
Chapter 42
User Input in Scala Swing

42.1 Introduction

The last chapter looked at various different types of user interface component
available within Scala Swing. This chapter now looks at how user input, via those
components, can be handled.

42.2 Handling User Input

If you are familiar with the Java Swing event delegation model, then you will find the
Scala approach to handling user input, a great deal simpler. It is based on the idea of
using pattern matching within reactors to handle user input. Objects publish events
that are listened to by a list of reactors. AReactor is a Partial Function that is defined
by the Type Reaction on the Reactions object to take an Event and return Unit.

If a reactor matches the event type and the source specified, then the associated
behaviour is invoked. This framework is based on the classes that emit events
mixing in the Publisher trait and classes that listen to publishers mixing in the
Reactor trait.

The Publisher trait defines the publish method, the listeners prop-
erty, and invokes the listenTo behaviour. The listeners property holds a list
of reactors that will react to the events raised by the source component. An event is
just an object containing information associated with the action that occurred. For
example, a ButtonEvent indicates the source object that the user clicked on,
whereas a MouseEvent may include the x and y coordinates of the mouse when it
was clicked or moved. The publish method is defined as

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_42

489

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_42&domain=pdf

This sends the event ‘e’ to all the members of the listeners list.
The Reactor trait defines two methods deafTo and listenTo and the

property reactions. The methods are defined as:

• def deafTo(ps: Publisher*): Unit
• Installed reaction will not receive events from the given publisher any longer.
• def listenTo(ps: Publisher*): Unit
• Listen to the given publisher as long as deafTo is not called for them.

For example, for an instance to listen to the event generated by abuttonwe couldwrite:

listenTo(`button`)

The reactions property is an instance of a subclass of the Reactions abstract
class. It defines a set of methods which allow the reactions held in the reactions list
to be processed. It also defines the += and −= methods that can be used to add or
remove reactors from the list of reactors:

• def +=(r: Reaction) Add a reaction.
• def -=(r: Reaction) Remove the given reaction.

An example of using the += method to add some reactors is given below:

reactions += {
case ButtonClicked(`b1`) => println("Hello World")
case ButtonClicked(`b2`) => println("North")
case ButtonClicked(`b3`) => println("South")
case ButtonClicked(`b4`) => println("East")
case ButtonClicked(`b5`) => println("West")

}

In this example, we have added five reactors to the reactions list that handle
behaviour on different buttons.

Thus to listen to user events on buttons, combo boxes, tables, menus, etc., it is
necessary to mix in the Reactor trait and to register yourself with the UI compo-
nents you wish to listen to. This is what the following examples do.

The first example relies on the fact that the MainFrame mixes in the Reactor
trait. This means that you can define the reactions to a button within the body of the
MainFrame itself. Also note that the MainFrame uses the listenTo method to
register itself with the button. The user interface generated by the code is shown in
Fig. 42.1.

Fig. 42.1 A button in a UI

490 42 User Input in Scala Swing

package com.jeh.scala.swing

import scala.swing.Button
import scala.swing.MainFrame
import scala.swing.SimpleSwingApplication
import scala.swing.event.ButtonClicked

class SimpleFrame extends MainFrame {
title = "Hello World!"
val button = new Button {

text = "Click Me!"
}
contents = button

listenTo(button)

reactions += {
case ButtonClicked(button) =>

println("Hello World")
}

}

object SwingSample1 extends SimpleSwingApplication {
def top = new SimpleFrame()

}

In the above code, the mainframe listens to the button for events that it is
publishing. When those events are received, the reactors in the reactions list are
checked in sequence to find one that will handle the event. In this case, the event is
the ButtonClicked event. Thus when the user clicks the button the String Hello
World should be printed out to the console. This is illustrated in Fig. 42.2.

One problem with this code is that the reactor is defined by the MainFrame.
While this works for a simple application is it unlikely that this approach would
work in a larger application. Therefore the following listing modifies this approach
and defines a separate class ButtonReactor that mixes in the Reactor trait

Fig. 42.2 Output from the reactor when button clicked twice

42.2 Handling User Input 491

and defines the reactions within itself. It is then instantiated and used by the
SimpleFrame (MainFrame). Note that the reactor must be registered with the
button by having the listenTo method called on it rather than on the
MainFrame:

package com.jeh.scala.swing

import scala.swing.Button
import scala.swing.MainFrame
import scala.swing.SimpleSwingApplication
import scala.swing.event.ButtonClicked
import scala.swing.Reactor

class SimpleFrame2 extends MainFrame {
title = "Hello World!"

val button = new Button {
text = "Click Me!"

}
val reactor = new ButtonReactor()

contents = button

reactor.listenTo(`button`)
}

class ButtonReactor extends Reactor {
reactions += {

case ButtonClicked(button) =>
println("Hello World")

}
}

object SwingSample2 extends SimpleSwingApplication {
def top = new SimpleFrame2()

}

The actual user interface and the output remain unchanged.

42.2.1 Scala Swing Actions

An action can be used to separate the behaviour associated with a button (or menu
item) from the instance of the button (or menu item) concerned. This can be useful
as it is common within a user interface to have several ways to access the same
operation, for example from a button bar, from a toolbar or from a menu item.
Using an action, this behaviour can be defined once (in the Action) and then reused
with each of the UI components that will be presented to the user. Thus an Action

492 42 User Input in Scala Swing

separates the definition of some behaviour to be applied, from the UI component
used to invoke that behaviour.

An action is defined using the Action type from the scala.swing package.
The action can take a title and the functionality to be invoked when that action is
used. Thus the following lines of code create an action with a title “Click Me” and
the function to apply when the action is invoked (in this case to print a message to
the console):

val myAction = Action("Click Me") {
 println("I was clicked")

}

This action instance can now be used with a range of UI components such as
buttons and menu items. In the following listing we use this action with two
buttons, b1 and b2. Note that the action is used to initialise the action property of
the buttons. Thus both buttons will invoke the same println function when
clicked, wherever they are in the UI.

package com.jeh.scala.swing

import scala.swing.Action
import scala.swing.Button
import scala.swing.FlowPanel
import scala.swing.MainFrame
import scala.swing.SimpleSwingApplication

class ButtonPanel extends MainFrame {

val myAction = Action("Click Me") {
println("I was clicked")

}

val b1 = new Button { action = myAction }
val b2 = new Button { action = myAction }

val panel = new FlowPanel {
contents += b1
contents += b2

}

contents = panel
}

object SwingHelloWorld2 extends SimpleSwingApplication {
def top = new ButtonPanel()

}

42.2 Handling User Input 493

The end result of using the myAction with both buttons is that there is a single
definition of the action behaviour shared between the two button instances. Note
that actions can also be enabled or disabled and have icons, tooltips, etc.

The display generated from the above listing is shown in Fig. 42.3. The result of
clicking on either of the Click Me buttons is that the string “I was clicked” is
printed to the standard output.

42.2.2 Working with Menus

Many (most) applications will have some aspect of a menu bar, menus and items on
those menus. In Scala such user interface components are represented by instances
of the classes MenuBar, Menu and MenuItem. The relationship between these
components is illustrated in Fig. 42.4. These classes are all defined in the scala.
swing package.

As can be seen a MenuBar references (holds) one or more Menus. Menus in
turn reference one or more MenuItems. MenuItems can be either simple menu
items that may be selected, or menus in their own right. This is because the Menu
type extends the MenuItem type and thus we can create hierarchical menus.

The following listing illustrates how a simple MenuBar, with a single Menu
(file), can be created. The Menu file has a single MenuItem (Exit) that is defined
using an Action. Note that the MenuBar is used to set the menuBar property of
the MainFrame. The MenuBar has a contents property, which we are adding the
Menu to. Also note that the Menu has a contents property to which we are adding
the MenuItem (be careful not to confuse these two).

Fig. 42.3 A UI that reuses an
Action

Fig. 42.4 Relationship
between Menus, MenuBars
and MenuItems

494 42 User Input in Scala Swing

package com.jeh.scala.swing

import scala.swing.MainFrame
import scala.swing.SimpleSwingApplication
import scala.swing.Label
import scala.swing.MenuBar
import scala.swing.Menu
import scala.swing.MenuItem
import scala.swing.Action

class SimpleFrame extends MainFrame {
title = "Hello World!"
contents = new Label {

text = "Hello"
}
menuBar = new MenuBar {

contents += new Menu("File") {
contents += new MenuItem(Action("Exit") {
sys.exit(0)

})
}

}
}

object SampleMenuUI extends SimpleSwingApplication {
def top = new SimpleFrame()

}

The result of executing this program is illustrated in Figs. 42.5 and 42.6. The
first figure shows the basic MenuBar display with the File menu shown. The
second figure illustrates what happens when the user moves their mouse over the
File menu and selected the Exit Menu Item.

When the user selects the Exit option, as shown in Fig. 42.6, then the behaviour
defined by the Action in the earlier listing is invoked. In this case it is to call the
sys.exit(0) operation. This invokes the exit behaviour on the system with a
return code of ‘0’, which typically indicates that the application terminated

Fig. 42.5 A UI with a Menu
Bar

Fig. 42.6 Selecting the
‘Exit’ Menu Item

42.2 Handling User Input 495

normally. Explicitly invoking the sys.exit operation is necessary as the main
method, which is usually used to control when an application terminates and only
used to initiate the display. After that, the main method terminates and the exe-
cution of the system is handed over to a UI thread (process). We must therefore be
able to terminate this process in a controlled manner; this is done using the sys.
exit operation.

42.3 A Simple GUI Example

In this section we present a very simple GUI example. An instance of this class
generated the window displayed in Fig. 42.7. This application performs the fol-
lowing functions:

• Displays the string “Hello” in a text field in response to the user clicking on the
Hello button.

• Displays the string “Goodbye” in a text field in response to the user clicking on
the Goodbye button.

• Exits the application in response to the user clicking on the Exit button.

It combines the layout panels and components presented in the last chapter, with
the event handling mechanism described above.

The components that comprise this user interface are illustrated in Fig. 42.8.
This shows that the buttons are organised (displayed by) a flow panel (which does
not itself have any visible presence). The strings are displayed in a text field, and a
label displays the copyright statement. These are all organised within a border panel
that is the top-level contents of the SimpleGUI MainFrame.

The class SimpleGui, see the listing below, first sets the title of the frame to be
“Simple GUI”. It then creates two buttons, which have a text label and a tooltip. It
then creates a new FlowPanel to which it adds two buttons. The program then
creates a non-editable field—note that the editable property is set to false after the
text field is created—this allows this property to change its value over time. It
finally creates a label, for the copyright string. This label uses a new font (the Ariel
font) and introduces a buffer to give a bit of spacing around the text using the
scala.swing.Swing utility type. The button panel, text field and label are

496 42 User Input in Scala Swing

added to the border panel using the constraints Position.North, Position.
Center and Position.South, respectively. Note that we have imported
scala.swing.BorderPanel._ so that we only need to specify Position.
North rather than BorderPanel.Position.North which is easier to read.
Finally the window sets a default size using a new Dimension instance.

Fig. 42.8 Structure of simple GUI application

Fig. 42.7 A simple graphical application

42.3 A Simple GUI Example 497

text = "Hello"
tooltip = "Click to say hello"

}
val b2 = new Button {

text = "Goodbye"
tooltip = "Click to say goodbye"

}

// Set up panel for buttons (using a flow layout)
val panel = new FlowPanel {

contents += b1
contents += b2

}
// Create a non-editable text field and add that
val field = new TextField()
field.editable = false

// Create a label for the frame
val label = new Label() {

text = "(c) 2018: John Hunt"
border = Swing.EmptyBorder(5,5,5,5)
font = new Font("Ariel", Font.BOLD, 12)

}

// Setup litensing to the buttons and reactions
listenTo(b1, b2)
reactions += {

case ButtonClicked(`b1`) => field.text = "Hello"
case ButtonClicked(`b2`) => field.text = "Goodbye"

}

contents = new BorderPanel() {
// Add the button panel to the frame
add(panel, Position.North)
// Add the text field to the centre
add(field, Position.Center)
// Add the label to the bottom of the display
add(label, Position.South)

}

// Resize the window
size = new Dimension(300, 150)

}

object SampleGui extends SimpleSwingApplication {
def top = new SampleGui()

}

package com.jeh.scala.sample

import java.awt.Font
import java.awt.Dimension

import scala.swing._
import scala.swing.BorderPanel._
import scala.swing.event.ButtonClicked

class SampleGui extends MainFrame {
title = "Simple GUI"
// Set up the buttons
val b1 = new Button {

498 42 User Input in Scala Swing

Note that the two buttons are listened to and thus we define two reactors to
handle what should happen when the user clicks on a button. In this case we set the
field.text property to the appropriate string. You could have a different con-
troller for each button. In such a situation, you do not need to test to see which
button generated an event (thus eliminating the case pattern matching statement
that selects the actual behaviour to perform).

42.3 A Simple GUI Example 499

	42 User Input in Scala Swing
	42.1 Introduction
	42.2 Handling User Input
	42.2.1 Scala Swing Actions
	42.2.2 Working with Menus

	42.3 A Simple GUI Example

