revolution, 259
Fagan inspections, 183
Fake news, 263
Finite-state machine, 101

Formal Methods, 200
FORTRAN, 159
Functional programming, 95, 169
Functional programming languages, 95
Functions, 91

G
Gottlob Frege, 130
Graham Bell, 232, 236
Graph, 102
Graph Theory, 102

H
Hacker, 271
Halting problem, 103
Harvard Mark 1, 30
HCI Principles, 149
Hierarchical model, 218
Howard Aiken, 30
Human–computer interaction, 147

I
IBM 360, 74
IBM 7090, 48
IBM Personal Computer, 69
IBM System 360, 54
IEEE standards, 187
Imperative programming, 158
Injective, 93
Insertion Sort, 114
Integrated Circuits, 6, 49
Intel 4004, 60
Intellectual Property, 268
Internet, 244
Internet of Money, 255
Internet of Things, 254
Internet Revolution, 302
Interpretation, 189
Interrupt, 206
iOS, 213
IP, 243
IPad, 259
Iridium, 234

J
Jack Dorsey, 261
Jack Kilby, 50
Java, 168

K
Königsberg Seven Bridges Problem, 103
Kernighan, 163
Konrad Zuse, 40
Kozmo.com, 250

318 Index

L
Lambda Calculus, 171
Leibniz, 12
Limited domain relation, 89
Livelock, 206
Logic programming languages, 173
Lorenz codes, 39

M
Maintenance, 197
Malcolm Baldridge, 197
Manchester Mark I, 42
Martin Cooper, 232
Mathematics for Computing, 75
Merge Sort, 115
Mersenne, 99
Mersenne primes, 99
Microprocessor, 7, 59
Microsoft Windows, 212
Miranda, 170
MIT, 241
MITS Altair 8800, 62
Mobile Operating Systems, 213
Mobile phone, 232
Model, 187
Mongolian Hordes Approach, 179
Moore’s Law, 51
Mosaic, 245
Motorola, 232
MS/DOS, 211

N
NASDAQ, 251
Network model, 218

O
Object-oriented programming, 165
Operating Systems, 203
Operational semantics, 176
Oracle Database, 223
OS/360, 207

P
Paradoxes and Fallacies, 126
Parity, 98
Parnas, 183, 287
Partial function, 92
Pascal, 162
Patent Law, 269
PDP-11, 57
Performance testing, 196
Pets.com, 249
Pierre Omidyar, 248
Plaintext, 113

Plankalkül, 158
Predicate, 142
Predicate logic, 123, 124, 141, 302
Prince 2, 183
Process, 205
Process control block, 206
Professional Engineering Association, 180
Professional engineers, 184, 288
Professional responsibility, 288
Project Management, 198
Prolog, 173
Proof in Propositional Calculus, 135
Propositional logic, 123, 131
Prototyping, 193
Public key cryptosystem, 118

R
RAND Corporation, 241
Rational Unified Process, 187–189
Rectangular number, 98
Reflexive, 85
Relational Database Management System, 89
Relational Model, 219
Relations, 84
RSA public key cryptographic system, 96
Russell’s Paradox, 81

S
SAGE, 45
Searching Algorithms, 114
Secret key cryptosystem, 119
Security, 271
Semantics, 175
Semantic Tableaux, 137, 143
Service-Oriented Architecture, 296
Set Theory, 76
Shockley, 47
Sieve of Eratosthenes, 111
Simula 67, 166
Six Sigma, 197
Smartphone, 257
Social Media, 257
Software as a Service, 296
Software crisis, 180, 202
Software Engineering, 180, 182, 185
Software failures, 185
Software Inspections, 198
Software Licensing, 274
Software reuse, 195
Software testing, 195
Spiral model, 188
Sprint planning, 191
SQL, 222
Square number, 97

Index 319

Standish Group, 181, 202
Step Reckoner, 12
Stoic Logic, 127
Story, 191
Surjective, 93
Syllogistic Logic, 125
Symmetric, 85
Syntax, 175
System testing, 196

T
Tautology, 135
TCP/IP, 242, 243
Ted Nelson, 245
Test-driven development, 195
Tim Berners-Lee, 244
Tommy Flowers, 37
Traceability, 193
Trademarks, 270
Transistors, 4, 47
Transition function, 101
Transitive, 85
Triangular number, 98
Trojan horse, 253
Truth Tables, 132, 133
Tunny, 39
Tweet, 261

U
UAT testing, 196
Unit testing, 195
Universal quantifier, 124, 142

UNIX, 210
Usability, 150
User-Centred Design, 152

V
Vacuum Tubes, 4
Valuation Functions, 251
Vannevar Bush, 25, 239
VM, 208
VMS, 209
Von Neumann Architecture, 7

W
Waterfall model, 187
Webvan, 249
Weizenbaum, 285
Whirlwind, 45
William Shockley, 5
World Wide Web, 244

X
Xerox Alto Personal Computer, 62

Y
Y2K, 181, 185, 186
Y2K bug, 186
Yahoo, 247

Z
Z3, 41
Zuse’s Machines, 41

320 Index

	Preface
	Overview
	Organisation and Features
	Audience
	Acknowledgements

	Contents
	List of Figures
	List of Tables
	1 What Is a Computer?
	1.1 Introduction
	1.2 Analog Computers
	1.3 Digital Computers
	1.3.1 Vacuum Tubes
	1.3.2 Transistors
	1.3.3 Integrated Circuits
	1.3.4 Microprocessor S

	1.4 Von Neumann Architecture
	1.5 Hardware and Software
	1.6 Review Questions
	1.7 Summary

	2 Foundations of Computing
	2.1 Introduction
	2.2 Step Reckoner Calculating Machine
	2.3 Binary Numbers
	2.4 The Difference Engine
	2.5 The Analytic Engine—Vision of a Computer
	2.5.1 Applications of Analytic Engine

	2.6 Boole’s Symbolic Logic
	2.6.1 Switching Circuits and Boolean Algebra

	2.7 Application of Symbolic Logic to Digital Computing
	2.8 Review Questions
	2.9 Summary

	3 A Concise History of Computing
	3.1 Introduction
	3.2 Early Digital Computers
	3.2.1 Harvard Mark 1
	3.2.2 Atanasoff–Berry Computer
	3.2.3 ENIAC
	3.2.4 EDVAC
	3.2.5 Bletchley Park and Colossus
	3.2.6 Zuse’s Machines
	3.2.7 Z1, Z2 and Z3 Machines
	3.2.8 University of Manchester
	3.2.9 Manchester Mark I

	3.3 Early Commercial Computers
	3.3.1 The SAGE System
	3.3.2 Invention of the Transistor
	3.3.3 Early Transistor Computers

	3.4 Integrated Circuits
	3.4.1 Invention of Integrated Circuit
	3.4.2 Moore’s Law
	3.4.3 Early Integrated Circuit Computers
	3.4.4 Birth of Silicon Valley

	3.5 IBM System 360
	3.5.1 Background to the Development of System/360

	3.6 Minicomputers and Later Mainframes
	3.7 Microprocessor Revolution
	3.7.1 Early Microprocessors

	3.8 Home Computers
	3.8.1 Xerox Alto Personal Computer
	3.8.2 MITS Altair 8800
	3.8.3 Apple I and II Home Computers
	3.8.4 Commodore PET
	3.8.5 Atari 400 and 800
	3.8.6 Commodore 64
	3.8.7 Apple Macintosh

	3.9 The IBM Personal Computer
	3.9.1 Operating System for IBM PC

	3.10 Review Questions
	3.11 Summary

	4 Overview Mathematics in Computing
	4.1 Introduction
	4.2 Set Theory
	4.2.1 Set Theoretical Operations
	4.2.2 Properties of Set Theoretical Operations
	4.2.3 Russell’s Paradox
	4.2.4 Computer Representation of Sets

	4.3 Relations
	4.3.1 Reflexive, Symmetric and Transitive Relations
	4.3.2 Composition of Relations
	4.3.3 Binary Relations
	4.3.4 Applications of Relations to Databases

	4.4 Functions
	4.4.1 Application of Functions to Functional Programming

	4.5 Number Theory
	4.5.1 Elementary Number Theory

	4.6 Automata Theory
	4.6.1 Finite-State Machines

	4.7 Graph Theory
	4.8 Computability and Decidability
	4.9 Review Questions
	4.10 Summary

	5 Introduction to Algorithms
	5.1 Introduction
	5.2 Early Algorithms
	5.2.1 Greatest Common Divisors (GCD)
	5.2.2 Euclid’s Greatest Common Divisor Algorithm
	5.2.3 Sieve of Eratosthenes Algorithm
	5.2.4 Early Cipher Algorithms

	5.3 Sorting Algorithms
	5.4 Binary Trees and Graph Theory
	5.5 Modern Cryptographic Algorithms
	5.6 Computational Complexity
	5.7 Review Questions
	5.8 Summary

	6 A Concise Introduction to Logic
	6.1 Introduction
	6.2 A Brief History of Logic
	6.2.1 Syllogistic Logic
	6.2.2 Paradoxes and Fallacies
	6.2.3 Stoic Logic
	6.2.4 Boole’s Symbolic Logic
	6.2.5 Frege

	6.3 Propositional Logic
	6.3.1 Truth Tables
	6.3.2 Properties of Propositional Calculus
	6.3.3 Proof in Propositional Calculus
	6.3.4 Semantic Tableaux in Propositional Logic
	6.3.5 Natural Deduction
	6.3.6 Applications of Propositional Calculus

	6.4 Predicate Logic
	6.4.1 Semantic Tableaux in Predicate Calculus

	6.5 Review Questions
	6.6 Summary

	7 Human–Computer Interaction
	7.1 Introduction
	7.2 HCI Principles
	7.3 Software Usability and User-Centred Design
	7.3.1 User-Centred Design

	7.4 Review Questions
	7.5 Summary

	8 Introduction to Programming Languages
	8.1 Introduction
	8.2 Plankalkül
	8.3 Imperative Programming Languages
	8.3.1 FORTRAN and COBOL
	8.3.2 ALGOL
	8.3.3 Pascal and C

	8.4 Object-Oriented Languages
	8.4.1 C++ and Java

	8.5 Functional Programming Languages
	8.5.1 Miranda
	8.5.2 Lambda Calculus

	8.6 Logic Programming Languages
	8.7 Syntax and Semantics
	8.7.1 Programming Language Semantics

	8.8 Review Questions
	8.9 Summary

	9 Overview of Software Engineering
	9.1 Introduction
	9.2 What Is Software Engineering?
	9.3 Challenges in Software Engineering
	9.4 Software Processes and Life Cycles
	9.4.1 Waterfall Life Cycle
	9.4.2 Spiral Life Cycles
	9.4.3 Rational Unified Process
	9.4.4 Agile Development

	9.5 Activities in Waterfall Life Cycle
	9.5.1 Business Requirements Definition
	9.5.2 Specification of System Requirements
	9.5.3 Design
	9.5.4 Implementation
	9.5.5 Software Testing
	9.5.6 Maintenance

	9.6 Software Inspections
	9.7 Software Project Management
	9.8 CMMI Maturity Model
	9.9 Formal Methods
	9.10 Review Questions
	9.11 Summary

	10 Overview of Operating Systems
	10.1 Introduction
	10.2 Fundamentals of Operating Systems
	10.3 IBM OS/360 and MVS
	10.4 VM
	10.5 VMS
	10.6 UNIX
	10.7 MS/DOS
	10.8 Microsoft Windows
	10.9 Mobile Operating Systems
	10.10 Review Questions
	10.11 Summary

	11 Overview of Databases
	11.1 Introduction
	11.2 Hierarchical and Network Models
	11.3 The Relational Model
	11.4 Structured Query Language (SQL)
	11.5 Oracle Database
	11.6 Review Questions
	11.7 Summary

	12 Overview of Telecommunications
	12.1 Introduction
	12.2 AXE System
	12.3 Development of Mobile Phone Standards
	12.4 Development of Mobile Phone Technology
	12.5 The Iridium Satellite System
	12.6 Review Questions
	12.7 Summary

	13 The Internet and World Wide Web
	13.1 Introduction
	13.2 The ARPANET
	13.3 TCP/IP
	13.4 Birth of the Internet
	13.5 Birth of the World Wide Web
	13.6 Applications of the World Wide Web
	13.7 Dot-Com Companies
	13.7.1 Dot-Com Failures
	13.7.2 Business Models
	13.7.3 Bubble and Burst

	13.8 E-Commerce Security
	13.9 Internet of Things
	13.10 Internet of Money and Bitcoin
	13.11 Review Questions
	13.12 Summary

	14 The Smartphone and Social Media
	14.1 Introduction
	14.2 Evolution of the Smartphone
	14.3 The Facebook Revolution
	14.4 The Tweet
	14.5 Social Media and Fake News
	14.6 Review Questions
	14.7 Summary

	15 Legal Aspects of Computing
	15.1 Introduction
	15.2 Intellectual Property
	15.2.1 Patent Law
	15.2.2 Copyright Law
	15.2.3 Trademarks

	15.3 Hacking and Computer Security
	15.4 Computer Crime
	15.5 Software Licensing
	15.5.1 Software Licensing and Failure

	15.6 Bespoke Software Development
	15.7 Dark Side of the Internet
	15.8 Ecommerce and the Law
	15.9 Free Speech and Censorship
	15.10 Computer Privacy in the Workplace
	15.11 Review Questions
	15.12 Summary

	16 Ethics and Professional Responsibility
	16.1 Introduction
	16.2 Business Ethics
	16.3 What Is Computer Ethics?
	16.3.1 Ethics and Artificial Intelligence
	16.3.2 Robots and Ethics

	16.4 Parnas on Professional Responsibility
	16.5 ACM Code of Ethics and Professional Conduct
	16.6 British Computer Society Code of Conduct
	16.7 Review Questions
	16.8 Summary

	17 Innovation in the Computing Field
	17.1 Introduction
	17.2 Distributed Systems
	17.3 Service-Oriented Architecture
	17.4 Software as a Service
	17.5 Cloud Computing
	17.6 Embedded Systems
	17.7 Software Engineering and Innovation
	17.8 Review Questions
	17.9 Summary

	18 Epilogue
	Glossary
	References
	Index

