
Chapter 6
Scala Background

6.1 Introduction

I first encountered the Scala language in 2010. I was working on a graduate training
programme for an international banking organisation when I was asked to give an
hour talk to the graduates on Scala. At that point, I had heard the name mentioned
but had no idea what it was. I therefore did some reading, installed the IDE being
used and tried out some examples—and was hooked.

Since then I have trained a wide range of people in Scala, used it to develop large
commercial systems and written a book on Scala and Design Patterns. I am still
hooked on it and find myself discovering new aspects to the language and the
environment on almost every Scala project I am involved with.

6.2 The Class Person

The following classes define a simple class Person that has a first name and a last
name and an age (these examples were first considered in the introduction).
A Person is constructed by providing the first and last names, and their age and
setters and getters are provided for each.

Here is the Java class:

class Person {

private String firstName;

private String lastName;

private int age;

public Person(String firstName,

String lastName,

int age) {

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_6

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_6&domain=pdf

this.firstName = firstName;

this.lastName = lastName;

this.age = age;

}

public void setFirstName(String firstName){

this.firstName = firstName;

}

public void String getFirstName() {

return this.firstName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public void String getLastName() {

return this.lastName;

}

public void setAge(int age) {

this.age = age;

}

public void int getAge() {

return this.age;

}

}

And here is the equivalent Scala class:

class Person(

var firstName: String,

var lastName: String,

var age: Int)

Certainly the Java class is longer than the Scala class, but look at the Java class
“How many times have you written something like that?” Most of this Java class is
boilerplate code. In fact, it is so common that tools such as Eclipse allow us to create
the boilerplate code automatically which may mean that we do not have to type much
more in the Java case than the Scala case. However, when I look back and have to
read this code I may have to wade through a lot of such boilerplate code in order to
find the actual functionality of interest. In the Scala case this boilerplate code is
handled by the language meaning that I can focus on what the class actually does.

Actually the Object-Oriented side of Scala is both more sophisticated than that in
either Java or C# and also different in nature. For example, many people have found
the distinction between the static side of a class and the instance side of a class
confusing. Scala does away with this distinction by not including the static concept.

42 6 Scala Background

Instead it allows the user to define singleton objects, if these singleton objects have
the same name as a class and are in the same source file as the class, then they are
referred to as companion objects. Companion objects then have a special rela-
tionship with the class that allows them to access the internals of a class (private
fields and methods) and can provide the Scala equivalent of static behaviour.

The class hierarchy in Scala is based on single inheritance of classes but allows
multiple traits to be mixed into any given class. A Trait is a structure within the
Scala language that is neither a class nor an interface (note Scala does not have
interfaces even though it compiles to Java Byte Codes). It can however, be com-
bined with classes to create new types of classes and objects. As such a Trait can
contain data, behaviour, functions, type declarations, abstract members, etc. but
cannot be instantiated itself.

The analogy might be that a class is like a flavour of ice cream. You can have
vanilla as the basic flavour with all the characteristics of ice cream; chocolate could
be a subclass of Vanilla which extends the concept to a chocolate flavour of ice
cream. Separately we could have bowls containing chocolate chips, mint chips,
M&Ms, sprinkles of various types. We can combine the vanilla ice cream with the
mint chips to create vanilla mint chip ice cream. This provides a new type of ice
cream but those mint choc chips are not in and of themselves an ice cream. Traits
are like the mint chocolate chips, while classes are like the ice cream.

6.3 Functional Programming

So much for the Object-Oriented view of Scala, what about this functional pro-
gramming concept? For those of you coming from a Java background this may
seem a bit alien; however, functional programming languages have a long history
from LISP developed in the late 1950s to more recent functional languages such as
ML and Haskell.

Workingwith functions is not that difficult although until you become familiar with
the syntax they may seem unwieldy—but the key is to hang in there and keep trying.

The following provides a simple example of a function literal in Scala that takes
two numbers and adds them together:

val add ¼ a: Int; b: Intð Þ¼ [aþ b

This defines a new function that takes two integers in the parameters a and b and
returns the result of adding a to b. The function can be accessed via the variable
add. This is a variable of type Function. We can invoke this function as the
following:

6.2 The Class Person 43

addð4; 5Þ

which should return the value 9. In Scala we can then partially apply this function.
This means that we can bind one of the parameters to a value to create a new
function that only takes one parameter; for example,

val addTwo ¼ 2; : Intð Þ

This function, addTwo, now adds 2 to whatever integer is passed to it, for
example,

addTwoð5Þ

will return 7.

6.4 A Hybrid Language

If all Scala did was provide the ability to program functionally all that would do is
provide yet another functional programming language. However, it is the fact that
Scala mixes the two paradigms that allow us to create software solutions that are
both concise and expressive.

The Object-Oriented paradigm has been such a success because it can be used to
model concepts and entities within problem domains. When this is combined with
the ability to treat functions as first-class entities we obtain a very powerful
combination.

For example, we can now create classes that will hold data (including other
objects) and define behaviours in terms of methods but which can easily and
naturally be given functions that can be applied to the members of that object.

val numbers = List(1, 2, 3, 4, 5)

println(numbers)

In this case I have created a list of integers (note that this is a list of Integers as
the type has been inferred by Scala) that are stored in the variable numbers.

val filtered = numbers.filter((n: Int) => n < 3)

println(filtered)

I have then applied a function to each of the elements of the list. This function is
an anonymous function that takes an Int (and stores that Int in the variable n). It
then tests to see if the value of n is less than 3. If it is it returns true otherwise it

44 6 Scala Background

returns false. The method filter uses the function passed to it to determine
whether the value passed it should be included in the result or not. This means that
the variable filtered will hold a list of integers where each integer is less than the
value 3. Again note that this is again a List of Ints as once again Scala has
inferred the type.

The output from these statements I shown below:

List(1, 2, 3, 4, 5)
List(1, 2)

6.4 A Hybrid Language 45

	6 Scala Background
	6.1 Introduction
	6.2 The Class Person
	6.3 Functional Programming
	6.4 A Hybrid Language

