
Chapter 2
Elements of Object Orientation

2.1 Introduction

This chapter introduces the core concepts in Object Orientation. It concisely defines
the terminology used and attempts to clarify issues associated with hierarchies. It
also discusses some of the perceived strengths and weaknesses of the
Object-Oriented approach. It then offers some guidance on the approach to take in
learning about objects.

2.2 Terminology

Class A class defines a combination of data and procedures that operate on that
data. Instances of other classes can only access that data or those procedures
through specified interfaces. A class acts as a template when creating new instances.
A class does not hold any data but it specifies the data that is held in the instance.
The relationship between a class, its superclass and any subclasses is illustrated in
Fig. 2.1.

Subclass A subclass is a class that inherits from another class. For example, in
the last chapter, Student Employee is a subclass of Temporary Employee.
Subclasses are, of course, classes in their own right. Any class can have any number
of subclasses.

Superclass A superclass is the parent of a class. It is the class from which the
current class inherits. For example, in the last chapter, Temporary Employee is the
superclass of Student Employee. In Scala, a class can have only one superclass.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_2&domain=pdf

Fig. 2.1 Relationship
between class, superclass and
subclass

Instance or object An instance is an example of a class. All instances of a class
possess the same data variables but contain their own data. Each instance of a class
responds to the same set of requests.

John

setDepartment

setHourlyRate

printPaySlip

printBirthdayMessage

payExpenses

Employee Class

1455

8989F

220

name

Class to instance relationships

department

employeeNo

hourlyRate

Chris

3345

9987B

560

name

department

employeeNo

hourlyRate

Kate

1455

1122A

250

name

department

employeeNo

hourlyRate

Instance variable This is the special name given to the data which is held by an
object. The “state” of an object at any particular moment relates to the current
values held by its instance variables. (In Scala, there are also class-side variables,
referred to as static variables, but these will be discussed later.) Figure 2.2 illus-
trates a definition for a class in pseudo-code. It includes some instance variable
definitions: fuel, mileage and name.

8 2 Elements of Object Orientation

Method A method is a procedure defined within an object. In early versions of
Smalltalk, a method was used to get an object to do something or return something.
It has since become more widely used; languages such as CLOS and Scala also use
the term. Two methods are defined in Fig. 2.2: one calculates the miles per gallon,
while the other sets the name of the car object.

Message One object sends a message to another object requesting some oper-
ation or data. The idea is that objects are polite, well-behaved entities which carry
out functions by sending messages to each other. A message may be considered
akin to a procedure call in other languages.

Single or multiple inheritance Single and multiple inheritance refer to the
number of superclasses from which a class can inherit. Scala is a single inheritance
system, in which a class can only inherit from one class. C++ is a multiple
inheritance system in which a class can inherit from one or more classes.

2.3 Types of Hierarchy

In most Object-Oriented systems there are two types of hierarchy; one refers to
inheritance (whether single or multiple) and the other refers to instantiation. The
inheritance hierarchy (or extends hierarchy) has already been described. It is the
way in which an object inherits features from a superclass.

The instantiation hierarchy relates to instances rather than classes and is
important during the execution of the object. There are two types of instance
hierarchy: one indicates a part-of relationship, while the other relates to a using
relationship (It is referred to as an is-a relationship.).

The difference between an is-a relationship and a part-of relationship is often
confusing for new programmers (and sometimes for those who are experienced in

Fig. 2.2 A simple Scala class definition

2.2 Terminology 9

one language but are new to Object-Oriented programming languages, such as
Scala). Figure 2.3 illustrates that a student is-a type of person, whereas an engine is
part-of a car. It does not make sense to say that a student is part-of a person or that
an engine is-a type of car!

In Scala, extends relationships are generally implemented by the subclassing
mechanism. It is possible to build up large and complex class hierarchies which
express these extends relationships. These classes express the concept of inheri-
tance, allowing one class to inherit features from another. The total set of features is
then used to create an instance of a class. In contrast, part-of relationships tend to be
implemented using instance variables in Scala.

However, is-a relationships and classes are not exactly the same thing. For
example, if you wish to construct a semantic network consisting of explicit is-
a relationships between instances you will have to construct such a network
manually. The aim of such a structure is to represent knowledge and the relation-
ships between elements of that knowledge, and not to construct instances. The
construction of such a network is outside the scope of the subclassing mechanism
and would therefore be inappropriate.

If John is an instance of a class Person, it would be perfectly (semantically) correct
to say that John is-a Person. However, here we are obviously talking about the
relationship between an instance and a class rather than a subclass and its parent class.

A further confusion can occur for those encountering Scala after becoming
familiar with a strongly typed language. These people might at first assume that a
subclass and a subtype are essentially the same. However, they are not the same,
although they are very similar. The problem with classes, types and is-a relation-
ships is that on the surface they appear to capture the same sorts of concept. In
Fig. 2.4, the diagrams all capture some aspect of the use of the phrase is-
a. However, they are all intended to capture a different relationship.

The confusion is due to the fact that in modern English we tend to overuse the
term is-a. We can distinguish between the different types of relationship by being
more precise about our definitions in terms of a programming language, such as
Scala. Table 2.1 defines the relationships illustrated in Fig. 2.4.

To illustrate this point, consider Fig. 2.5, which illustrates the differences
between the first three categories.

The first diagram illustrates the potential relationships between a set of classes
that define the behaviour of different categories of vehicle. The second diagram
presents the subtype relationships between the categories. The third diagram

Person

Student

Car

Engine

is-a part-of

Fig. 2.3 is-a does not equal
part-of

10 2 Elements of Object Orientation

VehicleVehicle Vehicle

Car

Sports
Car

Sports
Car

Sports
Car

CarCar

is-a sub typing subclassing

Vehicle

Car

instance

MGF

Fig. 2.4 Satisfying four relationships

Table 2.1 Types of is-a relationships

Specialisation One thing is a special case of another

Type One type can be used interchangeably with another type
(substitutability relationship)

Subclassing or
inheritance

An implementation mechanism for sharing code and representations

Instantiation One thing is an example of a particular category (class) of things

Vehicle

Estate CarCar with Hatch

Car

MotorVehicle

Sports Hatch

Subclassing (inheritance)

Vehicle

Estate CarCar with HatchCar

MotorVehicle

Sports Hatch

Subtyping

Vehicle

Estate Car

Car with Hatch

Car

MotorVehicle

Sports Hatch

Specialization

Fig. 2.5 Distinguishing between relationships

2.3 Types of Hierarchy 11

illustrates a straight specialisation set of relationships. Notice that although estate
car is a specialisation of car with hatch, its implementation (the subclassing hier-
archy) indicates that it does not share any of its implementation with the car with
hatch class. It is worth noting that type relationships are specifications, while
classes (and subclasses) are implementations of behaviour.

2.4 The Move to Object Technology

At present you are still acclimatising to Object Orientation. It is extremely
important that from now on you do your utmost to immerse yourself in Object
Orientation, object technology and Scala. This is because when you first encounter
a new language or paradigm, it is all too easy to say that it is not good because you
cannot do what you could in some other language or paradigm. We are all subject to
the “better the devil you know than the devil you don’t” syndrome. If you embrace
Object Orientation, warts and all, at least for the present, you will gain most.

In addition, it is a fact of life that most of us tend to fit in learning something new
around our existing schedules. This may mean, for example, that you are trying to
read this book and do the exercises while still working in C, VisualBasic, Ada, etc.
From personal experience, and from teaching others about Scala, I can say that you
will gain most by putting aside a significant amount of time and concentrating on
the subject matter involved. This is not only because Object Orientation is so
different, but also because you need to get familiar not only with the concepts but
also with Scala and its development environment.

So have a go, take a “leap of faith” and stick with it until the end. If, at the end,
you still cannot see the point, then fair enough, but until then accept it.

2.5 Summary

In this chapter, we reviewed some of the terminology introduced in the previous
chapter. We also considered the types of hierarchy which occur in Object-Oriented
systems and which can at first be confusing. We then considered the pros and cons
of Object-Oriented programming. You should now be ready to start to think in
terms of objects. As has already been stated, this will at first seem a strange way to
develop a software system, but in time it will become second nature. In the next
chapter we examine how an Object-Oriented system might be developed and
structured. This is done without reference to any source code as the intention is to
familiarise you with objects rather than with Scala. It is all too easy to get through a
book on Smalltalk, C++, Scala, etc., and understand the text but still have no idea
how to start developing an Object-Oriented system.

12 2 Elements of Object Orientation

2.6 Exercises

Research what other authors have said about single and multiple inheritance. Why
do languages such as Smalltalk and Scala not include multiple inheritance?

Look for terms such as class, method, member, member function, instance
variable and constructor in the books listed in the further reading section. When you
have found them, read their explanation of these terms and write down your
understanding of their meaning.

2.7 Further Reading

Suggested further reading for this chapter includes Coad and Yourdon (1991),
Winston and Narasimhan (2001) and Meyer (1988). In addition all the books
mentioned in the previous chapter are still relevant.

2.6 Exercises 13

	2 Elements of Object Orientation
	2.1 Introduction
	2.2 Terminology
	2.3 Types of Hierarchy
	2.4 The Move to Object Technology
	2.5 Summary
	2.6 Exercises
	2.7 Further Reading

