
Chapter 41
GUIs in Scala Swing

41.1 Introduction

This chapter describes how to create rich client graphical displays (desktop appli-
cation) using the Scala Swing windowing and graphical types.

Since Scala 2.11, the Scala wing package I is no longer considered to be a part of
Scala’s standard library API and thus some tools may require an additional
dependency to be set up to pick it up. This is not the case with IntelliJ’s IDE but is
the case with the Simple Build Tool (SBT).

The reason for this is that Scala Swing library is now a community-maintained
library and this considered to be unsupported by the core Scala maintainers. For
more information, see https://github.com/scala/scala-swing.

In this chapter, we consider how Windows, buttons, tables, etc., are created,
added to Windows, positioned and organised in Scala.

41.2 Windows as Objects

In Scala, Windows and their contents are instances of appropriate classes (such as
Button or FlowPanel). Thus, when you create a window, you create an object that
knows how to display itself on the computer screen. You must tell it what to display,
although the frameworkwithinwhich the associatedmethod (paint) is called is hidden
from you. You should bear the following points in mind during your reading of this
chapter; they will help you understand what you are required to do:

• You create a window by instantiating an object.
• You define what the window displays by adding a component to its contents,

such as a type of panel or a button.
• You can send messages to the window to change its state, perform an operation

and display a graphic object.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_41

475

https://github.com/scala/scala-swing
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_41&domain=pdf

• The window, or components within the window, can send messages to other
objects in response to user (or program) actions.

• Everything displayed by a window is an instance and is potentially subject to all
of the above.

This approach may very well contrast with your previous experience. In many
other windowing systems, you must call the appropriate functions in order to obtain
a window, providing default behaviour either by using pointers to functions or by
associating some event with a particular function. You also determine what is
displayed in the window by calling various functions on the window.

In the Object-Oriented World, you define how a subclass of the windowing
classes responds to events, for example what it does in response to a request to paint
itself. All the windowing functionality and window display code are encapsulated
within the window itself.

41.3 Windows in Scala

Of course the above description is a little simplistic. It ignores the issue of how a
window is created, initialised and displayed, and how its contents are generated. In
Scala, these are handled by the concepts of a frame, a component and a container:

Frames provide the basic structure for a window: borders, a label and some
basic functionality (e.g. resizing).

Components are graphical objects displayed in a frame. Some other languages refer
to them as widgets. Examples of components are lines, circles, boxes
and text.

Containers are special types of component that are made up of one or more
components (or containers). All the components within a container
(such as a panel) can be treated as a single entity.

Windows have a component hierarchy that is used (amongst other things) to
determine how and when elements of the window are drawn. The component
hierarchy is rooted with the frame, within which components and containers can be
added. Figure 41.1 illustrates a component hierarchy for a window with a frame,
two containers (subclasses of Panel, which is itself a direct subclass of
Container) and a few basic components.

When the runtime environment needs to redraw the window displayed by the
above hierarchy, it starts with the highest component (the frame) and asks it to
redraw itself. It then works down the hierarchy to the bottom components, asking
each to redraw itself. In this way, each component draws itself before any com-
ponents that it contains; this process is handled by the windowing framework. The
user generally only has to redefine the paint method to change the way in which a
component is drawn.

476 41 GUIs in Scala Swing

41.4 Scala Swing

Scala Swing is a Scala wrapping around the underlying Swing library of GUI
classes and types. This of course raises the question ‘What is Swing?’ Swing is a
generic, platform-independent, windowing system originally developed for the Java
programming language. It allows you to write graphical programs that have (al-
most) the same look and feel, whatever the host platform. For example, the
graphical applications presented within this section of the book have been written
primarily on a Mac; however, they have been run on Macs, Windows machines of
various flavours and Linux boxes. This is because these are the machines available
to me, and depending on the time of day, I may be working on one or the other. I do
not need to worry about the host environment, only about the Swing.

There are a number of concepts that are important when considering Swing.
These are:

• All components in Swing are 100% implemented purely in byte codes (and are
referred to as lightweight). This means that the Windows (and their contents)
should look the same whatever platform they are on and should be easier to
maintain across different operating systems. As all graphical components are
“lightweight”, their appearance is controlled purely by the runtime code
(without the need for platform dependent peers—or platform dependent
libraries). In Swing, a separate user interface “view” component performs the
actual rendering of the component on the screen. This allows different views to
be plugged in. This in turn allows the idea of installing different “look and feel”.
This means that it is easier to deploy the same software on different platforms,
but with interfaces that match the interface manager on that particular platform.
This separation of view from the actual component is based on a modified
version of the Model-View-Controller architecture (described earlier in the Play
framework chapter).

Fig. 41.1 Component hierarchy for a sample window

41.4 Scala Swing 477

• Swing also provides a rich set of facilities for graphical user interfaces, including
trees, icons on buttons, dockable menus bars, menus with icons, borders and
improved support for fonts and colours.

However, the Scala Swing library is more than just a wrapping around the
original Swing library. It significantly simplifies the Swing API and the tasks that
the programmer must perform to create a user interface. In many ways, the Scala
Swing library is what the original Swing library should have been; lean, efficient
and simple to work with.

Whichever UI framework you choose to use, such toolkits greatly reduce the
problems that software vendors often face when attempting to deliver their system
on different platforms.

41.5 Scala Swing Packages

There are two key packages within the Scala Swing library.

• scala.swing is the package that contains the core types with which you will be
working, such as Button, ComboBox, EditorPane, FileChooser, FlowPanel,
MainFrame, RadioButton, ScrollPane.

• scala.swing.event package provides types used with the event handling
mechanism that underpins how a UI can react to user inputs (such as what to do
when a user clicks on a button). This package includes types such as
ButtonClicked, KeyPressed, MouseMoved, WindowClosing.

However, you will primarily work with the scala.swing package as this is where
the majority of the types you will need are defined. The reactor framework (dis-
cussed in the next chapter) is used to handle user input and is built on top of the
lower-level event framework (inherited from Java). This framework is also defined
within the scala.swing package.

The key classes within the scala.swing package are:

• Component. This is the base class for all user interface elements that can be
displayed within a Scala window. Components have properties such as whether
they are enabled or not, the font used with them, foreground colours and
background colours, borders and tool tips (text popped up and displayed to the
user if they hover the mouse over the component). Components also publish (or
fire) events that allow developers to react to these events (such as the component
being selected by a user). There are a large number of subtypes for Component
including various types of buttons, panels, fields, menus, tables.

478 41 GUIs in Scala Swing

• Container. This is a base trait for user interface elements that can act as con-
tainers of other UI elements. For example, a FlowPanel can contain a set of
other elements (such as button) organised across the panel. As well as
FlowPanel, BoxPanel, BorderPanel, MenuBar, ScrollPane, SplitPane, etc., are
all examples of containers.

• MainFrame. This class defines a frame that can be used as the top-level, main
application window that can contain other containers and components. When
the MainFrame is closed, then the UI application is terminated.

• SwingApplication and SimpleSwingApplication. These classes provide a set
of utility methods to handle starting up a UI application. SwingApplication is
the root class, and SimpleSwingApplication is its subclass. Most UI applications
will extend the SimpleSwingApplication class (e.g. instead of mixing in the App
trait). The subtype extending this class must implement the top method that must
return the top-level frame (e.g. MainFrame) to be used with this application.
The UI framework initialisation and initiation is done by the SimpleSwing
Application. If you wish to customise the behaviour of the start-up and shut-
down process, then you can override the shutdown method or extend the startup
method.

• FlowPanel. It is a panel (i.e. container) that organises its contents horizontally,
one after the other. If the contents do not fit in the current display, then the pane
will introduce a break and try on the next line. It is similar in effect to a JPanel
with a FlowLayout in Java Swing.

• BorderPanel. It is a panel (i.e. container) that organises its contents into discreet
locations, such as centre, top, bottom, left and right.

• Button provides the basic button type display and behaviour present in most
user interfaces.

• Menu,MenuBar andMenuItem. The components that can be used to construct
a menu across the top of a UI.

• ScrollPane a type used to wrap up other UI elements that need to be displayed
using a scrollable view. The view is controlled by a set of scroll bars.

• TextField and TextArea. Both are used to display textual information and may
be editable or not. A TextField is a single line display, and a TextArea is a
multi-line textual display. A TextArea should be displayed within a ScrollPane
if it is too large to display within the available space.

• Table. It provides a tabular display comprising rows and columns and
optionally a set of headings.

• ComboBox is used to allow a user to make a selection from a list of pre-defined
items.

• ListView is used to present a (non-editable) list of items.

41.5 Scala Swing Packages 479

41.6 Swing Scala Worked Examples

This section presents a series of examples that explore a number of the concepts that
underpin the Scala Swing framework and illustrate how some of the key classes
presented above can be used.

41.6.1 Simple Hello World UI

The following listing provides a basic user interface containing a Button labelled
“Click Me!” and with a window title “Hello World!”. The application imports the
Button, MainFrame and SimpleSwingApplication types from the scala.swing
package. It then defines a class SimpleFrame that is a subclass of MainFrame. It
defines the title of the main frame and creates a new instance of the Button class.
The button will have the text “Click Me!” displayed. The instance of the button is
then used as the contents of the main display area of the frame.

The object SwingHellWorld extends the SimpleSwingApplication type and
defines the top method as returning an instance of the new SimpleFrame class.
When this SwingHelloWorld application runs, the main method defined by the
SimpleSwingApplication executes and sets up the windowing framework and calls
the top method to display the top most element of the UI. The result of executing
this application is shown in Fig. 41.2.

480 41 GUIs in Scala Swing

41.6.2 Panels and UI Layout

Theexample shown in the last sectionworksas a simpleuser interfaceexample; however,
the whole of the display is taken up with a single button. User interfaces are normally
comprised of multiple components displayed within a single frame. This is achieved in
Scala Swing using appropriate (potentially nested) containers as discussed earlier.

In this section, we will look at using a simple panel, a FlowPanel that allows
multiple components and/or contains to be contained within it. The result of exe-
cuting our program is shown in Fig. 41.3. The FlowPanel provides a flow-like layout
with user interface components being added to the contents buffer of the FlowPanel.

In the following listing, we create two buttons (b1 and b2). These buttons are
added to the contents of the FlowPanel when we create the panel. Notice that the
FlowPanel instance is then set as the content for the main frame’s display.

Fig. 41.2 Simple Hello
World UI

41.6 Swing Scala Worked Examples 481

Note that we could of course have created the FlowPanel and then added the
buttons to the FlowPanel’s contents buffer at a later date, for example

You may be wondering at this point how the FlowPanel knew where to position
the buttons—we did not give it absolute X and Y coordinates.

The actual positioning of the components is handled by an object used by the
panel. This object is known as a layout manager. A layout manager is thus the
object that works with a graphical application and the host platform to determine
the best way to display the objects in the window. The programmer does not need to
worry about what happens if a user resizes a window and works on a different
platform or a different windowing system.

Layout managers help to produce portable, presentable user interfaces. There are
a number of different layout managers that use different philosophies to handle the
way in which they lay out components: FlowLayout, BorderLayout,
GridLayout. Note that if you are familiar with Java’s Swing library, then you
will note that in Scala the layout managers, that handle actually determining where
components are placed, are combined with the panels rather than being separate
entities. Thus, we have FlowPanel, GridPanel, BorderPanel, etc.

41.6.3 Working with a BorderPanel

FlowPanel is not the only panel type available to the Scala programmer. Another
type of panel is the BorderPanel. The BorderPanel possesses a layout manager that
has a concept of four outer points and a central point (labelled North, East, South,
West and Centre).

The panel is thus divided up as illustrated in Fig. 41.4. Of course, you do not
have to place components at all available locations. If you omit one (or more)
locations, the others stretch to fill up the space (except centre which depends on the
size of the window in which the BorderPanel is being used). The border panel
honours the height of the components in the north and south regions (but forces

Fig. 41.3 Using a FlowPanel

482 41 GUIs in Scala Swing

them to fill the region horizontally). In turn it honours the width of the components
in the East and West regions (but forces them to fill the available vertical space).
The centre component is forced to fill the remaining space (thus its preferred width
and height are ignored).

Fig. 41.4 Using the
BorderPanel in a UI

41.6 Swing Scala Worked Examples 483

In the above program, we create five buttons that are positioned within the
BorderPanel using the position constraints, Centre, North, South, Each and West.

41.6.4 Working with a BoxPanel

Yet another panel is the BoxPanel; this is similar to the FlowLayout except that it
can have a Horizontal or a Vertical orientation. In which case it either lays out
components across the screen or down the screen depending upon the orientation. It
therefore offers greater flexibility than the FlowPanel.

The following program uses the Horizontal orientation to create a display similar
in style to the FlowLayout. The display contains a button and a label and is shown
in Fig. 41.5.

484 41 GUIs in Scala Swing

Note that we change the orientation of the BoxPanel such that it has vertical
orientation as shown below:

This results in the display altering as shown in Fig. 41.6. Now the button is
positioned above the label rather than beside it.

41.6.5 Displaying a Table

Another common user interface component is the Table. Tabes are user to present
tabular information using rows and columns. A simple example table is shown in
Fig. 41.7. This table has a row containing the headings (which are ‘name’, ‘county’

Fig. 41.6 An alternative
orientation for the BoxPanel

Fig. 41.5 Using a BoxPanel

Fig. 41.7 Using a Table in a UI

41.6 Swing Scala Worked Examples 485

and ‘town’) and four rows with the actual data. Such tables can respond to user
selection, editing and ordering. However, in this example, it is a read only table that
cannot be altered.

To create a table, we use the scala.swing.Table class. This can be constructed
with an array of names and an array of arrays for the data. Strictly speaking behind
the table is a table model that holds the actual data (see Fig. 41.8). There are also
cell renderers that are used to determine how to display different types of data. In
the following listing, we are merely using two arrays as a very simple way of
initialising these models.

The following listing creates a new Table using the headers and rowData arrays.
The border property of the Table is set to be a LineBorder coloured in Black. This is
from the javax.swing.border package which is part of the underlying Java Swing
library that is being reused here. Note that the Colour Black is from the underlying
java.awt package that includes the Colour type.

Once the table is created, it added the FlowPanel which is used for the main
contents of the window. Note that the table is wrapped within a ScrollPane. This
provides any scrollbars for the table if they are required.

Fig. 41.8 Relationship
between Table, TableModel
and CellRenderers

486 41 GUIs in Scala Swing

41.6 Swing Scala Worked Examples 487

	41 GUIs in Scala Swing
	41.1 Introduction
	41.2 Windows as Objects
	41.3 Windows in Scala
	41.4 Scala Swing
	41.5 Scala Swing Packages
	41.6 Swing Scala Worked Examples
	41.6.1 Simple Hello World UI
	41.6.2 Panels and UI Layout
	41.6.3 Working with a BorderPanel
	41.6.4 Working with a BoxPanel
	41.6.5 Displaying a Table

