
Chapter 19
Further Traits

19.1 Introduction

This chapter looks at some of the more advanced features associated with the use of
traits. The chapter looks at the way in which Traits can be dynamically wrapped
around an instance providing a form of aspect-oriented programming (AOP) known
as stackable traits. We then look at the role Traits can play in developing reusable
behaviour that simplifies the development of new types. Universal Traits used with
Value Types are then discussed. The chapter concludes by considering the way in
which traits can be used to define a restricted set of values for a given type.

19.2 Stackable Modifications

Traits can be stacked one on top of another when an instance of a class is created.
Each stacked trait can override the behaviour of the trait it is stacked on top of. This
allows the trait to either replace some of the behaviour of that trait, or wrap
additional behaviour around that trait. This idea is illustrated in the following figure.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_19

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_19&domain=pdf

As an example, the following code defines an abstract trait AbstractProcessor. It
is abstract because it defines an abstract method update that takes an Int and returns
Unit. This trait is mixed into the class BasicProcessor. This class defines the update
method as setting the amount property defined on the class.

The simple test harness class creates a new BasicProcessor using the initial value
0 and then updates it to 5 and prints out the result. The result of executing this
program is:

BasicProcessor: 5

We could new define a Trait Doubling that also extends the AbstractProcessor
trait. Note that the update method in this trait states that it overrides any other
definitions but that it is also abstract. That is, it expects to build on something that it
will be mixed into at a later date which is expected to be able to provide the

200 19 Further Traits

remainder of the behaviour of the update method. This allows it to invoke the super.
update method. Here super means the next version of update in the stack of traits
wrapping the concrete instance of a class (or indeed that concrete instance).

Note if the method is not marked as abstract, it cannot invoke the super version
of the update method.

This trait can be mixed into the BasicProcessor when that BasicProcessor is
instantiated, which results in the Doubling trait wrapping around the BasicProcessor
as shown below.

The following listing illustrates how the Test application is modified to stack the
Doubling trait onto the BasicProcessor:

The result of running this program is:

BasicProcessor: 10

As you can see from this, the value 10 is now being stored in the Basic
Processor—thus the Doubling trait version of update is being invoked which results
in the integer being doubled before being passed on down the line to the update
method defined on the BasicProcessor instance.

19.2 Stackable Modifications 201

This can be taken further; we could define additional traits such as Filtering and
Incrementing that either filter the value to be updated or add one to the value being
updated. For example,

We can now combine these traits in various ways and in different orders. For
example,

The effect of this is that the Doubling trait is stacked on top of the Incrementing
trait, which is stacked on top of the BasicProcessor. This idea is illustrated in the
next figure.

The end result of executing the above program is shown below:

BasicProcessor: 11

202 19 Further Traits

whereas this version results in a different output:

The result this time is:

BasicProcessor: 12

This is because in one example the value is doubled and then incremented by
one and in the second example it is incremented first and then doubled. Thus you
can see that the order in which the traits are added is significant (with the last trait
being the one that is accessed first). Thus the above listing can be represented as
shown in the next figure.

Finally, we can also include the Filtering Trait to decide if anything is to be done
with a value at all:

where the attempt to update the BasicProcessor instance to Zero is vetoed by the
Filtering trait, and thus the output from this program is:

BasicProcessor: 10

Note that the AbstractProcessor could also have been an abstract class rather
than a Trait; however, from a design point of view it is cleaner to have the
AbstractProcessor as a Trait.

19.2 Stackable Modifications 203

Of course we are not just limited to mixing in stackable traits when an instance
of class I created. We could also have defined a new type with the base class and the
stackable traits mixed together. For example,

class DoublingProcessor extends BasicProcessor with Doubling {..}

19.3 Fat Versus Thin Traits

There is a continual tension in software between the richness of an interface offered
by a component or library and implementation and maintenance effort required for
such an interface. This is because although (in theory) a rich interface is better for
client applications, a simpler interface is easier to develop and maintain. Ideally, we
want the best of both worlds: minimum effort for the developer of the component
and maximum utility for the user of the component. Traits allow methods to be
constructed based on existing implementations.

For example, the Ordered Trait defined in the scala.math package is a trait for
data that has a single natural ordering. Class or traits that implement this trait inherit
a range of concrete method such as <, <=, >, >= which rely on a method compare.
However, the method compare is an abstract method that is expected to return an
integer depending on the value being compared. This method must be provided by a
concrete trait, class or object. The definition of the method is:

abstract def compare(that: A): Int

This method returns the result of comparing the current instance with the
operand that.

The method returns a value ‘x’ where:

• x < 0 when this < that
• x == 0 when this == that
• x > 0 when this > that

For example, if we wished to create a new Balance class, which supported basic
Ordering and comparison type behaviour, we could do this by mixing in the
Ordered trait, as shown below.

204 19 Further Traits

The result is that although the code we have written is quite light as have
obtained a rich interface. For example the range of operations available on the
currency instance are shown in:

Thus the Balance class has a rich interface but has a simple implementation. The
majority of the comparison behaviour is mixed in from the trait (such as the <, >
methods), but they build on a concrete implementation of the compare method.

19.4 Universal Traits

Scala’s rules for inheritance do not permit Value Classes to mix in traits that extend
from AnyRef. Prior to Scala 2.10, all traits eventually extended AnyRef, and thus
traits could not be mixed into a Value Class. However, since Scala 2.10 traits can
optionally extend Any instead of AnyRef. This must be specified explicitly when
the trait is defined. Such a Trait is known as a Universal Trait as it can be mixed into
all types of classes from reference types to Value Classes. This permits Value
Classes to extend traits (as long as they are Universal Traits).

When a Universal Trait is mixed into a Value Class, then they allow inheritance
of methods for the Value Class but they do not incur the overhead of heap allo-
cation and referencing.

19.3 Fat Versus Thin Traits 205

The following trait Printable is a Universal Trait as it explicitly specifies the
parent type as Any. It is then used with the Value Class Wrapper (which merely
wraps around the underlying type Int) and extends AnyVal and mixes in Printable.

Note that if you do not explicitly specify Any as the super type of a Trait, then
that trait still defaults to extending AnyRef. Thus in the next figure, the trait Model
is a Trait as it (by default) extends AnyRef and the trait Printer is a Universal Trait
as it explicitly extends Any.

This also has some implications for further inheritance. If we have a Universal
Trait Equals (which explicitly extends Any) and a subtrait Ordered that extends
Equals, then the effect is that the trait Ordered by default extends the class AnyRef
and mixes in the trait Equals. The end result is that this is not a Universal Trait:

206 19 Further Traits

To turn Ordered into a Universal Trait then you must explicitly specify that Any
is the super class of Ordered as follows:

trait Ordered extends Any with Equals {…}

The trait Ordered is now explicitly a Universal Trait.

19.5 Traits for a Data Type

Although Scala has an enumeration type, this implies a specific ordering whereas in
some cases we merely want to define a set of associated values. For example, if we
wished to create a set of values for traffic lights, then we might wish to create values
for Red, Yellow and Green. However, there is no specific ordering, just these
values. We could use a trait to help define the objects used to represent the traffic
light colours. For example,

package com.jeh.scala.traits

trait TrafficLight

case object Red extends TrafficLight
case object Yellow extends TrafficLight
case object Green extends TrafficLight

In this case, the trait TrafficLight has been defined but contains no data elements
or behaviour (other than the defaults inherited from AnyRef). It is then used to create
a set of objects, Red, Yellow and Green. Note that these are case objects indicating
that all the values associated with TrafficLight are defined in the same file and thus
Red, Yellow and Green can be used safely within pattern matching statements with
the compiler able to indicate if all conditions are being accounted for.

As an example of using these values, the following test harness creates a set of
vals for each colour and can be used to print out the results and test fro equality, etc.

This is a commonly recurring idiom in Scala.

19.4 Universal Traits 207

19.6 Single Abstract Method (SAM) Traits

A SAM trait is a trait with a single abstract method. SAMs are originally introduced
in Java 8 (in the form of single abstract method interfaces also known as functional
interfaces) as it started to support the functional programming world.

This feature has been incorporated into the Scala world (essentially since Scala
2.11.5) as it makes Java interoperability easier. Strictly speaking Scala does not
need to support the concept of a SAM as it has its own (richer) set of features
available. However, it can make working with functional literals easier.

There are a set of constraints that must be met by a trait that wishes to be treated
as a SAM; these are:

• It must define a single abstract method (SAM).
• The abstract method must take a single argument list.

The following example illustrates a SAM trait. It defines a single abstract
method drive that takes a single Integer argument:

This can then be used to create a concrete implementation of the trait on the fly
using what is now as a functional literal or a lambda:

The output from this simple application is

208 19 Further Traits

This means that it is not necessary to define a class or object to implement the
abstract method defined in the trait. This reduced the amount of code written and
compiled.

A SAM trait can define any number of concrete values and methods (as long as
there is only a single abstract method). For example,

We can now use these properties and methods in our code:

Note that the function we have defined that takes an Integer refers to the variable
d1 that is being used to set up—this is referred to as closure. It works as the variable
d1 will be set up by the time the function is executed.

The output from this is:

We will return to functions later in this book.

19.6 Single Abstract Method (SAM) Traits 209

	19 Further Traits
	19.1 Introduction
	19.2 Stackable Modifications
	19.3 Fat Versus Thin Traits
	19.4 Universal Traits
	19.5 Traits for a Data Type
	19.6 Single Abstract Method (SAM) Traits

