
Chapter 5
Functional Programming

5.1 Introduction

Previous chapters have focussed on the Object-Oriented side of the Scala language.
However, Scala is a hybrid Object Oriented (OO) and functional programming
(FP) language. In this chapter, we will now look at functional programming and its
advantages and disadvantages.

5.2 What Is Functional Programming?

Wikipedia describes Functional Programming as:

… a programming paradigm, a style of building the structure and elements of computer
programs, that treats computation as the evaluation of mathematical functions and
avoids state and mutable data.

There are a number of points to note about this definition. The first is that it is
focussed on the computational side of computer programmes. You might consider
that obvious, but at least half of what we have looked at around objects and classes
has been focussed on the representation of domain concepts and data within those
concepts. Thus there is a difference of emphasis between the functional program-
ming world and the Object-Oriented programming world.

Another thing to note is that the way in which the computations are represented
emphasises functions that generate results based on data and computations. These
functions only rely on their inputs and generate a new output. They do not rely on
any side effects and do not depend on the current state of the program. Taking each
of these in turn:

1. Functional programming aims to avoid side effects. A function should be
replaceable by taking the data it receives and inlining the result generated (this is

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_5

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_5&domain=pdf

referred to as referential transparency). This means that there should be no
hidden side effects of the function. Hidden side effects make it harder to
understand what a program is doing and thus make comprehension, develop-
ment and maintenance harder. Pure functions have the following attributes:

• the only observable output is the return value.
• the only output dependency are the arguments.
• arguments are fully determined before any output is generated.

2. Functional programming avoids concepts such as state. Lets us take these as
separate issues. If some operation is dependent upon the state of the program or
some element of a program, then its behaviour may differ depending upon that
state. This may make it harder to comprehend, implement, test and debug. As all
of these impacts on the stability and probably reliability of a system, state-based
operations may result in less reliable software being developed. As functions do
not (should not) rely on any given state (only upon the data they are given) they
should as a result be easier to understand, implement, test and debug.

3. Functional programming promotes immutable data. Functional programming
also tends to avoid concepts such as mutable data. Mutable data is data that can
change its state. By contrast immutability indicates that once created, data cannot
be changed. In Scala Strings are immutable. Once you create a new string you
cannot modify it. Any functions that apply to a string that would conceptually
alter the contents of the string, result in a new String being generated. Scala takes
this further by having a presumption of immutability that means that by default
all data holding types are immutable. This ensures that functions cannot have
hidden side effects and thus simplifies programming in general.

4. Functional programming promotes declarative programming (and is in fact a
subtype of declarative programming), which means that programming is ori-
ented around expressions that describe the solution rather than focus on the
imperative approach of most procedural programming languages. These lan-
guages emphasise aspects of how the solution is derived. For example, an
imperative approach to looping through some container and printing out each
result in turn would look like this:

int sizeOfContainer ¼ container:length

for int I ¼ 1 to sizeOfContainerð Þ do
element ¼ container:get ið Þ
print elementð Þ

enddo

whereas a functional programming approach would look like:

container:foreachðprintÞ

36 5 Functional Programming

Functional programming has its roots in the lambda calculus, originally devel-
oped in the 1930s to explore computability. Many functional programming lan-
guages can thus be considered as elaborations on this lambda calculus. There have
been numerous pure punctional programming languages including Common Lisp,
Clojure and Haskell. Scala allows you to write in a purely functional programming
style or to combine functions with objects. Care needs to be taken when doing this
that the principles of functional programming, and thus the advantages of functional
programming, are not undermined. However, when used judiciously functional
programming can be a huge benefit for, and an enhancement to, the purely
Object-Oriented world.

To summarise then:
Imperative Programming is what is currently perceived as traditional pro-

gramming. That is, it is the style of programming used in languages such as C, C++,
Java and C#. In these languages a programmer tells the computer what to do, e.g.
x = y + z. It is thus oriented around control statements, looping constructs and
assignments.

Functional Programming aims to describe the solution, that is, what the pro-
gram needs to be doing (rather than how it should be done).

5.3 Advantages to Functional Programming

There are a number of significant advantages to functional programming compared
to imperative programming. These include:

1. Less code. Typically a functional programming solution will require less code
to write than an equivalent imperative solution. As there is less code to write,
there is also less code to understand and to maintain. It is therefore possible that
functional programmes are not only more elegant to read but easier to update
and maintain. This can also lead to enhanced programmer productivity as they
spend less time writing reams of code as well as less time reading those reams of
code.

2. Lack of (hidden) side effects (Referential Transparency). Programming
without side effects is good as it makes it easier to reason about functions (that is
a function is completely described by the data that goes in and the results that
come back). This also means that it is safe to reuse these functions in different
situations (as they do not do unexpected things). It should also be easier to
develop, test and maintain such functions.

3. Recursion is a natural control structure. Functional languages tend to
emphasis recursion as a way of processing structures that would use some form
of looping constructs in an imperative language.

Although you can often implement recursion in imperative languages it is often
easier to do in functional languages. It is also worth noting that recursion is a very

5.2 What Is Functional Programming? 37

expressive and a great way for a programmer to write a solution to a problem;
however it is not as efficient at run time as looping. However, any expression that
can be written as a recursive routine can also be written using looping constructs.
Functional programming languages often incorporate tail end recursive optimiza-
tions to convert recursive routines into iterative ones at runtime. Essentially, if the
last thing a routine does before it returns is to call another routine, rather than
actually invoking the routine and having to set up the context for that routine, it
should be possible to reuse the current context and to treat it in an iterative manner
as a loop around that routine. This means that both the programmer benefits of an
expressive recursive construct and the runtime benefits of an iterative solution can
be achieved using the same source code. This option is typically not available in
imperative languages.

• Good for prototyping solutions. Solutions can be created very quickly for
algorithmic or behaviour problems in a functional language. Thus allowing
ideas and concepts to be explored in a rapid application development style.

• Modular functionality. Functional programming is modular in terms of func-
tionality (where Object-Oriented languages are modular in the dimension of
components). They are thus well suited to situations where it is natural to want
to reuse or componentise the behaviour of a system.

• The avoidance of state-based behaviour. As functions only rely on their
inputs and outputs (and avoid accessing any other stored state) they exhibit a
cleaner and simpler style of programming. This avoidance of state based
behaviour makes many difficult or challenging areas of programming simpler
(such as those used in concurrency applications).

• Additional control structures. A strong emphasis on additional control
structures such as pattern matching, managing variable scope, tail recursion
optimizations.

• Concurrency and immutable data. As functional programming systems
advocate immutable data structures it is simpler to construct concurrent systems.
This is because the data being exchanged and accessed is immutable. Therefore
multiple executing thread or processes cannot affect each other adversely. The
Akka Actor model builds on this approach to provide a very clean model for
multiple interacting concurrent systems.

• Partial evaluation. Since functions do not have side effects, it also becomes
practical to bind one or more parameters to a function at compile time and to
reuse these functions with bound values as new functions that take fewer
parameters.

38 5 Functional Programming

5.4 Disadvantages of Functional Programming

If functional programming has all the advantages previously described, why isn’t it
the mainstream force that imperative programming languages are? The reality is
that functional programming is not without its disadvantages, including:

• Input–output is harder in a purely functional language. Input–output flows
naturally align with stream style processing, which does not neatly fit into the
data in, results out, nature of functional systems.

• Interactive applications are harder to develop. Interactive application is con-
structed via request response cycles initiated by a user action. Again these do not
naturally sit within the purely functional paradigm.

• Continuously running programs such as services or controllers may be more
difficult to develop, as they are naturally based upon the idea of a continuous
loop.

• Functional programming languages have tended to be less efficient on current
hardware platforms. This is partly because current hardware platforms are not
designed with functional programming in mind and also because many of the
systems previously available were focussed on the academic community where
out and out performance was not the primary focus. However, this has changed
to a large extent with Scala and the functional language Heskell.

• Not data oriented. A pure functional language does not really align with the
needs of the primarily data-oriented nature of many of today’s systems. Many
(most) commercial systems are oriented around the need to retrieve data from a
database, manipulate it in some way and store that data back into a database.
Such data can be naturally represented via objects in an Object Oriented
language.

• Programmers are less familiar with functional programming concepts and thus
find it harder to pick up function-oriented languages.

• Functional programming idioms are often less intuitive to (traditional) pro-
grammers than imperative idioms (such as lazy evaluations) which can make
debugging and maintenance harder.

• Many functional programming languages have been viewed as Ivory tower
languages that are only used by academics. This has been true of some older
functional languages but is increasingly changing with the advent of languages
such as Scala.

5.4 Disadvantages of Functional Programming 39

5.5 Scala and Functional Programming

Scala overcomes many of the disadvantages of functional programming by pro-
viding a hybrid environment in which you can use the Object-Oriented features of
the language to represent concepts, data-rich elements, etc. and use functions to
express behaviour oriented aspects of a program. It thus provides a best of both
worlds approach to your choice of programming language constructs.

40 5 Functional Programming

	5 Functional Programming
	5.1 Introduction
	5.2 What Is Functional Programming?
	5.3 Advantages to Functional Programming
	5.4 Disadvantages of Functional Programming
	5.5 Scala and Functional Programming

