
Chapter 40
Scalaz

40.1 Introduction

If you start working with Scala you will probably quickly come across the library
Scalaz. It is a very widely used set of extensions to the core language. In many
cases when people talk about developing systems in Scala they actually mean a
combination of Scala and Scalaz.

Scalaz is actually a very large library of extensions which could have (and do
have) books dedicated just to it. Indeed, if you look at

• http://eed3si9n.com/learning-scalaz

You can find a 21-day course dedicated to Scalaz. As this book is intended as an
introduction to Scala and covers much of the language, this chapter will be
restricted to an introduction to Scalaz and an overview of the most useful features
for you at this stage.

40.2 Obtaining Scalaz

Scalaz is not a standard part of the Scala installation. You must therefore add it
yourself to your environment. At the time of writing, the current version of Scalaz is
7.2.17 for Scala 2.12.

The easiest way is to add it to your project dependencies using Maven or SBT.
To add Scalaz to your Maven project use:

<dependency>

<groupId>org.scalaz</groupId>

<artifactId>scalaz-core_2.12</artifactId>

<version>7.2.17</version>

</dependency>

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_40

463

http://eed3si9n.com/learning-scalaz
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_40&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_40&domain=pdf

If you are using SBT, add the following line to your build file:

libraryDependencies += "org.scalaz" %% "scalaz-core" % "7.2.17"

Alternatively, you can download Scalaz from

• http://central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-
core_2.12-7.2.17.jar

40.3 Scalaz Overview

Scalaz is a very large and exhaustive library of extensions for Scala. Its focus is on
emphasizing and supporting functional programming and type correctness. Many
teams therefore adopt Scalaz either because they wish to explicit its set of typesafe
extensions or because they wish to further push the use of functional program (or of
course both).

A significant aspect of Scala is its support for typesafe operations. These are
primarily supported by the introduction of Typeclasses in Scalaz. A Typeclass is a
mechanism for ad hoc, compile time, polymorphism. Note the comment about
‘compile time’ in that sentence. In standard Scala (and languages such as Java and
C#) runtime polymorphism is supported. However, Scalaz supports compile time
polymorphism, while the distinction may not be of that much interest to you; it does
mean that at compile time you can be notified of potential issues that might only be
identified at runtime due to undesirable behaviour. An example might be:

1 == "1"

This is legal Scala but will always return false; as an Int can never equal a String.
In Scalaz the ‘===’ operator is used to perform a compile time check on the types.
Thus

1 == "1"

will generate a compile time error (rather than allowing the runtime environment to
merely execute).

From a functional programming point of view, the extensions provided by
Scalaz are inspired by Haskell and the theoretical concepts behind functional
programming. This can mean that, at least initially, it can seem that Scalaz is
complicated and quiet abstract (which is probably true) although some aspects of
the library are very straight forward to use and very useful (and these are the focus
of this chapter).

464 40 Scalaz

http://central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-core_2.12-7.2.17.jar
http://central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-core_2.12-7.2.17.jar

There are many tutorials available online which will explore much of the the-
oretical side of Scala such as Monads, Functors, Applicatives, etc., and some of
these are listed at the end of this chapter.

40.4 Some Useful Typeclasses

40.4.1 Equals Typeclass

Scalaz provides a typesafe equals operator that will generate a compile error if
incompatible types are compared.

For example, while == and != in standard Scala will allow you to compare
a String and an Int but will always return false, the Scalaz operators === and =/=
operators will result in a compile time error:

As can be seen above although Scala allows the integer 1 and the string “1” to be
compared, Scalaz does not.

40.4.2 Order Typeclass

Scalaz provides a very easy to use typeclass that provides for typesafe ordering.
This means that instances can be compared for relative ordering but that ordering of
incompatible types will now generate a runtime error:

40.3 Scalaz Overview 465

In the above example Scala allows the integer 1 and the double 4 to be com-
pared, whereas Scalaz does not.

The ?|? operator can also be used to compare two compatible values and
returns a scalaz.Ordering object. This object is one of:

• Ordering.LT—indicating that the first value is less than the second value
• Ordering.EQ—indicating that the values are equal
• Ordering.GT—indicating that the second value is greater than the first.

The output generated from this application is:

1 < 4d: true

1 ?|? 1: EQ

1 ?|? 2: LT

2 ?|? 1: GT

Its less than

40.5 Standard Class Extensions

40.5.1 Extensions to Option

Scalaz provides a set of extensions to the Option type in Scala. These extensions
make it easier to work with Options. For example, there are some convenience
constructor methods that return Option types (rather than returning Some or None
types). See

466 40 Scalaz

• some—returns a Some instance but the specified type is Option[T]
• none[T]—returns a None value of type Option[T]

Scalaz also provides some alternatives to the getOrElse operation available
on standard Options types. These such as the ternary operator for Options do not
directly have an equivalent in the standard library.

The final operator examined here is the ‘*’ operator that returns the item
contained in the Option (if it is defined), otherwise it returns the Zeroth value for
the type specified. If the type is an Int, then it is 0, if it is a Boolean, then it is
false, etc.

40.5 Standard Class Extensions 467

The output from this simple application is:

x1: 20

x2: 10

x3: 5

3

0

40.5.2 Boolean Extensions

Scalaz also adds some additional functionality to the Boolean type. For example,
it provides the ?| and ?? operators.

The ?| operator is a ternary operator that will return the first value following the
‘?’ if the condition is true, otherwise it returns the second value. For example,

The ?? operator returns the given argument if the condition is true, otherwise it
returns the Zeroth version of the argument, thus

468 40 Scalaz

40.5.3 Extensions to List

Scalaz also provides some extensions to the List type. Some of these extensions are
shown below.

In the above example three extensions to the List type are shown, namely:

• tailOption—this returns a list containing the tail of the list it is applied to
wrapped in an Option.

• Intersperse—this adds the provided argument to the elements in the original list,
between each of the values held in the list.

• Powerset—this returns a list of lists that represent all combinations of the values
in the original list.

Note that none of these operations affects the original list; they all generate a new
list.

The output from the example is:

Some(List(20, 30))

List (10, 1, 20, 1, 30)

List (List(a, b, c), List(a, b), List(a, c), List(a), List(b, c), List

(b), List(c), List())

40.5 Standard Class Extensions 469

40.5.4 Extensions for Map

Another collection type that is extended by Scalaz is Map. As an example, the
following code example illustrates altering a map within a safe manner. The
example creates a simple Map and then uses the Scalaz alter operation to modify the
value with the key “a”. In this case a function is applied to the value in which the
value 5 is applied to the existing value. It uses the |+| which is an alias for
mappend (a function that appends a value and returns the result). The mappand
function takes two values of the same type and returns a value of that type (which is
the result of appending them). In this case the argument f to the function is of type
Option[Int].

The second example in the above code uses a method intersectWith that
determines the intersection (between keys) of two maps. In this case only the key
“b” is common to the maps m1 and m3. The result returned in this case is the value
held in the second map. If we wanted the value held in the first map, then we would
return that value from the function passed to the intersectWith method, for
example,

The output from this example is:

m1: Map(a -> 10, b -> 20)

m2: Map(a -> 15, b -> 20)

m3: Map(b -> 250, c -> 300)

m1.intersectWith(m3)((m1v,m3v) => m3v): Map(b -> 250)

470 40 Scalaz

40.5.5 Extensions to String

Scalaz also provides some interesting extensions to the String class.
One example is its introduction of the plural operator which tries (with some

mixed success) to convert words into their plural version, for example “Day” into
“Days”. It is a little naïve as the approach taken is to pluralise a String by appending
an "s" unless this String ends with "y" and not one of ["ay", "ey", "iy", "oy", "uy"]
in which case the 'y' character is chopped and "ies" is appended. It is possible to
specify an integer to plural that indicates how many of something is being specified;
1 indicates a singular value (and thus just returns the string as is).

A more useful feature of the string extensions is the set of parse operations.
These will safely parse booleans, bytes, shorts, longs, floats, doubles and ints from a
string without throwing an exception if the value passed to them is not a number.
Instead the operations return a Success or Failure object that wraps the result or the
associated exception.

The output generated by the example application is:

s1.plural(2): Days

Success(10.0)

Failure(java.lang.NumberFormatException: For input string: "ten")

40.6 The Other Either

Another feature of Scalaz is its provision of what is sometimes known as the other
Either. Scala provides Either as a way of capture that either a successful result has
been generated or not. Scalaz version provides a set of utility methods that make it
easier to work with.

The Scalaz Disjunction is defined as \/[A, B]. It is right biased (as right by
convention is the success element) and provides operations such as map, flatMap,
etc., that work on the right side of the object.

40.5 Standard Class Extensions 471

The output from this simple example is:

\/-(1234)

-\/(java.lang.NumberFormatException: For input string: "John")

One of the easiest ways of working with Sclacz \/[A, B] is to use the
fromTryCatchNonFatal method. This will try to execute an expression. If it is
successful, then the result is stored in the right side of the result. If an exception is
thrown, then this is stored in the left side. The side of the value is indicated by a ‘-’;
either to the right or left of the \/ symbol (as shown above).

40.7 Tagging

Tags can be used to create new types based on existing types. It uses the @@ symbol
to tag an existing type as another type (creating a new type). This can be useful if
you want to use, for example, a String to represent an ID but do not want just any
old string to be used.

The following example illustrates the basic idea of using tagging to create a new
type:

472 40 Scalaz

In this example, we use the @@ symbol to tag a String with the class MyID. This
is used to define a type Id (which is actually an alias to String @@ MyId, which
expands to @@[String, MyId], which in turn expands to String with
Tagged[MyId]).

Online Scalaz Resources

http://central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-core_2.
12-7.2.17.jar download Scalz JAR file
http://scalaz.github.io/scalaz/#scaladoc ScalaDoc for Scalaz
http://eed3si9n.com/learning-scalaz 21-day online course for Scalaz
http://typelevel.org/blog/2013/10/13/towards-scalaz-1.html Towards Scalaz Tutorial

40.7 Tagging 473

http://www.central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-core_2.12-7.2.17.jar
http://www.central.maven.org/maven2/org/scalaz/scalaz-core_2.12/7.2.17/scalaz-core_2.12-7.2.17.jar
http://www.scalaz.github.io/scalaz/#scaladoc
http://www.eed3si9n.com/learning-scalaz
http://www.typelevel.org/blog/2013/10/13/towards-scalaz-1.html

	40 Scalaz
	40.1 Introduction
	40.2 Obtaining Scalaz
	40.3 Scalaz Overview
	40.4 Some Useful Typeclasses
	40.4.1 Equals Typeclass
	40.4.2 Order Typeclass

	40.5 Standard Class Extensions
	40.5.1 Extensions to Option
	40.5.2 Boolean Extensions
	40.5.3 Extensions to List
	40.5.4 Extensions for Map
	40.5.5 Extensions to String

	40.6 The Other Either
	40.7 Tagging

