
Chapter 43
Scala Build Tools

43.1 Introduction

There are many ways in which a Scala application can be built. These include the
REPL loop and automated compilation within an IDE such as the Eclipse-based
Scala IDE. However, neither of these is suitable for centrally building large
applications as might be found within many commercial organisations. The most
popular build environments for Scala are Maven and SBT. In this chapter, we will
briefly examine both so that you have a flavour of both tools and the potential
benefits and drawbacks of each.

43.2 Why We Need a Build Tool

The first question to consider is why we need a build tool in the first place. In this
book, we have been compiling our Scala applications using the IntelliJ IDE
although we could have compiled them from the command line or used the
Scala REPL interpreter. However, many applications are comprised of many parts,
all of which need to be processed in the appropriate way and package as required.
For example, many Web applications are made up of multiple components:

• HTML files and image files
• PHP scripts
• Java or Scala services
• The libraries used by Scala and Java
• Configuration files
• Database scripts
• Property or metadata data files

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_43

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_43&domain=pdf

Multiple people may develop all of these elements at different times and on
different machines. In addition, the process of building a project may require several
steps or involve different phases, such as compiling the code, testing, the code,
packaging the system up as required by the target platform, installing it on that
platform and deploying it into the target runtime environment. This is illustrated in
Fig. 43.1.

These steps must be repeatable and must bring together a diverse range of
elements.

As mentioned before we could, of course, use our favourite IDEs or write our
own build scripts; however:

• You can build your projects manually but this is tedious and error-prone.
• You can use IDEs like Scala Eclipse. This approach is easy, but not very

portable to server environments, and requires each person to build their part
independently of others.

• You can write scripts to automate the process using tools such as Ant. This
approach does have benefits to commend it; however, a great deal of time can be
spent on designing, testing and maintaining the scripts.

Another approach is to use a dedicated build tool such as Maven or SBT. Both
these tools come with useful internal or default knowledge about different types of
projects, how to build them (for Java and Scala) and what constitutes the normal
build cycle for different types of applications.

43.3 Maven

Maven is an industry standard project build tool that understands project lifecycle
as well as the steps that make up such a lifecycle (see http://maven.apache.org).

Fig. 43.1 Build cycle for
applications

502 43 Scala Build Tools

http://maven.apache.org

Maven was originally designed for the Java programming language but is
equality applicable to Scala and thus is very widely used within industry.

Maven is a convention over configuration-based system. This means that if you
follow the standard conventions then you do not need to explicitly specify addi-
tional information. For example, if you are creating a Web application then as long
as you follow the conventions, Maven will know where to find the elements that
make up a Web application and can package them appropriately when asked to
build the system. This greatly reduces the amount of project set-up and manage-
ment required. However, the defaults are primarily oriented towards Java appli-
cations and thus for Scala we need to indicate that we are working with Scala and
thus there are additional configurations required (although in practice these can be
provided by a Maven archetype—a type of template that provides defaults for
different types of projects).

The other major feature of Maven is its ability to handle the dependencies that
applications have to libraries (and additionally the transitive dependencies that these
libraries themselves have). Maven does this using dependency information asso-
ciated with the type of the project and the specific libraries used by the developer.
To access the definitions for these libraries it uses a dependency framework that can
download libraries from a central repository. This idea is illustrated in Fig. 43.2.
When a developer runs a Maven command, Maven checks to see if it is necessary to
access a particular library. If that is required it will look in a number of predefined
repository locations and access the first that it finds.

Fig. 43.2 Local versus remote repository structure

43.3 Maven 503

Maven also understands the concept of versioning of libraries and thus it can
distinguish between the latest release of a library as well as previous releases of that
library (such as release 1, 2 or 3) and access an appropriate version.

43.3.1 Maven Repositories

The concept of a repository is very important within Maven, and there are two
flavours of repository as shown in Fig. 43.2. These are remote and local
repositories:

• Remote repository. A remote repository is accessed over a network and may be
hosted internally to an organisation and/or externally on the Internet. The central
Maven repository can be viewed via a browser at http://mvnrepository.com. In
many cases an organisation will have their own version either to control the
library versions used or to improve performance.

• Local repository. A local cache of downloaded artefacts, libraries and latest
builds is maintained on each developer’s machine. Maven first checks locally
before trying to download a library—thus reducing the overhead of library
access.

The use of repositories and library version information is one of Maven’s biggest
benefits.

43.3.2 The Maven POM

The core concept within Maven is the Project Object Model or POM (and example
is shown in Fig. 43.3). The POM is actually an XML file that is used to tell Maven
what type of project is being created and to provide Maven with any additional
configuration information that cannot be deduced using the convention over con-
figuration model.

The POM contains detailed metadata information about the project, including

• Organisational information (such as your group Id which is often your organ-
isation’s domain in reverse) and project-specific information such as the name of
the project and the version of the project being built.

• Dependencies such as libraries being used within the project. For example,
ScalaTest is a common library to specify.

• The type of project being constructed such as a stand-alone application, a Web
application, a service.

• Application and testing resources such as data or configuration files.

504 43 Scala Build Tools

http://mvnrepository.com

The POM file can also be used to override any of the default assumptions made
by Maven but this is often not required.

The Maven conventions not specified in Fig. 43.3 include the location of the
source code and the test code, the locations of the repositories containing the
libraries, the steps involved in constructing a stand-alone application, etc. These are
all defaulted. For example, Maven assumes that all source code is found in the
following locations:

• src/main/java
• src/main/test

This is why it is common to find such structures in many other (non-Maven)
projects.

Of course, looking at the above directories you will note that they specify java in
the path; we are working with Scala and thus this is one of the things that must be
changed (or at least added) if we are to use Maven to build a Scala application. This
is considered in the next section.

Fig. 43.3 Simple Java POM

43.3 Maven 505

43.3.3 Scala and Maven

To use Maven with Scala we need to add some additional information to the project
POM file. We need to indicate that we are using Scala and that location of our Scala
code will not be under Java. In Fig. 43.4 we add a dependency specifying that we
are using Scala and specify that the Scala source code can be found in:

• src/main/scala
• src/test/scala

Note that this does not stop us having multiple source directories under src/main
and src/test, and it is not uncommon in projects that use multiple languages to have
a structure such as:

• src/main/java
• src/main/scala
• src/main/javascript

Fig. 43.4 A Scala configuration for a Maven POM file

506 43 Scala Build Tools

• src/test/java
• src/test/scala
• src/test/javascript

Thus the final default project structure for such an application may be modified
to include both a Java and a Scala root directory within the main and test paths. This
is illustrated in Fig. 43.5.

The dependency entry that specifies that we are using Scala indicates the groupId
for Scala (essentially the Scala organisation’s domain) and the artifactId (the name
of the library) followed by the version. In the POM file the version is indicated by a
Maven property scala.version, which is set at the top of the file. This means that it
is easy to find and change the version of Scala being used—this is a common idiom
in Maven files. The end result is that the actual dependency is as shown below:

<dependency>

<groupId>org.scala-lang</groupId>

<artifactId>scala-library</artifactId>

<version>2.10.3</version>

</dependency>

We must also indicate where to find the Scala libraries if they are not available
within the main Maven repository. For a Scala project, Maven must be told where
to find the Scala libraries. This may occur if you wish to use a non-standard or
milestone version of Scala. In our case we are also adding the Scala tools repository
as this provides some bridging tools between Maven and Scala:

Fig. 43.5 Scala Maven project structure

43.3 Maven 507

<repositories>

<repository>

<id>scala-tools.org</id>

<name>Scala-Tools Maven2 Repository</name>

<url>http://scala-tools.org/repo-releases</url>

</repository>

</repositories>

43.3.4 Maven Lifecycle Commands

The same build lifecycle commands can be used whatever the project is (as Maven
understands what they mean relative to that type of project), and thus we have the
following available:

• validate—validate the project; check it complies with the rules for that type of
project.

• compile—compile the source code into .class files.
• test—test the compiled source code; run the tests defined within the src/test

directory.
• package—package in distributable format, e.g. jar
• install—install the package into the local repository
• deploy—copies the final package to the remote repository for sharing with other

developers and projects.

If you are using an IDE, such as the Scala IDE, then you can use a Maven plugin
that will help with creating projects, issuing Maven commands, finding depen-
dencies, etc. For example, using the New Maven Project wizard with the Scala IDE
displays a Maven archetype selection dialog. A Maven archetype is essentially a
definition or template for a particular type of project. There are archetypes for
Web-based applications, archetypes for particular frameworks and a Scala arche-
type (as shown in Fig. 43.6).

The end result of creating a new project in this way is that the default Scala
Maven project structure is created as shown in Fig. 43.7.

43.4 SBT

Although Maven was intended to simplify the definition and construction of
applications, it can seem somewhat complex for very simple applications. As a
consequence there have been initiatives to further simplify the project definition and
build process. One such initiative is the Simple Build Tool, known as SBT for
short.

508 43 Scala Build Tools

Fig. 43.6 Selecting the Scala Maven archetype

Fig. 43.7 A Scala Maven project in the Scala IDE

43.4 SBT 509

SBT is an Open Source build system for Scala (and for Java although it was
originally designed for, and is implemented in, Scala). The key features of the
SBT are:

• Minimal configuration for simple projects,
• Support for Scala and (many) Scala Test frameworks,
• Build tasks written in Scala DSL,
• Dependency support via Ivy. Ivy is a dependencies management system that

handles the version of, and dependencies between, libraries,
• Integration with Scala interpreter.

It is used in many Scala projects including in the construction of Scala itself. It
aims to simplify the build process to allow easy creation, compilation and
deployment of Scala-based applications.

43.4.1 Creating an SBT Project

To create a project using SBT you need to take the following steps:

• Install SBT and create a script to launch it.
• Create a project directory with source files in it.
• Create your build definition.

SBT can be downloaded from the main SBT home page (http://www.scala-sbt.
org)—there are a number of ways in which it is distributed but the simplest in many
cases will be to download the sbt.zip file. Once you extract the SBT content into an
appropriate location you will need to configure it for your environment—see the
guidance on the SBT download page for your platform.

By following the SBT conventions we can get started by ensuring that:

• Sources in the base directory
• Sources in src/main/scala or src/main/java
• Tests in src/test/scala or src/test/java
• Data files in src/main/resources or src/test/resources
• jars in lib directory

By default, SBT will build projects with the same version of Scala used to run
SBT itself.

SBT provides an interactive mode (or console) in which you can use the SBT
console to issue a series of commands and control the build process. Using the sbt
command without any options allows the user to enter the interactive SBT console.

We will use SBT to create a new project via the SBT console. To do this we can
use the np (new project) SBT plugin; prior to version 0.13 of SBT you could create
a default project directly using SBT; however, it is now necessary to use the np
plugin (see the np site for directions on how to do this). This is indicated in

510 43 Scala Build Tools

http://www.scala-sbt.org
http://www.scala-sbt.org

Fig. 43.8. When issuing the np command from within the SBT console, it is nec-
essary to provide the information for the name of the project and your organisation,
etc. The actual template structure follows that of Maven described earlier.

Once we have created a new project, we can now place our application code
under the src/main/scala directory structure and place our tests under the src/test/
scala structure (as shown in Fig. 43.9). The resources directory is for data files,
property files, etc., that might be used with our application.

Although the aim of SBT is that there is little or no configuration required for
simple projects, there are two ways of configuring SBT. The two approaches are the
light configuration and the full configuration.

The light configuration approach is more akin to Ant (another Java build tool),
which is an imperative approach to the definition of a build. That is, the light
approach allows you to specify what constitutes the elements that comprise the
version of the system to build explicitly but using a lightweight syntax.
Figure 43.10 illustrates the SBT configuration file created for our new project
earlier.

The build.sbt file is also where we would place any library dependency infor-
mation for our project. For example,

Fig. 43.8 Creating a project using SBT

Fig. 43.9 Project structure

43.4 SBT 511

// Set the project name and version

name := "my-project"

version := "1.0.0"

// Add a single dependency, for tests.

libraryDependencies += "junit" % "junit" % "4.8" % "test"

// Add multiple dependencies.

libraryDependencies ++= Seq(

"net.databinder" %% "dispatch-google" % "0.7.8",

"net.databinder" %% "dispatch-meetup" % "0.7.8")

This specifies ‘my-project’ as the name of the project; that it is version 1.0.0; and
that it is dependent on the JUnit library as well as two additional libraries.

The full configuration approach is essentially a Scala program implemented
using the SBT DSL for defining the build process. As such you can write almost
anything in the full configuration. However, the DSL makes it easier to specify that
common tasks are to be performed. An example of part of a full configuration file is
shown in Fig. 43.11. As can be seen from this example, it captures similar infor-
mation to the simple build.sbt file but does it in terms of Scala objects.

43.4.2 SBT Lifecycle Commands

In a similar manner to Maven, SBT can be used to issue a series of build commands
such as

• clean Deletes all generated files (in the target directory).
• compile Compiles the main sources (in src/main/scala and src/main/java

directories).
• test Compiles and runs all tests.

Fig. 43.10 SBT build.sbt configuration file

512 43 Scala Build Tools

• console Starts the Scala interpreter with a classpath including the compiled
sources and all dependencies. To return to sbt, type: quit, Ctrl+D (Unix), or Ctrl
+Z (Windows).

• run <argument>* Runs the main class for the project in the same virtual
machine as sbt.

• package Creates a jar file containing the files in src/main/resources and the
classes compiled from src/main/scala and src/main/java.

• help <command> Displays detailed help for the specified command. If no
command is provided, displays brief descriptions of all commands.

However, SBT can be used with Eclipse as an underlying tool. This requires the
installation of the SBT plugin in a similar manner to the installation of a Maven
plugin.

Online References

Ant home page http://ant.apache.org/
Maven home page http://maven.apache.org/
Maven and Scala http://www.scala-lang.org/node/347
Maven Repository http://mvnrepository.com/
Simple Build Tool (SBT) http://www.scala-sbt.org
SBT and Eclipse https://confluence.dev.bbc.co.uk/display/linkeddata/Cheat+sheet
+for+using+Eclipse+to+develop+Scala+applications+on+the+sandbox
SBT np plugin (for new projects)—https://github.com/softprops/np

Fig. 43.11 Part of a Scala definition for a full configuration file for SBT

43.4 SBT 513

http://ant.apache.org/
http://maven.apache.org/
http://www.scala-lang.org/node/347
http://mvnrepository.com/
http://www.scala-sbt.org
https://confluence.dev.bbc.co.uk/display/linkeddata/Cheat%2bsheet%2bfor%2busing%2bEclipse%2bto%2bdevelop%2bScala%2bapplications%2bon%2bthe%2bsandbox
https://confluence.dev.bbc.co.uk/display/linkeddata/Cheat%2bsheet%2bfor%2busing%2bEclipse%2bto%2bdevelop%2bScala%2bapplications%2bon%2bthe%2bsandbox
https://github.com/softprops/np

	43 Scala Build Tools
	43.1 Introduction
	43.2 Why We Need a Build Tool
	43.3 Maven
	43.3.1 Maven Repositories
	43.3.2 The Maven POM
	43.3.3 Scala and Maven
	43.3.4 Maven Lifecycle Commands

	43.4 SBT
	43.4.1 Creating an SBT Project
	43.4.2 SBT Lifecycle Commands

