
Chapter 9
Scala Classes

9.1 Introduction

This chapter considers the constructs in Scala used to define classes.

9.2 Classes

A class is one of the basic building blocks of Scala. Classes act as templates which
are used to construct instances. Classes allow programmers to specify the structure
of an instance (i.e. its instance variables or fields) and the behaviour of an instance
(i.e. its methods and functions) separately from the instance itself. This is important,
as it would be extremely time-consuming (as well as inefficient) for programmers to
define each instance individually. Instead, they define classes and create instances
of those classes.

9.2.1 Class Definitions

In Scala, a class definition has the following format:

class nameOfClass extends SuperClass / Trait {

scope properties;

scope methods

scope functions

}

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_9

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_9&domain=pdf

Although you should note that you can mix the order of the definition of
properties, functions and methods as required within a single class.

You need not remember this format precisely, as the meaning of the various
parts of the class definition is explained later in the book. Indeed, the above is far
from complete, but it illustrates the basic features. The following code is an
example of a class definition:

This code defines a class called Person. This class possesses two properties (or
instance variables) called name and age. It has no functions nor methods defined.

Notice that the age instance variable contains a value of type Int (this is a basic
data type), while the instance variable name possesses an instance of the class
String. Here Scala is inferring the type of the properties based on the initial
assignments made to the age and name—they are statically typed but that type is
determined by the compiler at compile time (not at runtime). Both variables are
initialised: age to Zero and name to the empty string “”.

Classes are not just used as templates. They have three further responsibilities:
holding methods, providing facilities for inheritance and creating instances.

9.2.2 Developing a Class Definition

Let us return to the class Person and explore the definition of this class a bit
further. A slightly different version of the definition for this class is presented again
below:

What does this class actually say? It defines a number of things:
It states that both name and age are read/write properties. This can be determined

by the fact that they are vars and not vals. A var is a property (or local variable) that
can be written to multiple times. A val is a property (or local variable) that can only
be set once. In both cases they can be read as many times as required. Thus, in this
case both name and age can be read and reset as required by the application. If we
had made name a val, then it would only be possible to write to it once, after a value
has been set it cannot be reset.

This definition also defines what is known as a Zero parameter constructor.
These are the ‘()’ after the name of the class. Every class in Scala will have at least

70 9 Scala Classes

one constructor. A constructor is actually used to initialise values within the object
created from the class. In this case that constructor does not take any parameters and
merely provides a default placeholder. In Scala such definitions are typically
optional and this is the case here.

In either case when we create a new instance of the Person class, we cannot
provide the appropriate name and age until later. Thus a test program for this class
might look like:

In this case line 2 causes a new instance of the class Person to be created. Note
that it is the keyword new that is being used here to create a new instance of the
class and the ‘()’ which are used to indicate the constructor to execute when that
new instance is created. The result of this creation is that the address of this new
object is stored in the variable p1 which is a variable that can hold references to
(i.e. the address of) an instance of type Person. This could have been written in
longhand form as:

val p1: Person = new Person()

Here we explicitly specify the type of the variable p1. In the earlier example (in
PersonTest1) Scala inferred the type of p1 for us.

Line 3 then accesses the current values of name and age for the instance ref-
erenced by p1 and prints them to the console (standard output) of your IDE. It uses
string interpolation to embed the current value of the name and age fields into a
string. The interpolation is indicated by the ‘s’ preceding the string itself. Scala will
then look inside the string for values preceded by a ‘$’ such as $p1 or for expression
surrounded by a ${..} such as ${p1.age}. It will then evaluate the variable or
expression and inline the result into the string being processed.

In lines 4 and 5 we actually assign the values and we want to name and age
properties of p1. After line 8 p1 now represents John who is 49. Line 9 the reprints
this data out.

We can see the effect of running this program on the Console in the IDE, for
example,

9.2 Classes 71

As can be seen from this, the effect of the first print out is that the empty string
and Zero are first printed—which seems a little confusing. The second print out
then shows ‘John’ and 21, which appears to make more sense.

9.2.3 Classes and Messages

When a message is sent to an instance of a class, it is not the instance which
possesses the method but the class. This is for efficiency reasons: if each object
possessed a copy of all the methods defined for the class, then there would be a
great deal of duplication. Instead, only the class possesses the method definitions.
Thus, when an object receives a message, it searches its class for a method with the
name in the message. If its own class does not possess a method with the appro-
priate name, it goes to the superclass and searches again. This search process
continues up the class hierarchy until either an appropriate method is found or the
class hierarchy terminates (with the class Any). If the hierarchy terminates, an error
is raised.

If an appropriate method is found, then it executes within the context of the
object, although the definition of the method resides in the class. Thus, different
objects can execute the same method at the same time without conflict.

Do not confuse methods with the data held by a property. Each instance pos-
sesses its own copy of the data (as each instance possesses its own state). Following
Figure illustrates this idea more clearly.

9.2.4 Instances and Instance Variables

In Scala, an instance is an example of a class. All instances of a class share the
same responses to messages (methods or functions), but they contain different data
(i.e. they possess a different “state”). For example, the instances of class Point all

72 9 Scala Classes

respond in the same way to messages inquiring about the value of the x-coordinate,
but they may provide different values.

The class definition consists of variable declarations and method definitions. The
state of each instance is maintained in one or more instance variables/properties
(also known as fields).

The above figure contains five instances of the class Person. Each instance
contains copies of the instance variable definitions for name and age, thus
enabling them to have their own values for these instance variables. In contrast,
each instance references the single definition for the method birthday, which is
held by the class.

9.2.5 Classes and Inheritance

It is through classes that an object inherits facilities from other types of object. That
is, a subclass inherits properties from its superclass. For example, the Person
definition above is a subclass of AnyRef which in turn is a subclass of Any.
Therefore, Person inherits all the methods and instance variables that were
defined in AnyRef and Any (except those that were overwritten in Person).

9.2 Classes 73

Subclasses are used to refine the behaviour and data structures of a superclass. It
should be noted that Scala supports single inheritance (as does Java and C#) while
some Object-Oriented languages (most notably C++) support multiple inheritance.

Multiple inheritance is where a subclass can inherit from more than one
superclass. However, difficulties can arise when attempting to determine where
methods are executed. Scala introduces the concept of traits to overcome one of the
most significant problems with single inheritance. However, the discussion of Scala
traits comes later in this book.

9.2.5.1 An Example of Inheritance

To illustrate how single inheritance works, consider the following Figure. There are
several classes: Class1 is a subclass of AnyRef, Class2 is a subclass of
Class1 and Class3 is a subclass of Class2. Note that AnyRef is a direct
subclass of Any. In Scala Any is the root of all types.

When an instance of Class3 is created, it contains all the instance variables
defined in Classes 1–3 and class AnyRef. If any instance variable has the same
name as an instance variable in a higher class, then the Class3 instance uses the
instance variable definition from the nearest class. That is, Class3 definitions take
priority over Class2, and Class2 definitions take priority over Class1.

We can send an instance of Class3 a message requesting that a particular
method is executed. Remember that methods are held by classes and not by

74 9 Scala Classes

instances. This means that the system first finds the class of the instance (in this case
Class3) and searches it for the required method. If the method is found, then the
search stops and the method is executed. However, if the method is not found, then
the system searches the superclass for Class3, in this case Class2. This process
is repeated until the method is found. Eventually, the search through the super
classes may reach the class Any (which is the root class in the Scala system). If the
required method is not found here, then the search process terminates and the
doesNotUnderstand: method in the class Any is executed instead. This
method raises an exception stating that the message sent to the original instance is
not understood.

This search process is repeated every time a message is sent to the instance of
Class3. Thus, if the method that matches the original message sends a message to
itself (i.e. the instance of Class3), then the search for that method starts again in
Class3 (even if it was found in Class1).

9.2.5.2 The Yo-Yo Problem

The process described above can pose a problem for a programmer trying to follow
the execution of the system by tracing methods and method execution. This
problem is known as the Yo-Yo problem (see the figure below) because, every time
you encounter a message that is sent to “this” (the current object), you must start
searching from your own class. This may result in jumping up and down the class
hierarchy.

The problem occurs because you know that the execution search starts in the
current instance’s class, even if the method which sends the message is defined in a
superclass of the current class. In the above Figure, the programmer starts the search
in Class3 but finds the method definition in Class1; however, this method sends

9.2 Classes 75

a message to “this” which means that the programmer must restart the search in
Class3. This time, the method definition is found in the class Any, etc. Even with
the browsing tools provided, this can still be a tedious and confusing process
(particularly for those new to Scala).

9.2.6 Instance Creation

A class creates an instance in response to a request, which is handled by a con-
structor. The request is represented by the keyword new followed by the name of
class. The constructor to be invoked once the class is created is indicated by the
parameters that follow the name of the class in parentheses (with the empty
parameter list often being referred to as the no parameter constructor).

A programmer requests a new instance of a Scala class using the following
construct:

new ClassName()

Any parameters which need to be passed into the constructor can be placed
between the parentheses. They are then passed onto an appropriate constructor.
Constructors are special as every class has a primary constructor and can optionally
have one or more auxiliary constructors (which must eventually invoke the primary
constructor). As previously mentioned, constructors are used to initialise a new
instance of the class in an appropriate manner (you do not need to know the details
of the process).

The whole of this process is referred to as instantiation. An example of
instantiating the class Person is presented below:

new Person("John", 50)

The class Person receives the message new which causes the Scala to generate
a new instance of the class, with its own copy of the instance variables age and
name (see the following Figure). The name property of the instance is “John” and
the age property is set to 50.

76 9 Scala Classes

9.2.7 Constructors

A constructor is not a method, but a special operation that is executed when a new
instance of a class is created. Depending on the arguments passed to the class when
the instance is generated, a different constructor can be called. For example, a class
may need to have three fields initialised when it is instantiated. However, the
programmer may allow the user of the class to provide one, two or three values.
They can do this by defining auxiliary constructors that take one or two in addition
to the primary three parameter constructors.

The syntax for a constructor is:

class classname(.. primary constructor parameters ..) {

auxiliary constructors (… parameters …) {

… statements …

}

}

By default every class has a single primary constructor. It is up to the pro-
grammer to decide if this is a no parameter constructor or one that takes a set of
parameters. It is defined following the class name in the class definition. An
example of a primary constructor for the class Person is shown below:

The above is complete as a class definition. It defines a class Person with a
primary constructor that takes two parameters and defines no additional methods
(beyond the defaults provided). As such no braces are needed unless you want to
add any code, fields or methods to the body of the class.

The primary constructor defines two properties for name and age and also
provides default values for these properties. Note that both properties are vars, and
therefore both readers and writers are generated for them by Scala.

The main advantage of this version of the class Person over those defined
earlier is that the name and age can be provided at the same time as the class is
instantiated, rather than having to create the instance and then set the name and age
separately. Thus we can now write:

9.2 Classes 77

Now a Person type object can be created with a name and an age which
seems more meaningful and understandable. The output generated from this
application is illustrated below:

Rather than having a null string and 0 printed out we have “John” and 21 right
from the start.

However, because we have provided default values for both the name and the
age, they are in fact optional. If we omit the age and only provide the name as in:

Then the result is that we set the age to Zero, and thus if we run this example, we
would find that the output is:

Similarly, we can omit the name and the age:

Whichwould result in the namebeing set to the string “Anyone” and the age to 0.

78 9 Scala Classes

Note that we cannot omit the name and just provide the age as Scala would try
and bind an integer (e.g. 18) to the name field which is invalid. However, as we are
not passing in any parameters we can omit the brackets, e.g.:

9.2.8 Auxiliary Constructors

Every class in Scala has a primary constructor; however, optionally any class in
Scala can also have one or more auxiliary constructors.

If we wanted to allow a Person to be instantiated with just an age, then one way
to do it would be to define an auxiliary constructor. An auxiliary constructor must
be called this and must call another constructor. It can either call the primary
constructor or another auxiliary constructor defined within the same class (you can
have any number of auxiliary constructors) as their first action. They cannot simply
call the superclass’s constructor explicitly or implicitly as they can in Java. This
ensures that the primary constructor is the sole point of entry to the class.

The following example defines an auxiliary constructor for the Person class that
takes an integer to use for a Person’s age without the need to define the person’s
name:

Note that the only thing this auxiliary constructor does is to call the primary
constructor providing a default name for all unnamed person. This is a very
common idiom for auxiliary constructors to use.

We can now use this constructor to construct a new instance of the Person class
using only an age (but who will be default be called Bob):

9.2 Classes 79

The result of executing this program is:

As you can see the name has been set to Bob (by the auxiliary constructor) and
the age to 18.

To summarise auxiliary constructors:

• Any class can have any number of additional, auxiliary constructors
• The first statement within an auxiliary constructor must be a call to another

auxiliary constructor, or to the primary constructor
• Thus, every object creation eventually ends up at the primary constructor

9.2.9 Class Initialisation Behaviour

It may seem somewhat strange, but you can place free-standing code anywhere
within the body of the class. Here free-standing code means executable statements
that are not part of a method, function or constructor but are defined within the
scope of the class as a whole. Such free-standing code is executed after a new
instance has been created, and after any values have been assigned to any properties
defined within the primary constructor. Such code can be treated as part of the
initialisation process and may be treated as the way in which you can define your
own initialisation behaviour. Free-standing code is typically used for validation
checks, additional processing and auditing functions, for example,

80 9 Scala Classes

In the above example, we have a class Currency, which possesses:

• A primary constructor with two parameters.
• An auxiliary constructor with one parameter and which defaults the type of the

currency to “GBP”.
• A validation statement that checks that the parameter ‘a’ is greater than Zero. If

it is not then an illegal argument exception is thrown (a type of error).
• A logging (println) statement that indicates what has been created.
• The require statement and the println statements are free-standing statements

and are therefore part of the initialisation routine of the class.

An important point to note is that the initialisation behaviour (the free-standing
code) runs before the code in the auxiliary constructor. This is because it is asso-
ciated with the instantiation of the class and allows behaviour to be defined for the
primary construction process. The auxiliary constructor can then override this if it
needs to. This is achieved by requiring the auxiliary constructor to always call
another constructor (e.g. the primary constructor) as the first thing that it does.

9.2.10 Review of Classes and Constructors

The syntax of a class is

class ClassName(constructor parameters) {body}

The ClassName should begin with a capital letter and be in Camel Case to follow
Scala conventions. The constructor is indicated by the parenthesis ‘()’ following the
class name, and there must always be a constructor defined (no hidden constructors
as in Java) even though it may take no parameters. Within the constructor there can
be specific meanings for the parameters:

• A var parameter will cause a field, getter and setter to be included.
• Setter and getter methods can be redefined inside the method.
• A val parameter will create a field and a getter, but no setter.
• A parameter with neither val nor var does not create a field or any methods, but

it can be used within the body of the class—it is a local field to the class.
• However, note that if a case class is used, then parameters to the primary

constructor default to val (see below).

When a new instance of a class is defined, the fields are created, the methods are
defined and any “loose” code (not within a def) is executed.

To make some of the terminology clearer here are some definitions:

• Class acts as a template for defining the structure and behaviour of a type of
thing.

• Instance is an example of a class that maintains its own state (copy of the data
held within it).

9.2 Classes 81

• Instance variables are defined in the class, but a copy is maintained in each
instance, which has its own value.

• Instance methods are defined in the class, with a single copy maintained in the
class, but they are executed within the context of an object.

• Constructors are used to initialise properties once the instance has been con-
structed in memory, but before any other code has access to the instance.

• Auxiliary constructors can be used to extend the functionality of the base
constructor but must either directly or indirectly invoke the base constructor.

9.3 Case Classes

There is another construct that can be used when defining a class, this is a case
class. A case class is defined in the same way as a normal class, with an additional
keyword placed in front of the class keyword. This keyword is case. For example,

The effect of this is that a number of additional features are provided for your
class. The first obvious difference is that it appears that you no longer have to use
the keyword new to create a new instance of a class; instead you can apparently just
use the name of the class, for example,

Actually a factory facility has been created that is named after the class and hides
the use of the new keyword (although logically it is still new that is being used to
construct the instance). A factory is a recurring software pattern that is used to
produce instances of things (in the same way that a physical car factory produces
cars).

Actually, the use of the case keyword provides a number of enhancements to
the basic class definition including:

1. A default factory creation facility—no need to use new.
2. All arguments to the constructor are val by default, no need to state that they

are vals (although you can override with a var).
3. Default implementation of toString method. This method is used to convert

the object into a printable string format. The normal default provides the name
of the class from which the instance was created and an indication of where it
resides in memory.

82 9 Scala Classes

4. Default value-based implementation of the equals method (used by ==). That
is, equality is based on the values held in the parameters to the primary
constructor.

5. Default copy method to create a copy of an object.
6. Default implementation of the hashcode method. This is an unique code used

to represent an unique instance in memory and which is suitable for use in a
hash map data structure (which relies on a key to value mapping).

The use of a case class also allows some additional comparison tests, which we
will look at when we consider pattern matching in Scala.

Case classes can be used to represent data-oriented classes (although Value Types
are a better option). They are also very useful when writing more function-oriented
code as they avoid a lot of extra syntaxes.

Note that in older versions of Scala (pre-Scala 2–11) the number of parameters to
a case class constructor was restricted to 22. Since Scala 2–11, this limitation has
been removed; although if you find yourself with such large numbers of parameters,
then consideration should probably be given to your design.

9.3.1 A Sample Class

Let us bring together the concepts that we have looked at so far in another version
of the class Person. A new version of the class Person is shown below:

This class exhibits several features we have seen already and expands a few
others:

9.3 Case Classes 83

• The class has two parameter constructors that take a String and an Int.
• It defines two properties a read-only name and a read/write age (i.e. a val and a

var) as part of the constructor definition.
• It redefines the toString method so that the details of the person object can

be used in the string representation of an instance of the class.
• It defines three methods birthday, isPensioner and isToddler.
• The method isTodder does not include ‘()’ and thus can only be invoked

without brackets.
• The method birthday() returns Unit (i.e. it does not return a value) and is

comprised of three statements, two print statements and an assignment, and the
method body must therefore be placed in curly brackets {…}.

• isPensioner and isToddler represent shorthand forms written in a single
line.

• isPensioner returns a Boolean value (i.e. one that returns true or false).
• Scala infers the value returned by isToddler which will also be a boolean.

It also illustrates a few other ideas:

• The test ‘>’ is a Boolean operator which returns a true of false value depending
upon the left- and right-hand values

• The && represents another Boolean operation, this time the ‘and’ operation that
will return true if and only if both the right-hand expression (age > 0) and the
left-hand expression (age < 3) are true.

These Boolean operators will be explored in more detail later in the book.
An example application using this class is given below:

This application creates an instance of the Person class using the values “John”
and 21. It then prints out p1 using println (which will automatically call the
toString() method on the instances passed to it). It then accesses the values of
name and age properties and prints these. Following this it calls the isToddler
and isPensioner methods and prints the results returned. It then calls birthday.
Finally it assigns a new value to the age property (this is allowed as it is a var).
However it is not possible to reassign a value to the name field as it is defined as a
val. The output from this application is given below:

84 9 Scala Classes

9.3 Case Classes 85

	9 Scala Classes
	9.1 Introduction
	9.2 Classes
	9.2.1 Class Definitions
	9.2.2 Developing a Class Definition
	9.2.3 Classes and Messages
	9.2.4 Instances and Instance Variables
	9.2.5 Classes and Inheritance
	9.2.5.1 An Example of Inheritance
	9.2.5.2 The Yo-Yo Problem

	9.2.6 Instance Creation
	9.2.7 Constructors
	9.2.8 Auxiliary Constructors
	9.2.9 Class Initialisation Behaviour
	9.2.10 Review of Classes and Constructors

	9.3 Case Classes
	9.3.1 A Sample Class

