
Chapter 4
Constructing an Object-Oriented System

4.1 Introduction

This chapter takes you through the design of a simple Object-Oriented system
without considering implementation issues or the details of any particular language.
Instead, this chapter illustrates how to use Object Orientation concepts to construct
a software system. We first describe the application and then consider where to start
looking for objects, what the objects should do and how they should do it. We
conclude by discussing issues such as class inheritance and answer questions such
as “where is the structure of the program?”.

4.2 The Application: Windscreen Wipe Simulation

This system aims to provide a diagnosis tutor for the equipment illustrated in
Fig. 4.1. Rather than use the wash–wipe system from a real car, students on a car
mechanics diagnosis course use this software simulation. The software system
mimics the actual system, so the behaviour of the pump depends on information
provided by the relay and the water bottle.

The operation of the wash–wipe system is controlled by a switch which can be in
one of five positions: off, intermittent, slow, fast and wash. Each of these settings
places the system into a different state:

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_4

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_4&domain=pdf

Switch
setting

System state

Off The system is inactive

Intermittent The blades wipe the windscreen every few seconds

Slow The wiper blades wipe the windscreen continuously

Fast The wiper blades wipe the windscreen continuously and quickly

Wash The pump draws water from the water bottle and sprays it onto the windscreen

For the pump and the wiper motor to work correctly, the relay must function
correctly. In turn, the relay must be supplied with an electrical circuit. This elec-
trical circuit is negatively fused, and thus the fuse must be intact for the circuit to be
made. Cars are negatively switched as this reduces the chances of short circuits
leading to unintentional switching of circuits.

4.3 Where Do We Start?

This is often a very difficult point for those new to Object-Oriented systems. That is,
they have read the basics and understand simple diagrams, but do not know where
to start. It is the old chestnut, “I understand the example but do not know how to
apply the concepts myself”. This is not unusual and, in the case of Object
Orientation, is probably normal.

The answer to the question “where do I start?” may at first seem somewhat
obscure; you should start with the data. Remember that objects are things that
exchange messages with each other. The things possess the data that is held by the
system and the messages request actions that relate to the data. Thus, an
Object-Oriented system is fundamentally concerned with data items.

Before we go on to consider the Object-Oriented view of the system, let us stop
and think for a while. Ask yourself “where would I start if I was going to develop

Fig. 4.1 Windscreen wash–wipe system

22 4 Constructing an Object-Oriented System

such a system in C or Pascal or even Ada?” In most cases, the answer is “with some
form of functional decomposition”. That is, you might think about the main func-
tions of the system and break them down into subfunctions and so on. As a natural
part of this exercise, you would identify the data required to support the desired
functionality. Notice that the emphasis would be on the system functionality.

Let us take this further and consider the functions we might identify for the
example presented above:

Function Description

Wash Pump water from the water bottle to the windscreen

Wipe Move the windscreen wipers across the windscreen

We would then identify important system variables and subfunctions to support
the above functions.

Now let us go back to the Object-Oriented view of the world. In this view, we
place a great deal more emphasis on the data items involved and consider the
operations associated with them (effectively, the reverse of the functional decom-
position view). This means that we start by attempting to identify the primary data
items in the system; next, we look to see what operations are applied to, or per-
formed on, the data items; finally, we group the data items and operations together
to form objects. In identifying the operations, we may well have to consider
additional data items, which may be separate objects or attributes of the current
object. Identifying them is mostly a matter of skill and experience.

The Object-Oriented design approach considers the operations far less important
than the data and their relationships. In the next section we examine the objects that
might exist in our simulation system.

4.4 Identifying the Objects

We look at the system as a whole and ask what indicates the state of the system. We
might say that the position of the switch or the status of the pump is significant.
This results in the data items shown in Table 4.1.

Table 4.1 Data items and their associated state information

Data item States

Switch setting Is the switch set to off, intermittent, wipe, fast wipe or wash?

Wiper motor Is the motor working or not?

Pump state Is the pump working or not?

Fuse condition Has the fuse blown or not?

Water bottle level The current water level

Relay status Is current flowing or not?

4.3 Where Do We Start? 23

The identification of the data items is considered in greater detail later. At this
point, merely notice that we have not yet mentioned the functionality of the system
or how it might fit together, we have only mentioned the significant items. As this is
such a simple system, we can assume that each of these elements is an object and
illustrate it in a simple object diagram (Fig. 4.2).

Notice that I have named each object after the element associated with the data
item (e.g. the element associated with the fuse condition is the fuse itself) and that
the actual data (e.g. the condition of the fuse) is an instance variable of the object.
This is a very common way of naming objects and their instance variables. We now
have the basic objects required for our application.

4.5 Identifying the Services or Methods

At the moment, we have a set of objects each of which can hold some data. For
example, the water bottle can hold an integer indicating the current water level.
Although Object-Oriented systems are structured around the data, we still need some
procedural content to change the state of an object or to make the system achieve
some goal. Therefore, we also need to consider the operations a user of each object
might require. Notice that the emphasis here is on the user of the object and what
they require of the object, rather than what operations are performed on the data.

Let us start with the switch object. The switch state can take a number of values.
As we do not want other objects to have direct access to this variable, we must
identify the services that the switch should offer. As a user of a switch we want to
be able to move it between its various settings. As these settings are essentially an
enumerated type, we can have the concept of incrementing or decrementing the
switch position. A switch must therefore provide a moveUp and a moveDown
interface. Exactly how this is done depends on the programming language; for now,
we concentrate on specifying the required facilities.

If we examine each object in our system and identify the required services, we
may end up with the Table 4.2.

Fig. 4.2 Objects in
simulation system

24 4 Constructing an Object-Oriented System

We generated this table by examining each of the objects in isolation to identify
the services that might reasonably be required. We may well identify further ser-
vices when we attempt to put it all together.

Each of these services should relate to a method within the object. For example,
the moveUp and moveDown services should relate to methods that change the
state instance variable within the object. Using a generic pseudo-code, the
moveUp method, within the switch object, might contain the following code:

define method moveUp()

if state == "off" then

state = "wash"

elseif state == "wash" then

state = "wipe"

endif

end define method

This method changes the value of the state variable in switch. The new
value of the instance variable depends on its previous value. You can define
moveDown in a similar manner. Notice that the reference to the instance variable
illustrates that it is global to the object. The moveUp method requires no param-
eters. In Object-Oriented systems, it is common for few parameters to be passed
between methods (particularly of the same object), as it is the object that holds the
data.

Table 4.2 Object services

Object Service Description

Switch moveUp Increment switch value

moveDown Decrement switch value

state? Return a value indicating the current switch state

Fuse working? Indicate if the fuse has blown or not

Wiper motor working? Indicate whether the wipers are working or not

Relay working? Indicate whether the relay is active or not

Pump working? Indicate whether the pump is active or not

Water bottle fill Fill the water bottle with water

extract Remove some water from the water bottle

empty Empty the water bottle

4.5 Identifying the Services or Methods 25

4.6 Refining the Objects

If we look back to Table 4.2, we can see that fuse, wiper motor, relay and pump all
possess a service called working? This is a hint that these objects may have
something in common. Each of them presents the same interface to the outside
world. If we then consider their attributes, they all possess a common instance
variable. At this point, it is too early to say whether fuse, wiper motor, relay and
pump are all instances of the same class of object (e.g. a Component class) or
whether they are all instances of classes which inherit from some common super-
class (see Fig. 4.3). However, this is something we must bear in mind later.

4.7 Bringing It All Together

So far we have identified the primary objects in our system and the basic set of
services they should present. These services were based solely on the data the
objects hold. We must now consider how to make our system function. To do this,
we need to consider how it might be used. The system is part of a very simple
diagnosis tutor; a student uses the system to learn about the effects of various faults
on the operation of a real wiper system, without the need for expensive electronics.

Fig. 4.3 Possible classes for components in the simulation

26 4 Constructing an Object-Oriented System

We therefore wish to allow a user of the system to carry out the following
operations:

• change the state of a component device
• ask the motor what its new state is.

The moveUp and moveDown operations on the switch change the switch’s
state. Similar operations can be provided for the fuse, the water bottle and the relay.
For the fuse and the relay, we might provide a changeState interface using the
following algorithm:

define method changeState()

if state == "working" then

state = "notWorking"

else

state = "working"

endif

end define method

Discovering the state of the motor is more complicated. We have encountered a
situation where one object’s state (the value of its instance variable) is dependent on
information provided by other objects. If we write down procedurally how the value
of other objects affects the status of the pump, we might get the following
pseudo-code:

if fuse is working then

if switch is not off then

if relay is working then

pump status = "working"

endif

endif

endif

This algorithm says that the pump status depends on the relay status, the switch
setting and the fuse status. This is the sort of algorithm you might expect to find in a
main() program. It links the subfunctions together and processes the data.

In an Object-Oriented language (such as Scala), we do not have a main program
in the same way that a C program has. Instead the main() method in Scala is an
initiating point for an Object-Oriented system (in Scala this is simplified further by
the use of the App trait). As it is part of an object, the main method can trigger the
creation of instances, but it is not itself part of those instances. This can be con-
fusing at first; however, if you think of the main() method in Scala as initiating a
program, that is the starting point for a program, then you are fairly close.

4.7 Bringing It All Together 27

In an Object-Oriented system, well-mannered objects pass messages to one
another. How then do we achieve the same effect as the above algorithm? The
answer is that we must get the objects to pass messages requesting the appropriate
information. One way to do that is to define a method in the pump object that gets
the required information from the other objects and determines the motor’s state.
However, this requires the pump to have links to all the other objects so that it can
send them messages. This is a little contrived and loses the structure of the
underlying system. It also loses any modularity in the system. That is, if we want to
add new components, then we have to change the pump object, even if the new
components only affect the switch. This approach also indicates that the developer
is thinking too procedurally and not really in terms of objects.

In an Object-Oriented view of the system, the pump object only needs to know
the state of the relay. It should therefore request this information from the relay. In
turn, the relay must request information from the switches and the fuse.

Figure 4.4 illustrates the chain of messages initiated by the pump object:

1. pump sends a working? message to the relay
2. relay sends a state? message to the switch

the switch replies to the relay
3. relay sends a second working? message to the fuse

the fuse replies to the relay
the relay replies to the motor
If the pump is working, then the pump object sends the final message to the
water bottle

4. pump sends a message extract to the water bottle.

In step four, a parameter is passed with the message because, unlike the previous
messages that merely requested state information, this message requests a change in

Fig. 4.4 Collaborations between the objects for wash operation

28 4 Constructing an Object-Oriented System

state. The parameter indicates the rate at which the pump draws water from the
water bottle.

The water bottle should not record the value of the pump’s status as it does not
own this value. If it needs the motor’s status in the future, it should request it from
the pump rather than using the (potentially obsolete) value passed to it previously.

In Fig. 4.4, we assumed that the pump provided the service working? which
allows the process to start. For completeness, the pseudo-code of the working?
Method for the pump object is:

def working?()

begin

this.status = relay.working().

if this.status == "working" then

water_bottle.extract(this.status)

endif

end

end define method

This method is a lot simpler than the procedural program presented earlier. At no
point do we change the value of any variables that are not part of the pump,
although they may have been changed as a result of the messages being sent. Also,
it only shows us the part of the story that is directly relevant to the pump. This
means that it can be much more difficult to deduce the operation of an
Object-Oriented system merely by reading the source code. Some Scala environ-
ments (such as the Scala IDE) alleviate this problem, to some extent, through the
use of sophisticated browsers.

4.8 Where Is the Structure?

People new to Object Orientation may be confused because they have lost one of
the key elements that they use to help them understand and structure a software
system: the main program body. This is because the objects and the interactions
between them are the cornerstone of the system. In many ways, Fig. 4.4 shows the
Object-Oriented equivalent of a main program. This also highlights an important
feature of most Object-Oriented approaches: graphical illustrations. Many aspects
of object technology, for example, object structure, class inheritance and message
chains, are most easily explained graphically.

Let us now consider the structure of our Object-Oriented system. It is dictated by
the messages that are sent between objects. That is, an object must possess a
reference to another object in order to send it a message. The resulting system
structure is illustrated in Fig. 4.5.

4.7 Bringing It All Together 29

In Scala, this structure is achieved by making instance variables reference the
appropriate objects. This is the structure which exists between the instances in the
system and does not relate to the classes, which act as templates for the instances.

We now consider the classes that create the instances. We could assume that
each object is an instance of an equivalent class (see Fig. 4.6a). However, as has

Fig. 4.5 Wash–wipe system structure

Component Switch Water
bottle

Switch
Component Waterbottle

Motor

(aPump)

(a)

(aSwitch) (aPump) (aFuse)

(aFuse) (aRelay) (aWaterbottle)(aSwitch)(aMotor)

(aWaterbottle)(aRelay)

(aMotor)

Switch Water
bottle Motor Fuse Pump Relay

(b)

(c)

Fig. 4.6 Possible class inheritance relationships

30 4 Constructing an Object-Oriented System

already been noted, some of the classes bear a very strong resemblance. In par-
ticular, the fuse, the relay, the motor and the pump share a number of common
features. Table 4.3 compares the features (instance variables and services) of these
objects.

From this table, the objects differ only in name. This suggests that they are all
instances of a common class such as Component (see Fig. 4.6b). This class would
possess an additional instance variable, to simplify object identification.

If they are all instances of a common class, they must all behave in exactly the
same way. However, we want the pump to start the analysis process when it
receives the message working? so it must possess a different definition of
working? from fuse and relay. In other ways it is very similar to fuse and relay,
so they can be instances of a class (say Component) and pump and motor can be
instances of classes that inherit from Component (but redefine working?). This is
illustrated in Fig. 4.6c. The full class diagram is presented in Fig. 4.7.

4.9 Summary

In this chapter, you have seen how a very simple system can be broken down into
objects. These objects combine to provide the overall functionality of the system.
You have seen how the data to be represented determines the objects used and that
the interactions between objects determine the structure of the system. You should
also have noted that objects and their classes, methods and instance variables are
identified by more of an evolutionary process than in languages that are not Object
Oriented.

4.10 Exercises

Take a system with which you are familiar and try to break it down into objects.
Carry out a similar set of steps to those described above. Do not worry about how to
implement the objects or the classes. Use whatever representation best fits your way
of working to describe what the methods do (pseudo-code or a programming lan-
guage, such as C or Pascal, if you prefer). You can even use a flow chart if you are
most comfortable with that. It is very important that you try and do this, as it is a
useful exercise in learning to think in terms of objects.

Table 4.3 Comparison of components

fuse relay motor pump

Instance variable state state state state

Services working? working? working? working?

4.8 Where Is the Structure? 31

4.11 Further Reading

A good place to start further reading on building Object-Oriented systems is with
the first few chapters of Blaha and Rumbaugh (2004). In addition, Wirfs-Brock and
McKean (2002) is an excellent, non-language-specific introduction to structuring
Object-Oriented systems. It uses a rather simplistic approach, which is ideal for
learning about Object-Oriented system design but is not generally applicable. This
is not a problem as what you want to do at the moment is to get the background
rather than specific techniques. Another good reference for further reading is
Larman (2008).

SimulationClass

name: ''

traceMessages()

Switches

state

moveUp()
moveDown()
state?

Component

state

working?

Waterbottle

level

empty()
fill()
extract()

Motor

working?

Pump

working?

inheritanceclass
instance

ofinstance

(switches) (water bottle)

(motor) (pump)

(relay)(fuse)

Fig. 4.7 Final class hierarchy and instance diagram

32 4 Constructing an Object-Oriented System

References

Blaha MR, James R (2004) Rumbaugh, Prentice Hall. 8120330161, 2nd edn.
Larman C (2008) Applying UML and patterns: an introduction to object-oriented analysis and

design and iterative development. Dorling Kindersley Pvt Ltd.; 3rd edn. 8177589792 (1 Dec
2008)

Wirfs-Brock R, McKean A (2002) Object design: roles, responsibilities and collaborations.
Addison-Wesley Object Technologiey Series. 0201379430 (Nov, 2002)

References 33

	4 Constructing an Object-Oriented System
	4.1 Introduction
	4.2 The Application: Windscreen Wipe Simulation
	4.3 Where Do We Start?
	4.4 Identifying the Objects
	4.5 Identifying the Services or Methods
	4.6 Refining the Objects
	4.7 Bringing It All Together
	4.8 Where Is the Structure?
	4.9 Summary
	4.10 Exercises
	4.11 Further Reading
	References

