
Chapter 36
Testing

36.1 Introduction

This chapter considers the different types of tests that you might want to perform
with the systems you develop in Scala. It also introduces test-driven development.

36.2 Types of Testing

There are at least two ways of thinking about testing:

1. It is the process of executing a program with the intent of finding errors/bugs
(see Glenford Myers, The Art of Software Testing).

2. It is a process used to establish that software components fulfil the requirements
identified for them; that is that they do what they are supposed to do.

These two aspects of testing tend to been emphasised at different points in the
software lifecycle. Error testing is an intrinsic part of the development process, and
an increasing emphasis is being placed on making unit testing a central part of
software development.

It should be noted that it is extremely difficult—and in many cases impossible—
to prove that software “works” and is error free. The fact that a set of tests finds no
defects does not prove that the software is error free. ‘Absence of evidence is not
evidence of absence!’. This was discussed in the late 1960s and early 1970s by
Dijkstra and can be summarised as:

Testing shows the presence, not the absence of bugs

Testing to establish that software components fulfil their contract involves
checking operations against their requirements. Although this does happen at
development time, it forms a major part of QA and user acceptance testing.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_36

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_36&domain=pdf

It should be noted that with the advent of test-driven development, the emphasis on
testing against requirements during development has become significantly higher.

There are of course many other aspects to testing; for example, performance
testing helps identify how a systems will perform as various factors that affect that
system change. For example, as the number of concurrent requests increase, as the
number of processors used by the underlying hardware changes, as the size of the
database grows.

However you view testing, the more testing applied to a system the higher the
level of confidence that the system will work as required, and therefore the lower
the risk of building a business around that system.

36.3 What Should Be Tested?

What aspects of your software system should be subject to testing? In general
anything that is repeatable should be subject to formal (and ideally automated)
testing. This includes (but is not limited to):

• The build process for all technologies involved.
• The deployment process to all platforms under consideration.
• The installation process for all runtime environments.
• The upgrade process for all supported versions (if appropriate).
• The performance of the system/servers as loads increase.
• The stability for systems that must run for any period of time (e.g. 24 x 7

systems).
• The backup process.
• The security of the system.
• The recovery ability of the system on failure.
• The functionality of the system.
• The integrity of the system.

Notice that only the last two of the above list might be what is commonly
considered areas that would be subject to testing. However, to ensure the quality of
the system under consideration, all of the above are relevant. In fact, testing should
cover all aspects of the software development lifecycle and not just the QA phase.
During requirements gathering testing is the process of looking for missing or
ambiguous requirements. During this phase consideration should also be made with
regard to how the overall requirements will be tested, in final software system. Test
planning should also look at all aspects of the software to test for functionality,
usability, legal compliance, conformance to regulatory constraints, security, per-
formance, availability, resilience, etc. Testing should be driven by the need to
identify and reduce risk.

410 36 Testing

36.4 Types of Testing

As indicated in Fig. 36.1 there are a number of different types of testing that are
commonly used within industry. These types are:

• Unit Testing which is used to verify the behaviour of individual components.
• Integration Testing that tests that when individual components are combined

together to provide higher-level functional units that the combination of the
units operates appropriately.

• Regression Testing. When new components are added to a system, or existing
components are changed, it is necessary to verify that the new functionality does
not break any existing functionality. Such testing is known as regression testing.

• Performance Testing is used to ensure that the systems’ performance is as
required and, within the design requirements, is able to scale as utilization
increases.

• Security Testing ensures that access to the system is controlled appropriately
given the requirements. For example, for an online shopping system there may
be different security requirements depending upon whether you are browsing the
store, purchasing some products or maintaining the product catalogue.

• Usability Testing which may be performed by a specialist usability group and
may involved filming of users while they use the system.

Fig. 36.1 Types of testing

36.4 Types of Testing 411

• User Acceptance Testing validates that the system actually meets the user
requirements and conforms to required application integrity.

Key testing approaches are discussed in the remainder of this section.

36.4.1 Unit Testing

A unit can be as small as a single function or as large as a subsystem but typically is
a class, object, self-contained library (API) or Web page.

By looking at a small self-contained component an extensive set of tests can be
developed to exercise the defined requirements and functionality of the unit.

Unit testing typically follows a white box approach, (also called Glass Box or
Structural testing), where the testing utilises knowledge and understanding of the
code and its structure, rather than just its interface (which is known as the black box
approach).

In white box testing, test coverage is measured by the number of code paths that
have been tested. The goal in unit testing is to provide 100% coverage: to exercise
every instruction, all sides of each logical branch, all called objects, handling of all
data structures and files, (including the absence of a file) normal and abnormal
termination of all loops, etc. Of course this may not always be possible, but it is a
goal that should be aimed for. Many automated test tools will include a code
coverage measure so that you are aware of how much of your code has been
exercised by any given set of tests.

Unit testing is almost always automated—there are many tools to help with this,
perhaps the best known being JUnit for Java and ScalaTest for Scala (with similar
tools being available for other languages). Developers write test and stubs, allowing
us to:

• focus on testing the unit
• simulate data or results from calling another unit (representative good and bad

results.)
• try to create data-driven tests for maximum flexibility and repeatability.
• Often rely on mock objects that represent elements outside the unit that it must

interact with.

Having the tests automated means they can be run frequently, at the very least
after initial development and after each change that affects the unit.

Once confidence is established in the correct functioning of one unit, developers
can then use it to help test other units with which it interfaces, forming larger units
that can also be unit tested or, as the scale gets larger, put through integration
testing.

412 36 Testing

36.4.2 Integration Testing

Integration testing is where several units (or modules) are brought together to be
tested as an entity in their own right. Typically integration testing aims to ensure
that modules interact correctly and the individual unit developers have interpreted
the requirements in a consistent manner.

An integrated set of modules can be treated as a unit and unit tested in much the
same way as the constituent modules but usually working at a “higher” level of
functionality. Integration testing is the intermediate stage between unit testing and
full system testing.

Therefore integration testing focuses on the interaction between two or more
units to make sure that those units work together successfully and appropriately.
Such testing is typically conducted from the bottom up but may also be conducted
top down using mocks or stubs to represented called or calling functions. An
important point to note is that you should not aim to test everything together at one
(so-called Big Bang testing) as it is more difficult to isolate bugs so that they can be
rectified. This is why it is more common to find that integration testing has been
performed in a bottom-up style.

36.4.3 System Testing

System testing aims to validate that the combination of all the modules, units, data,
installation, configuration, etc. operates appropriately and meets the requirements
specified for the whole system. Testing the system has a whole typically involves
testing the top most functionality or behaviours of the system. Such
behaviour-based testing often involves end users and other stake holders who are
less technical. To support such tests a range of technologies have evolved that
allows a more English style for test descriptions. Cucumber is one example of a
behaviour-driven development system, and ScalaTest has a behavioural aspect to its
testing styles.

36.4.4 Installation Testing

Installation testing is the testing of full, partial or upgrade install processes. It also
validates that the installation and transition software needed to move to the new
release for the product is functioning properly. Typically, it

• verifies that the software may be completely uninstalled through its back-out
process

• determines what files are added, changed or deleted on the hardware on which
the program was installed

36.4 Types of Testing 413

• determines whether any other programs on the hardware are affected by the new
software that has been installed

• determines whether the software installs and operates properly on all hardware
platforms and operating systems that it is supposed to work on.

36.4.5 Smoke Tests

A smoke test is a test or suite of tests designed to verify that the fundamentals of the
system work. Smoke tests may be run against a new deployment or a patched
deployment in order to verify that the installation performs well enough to justify
further testing. Failure to pass a smoke test would halt any further testing until the
smoke tests pass. The name derives from the early days of electronics: If a device
began to smoke after it was powered on, testers knew that there was no point in
testing it further. For software technologies, the advantages of performing smoke
tests include:

• Smoke tests are often automated and standardised from one build to another.
• Because smoke tests test things that one expects to work, when they fail, one

might suspect that the program may have been built with a wrong file, or that the
new build introduced a new bug.

• If a system is built daily, it should be smoke tested daily.
• It will be necessary to periodically add to the smoke tests as new functionality is

added to the system.

36.5 Automating Testing

The actual way in which tests are written and executed needs careful consideration.
In general, we wish to automate as much of the testing process as is possible as this
makes it easy to run the tests and also ensures not only that all tests are run but that
they are run in the same way each time. In addition, once an automated test is set up
it will typically be quicker to re-run that automated test than to manually repeat a
series of tests. However, not all of the features of a system can be easily tested via
an automated test tool and in some cases the physically environment may make it
harder to automated tests.

Typically, most unit testing is automated and most acceptance testing is manual.
You will also need to decide which forms of testing must take place. Most software
projects should have unit testing, functional testing and acceptance testing as a
necessary requirement. Not all projects will implement performance or regression
testing, but you should be careful about omitting any stage of testing and be sure it
is not applicable.

414 36 Testing

	36 Testing
	36.1 Introduction
	36.2 Types of Testing
	36.3 What Should Be Tested?
	36.4 Types of Testing
	36.4.1 Unit Testing
	36.4.2 Integration Testing
	36.4.3 System Testing
	36.4.4 Installation Testing
	36.4.5 Smoke Tests

	36.5 Automating Testing

