
Chapter 44
Scala & Java Interoperability

44.1 Introduction

In this chapter, we will look at the interoperation of Java and Scala. Both Java and
Scala are JVM byte code languages. That is, they both compile to the byte code
language that is understood by the JVM. The byte code language of the JVM was
originally designed to be the compiled form of Java and was what the Java Virtual
Machine executed. However, things have evolved such that today the JVM is a
virtual environment for executing byte code languages. In fact, there are now
several languages that can be compiled to JVM byte codes including Java, Groovy,
Clojure, Jruby, Jython, JavaScript, Ada, Pascal as well as Scala. A common term
used for these languages is that they are all byte code languages.

As such at the byte code level, there is no difference between Java and Scala—
they are just different starting points for the same destination. Therefore, at runtime
it is only the byte code that executes—there is no such thing as Java or Scala. Scala
can thus interoperate with other byte code languages.

44.2 A Simple Example

As a simple example, consider the Scala Person shown below:

package com.jjh.java

class Person (name: String="John", var age:Int=47)

This class compiles to a Person.class file just as any other byte code
language. This means that it can be used within Scala or Java. The following code
sample illustrates the use of the Scala class Person within a Java application:

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_44

515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_44&domain=pdf

package com.jjh.java;

/**
* This is a standard Java class with a main method.
* But note that Person is a Scala class.
*
* This illustrates the interop between Scala and
* Java.
*/

public class JavaInteropTest1 {

public static void main(String [] args) {
System.out.println("Hello from Java");
Person p = new Person("Granny", 85);
System.out.println(p);

}

}

Notice that as far as Java is concerned that this is a class Person with a
constructor that takes a String and an Integer. Also notice that both the Scala
class Person and the Java class JavaInteropTest1 are in the same package (com.
jjh.scala). This works because from a byte code point of view, there is no difference
between a Scala class Person in the package com.jjh.scala and a Java class
Person in the same package—they are both byte classes in the package com.jjh.
scala.

The output from this application is given blow in IntelliJ IDEA:

One thing to note is that the Scala class Person defines some slightly strange
(from a Java perspective) methods for the property age. It defines the age() accessor
method (not getAge) and the age_$eq method for setting the new value of age (as
it’s a var):

System.out.println(p.age());
p.age_$eq(55);
System.out.println(p.age());

The output of these lines is:

85
55

516 44 Scala & Java Interoperability

44.3 Inheritance

It is possible to inherit between Java and Scala classes. For example, in the fol-
lowing, Employee is a Java class while Person is the Scala class presented in the
previous section. The rules for constructors are maintained, and the Java class can
call the superclass constructor.

package com.jjh.java;

/**
* This is a Java class that extends a Scala class!
*
* Note the call to super for the parent class
* constructor.
*/

public class Employee extends Person {

private String company;

public Employee(String name, int age, String company) {
super(name, age);
this.company = company;

}

public String toString() {
return super.toString() + ", " + company;

}

}

44.4 Issues

There are of course some issues related to interoperating between Scala and Java.
The first one of which is that Scala requires a Java 8 or newer runtime to operate
within. The other is that Scala has some concepts that Java has no knowledge of
such as objects, traits and functions as first-class language elements. This last may
change with the future versions of Java. In turn Scala has no concept of an Interface.
Therefore, if care is not taken, problems may arise.

In general, Scala to Java interoperability is relatively seamless as Scala builds on
top of Java. However, Java to Scala can sometimes be problematic. The most
common set of issues are:

• Java has no equivalent of Traits.
• Functions are object values.
• The Scala-type system is more complex.

44.3 Inheritance 517

• Scala has no notion of static, so can’t access statics in the same way as Java
code.

• Java doesn’t understand Scala’s companion module.
• Java sees Scala objects as a final class with statics.

44.4.1 Scala Objects

Of course, the underlying byte code representation also lacks many of the features
of Scala presented above. Scala therefore often generates more than one byte code
class or type for a single Scala concept. This is illustrated below for a simple test
Scala object.

The following code generates two .class files:

package com.jjh.java

object Test {
val name = "MyName"
def print = println(s"Print $name")
val func = () => println("Printer function $name")

}

The two .class files are Test.class and Test$.class:

This can make it difficult to decide how to treat a Scala concept from the Java
side. It can be useful to examine what these class files contain in order to under-
standing the Java view of these structures. This can be done using the javap pro-
gram. javap is the class file disassembler distributed with the standard Oracle SDK.
The result of using the javap program with the Test examples is shown below:

518 44 Scala & Java Interoperability

What this shows is that the Scala object Test is represented at the byte code level
by a public final class Test and a second public final class Test$.

How would you then call the Scala object Test from java? From the javap
de-compilation, you have a choice of the Test class with a static method print and
the Test$ class with a non-static method print. In fact, in this case from Java we
can just treat the object Test as if it was a statically defined entity. This is because
the static method on a final class means that we cannot extend the class Test, and
then we can call the method without needing to instantiate the class. Thus, we can
just write:

package com.jjh.test;

import com.jjh.java.Test;

public class JavaTest {

public static void main(String[] args) {
Test.print();

}

}

Which is semantically the closest we can get in Java to the concept embodied in
the Scala Object.

44.4.2 Companion Modules

Companion modules are another point of conflict in that Scala has the concept of a
class and an associated companion object (which must have the same name as the
class and be defined within the same file). For example,

44.4 Issues 519

package com.jjh.companion

/**
* The Companion class
*/

class Session(var id: Int) {

}

/**
* Its Companion (singleton) object
*/

object Session {
private var counter = 0
def session() = {

counter = counter + 1
new Session(counter)

}
}

This listing when compiles generates the classes shown below:

If we use the javap de-compiler again on these classes, then we can see that the
byte code Session class combines elements of both the Scala Session class and the
Scala Session object. However, note that the Session is not final and thus can be
extended! This is shown below where the javap program is used to de-compile both
the Session and the Session$ classes.

If you need to access the Session from within Java code, then this can be done as
the Session just looks like a normal Java class with a static factory method:

520 44 Scala & Java Interoperability

package com.jjh.companion;

public class JavaTest {

public static void main(String[] args) {
Session session = Session.session();
System.out.println(session.id());

}

}

Indeed you can even be able to extend it. For example,

package com.jjh.companion;

public class ExtendedSession extends Session{

public ExtendedSession(int id) {
super(id);

}

}

44.4.3 Traits

Scala has Traits—these are a type within the Scala-type system, and they are neither
abstract classes nor are they Java interfaces. Java does not have Traits although it
does have interfaces and abstract classes. There cannot therefore be a direct map-
ping from a Scala trait to a Java concept. However, this is also true of the under-
lying byte code representation—it does not have a concept of a Trait. This raises the
question what happens when a trait is defined at the byte code level? For example,
given the trait Model shown below, how is this represented at the byte code level:

package com.jjh.traits

trait Model {

def info(x: String):String

}

If you examine the .class files generated for this type, you will see that the single
trait Model is represented by a single .class file Model.class (Fig. 44.1).

Fig. 44.1 Representing a
trait via two class files

44.4 Issues 521

The file Model.class defines an interface containing a single public abstract
method that takes a string and returns a string. This can be implemented by Java
class who wish to implement the Trait (Fig. 44.2).

However, what happens if the trait defines actual behaviour and data. This is the
biggest area of change in terms of Java interoperability from pre-Scala 2.12 to
post-Scala 2.12. Prior to Scala 2.12, a trait was represented as an interface and a
class that held any concrete implementations defined in the trait.

In Java 7 and older versions of Java, interfaces were only allowed to define
method signatures (abstract methods) and static final constant values.

The following listing defines a modified version of the Model trait that contains
behaviour (the print method) and data (the title variable):

package com.jjh.traits

trait Model {

var title = "CS123-10"

def info(x: String):String

def print = println("Hello World")

}

This is used to result in two class files being generated as shown in here:

In this older version of Scala, the Model.class file contained an interface defi-
nition Model with a single public abstract method info. The Model$class.class
file contained an abstract class called Model$class that extends the java.lang.Object
type and defined two static methods one info and the other $init$ both of
which take a Model as their parameters.

Fig. 44.2 Representing a simple trait in byte codes

522 44 Scala & Java Interoperability

This made interoperability of such traits with Java difficult!
However, Java 8 introduced new features to interfaces that allow interfaces to

have concrete methods defined. This means that Scala 2.12 (and newer) is able to
compile a trait to a single interface class file.

This is shown below:

This means that from the Java world, a Trait appears as an interface to
implement.

However, there are still a couple of things to bear in mind. The first is that the
interface that has been generated has three abstract methods that must be provided
by any Java class that wish to implement this Interface. The first of these is fairly
obvious; the method info(x: String) is an abstract method in the Scala trait is
therefore an abstract method in the Java interface.

However, the other two methods are

String title() and

void title_eq(String)

Neither of these methods I listed in the Scala trait—instead there is a var
property called title. What has happened here is that the Scala compiler converts a
val or a var into 1 or two methods (one for reading and one for writing) the value.
As this is a var, there are two methods required. However, no default imple-
mentation is given and thus the subclass must provide appropriate implementations.

In this case, however, the var is initialised to the string “CS123-10”. It is
therefore also necessary to provide a way to initialise such properties. This is
provided by the slightly strangely named method:

public static void $init$(com.jjh.traits.Model)

This method can be invoked in the subclass (e.g. in the constructor) to initialise
any properties defined in the Trait. This is done via reference to the interface name:

44.4 Issues 523

Model.$init$(this);
The end result is that the class implementing the Model interface in Java looks

like this:

package com.jjh.traits;

public class Foo implements Model {

private String _title;

public Foo() {
Model.$init$(this);

}

public String info(String x) {
return "title: " + this.title() + " with " + x;

}

public String title() {
return this._title;

}

public void title_$eq(String s) {
System.out.println("Setting title: " + s);
this._title = s;

}

}

As this example illustrates, some further work is still involved, so care must be
taken if a trait is meant to be implemented in Java. Briefly, if a trait does any of the
following, its subclasses require synthetic code:

• defining fields (val or var, but a constant is ok—final val without result type)
• calling super
• initialiser statements in the body
• extending a class
• relying on linearisation to find implementations in the right supertrait

44.5 Functions

Scala is a hybrid Object-Oriented and functional language. However, Java (at least
up until Java 8) is an Object-Oriented language and thus has no concept of a
Function. Scala of course treats Functions as top-level entities, or first-class ele-
ments in the language with functions making up part of the type system of the
language. However, the underlying byte code representation to which Scala com-
piles also does not have a concept of a function thus there must be some from of

524 44 Scala & Java Interoperability

mapping from the Scala world into the byte code world. This thus means that from
the Java side of things that mapping can be exploited.

Functions are actually represented at the byte code level by the various Function
types that model a function. The following code which defines an object called
MyScalaTest containing a method which takes a single parameter of type
Int => String. This method is represented at the byte code level as being a
method that takes a single parameter of type Function1 which is parameterised to
use an Object and a String as the types involved.

package com.jjh.func

object MyScalaTest {

def setFunc(func: Int => String) {
println(func(10))

}

}

The object MyScalaTest is represented by two .class files at the byte code level
as illustrated below.

This is shown when we use javap to de-compile the compiled version of the
MyScalaTest. The MyScalaTest.class contains a final class that defines a single
public static method setFunc that takes a parameter of type scala.Function1.
The associated MyScalaTest$ class defines a non-static (instance side) method
setFunc that also takes a scala.Function1 parameter (Fig. 44.3).

Fig. 44.3 De-compiling the MyScalaTest class files

44.5 Functions 525

In fact, within Scala there are a range of types (actually Traits) that are used to
represent functions from Function1, Function2 and Function3 through
to Function22. Therefore functions can have up to 22 parameters. This appears
to be an arbitrary choice and is limited only because the underlying types are only
written from Function1 through to Function22. If you find yourself hitting this
limit, then you probably need to rethink your design!

As an example, if we changed the function type taken by setFunc to have three
input parameters and one result, as follows:

package com.jjh.func

object MyScalaTest {

def setFunc(func: (Int, Int, Int) => String) {
println(func(10, 1, 2))

}

}

Then when we de-compile the resulting .class byte codes, we would find that this
is now as shown below.

To exploit this within the Java world, we can create Java code that implements
the Function1 type (which appears as an Interface in the Java world). This can be
done by using one of the abstract runtime classes that implement the appropriate
interface. For example, if we have a single parameter function, then the interface for
it in the Java world is Function1 and the abstract class that provides the basic
infrastructure for that interface is AbstractFunction1 (where as for a three parameter
function we would use the Function3 interface and the AbstractFunction1 class).
The following listing illustrates how we can create a Scala function in Java and use
it with a Scala object that expects to receive a function:

526 44 Scala & Java Interoperability

package com.jjh.func;

import scala.Function1;
import scala.runtime.AbstractFunction1;

public class FuncTest {

public static void main(String[] args) {
Function1<Object, String> f =

new AbstractFunction1<Object, String>() {
public String apply(Object someInt) {

return "Hello world: " + someInt;
}

};
MyScalaTest.setFunc(f);

}

}

In the above example, a new (anonymous) inner class is created on the fly based
on the AbstractFunction1 class. It defines a method apply that takes a parameter of
type Object (anything in the Java world) and returns a String. In this case, the string
is constructed by prefixing whatever was passed in with the string “Hello World”.

Using this new anonymous class, a new instance is created and a reference to
that instance stored in the variable ‘f’ which is of type Function1. Note that the
parameters to Function1 indicate that the function being defined takes one
parameter (the first type in the angle brackets ‘<>’ and the return type is String the
second type in the angle brackets.

The instance referenced by f is then passed on the setFunc method of
MyScalaTest, which is the Java representation of the MyScalaTest object. The end
result of executing this Java program is the output:

It is worth noting that Scala does not use Java’s representation of functions. This
is primarily for two reasons, firstly Scala had functions before Java did and thus
developed its own representation but secondly (and more importantly) Scala’s
representation of functions is considerably richer than that in Java 8.

44.5 Functions 527

44.6 Collection Classes

Both Java and Scala have libraries of collection classes, and confusingly many of
the names are similar.

As an example, there is a Set collection in both Java and Scala and there is a
List in both Java and Scala. However, the Scala collections are not just wrappers
around the Java collection classes and thus you cannot just assign from one to the
other.

For example, you cannot assign a Java Set type to a Scala Set type. The
following does not work:

package com.jeh.scala.interop

object SetTest1 extends App {

val jSet: java.util.Set[String] = new

java.util.HashSet[String]()

jSet.add("Adam")
jSet.add("Phoebe")

val sSet: scala.collection.mutable.Set[String] = jSet

}

If you do try this, you will find that the assignment of the jSet to the Scala Set
will result in a compilation error. There is no relationship between these two types
of Sets to allow a cast to occur.

You might think that you can create a new instance of the Scala set using the
Java Set as a parameter to the constructor:

val sSet: Set[String] = Set(jSet.toArray(): _*)

For an appropriate Scala set, this could work but the array type generated by
Java is an Array of Objects, but we are using a Set with an array of String (which is
what both types of sets hold).

It is therefore necessary to look at the Java Converter facilities provided in the
scala.collections package. For example, the JavaConverters object (previously
known as JavaConverters but that name is now deprecated and introduced in Scala
2.8) provides numerous conversions.

The following conversions are supported via asJava, asScala

• scala.collection.Iterable <=> java.lang.Iterable
• scala.collection.Iterator <=> java.util.Iterator
• scala.collection.mutable.Buffer <=> java.util.List

528 44 Scala & Java Interoperability

• scala.collection.mutable.Set <=> java.util.Set
• scala.collection.mutable.Map <=> java.util.Map
• scala.collection.mutable.ConcurrentMap <=> java.util.concurrent.

ConcurrentMap

The following conversions are supported via asScala and through specially
named extension methods to convert to Java collections, as shown:

• scala.collection.Iterable <=> java.util.Collection (via asJavaCollection)
• scala.collection.Iterator <=> java.util.Enumeration (via asJavaEnumeration)
• scala.collection.mutable.Map <=> java.util.Dictionary (via asJavaDictionary)

In addition, the following one-way conversions are provided via asJava:

• scala.collection.Seq => java.util.List
• scala.collection.mutable.Seq => java.util.List
• scala.collection.Set => java.util.Set
• scala.collection.Map => java.util.Map

The following one-way conversion is provided via asScala:

• java.util.Properties => scala.collection.mutable.Map

Thus, the earlier example should be written as follows.

package com.jeh.scala.interop

import scala.collection.JavaConverters._

object SetTest1 extends App {

val jSet: java.util.Set[String] = new java.util.HashSet[String]()

jSet.add("Adam")
jSet.add("Phoebe")

val sSet: scala.collection.mutable.Set[String] = jSet.asScala

}

However, note that the asScala returns a mutable set not an immutable set. This
is because Java collections are all mutable whereas Scala has mutable and immu-
table collections.

It should also be noted that the JavaConverters classes use the Adapter pattern to
wrap the original Java collection (the underlier) within a Scala interface that
resembles the Scala collection types. Thus, both converting and accessing con-
verted collections is a constant time (O(1)) operation introducing only a minor
overhead. Due to this Design Pattern, it is also worth noting that converting Java
collection to Scala and then back to Java yields the original collection, not
double-wrapper.

44.6 Collection Classes 529

44.7 Implementing a Java Interface

Java makes extensive use of interfaces, which are used to define abstract definitions
of method signatures (and static constant values). Scala has no concept of an
interface; however; it does have traits. One of viewing an interface is as a very
restricted type of trait. Thus, a Scala class can implement a Java interface by treating
it as a Trait which it is mixing into that class.

However, unlike Scala traits, interfaces can only have abstract methods. Thus,
the class mixing in the interface must implement the method (or methods) specified
by the interface.

For example, given the following Java interface:

package com.jjh.java;

import java.util.List;

public interface Processor {
double calc(List<String> l);

}

Any Scala class must provide an implementation for the abstract method calc.
Note also that the method calc takes a List, which in the Java world is an interface
itself. Thus whatever is passed into the calc method will be a class or an object
that implements that interface.

The following listing provides a simple Scala class that implements the
Processor interface. The

package com.jjh.interop

import java.util.List

import com.jjh.java.Processor
class MyProcessor extends Processor {

def calc(l: List[String]): Double = {
import scala.collection.JavaConverters._
val list = l.asScala
return list.foldLeft(0)
{ (total, element) => total + element.toInt }

}
}

The simple class MyProcessor converts the Java list into a Scala list to make it
easier to work with. It then processes all the elements within the list in order to
generate a total (it is assumed that all the string sin the list passed in will contain
integer values allowing the toInt operation to convert the string into an integer). The
result returned is a Double (which is treated as a raw value double in the Java
world).

530 44 Scala & Java Interoperability

The interesting thing is that the Scala class MyProcessor could be used from the
Scala world or from the Java world. Thus the following listing implemented in Java
creates a new instance of the MyProcessor and stores it into a variable of type
Processor. It then creates a list of strings and passes them into the MyProcessor
object, etc.

package com.jjh.java;

import java.util.ArrayList;
import java.util.List;

import com.jjh.interop.MyProcessor;

public class TestApp {
public static void main(String[] args) {

Processor proc = new MyProcessor();
List<String> l = new ArrayList<String>();
l.add("32");
l.add("5");
double x = proc.calc(l);
System.out.println(x);

}
}

The output of this program is 37.0.

44.7 Implementing a Java Interface 531

	44 Scala & Java Interoperability
	44.1 Introduction
	44.2 A Simple Example
	44.3 Inheritance
	44.4 Issues
	44.4.1 Scala Objects
	44.4.2 Companion Modules
	44.4.3 Traits

	44.5 Functions
	44.6 Collection Classes
	44.7 Implementing a Java Interface

